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Abstract

In this thesis we investigate the possibilities for applying Koopman methods for reachability
analysis. Reachability analysis is a verification process used to determine that a dynamical
system starting in an initial set X0 ⊆ Rn cannot reach a certain set of dangerous states
D ⊆ Rn within a time interval [0, T ]. Koopman methods seem promising, because they
predict nonlinear behaviour using linear techniques. However they have not been widely
applied to reachability analysis.

We describe three different Koopman methods: data-driven, Polyflow and Carleman. We
use the Polyflow method combined with ideas from several other methods to create a new
reachability tool: PolyReach. Next, we analyse the performance of PolyReach by comparing it
with a state-of-the-art reachability algorithm Flow* on various nonlinear systems. Finally, we
summarize the strengths and weaknesses of the PolyReach tool and discuss ideas for further
improvement.
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Chapter 1

Introduction

1-1 What is Reachability Analysis?

Reachability analysis is used to determine whether and when a dynamical system starting in
an initial set X0 ⊆ Rn can reach states in a certain set D ⊆ Rn, allowing for false positives
but not for false negatives. Typically, we want to know if the system can reach a set modeling
a dangerous situation, or in the case of hybrid systems (where the behaviour of the system
is different in different domains) when it transitions to a domain with different dynamics.
Reachability analysis is used for the formal verification of dynamical system, which has many
applications in the domains of robust control, autonomous driving, controller synthesis and
event triggered control. Examples include the following [1].

Robust control Here we verify whether the closed-loop system reaches its goal and does
not enter any unsafe areas. The reachable set shows how the system evolves with the
effect of all uncertainty parameters taken into account. [2]

Set-based prediction Another example is collision avoidance for autonomous systems. A
lot of collision avoidance algorithms have a probabilistic approach, which does not give
guarantees. With reachability analysis the collision avoidance is formally proven and
the collision avoidance is guaranteed. [3]

Set-based observers and fault detection For safety-critical observers it is not enough
to give an estimated state of the observer and probability distribution. The result of
reachability analysis is a domain of all possible states taking into account the model and
measurement uncertainties. This is achieved by integrating the system and bounding
the possible error. [4] A possible application is the localization of an autonomous vehicle.

We start with an initial set X0 ⊆ Rn in which the initial state x0 is contained. The evolution
of the system is described by a differential equation. We are interested in the case that X0 is
a compact convex set and the differential equation is of the form

ẋ = f(x), (1-1)

Master of Science Thesis T.H.J. Sweering



2 Introduction

where f is a polynomial. Let φ(x0, t) be the solution to this differential equation starting
at φ(x0, 0) = x0. We want to know whether φ(x0, t) can be in the set of dangerous states
D ⊆ Rn for any x0 ∈ X0 and t ∈ [0, T ].

1-2 Types of Algorithms

For linear reachability analysis (where f is a linear function) efficient algorithms exist [5, 6],
but finding efficient algorithms for nonlinear reachability analysis is still an active area of
research. The known algorithms can be categorized as follows [7].

Set based This variant aims to find out how

X(t) =
⋃

x0∈X0

φ(x0, t) (1-2)

behaves over time. Then we can simply check whether or not the intersection X(t)∩D
is non-empty. Of course, X(t) cannot be computed exactly (except in special cases).
Therefore we want to find an overapproximation Ξ(t) ⊇ X(t). In case that Ξ(t)∩D = ∅,
we can be sure that X(t) does not contain any dangerous states either. Examples are
Flow* [8], SpaceEx [9], CORA [10] and to some extend Ariadne [11].

Simulation based This variant runs, as its name suggests, a certain number of simulations
and checks whether the trajectories intersect the dangerous set. Although this can give
accurate answers sometimes, there is no guarantee that we did not skip a trajectory
that does reach the dangerous set.

Constraint based This variant rewrites the problem as a system of inequality constraints.
Then it checks whether or not this system has a solution. Examples are the DReach
algorithm [12], and to some extend Ariadne [11].

1-3 Set Based Algorithms

In this thesis we focus on set based methods. Recall that in set based algorithms we want
to find an overapproximation Ξ(t) ⊇ X(t). To find such an overapproximation, usually one
discretizes time into a finite number of time steps 0 = t0, t1, . . . , tE = T and set Ξ(0) = X0.
For each i ∈ {0, . . . , E − 1} we look for an overapproximation of X(ti+1) using the previous
overapproximation Ξ(ti).

Ξ(ti+1) ⊇
⋃

xti∈Ξ(ti)
φ(xti , ti+1 − ti) (1-3)

How to find Ξ(ti+1) depends on the algorithm. We can divide the set based algorithms into
three categories.

T.H.J. Sweering Master of Science Thesis



1-3 Set Based Algorithms 3

Taylor Model Let f(x) be an (N + 1)-times continuously differentiable function. Note
that, since ẋ = f(x), we can write the first N + 1 time derivatives of x as continuously
differentiable functions of x. Using Taylor’s theorem we get that

x(ti+1) = x(ti) + (ti+1 − ti)ẋ(ti) + · · ·+ (ti+1 − ti)N

N ! x(N)(ti) +RN (x(ti), ti+1 − ti),

(1-4)

where RN (x(ti), ti+1 − ti) is a remainder term. We can use a truncated version of this
Taylor expansion to approximate how the set Ξ(ti) moves over the interval [ti, ti+1]
and use an error term to find a guaranteed overapproximation Ξ(ti+1). Taylor model
methods include Flow* [8], Ariadne [11] and CORA [10].

Hybridization This method approximates a nonlinear system with a linear hybrid system
(where the system behaves according to a different linear differential equation when
it is in a different part of the continuous state space, which is labelled by a different
discrete state, see section 2-5). There are two types of hybridization methods: static
and dynamic. In the static case we first partition the domain into discrete states and
approximate the system with a linear system in each discrete state. In the dynamic
case we do this “on the fly” and only compute the linear approximations for the states
we actually reach [13]. An example of a hybridization algorithm is SpaceEx [9].

Koopman This method is an alternative way to overapproximate the dynamics of a nonlin-
ear system. The Koopman method uses a nonlinear embedding in higher dimensional
space. We then approximate this higher dimensional differential equation with a lin-
ear one. Because of the additional variables this method is much more accurate than
approximating the original differential equation with a linear one. According to [6],
the time complexity of this method scales well compared to other, nonlinear methods,
because it does not require hard symbolic computations of Lagrangians, like in Taylor
model methods. Recall that the higher order linear system is not exactly equivalent to
the original system, i.e. it is an approximation. Therefore, for the Koopman method to
be applied to reachability analysis, we need an error bound on this linearization in order
to ensure we include the exact solution. Only one subgroup of the Koopman methods,
the Carleman linearization, has been used for reachability analysis so far, because only
for this method a relatively small error bound is known.

Since reachability analysis is a verification process all points on the trajectories should be
included, not only those at discrete time points. In other words, we want to find sets
Ωi ⊇ {φ(x0, t) | x0 ∈ X0, t ∈ [ti, ti+1]}. Overapproximations of trajectories such as Ωi,
and their union Ω =

⋃
i Ωi, are called flowpipes. To capture the intermediate time points

there are multiple methods available [7]:

• One can choose extremely small time-steps ∆t. Note that the union of all Ξ(ti) converges
to a flowpipe Ω as ∆t→ 0. The disadvantage of this method is that it is computationally
expensive because of the large amount of time steps needed. More importantly, it is not
exact. One can view it as the set based variant of numerical integration.

• Another approach is “bloating” the convex hull of two consecutive overapproximations.
After taking the convex hull, the facets are pushed outwards by an amount based on
the Taylor approximation [14] or the solution to an optimization problem [15].
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4 Introduction

• In the Minkowski approach, one adds an error term to the overapproximations at discrete
time points and takes their union.

The Minkowski approach also works well for non-autonomous systems (ẋ = f(x, u) which
includes an input variable u, for example to model disturbances), while the bloating approach
mainly works well for autonomous systems [7]. However, the literature does not show the
difference of performance between the two methods.

Bloating is often used in combination with the polytope set representation. The Minkowski
approach on the other hand can be used in combination with any set representation, which
is conserved under the Minkowski sum [16].

1-4 Problem Statement

While Taylor models and hybridization have been thoroughly studied for reachability analysis,
Koopman methods have been left mostly unexplored. Other than [17], [6] and [18] which
employ the Carleman linearization, there is no other approach related to Koopman methods.
The reason for this is that, although many types of Koopman methods have been studied for
model predictive control due to the fact they enable the use of linear methods for nonlinear
problems, it is difficult to apply them for reachability analysis, because often no error bound
is known. Thus, the goal of my thesis is to make a new algorithm for reachability analysis
using another class of Koopman methods.

1-5 Thesis Overview

After this introduction, we will first explain some preliminaries. Next, we explain the Koop-
man method in more detail, including the Data-Driven, Polyflow and Carleman subclasses.
Then we describe how to use the Polyflow method to create a new reachability algorithm:
PolyReach. In the next chapter, we numerically evaluate the performance of the PolyReach
tool by comparing it with the known reachability algorithm Flow* using a variety of nonlinear
system benchmarks. Finally, we summarize the results of this thesis and outline some ideas
for further research.
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Chapter 2

Preliminaries

2-1 Sets and Representations

In this section we define and discuss four types of sets: convex sets, zonotopes, polynomial
zonotopes and Taylor models.

2-1-1 Convex Set

Definition 1 (Convex Set, [19]). A set X ⊆ Rn is convex if for all x, y ∈ X, t ∈ [0, 1] we
have

tx+ (1− t)y ∈ X. (2-1)

Definition 2 (Convex Hull, [20]). The convex hull conv(Y ) of a set Y ⊆ Rn is the unique
minimal convex superset of Y .

Definition 3 (Support Function, [20]). The support function ρX : Rn → R ∪ {−∞,+∞} of
a set X ⊆ Rn is

ρX(`) = sup{`Tx | x ∈ X}. (2-2)

It follows from the definition that X is contained in the half-plane

`Tx ≤ ρX(`). (2-3)

Hence X is overapproximated by any intersection of such half-planes. In particular the inter-
section of all such half-planes is the closure of the convex hull of X. Therefore the support
function can be used to represent closed convex sets.
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6 Preliminaries

2-1-2 Zonotope

Definition 4 (Point Symmetric Set, [21]). A set X ⊆ Rn is point symmetric if and only if
there exists a center c ∈ Rn such that for all v ∈ Rn

c+ v ∈ X ⇐⇒ c− v ∈ X. (2-4)

Definition 5 (Zonotope, [22]). A zonotope is a point symmetric polytope.

Every zonotope Z ⊆ Rn has a compact representation 〈c,G〉, where c ∈ Rn is the center and
G = {g1, g2, . . . , gp} ⊆ Rn is a finite set of vectors called generators.

Z = 〈c,G〉 = {c+ γ1g1 + γ2g2 + · · ·+ γpgp | γ ∈ [−1, 1]p} (2-5)

To illustrate what a zonotope is, we look at the following example.

Z =
{[

1
0

]
+
[
1
1

]
γ1 +

[
1
−1

]
γ2 +

[
1
0

]
γ3
∣∣∣ γ1, γ2, γ3 ∈ [−1, 1]

}
(2-6)

We show the visualization of this zonotope in Figure 2-1.

Figure 2-1: Construction of the zonotope of Equation 2-6. The black dot represents the center
of the zonotope. The coloured lines each represent the inclusion of an additional generator. The
zonotope is given by the convex hull of the endpoints of the green lines.

The order of a zonotope Z = p
n is defined to be the ratio between the number of generators

p and the dimension of the space n. For example, the zonotope from Equation 2-6 has order
Z = 3

2 .
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2-1 Sets and Representations 7

2-1-3 Polynomial Zonotope

The polynomial zonotope is an extension of the zonotope [23]. Apart from single-index gener-
ators gi with independent factors γi, the polynomial zonotope also has multi-index generators
f which depend on dependant factors βi.

Definition 6 (Polynomial Zonotope). A polynomial zonotope is a set of the form

PZ =
{
c+

p∑
j=1

βjf
([1],j) +

p∑
j=1

p∑
k=j

βjβkf
([2],j,k) + · · ·

+
p∑
j=1

p∑
k=j
· · ·

p∑
m=l

βjβk . . . βm︸ ︷︷ ︸
η factors

f ([η],j,k,...,m) +
q∑
i=1

γigi
∣∣ βi, γi ∈ [−1, 1]

}
,

(2-7)

where c, f [ζ],j,...,n, gi ∈ Rn.

Because of these multi-index generators the polynomial zonotope is able to describe non-
convex sets.

We illustrate what a polynomial zonotope is in Figure 2-2 using the following example of [22].

PZ =
{[

4
4

]
+
[
2
0

]
β1 +

[
1
2

]
β2 +

[
2
2

]
β3

1β2 +
[
1
0

]
γ1
∣∣∣ β1, β2, γ1 ∈ [−1, 1]

}
(2-8)

Figure 2-2: Construction of the polynomial zonotope of Equation 2-8 [22]. Step (a) uses the
center and the first two multi-index generators which are multiplied by a single βi. In step (b)
the third multi-index generator is added to the zonotope for β1, β2 ∈ {−1, 1}. In step (c) the
contour line is drawn for all β1, β2 ∈ [−1, 1]. In step (d) the single-index generator multiplied by
γ1 is added to the polynomial zonotope.
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8 Preliminaries

A sparse polynomial zonotope is an alternative set representation for a polynomial zono-
tope [22].

Definition 7 (Sparse Polynomial Zonotope). A sparse polynomial zonotope is a tuple

PZ = 〈G,GI , E, id〉PZ , (2-9)

where the center c and multi-index generators f are stored in a matrix G, the single-index
generators g are stored in another matrix GI , the exponent of each dependent factor in front
of each multi-index generator is stored in a matrix E and each dependent factor βi has its
own ID number which is stored in uniqueID. Note that we can always model independent
generators as dependent generators. In that case, GI is empty and we denote the polynomial
zonotope as PZ = 〈G,E, id〉PZ .

The following example shows the sparse polynomial zonotope variant of Equation 2-8.

PZ = 〈G,GI , E, id〉PZ =
〈[

4 2 1 2
4 0 2 2

]
,

[
1
0

]
,

[
0 1 0 3
0 0 1 1

]
,
[
1 2

]〉
PZ

(2-10)

The advantage of the sparse notation is that certain operations have less computational
complexity than using the normal polynomial zonotope notation, see Table 2-1. For example,
this alternative notation requires less computations for the quadratic map and Minkowski
addition of polynomial zonotopes [22].

Set Operation SPZ PZ
Multiplication with matrix O(n2m) O(n2m)
Minkowski addition with zonotope O(1) O(n)
Enclosure by zonotope O(n2) O(n2)
Quadratic map O(n log(n) + n3m) O(n4m)

Table 2-1: Computational complexity for sparse polynomial zonotopes (SPZ) and polynomial
zonotopes (PZ) [22]. Here, n is the dimension and m is the amount of generators.

Definition 8 (Minkowski Addition, [22]). Given two polynomial zonotopes

PZ1 = 〈G1, GI,1, E1, id1〉PZ and PZ2 = 〈G2, GI,2, E2, id2〉PZ , (2-11)

where pi is the number of factors and hi is the number of dependent generators of PZ i. Their
Minkowski sum is

PZ1 ⊕ PZ2 = {z1 + z2 | z1 ∈ PZ1, z2 ∈ PZ2} (2-12)

=
〈

[G1 G2], [GI,1 GI,2],
[

E1 0p1×h2

0p2×h1 E2

]
, UniqueID(p1 + p2)

〉
PZ

, (2-13)

where UniqueID(p1 + p2) consists of p1 + p2 newly generated unique identifiers.

Another useful operation is exact addition [22].
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2-1 Sets and Representations 9

Definition 9 (Exact Addition). Given two polynomial zonotopes which dependent factors
have the same identifiers

PZ1 = 〈G1, GI,1, E1, id〉PZ and PZ2 = 〈G2, GI,2, E2, id〉PZ (2-14)

their exact addition is

PZ1 � PZ2 = 〈[G1 G2], [GI,1 GI,2], [E1 E2], id〉PZ . (2-15)

We then simplify it further by adding generators which correspond to the same factors; that
means that their columns in E are equal.

We will now give an example of how exact addition can be used. Suppose we want to compute
p1(PZ) + p2(PZ), where p1(x) = ( x1

0 ), p2(x) =
(

0
x2

1

)
and

PZ =
{[

1
0

]
+
[
1
1

]
β1 +

[
1
−1

]
β1β2

∣∣∣ β1, β2 ∈ [−1, 1]
}

(2-16)

Note that

p1(PZ) =
{[

1
0

]
+
[
1
0

]
β1 +

[
1
0

]
β1β2

∣∣∣ β1, β2 ∈ [−1, 1]
}

and (2-17)

p2(PZ) =
{[

0
1

]
+
[
0
2

]
β1 +

[
0
1

]
β2

1 +
[
0
2

]
β1β2 +

[
0
2

]
β2

1β2 +
[
0
1

]
β2

1β
2
2

∣∣∣ β1, β2 ∈ [−1, 1]
}

(2-18)

and hence in sparse notation

p1(PZ) =
〈[

1 1 1
0 0 0

]
,

[
0 1 1
0 0 1

]
, [1 2]

〉
PZ

and (2-19)

p2(PZ) =
〈[

0 0 0 0 0 0
1 2 1 2 2 1

]
,

[
0 1 2 1 2 2
0 0 0 1 1 2

]
, [1 2]

〉
PZ

. (2-20)

Using the formula for exact addition we get

p(PZ) =
〈[

1 1 1 0 0 0 0 0 0
0 0 0 1 2 1 2 2 1

]
,

[
0 1 1 0 1 2 1 2 2
0 0 1 0 0 0 1 1 2

]
, [1, 2]

〉
PZ

(2-21)

which is simplified to

p(PZ) =
〈[

1 1 1 0 0 0
1 2 2 1 2 1

]
,

[
0 1 1 2 2 2
0 0 1 0 1 2

]
, [1, 2]

〉
PZ

(2-22)

by summing generators for which the corresponding columns in E are equal.
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10 Preliminaries

2-1-4 Taylor Model

Definition 10 (Multidimensional Interval). A set D ⊆ Rn is a multidimensional interval,
sometimes called hyperrectangle, if it can be written as

D = I1 × · · · × In, (2-23)

where I1, . . . , In ⊆ R are intervals.

Definition 11 (Taylor Model, [22]). Let D ⊆ Rn be a multidimensional interval, p : Rn → Rn
a polynomial and I ⊆ Rn a multidimensional interval. Then the Taylor model TM(p, I,D) ⊆
Rn describes the following set:

TM(p, I,D) = {p(x) + ε | x ∈ D, ε ∈ I}. (2-24)

2-2 First Order Ordinary Differential Equations

Definition 12 (First Order Ordinary Differential Equation). A first order ordinary differen-
tial equation (ODE) has the following form.

ẋ = f(x, t), x(0) = x0, x ∈ Rn, t ∈ R, f : Rn+1 → Rn (2-25)

The function f is called the differential function.
If f is smooth, then the solution φ(x0, t) is smooth in both x0 and t [24].
In our case the differential function is a polynomial and does not depend on time (the system
is autonomous).

ẋ = f(x), x(0) = x0, x ∈ Rn, f : Rn → Rn (2-26)

2-3 Operator Norm

Definition 13 (Operator Norm). Let ‖·‖ : Rn → R+ be a norm. The corresponding operator
norm, also denoted ‖ · ‖, is defined as follows.

‖ · ‖ : Rn×n → R+ ‖M‖ = sup
{‖Mv‖
‖v‖

∣∣∣ ‖v‖ = 1
}

For the ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ norms, this gives the following formulae.

‖M‖1 = max
1≤j≤N

N∑
i=1
|Mij | (2-27)

‖M‖2 =
√
λmax(MTM) (2-28)

‖M‖∞ = max
1≤i≤N

N∑
j=1
|Mij | (2-29)
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2-4 Kronecker Product 11

2-4 Kronecker Product

The kronecker product is a generalization of the outer product [25].

Definition 14 (Kronecker Product). The kronecker product of two matrices A ∈ Rn1×m1

and B ∈ Rn2×m2 is the block matrix A⊗ B ∈ Rn1n2×m1m2 such that for all i1 ∈ {1, . . . , n1},
j1 ∈ {1, . . . ,m1}, i2 ∈ {1, . . . , n2} and j2 ∈ {1, . . . ,m2} the following holds.

(A⊗B)n2(i1−1)+i2,m2(j1−1)+j2 = ai1j1bi2j2 (2-30)

To get a feeling of how the resulting block matrix looks like we show the kronecker product
A⊗B, where A ∈ R3×2 and B ∈ R2×3.a11 a12

a21 a22
a31 a32

⊗ [b11 b12 b13
b21 b22 b23

]
=

a11B a12B
a21B a22B
a31B a32B



=



a11b11 a11b12 a11b13 a12b11 a12b12 a12b13
a11b21 a11b22 a11b23 a12b21 a12b22 a12b23
a21b11 a21b12 a21b13 a22b11 a22b12 a22b13
a21b21 a21b22 a21b23 a22b21 a22b22 a22b23
a31b11 a31b12 a31b13 a32b11 a32b12 a32b13
a31b21 a31b22 a31b23 a32b21 a32b22 a32b23


(2-31)

The Kronecker product has the associative property. That means that the result of a sequence
of Kronecker products does not depend on which products are calculated first.

A⊗ (B ⊗ C) = (A⊗B)⊗ C (2-32)

We denote powers with respect to the Kronecker product with square brackets.

A[k] = A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
k

(2-33)

2-5 Hybrid System

A hybrid system is a system of hybrid states (q, x), where x ∈ Rn is a continuous state variable
and q ∈ Z is a discrete state variable. The differential equation describing the behaviour of x
depends on the discrete state q.

ẋ(t) = f(q, x(t)) (2-34)

Moreover, the discrete state q and the continuous state x can jump, when x enters a certain
domain. We will now give the definition from [26].

Definition 15 (Hybrid System). A hybrid system is a tuple (Q,n,D, f,E,G,R) consisting
of
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12 Preliminaries

• a set of modes Q;

• a domain map D : Q→ P (Rn), which gives, for each q ∈ Q, the set D(q) in which the
continuous state x evolves;

• a flow map f : Q × Rn → Rn, which describes, through a differential equation, the
continuous evolution of the continuous state variable x;

• a set of edges E ⊆ Q×Q, which identifies the pairs (q, q′) such that a transition from
the mode q to the mode q′ is possible;

• a guard map G : E → P (Rn), which identifies for each edge (q, q′) ∈ E the guard set
G(q, q′) to which the continuous state x must belong so that a transition from q to q′
can occur;

• a reset map R : E × Rn → Rn, which describes for each edge (q, q′) ∈ E the value to
which the continuous state x ∈ Rn is set after a transition from mode q to mode q′.
When the continuous state variable x remains constant at a jump from q to q′, the map
R(q, q′, ·) can be taken to be the identity.

Figure 2-3: Example of a hybrid system [24]: the time-reversed Filippov’s system.

ẋ = −sgn(x) + 2sgn(y) ẏ = −2sgn(x)− sgn(y)

It behaves according to a different constant differential function in each quadrant.
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2-6 Lie Derivative

Consider the following differential equation with differential function f : Rn → Rn a smooth
function, which describes how x ∈ Rn evolves over time.

x(0) = x0 ∈ Rn (2-35)
ẋ(t) = f(x(t)), ∀ t ∈ R+ (2-36)

Lie derivatives describe how a function g(x) evolves over time given that x satisfies Equation 2-
36 [27]. More specifically, the ith Lie derivative of g(x) corresponds to the ith time derivative
of g(x). For example

L1
fg(x) = ∇g(x) · ẋ = ∇g(x) · f(x). (2-37)

Using the chain rule we can define the Lie derivatives inductively [28].

Definition 16 (Lie Derivative). Let f : Rn → Rn be a smooth function. Then

L0
fg(x) = g(x) (2-38)
LNf g(x) = ∇LN−1

f g(x) · f(x) (2-39)

Note that by definition the Lie derivatives are functions of x and only depend on x0 or t
through x. Moreover, observe that if f and g are polynomials in x, the Lie derivatives are
also polynomials in x, which we can compute by repeatedly applying Equation 2-39.

2-7 Differential Inclusion

Definition 17 (Differential Inclusion, [29]). A differential inclusion is a system of the form

ẋ ∈ F (x, t), x(0) = x0 x ∈ Rn, t ∈ R (2-40)

where F (x, t) is a subset of Rn.

Differential inclusions can be used to model additive uncertainty. Such an uncertainty u can
be modelled as follows.

F (x, t) = {f(x, t)} ⊕ [−u(x, t), u(x, t)]n (2-41)

One can also overapproximate complex differential equations using a simpler differential in-
clusion by bounding smaller terms with some function u.

2-8 Stirling’s Formula

Stirling’s formula gives upper and lower bounds on the factorial function [30].

Theorem 1 (Stirling’s Formula). For all n ∈ N we have
√

2πnn+ 1
2 e−n ≤ n! ≤ enn+ 1

2 e−n (2-42)
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14 Preliminaries

2-9 Binomial Coefficient

The binomial coefficient
(n
k

)
denotes the number of ways we can choose k distinct elements

from a set of size n where the order does not matter, i.e. the number of subsets of size k.
Definition 18 (Binomial Coefficient). For all k, n ∈ Z with 0 ≤ k ≤ n we have(

n

k

)
= n!

(n− k)! · k! . (2-43)

Note that the binomial coefficient is symmetric, meaning that
(n
k

)
=
( n
n−k

)
. The binomial

coefficient can be used for many more complex counting problems. For example, if repetition
is allowed the total amount of ways we can choose k elements (the number of multisets of size
k) is as follows.(

n+ k − 1
k

)
(2-44)

We can compute the number of ways to choose at most k elements from a set of size n using
the hockey-stick identity [31].
Lemma 1 (Hockey-stick Identity). For k, n ∈ N we have

k∑
r=0

(
n+ r − 1

r

)
=
(
n+ k

k

)
(2-45)

We can bound this using Stirling’s formula.(
n+ k

k

)
= (n+ k)!

n! · k! ≤
e(n+ k)(n+k)+ 1

2 e−(n+k)
√

2πnn+ 1
2 e−n ·

√
2πkk+ 1

2 e−k
= e · (n+ k)(n+k)+ 1

2

2π · nn+ 1
2 · kk+ 1

2
(2-46)

The definition of binomial coefficient can be generalized to more dimensions. The multi-index
binomial coefficient [32](

(n1, n2, . . . , nm)
(k1, k2, . . . , km)

)
(2-47)

denotes the number of ways to make the m choices of picking ki distinct elements from a set
of size ni for all i ∈ {1, . . . ,m}.
Definition 19 (Multi-index Binomial Coefficient). For all k, n ∈ Zm with 0 ≤ ki ≤ ni we
have (

(n1, n2, . . . , nm)
(k1, k2, . . . , km)

)
=

m∏
i=1

(
ni
ki

)
. (2-48)

2-10 Modular Arithmetic

Definition 20 (Modular Arithmetic). Let a, b,m ∈ Z with m 6= 0. Then a ≡ b mod m if
and only if a and b differ by a multiple of m.

a ≡ b mod m ⇐⇒ ∃ k ∈ Z such that b− a = km (2-49)

For example, n ≡ 0 mod 2 if n is even and n ≡ 1 mod 2 if n is odd.
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Chapter 3

Koopman Methods

3-1 Koopman Method on a State

Koopman methods [33] are methods which approximate a nonlinear differential equation

ẋ = f(x) (3-1)

where x(t) ∈ Rn with a linear differential equation

ẏ = Ky (3-2)

in higher dimensional space y(t) ∈ Rm. The new variables y1, y2, . . . , ym are called the ob-
servers and they approximate functions ỹ(x). In particular yi(0) = ỹi(x(0)) for i ∈ {1, . . . ,m}.
These observer functions ỹi are not necessarily linear, for example a possible observer function
could be ex or xn. The matrix K is called the Koopman operator. There is no fixed way of
choosing observers and this will depend on the type of Koopman method used. Usually we
want x to be the first n variables of ỹ, so we can easily obtain the (approximate) solution to
the first differential equation from y.
To illustrate the method, we first give a simple example. Consider the following nonlinear
differential equation.(

ẋ1
ẋ2

)
=
(

µx1
λ(x2 − x2

1)

)
(3-3)

If we set y1 = x1, y2 = x2 and add an additional observer y3 = x2
1, we can rewrite the system

as follows.ẏ1
ẏ2
ẏ3

 =

µ 0 0
0 λ −λ
0 0 2µ


y1
y2
y3

 (3-4)

This linear differential equation can be solved with known techniques, after which we can
read off x in the first two coordinates y1 and y2, as visualized in Figure 3-1.
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16 Koopman Methods

Figure 3-1: Illustration of the relation between the lower dimensional state
[
x1 x2

]
and the

higher dimensional state
[
x1 x2 x2

1
]
. Simplified version of Fig. 3 in [34].

Finding observers which capture the entire nonlinear behaviour exactly, that means y(t) =
ỹ(x(t)), with a finite Koopman operator is still being researched. It is known to be impossi-
ble globally when the nonlinear system has “multiple fixed points, periodic orbits, or other
attractors, because these systems cannot be topologically conjugate to a finite-dimensional
linear system” [33]. Therefore we aim for observers which give a good approximation instead.
Calculating ỹ(x) is also called lifting, because it is a mapping Rn −→ Rm with m > n. We
then approximate the trajectory in the higher dimensional space by solving Equation 3-2; its
solution is y(t) = eKty(0), so we only need to apply a linear transformation.
After the next states of the observers are determined, the state in the higher dimensional
space is projected onto the lower space. In the case that x is a prefix of ỹ(x) — that means
ỹi(x) = xi for all i ∈ {1, . . . , n} — the matrix to project these values always has the form
[In 0]. This gives the following formula for the approximation ψ(t) of x(t).

ψ(t) = [In 0] eKty(0) = [In 0] eKtỹ(x(0)) (3-5)

The relation between the state x and the lifted state y is shown in Figure 3-2.

Figure 3-2: Illustration of the Koopman operator for nonlinear dynamical systems. The dashed
lines from yk −→ xk indicate that we would like to be able to recover the original state [34]
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3-2 Koopman Method on a Set 17

This gives us an approximate solution to the nonlinear differential equation. To find an
overapproximation of the exact solution we use an error bound.

We can summarize reachability analysis using Koopman methods in five steps:

1. Approximate the nonlinear differential equation with a higher dimensional linear differ-
ential equation

2. Lift the initial set to the higher dimensional space

3. Solve the linear differential equation for the lifted set

4. Project the solution back onto the lower dimensional space

5. Add an error bound

6. Overapproximate with a convex set

3-2 Koopman Method on a Set

Since we are using the Koopman method for reachability analysis, we need to perform it on
sets instead of individual states. In [6] they use (polynomial) zonotopes to represent these
sets. The advantage of this set representation is that, if the observers are polynomials, a
(polynomial) zonotope is always lifted to another polynomial zonotope. This closure property
is not the case for many other useful set representations like convex sets (in that case we would
need to take a convex hull after each lift). In this section we describe how to lift, project and
add errors to (polynomial) zonotopes.

3-2-1 Lifting the Zonotope

Recall that every zonotope Z has a compact representation 〈c,G〉, where c is the center and
G = {g1, g2, . . . , gp} is a finite set of generators.

Z = 〈c,G〉 = {c+ γ1g1 + γ2g2 + · · ·+ γpgp | γ ∈ [−1, 1]p} (3-6)

We want to find the polynomial zonotope

PZ = {ỹ (c+ γ1g1 + γ2g2 + · · ·+ γpgp) | γ ∈ [−1, 1]p} , (3-7)

which is obtained by lifting Z. Note that, since ỹ is a polynomial,

qỹ,c,g(γ1, . . . , γp) = ỹ (c+ γ1g1 + γ2g2 + · · ·+ γpgp) (3-8)

is a polynomial in γ. We first compute all polynomial zonotopes obtained by applying the
monomial terms of ỹ(x) as functions to Z. We can do this fast using for example the repeated
squaring technique [35] (if you want to find x9

1, you compute x2
1, x4

1 = (x2
1)2, x8

1 = (x4
1)2,

x9
1 = x8

1 · x1). To obtain PZ we then add the obtained polynomial zonotopes with exact
addition (including simplification): we concatenate the generators of the monomials, summing
them if they have the same index. To do this efficiently we use the sparse polynomial zonotope
representation.
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18 Koopman Methods

3-2-2 Taking a Timestep and Projecting the Polynomial Zonotope

We can take a timestep t and project the set of states by multiplying the polynomial zono-
tope with the matrix [In 0] eKt, which can be done in polynomial time as mentioned in the
preliminaries.

Ψ(t) = [In 0] eKtPZ (3-9)

3-2-3 Adding the Error Bound

To find an overapproximation of the reachable set we take the Minkowski sum of the polyno-
mial zonotope and the multidimensional interval (which is also a zonotope)

{ζ ∈ Rn | −Ei ≤ ζi ≤ Ei ∀i}, (3-10)

where Ei is a bound on the error between the ith components of x(t) and our approximation
ψ(t) (which depends on the type of Koopman method used). This can be done by adding
Ei · ei to the set of single-index generators GI for all basis vectors ei.

3-2-4 Simplifying

We can find a zonotope enclosing the polynomial zonotope in O(n2) time [22]. We can simplify
it even further by reducing the order (decreasing the number of generators) as decribed in
[36], which scales polynomially too.

3-2-5 Flowpipe

To compute the flowpipe between the initial set and the computed zonotope, one can use
for example a bloating approach, which is used for the Carleman method [6]. We will use a
Minkowski method where we compute a conservative flowpipe using the overapproximation
at the previous discrete time point, as explained in section 4-7.

3-3 Data-Driven Koopman

Most literature about the Koopman theory revolves around the data-driven approach [34],
which we will now discuss. The philosophy of [37] is that data, even without equations,
can give good understanding of dynamical systems (of course we still need the underlying
equations if we want to use it for verification purposes). Furthermore the Koopman operator
obtained in this way is often able to give a prediction of good quality even when it is far
away from fixed points (points where f(x) = 0), because the linearization is chosen to be a
good approximation globally [37]. There are multiple methods to choose a suitable Koopman
operator based on data. These methods include:

• DMD (Dynamic Mode Decomposition) [38]
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3-4 Polyflow 19

• EDMD (Extended Dynamic Mode Decomposition) [33]

• SINDy (Sparse Identification of Nonlinear Dynamics) [33]

• HAVOK (Hankel Alternative View Of Koopman) [37]

• DKRC (Deep Koopman Representation for Control) [39]

The methods mentioned above are regression methods. The difference between these methods
are the chosen observers and over what time-span the error on the sample data is minimized:
one time step or multiple time steps.

A lot of literature on the Koopman operator revolves around model predictive control (e.g.
[40]), in which one wants to estimate x instead of finding a set in which x is guaranteed to
be contained. In these works a Koopman operator is created for the open-loop model. These
papers show promising results on how accurate Koopman is able to estimate the system, but
cannot be used for reachability analysis. The reason is that these papers do not provide a
usable bound on the error between the estimated state and the real state.

3-4 Polyflow

Polyflow is a subclass of Koopman methods, which was introduced in [28]. The Polyflow
method uses Lie derivatives as observer functions with ỹi being the ith Lie derivative of
the approximated state ψ for i ∈ {0, . . . , N − 1}. Recall that Lie derivatives are the time
derivatives of the solution of the nonlinear differential equation.

Because the Lie derivatives are used as observer functions the following holds

yk = Lkfx = d

dt
Lk−1
f x = ẏk−1 (3-11)

Because only a finite amount of observers is used, the last Lie derivative is approximated
with a linear combination of the first N − 1 Lie derivatives. Hence the system will have the
following structure as described in [28], where Λi ∈ Rn×n are parameters which are chosen to
approximate the Nth Lie derivative.

d

dt


ψ
y1
...

yN−1

 =


0 I . . . 0
0 . . . . . . 0
0 . . . . . . I

Λ0 Λ1 . . . ΛN−1


︸ ︷︷ ︸

K


ψ
y1
...

yN−1

 ,


ψ
y1
...

yN−1


t=0

=


x0
L1
f (x0)
...

LN−1
f (x0)

 (3-12)

The matrix K is called the Polyflow operator and the solution to this approximate system is
as follows.

ψ(t) = [In 0] eKty (3-13)
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3-4-1 Error

When starting at point x and taking a time step ∆t, the error between the approximate
solution ψ(x,∆t) of the Polyflow method and the exact solution φ(x,∆t) can be expressed as
follows. This procedure is in 1D, but this procedure can be done for all n components of the
solutions. The first step is Taylor expanding the subtraction in (3-14):

εx(∆t) = ψ(x,∆t)− φ(x,∆t)

= (ψ(x, 0)− φ(x, 0)) + · · ·+ (∆t)N−1

(N − 1)!
∂N−1

∂tN−1 (ψ(x, t)− φ(x, t))
∣∣∣∣∣
t=0

+RN−1(∆t)

(3-14)

Because of the construction of the Polyflow operators, the first N Lie derivatives are equal.
That means that ∂i

∂ti
(ψ(x, t) − φ(x, t))

∣∣
t=0= 0 for all i ∈ {0, . . . , N − 1}. Hence the error

equals the remainder, of which the integral form is not easy to bound.

εx(∆t) = RN−1(∆t) =
∫ ∆t

0

(∆t− t′)(N−1)

(N − 1)!
∂N

∂tN
(ψ(x, t)− φ(x, t))

∣∣
t=t′ dt

′ (3-15)

3-4-2 Time Complexity

The time complexity of the Polyflow method can be split into two categories:

• Identifying the values for Λi and other preprocessing steps

• Time to lift the state and calculate the next state

The time complexity of the operations corresponding to the first category depends on the
algorithm we use to determine suitable Λi, e.g. by minimizing the difference between Nth Lie
derivative and its approximation over some sample points using an LP [28] or by minimizing
this difference over the whole domain using the sum of squares method [41, 42].

To lift a state N · n Lie-derivatives have to be computed, where n is the dimension of x and
N is the number of Lie derivatives. To determine the next time step, we need to compute a
matrix exponent, which has a dimension RnN×nN .

If we want to apply it for reachability analysis, we get a third category:

• Computing the flowpipe

3-4-3 Space Complexity

For the Polyflow method, only two things have to be stored: the Lie derivatives and the Λi.
The Lie derivatives take a total space of O(N · n). The Λi take at most O(N · n2) space. It
can be less if Λi are restricted to, for example, diagonal matrices or multiples of the identity
matrix.
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3-5 Carleman

The Carleman method is a subclass of the Koopman methods which uses monomials as
observers. This method has been described in [43], [44], [45] and [46]. Unlike the Polyflow
method it truncates the matrix instead of approximating the last set of observers. In the
following we give a 1-D example of the Carleman method.

ẋ = f(x) = x+ x3 (3-16)

The observers for problem are as follows:

ỹ1 = x ˙̃y1 = ẋ = x+ x3 = ỹ1 + ỹ3

ỹ2 = x2 ˙̃y2 = 2xẋ = 2x2 + 2x4 = 2ỹ2 + 2x4

ỹ3 = x3 ˙̃y3 = 3x2ẋ = 3x3 + 3x5 = 3ỹ3 + 3x5
(3-17)

With the information of (3-17) we construct the following lifted differential equation.

d

dt

ỹ1
ỹ2
ỹ3

 =

1 0 1
0 2 0
0 0 3


︸ ︷︷ ︸

K

ỹ1
ỹ2
ỹ3

+

 0
2x4

3x5


︸ ︷︷ ︸

disturbance

,
d

dt

y1
y2
y3

 =

1 0 1
0 2 0
0 0 3


︸ ︷︷ ︸

K

y1
y2
y3

 (3-18)

Neglecting the disturbance term we get a linear differential equation with Carleman
operator K.

3-6 Choosing a Koopman Method for Reachability Analysis

The goal of my thesis is to create a new reachability algorithm using the Koopman method,
since the use of the Koopman method for reachability analysis has not been explored much.
For that we need an error bound on the approximation the Koopman method gives us. We
can only find a reasonably small error bound for the data-driven method if the samples covers
the whole domain, which takes an unreasonable amount of time to simulate. Therefore the
choice is between the Polyflow and the Carleman method.

The Carleman method has a known explicit error bound and has already been been adapted
in [6], [17] and [18] for reachability analysis. As seen in [28] and [43] the Carleman method has
to use a time step smaller than a certain threshold for the error to converge to zero as the order
increases. Moreover, the error bound for the Carleman method is very conservative, taking
into account the errors in the additional observers as well. On the other hand, constructing the
operator for the Polyflow method costs more time, because we have to solve the optimization
problem. Overall, we expect that the Polyflow method has a better error to computation
time trade-off. Therefore, we have chosen to construct an algorithm based on the Polyflow
method.
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Chapter 4

PolyReach Algorithm

In this chapter we describe the PolyReach algorithm, which is a reachability algorithm for
polynomial systems in bounded domains.

4-1 Input and Output

Input

Just like any other such reachability algorithm we must input the parameters specifying the
problem as well as some internal parameters, which we can tune.

Problem parameters:

• an initial set X0 ⊆ Rn, in our case an interval,

• a domain D ⊆ Rn, in our case an interval,

• a list of dangerous subsets of Rn, in our case intervals,

• a time interval [0, T ], and

• a differential function f : Rn → Rn, in our case a poly-
nomial.

Internal parameters :

• a time step ∆t,

• the order of the highest Lie
derivative N ,

• a grid G of discrete points
in the domain.

Output

The algorithm then returns whether it could be possible that the system

ẋ = f(x), x(0) ∈ X0 (4-1)

enters one of the specified dangerous sets or leaves the domain D within the specified time
frame [0, T ]. In addition, it outputs a set of zonotopes Ξ(k∆t) overapproximating the reach-
able set at discrete time points as well as flowpipes Ω(k) for the time intervals [k∆t, (k+1)∆t].

Master of Science Thesis T.H.J. Sweering



24 PolyReach Algorithm

4-2 Algorithm Overview

The PolyReach algorithm consists of two phases: the identification phase and the simulation
phase.

4-2-1 Identification Phase

In this phase we identify suitable values for the parameters Λ ∈ (Rn×n)N as described in
section 4-3 to construct the Polyflow operator. We also compute a corresponding error bound
as described in section 4-4.

4-2-2 Simulation Phase

After estimating these parameters the reachability problem is solved for the initial X0 ⊆ Rn
for the time period [0, ∆t]. We first compute an approximation Ψ(∆t) of the reachable set at
time ∆t using the Polyflow method. Unlike most reachability algorithms the Polyflow method
does not only compute sets corresponding to time intervals (which we will discuss later): in
fact, it mainly uses sets corresponding to discrete time points. After this time step the error
of the Polyflow method is added to find an overapproximation Ξ(∆t) of the reachable set.
Taking Ξ(∆t) as a new initial set and repeating this process, we can find overapproximations
of the reachable sets at all discrete time points k∆t.

Figure 4-1: Overview of the simulation phase of the PolyReach algorithm
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4-3 Parameter Identification 25

To include all the trajectories in the interval [k∆t, (k + 1)∆t] a flowpipe is calculated, using
the overapproximation at k∆t as a starting point. Because these flowpipes are calculated
separate from the overapproximations at discrete time points, its conservativeness does not
propagate to further time steps. We therefore pick a method for the flowpipe computation,
which is more conservative and hence faster.

After each time step it is checked whether the flowpipe intersects with the dangerous set or
leaves the domain. If one of these conditions hold then the algorithm is terminated. When
we intersect the dangerous set, we return that the system is unsafe. If we leave the domain,
we cannot guarantee the correctness of our computed flowpipe anymore, and hence we must
return that the system is unsafe in this case as well.

4-3 Parameter Identification

PolyReach uses the operator of the Polyflow method [28] as discussed in section 3-4. Recall
that in the Polyflow method we use the first N Lie derivatives as observers and use a Koopman
operator K of the following form.

d

dt


ψ
y1
...

yN−1

 =


0 I . . . 0
0 . . . . . . 0
0 . . . . . . I

Λ0 Λ1 . . . ΛN−1


︸ ︷︷ ︸

K


ψ
y1
...

yN−1




ψ
y1
...

yN−1


t=0

=


x0
L1
f (x0)
...

LN−1
f (x0)

 (4-2)

The first step of the Polyflow method is to identify appropriate values for the parameters Λi.
In order to derive these parameters the following minimization problem, adapted from [28],
is solved.

Λ ∈ argmin
Λ∈diag(Rn)N

max
x0∈G

∥∥∥∥∥LNf (x0)−
N−1∑
i=0

ΛiLif (x0)
∥∥∥∥∥

1
(4-3)

In words, we want to choose matrices Λi to minimize the maximal error of the linearization
over a grid of sample points G. Note that this is a linear problem, while minimizing the
maximum over all x in the domain would be a non-convex problem.

In [28] they restrict the Λi to multiples of the identity matrix, because minimizing over all
possible matrices would greatly increase the time complexity. PolyReach minimizes over all
diagonal matrices instead. We can then split the optimization problem into n independent
problems: one for each component of x. This way we should get better results (due to the
greater space of feasible solutions) more efficiently (due to the smaller size of the problems,
e.g. for the interior point method O(n · (N + |G|)3.5) instead of O((N + n · |G|)3.5)).

We also add some additional restrictions on Λ, which will be explained in subsection 4-4-4,
in order to get a small error bound.

There are several algorithms to solve this optimization problem, for example the linear simplex
method and interior point methods. Interior point methods have a worst case complexity of
O((N+ |G|)3.5), while the linear simplex method does not have a polynomial time complexity,
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but often works faster in practice. We use the Gurobi [47] LP solver, which runs an interior
point method and a simplex method concurrently.

One could alternatively try to find better Λi by solving the non-convex problem with for
example the sum of squares method, as described in [41]. However, we decided against it,
since optimality is not required for an accurate algorithm and the linear methods are much
faster. As we will see in chapter 5, the parameter estimation is a bottleneck of the computation
time, while the Polyflow error bound seems to contribute little to the conservativeness.

4-4 Error Bound

Recall from Equation 3-15 that the error of the Polyflow method is equal to Taylor’s remain-
der, which has the following integral form.

RN−1(∆t) =
∫ ∆t

0

(∆t− t′)(N−1)

(N − 1)!
∂N

∂tN
(ψ(x, t)− φ(x, t))

∣∣∣∣∣
t=t′

dt′ (4-4)

It is difficult to bound this error directly. Therefore we first find an upper bound E on the
difference between the Koopman operator and an exact local linearization at all states in the
domain. We use this to bound the difference Ex(t) = ψ̂(x, t)− φ̂(x, t) between the trajectories
φ̂ and ψ̂ in the lifted space RN ·n, which are defined as follows.

φ̂(x, t) = ỹ(φ(x, t)) (exact trajectory) (4-5)
ψ̂(x, t) = eKtỹ(x) (approximate trajectory) (4-6)

Finally, we can use this to bound the the error ψ(x, t) − φ(x, t) between the exact and ap-
proximated states over time.

4-4-1 Local Operator Error Bound

First we find a strict upper bound E on the difference between the exact local linearization
∂
∂t φ̂(x, t)|t=0 and the approximate local linearization ∂

∂t ψ̂(x, t)|t=0 over all x in the domain D.
Using the chain rule on Equation 4-5 and Equation 4-6 we get

∂

∂t
φ̂(x, t)

∣∣∣
t=0

= d

dw
ỹ(w)

∣∣∣
w=x

f(x) (4-7)

∂

∂t
ψ̂(x, t)

∣∣∣
t=0

= Kỹ(x) (4-8)

Note that, in both cases, the first (N−1)n coordinates consist of the first N−1 Lie derivatives,
so they cancel out. The last n coordinates of ∂

∂t φ̂(x, t)|t=0 form the Nth Lie derivative, while
the last n coordinates of ∂

∂t ψ̂(x, t)|t=0 equal the linear approximated given by the last n rows
of K. We therefore get the following formula for the error bound E on the linearization.

E > max
x∈D

∥∥∥∥ ∂∂tφ̂(x, t)|t=0 −
∂

∂t
ψ̂(x, t)|t=0

∥∥∥∥ = max
x∈D

∥∥∥∥∥
(

0(N−1)n×1
LNf (x)−

∑N−1
i=0 ΛiLif (x)

)∥∥∥∥∥ (4-9)
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The possible value of E depends on the chosen norm ‖·‖. We define a norm ‖·‖2,∞ : Rn·N → R+
as follows. We take the ‖ · ‖2 norm of the observers in each of the n decoupled systems and
then take the maximum of those norms.

‖v‖2,∞ = max
i∈{1,...,n}

√√√√N−1∑
j=0

v2
jn+i ∀v ∈ Rn·N (4-10)

For the norm ‖ · ‖2,∞ we denote the upper bound with E2,∞.

Computing the Local Operator Error Bound

We use the SMT-Solver DReal [48] to find a strict upper bound E . An SMT-Solver is a tool
which can verify that a set of nonlinear equations cannot be satisfied. We use the variable
step method to pick values for E and use the SMT-Solver to check if they satisfy Equation 4-9.
The settings of the SMT-Solver affect the conservativeness of this bound.

4-4-2 Accumulated State Error Bound

In this section we will show how to use the local operator error bound E to compute a bound
on the error Ex0(t) between the exact state φ̂(x0, t) and the approximated state ψ̂(x0, t) in the
lifted space. Note that since the differential functions ∂

∂w ỹ(w)|w=xf(x) and Kỹ(x) are smooth,
the solutions of the corresponding differential equations and their difference are smooth as
well.

Ex0(t) = ψ̂(x0, t)− φ̂(x0, t) (4-11)

We now prove a bound on this distance between the exact approximate trajectories.

Theorem 2. Let x0 ∈ D. If φ̂(x0, t
′), ψ̂(x0, t

′) ∈ D for all t′ ∈ [0, t], then

‖Ex0(t)‖ ≤ Ete‖K‖t (4-12)

for every norm ‖ · ‖, the corresponding operator error bound E and the corresponding operator
norm (also denoted ‖ · ‖).

Proof. By the Taylor expansion around t = 0 and triangle inequality, the left hand side of
Equation 4-12 is smaller or equal to

∥∥∥(ψ̂(x0, 0)− φ̂(x0, 0)
)∥∥∥+

∥∥∥∥∥∥ ∂∂t
(
ψ̂(x0, t)− φ̂(x0, t)

) ∣∣∣∣∣
t=0

t

∥∥∥∥∥∥+O(t2) (4-13)

= 0 +

∥∥∥∥∥∥ ∂∂tψ̂(x0, t)
∣∣∣∣∣
t=0

− ∂

∂t
φ̂(x0, t)

∣∣∣∣∣
t=0

∥∥∥∥∥∥ t+O(t2) (4-14)

Using the Taylor expansion around t = 0 on the right hand side of Equation 4-12 we get

0 + Et+O(t2) (4-15)

Master of Science Thesis T.H.J. Sweering



28 PolyReach Algorithm

It follows from the definition of E in Equation 4-9 that

Ete‖K‖t − ‖Ex0(t)‖
t

→ E −

∥∥∥∥∥∥ ∂∂tψ̂(x0, t)
∣∣∣∣∣
t=0

− ∂

∂t
φ̂(x0, t)

∣∣∣∣∣
t=0

∥∥∥∥∥∥ > 0. (4-16)

Therefore, for all x0 ∈ D, Equation 4-12 holds for t > 0 sufficiently small. Since both the left
hand side and the right hand side of Equation 4-12 are continuous in x and t and the domain
D is compact, there exists t′ > 0 such that the inequality holds for all x ∈ D and ∆t ≤ t′.

Suppose the bound holds for ∆t and all x0 ∈ D such that the trajectory does not leave the
domain D. We now show that it also holds for 2∆t as long as the trajectory does not leave
the domain D.

‖Ex0(2∆t)‖ = ‖ψ̂(x0, 2∆t)− φ̂(x0, 2∆t)‖ (4-17)

First we use the triangle inequality.

≤ ‖ψ̂(ψ̂(x0,∆t),∆t)− ψ̂(φ̂(x0,∆t),∆t)‖ (4-18)
+ ‖ψ̂(φ̂(x0,∆t),∆t)− φ̂(φ̂(x0,∆t),∆t)‖ (4-19)

For Equation 4-18, note that ψ̂(·,∆t) is a linear transformation, so the distance between the
trajectories grows by at most a factor equal to the operator norm of this transformation. For
Equation 4-19 we use the hypothesis that the bound holds for time step ∆t and initial point
φ̂(x0,∆t) ∈ D.

≤ E∆te‖K‖∆t · ‖eK∆t‖+ E∆te‖K‖∆t (4-20)

Finally, we use property that ‖eA‖ =
∥∥∥∑∞k=0A

k/k!
∥∥∥ ≤∑∞k=0 ‖Ak‖/k! ≤

∑∞
k=0 ‖A‖k/k! = e‖A‖

to find the bound for time step 2∆t.

≤ E · 2∆te‖K‖·2∆t (4-21)

By induction, it holds for all t > 0.

Note that we never specified the norm and only used properties which hold in general, like
the triangle inequality. Therefore our bound holds for every norm.

4-4-3 Choosing a Norm

In the previous section we proved that ‖Ex0(t)‖ ≤ Ete‖K‖t for trajectories in the domain.
Therefore we need to include all lifted states at distance at most Ete‖K‖t from the approxi-
mation Ψ(t) with respect to norm ‖ · ‖ in the overapproximation. Depending on the choice of
the norm, the resulting overapproximation can be more or less conservative. Moreover, the
resulting overapproximation may be impossible to compute for complicated norms. In this
section we will describe which norm to pick and why.

Because we project the states down to the lower dimension space Rn, we are only interested
in the first n components of the error. Therefore we choose a norm which puts more weight
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on those components. On the other hand we need ‖K‖ to be small, so we cannot give no
importance to the other components at all.

We pick ‖x‖ = ‖Ax‖2,∞ with A invertible and to be specified later. We can view this as the
‖ · ‖2,∞ norm in a different coordinate system. Then

‖K‖ = sup
v 6=0

‖Kv‖
‖v‖

= sup
v 6=0

‖AKv‖2,∞
‖Av‖2,∞

= sup
v′ 6=0

‖AKA−1v′‖2,∞
‖v′‖2,∞

= ‖AKA−1‖2,∞. (4-22)

For the Polyflow operator, we pick A to be a diagonal matrix with Aii = µb
n−i
n c, giving a

weight of µ−j to the coordinates corresponding to the jth Lie derivative. We then get

AKA−1 =


0 µI . . . 0
0 . . . . . . 0
0 . . . . . . µI

µ1−NΛ0 µ2−NΛ1 . . . µ0ΛN−1

 and E = µ1−NE2,∞ (4-23)

where E is the operator error bound with respect to our chosen norm ‖x‖ = ‖Ax‖2,∞, while
E2,∞ is the operator error bound with respect to ‖x‖2,∞. Note that this matrix AKA−1

consists of n independent submatrices. Let Bi be the submatrix corresponding to the ith
coordinate.

(Bi)jk = (AKA−1)n(j−1)+i,n(k−1)+i ∀i ∈ [n], j, k ∈ [N ] (4-24)

This way we can compute the norm of the Polyflow operator.

‖K‖ = ‖AKA−1‖2,∞ = max
i∈[n]
‖Bi‖2 (4-25)

We now find the following formula for the error bound εx(t) = [In 0n×(N−1)n] Ex(t) of the
projected state.

‖εx(t)‖∞ ≤ ‖Ex(t)‖ (4-26)
≤ E · t · exp (‖K‖t) (4-27)
≤ µ1−N · E2,∞ · t · exp (‖K‖t) (4-28)

= µ1−N · E2,∞ · t · exp
(
t ·max

i∈[n]
‖Bi‖2

)
(4-29)

≤ µ1−N · E2,∞ · t · exp

max

µ,max
i∈[n]

 N∑
j=1

µj−N |(Λj−1)ii|

 · t
 (4-30)

Note that µ = N−1
t minimizes Equation 4-30 if µ ≥

∑N
j=1 µ

j−N |(Λj−1)ii| for all i ∈ {1, . . . , n}.
We therefore pick this value of µ, which has a really easy formula that does not even depend
on Λ.

4-4-4 Restrictions on Λ

If there are no restrictions on Λ, when solving the optimization problem of Equation 4-3, then
the norm of K often gets enormous. Since the error bound of the Polyflow operator increases
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exponentially in ‖K‖, this makes the Polyflow prediction very uncertain and unsuitable for
reachability analysis. We would therefore like to take the error bound into account when
choosing the parameters Λi.

We want to add a constraint, which bounds ‖AKA−1‖2,∞ = maxi∈[n] ‖Bi‖2. However com-
puting ‖Bi‖2 requires to calculate the square roots of eigenvalues of BT

i Bi, which can-
not be done by an LP solver. Therefore, we add the constraint ‖Bi‖1 ≤ 1.2µ instead.
This can be reformulated as linear constraints by requiring that the sum of the absolute
values of the entries in each column is smaller or equal to 1.2µ. This guarantees that
‖K‖ = ‖AKA−1‖2,∞ ≤ maxi∈[n] ‖Bi‖1 ≤ 1.2µ. In practice the ratio is even better, prob-
ably because of the special structure of K.

4-5 Lifting

For reachability analysis the set of starting states X0, as well as the later overapproximations,
have to be represented in some way. For the set representation we have chosen the polynomial
zonotope, because when we lift a (polynomial) zonotope using polynomial observers, we get
another polynomial zonotope.

Before we can apply the Koopman operator, the states are lifted to the higher dimensional
space. This is done by a nonlinear mapping and this process is called lifting. Here we map a
representation of the set X0 ⊆ Rn to a set which represents both X0 and all first N − 1 Lie
derivatives ỹ(X0) ⊆ RN ·n. This set ỹ(X0) will be the initial set of the trajectory in the higher
dimensional space.

To do this, we first lift X0 to sets which represents all monomials. For this step we use a
method similar to [6]. Unlike [6] we use sparse polynomial zonotope notation to represent
the polynomial zonotopes. After that, we apply a linear map to the resulting sets to obtain
ỹ(X0) as discussed in [28].

We describe the lifted set ỹ(X0) as a linear combination (w.r.t. exact addition) of monomials
X,X [2], . . .. These monomials are obtained using the Kronecker product, which we will define
in Equation 4-33. Unlike most operations there is no information in the literature how this
operation scales. In [6] it is described how the Kronecker product is applied to the lift
zonotopes from X to X [2]. This is the only work in the literature which applies the Kronecker
product to lift the state. We generalize this to polynomial zonotopes in order to lift from X [2]

to X [4] and beyond, which is necessary when using polynomial observers of degree greater
than 2. Moreover, the work does not mention explicitly if duplicate monomials are removed
each time the polynomial zonotope is lifted. If this is not done then the amount of monomials
grows like Ω(nm) where n is the amount of variables and m is the order of the monomials.
We reduce the Kronecker products and only compute the unique monomials in order to speed
up the computation.

4-5-1 Monomial

The first step is lifting the set to the set which represents all monomials used in the observers,
which is a mapping from Rn to Rm. We use the example of [6].
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Let the zonotope be defined as

X =
{
c+

∑
i

βigi
∣∣∣ β ∈ [−1, 1]n

}
. (4-31)

The lifted state of order 2 of this zonotope is as follows.

X [2] =
{
x⊗ x

∣∣∣ x ∈ X}
=
{
c+

∑
i

βigi
∣∣∣ β ∈ [−1, 1]n

}
⊗

c+
∑
j

βjgj
∣∣∣ β ∈ [−1, 1]n


=

c[2] +
∑
i

βi(c⊗ gi + gi ⊗ c) +
∑
i,j

βiβj(gi ⊗ gj)
∣∣∣ β ∈ [−1, 1]n


(4-32)

The operation in Equation 4-32 is the same as the Kronecker product G1 ⊗G2 of two poly-
nomial zonotopes.
In [44] they remark that all mixed products appear duplicate in the default Kronecker product,
i.e. both xixj and xjxi appear when i 6= j. To remove these duplicate mixed products, we only
allow mixed products where i > j. This can be extended to higher order mixed products: the
indices of the monomials should always be non-increasing. In sparse notation this translates
to the following equations.

PZ1 ⊗ PZ2 =
〈
Ḡ, Ē, id

〉
PZ

Ḡ =


G1,(α1,·) ⊗G2,(β1,·)

...
G1,(αn,·) ⊗G2,(βn,·)


Ē = [11×m2 ⊗ E1 + E2 ⊗ 11×m1 ]

(4-33)

Here G1,(αi,·) consists of all monomials which end on xi, while G2,(βi,·) consists of all monomials
which start with xj with j ≤ i. Here mi is the number of dependent generators of PZ i.

The result of this lift (X, . . . ,X [m]) can be seen as polynomial zonotope in R(n+m
m )−1 in a

sparse notation, where only the generators G and the exponent list E are saved.
Note that the amount of generators varies per order. Therefore each order of monomials is
saved in a different polynomial zonotope. The lifted state of monomials is a list of polynomial
zonotopes.

4-5-2 Polynomial

The Polyflow method uses polynomial functions as observers. We can map the obtained
monomials X,X [2], . . . to the required polynomial zonotope ỹ(X) using a linear map.
Each monomial PZ i ⊆ Rmi is transformed with a matrix Hi ∈ RNn×mi corresponding to the
coefficients of the ith order monomial terms in ỹ.

ỹ(x) =
∑
i

Hix
[i] here x[i] denotes the Kronecker product

with duplicate monomials removed
(4-34)
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Example 1. Let ỹ(x) =
(x1+x1x2
x2

1+x2

)
. Then

ỹ(x) =
(

1 0
0 1

)(
x1
x2

)
+
(

0 1 0
1 0 0

) x2
1

x1x2
x2

2

 = H1x+H2x
[2]. (4-35)

Since the polynomial zonotopes are closed under linear transformation the result of this
transformation is also a polynomial zonotope.

PZ ′i = HiPZ i (4-36)

As seen in Equation 4-32 the resulting polynomial zonotope does not introduce new scalars
other than β. Therefore the identifier vector id is equal for all sets PZ i. Because of this
property we can use exact addition of two polynomial zonotopes as shown below.

Recall from the preliminaries that if we have PZ1,PZ2 ∈ Rn, then their exact addition is
defined as follows [22].

PZ3 = PZ1 � PZ2 = 〈[G1 G2], [E1 E2], id〉 . (4-37)

By definition, the result of Equation 4-37 does have as many multi-index generators as a
polynomial zonotope which is the result of a regular Minkowski sum: the sum the number of
generators of each of the terms. However, since E1 and E2 can have duplicate columns, the
amount of generators of PZ3 can be reduced significantly as we will describe next.

4-5-3 Compact Representation

The operations used in subsection 4-5-1 and subsection 4-5-2 return a polynomial zonotope
with multi-index generator matrix G and exponent list matrix E, which can have non-unique
columns. To save memory and reduce the cost of operations the polynomial zonotope is
compressed with the unique columns operation from [22].

This operation first sorts the columns of E (and simultaneously the corresponding columns of
G). Once sorted, duplicate columns of E are removed, while the corresponding generators in
G are summed. This has a worst case time complexity of O(nh log(h)), where h is the number
of columns of E (with multiplicity) and n is the number of rows of E (each corresponding to
an independent factor βi).

Remark 1. Note that the matrix E does not depend on the initial set X0, only on the
polynomial it is lifted by. Thus the matrix E is constant for all time steps. Therefore the
complexity of lifting to monomials X [i] can be reduced by pre-computing the unique columns
of Ei. Moreover, note that the dependent factors of Ei are a subset of the dependent factors
of El for i < l. It follows that a logarithmic factor can be taken away from the complexity of
exact addition by ordering the generators of each monomial such such that

Ei,j,k = El,j,k, ∀i < l, j ∈ {1, . . . , n}, k ∈ {1, . . . , hi}, (4-38)

where hi is the number of columns of Ei.
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4-6 Projection

To take a time step and project the state from the higher dimensional space to the lower
dimensional space is a relatively easy task. This is done by first mapping the polynomial
zonotopes

X,X [2], . . . , X
[
deg
(
LN−1
f

x
)]

(4-39)

corresponding to monomials, one time step further using the matrix exponent and projection
matrix, and then sum the resulting polynomial zonotopes. Finally, we overapproximate the
resulting polynomial zonotope with a low order zonotope to ensure that the time complexity
does not grow exponentially with each time step.

4-6-1 Mapping

In the previous section, sets of states (represented by zonotopes) were lifted. These lifted
states (represented by polynomial zonotopes) are mapped to the next time step using a linear
transformation eK∆t. Next we project the set of states to the lower dimensional space. Since
the first n entries of the lifted state equal x, we can retrieve the projected values with a matrix
multiplication of [In, 0n×(N−1)n]. Because the mapping from the monomials to polynomials
and the mapping to the next time step are also linear and do not change over time we can
combine all transformations to one transformation matrix Ti = [In, 0n×(N−1)n]eK∆tHi.

Since the lifted set is represented by sparse polynomial zonotopes, the matrix multiplication
works as follows.

Ψ(t+ ∆t) =
deg
(
LN−1
f

x
)∑

i=1
TiPZ i (4-40)

For the summation we use exact addition with reduction, which can be done efficiently,
because the exponent list matrices are submatrices of eachother as explained in subsection 4-
5-3.

Finally, we add the error bound, which we found in section 4-4, with Minkowski addition.

Ψ(t+ ∆t)⊕
[
−E∆te‖K‖∆t, E∆te‖K‖∆t

]n
(4-41)

4-6-2 Order Reduction

As explained in subsection 4-5-1 the worst case complexity depends on the number of gener-
ators of X0. To accelerate computations, we overapproximate the polynomial zonotope with
a first order zonotope for which there are several techniques available.
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First we overapproximate the polynomial zonotope PZ with a zonotope zono(PZ) by dis-
carding the dependency between the generators as described in [22].

zono(PZ) =
〈∑
j∈N

G(·, j) + 1
2
∑
j∈H

G(·, j),
[1

2G(·,H), G(·,K)
]〉
Z

with N = {j | Eij = 0 ∀i ∈ {1, . . . , n}},

H =
{
j
∣∣∣ Eij ≡ 0 mod 2 ∀i ∈ {1, . . . , n}, j /∈ N

}
,

K = {1, . . . , h} \ (H ∪N )

(4-42)

Here the set N corresponds to the index of the center whose multi-index factor is the con-
stant 1. The set H corresponds to the indices of the other generators which multi-index
factors only have even exponents (e.g. x2

1x
4
3) and are thus in the interval [0, 1]. Finally, the

set K corresponds to the indices of generators which multi-index factors have at least one odd
exponent and can thus be in the interval [−1, 1].

This zonotope zono(PZ) has dimension n and has
(n+h
h

)
− 1 generators. We want to reduce

the number of generators to n to speed up future computations. In [36] they test the following
three methods for order reduction: the box method [49], ExSey [50] and principle component
analysis [36]. They show that the ExSey method gives the tightest over approximation,
while the PCA and box methods are the most robust methods. The tests showed that the
principle component analysis method always had a tighter overapproximation than the box
method. The PCA method is faster than the ExSey method, because it only uses singular
value decomposition once instead of computing an inverse

(n+y
n

)
times. Therefore we have

chosen to implement the PCA method in the PolyReach tool.

The first order zonotope is Ξ(t+ ∆t).

Ξ(t+ ∆t) ⊇ zono
(
Ψ(t+ ∆t)⊕

[
−E∆te‖K‖∆t, E∆te‖K‖∆t

]n)
(4-43)

4-7 Flowpipe

Since the Polyflow method is a Koopman method, we want to use techniques similar to linear
reachability, like used for the Carleman method in [6]. Often in linear reachability the flowpipe
corresponding to the interval of [0, ∆t] is overapproximated with a set Ω0. The set Ω0 is
then used as an initial set to compute the flowpipes corresponding to further time intervals:
Ω1 = [∆t, 2∆t], Ω2 = [2∆t, 3∆t] etc. However this scheme will not work well long time steps,
because nonlinear systems suffer from the wrapping effect [23]. This is the phenomenon that
the accumulation and propagation of approximation errors can lead to exponentially growing
sets. To limit the wrapping effect, the QR-factorization is often used in nonlinear reachability,
for example by Flow* [8] and CORA [10].

We instead follow [32] to prevent the flowpipe error from wrapping. Our algorithm only
uses the sets Ξ(t) at the discrete time points t to determine the states Ξ(t + ∆t) at further
time steps. The intersample behaviour is determined separately at every time step. This is
slightly more time consuming. However, the advantage of this approach is that the error in
the intersample approximation is not propagated over time.
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In this section we will describe two schemes to construct the flowpipe of Polyflow. The first
technique can construct flowpipes of linear systems, while the second technique can construct
the flowpipe of more general nonlinear systems.

4-7-1 Linear

Since Koopman methods use a linear transformation to determine the next time step, we first
considered a linear approach. In the paper which uses the Carleman method for reachability
analysis [6], they run the linear method from the CORA toolbox [10] on each time step. Since
in our algorithm the conservativeness of the flowpipe does not propagate to further time steps,
we are looking to build a faster, even if more conservative, method directly into our algorithm.
We choose the method from [51], which works as follows.

The first step of this method is to overapproximate the convex hull of the two sets Ξ(t) =
〈c1, G1〉Z and Ξ(t + ∆t) = 〈c2, G2〉Z with a zonotope Zhull. In the PolyReach algorithm
both zonotopes have the same number of generators n. Therefore we can construct a hull
Zhull as follows [51].

Zhull = 〈cnew, Gnew〉Z
cnew = c1 + c2

2
Gnew = 1

2
[
c1 − c2, G1 +G2, G1 −G2

] (4-44)

To find a flowpipe which overapproximates all states in the interval [t, t + ∆t], we need to
add a bloating term αr corresponding to the curvature of the linear system, which we will
describe next.

The resulting flowpipe is the Minkowski sum of Zhull and [−αr, αr]n.

The error between Zhull and the trajectory of the linear system{[
In, 0n×(m−n)

]
eK∆t′x

∣∣∣∣∣ x ∈ ỹ(Ξ(t)), ∆t′ ∈ [0,∆t]
}

(4-45)

is bounded by αr, which is defined as follows [51].

αr =
(
e∆t‖K‖ − 1−∆t‖K‖

)
sup

x∈ỹ(Ξ(t))
‖x‖ (4-46)

This bound holds for all norms, but we pick the infinity norm, because we can then add the
error bound using an interval [−αr, αr]n·N and the Minkowski sum.

The bloating term is dependent on the infinity norm of the lifted states. Since ỹ(Ξ(t)) is a
polynomial zonotope, the generators are dependent and obtaining the maximal infinity norm
is non-trivial. We can get an upper bound on the infinity norm by using the following formula:

sup
x∈ỹ(Ξ(ti))

‖x‖∞ = sup
x∈ỹ(Ξ(ti))

max
i∈[n·N ]

|xi| ≤ max
i∈[n·N ]

|ci|+ #generators∑
j=1

|Gij |

 (4-47)
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or we can overapproximate it with a zonotope first and then use Equation 4-47.

The bloating factor of [51] can often be reduced by using a coordinate transformation A,
where A is a diagonal matrix with Aii = µ−b(i−1)/nc. This will give the following definition
of the bloating term.

αr =
(
e∆t‖A−1KA‖ − 1−∆t‖A−1KA‖

)
sup

x∈ỹ(Ξ(ti))
‖A−1x‖ (4-48)

Since the transformation does not change the first n coordinates, we have[
In, 0n×n(N−1)

]
A[−αr, αr]n·N = [−αr, αr]n, (4-49)

so we can still add [−αr, αr]n in the original frame. While Equation 4-48 gives a smaller result
than Equation 4-46, it cannot be reduced as much as the Polyflow error due to the missing
factor of µ1−N .

4-7-2 Nonlinear

The second scheme we implemented is a nonlinear method. Here we use techniques which are
similar to the Taylor model methods. The difference is that, unlike these methods, we can
use a much coarser approximation for the a priori estimation, because the bloating term does
not propagate to further time steps. According to [52] any set Ω satisfying Equation 4-50, is
a flowpipe for the interval [t, t+ ∆t].{

y +
k−1∑
i=1

(∆t′)if (i)(y)
i!

}
⊕ (∆t′)kf (k)(Ω)

k! ⊆ Ω ∀y ∈ ỹ(Ξ(t)),∆t′ ∈ [0,∆t] (4-50)

Such a set Ω can be found by guessing it and then repeatedly increasing it to include the
left-hand-side of Equation 4-50. We implemented first (k = 1) and second (k = 2) order
versions of this method.

First order k = 1

The first order approximation is similar to the approach of [52] which is as follows:

{y} ⊕ (∆t′)f (1)(Ω) ⊆ Ω ∀y ∈ ỹ(Ξ(t)),∆t′ ∈ [0,∆t] (4-51)

For this order we only have to find a bound on the first derivative over the area around the
initial set X0, which is defined as Ω = IH(Ξ(t))⊕ [−h, h]n, where IH denotes the interval hull
(the smallest interval containing the zonotope), which can be computed as follows.

IH(〈c,G〉Z) := 〈c,diag(g)〉Z , where gi =
∑
j

|Gij | (4-52)

We keep increasing h until

h ≥ (∆t) ·max
ω∈Ω
‖f (1)(ω)‖∞. (4-53)
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Second order k = 2

For k = 2 the problem becomes more complex and we need to find

Ω = IH(Ξ(t) ∪ Ξ(t+ ∆t))⊕ [−h, h]n (4-54)

such that

h ≥ (∆t)2 ·max
ω∈Ω
‖f (2)(ω)‖∞. (4-55)

For θ ∈ [0, 1], the trajectory deviates from a linear interpolation by

‖φ(t+ θ∆t)− (θφ(t+ ∆t) + (1− θ)φ(t))‖∞. (4-56)

We bound this using the Taylor expansion with the remainder in integral form.

‖φ(t+ θ∆t)− (θφ(t+ ∆t) + (1− θ)φ(t))‖∞ (4-57)

=
∥∥∥∥∥θ
(
φ(t+ ∆t) + (θ∆t−∆t)φ′(t+ ∆t) +

∫ t+θ∆t

t+∆t
φ′′(t′)(t+ θ∆t− t′)dt′

)
(4-58)

+ (1− θ)
(
φ(t) + θ∆tφ′(t) +

∫ t+θ∆t

t
φ′′(t′)(t+ θ∆t− t′)dt′

)
(4-59)

− (θφ(t+ ∆t) + (1− θ)φ(t))
∥∥∥∥∥
∞

(4-60)

=
∥∥∥∥∥θ
∫ t+θ∆t

t+∆t
φ′′(t′)(t+ θ∆t− t′)dt′ + (1− θ)

∫ t+θ∆t

t
φ′′(t′)(t+ θ∆t− t′)dt′

(4-61)

+ (θ2 − θ)∆t
∫ t+∆t

t
φ′′(t′)dt′

∥∥∥∥∥
∞

(4-62)

≤
(
θ(1− θ)(∆t)2

2 + θ(1− θ)(∆t)2

2 + θ(1− θ)(∆t)2
)

max
t′∈[t,t+∆t]

‖φ′′(t′)‖∞

(4-63)

≤ (∆t)2

2 max
t′∈[t,t+∆t]

‖φ′′(t′)‖∞ (4-64)

It follows that Ω is an overapproximation of the trajectory during the time interval [t, t+ ∆t].

Bounding the Lie derivatives

To find a bound on f (k)(Ω) we first used an SMT-Solver. However this method was quite
slow, and formed the bottleneck of my algorithm. We therefore switched to another method
to bound this Lie derivative: the Bernstein expansion, which has been used for reachability
analysis before in [32], whose method we follow. The idea is that, when we write a polynomial
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function π in the Bernstein basis, we can use the coefficients in that basis to bound the value
of π. Let us first define the Bernstein expansion.

We can write every polynomial π in the following form

π(x) =
∑
i∈Iπ

aix
i, (4-65)

where Iπ ⊆ Zn≥0, i = (i1, . . . , in) and xi = xi11 x
i2
2 · · ·xinn . Let d = (d1, d2, . . . , dn), where

dj = maxi∈Iπ ij . Then we can rewrite the polynomial in the Bernstein expansion.

Definition 21 (Bernstein Expansion). The Bernstein expansion of π is given by

π(x) =
∑
i≤d

biB(d,i)(x), (4-66)

where

B(d,i)(x) =
n∏
j=1

(
dj
ij

)
x
ij
j (1− x)dj−ij and bi =

∑
j≤i

(i
j

)
· aj(d
j

) . (4-67)

The coefficients bi are called the Bernstein coefficients.

Theorem 3 (Bernstein Enclosure Property). The Bernstein expansion satisfies the following
range enclosement property for x ∈ [0, 1]n.

min
i≤d

bi ≤ π(x) ≤ max
i≤d

bi (4-68)

To use this property we take π(x) = f (k)(va,b(x)), where v maps [0, 1]n to the interval [α, β] =
[α1, β1]× · · · × [αn, βn] which we are maximizing over.

vα,β(x) =


β1 − α1 0 . . . 0

0 β2 − α2 . . . 0
...

... . . . ...
0 0 . . . βn − αn



x1
x2
...
xn

+


α1
α2
...
αn

 (4-69)

For the first order method, we want that

(∆t) ·max
i≤d
|bi| ≤ h, ∀ x ∈ IH(Ξ(t))⊕ [−h, h]n = [α, β]. (4-70)

For the second order remainder, we want that

(∆t)2 ·max
i≤d
|bi| ≤ h, ∀ x ∈ IH(Ξ(t))⊕ [−h, h]n = [α, β]. (4-71)

The variable h is increased until the condition is satisfied. At each iteration we recompute
[α, β] and the corresponding Bernstein coefficients bi.
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4-8 PolyReach Tool

The entire PolyReach tool has been written in Python and the computational parts are sped
up by Numba [53]. Numba is a method to increase Python’s performance by translating
the code to an an optimized machine code using the LLVM compiler during run time [53].
For estimating the Λ parameters we use the CVX [54] interface while using the Gurobi [47],
CPLEX [55] or SCS [56] optimizer. For the SMT operations we use DReal[48] and to evaluate
mathematical symbolic expressions we use Aesara [57]. To visualize the zonotopes we use the
the PyPolycontain library [58].

The tool works on Linux and is available on GitHub [59]. Instructions on how to use it can
also be found in Appendix A.
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Chapter 5

Experiments

In this chapter we measure the conservativeness and efficiency of the PolyReach tool on a vari-
ety of systems and compare its performance to that of the existing reachability tool Flow* [8].
We use the Flow* benchmarks from [60]. Since PolyReach only works for systems which have
a polynomial differential function, we have selected the following subset of eight systems (in-
cluding some chaotic systems, like the Lorenz system and the Roessler attractor, whose long
term behaviour is notoriously difficult to compute [61]):

• Van der Pol oscillator

• Lorenz system

• Brusselator

• Jet engine

• Lotka-Volterra

• Roessler attractor

• Coupled Van der Pol oscillator

• Biological model II

All experiments are run on a HP ZBook Studio G5 mobile workstation (Intel(R) Core(TM)
i7-8750H, 16GB DDR4 RAM) using Ubuntu 20.04.2 LTS. For the estimation of Λ we use
the Gurobi [47] optimizer. To determine E we use the DReal [48] SMT-Solver. To choose a
domain, we assume we have a slight idea what the extreme values of the system are. The
SMT tolerance values are chosen such that E can be found relatively quickly. The parameter
files can be found in Appendix B.

To measure the used resources of PolyReach and Flow* [8], we use the linux ps command.
This command takes snapshots of the processes related to Flow* and PolyReach. The rate
of these snapshots is 100 Hz.

All figures are plotted with the LazySets [62] library in Julia, which makes it easy to plot
many higher order zonotopes in the same plot.
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PolyReach allows for the input of dangerous intervals. Once a flowpipe intersects one of the
dangerous sets, the algorithm is terminated. Like in [60] we do not use dangerous sets in the
case studies.

We also terminate the algorithm when the flowpipe leaves the domain. We then say the
system has exploded. The termination time is defined as the minimum of T and the time at
which the system explodes.

Figure 5-1: Van der Pol oscillator with dangerous sets [−3,−1]× [−1, 1] and [−3,−1]× [1.5, 2.5]
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5-1 Case studies

5-1-1 Van der Pol Oscillator

The Van der Pol oscillator is described by the following equations.

ẋ = y

ẏ = (1− x2) · y − x
(5-1)

The initial set is defined as x ∈ [1.25, 1.55], y ∈ [2.25, 2.35] and the time frame is [0, 7].
For the test we represent the states in the lower dimensional space as zonotopes with 2 gener-
ators. The used Lie order of 8 results in

(2+15
15
)
− 1 generators in the lifted space. The chosen

domain is [−5, 5]2, the chosen SMT tolerances are [5 · 10−6, 1.2 · 10−4] and the chosen time
step is ∆t = 0.005.

Note that for both tools the flowpipe explodes. However, for PolyReach the explosion occurs
around 6.4, while for Flow* the explosion occurs around 6.6.

Figure 5-2: Van der Pol oscillator. Red represents the overapproximation of discrete states
(PolyReach), green represents the flowpipe (PolyReach), blue represents the flowpipe (Flow*),
gray represents the domain and yellow represents the trajectory of the center of the set as computed
by the default ODE solver in the DifferentialEquations package in Julia [63].
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5-1-2 Lorenz System

The Lorenz system is a chaotic system described by the following equations

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

(5-2)

where σ = 10, ρ = 28 and β = 8/3.

The initial set is defined as x ∈
[14.999, 15.001], y ∈ [14.999, 15.001], z ∈
[35.999, 36.001] and the time frame is [0, 6.5].

For the test we represent the states in
the lower dimensional space as zonotopes with
3 generators. The used Lie order of 8 results
in
(3+8

8
)
− 1 generators in the lifted space. The

chosen domain is [−25, 25]2×[0, 50], the chosen
SMT tolerances are [12·10−5, 12·10−5, 12·10−5]
and the chosen time step is ∆t = 0.003.

Note that for both tools the flowpipe ex-
plodes. However, for PolyReach the explosion
occurs around 1.5, while for Flow* the
explosion occurs around 2.2.

Figure 5-3: Lorenz system in XY plane

Figure 5-4: Lorenz system in XZ plane Figure 5-5: Lorenz system in YZ plane
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5-1-3 Brusselator
The Brusselator is described by the following equations

ẋ = A+ x2 · y −B · x− x
y = B · x− x2 · y

(5-3)

where A = 1 and B = 1.5.

The initial set is defined as x ∈ [0.8, 1], y ∈ [0, 0.2] and the time frame is [0, 12].

For the test we represent the state in the lower dimensional space as zonotope with 3
generators. The used Lie order of 6 results in

(3+11
11
)
− 1 generators in the lifted space. To

chosen domain for the Polyflow is [−1, 3]2. The chosen SMT tolerances are [5 · 10−6, 5 · 10−6].
The chosen time step is ∆t = 0.003 seconds.

Note that the flowpipe of Flow* explodes at around 7, while the flowpipe of PolyReach
explodes around 11.

Figure 5-6: Brusselator system. Only the time frame [0, 9] has been plotted to improve clarity
of the illustration.
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5-1-4 Jet Engine Model
The jet engine model is described by the following equations.

ẋ = −y − 1.5 · x2 − 0.5 · x3 − 0.5
ẏ = 3 · x− y

(5-4)

The initial set is defined as x0 ∈ [0.8, 1.2], y0 ∈ [0.8, 1.2] and the time frame is [0, 10].

For the test we represent the state in the lower dimensional space as zonotope with 3
generators. The used Lie order of 7 results in

(3+13
13
)
− 1 generators in the lifted space.

To chosen domain for the Polyflow is [−3, 3] × [−4, 4]. The chosen SMT tolerances are
[5 · 10−5, 1.2 · 10−5]. The chosen time step is ∆t = 0.003 seconds.

Note that for both tools the flowpipe explodes. However, for PolyReach the explosion
occurs around 0.8, while for Flow* the explosion occurs around 3.2.

Figure 5-7: Jet engine
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5-1-5 Lotka-Volterra Model

The Lotka-Volterra model is described by the following equations

ẋ = x · (α− β · y)
ẏ = −y · (γ − δ · x)

(5-5)

where α = 1.5, β = 1, γ = 3 and δ = 1.

The initial set is defined as x ∈ [4.8, 5.2], y ∈ [1.8, 2.2] and the time frame is [0, 5].

For the test we represent the state in the lower dimensional space as zonotope with 2
generators. The used Lie order of 8 results in

(2+8
8
)
− 1 generators in the lifted space.

To chosen domain for the Polyflow is [0, 6] × [0, 4]. The chosen SMT tolerances are
[5 · 10−5, 1.2 · 10−5]. The chosen time step is ∆t = 0.005.

Note that none of the flowpipes explode. However the flowpipe of PolyReach is clearly more
conservative.

Figure 5-8: Lotka-Volterra
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5-1-6 Roessler Attractor

The Roessler attractor is a chaotic system described by the following equations

ẋ = −y − z
ẏ = x+ a · y
ż = b+ z · (x− c)

(5-6)

where a = 0.2, b = 0.2 and c = 5.7.

The initial set is defined as x0 ∈
[−0.2, 0.2], y0 ∈ [−8.6, −8.2], z0 ∈ [−0.2, 0.2]
and the time frame is [0, 6].

For the test we represent the state in the
lower dimensional space as zonotope with
4 generators. The used Lie order of 7 re-
sults in

(4+7
7
)
− 1 generators in the lifted

space. To chosen domain for the Polyflow is
[−10, 15] × [−10, 15] × [−1, 10]. The chosen
SMT tolerances are [5 ·10−5, 1.2 ·10−5, 5 ·10−5].
The chosen time step is ∆t = 0.002.

Note that the flowpipe of PolyReach ex-
plodes at around 1.8, while the flowpipe of
Flow* does not explode at all.

Figure 5-9: Roessler attractor in the XY
plane

Figure 5-10: Roessler attractor in the XZ
plane

Figure 5-11: Roessler attractor in the YZ
plane
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5-1-7 Coupled Van der Pol Oscillator

The coupled Van der Pol oscillator is described by the following equations.

ẋ1 = y1

ẏ1 = (1− x2
1) · y1 − x1 + (x2 − x1)

ẋ2 = y2

ẏ2 = (1− x2
2) · y2 − x2 + (x1 − x2)

(5-7)

The initial set is x1 ∈ [1.25, 1.55], y1 ∈ [2.25, 2.35], x2 ∈ [1.25, 1.55], y2 ∈ [2.25, 2.35] and
the time frame is [0, 7].

For the test we represent the state in the lower dimensional space as zonotope with 4 gener-
ators. The used Lie order of 6 results in

(4+11
11
)
− 1 generators in the lifted space. To chosen

domain for the Polyflow is [−5, 5]4. The chosen SMT tolerances are [5 · 10−6, 1.2 · 10−6, 5 ·
10−6, 1.2 · 10−6]. The chosen time step is ∆t = 0.001.

Note that the flowpipe of PolyReach explodes at around 0.6, while the flowpipe of Flow*
does not explode at all.

Figure 5-12: Coupled Van der Pol oscillator
in the X1,Y1 plane

Figure 5-13: Coupled Van der Pol oscillator
in the X2,Y2 plane
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5-1-8 Biological Model II

Biological model II is described by the following equations.

ẋ1 = 3 · x3 − x1 · x6

ẋ2 = x4 − x2 · x6

ẋ3 = x1 · x6 − 3 · x3

ẋ4 = x2 · x6 − x4

ẋ5 = 3 · x3 + 5 · x1 − x5

ẋ6 = 5 · x5 + 3 · x3 + x4 − x6 · (x1 + x2 + 2 · x8 + 1)
ẋ7 = 5 · x4 + x2 − 0.5 · x7

ẋ8 = 5 · x72 · x6 · x8 + x9 − 0.2 · x8

ẋ9 = 2 · x6 · x8 − x9

(5-8)

The initial state is x ∈ [0.99, 1.01]9 and the time frame is [0, 2]. For the test we repre-
sent the state in the lower dimensional space as zonotope with 9 generators. The used Lie
order of 4 results in

(9+4
4
)
−1 generators in the lifted space. To chosen domain for the Polyflow

is [−3, 3]9. This domain does not contain the entire reachable set of system. This is due to
the exponential growth of grid points, which leads to memory problems for the Polyflow op-
timization. Hence, we know in advance that PolyReach won’t be able to solve this problem.
The chosen SMT tolerances are εi = 5 · 10−5 for all i ∈ {1, . . . , 9}. The chosen time step is
∆t = 0.001. The flowpipe of PolyReach explodes at around 0.1, while the flowpipe of Flow*
does not explode at all (picture omitted due to the high number of dimensions).

5-2 Effect of Parameters

Before comparing PolyReach and Flow*, we first compare the the accuracy and efficiency of
the PolyReach algorithm applied to the same system (Van der Pol oscillator) for various time
steps and Lie orders. We set T = 5, so that the system does not explode in most cases.

Time step
∆t

Lie order
N

CPU
usage (%)

Memory
usage (%)

Simulation
time (s)

Identification
time (s)

Surface
Area

0.0025 7 392.0 19.3 3.33 9.93 0.028
0.0025 8 362.0 19.9 3.84 11.9 0.028
0.0025 9 393.0 20.6 4.17 14.7 0.028
0.005 7 361.0 19.4 1.93 10.14 0.031
0.005 8 386.0 21.1 2.16 11.8 0.028
0.005 9 384.0 20.8 2.38 15.0 0.028
0.01 7 385.0 19.3 0.97 9.88 Terminated
0.01 8 365.0 19.9 1.28 12.0 0.151
0.01 9 371.0 20.5 1.44 15.1 0.029

Table 5-1: Resource usage, computation time and surface area of Ξ(T ) for T = 5 (Van der Pol
oscillator)

Table 5-1 shows that when ∆t = 0.01 the surface area at T = 5 is larger than the surface
area at T = 5 for smaller time steps. A higher Lie order can reduce the surface area again.
This increases the time and memory usage. The increase depends on the dimension of the
system. For a two-dimensional system like Van der Pol it scales quadratically in the Lie order.
However for a higher dimensional system this increase can be much greater.
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5-3 Efficiency

One of the metrics we evaluate is the computation time. We measure this separately for both
parts of the PolyReach tool: the identification phase and the simulation phase.

The second metric is how much memory and CPU it uses. We only show the worst case
per test. The memory and CPU usage are measured with the htop tool. The most memory
intensive part was the identification, because the exponentially growing number of grid points
need to be stored. This caused issues with biological model II, because that system has 9
variables.

The time and resource usage of PolyReach can be found in Table 5-2, while the time and
resource usage of Flow* can be found in Table 5-3.

System
name

Number of
variables

Lie order
N

Time step
∆t

Termination
time

Identification
time (s)

Simulation
time (s)

CPU
usage (%)

Memory
usage (%)

Biological
model II 9 4 0.001 0.08 173.6 3.14 332.0 136.9

Brusselator 2* 6 0.003 11.199 16.93 38.7 784.0 19.2
Coupled
Van der Pol
oscillator

4 6 0.001 0.575 24.09 47.58 751.0 24.0

Jet engine
model 2* 7 0.003 0.783 29.3 6.12 427.0 23.0

Lorenz
system 3 8 0.003 1.545 28.11 1.4 385.0 44.3

Lotka-
Volterra 2 8 0.005 5.005 12.13 1.55 363.0 17.9

Roessler
attractor 3* 7 0.002 1.786 22.04 9.77 390.0 25.6

Van der Pol
oscillator 2 8 0.005 6.355 11.81 2.47 400.0 17.9

Table 5-2: Computation time and resource usage of PolyReach. An asterisk indicates that the
system includes constant terms, which PolyReach models using an additional variable.

System
name Order Min

order
Max
order

Remainder
estimation

Time step
∆t

Termination
time

Computation
time (s)

CPU
usage (%)

Memory
usage (%)

Biological
model II Adaptive 4 6 0.001 0.01 2.0 170.0 150.0 0.6

Brusselator Adaptive 3 6 1.0e-5 0.03 7.08 1.94 180.0 0.1
Coupled
Van der Pol
oscillator

Fixed 7 7 1.0e-5 0.01 7.0 856.5 184.0 1.2

Jet engine
model Adaptive 4 8 0.0001 0.03 3.24 1.21 129.0 0.0

Lorentz system Adaptive 6 10 1.0e-8 0.003 2.265 15.75 189.0 0.3
Lotka-
Volterra Adaptive 4 6 1.0e-5 0.02 3.36 1.37 121.0 0.0

Roessler
attractor Fixed 6 6 0.0001 0.02 6.0 5.34 115.0 0.1

Van der Pol
oscillator Adaptive 4 6 1.0e-5 0.02 6.58 2.29 112.0 0.1

Table 5-3: Computation time and resource usage of Flow*.
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In order to identify bottlenecks of the algorithm, we are interested in how much the individual
parts of the phases contribute to the computation time. We subdivide the phases as follows:

Identification:

• Compiling the program

• Λ parameter estimation

• Polyflow error bound calculation

• Lifting pre-processing

Simulation:

• Lifting

• Projection

• Simplification of sets

• Flowpipe construction

First we take a closer look at the identification phase. Table 5-4 shows the distribution of
the time used by the three parts (compilation time is included in the relevant parts) in each
of the 8 benchmarks. In Table 5-5 we see how the Lie order and time step influence this
distribution in the case of the Van der Pol oscillator.

Name Parameter Error bound Lifting
estimation (%) calculation (%) preprocessing (%)

Biological model II 82.5 17.5 0.0
Brusselator 88.2 11.8 0.0
Coupled Van der Pol oscillator 83.6 16.3 0.1
Jet Engine 90.4 9.6 0.0
Lorenz system 91.8 8.2 0.0
Lotka-Volterra 89.3 10.7 0.0
Roessler attractor 86.1 13.9 0.0
Van der Pol oscillator 89.7 10.3 0.0

Table 5-4: Distribution of computation time usage during the identification phase (Benchmarks)

Note that parameter estimation is by far the most time consuming part of the identification
phase, followed by the error bound calculation. Fortunately, both parts could be parallelized,
since we decoupled the problem into n subproblems. In Table 5-5 we see that the Lie order
has a small but noticeable effect on the distribution.

Lie time step Parameter Error bound Lifting
order ∆t estimation (%) calculation (%) preprocessing (%)
7 0.0025 87.0 12.9 0.0
8 0.0025 88.2 11.8 0.0
9 0.0025 89.4 10.6 0.1
7 0.005 87.0 13.0 0.1
8 0.005 88.6 11.4 0.0
9 0.005 89.4 10.6 0.1
7 0.01 82.7 17.3 0.0
8 0.01 88.2 11.8 0.0
9 0.01 89.7 10.2 0.1

Table 5-5: Distribution of computation time usage during the identification phase (Van der Pol
oscillator)
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Table 5-6 shows the distribution of the time used by the four parts of the simulation phase
(lifting, projection, simplification and flowpipe construction) in each of the 8 benchmarks. In
Table 5-7 we see how the Lie order and time step influence this distribution in the case of the
Van der Pol oscillator.

Name
system

Number of
variables

Time step
∆

Lie
order

Lifting
(%)

Projection
(%)

Simplification
(%)

Flowpipe
(%)

Biological
model II 9 0.001 4 64.3 9.96 0.48 25.3

Brusselator 2* 0.003 6 69.0 4.67 1.61 24.7
Coupled
Van der Pol
oscillator

4 0.001 6 90.8 5.75 0.24 3.2

Jet engine
model 2* 0.003 7 86.8 3.28 0.73 9.2

Lorenz
system 3 0.003 8 63.2 3.04 1.71 32.1

Lotka-
Volterra 2 0.005 8 59.3 3.57 2.67 34.5

Roessler
attractor 3* 0.002 7 67.1 3.43 1.42 28.0

Van der Pol
oscillator 2 0.005 8 66.2 4.81 2.15 26.8

Table 5-6: Distribution of computation time usage during the simulation phase (Benchmarks)

In Table 5-6 we see that the lifting process takes up most of the time: it typically takes up
over 60% of the computation time. The flowpipe construction is the second biggest bottleneck
of the simulation part. In Table 5-7 we see that in particular the time step affects the
distribution. However the order of time usage of the four steps is conserved.

Time step
∆t

Lie order
N

Lifting
(%)

Projection
(%)

Simplification
(%)

Flowpipe
(%)

0.0025 7 58.0 5.25 2.62 34.1
0.0025 8 67.7 4.7 2.03 25.6
0.0025 9 65.7 5.8 2.18 26.3
0.005 7 63.5 4.69 2.34 29.5
0.005 8 65.6 4.79 2.08 27.5
0.005 9 69.0 4.99 1.91 24.1
0.01 7 75.4 3.14 1.55 20.0
0.01 8 81.1 2.65 1.17 15.1
0.01 9 73.8 4.36 1.65 20.2

Table 5-7: Distribution of computation time usage during the simulation phase (Van der Pol
oscillator)
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5-4 Conservativeness

For many systems, we can see in the plots that PolyReach is significantly more conservative
than Flow*. In Figure 5-14 and Figure 5-15 we compare the estimated volumes of the Flow*
and PolyReach flowpipes.
For the PolyReach and Flow* flowpipes we sum the volumes of the individual small flowpipes
and subtract the volumes of the intersections of consecutive small flowpipes. This means that
only parts of a small flowpipe that were not part of the immediately preceding small flowpipe
contribute to the volume. This gives an upper bound on the volume of the total flowpipe.
Until the flowpipe makes a full cycle and we start double counting the intersection with the
beginning of the flowpipe (at least the first 5 seconds), this upper bound is most likely pretty
tight.
We also plot the total volume of the discrete snapshots to give a bound on how much
PolyReach can be improved by flowpipe refinement. To make a more honest comparison
with Flow*, we include the linear interpolations conv(Ξ(t),Ξ(t+ 0.005)) between consecutive
discrete snapshots.

Figure 5-14: Volume per segment [t, t +
0.02] (Van der Pol oscillator)

Figure 5-15: Cumulative volume [0, t] (Van
der Pol oscillator)

The conservativeness of PolyReach can have the following four causes:

• Polyflow error bound

• Conservativeness of flowpipe computation

• Wrapping effect

• Conservativeness of set representation

In Table 5-8 you can see the computed error bound for each of the eight systems. Note that
these numbers are quite small, about 10−3 per second at most. This means that the Polyflow
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method should be capable of predicting the trajectories of states quite accurately and this
is most likely not a big contributor to the conservativeness. This is promising for the use of
Polyflow methods in reachability analysis.

Name Polyflow error bound Lie order N Time step ∆t
Biological model II 1.18166e-6 4 0.001
Brusselator 2.76399e-7 6 0.003
Coupled Van der Pol oscillator 8.91323e-10 6 0.001
Jet engine 1.05717e-8 7 0.003
Lorenz 2.99643e-7 8 0.003
Lotka-Volterra 4.79711e-11 8 0.005
Roessler attractor 2.43641e-11 7 0.002
Van der Pol oscillator 3.46806e-8 8 0.005

Table 5-8: Bound on the error for one time step of the Polyflow method (with respect to the
infinity norm)

As explained in section 4-7, the conservative flowpipe was a deliberate choice and does not
affect the conservativeness of the discrete approximations. In subsection 6-2-3 we will sketch
how to refine this flowpipe if needed.

Due to the wrapping effect, errors introduced by the Polyflow approximation, however small,
can grow quickly over time. However, we suspect that this is not the main contributor to the
conservativeness of the discrete overapproximations.

Figure 5-17 shows the flowpipes of the Van der Pol oscillator generated by CORA [10] and
Flow* using classical zonotope, polynomial zonotope and Taylor model set representations.
In [23] it is said that the system explodes for classical zonotopes, as they have trouble tightly
capturing the deformations introduced by the system. This corresponds to the place where we
saw an explosion in subsection 5-1-1. We therefore expect the bottleneck for conservativeness
reduction to be the set representation. Fortunately, there are still a lot of alternatives to
explore here, see subsection 6-2-2.

Figure 5-16: Flowpipe of the Van der Pol
oscillator t ∈ [0, 5] in PolyReach with points
of highest volume increase marked

Figure 5-17: Flowpipe of the Van der Pol
oscillator in Flow* and CORA [23]
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Chapter 6

Conclusion

6-1 Summary and Conclusions

My thesis was that Koopman methods can be applied for nonlinear reachability analysis.
Although these methods have been successfully applied to predict the trajectories of nonlinear
systems, they typically only consider the trajectory of a single state (instead of a set of states)
and do not keep track of the accumulated errors. There are only three papers [17], [6] and [18]
which use one particular Koopman method, the Carleman method, for reachability analysis.

The Koopman method I use is the Polyflow method, which uses Lie derivatives as observers. I
chose this method, because it uses approximation instead of truncation, like in the Carleman
method for example, when linearizing the differential equation hoping that this reduces the
error.

There is no standard way of determining the parameters for this linear combination. I followed
[28] in minimizing the error of the linearization over a set of sample points. The only difference
is that I allowed the parameter matrices to be arbitrary diagonal matrices instead of multiples
of the identity matrix. This relaxation does not only give a smaller error bound. Perhaps
counterintuitively, it also gives a better time complexity, as we can now split the optimization
problem into smaller subproblems.

To represent the sets, I have chosen to use zonotopes and polynomial zonotopes, like in
[22, 23]. The advantage of polynomial zonotopes is that they allow for the sets to be lifted
using polynomial functions, which is an essential part of any Koopman method, and that
operations on polynomial zonotopes have a relatively low computational complexity. To
reduce the complexity of the algorithm we overapproximate them with reduced zonotopes on
every iteration.

To bound the error introduced by PolyReach, I first bound the error of the Polyflow lin-
earization using an SMT-Solver and then bound how much this translates to an error on the
state.
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For the flowpipe I use low order nonlinear techniques as opposed to the linear technique used
in [17, 6]. These techniques are much more accurate and their order is low enough not to
become the bottleneck of the simulation phase.

I have created a tool PolyReach, which implements this method in Python. I have compared
different values for the parameters time step and Lie order for the Van der Pol oscillator. To
asses the efficiency and conservativeness of the PolyReach tool, I have compared it with the
Flow* tool on 8 different systems.

These two algorithms are fundamentally different. Flow* uses relatively complex operations
on every iteration, while PolyReach uses fast, often linear techniques (except for lifting and
flowpipe computation). These fast iterations come at a price of an expensive identification
phase. This is reflected in the experiments.

We have seen that the computation time of the simulation phase of PolyReach was similar to
that of Flow*, both of which are usually shorter than the identification phase. We also see
that PolyReach is clearly more conservative than Flow*. This is expected, as Flow* is the
current state of the art tool for these problems. Some ideas to reduce the conservativeness
and computation time of the PolyReach tool are discussed in the next section.

6-2 Ideas for Future Work

6-2-1 Comparison with the Carleman Method

It would be interesting to compare PolyReach with a Koopman method based reachability
tool. The code for a tool based on the Carleman method is expected to be published soon
at [64]. One could both compare the performance of the tools in full, as well as compare
individual parts of the algorithm: e.g. how do the time-error bound trade-offs of the two
Koopman methods compare and what effect does a different flowpipe computation or set
representation have?

6-2-2 Set Representation

At each time step we overapproximate the reachable set with a first order zonotope. This
overapproximation can be very conservative if the shape of the set is very different from a
first order zonotope. This conservativeness can only be reduced by using a more general set
representation (e.g. Taylor models, polynomial zonotopes) and not by improving other parts
of the algorithm, as observed in [23] and section 5-4.

Polynomial Zonotopes

One idea is to reduce the projected polynomial zonotope instead of first overapproximating
it with a zonotope. We can do this by writing the polynomial zonotope as the sum of two
polynomial zonotopes: one containing the few dominant terms and one containing the other
smaller terms. We then overapproximate the high order small polynomial zonotope with a
first order zonotope, while we do not change the low order polynomial zonotope with the
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dominant terms. Adding them up again we obtain a low order polynomial zonotope which
is likely to be less conservative, and hopefully not much more computationally expensive,
then our current first order zonotope set representation. Alternatively, we could use existing
methods like the one described in [23].

Splitting Sets

Another idea to deal with shapes that cannot be tightly overapproximated with zonotopes
is by overapproximating it with the union of two or more zonotopes intead, as introduced in
[23]. Every few timesteps we try to reduce the set of zonotopes again by considering their
overlaps.

6-2-3 Flowpipe Refinement

The PolyReach algorithm overapproximates the reachable sets at discrete time points quite
accurately and uses a much coarser overapproximation for the flowpipes in between. This
way we can quickly report an answer when the flowpipe does not intersect the dangerous set
or leave the domain. If some segments can intersect the dangerous set or leave the domain
we could recompute only these segments using a more accurate method (e.g. Flow* [8] or
piecewise barrier tubes [65]) starting from the latest discrete time point.

6-2-4 Bernstein for Polyflow Error

We are currently using an SMT-Solver to determine the error bound. However we could also
use the Bernstein basis, like we used in the flowpipe construction. This method sped up the
flowpipe construction by a factor between 10 and 100. The disadvantage is that it uses a lot
of memory (in the current implementation using symbolic functions). It would be interesting
to see which method gives a smaller error bound. If this depends on the system, we could
run both and take the minimum. Another advantage of the Bernstein method is that you do
not have to specify the SMT tolerances. Therefore this solution would reduce the amount of
user-defined parameters.

6-2-5 Horner Scheme for Lifting

We use the repeated squaring method to lift the zonotopes efficiently. However this costs a
lot of memory. One alternative way to lift sets by polynomials is the Horner scheme. This
method is used by Flow* [8] and CORA [10], which use the Taylor model set representation.
I think it is worth investigating whether this method can also be applied to lift zonotopes.

6-2-6 Hyperrectangles

Another way to make the lifting more efficient is to use the hyperrectangle set representation.
These are zonotopes which represent multidimensional intervals. Due to the sparsity of this
representation, the lifting, projection and order reduction can be performed more efficiently
[18]. The disadvantage is that that this set representation is even more conservative than
reduced zonotopes. Therefore it should be used in combination with splitting.
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6-2-7 Hybridization

We could also cover the domain with smaller subdomains, like in static hybridization. We
compute new linearizations for all these subdomains. Since these are optimised for the in-
dividual subdomains they are expected to be more accurate than one globally optimised
linearization. Moreover, if we leave the domain we do not need to terminate the algorithm:
we can simply generate a new domain, like in dynamic hybridization.

6-2-8 Non-polynomial Differential Functions

We could extend this method to more general nonlinear differential functions by abstracting
the differential equation to a polynomial differential inclusion (where the right-hand-side is a
polynomial plus an error interval) like in CORA [23].

6-2-9 More Efficient Implementation of Constants

The current version of the PolyReach tool cannot have constants in the differential function.
The workaround we used in PolyReach was to replace every constant c by a monomial cz,
where z(0) = 1 and ż = 0. The disadvantage is that this increases the dimension of the
problem unnecessarily, increasing the space and time complexity. Therefore it is important
to implement the option to use constants directly.

6-2-10 Bound Higher Order Terms

If the system has a high dimension, then the complexity of the system increases very fast when
the order of the Lie derivatives increases. In order to still use higher order Lie derivatives we
could bound the higher order terms, like in Flow* [8], as they typically have small coefficients.
This will increase the speed of lifting

6-2-11 Rounding Errors

Reachability analysis is a verification process. Therefore it is important to use computable
analysis to keep track of any rounding errors, like done Ariadne [11]. This is not implemented
in this first version of PolyReach.

6-2-12 Parallelize Parameter Estimation

Currently the bottleneck of the identification phase is the computation of the parameters Λi.
It especially takes a long time when the system has many variables, since we need to solve
an optimization problem for each variable. Fortunately, due of the independence of these
problems, they could be solved in parallel.
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6-2-13 Windows Support

The current version of PolyReach uses the SMT-Solver DReal [48], which does not work on
the Windows operating system. To enable people to use PolyReach on Windows, I want to
include the option to use the SMT-Solver Z3 [66] instead. Although this SMT-Solver can be
used for a smaller class of functions, it can be used for polynomials, which is all we need.
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Appendix A

PolyReach Software README.md

A-1 About

This repository contains the reachability tool PolyReach. The reachability tool focuses on
polynomial systems within a predefined domain.
This reachability tool uses the Polyflow method [1] to determine its next state. The method
is a semi linear approach since it has to compute nonlinear functions and uses a linear matrix
to map its state to the next time step.
The tool has two phases: the identification phase and the simulation phase. The simulation
phase is similar to other nonlinear reachability algorithms. However, this tool uses a constant
value for the bound on the error of the approximation of the state. The identification phase
is used to precompute parameters and find the corresponding error bound.
The tool shifts a part of the computational work of the reachability problem to the identifi-
cation phase, which is beneficial when multiple trajectories have to be simulated.
For the set representation the tool uses zonotopes and polynomial zonotopes. Common op-
erations on these sets are described in [2] and [3].
This tool provides the nonlinear approach of [5] to compute the flowpipe.

A-2 Installation

This tool has run successfully on Ubuntu 20.04 and uses Python 3.8.10.
This tool uses the SMT-Solver DReal1.
For the optimization part we use CVXPY2. One can choose between multiple algorithms which
are suitable to solve LP problems with numerous linear inequality constraints: CPLEX, SCS
and Gurobi.

1<https://github.com/dreal/dreal4>
2<https://github.com/cvxpy/cvxpy>
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A-3 Dependencies

• aesara==2.0.10

• cloudpickle==1.6.0

• colorama==0.4.4

• commonmark==0.9.1

• cplex==20.1.0.1

• cvxpy==1.1.13

• cycler==0.10.0

• dreal==4.21.6.1

• ecos==2.0.7.post1

• filelock==3.0.12

• gurobipy==9.1.2

• jsonlib-python3==1.6.1

• kill-timeout==0.0.3

• kiwisolver==1.3.1

• llvmlite==0.36.0

• matplotlib==3.4.2

• memory-
profiler==0.58.0

• mpmath==1.2.1

• numba==0.53.1

• numpy==1.20.3

• nvidia-ml-
py==11.450.51

• osqp==0.6.2.post0

• Pillow==8.2.0

• psutil==5.8.0

• Pygments==2.9.0

• pyparsing==2.4.7

• pypolycontain==1.4

• python-dateutil==2.8.1

• qdldl==0.1.5.post0

• rich==10.5.0

• scalene==1.3.8

• scikit-glpk==0.4.1

• scipy==1.6.3

• scs==2.1.4

• six==1.16.0

• sympy==1.8

• tblib==1.7.0

• yappi==1.3.2

A-3-1 Ubuntu 20.04

To install all required python modules use

pip install -r requirements.txt

A-4 Getting Started

The PolyReach tool uses *.json files to store its parameters. There are 3 types of parameter
files for the tool.

• System

• Estimated parameters

• Flowpipe + overapproximations of discrete states

A-4-1 Analysing a System

To analyse a system use the following command, where the parameter file should contain the
variables described below.
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./PolyReach.py <parameter_file>.json

It outputs whether or not the system is safe and additionally saves two files: one with the
estimated parameters and one with the flowpipe and the overapproximations of the discrete
states.

Name variable Type Info
name String Name of system
plot Bool Whether the plot is shown after simu-

lation
domain List[List[Float]] Description of grid for the Polyflow op-

timization. Size of list is n× 3
state_var String variables in lexicographic order and “,”

as seperator
diff_eq String All differential equations in sympy syn-

tax
delta_t Float Time step of the simulation
doi List[Int] Axes which are shown in the plot (de-

fault [0, 1])
te Float End time of the simulation
lie_order Int Lie order which is estimated in the

Polyflow
X0 List[List[Float]] Initial set of the simulation. The list

is an (n × 2) list describing an n-
dimensional interval

smt_solver String Chosen SMT solver: dreal (default)
solver String Chosen optimization algorithm

for Polyflow optimization :
CPLEX/SCS/GUROBI

polyflow_smt_tol List[Float] Relaxation factor used for the Polyflow
errorbound estimation

remainder_smt_tol Float Relaxation factor used for the remain-
der estimation (default 0.01)

dangerous_sets List[List[List[Float]]] List of dangerous sets (represented by
multidimensional intervals)

A-4-2 Example

In the following an example of such a parameter file is given. This parameter file is used in
one of experiments of PolyReach [6].

1 {
2 "name" : "Van der Pool oscillator with collision ",
3 "plot" : false ,
4 " domain ": [
5 [-5, 5, 1],
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6 [-5, 5, 1]
7 ],
8 " state_var ": "x0 , x1",
9 " diff_eq ": "[x1 , 0.5 *(1-x0**2)*x1 -x0]",

10 " delta_t ": 0.005 ,
11 "te": 7,
12 " lie_order ": 8,
13 "X0": [
14 [1.25 , 1.55],
15 [2.25 , 2.35]
16 ],
17 " smt_solver " : "dreal",
18 " solver " : " GUROBI ",
19 " polyflow_smt_tol " : [5E -6, 12E -5],
20 " remainder_smt_tol " : 0.01 ,
21 " dangerous_sets " : [
22 [
23 [-3,-1],
24 [-1,1]
25 ],
26 [
27 [-3,-1],
28 [1.5 ,2.5]
29 ]
30 ]
31 }

A-4-3 Plot Trajectory

After simulating a system a .json file containing all trajectories has been output. To plot
the trajectory use the following command

./PlotPolyreach <parameter_file>.json

A-5 References

[1] Polyflow source R. M. Jungers and P. Tabuada, “Non-local linearization of nonlinear
differential equations via polyflows,” in 2019 American Control Conference (ACC), pp. 1–6,
IEEE, 2019

[2] N. Kochdumper and M. Althoff, “Sparse polynomial zonotopes: A novel set representation
for reachability analysis,” IEEE Transactions on Automatic Control, 2020.

[3] A.-K. Kopetzki, B. Schürmann, and M. Althoff, “Methods for order reduction of zono-
topes,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 5626–5633,
IEEE, 2017.
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Appendix B

Parameter Files of Case Studies

B-1 Biological Model II

1 {
2 "name" : "Bio model 2",
3 "plot" : true ,
4 " domain ": [
5 [-3, 3, 2],
6 [-3, 3, 2],
7 [-3, 3, 2],
8 [-3, 3, 2],
9 [-3, 3, 2],

10 [-3, 3, 2],
11 [-3, 3, 2],
12 [-3, 3, 2],
13 [-3, 3, 2]
14 ],
15 " state_var ": "x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8",
16 " diff_eq ": "[3*x2 -x0*x5 , x3 -x1*x5 , x0*x5 -3*x2 , x1*x5 -x3 ,3*x2

+5*x0 -x4 ,5*x4+3*x2+x3 -x5*(x0+x1+2*x7+1), 5*x3+x1 -0.5*x6 ,
5*x6 -2*x5*x7+x8 -0.2*x7 , 2*x5*x7 -x8]",

17
18 " delta_t ": 0.001 ,
19 "te": 1,
20 " lie_order ": 4,
21 "X0": [
22 [0.99 , 1.01],
23 [0.99 , 1.01],
24 [0.99 , 1.01],
25 [0.99 , 1.01],
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26 [0.99 , 1.01],
27 [0.99 , 1.01],
28 [0.99 , 1.01],
29 [0.99 , 1.01],
30 [0.99 , 1.01]
31 ],
32 " smt_solver " : "dreal",
33 " solver " : " GUROBI ",
34 " polyflow_smt_tol " : [5E -5,5E -5,5E -5,5E -5,5E -5,5E -5,5E -5,5E -

5,5E -5],
35 " remainder_smt_tol " : 0.01
36 }
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B-2 Brusselator

1 {
2 "name" : " Brusselator ",
3 "plot" : false ,
4 " domain ": [
5 [-1, 3, 0.1],
6 [-1, 3, 0.1],
7 [0.9 ,1.1 , 0.1]
8 ],
9 " state_var ": "x0 , x1 , x2",

10 " diff_eq ": "[x2+x0**2*x1 -1.5*x0 -x0 , 1.5*x0 -x0**2*x1 ,
0.00000001 *x2]",

11 " delta_t ": 0.003 ,
12 "te": 12 ,
13 " lie_order ": 6,
14 "X0": [
15 [0.8 , 1],
16 [0, 0.2],
17 [0.99999 , 1.0001 ]
18 ],
19 " smt_solver " : "dreal",
20 " solver " : " GUROBI ",
21 " polyflow_smt_tol " : [5E -6, 5E -6, 1E -8],
22 " remainder_smt_tol " : 0.01
23 }
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B-3 Coupled Van der Pol Oscillator

1 {
2 "name" : " Coupled Van der Pol oscillator ",
3 "plot" : false ,
4 " domain ": [
5 [-5, 5, 1],
6 [-5, 5, 1],
7 [-5, 5, 1],
8 [-5, 5, 1]
9 ],

10 " state_var ": "x0 , x1 , x2 , x3",
11 " diff_eq ": "[x1 , (1-x0**2)*x1 -x0+(x2 -x0),x3 ,(1-x2**2)*x3 -x2

+(x0 -x2)]",
12 " delta_t ": 0.001 ,
13 "te": 7,
14 " lie_order ": 6,
15 "X0": [
16 [1.25 , 1.55],
17 [2.28 , 2.32],
18 [1.25 , 1.55],
19 [2.28 , 2.32]
20 ],
21 " smt_solver " : "dreal",
22 " solver " : " GUROBI ",
23 " polyflow_smt_tol " : [5E -6, 12E -6,5E -6, 12E -6],
24 " remainder_smt_tol " : 0.01
25 }
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B-4 Coupled Van der Pol Oscillator

1 {
2 "name" : " Coupled Van der Pol oscillator 2",
3 "plot" : false ,
4 " domain ": [
5 [-5, 5, 1],
6 [-5, 5, 1],
7 [-5, 5, 1],
8 [-5, 5, 1]
9 ],

10 " state_var ": "x0 , x1 , x2 , x3",
11 " diff_eq ": "[x1 , (1-x0**2)*x1 -x0+(x2 -x0),x3 ,(1-x2**2)*x3 -x2

+(x0 -x2)]",
12 " delta_t ": 0.001 ,
13 "doi" : [2, 3],
14 "te": 7,
15 " lie_order ": 6,
16 "X0": [
17 [1.25 , 1.55],
18 [2.28 , 2.32],
19 [1.25 , 1.55],
20 [2.28 , 2.32]
21 ],
22 " smt_solver " : "dreal",
23 " solver " : " GUROBI ",
24 " polyflow_smt_tol " : [5E -6, 12E -6,5E -6, 12E -6],
25 " remainder_smt_tol " : 0.01
26 }
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B-5 Jet Engine

1 {
2 "name" : "Jet engine ",
3 "plot" : false ,
4 " domain ": [
5 [-3, 3, 0.1],
6 [-4, 4, 0.1],
7 [0.9 , 1.1 , 0.1]
8 ],
9 " state_var ": "x0 , x1 , x2",

10 " diff_eq ": "[-x1 -1.5*x0**2 - 0.5*x0**3 - 0.5 * x2 , 3*x0 -x1 ,
0.00000001 *x2]",

11 " delta_t ": 0.003 ,
12 "te": 10 ,
13 " lie_order ": 7,
14 "X0": [
15 [0.8 , 1.2],
16 [0.8 , 1.2],
17 [0.9999999 , 1.0000001 ]
18 ],
19 " smt_solver " : "dreal",
20 " solver " : " GUROBI ",
21 " polyflow_smt_tol " : [5E -5, 12E -6,1E -8],
22 " remainder_smt_tol " : 0.01
23 }
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B-6 Lorenz System XY Plane

1 {
2 "name" : " Lorenz xy -plane",
3 "plot" : false ,
4 " domain ": [
5 [-25 , 25 , 1],
6 [-25 , 25 , 1],
7 [0, 50 , 1]
8 ],
9 " state_var ": "a, b, c",

10 " diff_eq ": "[10.0 *(b-a), a*(28 - c)-b, a*b-8.0/3.0*c]",
11 " delta_t ": 0.003 ,
12 "te": 6.5 ,
13 " lie_order ": 8,
14 "doi" : [0, 1],
15 "X0": [
16 [14.999 , 15.001 ],
17 [14.999 , 15.001 ],
18 [35.999 , 36.001 ]
19 ],
20 " smt_solver " : "dreal",
21 " solver " : " GUROBI ",
22 " polyflow_smt_tol " : [12E -5, 12E -5, 12E -5],
23 " remainder_smt_tol " : 0.001
24 }
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B-7 Lorenz System XZ Plane

1 {
2 "name" : " Lorenz xz -plane",
3 "plot" : false ,
4 " domain ": [
5 [-25 , 25 , 1],
6 [-25 , 25 , 1],
7 [0, 50 , 1]
8 ],
9 " state_var ": "a, b, c",

10 " diff_eq ": "[10.0 *(b-a), a*(28 - c)-b, a*b-8.0/3.0*c]",
11 " delta_t ": 0.003 ,
12 "te": 6.5 ,
13 " lie_order ": 8,
14 "doi" : [0, 2],
15 "X0": [
16 [14.999 , 15.001 ],
17 [14.999 , 15.001 ],
18 [35.999 , 36.001 ]
19 ],
20 " smt_solver " : "dreal",
21 " solver " : " GUROBI ",
22 " polyflow_smt_tol " : [12E -6, 12E -6, 12E -6],
23 " remainder_smt_tol " : 0.001
24 }
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B-8 Lorenz System YZ Plane

1 {
2 "name" : " Lorenz yz -plane",
3 "plot" : false ,
4 " domain ": [
5 [-25 , 25 , 1],
6 [-25 , 25 , 1],
7 [0, 50 , 1]
8 ],
9 " state_var ": "a, b, c",

10 " diff_eq ": "[10.0 *(b-a), a*(28 - c)-b, a*b-8.0/3.0*c]",
11 " delta_t ": 0.003 ,
12 "te": 6.5 ,
13 " lie_order ": 8,
14 "doi" : [1, 2],
15 "X0": [
16 [14.999 , 15.001 ],
17 [14.999 , 15.001 ],
18 [35.999 , 36.001 ]
19 ],
20 " smt_solver " : "dreal",
21 " solver " : " GUROBI ",
22 " polyflow_smt_tol " : [12E -5, 12E -5, 12E -5],
23 " remainder_smt_tol " : 0.001
24 }
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B-9 Lotka-Volterra

1 {
2 "name" : "Lotka - Volterra ",
3 "plot" : false ,
4 " domain ": [
5 [0, 6, 0.5],
6 [0, 4, 0.5]
7 ],
8 " state_var ": "x0 , x1",
9 " diff_eq ": "[x0*(1.5 -x1), -x1*(3-x0)]",

10 " delta_t ": 0.005 ,
11 "te": 5,
12 " lie_order ": 8,
13 "X0": [
14 [4.8 , 5.2],
15 [1.8 , 2.2]
16 ],
17 " smt_solver " : "dreal",
18 " solver " : " GUROBI ",
19 " polyflow_smt_tol " : [5E -5, 12E -6],
20 " remainder_smt_tol " : 0.01
21 }
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B-10 Roessler XY Plane

1 {
2 "name" : " Roessler attractor xy -plane",
3 "plot" : false ,
4 " domain ": [
5 [-10 , 15 , 1],
6 [-10 , 15 , 1],
7 [-1, 10 , 1],
8 [0.9 , 1.1 , 0.1]
9 ],

10 " state_var ": "x0 , x1 , x2 , x3",
11 " diff_eq ": "[-x1 -x2 , x0+0.2*x1 , 0.2*x3+x2*(x0 -5.7),

0.00000001 *x3]",
12 " delta_t ": 0.002 ,
13 "doi" : [0,1],
14 "te": 6,
15 " lie_order ": 7,
16 "X0": [
17 [-0.2 , -0.19],
18 [-8.6 , -8.2],
19 [-0.2 , 0.2],
20 [0.9999 , 1.0001 ]],
21 " smt_solver " : "dreal",
22 " solver " : " GUROBI ",
23 " polyflow_smt_tol " : [5E -5, 12E -6, 5E -5,5E -5 ],
24 " remainder_smt_tol " : 0.01
25 }
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B-11 Roessler XZ Plane

1 {
2 "name" : " Roessler attractor xz -plane",
3 "plot" : false ,
4 " domain ": [
5 [-10 , 15 , 1],
6 [-10 , 15 , 1],
7 [-1, 10 , 1],
8 [0.9 , 1.1 , 0.1]
9 ],

10 " state_var ": "x0 , x1 , x2 , x3",
11 " diff_eq ": "[-x1 -x2 , x0+0.2*x1 , 0.2*x3+x2*(x0 -5.7),

0.00000001 *x3]",
12 " delta_t ": 0.002 ,
13 "doi" : [0,2],
14 "te": 6,
15 " lie_order ": 7,
16 "X0": [
17 [-0.2 , -0.19],
18 [-8.6 , -8.2],
19 [-0.2 , 0.2],
20 [0.9999 , 1.0001 ]],
21 " smt_solver " : "dreal",
22 " solver " : " GUROBI ",
23 " polyflow_smt_tol " : [5E -5, 12E -6, 5E -5,5E -5 ],
24 " remainder_smt_tol " : 0.01
25 }
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B-12 Roessler YZ Plane

1 {
2 "name" : " Roessler attractor yz -plane",
3 "plot" : false ,
4 " domain ": [
5 [-10 , 15 , 1],
6 [-10 , 15 , 1],
7 [-1, 10 , 1],
8 [0.9 , 1.1 , 0.1]
9 ],

10 " state_var ": "x0 , x1 , x2 , x3",
11 " diff_eq ": "[-x1 -x2 , x0+0.2*x1 , 0.2*x3+x2*(x0 -5.7),

0.00000001 *x3]",
12 " delta_t ": 0.002 ,
13 "doi" : [1,2],
14 "te": 6,
15 " lie_order ": 7,
16 "X0": [
17 [-0.2 , -0.19],
18 [-8.6 , -8.2],
19 [-0.2 , 0.2],
20 [0.9999 , 1.0001 ]],
21 " smt_solver " : "dreal",
22 " solver " : " GUROBI ",
23 " polyflow_smt_tol " : [5E -5, 12E -6, 5E -5,5E -5 ],
24 " remainder_smt_tol " : 0.01
25 }
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B-13 Van der Pol Oscillator

1 {
2 "name" : "Van der Pol oscillator ",
3 "plot" : false ,
4 " domain ": [
5 [-5, 5, 1],
6 [-5, 5, 1]
7 ],
8 " state_var ": "x0 , x1",
9 " diff_eq ": "[x1 , (1-x0**2)*x1 -x0]",

10 " delta_t ": 0.005 ,
11 "te": 7,
12 " lie_order ": 8,
13 "X0": [
14 [1.25 , 1.55],
15 [2.25 , 2.35]
16 ],
17 " smt_solver " : "dreal",
18 " solver " : " GUROBI ",
19 " polyflow_smt_tol " : [5E -6, 12E -5],
20 " remainder_smt_tol " : 0.01
21 }
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B-14 Van der Pol Oscillator with Collision

1 {
2 "name" : "Van der Pol oscillator with collision ",
3 "plot" : false ,
4 " domain ": [
5 [-5, 5, 1],
6 [-5, 5, 1]
7 ],
8 " state_var ": "x0 , x1",
9 " diff_eq ": "[x1 , (1-x0**2)*x1 -x0]",

10 " delta_t ": 0.005 ,
11 "te": 7,
12 " lie_order ": 8,
13 "X0": [
14 [1.25 , 1.55],
15 [2.25 , 2.35]
16 ],
17 " smt_solver " : "dreal",
18 " solver " : " GUROBI ",
19 " polyflow_smt_tol " : [5E -6, 12E -5],
20 " remainder_smt_tol " : 0.01 ,
21 " dangerous_sets " : [
22 [
23 [-3,-1],
24 [-1,1]
25 ],
26 [
27 [-3,-1],
28 [1.5 ,2.5]
29 ]
30 ]
31 }
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