MSc Geomatics Thesis P5 Presentation

04 November 2021 Denis Giannelli

Commission

Giorgio Agugiaro| 1st supervisorCamilo León-Sánchez| 2nd supervisorPeter Koorstra| delegate of the board of examinersOlindo Isabella| co-reader

Solar Analysis on Buildings of Favelas in São Paulo to Estimate PV Potential

Context

Results Conclusion

The 'formal city' and the 'informal city' in São Paulo, Brazil.

Context

Introduction

Theory & Literature Method Experiments Results Conclusion

The geo-information segregation and the terra incognita.

Context

Theory & Literature Method Experiments Results Conclusion

Favelas (red edge) and the scarcity of cadastral data (pink fill).

Problem Statement

Introduction

Theory & Literature Method Experiments Results Conclusion

Providing the informal city with infrastructure: multiple urban domains.

Without mapping, the provision of urban infrastructure is jeopardized.

In particular: ENERGY

- Expensive energy fees in Brazil,
- Volatility of energy fees,
- Energy losses in favelas,
- Socioeconomic vulnerability,
- ENERGY POVERTY !

Problem Statement

Introduction

Theory & Literature Method Experiments Results Conclusion

Solar energy in favelas: intentional exclusion from official solar map, but favelas DO exist! 7

Problem Statement

Method

Results

In São Paulo: favelas similarly lack infrastructure; SDI allows a broader investigation.

Research Questions

Introduction

Theory & Literature Method Experiments Results Conclusion

"How far is it possible to perform solar analysis on buildings of favelas in São Paulo, with the goal of estimating PV Potential?"

Ó- Solar Irradiation Modules

- Minimum data requirements
- Automatization / Complexity
- Self-contained or package
- Running time
- Assessable feature types
- Simulation flexibility
- Time granularity / Output data model
- Level of accuracy (ground truth)

- Minimum geodata to map roofs
- Algorithmic steps
- Existing algorithms suitable for favelas
- Specific methodology for favelas

9

Introduction Theory & Literature Method Experiments Results Conclusion

Cross Domain Research

Urbanism, Geomatics & Building Physics.

Introduction Theory & Literature Method Experiments Results Conclusion

Related Work

Salazar Miranda et al. (2021)

Agugiaro et al. (2012)

Reference literature for building reconstruction and solar irradiation analysis.

General Pipeline

ŤUDelft

Two topics: Solar irradiation modules | Roof mapping.

The Spatial Data Infrastructure

Introduction Theory & Literature **Method** Experiments Results Conclusion

Main data sources: Geosampa and INMET.

Scenario Brasilândia and Scenario Santana

Introduction Theory & Literature **Method** Experiments Results Conclusion

Urban morphology of a favela; footprints available; close by the meteorological station. 14

Extended Scenarios Brasilândia & Santana

Introduction Theory & Literature Method Experiments Results Conclusion

An interactive process: geographical extent, model complexity and irradiation accuracy. 15

Introduction Theory & Literature **Method** Experiments Results Conclusion

Raster-Based Models

Raster models are necessary for the simulations in GRASS GIS and ArcGIS.

Introduction Theory & Literature **Method** Experiments Results Conclusion

Vector-Based Models

Vector models are necessary for the simulations in CitySim, SimStadt, Ladybug and VCS₁₇

Vector-Based Models

Introduction Theory & Literature **Method** Experiments Results Conclusion

Relief, buildings and trees are responsible for most of the shading effect in the model.

Weather Station Data

Introduction Theory & Literature **Method** Experiments Results Conclusion

ŤUDelft

Weather data from 24/06/06 to 12/07/21 averaged into typical hourly values.

GRASS GIS

Introduction Theory & Literature Method **Experiments** Results Conclusion

TUDelft

Raster-based solar module; Weather data handled by the software.

ArcGIS

Introduction Theory & Literature Method **Experiments** Results Conclusion

Raster-based solar module; Weather data handled by the software.

CitySim

Introduction Theory & Literature Method **Experiments** Results Conclusion

Vector-based solar module; Weather data from CLI file.

Introduction Theory & Literature Method **Experiments** Results Conclusion

SimStadt

ŤUDelft

Vector-based solar module; Weather data from TMY3 file; Derived direct and diffuse irrad

Ladybug

Introduction Theory & Literature Method **Experiments** Results Conclusion

Vector-based solar module; Weather data from EPW file; Derived direct and diffuse irrad.24

Virtual City Systems - 3D Solar Analysis

Introduction Theory & Literature Method **Experiments** Results Conclusion

Vector-based solar module; Weather data handled by VCS; Textured models with results.25

Qualitative Comparison

Introduction Theory & Literature Method Experiments **Results** Conclusion

Chample											
	GRASS	ArcGIS	CitySim	SimStadt	Ladybug	VCS Solar					
Minimum data requirements	Raster DSM	Raster DSM	CityGML + CLI + (Opt. HOR)	CityGML (Opt. TMY3)	B-rep/ Mesh + EPW	CityGML					
Automatization Complexity	Multiple steps	One-click basis	One-click basis	One-click basis	Multiple steps	Info. not available					
Self-contained or package	Self-contained	ained Self-contained Solutions Self-contained		Self-contained	Info. not available						
Running	HH:MM:SS	HH:MM:SS	BRA ±3 hr	HH:MM:SS	HH:MM:SS	Info. not					
time	00:19:01	04:43:41	SAN ±7.5 hr	00:08:06	01:04:00	available					
Assessable	All features	All features	Buildings +	Only	All features	Only					
feature types	accepted	accepted	Trees + Relief	buildings	accepted	buildings					
Simulation	No	Minimal	No	No	Full	No					
flexibility	flexibility	flexibility	Flexibility	Flexibility	flexibility	Flexibility					
Time granularity	Daily	Daily	Hourly	Hourly	Hourly	Monthly					
Output data	Raster file	Raster file	TSV file	OUT file	Data tree	Enriched CityGML					

Each solar modules offers potentialities but also limitations: no straightforward choice.

Quantitative Comparison - Santana

Introduction

Experiments

Results

Conclusion

Method

27

Simulated values for Santana are confronted with ground truth data (INMET).

Quantitative Comparison - Santana

Introduction Theory & Literature Method Experiments **Results** Conclusion

Two analyses: sum of total energy per year; RMSE between timeseries.

Introduction Theory & Literature Method Experiments **Results** Conclusion

ŤUDelft

Monthly correction factors from Santana applied to 301 buildings in Brasilândia.

Introduction Theory & Literature Method Experiments **Results** Conclusion

General annual analysis: GRASS GIS with higher values, others with similar values.

Introduction Theory & Literature Method Experiments **Results** Conclusion

Detailed annual analysis: GRASS often higher; ArcGIS~VCS;CitySim~SimStadt~Ladybug

Introduction Theory & Literature Method Experiments **Results** Conclusion

TUDelft

General monthly analysis: After correction, curves are offset, except for GRASS GIS.

VILA BRASILAM

Introduction Theory & Literature Method Experiments **Results** Conclusion

ŤUDelft

General monthly analysis: In winter, curves get the closest to each other, except GRASS.33

Introduction Theory & Literature Method Experiments **Results** Conclusion

ŤUDelft

General monthly analysis: In summer, larger offsets; GRASS still presents higher values. 34

Introduction Theory & Literature Method Experiments **Results** Conclusion

			Xi			VILA B	RASILANT	200	Building_1078833		200	Building_1078195	
					T T	111/4		250			250	•	
Section and the section of the secti	See 1	BUILDIN	G 1083095		Durana 9			200		GRASS GIS	200		GRASS GIS
Sector and the sector of the s	A MARKED OF VIL	A SAO LUIZ/S		IA				150		CITYSIM	150		
VILA SAO JOAQUIM	And Consella	>	in the second					100		SIMSTADT	100		SIMSTADT
	BUI	LDING_108	8141	$\left(-1\right)$	AC. SAO L	AZARO A. DI	BARROS	50		LADY BUG	50		LADY BUG
BUILDIN	S_1077433	/m/		1 2			1	0		VC3 SOLAR	0		VCS SOLAR
	BU	LDING_107	1008		\mathcal{X}	appanet.		, i	1 2 3 4 5 6 7 8 9 10 11 12			1 2 3 4 5 6 7 8 9 10 11 12	
BUILD	DING_1078195		ULDING_1	080661	-		a de la compañía de la	4	Building 1083095			Building_1085317	
			F-1-1	PU		70000	a a	300			300		
and the second sec		C-L-D		БО		8833		250	I		250		
and the second sec		Mar Bill	DING 108	317			~	200		GRASS GIS	200		GRASS GIS
		an Don					H	150		CITYSIM	150		
		The sea					3	100		SIMSTADT	100		SIMSTADT
	Angel	1916	con andres		3154			50		LADY BUG	50		LADY BUG
0 25 50 m	Stor - V						X	0		VCJ JOLAN	0		
					<u>, </u>				1 2 3 4 5 6 7 8 9 10 11 12			1 2 3 4 5 6 7 8 9 10 11 12	
JUNE - WINTER	BUILDING GML ID	GRASS GIS	ARCGIS	CITYSIM	SIMSTADT	LADYBUG	VCS SOLAR		Building_1080661			Building_1088141	
		(kWh/m²)	(kWh/m²)	(kWh/m²)	(kWh/m²)	(kWh/m²)	(kWh/m²)	300	I		300		
LOWEST ANNUAL GLOBAL IRRADIATION	Building_1078833	140.84	15.27	22.91	35.74	28.84	14.38	250	I	CRASS CIS	250		GRASS CIS
HIGHEST ANNUAL GLOBAL IRRADIATION	Building_10/8195	236.87	82.05	86.89	95.65	83.02	100.16	200		ARC GIS	200	\sim	ARC GIS
LARGEST ABSOLUTE IRRAD. DIFFERENCE	Building 1085317	166.64	19.66	63.86	66.16	62.90	18.25	150		CITYSIM	150		
SMALLEST FOOTPRINT AREA	Building 1080661	78.68	28.83	41.19	63.43	52.44	34.11	100		SIMSTADT	100		SIMSTADT
LARGEST FOOTPRINT AREA	Building_1088141	149.39	98.74	100.47	109.06	99.83	100.17	50		LADY BUG	50		-LADY BUG
LOWEST BUILDING ROOF	Building_1077433	141.29	39.33	49.92	46.56	41.25	27.40	0			0		
HIGHEST BUILDING ROOF	Building_1071008	127.28	97.17	100.72	100.72	108.94	100.31		1 2 3 4 5 6 7 8 9 10 11 12			1 2 3 4 5 6 7 8 9 10 11 12	
DECEMBER - SUMMER	BUILDING GML ID	GRASS GIS	ARCGIS	CITYSIM	SIMSTADT	LADYBUG	VCS SOLAR		Building_1077433			Building_1071008	
		(kWh/m²)	(kWh/m²)	(kWh/m²)	(kWh/m²)	(kWh/m²)	(kWh/m²)	300	I		300		
LOWEST ANNUAL GLOBAL IRRADIATION	Building_1078833	171.46	70.17	87.46	99.62	88.27	56.61	250	I	CDASS CIS	250		CDASS CIS
	Building_10/8195	217.19	125.07	148.51	154.47	141.59	129.71	200	·]	ARC GIS	200		ARC GIS
LARGEST ABSOLUTE IRRAD. DIFFERENCE	Building 1085317	198.32	102.99	124.90	126.59	122.36	57.88	150		CITYSIM	150		CITYSIM
SMALLEST FOOTPRINT AREA	Building 1080661	226.48	126.78	141.10	149.70	140.81	54.00	100		SIMSTADT	100		SIMSTADT
LARGEST FOOTPRINT AREA	Building_1088141	221.76	154.20	167.32	173.17	166.42	166.52	50		LADY BUG	50		LADY BUG
	Building_1077433	164.62	64.36	77.30	85.72	81.07	33.25	0		1000000	0		10000011
HIGHEST BUILDING ROOF	Building_1071008	163.85	145.07	167.59	173.02	167.00	166.86	Ť	1 2 3 4 5 6 7 8 9 10 11 12		v	1 2 3 4 5 6 7 8 9 10 11 12	

Detailed monthly analysis: Often similarities except for GRASS – in magnitude and trend.35

General Pipeline

ŤUDelft

Two topics: Solar irradiation modules | Roof mapping.

3D Building Reconstruction

Introduction Theory & Literature **Method** Experiments Results Conclusion

From the point cloud, most clusters of 3D points (white) become roof planes (yellow).

Official vs. Reconstructed Footprints

Introduction Theory & Literature Method **Experiments** Results Conclusion

Common covering area, but more footprints with complex edges; Post-processing work. 38

Morphological Overview

Introduction Theory & Literature Method Experiments **Results** Conclusion

More regular shapes; less small features (water tanks); Overall disposal; Other sites!

Morphological Overview

Resulting footprints as input for a new CityGML model: volume and roof height statistics. 40

Statistical Analysis

0

JDelft

[35.6 - 100]

[100 - 200]

[200 - 300]

Ground Truth Post Processed

[300 - 400]

[400 - 500]

In general, slightly smaller and lower building roofs, satisfactory for irradiation analysis! 41

[843.1 - 847.5]

[847.5 - 850]

[850 - 852.5]

Ground Truth

[852.5 - 855]

Post Processed

[855 - 857.5]

[857.5 - 859]

[500 - 1374]

Introduction Theory & Literature Method Experiments Results **Conclusion**

Results

Roof Mapping

- Coherent overall disposal of the reconstructed building area.
- Still, too many small and complex polygons.
- Attention to water tanks and other elements on building roofs.
- Post-processing pipeline mitigates these issues, but still some complexity remains.
- Final building roofs are slightly lower and smaller, but offer similar designing conditions.
- Solar irradiation (kWh/m²) analysis is still possible as a first approximation.
- Further research with other favelas could evaluate the methodology.

Solar Modules – Qualitative comparison

- Each software offers potentialities but also limitations: no straightforward choice.
- Morphological characteristics of the favela should be considered.

Solar Modules – Quantitative comparison – Santana

- ArcGIS: closest annual sum of irradiation values (0.89% higher than ground truth).
- **CitySim**: best correspondence to the ground truth curve (lowest monthly/annual RMSEs).
- **GRASS**: distance to ground truth sum ~ CitySim, but higher RMSE values.
- **SimStadt** & Ladybug: direct and diffuse inputs, therefore lower annual sum and higher RMSEs.
- **VCS Solar**: relative low RMSE values, but larger distance to ground truth sum.

Results

Introduction Theory & Literature Method Experiments Results **Conclusion**

Solar Modules – Quantitative comparison – Brasilândia

- **GRASS**: for the general curve and in most specific buildings, major differences both in magnitude (higher values) and in trend (local peaks).
- **Other 5 modules**: relatively similar curves general but also specific ones with minor offsetting. The correction factors approximate the results.
- VCS Solar: Irradiation differences among adjacent buildings within the month, especially for the informal settlement.

Choosing a Solar Module for Favelas

- Two criteria: geometrical model and weather dataset.
- If post-processed footprints are too complex / unrealistic: raster-based approach for solar overview.
- If resulting CityGML model is simple and representative: CitySim weather data input is retrievable.

"How far is it possible to perform solar analysis on buildings of favelas in São Paulo, with the goal of estimating PV Potential?"

Roof Mapping – complex technical challenge, post processed footprints as a first approximation. **Solar Modules** – solution based on the geometrical model and weather data availability.

