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Introduction

1.1. Motivation

In recent years, the maritime industry has experienced a significant shift toward autonomous shipping to
enhance safety, improve efficiency and address a growing labour shortage [1], [2]. This shift has been
supported by rapid advancements in computing power, artificial intelligence and sensor technology,
enabling the development of perception, control and decision making systems required for autonomous
vessel operations [3].

Research on motion control for marine vessels has significantly evolved since Minorsky’s early work on
automatic steering in 1922 [4], leading to widely adopted control systems such as Proportional-Integral-
Derivative (PID) based heading autopilots, Dynamic Positioning (DP) systems for position keeping
tasks and trajectory tracking controllers [5]. However, a lot of the research in this field focuses on two
distinct tasks:

1. Position keeping tasks such as Dynamic Positioning, designed to keep a vessel at a fixed position
and heading while being subjected to environmental disturbances.

2. Trajectory following tasks, relying on trajectory tracking controllers to navigate a vessel between
static waypoints while adhering to a desired velocity profile.

While these methods have been widely studied and implemented in industry, fully autonomous dock-
to-dock maneuvering remains less studied. Dock-to-dock maneuvering tasks are often more complex
requiring automatic generation of the high level trajectory going from the starting to the final dock and
a smooth transition between the high speed transit phase and the low speed docking phase as shown
in Figure 1.1. The docking phase itself comes with many challenges such as "managing large sideslip
angles, static and dynamic obstacles and navigation in complex port geometries” [6]. Well established
solutions to the position keeping and trajectory following tasks could be modified, and combined to solve
the dock-to-dock problem. However, two key questions remain; how and when to perform the transition
from the transit to the docking phase as well as investigating what the optimal docking trajectory is in
geometrically constrained environments subject to environmental disturbances.
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Figure 1.1: A dock-to-dock trajectory showing undocking (top right) and docking (bottom left) phase in brown and the
transitions (light blue) to/from the sailing phase (dark blue) [7].

These questions drive the need for more advanced systems capable of higher level, integrated decision
making. Advanced model-based motion control systems such as Model Predictive Control (MPC) could
be leveraged due to their unique capability of performing both the trajectory generation and the control
tasks in parallel. However, such methods come with their own challenges such as a complex design
procedure, requiring precise dynamical models, and being computationally expensive to run in real time
[8]. Additionally, such algorithms provide limited possibilities for exploration and optimisation of high-
level decisions, such as determining when and how to perform the transition from high speed transit
to docking phase. Many of the model-based challenges stem from requiring explicit mathematical
formulations of the problem to be solved. Data driven strategies such as Reinforcement Learning (RL)
could be leveraged to address these shortcomings, providing a way to explore, through interaction with
an environment, different approaches that can be taken for the transition and docking phases without
requiring any explicit knowledge of the problem. Additionally, such methods allow for the design of
systems which can be robust to modeling errors and generalisable to many different scenarios. This
could result in a more flexible system that removes the need to explicitly state all possible docking
configurations that will be encountered during a vessel’'s operation.

A significant research gap remains in the development of motion control systems capable of a fully
autonomous dock-to-dock mission by integrating trajectory generation, controller transitions and adapt-
ability to environmental disturbances. This is addressed by developing a Guidance & Control (G&C)
system for a dock-to-dock mission of an Autonomous Surface Vessel (ASV). Once a benchmark system
based on traditional solutions is established, advanced methods, particularly RL, shall be employed to
improve adaptability and performance in geometrically constrained environments subject to environ-
mental disturbances providing a comparative analysis of different docking control systems.

Building on the motivation outlined in this section, this chapter continues with presenting the main
research questions, how they will be tackled and ends with a project plan. Chapter 2 contains the
stand-alone scientific article followed by the literature study in chapter 3. Chapter 4 proceeds with
some supporting results providing deeper insights into the modeling, controller tuning and possible
RL extensions. Finally, chapter 5 concludes this report followed by some recommended directions for
future work in chapter 6.
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1.2. Research Questions

Based on the research aim, a list of research questions are formulated to help break the problem down
into smaller sub-problems as well as help guide the literature study.

1 What is the state-of-the-art in vessel motion control?
2 What requirements must be met for a dock-to-dock mission to be classified as successful?

2.1 What are the safety related requirements?
2.2 What are the performance related requirements?

2.3 Based on these requirements, what metrics should be used for the comparison of a bench-
mark G&C system with a system leveraging more advanced methodologies?

3 What are the key components needed for the design of a benchmark, PID-based G&C system
for a dock-to-dock maneuver?

3.1 What mid level guidance algorithms and low level controllers should be used in both the
docking and sailing phases?

3.2 How to transition between the two phases?
3.3 How to incorporate robustness to environmental disturbances?

4 How can advanced G&C methods be leveraged in the hierarchical control structure to improve
upon the performance of the benchmark?

4.1 What is the optimal transition from the sailing phase to the docking phase?
4.2 What is the optimal trajectory during a docking maneuver?

4.3 What advanced G&C algorithms are most effective for high level decision making optimisa-
tion while being robust to environmental disturbances and generalisable to different mission
scenarios?

4.4 How can safety and interpretability be ensured for the selected advanced algorithm?

5 Is a simplified simulation model for the Damen Autonomous Vessel adequate to allow for real-life
transferability?

1.3. Methodologies

This section will give a brief overview of how each research question will be approached and tackled.
Starting with Question 1, the state-of-the-art for vessel maneuvering and advanced algorithms such as
model based and data driven approaches shall be investigated and presented in the literature study.

Question 2 defines the dock-to-dock mission through safety and performance requirements derived
from literature, with distinct criteria for the transit and docking phases. It also establishes evaluation
metrics to compare the benchmark and advanced G&C systems, grouped into three categories: track-
ing performance, energy efficiency, and safety (mission success).

Question 3 proceeds with the design of the benchmark G&C system by defining the guidance and
control algorithms for the two mission phases. The driving idea behind these choices is to keep the
design as simple as possible while still adhering to the mission requirements. Implementation will
involve tuning the two controllers under different scenarios, adding a thrust allocation module to convert
DP controller forces into actuator commands, and introducing a transition algorithm to smoothly switch
between high-speed sailing and low-speed docking.

Question 4 seeks to improve upon the benchmark G&C system by addressing its main limitations,
expected to be the discrete phase switch and static docking trajectory, which reduce adaptability to
varying environments and geometries. These issues should be analysed using the metrics from Ques-
tion 2, after which advanced algorithms are introduced; first with a simplified proof of concept, and then
extended to tasks such as phase switching and disturbance rejection. Finally, the question touches
upon the ’black box’ phenomenon for many advanced algorithms such as RL, where safety and inter-
pretability can never be fully guaranteed. Methods allowing for more safe and interpretable RL should
thus be investigated throughout the literature study.
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Question 5 touches upon the simulation-to-real gap. The simulation model used for the design process
should be accurate enough to allow for the same design to be run in real-life on the Damen Autonomous
Vessel (DAVE). To ensure this, the simulation model used is for a similar vessel to DAVE, however,
the transferability of the simulation model to the Damen Autonomous Vessel shall be quantitatively
analysed with a real-life validation of the simulation results.

1.4. Planning

This thesis began with a "Literature review & Research definition” phase where, over 6 weeks, relevant
information on the current state of the art was collected. In addition, the scope of the thesis was refined
by formulating and refinement of research questions. Once completed, the research part of the thesis
began divided into two research phases split by a midterm review. Phase 1 began with generating
the model required for performing simulations followed by an implementation of a benchmark, industry-
standard, G&C system for an autonomous dock-to-dock mission satisfying the mission requirements.
This was followed by an analysis of problematic areas in the benchmark system followed by a proof of
concept that RL could indeed be used to solve such problems.

Following the midterm review, phase 2 was then used to perform a detailed implementation of advanced
methodologies focused on the problematic areas. This was followed by a comparison of the benchmark
vs advanced system through the use of metrics. Finally, a real-life validation was performed using the
facilities provided at Damen. All related planning figures (Gantt Charts and Work Breakdown Structures)
were presented in Appendix A.
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Dock-to-Dock Motion Control
for Autonomous Vessels

Ugo Coveliers-Munzi

Abstract—This study evaluates control strategies for au-
tonomous dock-to-dock sailing on inland waterways. A bench-
mark system using industry-standard PID controllers is com-
pared to an all-in-one Reinforcement Learning (RL) controller
and a third, hybrid system is proposed trading off the improved
performance of the RL controller with the inherent stability
guarantees of the benchmark system. Simulation results show
all three controllers can successfully perform the mission. The
RL controller docks significantly faster while rejecting higher
lateral wind forces but struggles to generalise to unseen docking
scenarios, while the hybrid system improves interpretability at
the cost of performance. Furthermore, initial real-life testing of
the benchmark system validates the simulation results.

Index Terms—Autonomous Dock-to-Dock Maneuvering, Guid-
ance and Control, Reinforcement Learning, Hybrid RL-PID Con-
trol Systems, Dynamic Positioning, Controller Regime Transition

I. INTRODUCTION

N recent years, the maritime industry has experienced a

significant shift toward autonomous shipping to enhance
safety, improve efficiency and address a growing labour
shortage [1], [2]. This shift has been supported by rapid
advancements in computing power, artificial intelligence and
sensor technology, enabling the development of perception,
control and decision making systems required for autonomous
vessel operations [3].

Research on motion control for marine vessels has sig-
nificantly evolved since Minorsky’s early work on automatic
steering in 1922 [4], leading to widely adopted control systems
such as PID-based heading autopilots, Dynamic Positioning
(DP) systems for position keeping tasks and trajectory tracking
controllers [5]. Most research in this field focuses on position
keeping tasks under environmental disturbances or trajectory
following tasks [6] often neglecting critical functionalities
required for fully autonomous operations. Dock-to-dock ma-
neuvering tasks are often more complex requiring high-level
trajectory generation, transitioning between high-speed transit
and low-speed docking phases, as well as precise low-speed
maneuvering in constrained port geometries while subject
to environmental disturbances [6]. Open questions remain
regarding optimal switching between control phases and it’s
integration into high-level planning. Furthermore, research on
generation of docking trajectories in complex, dynamically
constrained environments remains limited.

This motivates the need for a system that is adaptable to
different docking scenarios and capable of real-time decision
making under uncertainty. Model-based approaches such as
Model Predictive Control (MPC) and Model Predictive Path

Integral (MPPI) have been investigated for this purpose, but
suffer from high model dependency and, in some cases, high
computational costs due to real-time optimisation [7], [8],
[9]. Data driven methods, such as RL, mitigate some of
these limitations by learning control policies directly from
experience through interaction with an environment rather than
relying on explicit problem formulations. This makes such
methods particularly attractive for learning high-level decision
making tasks, such as determining when to transition between
mission phases or optimising trajectories for complex harbour
geometries under environmental disturbances.

A clear research gap remains in the development of motion
control systems capable of a full dock-to-dock mission by inte-
grating trajectory generation, controller transitions and adapt-
ability to environmental disturbances. This is addressed by
developing a benchmark Guidance and Control (G&C) system
for autonomous dock-to-dock maneuvering and investigating
advanced methods, particularly RL, to improve adaptability
and performance in geometrically constrained environments
subject to environmental disturbances. The main contributions
are:

o An industry-standard, benchmark G&C system for dock-

to-dock operations including an initial real-life validation.

o An RL-based docking controller for geometrically con-

strained environments subject to environmental distur-
bances.

o A hybrid docking controller trading off performance for

reliability and interpretability.

« A comparative evaluation of the three controllers.

The remainder of this paper is structured as follows: sec-
tion II presents a background on motion control for marine
vessels and Reinforcement Learning as well as some related
work. Section III describes the simulation setup including gen-
eration of the dynamical model followed by the design process
of the different controllers in section IV. Their simulation-
based and real-life validation results are discussed in section V
ending with a conclusion in section VI.

II. BACKGROUND
A. The Dock-to-Dock Mission

A typical dock-to-dock scenario for a ferry operating in in-
land waterways is described in Figure 1. It comprises different
phases as described below:

1) Undocking: the vessel leaves its starting dock and aligns

itself with the trajectory.

2) Transit: The vessel begins sailing at constant speed.

3) Avoidance: The vessel avoids a static obstacle.



Fig. 1. A typical dock-to-dock scenario for a ferry operating in inland waters.

4) Approach: The vessel begins slows down to smoothly
transition to the final approach phase.

5) Final Approach: The vessel begins docking where it
aligns its position and heading with the end dock at low
velocity.

This study implements only wind disturbances simplifying
the design process while still showing the disturbance rejec-
tion capabilities for slowly varying disturbances (current is a
similar quasi steady-state disturbance applied in a different
manner). Waves are also omitted as they are considered
minimal in inland waterways and are mostly due to ship wakes.
It is assumed existing methods such as wave filtering [10]
provide the necessary rejection capabilities.

A mission is defined as successful when the vessel stern
and the bow (for lateral docking) make and maintain, by
pushing ’into’ the dock, contact with the dock while being
aligned and having a low enough velocity. To simplify the
successful condition, it is assumed in this study that docking
is successful when all three of the following conditions are
met simultaneously:

« Position error: < 0.3m

« Heading error: < 10°

o Velocity: < 0.1m/s

B. Marine Motion Control

Motion control is the ability to accurately maneuver along
a given path” [11] and, for marine applications can broadly be
split in two tasks [5]:
« Position-keeping: Remain at a desired position and head-
ing while rejecting environmental disturbances.
o Trajectory Following: Follow a desired geometric path
and velocity profile.

Position keeping tasks make use of the DP controller as
shown in Figure 2 [5]. The DP controller employs three
independent PID controllers along the three axes (surge, sway
and yaw) computing a desired force in each direction to
remain at a desired position and heading while subject to
environmental disturbances. A thrust allocation module then

maps the desired force to actuator commands by distributing
the required control effort across the vessel’s actuators. Thrust
allocation for vessel is a well researched constrained allocation
problem ([12], [13], [14]) and is considered to be outside the
scope of this study.

A

Azimuth
Thruster

Current

L .

Sway

Tunnel Main
Thruster Propulsion
and Rudder

Fig. 2. The DP problem where the DP controller maintains the vessel
within the desired degrees of freedom (orange arrows) while counteracting
environmental disturbances (red arrows) through the use of its actuators (green
arrows) [5].

Trajectory following refers to the ability of a vessel to
follow a predefined geometric path and velocity profile. Es-
sential for autonomous navigation, this task is achieved by
a combination of mid-level guidance and low level control
algorithms (G&C). The guidance module generates reference
commands for the vessel to ensure it remains/converges back
to the desired trajectory while the low level controller is
responsible for ensuring the actuators output the desired com-
mands. Line-of-Sight (LOS) is an example of such a guidance
algorithm combining simplicity, predictive capabilities and
convergence guarantees. Purely geometric, LOS computes a
required heading for the vessel to converge to the trajectory
at some point in the future called the LOS point as shown in
Figure 3.

Circle of acceptance
for waypoint k

Fig. 3. The Line-of-Sight principle [15]

The controller required to execute the guidance commands
can take many forms depending on the operating speed. At low



speeds, a DP controller can be used however, at higher speeds,
it is common to make use of independent speed and heading
PID controllers to avoid highly inefficient sway motion. Such
a setup also allows for bypassing the thrust allocation module
as the simpler task allows for directly relating speed/heading
errors to thruster rpm and angle.

Robustness to environmental disturbances such as current,
waves and wind is another essential ingredient for a motion
control system. Although the integral term in the PID con-
trollers can compensate for steady state errors caused by e.g.
a constant wind force, they lack the ability to quickly adapt to
dynamic conditions due to the slow nature of the integral term
buildup. Hence, such disturbance forces are typically estimated
through the use of nonlinear disturbance observers [16] and
are applied in a feedforward manner. Additional measures,
such as wave filters, have also been proposed to prevent high-
frequency noise from destabilizing the control loop [10].

Assuming a pre-generated trajectory, several papers have
combined the above motion control solutions into a G&C
system for autonomous docking. [17] extends a PID-based DP
controller to low speed tracking by employing a low pass filter
guidance module, enabling accurate alignment with the final
dock but neglects the transition from a previous sailing phase.
Building on this, [18] addresses the full mission smoothly tran-
sitioning between docking and sailing controllers via integral-
state matching (equal controller outputs at switch) although
when to switch remains under-investigated. To avoid controller
switching all together, [19] proposes a unified, model-based
controller using a shaping function to limit inefficient sway
motion at higher speeds but its feedforward and model-based
nature tightly couple it to the simulation model used.

C. Model-Based Approaches

Model-based approaches explicitly incorporate vessel dy-
namics and environmental constraints into the control loop
allowing for predictive planning to generate desired docking
trajectories. Model Predictive Control (MPC) has been applied
to the docking problem in [7], while hybrid MPC-PID methods
have been shown to reduce MPC’s model-based, feedforward
nature by using it only to generate trajectories [20]. To address
MPC’s heavy computational expense due to performing real-
time optimisation at each timestep, Model Predictive Path
Integral (MPPI) replaces it with a gaussian sampling-based
control selection [21] and has been applied to the docking
problem in [8]. Many variations such as nonlinear MPC and
iterative learning MPC exist [6] however, the fundamental
model-based nature remains an issue for precise control in
real-life operations. Additionally, such approaches generally
require extensive weight tuning and cost function design for
different scenarios.

D. Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine
learning concerned with learning sequential decision-making
policies through interaction with an environment. At each
timestep, an RL agent observes the current state of the
environment, selects an action, and receives a scalar reward

based on the outcome. The goal of the agent is to learn a policy
that maximizes the expected cumulative reward over time [22].
Unlike model-based approaches, RL avoids explicit problem
formulations by directly interacting with an environment and
learning through experience. This makes it well suited for
complex tasks requiring the exploration of new solutions
such as autonomous docking in constrained environments. By
optimizing behavior over long horizons and under uncertainty,
RL offers a promising framework for handling model uncer-
tainties, adaptive learning, generalisability to unseen problems
and exploration of unknown solutions [23].

RL methods can be divided into value-based and policy-
based approaches. Value-based methods iteratively estimate a
value function approximating the cumulative returns for state-
action pairs, from which a policy is extracted using a greedy
or e-greedy algorithms. However, such methods are limited to
discrete action spaces. Policy-based methods directly approx-
imate the policy, enabling continuous and stochastic actions,
though often suffer from high variance and training instability
due to lack of ’guidance’ by a value function during training
[22].

Actor-Critic algorithms combine value- and policy-based
methods allowing for continuous and stochastic action spaces
while leveraging the higher stability of value based methods.
This is achieved by introducing two distinct components: an
actor which learns a parametrized policy mapping states to
actions and a critic estimating the value (or action-value)
function to provide feedback to the actor. Soft Actor-Critic
(SAC) builds on other actor-critic methods such as Deep De-
terministic Policy Gradients (DDPG) [24] and Twin Delayed
Deep Deterministic Policy Gradient (TD3) [25] to provide an
algorithm which is [26]:

« Robust to Q value overestimation bias due to introduction

of twin Q networks.

« Robust learned policy due to incorporation of stochastic-

ity in actor network.

« Automatically tuned entropy parameter « better balancing

exploitation exploration.

RL has been applied to marine motion control with promis-
ing results. Deep RL (DRL)-based controllers show improved
environmental disturbance rejection in trajectory following
tasks [27] and allow for obstacle avoidance using real-time
sensor data [28]. Although useful as a controller, RL’s real
advantage becomes apparent in the higher level planning
module where the RL agent must make decisions based
on many, dynamically varying factors. Although applied to
different applications, both [29] and [30] show RL’s ability to
plan even in unseen scenarios.

As with all machine learning approaches, a major draw-
back of RL is its ’black box’ nature [31]. [32] addresses
safety and interpretability by employing a hybrid MPC-RL
approach using the RL algorithm to adapt MPC weights and
constraints. Lyapunov-based safe RL [33] tracks the stability
of a system during training while [34] proposes Control
Barrier Functions (CBFs) to ensure hard constraint handling
through set invariance although these methods remain limited
in handling transient performance (focused on steady-state
stability guarantees).



III. SIMULATION SETUP

This section describes the simulation setup where it’s main
components are shown in Figure 4. It begins with providing the
theoretical background required for the maneuvering (vessel),
thruster and wind models and ends with an overview of DAVE
and how it’s hydrodynamic and thruster coefficients were
identified. The controller block in Figure 4 shall be discussed
in section IV.

l V_w, B_w
Wind Model
l t_wind
n_d,v_d controler n_d,od | rpuster | T | Maneuvering | ™V
— > Model Model

oo

Fig. 4. A high level overview of the different simulation components.

A. Modeling

Reference Frames

The simulation model makes use of the Earth-tangent North-
East-Down (NED) and the body-fixed frame as shown in
Figure 5 where the NED frame assumes a flat, non-rotating
Earth. Going from the body (b) to the NED (n) frame is based
on the heading 1

n =Ry ) v, ey
costyp —siny 0
R (¢) = |sinyy  cosyp 0
0 0 1

@)

Fig. 5. North-East-Down (NED)
vs. Body frame.

Where 7 is the NED state [X,,0rth, Yeast, ¥], commonly re-
ferred to as the "pose’ and vy, is the velocity vector containing
surge, sway and yaw rate velocities [u, v, 7].

Maneuvering Model

The maneuvering model is a 3 degree-of-freedom (3DOF)
model used in navigation for surface vessels modeling forward
(surge), lateral (sway) and rotational (yaw) motion through the
use of the three body velocities as states (u, v, r). It’s standard
form is shown below [12]:

Mo+ Cv)v+Dwv=r1 3)

Where the mass matrix, M = MRgrg + M, contains the
rigid body dynamics and the added mass matrix describing the
additional inertia due to movement of the surrounding water.
The centripetal/coriolis matrix, C = Crp + Ca, captures the
forces due to translational/rotational motions over the Earths

surface and the damping matrix, D = Dy, +Dnr, contains the
linear and nonlinear (high speed) damping terms. 7 represents
all the forces applied to the vessel including a control force
and a disturbance force (wind and waves) while current is
represented as a relative velocity in the model.

Thruster Model

The thruster dynamics model the thrust 7' to propeller speed n
(in rpm) with a quadratic relation using the thrust coefficient
Thn:

T =T,.n> “4)

Where the thrust is further decomposed using the thruster
azimuth angle « and the c.o.g. offsets I, and [,:

F,=Tcosa 5
F,=Tsina 6)
M, =1,F, -1, F, @)

Additionally, actuator dynamics are modeled as simple
linear rate limiters.
Wind Model
A wind model relating relative wind speed V;.,, and angle 3,
to force applied on the vessel is defined as follows [12]:

C’X (ﬂw)Afrom
CYY (Bw)Alat (8)
C’N (Bw)AlatL

Twind = 50‘43

Where the wind coefficients Cx (8y),Cy (Bw), Cn(Bw)
are computed based on the Helmholtz-Kirchhoff plate theory
(using the ’research vessel’ parameters Table 8.3 in [12]), p is
the density of air, A¢yon: and Aq are the frontal and lateral
surface areas above the waterline and L is the length of the
vessel.

Wind gusts are modeled with a Ornstein-Uhlenbeck Process

where fluctuations in the x and y wind speed components are
modeled as [35]:

_ At _o At
Vk+1 =e Mo Vz,k + O gust 1—e "M . N(Oa 1) (9)

The resulting V,, and V,, wind speeds are then converted
to a wind speed magnitude and angle to be used in the wind
model above.

Finally, to use the wind model in the controller design as a
feedforward action, a wind sensor and observer must be imple-
mented to account for measurement noise and avoid an ideal
case where the feedforward control actions perfectly cancel
out the wind experienced. As this is outside the scope of this
research, the sensor was simply modeled by adding noise and
a bias (¢ = 0.15,b = 0.05[m/s]) based on typical maritime
wind sensors [36]. The observer was a simple Exponentially
Weighted Moving Average (EWMA) filter which filters out
the high frequencies due to wind gusts and sensor noise. A
block diagram of the wind model used in simulation is shown
in Figure 6.
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5V_gust Wind Model used in simulation | ¢
V_w, B_w I

A
[ Wwind | TW [ Vvehicle v N
~ Model Plant
V_w_avg,
B_w_avg
8V_noise | -l
| V_w_meas,

_w_meas

8V_bias

Wind Sensor

Wind Observer

Wind Model Used by DP controller

Fig. 6. Block diagram showing how the wind model is used in simulation
and for the controllers.

B. The Damen Autonomous Vessel

The Damen Autonomous Vessel (DAVE) shall be used to
perform final real-life validation in conjunction with a 10 by
5 meter testing pool. It is a 1:25 scale model vessel of a
tug owned by Damen containing two azimuth thrusters at the
stern as shown in Figure 7. DAVE is equipped will all the
necessary hardware for logging and sending data commands
to the vessel remotely. Additionally, it is equipped with an
Inertial Navigation System (INS), developed at the Damen
facilities, capable of estimating the full vessel state vector
[n, v,w] where 7 is the pose, v are the linear velocities and w
are the angular velocities.

Fig. 7. An overview of the Damen Autonomous Vessel (DAVE).

DAVE’s maneuvering and thruster models were identified
in [37] where the thruster model was found to be accurate
(and was hence used) but the maneuvering model omits key
sway-yaw coupling dynamics. Hence, a validated maneuvering
model developed for a similar-scale vessel, TitoNeri [38],
is adopted and scaled to DAVE’s dimensions using Froude
similarity. To address the low speed issues of conventional
velocity-based normalisation, the BIS normalisation method
was applied (Table 7.2 in [12]) which is based on physical
parameters such as length and mass. The final parameters for
DAVE are listed in Appendix A, Table VII.

IV. CONTROLLER DESIGN

This section concerns itself with the design of the controller
block shown in Figure 4. It begins with the design of a bench-
mark controller for the dock-to-dock problem followed by the

implementation of an all-in-one RL-based docking controller
and ending in a hybrid system where the RL controller’s
increased performance is traded off with the inherent stability
guarantees of the benchmark system.

A. Benchmark System

The benchmark system consists of a high speed PID-
based sailing controller and a low speed PID-based docking
controller as well as their respective guidance modules. Fo-
cusing on the G&C aspect of the mission, a dock-to-dock
trajectory must be manually generated based on Figure 1
using Dubins method to impose curvature constraints ensuring
feasibility [39]. The desired dock-to-dock trajectory is shown
in Figure 16.

Sailing Controller

The sailing controller, used for the high-speed transit phase,
consists of speed and heading PID controllers in combination
with LOS guidance as shown in Figure 8.

Feed-
forward

— —_ >
dvd ‘”
1o Los
L |
n ~e g [ PD
$_d » Heading o_d
Fig. 8. Block diagram for complete sailing controller including guidance

module.

Both controllers directly output thruster commands bypass-
ing the need for a thrust allocation module. Additionally, the
speed controller makes use of a feedforward term which ac-
counts for the nonlinear steady-state damping at higher speeds
(see Equation 12) avoiding the need for gain scheduling.

¢
a:Kp~ew(t)+Ki'/ ey (t)dt — Kq - €y(t) (10)
0

t
n:nFF+Kp~eu(t)+Ki-/ eu(t)dt — Kgq-€,(t) (11)
0

D,

Tnn * Nthrusters

ngpp = (12)

Where n and « are the thruster rpm and angle, [K,, K;, K]
are the PID gains, e(t) is the heading/surge speed error in the
body frame, D, is the steady state drag at the desired surge
speed, ug4, and T, the thruster coefficient relating thrust to
rpm.

To avoid the integral term building up to excessively large
values when large setpoint changes occur (integral windup),
a simple anti-windup scheme is employed where the integral
term is only incremented if the actuators are not saturated [40].
Docking Controller
Shifting to the docking phase, a DP controller must be
designed, and slightly modified, to allow for low speed pose
tracking rather than position-keeping. To avoid over saturated
DP controller outputs due to large position errors, a third-
order low pass filter is employed (see Equation 13) to ensure
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the desired pose smoothly moves between the current vessel
and desired final pose preventing large, discrete jumps [17].

Nng. w3

i ni

r(s) S+ (20 + Dwn,s® + (20 + D s + Wi,

(13)

Where ng4, is the output from the low pass filter (the
dynamic waypoint), r; is the desired final waypoint (static
waypoint), w the frequency of the low pass filter and ¢ the
damping ratio.

The DP controller often makes use of a wind feedforward
term, as shown in Figure 9 and Equation 14, due to it’s ease
of measurement in real-time. This reduces the reliance on the
slowly varying integral term for disturbance rejection.

Wind Disturbance

| Wind
| Sensor

Environmental
Observer

n_d e DP

Thrust Plant
Controller | . 4 [Allocator| n d,a_d |

n,v

)
I/

Fig. 9. Block Diagram for the Dynamic Positioning control loop.

t
T = TFEwind T Kp e(t) + K; / 6(7‘) dr + Ky e(t) (14)
0

Where [K,, K;, K ] are the diagonal gain matrices (each
has 3 gains for the three DOFs), Tggwing i the feedforward
wind force and e(t) = R} (14,(t) — n(t)) is the pose error
vector in the body frame,

The output desired force vector, 7q = [Fy,F,,M.], is
subsequently translated into actuator rpm and angle commands
in the thrust allocation module. To limit the scope of this study,
a simple thrust allocation algorithm is used which performs a
steady-state force decomposition to find the best rpm and angle
for both thrusters to achieve the desired force (see section 12.3
in [12]).

Controller Tuning
The tuning process used for the PID controllers is based on
the Ziegler-Nichols tuning method [41]:

1) Increase K, until system reaches sustained oscillations
(ultimate gain).

2) Reduce K, by about half and introduce K, for addi-
tional damping.

3) Finally, introduce K; to eliminate the steady state error

(if none present, still needed for disturbance rejection).

Throughout the tuning process, different metrics quantifying

the closed loop response performance were monitored. These

include: rise time, settling time (2%), overshoot and stead-

state error. Additionally, the effect of operating speed on the

different controllers is analysed and, if required, a feedforward

term is included to avoid the need for gain scheduling. Finally,
the lookahead distance was maximised to avoid an overly
reactive controller while preventing excessive corner cutting
and the low pass filter should be as fast as possible without
introducing overshoot into the closed loop response. The final
values are listed in appendix A.

Controller Transition

A mechanism to smoothly switch between the two controllers
is now investigated. Three switching waypoints (WP), as
shown in Figure 16, shall be placed along the trajectory with a
specified along-track distance starting from the start/end dock
(in terms of ship lengths from the dock). Their functionality
is as follows:

o Undocking WP: Easiest point to place, must allow for
enough clearance to dock when vessel rotates to align
with the start of the transit phase.

o Approach WP: Ensure a smooth transition at the final
approach wp by slowing down until reaching a velocity
of 0.1m/s at the final approach wp.

o Final Approach WP: Vessel switches from the sailing
controller back to the docking controller to perform the
final docking maneuver. Must be placed far enough from
final dock to give vessel time to slow down and align its
heading with the dock.

Where as a general rule of thumb, the points should be tuned
such that the time spent in the docking phase is minimised to
ensure timely and efficient operation. The undocking waypoint
is placed at 2 ship lengths from the start dock with it’s only
requirement being enough clearance to the dock when rotating.
Using Figure 10 to place lower limits on the approach and final
approach factors, values of 4 and 2 were chosen respectively.

\pproach WP Factor Final Approach WP Factor Docking Time (s)
8 6 336

8 6

320

300

280

260
240
220

200

Fig. 10. Sensitivity analysis of approach and final approach factor placement
w.r.t mission completion time (red=failure).

B. RL Docking Controller

An all-in-one RL controller, with direct access to the actua-
tor commands, is now designed for the final docking problem
providing the following improvements over the benchmark
system:

Docking Time (s)
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« Built-in docking trajectory planning

o Built-in controller switch mechanism

o Generalisability to different geometric constraints & en-
vironmental conditions

Action & Observation Space
At each timestep, the agent receives the following observable
states (all normalised to [-1, 1]):

o Errors to the goal pose in the body frame: [z, ye, ]

« Body velocities: [u, v, 7]

o Relative wind speed (body frame): [v,.,, Uy, ]

o Lookahead points: 16 points at equidistant angles around
vessel returning the distance to an object/safety bounds
in that direction [42].

o Dock centroid (x, y): the lookahead points are in theory
enough information for the agent but explicitly adding
this speeds up training.

o Hold progress: variable indicating what step of the K-
hold’ process agent is currently in (see 'Reward Function’
for more details)

Based on the observed state at each timestep, the agent must
output 4 actions; propeller speed and thruster azimuth angle
for two independent thrusters.

Reward Function

The reward function provides feedback to the agent on the
quality of it’s actions with respect to the ultimate task to be
completed. To ensure the primary task remains dominant [43],
the weights for individual components are carefully tuned (see
Table 1) and a potential-based distance reward is employed
[44] providing the agent with directional information w.r.t the
dock. Finally, to avoid destabilising the critic with large per
step rewards at the success condition, a ’K-hold’ technique
is proposed where if the condition is reached, the state
if frozen over the next K timestep and the agent receives
R% at each step. To ensure full observability, an additional
observation state on which hold step the agent is in is included.

R= Rprogress + Rpenalty + Rtime + Rcrash + Rsuccess (15)

-Ad, ift>0

Rprogress = {;UP ’ 1f ¢ i 0 where Ad=d;_1—d;
(16)
Rpenalty = 7<ww * €y + Wy - €y + Wq - dt) (17)
Ruvusts — —5.0, if outsi.de safety bounds (18)

0, otherwise
Rtimc = _10_3 (19)
Ruvecoss — R“’%, if in su.ccess hold phase 20)

0, otherwise
Where d; ”;’gaiw and e, = [Paos=¥el are the

_ vl

VUmax

normalised distance and heading errors to the dock, e,

is a normalised velocity penalty, K is the number of transitions
over which to divide the success reward and wy,, Wy, Wy, Wq
are the corresponding weighting factors.

TABLE I
REWARD FUNCTION STRUCTURE.
Reward Description Range Weighting
Potential-based distance
reward encouraging agent
Rprogress| to approach dock while [-0.1, 0.1] wp = 20
providing directional
information
Reward penalising _
R heading/position error to 20,05, 0] :j}w _ 88;L ’
penalty | qock and penalising large o v 0.04
velocities. Wa = -
Truncation penalty
Rerash applied when agent Sor0 -
crashes
Riime Time penalty —1073 -
Renccoss Reward, {or rething the (s(;)Jl(i)tr v{/?th K=10
goal condition k-hold)

Environment Setup

To ensure a wide range of scenarios are covered, the envi-
ronment scenario is generated randomly per episode where, if
feasibility is not detected (no path connection), the process is
repeated:

1) Randomly generate rectangular safety area within max-
imum distance bounds (20 meters).

2) Within this rectangle randomly initialise start and end
pose at which to dock as well as wind disturbance.

3) Create dock object rectangle, place at 0.3m offset from
goal pose. Merge safety and dock areas into single
polygon with dock object cut out.

Training Approach

The SAC algorithm was implemented from scratch using
PyTorch and was compared to the open source OpenAl
StableBaselines3 (SB3) SAC package!. SB3 was used as,
although final convergence was similar, it was much faster.
Additionally, due to the complexity of the task, curriculum
learning was employed where the task is divided into 3 sub-
tasks to be learned sequentially where at each subsequent
phase, the training is bootstrapped (load buffer with samples
from previous policy) with the previous phase policy:

1) Phase 1: Learn the ideal policy in no wind and a fix
dock/safety area size.

2) Phase 2: Add wind (up to 5m/s) randomisation in en-
vironment. Double network capacity (hence also reduce
learning rates) as introducing wind increases problem
complexity.

3) Phase 3: Add dock and safety area size randomisation
(Iength and width).

The wind speed of 5m/s is based on the DP controller
lateral wind rejection capability (3.5m/s) with an additional
margin to investigate potential improvements. To avoid in-
troducing too much static bias in the sample distribution,
the bootstrapping was performed with 75,000 samples before

Uhttps://stable-baselines3.readthedocs.io/en/master/
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training. The hyperparameters, selected with the help of the
sensitivity analysis performed below, are presented in appendix
A, Table VIII.

RL Sensitivity Analysis

A sensitivity analysis on the SAC hyperparameters is only
performed on the first training phase due to the time con-
straints®. Four main parameters are varied and their influence
on the training reward curve is shown. Note that if instability
is detected (exploding q values, large oscillations) the training
run is terminated early to avoid unnecessary computational
overhead.
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Fig. 12. Different learning rates for
the RL controller phase 1 training.
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for the RL controller phase 1 training. the RL controller phase 1 training.

Figure 11 shows that a network size of [256,256,256]
leads to the best reward where a smaller network results in
clear underfitting while larger networks are unstable due to
overfitting to training noise. Figure 12 shows that for the
chosen network size, a learning rate of le — 4 is optimal
where as a general rule of thumb, larger networks require
smaller learning rates to mitigate their increased expressivity.
The default discount factor v = 0.99 is shown to work
best in Figure 13 as it finds the balance between a large
enough horizon without confusing the agent with too much
delayed credit assignment. Finally, the target entropy was
chosen to be Hygrger = —4 (—actiong,) as it provides the
best exploitation (more negative) vs exploration (less negative)
balance.

Although limited, this sensitivity analysis provides an initial
indication that the values chosen consistently result in the
highest performing training curve. This should be further
extended to the second and third phase of the curriculum
learning process aswell.

2Similarly, a sensitivity analysis on the hybrid controller presented later is
omitted.

C. Hybrid RL system

To combat the black box nature of the all-in-one RL
docking controller, a hybrid system is proposed trading-off the
increased performance and functionality of the RL controller
with the inherent stability guarantees of the benchmark G&C
system. The RL controller is thus re-framed as a planning
module which rolls out it’s control policy to generate desired
docking trajectories to be followed by the benchmark system
(see Figure 15) where, if a roll-out violates safety constraints,
the process is repeated. This is similar to the hybrid MPC-PID
approach employed in [20] with the RL controller replacing
the MPC controller.

An algorithm placing the switching points used by the
benchmark system along the rolled-out trajectory must now be
designed as shown in Figure 23. For this purpose, another SAC
agent is trained by taking in the entire rolled out trajectory and
placing the approach and final approach switch points shown
below.

Trajectory
Trajectory Rollout Followin,
Docking Discrete Benchmark
Controller - Switch Agent " G&C
Agent chklng witch Agen Docking
Trajectory

Trajectory +
Switch
Points

Fig. 15. A high level overview of the proposed hybrid RL approach.

Action & Observation Space

The agent is fed the entire rolled out trajectory (list of
[€d, ya, Va, uq) waypoints) where, due to the fixed nature of
the observation vector size, it is interpolated to a fix number of
points (128 gives enough resolution for max distance of 20m).
The agent must output two scalar distances representing the
along track distance from the end dock at which to place the
two switching points.

Reward Function

The environment must now reward how well the benchmark
system can execute the docking mission based on the switch
placement resulting in a simple and sparse reward:

R = Riime + Rsucess 2D

Where Ry;me (normalized to [-1, 0]) penalizes the time taken
to reach the dock and Rgyccess simply returns 1 when docking
is successful, 0 if not successful (but has not crashed) and -1
if the agent crashes.

The sparsity of the reward (single reward signal per episode)
results in highly delayed credit assignment (which actions
lead to good reward) limiting it’s learning potential. The
consequences and potential alternatives are discussed in sub-
section V-C.

Training Approach

The same SAC algorithm is used for this agent while its
parameters have been slightly adapted compared to phase 1
of the RL controller. The network size is increased to [768,
768, 768] accounting for the large observation size (128x5)
and the learning rates are decreased to le-5 accounting for
the increased expressivity of the networks.
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V. RESULTS

The three systems shall now be validated and compared
beginning with an individual analysis of the benchmark and
RL docking controllers, and a comparison of the two systems
on the benchmark docking scenario. This is followed by a
comparison between the all-in-one RL controller with the
hybrid system ending in a real-life validation of the benchmark
system.

A. Benchmark System

Selecting an undocking waypoint factor of two, approach
of four and final approach of two, the benchmark system can
now be run on the fixed docking scenario where it’s mission
metrics are collected in Table II while the trajectory is plotted
in Figure 16.
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Fig. 16. Full dock-to-dock trajectory for the benchmark G&C system.

Switch to N Switch to
0.6 Sailing Docking
0.5 n
Begin
g0
S
— 0.3
>
0.2
0.1
’\/_/ —— Reference Speed
0.0 — Actualu
L
0 25 50 75 100 125 150 175 200
Time (s)

Fig. 17. Surge speed (u) profile related to Figure 16.

The successful docking attempt by the benchmark system
(as seen by the final error metrics) provides some key take-
aways:

e More conservative approach factors could be used to

ensure ¥ = 0.lm/s at transition (currently 0.44m/s)
however, Figure 16 shows an acceptably smooth tran-
sition.

TABLE 11

METRICS FOR THE IDEAL DOCKING CASE.
Metric Value
Total Time [s] 203.0
Switch to transit [s] 34.0
Switch to final approach [s] 162.5
RMSE Speed Error [m/s] (sailing phase) 0.079
RMSE Cross Track Error [m] 0.09
RMSE Heading Error [deg] 4.09
Final velocity at dock [m/s] 0.04
Final heading error at dock [deg] 2.39
Final position error at dock [m] 0.205

« Sailing controller performance is deemed adequate, with
speed and heading RMSE errors mostly due to the tight
turn in avoidance phase.

« Relative to distance covered, the docking phase is signif-
icantly slower compared to the transit phase.

This further emphasises the importance of the final docking

phase and motivates the need to find better, more efficient
solutions to the final approach and docking.

B. RL Docking Controller

The per episode training rewards for the different phases of
the RL controller are shown in Figure 18. Both phase 1 and
phase 2 reach a plateau at around +15 indicating the agent
consistently picks up the +10 success reward where phase 2
is faster w.r.t global timestep due to bootstrapping. However,
when introducing random dock and safety area sizes (phase
3), there are clear signs of a failure of the agent to learn the
task.

15
- 10
©
5 5
3
g 0
o
& -5
2
%—10 —— phase 1
[}
s —15 ‘ phase 2
20 ' —— phase 3
0 2 4 6 8
Global step le6

Fig. 18. The per episode reward training curves of the RL controller across
the different curriculum phases.

The failure of the agent to learn the randomized geometry
problem in phase 3 is further investigated with a MonteCarlo
(MC) type validation where the three phases are ran on N
randomly generated, unseen scenarios with its results shown
in Table III and Figure 19. Equation 22 allows for computing
the minimum number of samples required for a confidence
interval (CI) of 95% ([45], Sec 4.4).

2,01 _
N trd-p)

= (22)
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Where t is the normal quantile for desired confidence
(1.96 for CI of 95%), p is the estimated success probability
approximated apriori by running a small N=100 MC run
(pest = 0.85)° and d is the desired absolute margin of
error (+4%). All MC simulations shall be produced using
N = 350.

TABLE III
BINARY RESULTS OF MONTECARLO ANALYSIS ON DIFFERENT RL
TRAINING PHASES.

Metric Phasel Phase2 Phase3
Success % 95.7 96.3 47.1
Crash % 3.1 3.7 329
Final Position Error [m]  Final Heading Error [rad] Final Speed [m/s] Time to Dock [s]
3.0{ @ Phasel o
Phase 2 10 120
251 @ Phase3
08 010 100
20 0.08
06
g 15 g g g
© G © 006 ©
g g o s g

02 0.04

05 40
0.0 0.02
0.0

-0.2 0.00

Fig. 19. Resulting metrics of MonteCarlo analysis on different RL training
phases. Metrics are final errors at episode termination (success, crash or
truncation).

Phase 1 and phase 2 (with wind) have near identical results
showing that the agent has learned the wind rejection task.
Figure 19 shows phase 2 performing slightly better likely
due to the added domain randomization (wind) acting as
regularisation allowing for larger networks compared to the no
wind policy. This is consistent with Figure 18, where phase 1
reaches a slightly higher training reward plateau (15 vs 14),
suggesting mild overfitting.

The drop in performance in phase 3 suggests the agent
implicitly learned the constant dock and safety size in phase
1, rather than making use of the lookahead points to allow
for generalisability to different geometries. This failure can be
attributed to a weak learning gradient in the discrete R.,qsp-
The inclusion of a continuous safety reward incentivising the
agent to maximise distance to safety bounds [42] was imple-
mented however, the optimal point between enough learning
gradient and still allowing for the agent to approach the final
dock safety bounds was not found.

Benchmark vs. RL Controller

Focusing on the final docking phase, the RL and benchmark
controllers are now compared. The two controllers are first
run under ideal conditions as shown in Figure 20 with the
success/crash aswell as the time to dock collected in Table IV.
The same scenario is then run under various wind speeds and
angles in Figure 21 comparing the wind disturbance rejection
of the two systems.

3The actual pest was 0.95 however, a safety margin is added to ensure a
worst case scenario (i.e. more samples required).
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Il End Dock
Safety Area
75 100 125 150 17.5 200 225 250
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Fig. 20. RL vs benchmark controller on benchmark scenario.

TABLE IV
METRICS: RL VS BENCHMARK ON BENCHMARK SCENARIO.

Metric Benchmark RL controller
Success Yes Yes

Crash No No

tdock [s] 60.5 31.2

Table IV shows the RL controller performs the same dock-
ing tasks in half the time of the benchmark. This can be
attributed to the fact that the RL controller performs significant
corner cutting (see Figure 20) and it minimises the time spent
in the docking phase only aligning itself with the dock at the
last possible moment avoiding inefficient sway motion.

Figure 21 evaluates the benchmark and RL controller’s
wind rejection capabilities where the benchmark asymmetry
is due to the asymmetric trajectory; starboard turn before
switch to docking can cause wind in certain directions to
rotate vessel away from dock. Allowing for windspeeds up
to 6m/s in the worst case § = 0° lateral wind direction while
approximately halving the docking times shows its superior
rejection capabilities. These gains in performance as well as a
much more consistent wind profile (consistently 6 to 7m/s in
all directions) can mostly be attributed to the fact that it learns
to avoid pure lateral wind force scenarios (higher surface area,
lower thruster capabilities) by pointing the vessel bow ’into’
the incoming wind.
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Fig. 21. Wind disturbance rejection capabilities of benchmark vs RL with
maximum wind speeds [m/s] annotated in each outgoing direction. Mean
and standard deviation of docking times are presented on the right where
only successful runs for both controllers are considered.

C. RL Hybrid System

The all-in-one RL controller is now used to roll out a desired
trajectory passed on to another SAC agent outputting two
along-track distances (w.r.t end dock) denoting the placement
of the approach and final approach waypoints as shown in
Figure 23. The training curve is shown in Figure 22 where
it is clear that although the agent learns a policy which does
often end in mission success (although this seems better than
it is due to a rolling average being used on the logged per
episode reward), it fails at consistently reaching reward values
close to +1.

TN i T
°
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-0.4
0 2000 4000 6000 8000
Global step

Fig. 22. The training curve for the discrete switch point placement RL agent
where each step refers to a full episode rollout.

A similar MC analysis can be performed where an ad-
ditional third system is compared placing the approach and
final approach points at the constant benchmark values (4/2)
resulting in the metrics presented in Table V and Figure 24.

11
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Final Approach
pproach

North (m)
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—101
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Fig. 23. Example of hybrid system where the RL controller output (red line)
is used as the desired trajectory, with the switch points placed by a secondary
RL algorithm, fed to the benchmark G&C system (blue line).

TABLE V
RESULTS OF MONTECARLO ANALYSIS ON RL CONTROLLER VS HYBRID
SYSTEM VS HYBRID SYSTEM WITH FIXED SWITCH POINTS.

Metric All-in-one RL Hybrid RL Hybrid  fixed
4/2

Success % 96.6 25.0 73.8

Crash % 1.7 0.0 0.4

Final Position Error [m]  Final Heading Error [rad] Final Speed [m/s]

12 @ | RLcontfoller 04 120
Hybrid 175

® | Hybrid w. fix poings

Time to Dock [s]

1

o

0.8 125
80
0.6

60
04 050 0.1 } }
02 025 @

0.00 0.0

0.0 20

Value
Value

Fig. 24. Resulting metrics of MonteCarlo analysis on different RL training
phases.

The clear drop in performance of the hybrid system can
be attributed to the suboptimal policy learnt by the discrete
switch agent. The low success rate combined with the low
crash rate gives an indication that the agent prefers to place the
final approach points far from the end dock to avoid crashing.
This results in the vessel switching to the slow and inefficient
(due to unconstrained sway motion) DP controller too soon
causing it to never reach the dock due to time truncation at
300s. It is shown that placing the switch points at the fixed
values found in the benchmark design (4/2) results in faster,
and more successful docking.

Well suited to continuous control problems, SAC struggles
with discrete, one-shot tasks more akin to a contextual bandit
than a full MDP [22]. In such problems, the agent selects a
single action per episode and receives a highly delayed and
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sparse reward; a binary success flag and a scalar time penalty
providing nearly no learning gradient needed for optimal credit
assignment leading to slow or unstable policies. Although
not implemented in this study a simpler, alternative algorithm
could be based on the following rules:

1) Set final approach switch at point on trajectory where
Vdes = Utransition 'O ensure smooth transition between
controllers.

2) Set approach waypoint at a fix distance from the final
approach, ensuring enough distance is given to slow
down to Vtransition-

3) If curvature is detected between approach and final ap-
proach points, move approach point further back to avoid
slowing down during a turn (loss of maneuverability).

D. Real-Life Validation

A full real-life test including individual validation and
comparison of the different systems as well as recording
multiple runs to average out noise was planned. However,
hardware issues limited the scope of this validation with only
the benchmark system being tested on a manually generated
docking trajectory. Figure 25 shows a screen capture of the
real-life test video recording while the recorded data is further
analysed below.

Fig. 25. A screen capture of the recorded real life test at the Damen facilities
captured by top-down CCTV camera overlayed with digital data.

TABLE VI
METRICS: REAL VESSEL VS SIMULATION MODEL USING THE BENCHMARK
SETUP.
Metric Real Simulation
Success Yes Yes
Crash No No
tdock [S] 35.17 49.8

Comparing the position response of the vessel in Fig-
ure 26 and the corresponding docking times in Table VI, the
simulation-to-real discrepancy can be considered quite small
with the position response being very similar while the times
being within 29.4% of each other. A more detailed analysis of
the velocity responses in Figure 27 shows the model captures
DAVE’s surge dynamics very well but significantly deterio-
rates when it comes to the sway and yaw motions due to their
tight cross-coupling effects becoming a potential problem in
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Fig. 26. Real vessel vs simulation run on the same docking scenario.
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Fig. 27. Real vs simulated velocity profile related to Figure 26

low speed, 3DOF applications. Due to the closed-loop nature
of this validation, explicit statements about the simulation
model fidelity are avoided. However, close alignment does
suggest a small enough simulation-to-real gap to allow for
simulation based controller design.

VI. CONCLUSION

This study addressed the dock-to-dock motion control prob-
lem for autonomous vessels under environmental disturbances
and geometric constraints. A benchmark guidance and control
system was developed as a baseline and compared to reinforce-
ment learning and hybrid approaches trading off the added
performance for inherent stability guarantees. While the RL
controller significantly improved performance and disturbance
rejection capabilities, its current limitations in generalising
safely to unseen docking scenarios and its black-box nature
remain barriers to deployment in maritime settings. Hybrid
approaches offer a promising compromise, with end-to-end
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RL more justified in fast, dynamic domains such as aerial
robotics, whereas in slower, safety-critical maritime settings
where human oversight remains, interpretable and reliable
conventional methods remain essential.
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APPENDIX A
PARAMETER VALUES

Simulation Model

The maneuvering model identified in [38] replaces the Ca,
Dy, and Dy with a nonlinear drag polynmial for each
degree of freedom collected in the vector d(v) leading to the
following equation of motion:

(MRB+MA> v + CRB(V) v+ d(V) = Tcontrol + T disturbance-

(23)
Mass Matrix
m 0 0 Xy 0 0
Mrg= |0 m mzg|, Ma=| 0 Y, Y
0 mzy, I 0 -Y; —-N;
(24)
Rigid-Body Coriolis—Centripetal
0 0 —m (zgr + v)
CRB(V) = 0 0 mu (25)
m(zgr +v) —mu 0
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Nonlinear Hydrodynamic Forces (Drag Polynomial)

fx(u,v)
dv) = | fy(u,v)] . (26)
fr(r)
a) Surge polynomial:

fx(u,v) =prou + po1|v] + pa2t® + pagulv| + pea|v)?
+ Pz5 U3 + Pz6 u2|v| + Pzt u|v|2 + Px8 |U|3.
27

b) Sway polynomial:

fr(u,0) = sgn(@) (pyo vl + pyrulv] + palof® + pyu?lol

+ pyaulv]? + pys |v|3). (28)
c) Yaw polynomial built from sway:
L L

Benchmark G&C Design

Radius of acceptance: 1m

DP Controller Gains:
KPP = diag (4.5, 2, 1.5)  (z,y, ¢)
KPP = diag (0.05, 0.01, 0.055)
KPP = diag (20, 13.5, 4.5)

Low-Pass Filter Gains:
w = diag (0.2, 0.2, 0.15) (z, y, ¥)
¢ =diag(1, 1, 1)

Sailing Controller Gains:
K3 = diag (8000, —4.0) (v, 1)
K54l — diag (1250, —0.2)
K524 = diag (100, —12)

Lookahead Distance: 2m

15
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TABLE VII
DAVE MODEL PARAMETERS.

Parameter Description Value Unit
Maneuvering model

m Vessel mass (rigid body) 39.23 kgl

I, Yaw moment of inertia about z 4.76 [kg m?]

Tg Longitudinal CG position (body frame) 0.0585 [m]

L Vessel length 1.19 [m]

Xa Added-mass derivative in surge -2.79 kel

Y, Added-mass derivative in sway -114.35 kel

Y: Cross added-mass derivative (sway—yaw) 0.0 [kg m]

Ny Added-mass derivative in yaw -6.30 [kg m2]

Pz = [Pz0,...,pz8]  Surge drag polynomial coefficients for fx (u, |v]) [3.56, —0.70, —1.86, [-]

75.11, 10.98, 10.22,
— 143.71, 196.39, 7.89}
Py = [Pyo,...,py5]  Sway drag polynomial coefficients for fy (u,|v|) (odd [15.46, —40.31, —30.10, [-]
symmetry) 195.13, 37.23, 234.39)

Umazx Max. surge speed at max n = 600rpm 0.66 [m/s]
Thruster model

Nithrusters Number of thrusters 2 [-]

lo Longitudinal lever arm from CG to each thruster -0.49 [m]

ly Lateral lever arm from CG to each thruster +0.1 [m]

Thn Quadratic thrust coefficient in T = T}y, 12 6.29 x 1079 [N/(rpm)?]

Tmax Maximum propeller speed (per thruster) 600 [rpm]

Tmax Maximum propeller speed slew rate 450 [rpm/s]

Qimax Maximum azimuth angle (per thruster) T [rad]

Gmax Maximum azimuth slew rate w/3 [rad/s]

Tmas Maximum pure surge force 4.53 [N]
Ymaz Maximum pure sway force (accounting for induced 1.81 [N]
moment)

M, Maximum pure yaw moment 0.91 [Nm]
Wind model

P Air density 1.225 [kg/m3]

Afront Frontal area above waterline 0.055 [m?]

Ajat Lateral area above waterline 0.118 [m?]
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TABLE VIII
RL HYPERPARAMETERS BY CURRICULUM PHASE (SAC).
Parameter Description Value Unit
Global SAC settings

Max episode steps Episode horizon 1000 (300s) [-]
Algorithm Base RL algorithm SAC [-]
Optimizer Optimizer used for all nets Adam [-]
~y Discount factor 0.99 [-]

Target network smoothing coeff. 0.005 [-]

r
Replay buffer size
Batch size

Grad steps / env step
Learning starts
Htargct

Entropy tuning
Exploration init

Clip grad norm
Obs/Reward norm
Seed

Max transitions stored
Minibatch size per gradient step
Training intensity

Steps before training begins
Entropy target

Automatic temperature tuning
Initial std / noise strategy
Gradient clipping

Running normalization

Random seed for reproducibility

leb [steps]
256  [samples]

1 [-]
20,000 [steps]
—actiongim [-]

on [-]
-0.5 [-]

1.0 [-]

obs: off, rew: off [-1
0 [-]

Phase 1 (no wind, fixed dock/safety)

Dock size range Fixed domain (length/width) L=3, W=1 [m]
Safety area range Fixed domain (length/width) L=20, W=20 [m]
Wind speed range Fixed domain 0 [m/s]
Wind angle range Fixed domain 0 [rad]
Init policy Starting weights Randomised [-]
Total timesteps Training steps in Phase 1 6e6 [steps]
Policy architecture Actor (hidden layers) [256, 256, 256] [-]
Critic architecture Q-networks (hidden layers/units) [256, 256, 256] [-]
Actor LR Policy network learning rate le-4 [1/s]
Critic LR Q-network learning rate le-4 [1/s]
Alpha LR Temperature learning rate le-4 [1/s]
Phase 2 (wind randomization; bootstrapped from Phase 1)
Dock size range Fixed domain (length/width) L=3, wW=1 [m]
Safety area range Fixed domain (length/width) L=20, W=20 [m]
Wind speed range Domain randomization [0,5] [m/s]
Wind angle range Domain randomization [—m, m] [rad]
Init policy Starting weights Randomised [-]

Warmup (buffer)
Total timesteps

Bootstrap transitions from Phase 1 policy

Training steps in Phase 2

75,000  [samples]
2.7e6 [steps]

Policy architecture Actor (hidden layers) [512, 512, 512] [-]
Critic architecture Q-networks (hidden layers/units) [512, 512, 512] [-]
Actor LR Policy network learning rate 5e-5 [1/s]
Critic LR Q-network learning rate 5e-5 [1/s]
Alpha LR Temperature learning rate 5e-5 [1/s]
Phase 3 (wind + dock/safety randomization; bootstrapped from Phase 2)
Dock size range Domain randomization (length/width) [1, 5] [m]
Safety area range Domain randomization (length/width) [1, 20] [m]
Wind speed range Domain randomization [0,5] [m/s]
Wind angle range Domain randomization [—m, ] [rad]
Init policy Starting weights From Phase 2 [-]

Warmup (buffer)
Total timesteps
Policy architecture
Critic architecture
Actor LR

Critic LR

Alpha LR

Bootstrap transitions from Phase 2 policy

Training steps in Phase 3

Actor (hidden layers)
Q-networks (hidden layers/units)
Policy network learning rate
Q-network learning rate
Temperature learning rate

75,000  [samples]
8.6e6 [steps]

[512, 512, 512] [-]
[512, 512, 512] [-]
5e-5 [1/s]
5e-5 [1/s]
5e-5 [1/s]




Literature Study

This chapter contains the literature study performed to gather the necessary background knowledge as
well as to refine the thesis aim and research questions. It starts with an overview on the field of motion
control for surface vessels, followed by a definition of the autonomous dock-to-dock maneuvering task
accompanied by current research and methods used to solve it. This sets the foundation for the next
section, where advanced G&C methods are investigated along with their potential applications for a
dock-to-dock mission. An overview of Reinforcement Learning (RL) is then given starting from the
fundamentals and ending in an overview of state-of-the-art RL algorithms. Finally, a summary is given
where the key findings are tied back to the research questions.

3.1. Motion Control for Marine Surface Vessels

In its most basic form, motion control for marine vessels can be described as "the ability to accurately
maneuver along a given path” [9]. Motion control theory is fundamental to any autonomous system and,
in marine applications, encompasses two main tasks: position-keeping and trajectory-following. Over
the years various motion control strategies have been developed for the execution of such tasks ranging
from conventional PID-based autopilots and position-keeping controllers to more advanced, model-
based and data-driven approaches. However, most existing control methods focus on solving either
the position-keeping or the trajectory-following tasks in isolation and methods for solving both tasks in a
unified manner are still lacking [5]. This section begins by introducing the hierarchical control framework,
followed by a review of different existing motion control techniques for executing the position-keeping
and trajectory tracking tasks.

3.1.1. Hierarchical control

Motion control is often divided into different hierarchical levels to make the problem more manageable
as shown in Figure 3.1. Such a modular framework allows for increased scalability and interpretability.

23
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Figure 3.1: A generalised hierarchical control structure for an autonomous surface vessel taken from [10].

The definitions of each module (where planning is considered a separate module) can be found below
[11]:

» Navigation: Responsible for estimating position and orientation of vessel continuously by inte-
grating information from multiple sensors.

« Path Planning: The high-level module responsible for planning a trajectory based on an initial
and final point. The trajectory consists of a path, a velocity profile and a heading profile while also
containing safety bounds on these profiles.

» Guidance: The mid-level module taking in the entire trajectory from the path planner along with
the state estimate from the navigation module and outputs feasible reference commands to best
follow the trajectory.

» Control: The low-level module responsible for ensuring the reference commands from the guid-
ance module are tracked as closely as possible through the use of actuators.

3.1.2. Position-keeping task

The concept of Dynamic Positioning (DP) first arose in the early 1960s motivated by the need for ac-
curate placement of ships for offshore drilling purposes in locations where conventional barges with
anchors cannot be used due to large water depths [5]. The goal of a DP controller is to position the
vessel in the desired degrees of freedom (DOF) (position and heading) while counteracting the envi-
ronmental forces through the vessels actuators as shown in Figure 3.2.
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Figure 3.2: The classic Dynamic Positioning problem where the DP controller maintains the vessel within the desired degrees
of freedom (orange arrows) while counteracting environmental disturbances (red arrows) through the use of its actuators
(green arrows) [5].

The DP controller consists of 3 independent Proportional-Integral-Derivative (PID) controllers for each
DOF outputting the required force (or moment) to maintain the vessel’s position and orientation at the
reference pose ([z, y, ¢] waypoint). The PID controllers use the respective distance or heading errors
to compute the desired forces and moment F,, F,,, M.. These are converted to low-level actuator
commands through the use of a thrust allocation algorithm, a constrained optimisation problem where
the goal is to solve for the thrust forces that best achieve the desired control forces and how to best
distribute these over the different vessel actuators [11], [12], [13].

3.1.3. Trajectory-following tasks
Trajectory-following refers to the ability of a vessel to track a predefined geometric path while main-
taining a desired velocity profile. Unlike position-keeping, trajectory-following enables autonomous
navigation along a route while compensating for disturbances. This is achieved through a combination
of a guidance and control (G&C) system.

At low speeds, a DP controller could in theory be applied however, this quickly becomes inefficient at
higher speeds as it does not necessarily align the vessel heading with the course angle (direction of
travel), leading to a rapid buildup of hydrodynamic forces. It is therefore common practice to rely on
two independent controllers, ensuring trajectory alignment while also bypassing the thrust allocation
module due to the simpler control structure:

* A velocity controller relating velocity error to thruster propeller speed n.
* A heading controller relating heading error to thruster azimuth «.

This setup requires the guidance module to supply both velocity and heading references in real time
allowing for optimal trajectory tracking. In its simplest form, the guidance module selects the closest
waypoint to the vessel and commands the corresponding velocity and heading. Although simple, such a
guidance system introduces discrete jumps in the reference command leading to instability and actuator
wear as well as inefficient path following with to predictive capabilities (corner cutting). A low pass filter
is commonly applied to smooth out the references.

A more effective and widely used alternative is Line-of-Sight (LOS) guidance. Purely geometric, it
computes the required heading 4 to converge with a point on the trajectory placed at a fix distance,
the lookahead distance, from the current vessel pose. The velocity is then typically taken as the
pre-assigned velocity (from the trajectory) on that path segment. This allows the vessel to anticipate
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changes in the trajectory resulting in smoother and more efficient tracking [14].
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Figure 3.3: The Line-of-Sight principle [14].

Other, more involved, guidance approaches are presented in [15]: Lyapunov Based Virtual Target
which generates a moving virtual target that travels along a trajectory and Jacobian Based Priority Task
which formulates it as an optimisation problem where higher priority objectives (assigned manually) are
more strongly enforced. However, Lyapunov based systems provide no guarantees on the transient
response (focused on steady-state stability) while both approaches introduce significant complexity for
minor gains in performance.

3.1.4. Environmental Disturbance Rejection

Robustness to environmental disturbances is a key requirement for both the position-keeping and
trajectory-following tasks. In its most basic form, this robustness is achieved through the use of the
integral term in the PID controllers, which, in theory, eliminates the steady-state error by applying a
corrective action based on past errors. In practice however, relying solely on this integral term is not
realistic especially in time sensitive maneuvers or highly dynamic environments such as the docking
phase as it is slow to buildup (high integral gains lead to deterioration of ideal response). It is thus com-
mon practice to estimate the disturbance force vector and apply this estimate in a feedforward manner
essentially ’canceling out’ the disturbance forces experienced by the vessel. Two common ways of
doing this are:

+ Predicting the forces using mathematical models and real-time sensor measurements (e.g. wind
vane).

+ Estimating the forces through the use of an online observer.

[11] proposes a dynamical model for estimating the wind force experienced by the vessel based on a
measured windspeed. However, generating mathematical models for current and wave disturbances
becomes much more complex and in some cases, even unfeasible. Such is the case for current which
is extremely difficult to accurately measure in real-time. To bypass these problems observers can be
used estimating the disturbance forces based on observable vessel states. A simple observer would for
example predict these forces using the deviation between the actual vessel position & orientation and
the expected one. [16] proposes a nonlinear disturbance observer derived using a Lyapunov-based
stability approach for this exact purpose. Additionally, [17] proposes the integration of an additional
wave filter in the control loop to avoid the propagation of high frequency oscillations in the heading
controller due to high frequency waves.
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3.2. Autonomous Dock-to-Dock Maneuvering

The recent focus on automation in the maritime industry has driven extensive research into autonomous
docking of surface vessels. In high-level terms, automated docking involves systems that “enable ves-
sels to dock safely, independently and energy-efficiently at designated locations with a specific heading”
[6] while incorporating controller transitions between phases. The overall dock-to-dock maneuvering
problem is illustrated in Figure 3.4, and a possible state-machine transition mechanism between transit
and docking phases is shown in Figure 3.5. Challenges specific to the final docking phase include [6]:

* Managing large sideslip angles.

« Static and dynamic obstacle avoidance.

» Navigation in complex port geometries.

+ Transitioning from high speed sailing phase to the docking phase (unifying the speed regimes).
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Figure 3.4: A dock-to-dock trajectory where the red coloured  Figure 3.5: State machine illustrating transition between
trajectory refers to undocking (top right) and docking (bottom docking and sailing (transit) phase taken from [7].

left) while the green trajectory represents the high speed
transit phase (sailing). Taken from [7].

[6] provides an extensive overview of research in the autonomous docking field spanning over 3 decades,
assigning a Docking Characteristic Index to more than 200 papers, providing the reader with a semi-
quantitative analysis of all this research. The papers investigated range from employing simple PID
controllers to using Al-based methods such as Artificial Neural Networks (ANNs), Genetic algorithms
and Reinforcement Learning (RL). Building on this, the docking problem can be structured according
to the hierarchical control framework introduced in subsection 3.1.1, and is divided into the planning
and control modules where the same trajectory-following guidance algorithms may be used.

3.2.1. Planning

Planning becomes of particular importance in the docking phase due to the strict requirements placed
on both the positioning and the time related constraints of a vessel. Unlike the transit phase, straight line
trajectories connecting high-level static waypoints are no longer adequate for the docking phase due to
geometrically contrained harbour environments[6]. [18] proposes the use of Bezier curves, providing
a smooth and flexible method of defining paths based on interpolation between control points, which
are defined based on the vessel dynamics to avoid unfeasible trajectories. In contrast, [19] proposes
the use of Dubins paths, providing the shortest path for a vehicle to translate and turn with maximum
specified curvature.

Different guidance systems (e.g., LOS, Constant Bearing, Pure Pursuit) can then be applied to generate
reference commands, with LOS already described in subsection 3.1.3 and others offering alternative
convergence strategies [6].
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3.2.2. Control

The control problem for autonomous surface vessels was already extensively described in section 3.1
hence, in this section, more emphasis will be placed on controllers which unite the high speed sailing
phase with the low speed docking phase.

[7] proposes using two separate controllers; a modified DP controller for the fully actuated low speed
regime and a velocity and heading controller for the underactuated high speed regime similar to the
controllers presented in section 3.1 for the position-keeping and trajectory-following tasks. It derives a
smooth, bumpless transfer between these two controllers through the use of an Integrator Resetting
method (matching the output of the receiving controller with that of the previous controller) eliminating
discontinuities in the control action which could lead to rapid accelerations or instability. This transition
point between the two controllers is based on a predefined acceptance radius around the ’approach
waypoint’, a waypoint situated just outside the port.

Taking it one step further, [20] proposes a unified controller deriving a nonlinear, model-based velocity
and heading controller through backstepping which seemlessly transitions between the two regimes
through the use of a weighting function (U, by limiting the sway motion based on the vessel’s surge
velocity. Additionally, it includes a feedforward term for the estimated bias vector due to environmental
disturbances. In this case, the transition point is not a discrete point, but rather a continuous region
before approaching the dock which is determined based on the vessel’s velocity. Although elegant, its
high model dependency rules it out from most real-life applications.

3.3. Advanced G&C methods

The widely adopted, industry standard G&C methods presented in section 3.1 have been successfully
implemented in marine motion control for decades, providing effective solutions for surface vessels.
However, as fully autonomous operation becomes increasingly viable, several limitations emerge:

* No built-in trajectory planning: Conventional systems rely on predefined straight-line paths,
sufficient for transit but problematic in docking where trajectory design is closely tied to G&C
performance. Without dynamic adjustment, maneuvers risk being inefficient or unsafe.

+ Limited adaptability: Manual tuning is extensive and highly dependent on vessel dynamics and
port conditions.

+ Limited robustness: PID controllers struggle with strong or rapidly changing disturbances; while
force observers help, they add complexity.

+ Lack of predictive capability: Conventional methods react to current errors but cannot optimize
future control actions.

To address these limitations, more advanced G&C strategies have been developed that integrate both
model-based optimization and data-driven approaches. Such methods provide improved trajectory
planning, predictive control, adaptability, and generalisability, making them more suitable for the com-
plex and safety-critical nature of docking. They also offer possibilities for higher-level decision making,
such as determining when to transition to the docking phase, an underexplored aspect in current re-
search.

3.3.1. Model based approaches

Model-based approaches explicitly incorporate system dynamics and constraints, enabling predictive
control and more optimal decision-making compared to widely used PID controllers, which rely on re-
active error correction. By predicting future states and adjusting actions accordingly, these methods
optimise control inputs over large time horizons, making them well suited for complex maneuvers such
as docking, where precise trajectory generation and constraint handling are imperative. Although not
inherently more robust than classical feedback methods, they can be more readily adapted for robust-
ness [21].

One of the best known model based controllers is Model Predictive Control (MPC). MPC is an optimi-
sation based control strategy that computes control actions based on predictions of future states over
a finite time horizon by solving a constrained optimization problem at each timestep whose objective
is to minimise a cost function while respecting constraints (actuator limits, obstacle avoidance, etc...)
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as shown in Figure 3.6. A commonly used cost function for motion control includes tracking error and
energy consumption as shown in Equation 3.2. By design, MPC integrates trajectory planning and
control into a single framework.
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Figure 3.6: Model Predictive Control Schematic [22]
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Where x, is the state error at timestep k, uy is the control input and Q and R are weighting matrices
defining the relevant objectives.

While MPC provides optimal control actions within a constrained framework, it relies on linearised sys-
tems and convex cost functions reducing its effectiveness for highly non-linear problems [21] [8]. Miti-
gating these issues, Model Predictive Path Integral Control (MPPI) is a sampling based stochastic
control method, which uses path integral formulation to evaluate many potential trajectories and select
the most optimal one [23], [24]. Essentially, it replaces the optimisation problem in MPC by randomly
sampling a distribution of possible control sequences at each timestep. This allows MPPI to handle
complex nonlinear dynamics, high dimensional control tasks while removing the computationally ex-
pensive per-step optimisation [23].

Despite these advantages, model-based approaches introduce significant challenges:

» High fidelity models: Heavy reliance on model requires the expensive and time-consuming
development of high fidelity dynamical models.

+ Computational costs: Real-time implementation requires solving optimisation or sampling thou-
sands of trajectories per timestep, which is computationally costly.

To mitigate these challenges, hybrid methods have been proposed. For instance, [25] applies MPC at
a low update rate to generate feasible docking trajectories, while cost-effective PID controllers perform
the high-rate trajectory tracking.

3.3.2. Data-driven Approaches

Data-driven approaches mitigate many of the issues encountered in model-based methods by learning
control policies directly from experience rather than from explicit system formulations. Instead of pre-
dicting and optimising actions using a predefined model, they adaptively learn optimal actions through
interaction with the environment. This makes them particularly attractive for high-level decision making
tasks such as determining when to transition between mission phases or optimizing trajectories under
unknown disturbances. Key advantages include [26]:

+ Handling model uncertainties: data-driven approaches can adapt to unknown system dynamics
making them more robust to modeling errors.
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» Adaptive learning: Instead of relying on a fixed problem formulation, data-driven approaches
can continuously learn and improve based on real-time data.

» Generalisability to unseen problems: If trained correctly, control policies generalise over a wide
range of unseen problems.

» Exploration of unknown solutions: data-driven approaches (particularly Reinforcement Learn-
ing) can be used to explore novel, unknown solutions to a problem.

Applications to autonomous shipping are emerging. [27] demonstrates a DRL-based trajectory-following
controller with improved robustness to disturbances compared to PID controllers, while [28] integrates
DRL with real-time sensor data for dynamic obstacle avoidance. Data-driven approaches have also
been leveraged for higher level planning and decision making tasks. [29] leverages DRL for optimised
path planning showcasing its suitability to plan high-level tasks even for unseen missions. Similarly,
[30] applies RL based docking strategies to a spacecraft docking problem highlighting the ability of RL
to learn efficient, collision free docking maneuvers.

Despite their significant advantages, data-driven methods present several challenges [26]:

« Stability: Unlike traditional control methods derived based on stability considerations, data-driven
approaches often times lack explicit stability guarantees.

» Constraint Handling: Hard constraint handling is not enforceable in many data-driven approaches.

* Interpretability: data-driven approaches often function as black boxes, making it difficult to un-
derstand their decision making, an essential component in ensuring safe control policies.

» Sample Inefficiency: data-driven approaches often require long and expensive training pro-
cesses which quickly becomes infeasible for high dimensional, complex problems.

Research is addressing these challenges. For example, [31] introduces Lyapunov-based safe RL,
which guarantees stability by restricting updates to safe actions (by tracking stability throughout train-
ing), though this emphasises steady-state behavior over transient performance. [32] proposes Control
Barrier Functions (CBFs) for enforcing hard constraints through set invariance, or as a fail-safe filter
modifying unsafe actions to ensure constraint compliance. A promising approach is hybrid RL-MPC
as presented in [33] where RL is used to tune the MPC cost function weights and the constraints im-
proving adaptability and generalisability while ensuring safe and interpretable control actions. Such an
approach is particularly useful in applications such as autonomous docking where predictability and
constraint handling is essential while still allowing for the exploration of novel solutions to the problem.

3.4. Reinforcement Learning

Reinforcement learning (RL) is a decision making framework where an agent learns a task by receiving
rewards through interaction with an environment. The agent seeks to maximise the cumulative rewards
over time by improving the action it takes through a process of trial and error [34]. RL can be formulated
as a Markov Decision Process (MDP), a mathematical way of formalising sequential decision making
where "actions influence not just immediate rewards, but also subsequent states, and through those
future rewards” [34]. As shown in Figure 3.7, the key components of a MDP are:

 State Space (S5): Represents all possible environment configurations.
+ Action Space (A): Contains all possible actions the agent can take.

« Transition function (P(s'|s,a)): The probability of transition to state s’ given current state s and
action a.

* Reward function (R(s,a)): The reward received when taking action a in state s.
* Policy (7(a|s)): The probability of taking action « in state s.

Having given a brief overview on the MDP problem formulation for RL, the next sections will focus on
some RL fundamentals describing how agents optimise their behaviour in an MDP framework.
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Figure 3.7: Agent-environment interaction in a MDP.

3.4.1. Value Functions & The Bellman Equation

Most RL algorithms involve estimating value functions; a function describing how good (in terms of
expected future rewards) it is for the agent to be in the current state. The value function for MDPs can
be defined as the expected return when starting in state s and following policy = thereafter [34]:

Ur(s) = Ex[G4]S; = 5] (3:3)

Where G is defined as the return (cumulative reward collected).

While v, (s) describes how good it is to be in state S followed by policy 7, many RL algorithms estimate
the action-value function ¢, (s, a), the expected return of taking action a in state s and following policy
« afterwards defined as:

Qﬂ'(s’a) :Eﬂ[Gt‘St :57At :a] (34)

Given that RL tasks involve sequential decision making, the value of a state depends both on the
immediate reward and the value of the following state, leading to the recursive Bellman equation:

Uz (s) = Er [Rt+1 + YU (Se41) |5 = 5] (3.5)

Where R;., is the immediate reward, v is the discount factor determining the importance of future
rewards (0 < v < 1) and v, (S¢+1) is the expected value of the next state.

3.4.2. The Learning Process

In high level terms, the goal of the learning process is to find an optimal policy =, that maximises the
value function v, (s) across all states, however the details of how this is done can differ significantly.
This section will first touch upon how the agent collects the necessary data for learning, how they
update their policies followed by different ways agents can improve their decision making and finally,
how agents estimate and update values across states.

Online vs Offline
RL distinguishes between two ways of generating the necessary data from which the agent can optimise
its decision making:

» Online: The agent collects new data/experiences by interacting with the environment in real-time.

» Offline: The agent does not interact with the environment in real-time, rather, it learns from pre-
collected datasets.

Each method comes with its (dis)advantages, however, in safety critical tasks where exploring unsafe
actions in real-time can be costly or even dangerous, offline is preferred. Additionally, online learning
does not allow for the agent to restart the environment while learning (learning across multiple simula-
tion tries e.g. try many docking attempts before settling on the optimal policy). For these reasons, only
offline methods shall be considered from now on for autonomous dock-to-dock operations.
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On-policy vs Off-policy
How an agent updates its policy during training can also be categorised into two main ideas:

» On-Policy: The agent improves the same policy being executed by the agent.

» Off-Policy: The agent improves a different policy from that being executed by the agent (e.g.
learns from past experiences using a replay buffer).

Since on-policy methods update the policy being used, they tend to avoid large policy shifts leading
to more stable and smooth learning. However, off-policy methods tend to be more sample efficient by
reusing past experiences through the use of e.g. a replay buffer [34].

MonteCarlo vs Temporal Difference
How an agent estimates and updates values can also be split up into two distinct categories:

» MonteCarlo (MC): estimates the value function using averaging sample returns where the value
and policy estimations are changed only upon completion of a whole episode. MC methods
sample and average returns (over whole episodes) for each state-action pair [34].

» Temporal Difference (TD): estimates the value function at each step leveraging the idea of boot-
strapping (update estimates based, in part, on other learned estimates from previous steps with-
out needing to wait for a final outcome).

TD methods are linked to MC methods through the n-step TD concept (update estimates after n steps
instead of every step). If n is increased to be equal to the number of steps in an entire episode, it
essentially becomes a MC method. TD methods provide more flexibility and have generally been
found to converge faster than MC methods.

Value vs Policy Iteration
Finally, the way a RL agent finds the optimal policy can also be categorised into two distinct methods:

» Value iteration: The agent first iteratively computes the optimal value function, making use of
the Bellman equation, which is then used to extract the optimal policy (the one that maximises
the optimal value function).

* Policy iteration: The agent directly improves the policy by evaluating the current policy and then
refines its policy-based on this evaluation at each step until the policy converges.

Which method leads to faster convergence is still an ongoing discussion however, value iteration is
generally simpler to implement as it removes the need to find an optimal policy (w.r.t to the current
value function) at each step which is itself an extensive iterative process and is generally considered
more stabled than policy-based methods [34].

3.4.3. An overview of existing RL solution methods

This section presents some solution methods used for learning. It begins with introducing a well known
value-based method for discrete problems which is then extended to continuous problems. This is
followed by an introduction to policy-based methods and finally, a hybrid method leveraging the advan-
tages of both value-based and policy-based methods is presented.

Q-learning

Q learning builds upon the Temporal Difference (TD) method first introduced by [35]. It can be classified
as a value-based, off-policy TD method for discrete state/action spaces. Q learning directly learns the
optimal action-value function ¢, independent of the policy being followed (off-policy) which allows it to
determine the optimal action at each state purely based on maximizing future rewards. Additionally,
this allows for a higher level of exploration during the learning process when compared to its on-policy
counterparts such as SARSA as it allows using the greedy action (maximising future rewards) while
still exploring with an exploratory policy (e.g. e-greedy or random actions) when selecting actions. The
update rule for Q learning is as follows [34]:

Q(St, Ap) < Q(St, Ap) + o[Reyq + 7y max Q(St41,a) — Q(St, Ap)] (3.6)



3.4. Reinforcement Learning 33

Where ~ is used to discount future rewards (importance of future rewards) and « is the learning rate.

Deep Q-learning
For all its benefits, Q-learning has the irredeemable drawback that it can only be used for discrete
state/action spaces due to its need to store the learnt action-value function in a so called Q-table (each
row represents a state and each column represents an action). Such tables become impossible to
maintain as the state space becomes infinitely large. Deep Q-learning (DQN), first proposed in [36], is
an extension of Q-learning which allows for continuous state spaces by approximating the Q function
using Deep Neural Networks. It parametrizes Equation 3.6 using parameters 6, the weights of the
neural network which are trained by minimising a sequence of loss functions L;(6;) at each iteration i
[36].

Li(0:) = E[(y: — Q(s, a5 0:))?] (3.7)

Where y; = E[R(s;, a¢) + ymax,, , Q(St+1,a:4+1;0;—1)] is the target for iteration i [36].

In their simplest form, DQN’s suffer from instability or even divergence when nonlinear function ap-
proximators are used to represent the action value function. This instability stems from several causes
[37]:

» Consecutive observed experiences are highly correlated leading to inefficient learning.

» The action values (Q) used for learning and the target values (y;) are highly correlated causing
feedback loops and instability.

» Small updates to the action values (Q) can cause significant changes in the policy therefore
changing the data distribution making learning non-stationary (hard to converge if data distribution
changes over time).

[37] attempts to solve this by introducing two key ideas:

» Experience replay: removes correlation between successive experiences and smoothens out the
data distribution changes by storing past experiences and then sampling them randomly.

» Target Network: A copy of the main Q network, which is only updated periodically, is used to com-
pute target values y; preventing a situation where the network learns from constantly changing
values.

Policy Gradient Methods

So far the value-based methods presented learn a value function Q and select actions by maximising
it. Selecting actions by maximising the Q function inherently limits the problem to discrete actions (the
max, argument assumes there are a finite set of actions to be compared). Policy gradient methods ad-
dress this by taking a policy-based approach where a parameterized policy function w(a|s, 8) is directly
optimized using gradient ascent [34] allowing for both discrete and continuous actions:

€t+1 = gt + OZVJ(Gt) (38)

Where VJ(0;) is a "stochastic estimate whose expectation approximates the gradient of the perfor-
mance measure with respect to its argument 0, [34].

Actor Critic Methods

Policy gradient methods allow for continuous actions providing a solution to the main limitation of value-
based methods. However, they suffer from high variance in their updates resulting in less stable and
slow learning due to their inability to leverage value functions to guide the learning process. Actor-critic
methods seek to combine the advantages of both value-based methods such as Deep Q-learning and
policy-based methods (policy gradient methods) by using:

 An actor: a policy 7(als, #) which selects actions.
+ A critic: a value function (or action value function Q(s, a)) that evaluates actions.

Instead of relying on high variance rollouts as in policy gradient methods, the critic helps 'guide’ the actor
by providing it with estimates of the value function resulting in more stable and sample efficient training.
Such methods are widely used in control problems enabling both continuous states and actions while
providing better learning capabilities when compared to policy gradient methods [34].
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3.4.4. Some State-of-the-art RL algorithms

In this section an overview of some RL algorithms which can be used in the autonomous dock-to-dock
problem shall be presented. The algorithms presented shall be restricted to model-free, offline methods
for the following reasons:

» Model-free: Removes reliance on an accurate dynamical model, something which is time con-
suming and hard to obtain for complex environments subject to several external disturbances.

» Offline learning: Offline learning reduces the risk of taking unsafe actions during training, an
important point for safety critical applications such as vessel autonomy.

Deep Deterministic Policy Gradients

[38] proposes adapting the ideas underlying the success of Deep Q-learning to the continuous action
domain resulting in an actor-critic, model-free algorithm based on the deterministic policy gradient (see
Figure 3.8). It solves the problems encountered in previous Determinstic Policy Gradient algorithms
(instability for challenging problems, discrete actions) presented in [39] by incorporating the following
improvements:

+ Actor-Critic Framework allowing for more efficient learning for continuous action spaces.
» Experience replay preventing divergence in the learning process.
 Target Networks enhancing stability of the learning process.
+ Off-policy allowing for enhanced sample efficiency by reusing past experiences
This makes the Deep Deterministic Policy Gradient (DDPG) algorithm well suited to high dimensional,

continuous (both state and action space) control tasks. However, DDPG tends to suffer from overesti-
mation bias and instability in value function learning.

Algorithm 1 DDPG algorithm

Randomly initialize critic network )( s, a|#%) and actor u(s|0") with weights #9 and #*.
Initialize target network €)' and ;' with weights #9° — 9, g#' — g»
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive imitial observation state s
fort=1,T do
Select action a; = yif s |87 + N, according to the current policy and exploration noise
Execute action a,; and observe reward r; and observe new state 5,
Store transition (g, ag, vy, $p+1) in B
Sample a random minibatch of NV transitions (s, a;, 7, 841 ) from &
Sety; = ri + 70" (si41, p'(sia |F-'I'”I ”F'I{H )
Update critic by minimizing the loss: L = & 3, (1 — Q(s:. a:|8%))*
Update the actor policy using the sampled policy gradient:

1 ., _ ey
Vord = — > VaQ(s.al8%)|a=s. amp(s:) Vo puls|8*)].

Update the target networks:
#9789 + (1 — 1)<
o it (1 — 7)o

end for
end for

Figure 3.8: The DDPG algorithm taken from [38].

Twin Delayed Deep Deterministic Policy Gradient

The Twin Delayed Deep Deterministic Policy Gradient (TD3), presented in [40], solves the overesti-
mation bias and instability in value function learning encountered in the DDPG algorithm. It does this
through the use of 3 key improvements:
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* Twin Q networks: maintains two Q networks Qy1 and Qg2 and uses the minimum value for
updating the target Q function to reduce the overestimation bias:

Qtarget = R(st,a:) +ymin(Qo1(St41, at41), Qo2(St41, ar41)) (3.9)

» Delayed policy updates: updates the actor (policy) less frequently than the critic ensuring the
actor learns from more accurate Q-values reducing variance.

» Target policy smoothing: adds noise to the target actions used for updating the target network
resulting in smoother target network updates and more robust policies.

These improvements result in TD3 being more robust and stable than DDPG for high-dimensional,
continuous control tasks [40].

Algorithm 1 TD3

Initialize critic networks Qp,, (g, and actor network 7
with random parameters 61, 0, ¢
Initialize target networks 6} < 61, 85 < 02, ¢’ < ¢
Initialize replay buffer 5
fort =1to 1 do
Select action with exploration noise a ~ 74(s) + ¢,
€ ~ N (0, ) and observe reward r and new state s’
Store transition tuple (s, a,r, s’) in B

Sample mini-batch of N transitions (s, a,r, s') from B
i+ 7y (s)+e €~clipN(0,5), —c,c)
Y 1+ yming—y 2 Qg (s', @)
Update critics f; «— argming N~ (y—Qq, (s, a))?
if ¢ mod d then
Update ¢ by the deterministic policy gradient:
V¢J(¢) =N"! E VaQo, (S* a)la:nd, (s)v¢ﬂ—¢(‘9)
Update target networks:
0, 710, + (1 — 1),
o —Td+(1—71)¢
end if
end for

Figure 3.9: The Twin Delayed DDPG algorithm taken from [40].

Soft Actor Critic
The Soft Actor Critic (SAC) algorithm proposed in [41] further improves upon the TD3 algorithm by
introducing entropy regularization to further encourage exploration and improve policy robustness. SAC
learns a stochastic policy (unlike DDPG and TD3) balancing exploration and exploitation through an
entropy objective:

T
J(m) = ZE[r(st, az) + aH(w(-|st))] (3.10)
t=0

Where H is the entropy term and « the temperature parameter determining the relative importance of
the entropy term (exploitation vs exploration balance) [41].
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Algorithm 1 Soft Actor-Critic
Initialize parameter vectors 1, i, ), ¢.
for each iteration do
for each environment step do
a; ~ mylas;)
Spp1 ~ P(Sist/se ag)
D DU{(se, a, r(8e, 81 ), 8041}
end for
for each gradient step do
W=t = /\1-"\\-7L,.f1.'fl,'}
B; < 8; — AgVe, Jo(#:) fori € {1,2}
$ b — AV (o)
U T+ (1 — 7
end for
end for

Figure 3.10: The Soft Actor Critic algorithm taken from [41]

Imitation Learning
Imitation Learning is an approach where an agent learns by expert demonstrations provided to it. Many
categories of imitation learning exist but the two main ones are:

» Behavioural Cloning (BC): a supervised learning approach where an agent mimics data pro-
duced by an expert demonstrator [42].

* Inverse Reinforcement Learning (IRL): instead of directly imitating actions, an agent attempts
to learn the underlying reward function from expert demonstrations, then optimises its actions
based on the learned reward function [43].

While both have their uses, BC is an interesting option for safety-critical maneuvering tasks for which
there is an abundance of expert data available as is the case for dock-to-dock maneuvers. A gener-
alisable framework for implementing BC algorithms is presented in [42]. BC can also be used as the
first phase in a two phase learning process where one first learns an approximate policy-based on
demonstrations after which this policy can be further optimised through exploration. Such an approach
can significantly reduce the search space of the RL problem. Additionally, [44] proposes a hybrid SAC-
BC approach where the SAC algorithm is used to enhance exploration capabilities, something which
BC lacks. This allows for learning from demonstrations while still allowing for exploration enhancing
generalisability to unseen tasks.

3.5. Summary

This literature study highlights the evolution of motion control strategies for surface vessels, from
industry-standard PID controllers to more advanced model-based and learning-based approaches.
While conventional methods have been extensively studied and applied for isolated tasks such as
position-keeping or trajectory-following, they struggle in handling the full dock-to-dock mission, where
smooth transitions and adaptability to complex environments are required. A clear research gap was
identified in motion control systems that integrate trajectory generation, controller transitions, and adapt-
ability to environmental disturbances.

Model-based approaches such as MPC address parts of this gap by combining trajectory optimisation
with lower level control, but their dependence on accurate models and high computational cost limit
real-life applicability. Data-driven methods, particularly RL, provide a promising alternative by reducing
reliance on accurate models, improving generalisability, and enabling exploration of novel strategies.
However, concerns remain around safety, interpretability, and limited real-life validation. This study
lays the groundwork for the thesis, where RL shall be leveraged to address the core challenges of
generalisable and robust dock-to-dock maneuvering.
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The main research gaps found in this literature study are:

» Lack of motion control strategies addressing the full dock-to-dock envelope, including controller
transitions.

+ Limited research on incorporating environmental disturbances into docking trajectories.
+ Insufficient focus on safety and interpretability of RL-based methods for autonomous docking.
* Limited real-life validation of results.

To conclude this chapter, the research questions shall be revisited to identify which question were
partially or fully answered (note that question 5 is omitted as this will be answered during the validation
phase).

1. What is the state-of-the-art in vessel maneuvering?

This literature study highlights the evolution of motion control strategies for surface ves-
sels, including PID, Dynamic Positioning, Model Predictive Control and Reinforcement
Learning establishing both the industry standards and the current areas of research.

2. What requirements must be met for a dock-to-dock mission to be classified as successful?

Many safety and performance related criteria were identified in existing research and
collected throughout to be used for evaluation later on. A clear distinction between
sailing and docking metrics was also made.

3. What are the key components needed for the design of a benchmark G&C system for a dock-to-
dock maneuver?

The main modules of traditional G&C systems were identified in subsection 3.1.1 pro-
viding a solid foundation on which to base the G&C design. A clear distinction between
industry standard control strategies for high speed sailing and low speed, precise ma-
neuvering is also made.

4. How can advanced G&C methods be leveraged in the hierarchical control structure to improve
upon the performance of the benchmark?

A detailed investigation of advanced model and learning based approaches was per-
formed in section 3.3 and key benefits over traditional methods are listed helping to
understand which methods should be used. It is also shown in related work that RL
can suitably solve similar high level, integrated decision making problems.



Supporting Results

This chapter presents results and analyses that further support the main findings in the article. These
results provide deeper insight into the modeling process, controller tuning, and disturbance rejection
capabilities, and they discuss possible extensions of the RL controller.

4.1. Modeling

This section details the modeling of DAVE, focusing on the coefficient scaling procedure and extraction
of some key characteristics.

4.1.1. Model Scaling

To obtain a model for DAVE, a validated maneuvering model developed for a similar scale vessel,
TitoNeri [45], is adopted by scaling its coefficients. Figure 4.1 shows that, although dimensions between
DAVE and TitoNeri differ significantly (see Table 4.1), the hull shape, and thus, hull dynamics are very
similar further motivating scaling TitoNeri’'s model to DAVE’s dimensions.

Table 4.1: A comparison of DAVE vs TitoNeri non-dimensionalisation parameters. TitoNeri parameters are taken from [45].

Symbol | DAVE | TitoNeri Unit
Length L 1.19 0.97 m
Moment of Inertia I, 4.76 0.51 kg - m?
Mass m 39.3 16.9 kg

(a) The Damen Autonomous Vessel (DAVE). (b) The TitoNeri scale model vessel [45].

Figure 4.1: A comparison of DAVE and TitoNeri model scale vessels.

Scaling TitoNeri’s coefficients to DAVE’s dimensions involves non-dimensionalising them and then re-
scaling them to DAVE’s dimensions. The BIS normalisation technique was selected for this purpose

38
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(p.149, [11]) as it removes any division by velocity which is imperative for low speed docking applica-
tions. The non-dimensionalisation procedure is described below using a single coefficient (X,):

1. For each model coefficient, write out equation linking it to force:

FAN = kg - 5] = Xu[?] - il 5] (4.1)

2. Rearrange equation to solve for unknown unit:

Fo[N = kg™]
il ]

= Xalky] (4.2)

3. Using Table 7.2 from [11], lookup associated BIS normlisation variable. E.g. for mass [kg]: u -
p - V where p is the body mass density ratio (=1 for floating ships) and V is the hull contour
displacement.

4. Simplify normalisation variable using equation y = pﬂv from [11]:

u=1—>pV=m (4.3)

5. Non-dimensionalise coefficient:
(4.4)

The above process can be repeated for all the coefficients present in the maneuvering model resulting in
the normalisation variables in Table 4.2 which are subsequently used to rescale to DAVE’s dimensions.

Table 4.2: Normalisation coefficients for TitoNeri Maneuvering Model.

Coefficient Non-Dimensionalisation variable
X m
Y, m
Y: m- L
Nl‘, m- L
N;« m - L2

m

Linear Coefficients

Quadratic Coefficients
Cubic Coefficients e

4.1.2. Model Characteristics
The vessel model, in conjunction with the thruster model presented in the article can now be used to

make some preliminary performance assessments.

Maximum surge speed
The maximum forward (surge) speed u,,., of DAVE is found by solving the X force balance (drag vs

thrust) while setting the propeller speed to max rpm resulting in a max surge speed of 0.664 m/s:

T

ps(nmaX7 a = O) + st(nmaxa @ = O) - (pO U+ pa u2 + ps uS) =0 (45)

Maximum steady state yaw rate
Due to their coupling (high yaw rate mean lower surge speed) it is assumed the maximum steady

state yaw rate r,,,, must ensure u > 80%u,,,... as found above. The thruster angle (resolution of 0.5°)
is swept across all possible combinations (with max propeller speed) and the resulting steady state
velocities are recorded. The thruster angle leading to the largest steady-state yaw rate while remaining

"Note that coefficients with same units are only listed once
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above 80% of the maximum surge speed was found to be —15.556° resulting in a steady-state yaw rate
of 0.162 rad/s

Thruster force envelope

Because the thruster forces are not exerted at the c.o0.g of the vessel, thruster outputs along one axis
can induce unwanted motions in others (induced moment when outputting a lateral thrust force) thus,
part of the available thrust must be allocated to counter these effects. A thruster force envelope is
obtained by numerically sweeping thruster angles/propeller speeds and recording all achievable force
combinations, allowing infeasible force commands to be clamped before passing them to the thrust
allocation module. The thruster envelope for a max propeller speed of 600 rpm is shown in Figure 4.2.

Figure 4.2: The thruster envelope for DAVE where red bounds denote the maximum theoretical force limits, the black points
are the sampled wrench forces, and the blue volume is the feasible force envelope.

4.2. Benchmark Controller Design

This section provides a more detailed overview of the benchmark controller tuning process present-
ing the step response and associated metrics for each PID sub-controller. It begins with the Sailing
controller and ends with the Dynamic Positioning controller.

4.2.1. Sailing Controller

The sailing controller is made up of two independent PID controllers; speed and heading. This section
begins with an overview of the speed controller tuning, followed by the heading controller and finishing
with the Line-of-Sight guidance system design.

Speed controller

The speed controller ensures the actuators output the correct rpm to achieve a certain speed as shown
in Figure 4.5. Such a controller can be achieved in a variety of ways hence, the objective for the
benchmark implementation is to achieve satisfactory response characteristics while keeping the design
as simple as possible. This leads us to 3 proposed controllers:

» Pure feedforward (FF) based on the required propeller speed to overcome the drag at a certain
velocity setpoint.

» Pure feedback (FB) through the use of a PID controller.
» A combination of a feedforward and feedback term.

The pure feedforward controller is ruled out due to its high model dependency, sluggish transient re-
sponse, and inability to reject disturbances. Pure feedback (PID) solves these issues but, due to its
linear formulation, requires gain scheduling at higher speeds where hydrodynamic forces become non-
linear. Combining both terms allows for a single set of gains across the entire speed regime while
maintaining a similar response to the PID controller, as shown in Figure 4.3 and Table 4.3. At lower
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speeds, the additional feedforward term introduces some overshoot (=5%), which becomes negligible
above 0.2m/s. To further improve robustness, a simple integrator anti-windup scheme is included: the
integral term is only updated when the actuators are unsaturated, preventing the excessive error accu-
mulation otherwise caused by large setpoint changes [46]. As shown in Figure 4.4, this ensures stable

behaviour across the full speed range.
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Figure 4.3: Setpoint regulation response under ideal
conditions for different speed controllers.
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Figure 4.4: Speed Controller response to different speed
setpoints emphasising the role of the integral anti-windup
scheme.

Metric

FF | PID | PID + FF

Rise time [s]

26.0 | 3.1 1.1

Settling time 2% [s]

46.2 | 8.5 9.2

Overshoot [%]

0.0 | 0.0 5.4

Steady-State error [**]

0.0 | 0.0 0.0

Table 4.3: Performance metrics based on setpoint regulation in Figure 4.3 for different speed controllers.

The resulting control law is shown in Equation 4.6 and Figure 4.5 where n is the propeller speed in
rom, [K,, K;, K4 are the PID gains, e(t) is the heading/surge speed error in the body frame, D,, is the
steady state drag at the desired surge speed, uq4, and T,,,, the thruster coefficient relating thrust to rpm.

t
n=npp+ K, - eu(t) + K; - / eu(t)dt — Ky - €u(t) (4.6)
0
D,
npp =4/ ———— 4.7
Tnn * Nthrusters ( )
] Feedforward
u_d e u n_d v
e PID Plant >

Figure 4.5: Block diagram for the velocity controller
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Heading Controller

The heading controller ensures the actuators output the correct thruster deflection (azimuth) to achieve
a certain change in heading angle (see Figure 4.8). Unlike the speed loop, it includes an integrator to
convert yaw rate into heading, making the open-loop dynamics type 1 rather than type 0 [47]. Conse-
quently, under ideal conditions the closed loop exhibits no steady-state error, and a PD design (Equa-
tion 4.8 with K; = 0) yields the ideal response in Figure 4.6. Controller behaviour varies with propeller
rpm since higher rpm increases available moment, but responses remain nearly identical above 200
rom (Figure 4.7), where it is assumed the sailing controller will nearly always operate. Under environ-
mental disturbances, however, steady-state offsets arise, requiring an integral term. To prevent integral
windup, the controller updates the integrator only when actuators are unsaturated and the heading error
is within 30°, reflecting the maximum steady-state error observed under disturbance.

Heading g [deg]
Heading y [deg]

—— RPM = 50
RPM = 100

—— RPM = 200
—— RPM = 300
—— RPM = 600
-- Reference

—— Disturbance Mz = 0
-- Reference 0

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Figure 4.6: Step response of heading controller under ideal Figure 4.7: Heading step response under different rpm
conditions. values.

The result is the control law shown in Equation 4.8 and Figure 4.8.

a=K, et)+ K, - /t e(t)dt+ K- é (4.8)
0

PID

A 4

Plant

A 4

1/s

v

Figure 4.8: Block Diagram for the heading controller.

Line-of-Sight Guidance

The guidance module’s purpose is to ’compute meaningful command signals to a vehicle control system
such that the vehicle is able to achieve a given motion control objective’ [5]. The Line-of-Sight guidance
principle has a single tunable parameter: the lookahead distance influencing how far ahead on the
trajectory convergence will occur. It should be maximised to avoid oscillatory/unstable behaviour while
being small enough to prevent excessive corner cutting. Figure 4.9 shows that distances > 3m result in
excessive corner cutting while small distances such as 0.1m lead to oscillatory behaviour. A lookahead
distance of d;,os = 2m is chosen. A final disturbance rejection analysis of the sailing controller with
LOS guidance is performed for wind disturbance in Figure 4.10.
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4.2.2. Dynamic Positioning Controller

270f

15.0 m/s

180°

Figure 4.10: Disturbance rejection capabilities of the
sailing controller for wind disturbance where a mission is
successful if controller arrives within 1m of desired pose.

Originally designed for position keeping tasks under environmental disturbances, the Dynamic Position-
ing (DP) controller makes use of 3 PID controllers for controlling motion along the 3 degrees of freedom,
taking in a position/heading error and outputting a desired force vector to maintain the desired pose
(see Figure 4.11). This desired force vector is then passed on to a thrust allocation algorithm which
finds the most optimal actuator commands to achieve the desired force vector. The PID based DP

controller has the following control law where g,

is the feedforward control action to counteract

ind

the wind force (using a wind model) and e(t) is the position error vector [e,, e, ;)T in the vessel's body

frame:

t

T=Tppyy +Kp-e+ K- | e(t)dt+Kq-¢é (4.9)
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Figure 4.11: Block Diagram for the Dynamic Positioning control loop.

For tuning, the surge, heading, and sway controllers are adjusted sequentially. This order is important
since pure sway motion cannot be produced without inducing a moment; tuning heading before sway
allows counteraction of this effect. To showcase the improved position response due to the inclusion
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of a feedforward wind term, the DP controller is ran three times while subject to the max allowable
force in each direction (F, = —4.0,F, = —0.8 and Mz = —0.4) 2 in Figure 4.12. The feedforward
term significantly improves the x- and y-position responses, while causing a slight deterioration in the
heading response (15% overshoot). However, the substantial gains in surge and sway performance
justify this minor reduction in heading accuracy while this can further be mitigated by reducing the
integral gain of the heading controller trading off slower disturbance rejection for less overshoot. A
final capability plot showcasing the wind rejection capabilities of the final DP controller is shown in
Figure 4.13 where limited sway disturbance rejection is due to the thruster layout inducing unwanted
moments (some thrust allocation must go to counter this) and from the higher hydrodynamic drag in
the sway direction, both of which reduce effective thrust.
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Figure 4.12: DP controller position and force response when
subject to maximum force disturbance

(Fu = —4.0, F, — —0.8 and Mz — —0.4) in each DOF. Figure 4.13: Capability plot of the DP controller w.r.t wind

disturbance. A run is considered successful if it resists the
disturbance force while returning to within 0.1 meters and 5
degrees (heading) of the desired position after ¢, = 500s.

Low Speed Tracking

The main issue for low speed tracking is that the controller acts on position errors, so the distance to
the reference point directly affects behaviour. If too large, it causes discrete jumps in the commanded
forces and undesirable responses (see Figure 4.14). To counter this, it is common practice [11] to pass
the reference waypoint through a low pass filter, ensuring the desired pose moves smoothly towards
the target. The third-order low pass filter used is taken from [48] where n,, is the output from the low
pass filter (the dynamic waypoint), r; is the desired final pose (static waypoint), w the frequency of the
low pass filter and ¢ the damping ratio:

2These values are based on the max allowable thruster force in each DOF including a safety margin.
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Figure 4.14: DP controller position and force response for low
speed tracking emphasising the role of the low-pass filter.

Thrust Allocation

Although outside the scope of this study, a brief overview on the thrust allocation algorithm used is given
below (this algorithm was provided by Damen). The thrust allocation algorithm serves the purpose of
converting desired force commands to actuator commands. The underactuated nature of the system (2
thrusters for 3 dof’s) complicates the thrust allocation as a single thruster must be able to output forces
along different d.o.f.’s. The problem is nontrivial meaning that a single desired force can be executed
by multiple different actuator commands effectively turning the problem into an optimisation problem
where on must find the best thruster states to achieve a desired force. A high level overview of the
thrust allocation problem is presented below.

Goal: Convert a desired body-frame force vector [F;, F,, M.] into 4 actuator states [n,s, aps, sp, Asp).-

1. Formulate 3 equilibrium constraints:

Xps + Xop = Fy (4.11)
Yps"'}/sb:Fy (412)
lm,ps Yps - ly,ps Xps + lac,sb )/sb - ly,sb Xsb = Mz (413)

2. Generate additional constraint to have a unique (4 equations, 4 unkowns) solution (analytical or
optimisation based conditions). Examples of possible choices include:

Yps =Ys, OR X5 = Xy (symmetric allocation) (4.14)
Yos — Yob = 2Yhias (outward bias to reduce propeller wake interaction) (4.15)
minimize  wp (X2 + Y +wen (X3, + Vi) (energy) (4.16)

p57Yp57Xsb7Ysb

3. Solve for thruster forces [X,,,Y,s, X, Y] analytically (analytical constraint) or through con-
strained minimisation (optimisation based constraint).

4. Map resulting thruster force vectors [ X, Y] into actuator commands [n, a] using thruster model.

T=vVX24+Y?
a = atan2(Y, X)

4.17)
(4.18)
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I (4.19)

Where T,,,, is the thrust coefficient of the propeller.
5. Apply actuator limits, re-allocate if necessary.

The thrust allocation module in this study makes use of the outward bias condition to avoid significant
drops in propeller efficiency due to wake interactions from the other propeller.

4.3. RL Controller: Extending to Multiple Objects

A quick note is made here to further motivate the use of lookahead points as observation states, first
proposed in [49], even though they were shown to serve a limited purpose for the docking problem with
a single object. When only the dock is present, the task can be solved by directly providing its position
and size. However, this approach becomes unfeasible when a large, unknown number of objects
must be avoided, since the observation vector must remain fixed. Lookahead points, by returning the
distance to an object in a specific direction, elegantly address this limitation as they generalise to any
number and size of obstacles. This is illustrated in Figure 4.15, where the agent, using only lookahead
point information, learns to navigate through a complex geometry with randomly sized obstacles. Less
attention was placed on precise alignment to the final pose (red arrow), explaining the suboptimal end
alignment observed, as the focus of this study was specifically on obstacle avoidance capabilities.
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Figure 4.15: Learnt control policy focusing on the avoidance of a random number of objects with random size. The green
arrow is the start, red is the end, each circle is an object. Note that this figure is taken from a previously graded assignment
in AE4350 and serves only as an illustrative example to support the claims made in this report.



Conclusion

The current shift toward autonomous systems in the maritime industry drives the need for vessels ca-
pable of operating fully autonomously over a wide range of scenarios. Although individual tasks such
as position keeping have been solved, there remains little research on motion control systems capable
of a full dock-to-dock mission by integrating trajectory generation, controller transitions and adaptability
to environmental disturbances. This study aimed to address this by establishing a benchmark G&C
system for an autonomous dock-to-dock mission, and subsequently and improving its adaptability and
performance in geometrically constrained environments under environmental disturbances by employ-
ing reinforcement learning. With this objective in mind, five research questions were formulated to
break the problem down into manageable modules.

1 What is the state-of-the-art in vessel motion control?

The literature review in chapter 3 showed that PID controllers remain the industry stan-
dard due to their reliability and simplicity, while model-based approaches such as MPC
and MPPI represent the current state-of-the-art in research for autonomous docking
because of their ability to handle constraints and optimize trajectories. Given the limi-
tations of model-based approaches, reinforcement learning methods are emerging as
a promising alternative, offering improved adaptability and disturbance rejection while
avoiding explicit problem formulations, though their black-box nature and limited safety
guarantees still prevent widespread industry adoption.

2 What requirements must be met for a dock-to-dock mission to be classified as successful?

A docking attempt was classified as successful if the vessel reaches and maintains
contact with the dock while keeping its heading aligned and velocity within safe limits.
To enable quantitative comparison across controllers, additional safety, performance,
and energy metrics were defined and applied.

3 What are the key components needed for the design of a benchmark, PID-based G&C system
for a dock-to-dock maneuver?

The benchmark G&C system was designed using industry-standard methods: a PID-
based speed and heading controller with Line-of-Sight guidance for the sailing phase, a
modified PID-based dynamic positioning controller for docking and a discrete controller
transition algorithm. Simulation results show that the benchmark system can complete
the full dock-to-dock mission, but its docking phase is comparatively slow and the lack
of built-in trajectory planning limits adaptability to varying geometrical constraints and
environmental disturbances.

4 How can advanced G&C methods be leveraged in the hierarchical control structure to improve
upon the performance of the benchmark?
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Analysis of the benchmark system revealed inefficiencies in discrete controller transi-
tions and the absence of trajectory planning. Reinforcement learning was introduced to
address these limitations, offering a flexible framework for learning high-level decisions
such as controller transitions. The RL controller reduced docking times (up to twice as
fast) and improved wind rejection (6 m/s vs. 3.5m/s), but its black-box nature raised
concerns for safety-critical applications. Balancing performance and interpretability, a
hybrid system was proposed where the RL controller acts as a planning module while
execution remains with the PID-based benchmark. While the RL and hybrid controllers
did not fully exploit their capabilities, namely suffering from poor generalisability to vary-
ing geometries, their evaluation highlighted key limitations of the benchmark controller
and pointed towards promising alternative directions.

5 Is a simplified simulation model for the Damen Autonomous Vessel adequate to allow for real-life
transferability?

The benchmark system was validated in a real-life setting using the Damen Autonomous
Vessel to assess the simulation-to-real gap. A comparison of simulated and real bench-
mark controller performance revealed similar closed-loop behaviour, with docking times
within 15s of each other (49s vs. 35s). Due to the closed-loop nature of the validation, ex-
plicit statements about full model fidelity are omitted. Nevertheless, the results demon-
strate that the simulation model is sufficiently accurate to support controller design with
no modifications required for transfer.

Taken together, this study demonstrates while reinforcement learning significantly improved perfor-
mance and disturbance rejection capabilities, its current limitations in generalising safely to unseen
docking scenarios and its black-box nature remain barriers to deployment in maritime settings. Hybrid
approaches offer a promising compromise, with end-to-end RL more justified in fast, dynamic domains
such as aerial robotics, whereas in slower, safety-critical maritime settings where human oversight
remains, interpretable and reliable conventional methods remain essential.



Future Work

While this study provided new insights into autonomous dock-to-dock control, several avenues remain
for further research. The recommendations below stem directly from the limitations and findings dis-
cussed in the results and conclusion.

Methodological improvements:

» Improved vessel modeling: Extend the current point-mass representation by modeling the vessel
as a bounding box, providing more realistic docking success conditions and closer alignment with
physical behaviour.

» Geometry generalisation: Enhance RL controller performance on random dock sizes by incorpo-
rating and carefully weighting a continuous safety reward, encouraging better use of lookahead
points as proposed in [49].

Multi-object scenarios: If lookahead point utilisation is improved through better reward shaping,
multi-object collision avoidance could be introduced by including multiple obstacles during train-
ing.

Hybrid system improvement: Since RL struggled with one-shot tasks such as placing switching
points, a simpler, rule-based algorithm should be investigated to improve the robustness and
reliability of the hybrid system.

Experimental validation:

» Comprehensive real-life validation: The results presented in this thesis are primarily simulation-
based, with only an initial real-life validation of the benchmark controller due to hardware con-
straints. Future work should therefore test both the RL and hybrid controllers on the Damen
Autonomous Vessel to confirm simulation findings and assess transferability under real-world
conditions such as sensor noise, varying environmental disturbances, and dock geometries.

Addressing these directions would strengthen the reliability and generalisability of advanced G&C meth-
ods for autonomous docking, while more comprehensive real-life validation would provide stronger
support for the simulation-based results.
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Planning

This appendix contains all the planning tools used throughout. It begins with a high level timeline of the
thesis, followed by an in depth Gantt (where green line represents midterm or greenlight date) chart
and Work Breakdown Structure (where red colored block indicate the task is optional) for both research
phases.

Thesis Timeline
Start, Jan 13

: . Midterm Review, May Thesis Defence,
Kick-off I\?Betlng, Jan 12 September 18
| Research Proposal ¢ ¢
? Review, Feb 24 1 . |
i H Green Light, August 18 |
i L 2 H |
| | : * :
: : - ; -
12/24/2024 2/12/2025 4/3/2025 5/23/2025 7/12/2025 8/31/2025 10/20/2025
Literature Study

Jan 13 - Feb 23 |

Research Phase 1 ¢
Feb 24 - May 12 |

Research Phase 2 * |
May 13 - Aug 19

Dissemination ¢
Aug 20 - Sep 18

2 Uertexya:

Figure A.1: High level Thesis timeline.
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