
European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2006
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Abstract. Electromagnetic metal forming is a contact-free high-speed forming process
in which strain rates of more than 103 s−1 are achieved. The deformation of the workpiece
is driven by a material body force, the Lorentz force, that results from the interaction of
a pulsed magnetic field with eddy currents induced in the workpiece by the magnetic field
itself. The purpose of this work is to present a fully-coupled 3D simulation of the process.
For the mechanical structure a thermoelastic, viscoplastic, electromagnetic material model
is relevant, which is incorporated in a large-deformation dynamic formulation. The evo-
lution of the electromagnetic fields is governed by Maxwell’s equations under quasistatic
conditions. Their numerical solution in 3D requires particular arrangements due to a
reduced regularity at material interfaces. Hence, Nédélec elements are employed. Cou-
pling between the thermomechanical and electromagnetic subsystems takes the form of the
Lorentz force, the electromotive intensity, and the current geometry of the workpiece. A
staggered scheme based on a Lagrangian mesh for the workpiece and an ALE formula-
tion for the electromagnetic field is utilized to solve the coupled system, guaranteeing the
efficiency and accuracy of the data transfer between the two meshes.

1 INTRODUCTION

Electromagnetic metal forming (EMF) is a contact-free high-speed forming process in
which strain rates of more than 103 s−1 are achieved. In this process, the deformation
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of the workpiece is driven by a material body force, the Lorentz force, that results from
the interaction of a pulsed magnetic field with eddy currents induced in the workpiece
by the magnetic field itself. The magnetic field is triggered by a tool coil adjacent to
the workpiece, which is excited by the discharging current of a capacitor bank. Figure
1 displays a typical device for sheet metal forming. EMF offers certain advantages over

Figure 1: A typical device for electromagnetic sheet metal forming.

other forming methods such as an increased formability, the avoidance of contact, a re-
duction in wrinkling, reduced tool making costs, the opportunity to combine forming and
assembly operations, and many more. However, the highly dynamic nature of this process
inhibits its monitoring and control. Consequently, its industrial use has been limited to
joining tubular semi-finished materials, while e.g., electromagnetic sheet metal forming
is not ready for a profitable application yet. This emphasizes the significance of reliable
simulations of this process to identify relevant process parameters and to optimize them.

Since the introduction of high speed computers in the 1980s, several attempts at the
numerical simulation of EMF have been undertaken1,2,3,4. More recently, Beerwald et al.5

and Brosius et al.6 utilized commercial programs like ABAQUS or MARC for the simula-
tion of the process. However, in all approaches reported on above emphasis is placed on the
modeling and simulation of the coupling between the electromagnetic and the mechanical
model, while the employed material models were not adapted to the particular require-
ments of the process. These include first of all a consideration of the rate-dependence,
which is typical of the behavior of metallic materials at high forming rates such as those
achieved during EMF. This is connected to the fact that the mechanical dissipation may
result in a possibly significant temperature increase in this nearly adiabatic process. Re-
cently, a relevant thermodynamically-consistent electromagnetic thermoelastic multifield
model has been developed7,8 and implemented9 based on a Lagrangian formulation for the
mechanical system and an Eulerian formulation on a fixed mesh for the electromagnetic
system within an axisymmetric context.

A drawback of the numerical schemes reported on above is their restriction to two-
dimensional or axisymmetric situations. However, practical forming devices often sig-
nificantly deviate from axisymmetry. Beside the much larger number of unknowns that
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dramatically increase the numerical expenses necessary to solve the problem and that
require much more sophistication to avoid unacceptably long computing times, three-
dimensional electromagnetic simulations demand a particular numerical treatment due
to the lack of smoothness solutions to Maxwell’s equations typically exhibit at material
interfaces (see section 3). There are several methods to cope with this problem, including
penalty or least square approaches10. Here, Nédélec finite elements11,12 are employed.
Moreover, further difficulties arises from the fact that a Coulomb gauge condition, which
is always satisfied in plane or axisymmetric situations, is not automatically fulfilled and
has to be cared for to decouple the equations for the electromagnetic fields. In this work,
a novel non-isoparametric version of Nédélec elements is presented working with trial
functions with zero divergence such that the computed approximation fulfills a Coulomb
gauge without any further requirements (see section 2).

There are several coupling mechanisms between the thermomechanical and the elec-
tromagnetic subsystem. On the one hand, the Lorentz force computed from the electro-
magnetic simulation serves as load term in the mechanical impulse balance. On the other
hand, the conductivity distribution entering the electromagnetic simulation via the diffu-
sivity is determined by the current position of the structure. Further, the electromotive
intensity represents an additional coupling term. The most natural way to discretize the
field equations in the context of their usual formulation is to employ a fixed Eulerian mesh
for the electromagnetic field and to use a moving Lagrangian mesh for the mechanical
structure. However, it has turned out that such an approach leads to serious problems
in the data transfer between the fixed and the moving mesh. Particular, the computed
Lorentz forces tend to oscillate and are not sufficiently accurate. To overcome this diffi-
culty an arbitrary Lagrangian Eulerian (ALE) formulation for the electromagnetic field
has additionally been developed (see section 4).

The paper is organized as follows: In section 2, the model relations governing the
coupled multifield model are presented. The algorithmic formulation of the mechanical
and of the electromagnetic subsystem in the context of the finite element method is
described in section 3. Next, the incorporation of the coupling between the two subsystems
is discussed in section 4. The paper ends with some conclusions.

2 COUPLED ELECTROMAGNETIC-MECHANICAL MODEL

The multifield material model applied in this work is derived from a general continuum
thermodynamic approach7,8 to the formulation of models for electromagnetic thermoelas-
tic solids. For all structural problems of interest the frequencies of relevance (i.e., less
than 10 MHz) correspond to electromagnetic wave lengths which are much larger than the
structures of interest. Hence, the wave character of the electromagnetic fields is insignif-
icant and can be neglected for such structural problems. This represents the so-called
quasistatic approximation13. In this case, it is shown8 that Maxwell’s relations together
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with Ohm’s law and the Coulomb gauge condition14 divsa = 0 result in the weak forms

∫

R

∗
a · a∗ + {ζ I + κ

EM
∇sa} · ∇sa∗ =

∫

∂R

{ζ I + κ
EM
∇sa}n · a∗

∫

R

∇sχ · ∇sχ∗ =

∫

∂R

(∇sχ · n)χ∗

(1)

for all test fields a∗ and χ∗ with respect to a domain R containing the workpiece, the
tool coil, and a large area of air around the tool coil and the workpiece. As usual, the
test fields vanish on those parts of ∂R where a and χ are specified. Here, χ denotes the
electric scalar potential, a the magnetic vector potential, connected to the flux density b

via b = curlsa, ζ : = χ − a · v a Euclidean frame-indifferent form of the scalar potential,

I a second order unit tensor,
∗
a : = ∂a + (∇sa)v + (∇sv)Ta the objective time-derivative

of a, and κ
EM

= σ−1
EM
µ−1

EM
the magnetic diffusivity computed from the electric conductivity

σ
EM

and the permeability µ
EM

. For the materials involved ferro-magnetic effects are not
relevant and µ

EM
can be constantly set to the value of the permeability of the vacuum.

The conductivity σ
EM

equals zero outside the tool coil and the workpiece, resulting in an
infinite diffusivity there. This means that the equilibrium distribution of the magnetic
vector potential depending on its current values on the interface to the tool coil and the
workpiece is instantaneously assumed in each time step. Finally, ∇s represents the usual
nabla-operator in the spatial variables. Note that the Coulomb gauge condition, which
effects a decoupling of the two equations in (1), does not automatically hold for three-
dimensional problems such that it has to be considered explicitly in a numerical solution
scheme (see section 3). On the timescale τ

Exp
∼ 10−4 s relevant to EMF the typical order

of magnitude κ
EM

∼ 10−1 m2 s−1 implies that magnetic diffusion will be important in the
process since it takes place over lengthscales of

√
κ

EM
τ

Exp
∼ 10 cm, which are significantly

larger than the smallest dimension of interest (e.g., sheet metal thickness ∼ 1 mm).
Turning next to the mechanical part of the coupled model, the weak momentum balance

for the deformation field ξ is given by

∫

Br

(̺r ξ̈ − f ) · ξ∗ + P · ∇rξ∗ =

∫

∂Br

|cof(F )nr| tc · ξ∗ (2)

with respect to the referential configuration Br ⊂ R of the workpiece for all corresponding
test fields ξ∗ vanishing on those parts of the current boundary ∂Bc where ξ is specified.
Here,

f = det(F ) j × b = det(F ) · σ
EM

(−∂a −∇sχ + v × b) × b (3)

represents the Lorentz (body) force (density), P the first Piola-Kirchhoff stress, F : = ∇rξ

the deformation gradient, tc the current boundary traction, and ̺r the referential mass
density. Further, j denotes the current density which is related to the scalar and vector
potential via Ohm’s law and the definition of these potentials14.
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The mechanical model relations are completed by the specification of the material
model. Here, attention is restricted to the metallic work-piece, which is modeled as a
hyperelastic, viscoplastic material. For simplicity, the (mild) elastic and flow anisotropy
of the metals of interest (e.g., Al) is neglected, as well as any kinematic hardening. More
generally, e.g., for the case of deformation-induced anisotropic flow behavior15,16, this is of
course no longer possible. Since the metal forming processes of interest are predominantly
monotonic in nature, however, this last assumption is not unreasonable. In this case,
the constitutive model is specified via the form of the referential free energy density
ψr(lnV

E
, ǫ

PP
) together with the evolution relations for the elastic left logarithmic stretch

tensor lnV
E
and accumulated equivalent inelastic deformation measure ǫ

PP
. In the context

of small elastic strain, the usual Hooke-based form

ψr(lnV
E
, ǫ

PP
) = 1

2
κr (I · lnV

E
)2 + µr dev(lnV

E
) · dev(lnV

E
) + ψ

P
(ǫ

PP
) (4)

is relevant. Here, dev(lnV
E
) denotes the deviatoric part of the left logarithmic stretch

tensor. Another common assumption in the non-isothermal context in the case of metals
is that of constant specific heat17. Here, κr represents the bulk modulus, µr the shear
modulus, and ψ

P
(ǫ

PP
) the contribution from energy storage due to isotropic hardening

processes as usual. From (4), one obtains in particular the usual hyperelastic form

K = ∂lnVE
ψr = 3κr sph(lnV

E
) + 2µr dev(lnV

E
) (5)

for the Kirchhoff stress K = PF T, where sph(lnV
E
) represents the sperical part of lnV

E
.

As usual, ψ
P
(ǫ

PP
) is estimated with the help of fits to the quasi-static yield curve for the

materials of interest at room temperature.
Consider next the evolution of the internal variables and the inelastic behavior. In the

metallic polycrystalline materials of interest at low-to-moderate homologous temperature,
inelastic deformation processes are controlled predominantly by the activation of dislo-
cation glide on glide systems18,19. Indeed, this seems to be the case even at high strain
rates20. Apparently, higher homologous temperature is required for other mechanics such
as dislocation climb or even dynamic recrystallization to begin playing a role. Resistance
to dislocation glide arising due to obstacles and other factors is related in the phenomeno-
logical context to hardening behavior. Quasi-static processes of this nature contributing
to energy storage in the material result in the contribution

−ς
P

: = ψr, ǫ
P

(6)

to the effective quasi-static flow stress in the material. Such resistance to dislocation
motion can be overcome by thermal fluctuation under the action of the local effective
stress, represented in the current phenomenological context by σ

vM
(K) + ς

P
− σ

F0, where
σ

vM
(K) represents the von Mises effective stress with respect to K , and σ

F0 is the initial
flow stress. On this basis,

f
P
(K , ς

P
) : = σ

vM
(K) + ς

P
− σ

F0 (7)
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represents an activation measure or overstress in the current rate-dependent context.
A power-law approximation of the more exact transition-state-based micromechanical
relations for the kinetics of dislocation glide18,19 leads to the power-law form

φ(ǫ
P
,D,K , ς

P
) =

γ
P
(ǫ

P
,D) σ

P
(ǫ

P
,D)

m(ǫ
P
,D) + 1

〈
f

P
(K , ς

P
)

σ
P
(ǫ

P
,D)

〉m
P
(ǫ

P
,D)+1

(8)

upon which the evolution of the internal variables is based. Here, σ
F0 represents the initial

flow stress, γ
P
a characteristic strain-rate, σ

P
the characteristic or effective activation stress

magnitude, and m the strain-rate exponent. Further, 〈x〉 : = 1
2
(x + |x|) represents the

ramp function. As indicated, γ
P
, σ

P
and m

P
are in general functions of accumulated

inelastic deformation and deformation rate. For simplicity, however, they will be treated
as constants in the algorithmic formulation to follow. To indicate this, we write γ0 =̂ γ

P
,

σ0 =̂ σ
P
, and m0 =̂ m

P
. The form (8) determines the evolution relations

−
∗

lnV
E

= ∂
K
φ =

√
3
2

sgn(dev(K)) ǫ̇
P

(K 6= 0) ,

ǫ̇
P

= ∂ς
P
φ = γ0

〈
f

P

σ0

〉m
0

(f
P
> 0) ,

(9)

for the evolution of the internal variables, with

∗

lnV
E

: = 1
2

ln(F
˙

C−1
P F T) (10)

in terms of the inverse plastic right Cauchy-Green deformation C−1
P

. Above, sgn(dev(K))
denotes the sign of the deviatoric part of the Kirchhoff stress.

As indicated, φ is differentiable in ς
P

everywhere except at f
P

= 0, as well as in K

everywhere except at f
P

= 0 and at K = 0. The corresponding subdifferentials exist
everywhere. In the context of these forms for the evolution of the internal variables, the
constraint γ

P
(ǫ

P
, 0) = 0 on the constitutive form of γ

P
follows from the general thermo-

dynamic analysis by Svendsen and Chanda8. In addition, Ohm’s law together with the
assumption that these evolution relations are independent of ǫ implies σ

EM
≥ 0. Lastly,

the restriction that γ
P, DD

(ǫ
P
, 0) be non-negative definite (i.e., for f

P
> 0) follows from

the thermodynamic analysis via the assumption that the non-equilibrium (i.e., dynamic)
part of K is negligible. For details, the reader is referred to Svendsen and Chanda7,8.

3 ALGORITHMIC FORMULATION

In this section, an algorithmic formulation both for the mechanical and for the elec-
tromagnetic subsystem is presented. As discussed in the previous section, the difference
in electromagnetic and mechanical timescales, together with the distinct nature of the
respective fields involved (i.e., Eulerian in the electromagnetic case, Lagrangian in the
mechanical large-deformation context) suggest that a staggered numerical solution pro-
cedure based on separate meshes for both field problems will be most efficient.
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3.1 Algorithmic formulation of the mechanical model

The algorithmic formulation of the mechanical model is carried out in the standard
context of backward-Euler integration of the local evolution relations and their implicit
solution via Newton-Raphson iteration in the context of the implicit function theorem21.
Consistent linearization of the resulting algebraic system then facilitates the corresponding
element formulation of the material model and its incorporation in the finite element
solution of the dynamic initial-boundary-value problem.

To this end, the time interval [0, d] of interest is split into m subintervals [0, t1], . . .,
[tm−1, tm], such that [0, d] =

⋃m−1
i=0 [ti, ti+1] with t0 = 0, ti < ti+1 and tm = d. As usual,

assume that the initial-boundary-value problem and internal variable evolution relations
have been solved up to the discrete time t = tn, such that ξn, an, and χn, together with
their spatial and temporal derivatives, as well as the corresponding internal variables, are
all known in the corresponding region of Euclidean space at this time.

Since we are neglecting temperature effects here, the influence of the electromagnetic
fields on the development of the mechanical fields is restricted to the Lorentz force (3).
Equation (3) shows, that it depends on both electromagnetic and mechanical fields as
well as their spatial and temporal derivatives. Since the electromagnetic fields vary on a
timescale much smaller than that of the mechanical fields, a scaling analysis shows that
the convective term b × v = curlsa × v is much smaller than the others and can be
neglected. In this case, we work with the algorithmic approximation

ln+1 ≈ σ
EM

curlsan+1 × (∂an+1 + ∇sχn+1) (11)

for the current Lorentz force which is then “purely electromagnetic” in character. In
particular, in the context of the staggered approach being pursued here, the purely elec-
tromagnetic terms curlsan+1, ∂an+1 and ∇sχn+1 are treated in the mechanical part of the
staggered algorithm as being known and fixed.

The next global step begins with the update of the boundary conditions to the next
discrete time t = tn+1 for the time interval [tn, tn+1] of duration tn+1,n : = tn+1 − tn.
Consider first the local algorithm at the Gauss-point level for the internal variables and
the Kirchhoff stress K . In the backward-Euler context, these are determined as usual
as implicit functions of the current (unknown) deformation gradient Fn+1 and (in the
current rate-dependent context) time-step size tn+1,n. In particular, the backward-Euler
integration of (9) over [tn, tn+1] and subsequent solution of the resulting non linear system
of algebraic equations leads to the weak form9

mn+1,n(ξn+1,αn+1 , ξ∗) = 0 (12)

for all ξ∗, of the momentum balance for the current unknown deformation field ξn+1 sat-
isfying the current boundary conditions. The parameter αn+1 represents the algorithmic
solution of the evolution equations for the internal variables as described before9. The

7



Marcus Stiemer, Jaan Unger, Bob Svendsen, Heribert Blum

particular form of the weak momentum balance above reads

mn+1,n(ξn+1,αn+1 , ξ∗) : =

∫

Br

{̺r an+1,n(ξn+1) − det(∇rξn+1) ln+1} · ξ∗

+

∫

Br

Kn(αn+1 ,∇rξn+1) · ∇n+1ξ∗

−

∫

∂Br

|cr(∇rξn+1)| tc n+1 · ξ∗

(13)

Again, in the context of the current staggered approach, the Lorentz force ln+1 is assumed

known and given. The material acceleration1 an+1,n(ξn+1) := a(ξn+1, tn+1,n; ξn, ξ̇n, ξ̈n) is
considered algorithmically a function of ξn+1, tn+1,n, and the state at the end t = tn of the
last time step, in the context of, e.g., the Newmark algorithm. In addition, the notations
∇n+1ξ∗ : = (∇rξ∗)F

−1
n+1 and that cr(F ) : = cof(F )nr have been introduced, with nr the

outward unit normal to the boundary ∂Br of Br.
As usual, the finite-element approximation to (13) in the Lagrangian context is based

on the discretization B ≈
⋃

eB
e of B into a finite number of elements B1, B2, . . .. In

terms of the corresponding finite-element approximation

ξe = Hxe (14)

for the element deformation field ξe with the element shape function matrix H and the
element nodal position vector xe, one obtains the element representation

F e(xe) : = ∇e
r ξe = (∇e

r H)Sxe (15)

for the deformation gradient, with (∇e
r H)Sxe : = ∇e

r (Hxe). In particular, these induce
the discretized form

mn+1,n(ξn+1,αn+1 , ξ∗) =
∑

e
fe
n+1,n(x

e
n+1, e

e
n+1) · x

e
∗ (16)

of the functional in (13), with

fe
n+1,n(x

e
n+1, e

e
n+1) :=

∫

Be
r

HTH{̺0 ae
n+1,n(xe

n+1) − det(F e(xe
n+1)) ℓ e

n+1} + (∇e
n+1H)ST Ke

n+1,n(e
e
n+1,F

e(xe
n+1))

−

∫

∂Be
r

|cr(F
e(xe

n+1))|H
Tte

c n+1

(17)

1Not to be confused with the vector potential a.
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with ∇e
n+1H : = (∇e

r H)F−1
n+1 and le = Hℓ e. Further, ℓ e denotes the nodal force vector.

With the help of the connectivity relations

xe = Ie
x
xs (18)

between the element and structural nodal positions, (16) reduces to

mn+1,n(ξn+1,αn+1 , ξ∗) = fs
n+1,n(xs

n+1, e
s
n+1) · x

s
∗ (19)

with
fs
n+1,n(xs

n+1, e
s
n+1) : =

∑
e
IeT

x
fe
n+1,n(Ie

x
xs

n+1, e
e
n+1) (20)

Since xs
∗ is arbitrary, (12) reduces to the discrete form

fs
n+1,n(x

s
n+1, e

s
n+1) = 0 (21)

in terms of fs
n+1,n. For its solution via Newton Raphson iteration the algorithmic derivative

∂ a
x

s

n+1
fs
n+1,n =

∑
e
IeT

x
(∂ a

x
e

n+1
fe
n+1,n) Ie

x
(22)

at fixed ℓ s
n+1 is required. For its determination, the reader is referred to the literature9.

3.2 Divergence-free discretization of the electromagnetic system

Starting point of the finite element discretization of the electromagnetic field relations
is their weak form (1). The right hand side of these equations represents the flux over
the specified area R, which may be chosen as a large box containing the tool coil, the
workpiece, and a large area of air surrounding them. If R is chosen large enough, the
approximation a = 0 on ∂R is well founded due to the asymptotic decay of the vector
potential of a dipole field like O(|x|−2), |x| → ∞. The values of χ can be specified
by the electric current flowing through ∂R via Neumann conditions. Alternatively, the
boundary values of χ can be determined by measured electric potentials on ∂R if those
are available, leading to Dirichlet data for the corresponding boundary value problem.
As in the mechanical case the time interval [0, d] of interest is split into m subintervals
[0, t1], . . ., [tm−1, tm], such that [0, d] =

⋃m−1
i=0 [ti, ti+1] with t0 = 0, ti < ti+1 and tm = d.

Again, we assume that discrete values an of the vector potential and of its time derivative
have been computed up to a discrete time t = tn. According to (1), there is no explicit
dependence of past values of the electromagnetic scalar potential χ.

The discretization of χ at a certain instant is based on a similar type of spatial dis-
cretization as chosen for the deformation field. The degrees of freedom are represented
by (in contrast to the deformation field) one single scalar value at each node of the dis-
cretization R ≈

⋃
eR

e of R into a finite number of elements. Each Re is considered to be
the image of a reference element under transformations from an isoparametric family. In
the following, we focus on hexahedra element, although other geometries are also possible.

9
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For convenience, the discretization of the vector potential shall be based on the same
decomposition R ≈

⋃
eR

e as used for the computation of the scalar potential. However,
a standard approach based on finite elements that enforce continuity leads here to a
poor approximation of the jumps of the normal component of the electromagnetic field
at material interfaces. There are several methods to cope with this difficulty, including
penalty or least square methods10. In this work, Nédélec elements11,12 of lowest order
are applied. They imitate the regularity of the electromagnetic field. Instead of values
in the vertices of the cells of the finite elements discretization, integral mean values over
the edges represent the degrees of freedom of these elements. For higher order Nédélec
elements, also certain momenta over edges, faces and the whole cells are considered as
degrees of freedom11,12, which improves the local approximation to sufficiently smooth
functions and may increase the convergence rate of the finite element method. Nédélec
elements have also been chosen by Schinnerl and Schöberl22 to simulate three-dimensional
coupled electromagnetic mechanical systems, where emphasis is laid on a fast solution of
the coupled system via a multigrid solver. However, these results do not apply to EMF
since the mechanical system is restricted to linear elasticity.

As mentioned before, the field relations (1) only assume the stated decoupled form if
a Coulomb gauge is provided. This could be done by explicitly demanding divsa = 0
and solving the resulting saddle point problem. Here, we present a novel approach that is
numerically less expensive: By choosing a non-isoparametric setting, it is possible to work
with divergence-free test and trial functions in the context of Nédélec elements. Hence,
any solution to the Galerkin discretization of (1) automatically fulfills the Coulomb gauge
condition and is thus a solution of the electromagnetic field problem. More precise,
to construct a discretization of the vector potential equation no transformation on a
referential cube is performed, but in each element of the discretization R ≈

⋃
eR

e of R
a local basis of the test and trial space is constructed as follows: To each edge Γi of a
hexahedron Re, 1 ≤ i ≤ 12, a basis function bk of the form

bk(x) =




a

(k)
11 + a

(k)
12 x2 + a

(k)
13 x3 + a

(k)
14 x2x3

a
(k)
21 x1 + a

(k)
22 + a

(k)
23 x3 + a

(k)
24 x1x3

a
(k)
31 x1 + a

(k)
32 x2 + a

(k)
33 + a

(k)
34 x1x2



 (23)

is assigned with ∫

Γi

bk · ti = δki , (24)

where ti represents a tangential vector to Γi of unit length and δki is defined by δii = 1,
1 ≤ i ≤ 12, and δki = 0 for k 6= i respectively. Algorithmically, the determination of the
bk leads to the solution of 12 systems, each of which consists of 12 linear equations, in any
element Re of the finite-element discretization. Particularly, a two point Gauss quadrature
already yields exact values on the left hand side of (24). The tangential vectors ti can
easily be computed from the current positions of the vertices. The necessary numerical
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efforts remain acceptably small since all 12 systems to be solved in a certain element
possess the same system matrix and, e.g., MATLAB, solves 100,000 sets of 12 systems of
this type within a CPU time of 5.36 s on a 2394 Mhz Opteron machine.

One easily deduces that all bk are divergence-free and such is the local approximation to
the electromagnetic field being a linear combination of these basis functions. The method
presented here deviates from the usual employment of Nédélec elements where a local
basis obeying the above approach (23) is only constructed for a referential cube and then
transferred by a family of isoparametric transformations on the physical elements such that
integrals over the edges of the form (24) remain invariant. However, the local test and trial
spaces obtained from this process are no longer divergence-free such that the Coulomb
gauge condition is not generally satisfied. Hence, the weak forms (1) for a and χ to be
discretized contain further coupling terms. Another drawback of an isoparametric family
of Nédélec elements results from additional approximations that are usually undertaken in
the practical implementation of the method: Certain second order terms that are dropped
may become significantly large when the shape of the elements deviates too much from a
parallelepiped, which may happen, if large deformations occur in the ALE context.

With the shape function matrix N ∈ R
12×12 at hand constructed in the usual fashion

from the basis functions bk, one obtains

ae = Nae (25)

for the vector potential field at the element level ae. Here, ae ∈ R
12 represents the vector

of integral means

ae
i =

∫

Γi

a · ti , i = 1, . . . , 12 , (26)

over all edges Γi of Re. This implies

∇e
s ae = (∇e

s N)Sae (27)

for the corresponding gradient. On this basis, one obtains the spatially-discretized form

∑
e
(Aeae + Beȧe) · ae

∗ =
∑

e
ce · ae

∗ (28)

of (1) with the local contributions

Ae : =

∫

Re

(∇e
s N)ST(∇e

s N)S , Be : = κ−1
EM

∫

Re∩W

NTN , ce : =

∫

Re∩W

NT∇sχ . (29)

The entries of the source vector ce are computed from the solution χ of the electro-static
equation. For simplicity, it has not been indicated in the notation that only a finite-
element approximation to χ is available. Using the connectivity relation

ae = Ie
a
as (30)

11
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between the element and structural integral mean values over edges of the vector potential,
the arbitrariness of ae

∗ leads to the structural form

Asas + Bsȧs = cs (31)

of (28), with

As =
∑

e
Ie T

a
Ae Ie

a
, Bs =

∑
e
Ie T

a
Be Ie

a
, cs =

∑
e
Ie T

a
ce . (32)

Integration of (31) via the generalized trapezoidal rule over the interval [tn, tn+1] yields
the system

[
As Bs

n+1

I −α tn+1,n I

] [
as

n+1

ȧs
n+1

]
=

[
cs

n+1

as
n + (1 − α) tn+1,nȧ

s
n

]

(33)

to solve for as
n+1 and ȧs

n+1, in the context of the current staggered approach with fixed
xs

n+1. In contrast to (21) for xs
n+1, note that this last relation can be solved explicitly for

these quantities. Here, the parameter 0 ≤ α ≤ 1 controls the amount of artificial damping
exerted on the discrete system23.

Equation (31) reduces to a time independent linear equation for those degrees of free-
dom that lie outside the tool coil or the work-piece due to κ−1

EM
= 0 there. These degrees of

freedom depend only indirectly on the time by their coupling to those degrees of freedom
lying in areas with κ−1

EM
> 0 (i.e., the tool coil or the work-piece). As in the mechanical

case, all spatially-discretized integrals are evaluated via Gauss quadrature.
If we are interested in values of a in a particular spatial point, a certain postprocessing

is required: First that element Rē has to be identified that contains the point of interest.
Then Naē has to be evaluated in this particular point, yielding the sought approximation.

3.3 Simplifications in axisymmetric situations

In an axisymmetric context, the vector potential always points in azimuthal direc-
tion and is thus perpendicular to all material interfaces. Hence, a is continuous and a
standard finite element approach with 4-node elements leads to a sufficiently accurate
approximation. In some situations, real forming devices can be approximated as being
axisymmetric9 as e.g. in the case displayed in Figure 1: Consider e.g. a coil Cc that
consists of n windings. Each winding can be approximated by a torus of the same cross
section. The resulting n tori are cut in the (r, z)-plane at ϕ = 0. In order to simulate that
each torus is in fact the arm of a spiral, the cross sections at ϕ = 0 and ϕ = 2π are treated
electromagnetically as being continuous with respect to χ. Continuity of potential then
implies that U at ϕ = 0 (except in the first torus) is determined by that in the preceding
torus at ϕ = 2π. Let Wck denote the current configuration of the kth torus, and Uk the
potential of Wck at ϕ = 0. Under these assumptions, the restriction χk of χ = χ(r, ϕ, z)
to Wck is given by9

χk(r, ϕ, z) = Uk + ∆Uk

ϕ

2π
, (34)

12
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with ∆Uk = Uk+1 −Uk The potential differences ∆Uk can be obtained from the measured
total current I = I(t), which is equal in all toriWck, k = 1, . . . , n, since they are connected
in series. This leads e.g., in the case of a coil with rectangular cross section, to

∆Uk = −2π

(
h ln

bk

ak

)−1
{

σ−1
EM
I +

∫

A
ck

∂ak · nk

}

, (35)

where h is the height (in z-direction) of each winding, ak the inner, and bk the outer radius
of the kth winding. On this basis the integro-differential equation

∂ak − κ
EM
∇2

s ak +
∆Uk

2πr
eϕ = 0 (36)

follows for the restriction ak of a to Wck, with ∆Uk given by (35). Globally, this leads to
∫

R

∂a · a∗ +

∫

R

κ
EM

∇sa · ∇sa∗ +

∫

Sc

curlsa × v · a∗

=

n∑

k=1

∫

W
ck

ck

{
σ−1

EM
I +

∫

A
ck

∂ak · nk

}
eϕ · a∗

(37)

for all test fields a∗ in this particular situation. The algorithmic solution of this integro-
differential equation contains the difficulty that all degrees of freedom located in the same
winding of the tool coil are coupled via the integral expression in (37). This corrupts
both the symmetry and the sparse structure of the system matrix typical of the finite
element method. However, sufficiently effective algorithmic formulations that are based
on a standard isoparametric 4-node finite element approaches are possible9.

4 COUPLING STRATEGIES

In the above formulation the mechanical field is given in a Lagrangian formulation,
while the electromagnetic field is given in an Eulerian formulation. The most natural
discretization of the field equations leads to a moving mesh for the mechanical system,
representing its current configuration and a fixed Eulerian mesh for the electromagnetic
field. This approach is discussed in the first subsection and computational results are
presented. An arbitrary Lagrangian Eulerian formulation for the electromagnetic system
is presented in the second subsection.

The coupling between the two subsystems may in both cases be realized explicitly
or implicitly. In an explicit coupling scheme the electromagnetic field of the (n + 1)th

time step is computed from the position of the structure in the nth time step and the
position of the structure in the (n+1)th time step is then computed according to this field
distribution. Hence, in any time step the electromagnetic and the deformation field are
only computed once. In an implicit scheme, however, the electromagnetic field is several
times recalculated in each time step according to the position of the altered structure and

13
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the structure is altered several times according to the changed electromagnetic field. The
latter method is more stable and allows for larger time steps. However, if the numbers of
unknowns is large an explicit method may be more efficient.

4.1 Eulerian formulation of the electromagnetic system

Recently, a coupled simulation has been presented9 where the discretization of the
electromagnetic subsystem was based on an Eulerian formulation of the discrete system.
This means that the Lagrangian mesh for the mechanical structure has been moved over
a fixed Eulerian mesh for the electromagnetic field. In Figure 2 the particular choice of
meshes is demonstrated. However, there are problems inherent to this approach since the

Electric
cricuit

Figure 2: Meshing of the coupled system in case of a Lagrange-Euler-formulation.

character of the electromagnetic field equation in a certain point of the electromagnetic
mesh changes from one instant to another when the structure moves over it: As long as it
is not covered by the mechanical structure, the field equations are elliptic (instantaneous
assumption of the equilibrium field) and they become parabolic (diffusion process) as
soon as the point is covered by the structure. This leads to a sudden change in the local
discretizations since a contribution to the mass matrix arises as soon as a point is covered
by the structure and it disappears when it is uncovered again (see Figure 4). Particularly,
for those points of the electromagnetic mesh covered by the mechanical structure values
of the last time step are relevant, while the values in the other points do not depend
explicitly on those of the preceding time step. It has turned out that this change of
the discretization in a certain point causes oscillations in the time derivative ∂a of the
vector potential and, thus, in the Lorentz force via the contribution σ

EM
∂a × curls a.

These oscillations can be moderated by a very fine discretization of that part of the
electromagnetic mesh lying in the interface region of the structure and the surrounding
air. To avoid an inadequate fine discretization of the whole structure, adaptive techniques
are necessary for a sufficiently fine resolution of the interface region. However, averaged
quantities are quite good approximated with this approach, even with relatively coarse
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discretizations. Figure 3 displays the forming stages and the convergence behavior of the
deformation field. Particularly, the above mentioned oscillations are smoothed out by the
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Figure 3: Forming stages (right) and convergence behavior (left) of the vertical displacement at three
specified radii for the simulation of a free forming process as displayed in Figure 1. The workpiece (a
sheet metal disk) is discretized by 2 (solid lines), 4 (dashed lines) and 8 (dotted lines) elements over its
thickness. The discretization of the magnetic mesh is always maintained.

integration of Lorentz forces and due to the time stepping algorithm.
In the example presented above, the free forming of the aluminum alloy AC120 with

the device displayed in Figure 1 has been considered. The simulations have been carried
out with the simplifications for axisymmetric situations described in section 3.3. To apply
the algorithmic formulation derived in section 3, the isotropic hardening behavior of the
material has to be specified. As a first approximation, quasi-static uniaxial test data24

were used for this purpose. Identification of the semi-empirical form

ψ
P
(ǫ

P
) = c1 (ǫ

P
+ c2)

c
3 + c4 ln(1 + c5 ǫP) (38)

of the dependence of the inelastic part ψ
P

of the free energy density on ǫ
P

related to energy
storage in the material due to isotropic hardening based on these data yields σ

F0 = 116.0
MPa, c1 = −12.39 MPa, c2 = 0.001, c3 = 0.0697, c4 = 80.31 MPa and c5 = 36.59. In
particular, this form determines the quasi-static contribution σ

Y
= −ς

P
to the flow stress

from (6). Further, values of σ0 = 90 MPa, γ0 = 104 s−1 and m0 = 5 for aluminum relevant
for strain-rates of ≥ 103 s−1 were taken from the literature25. Lastly, the elastic behavior
of AC120 is characterized by the values λ = 39404 MPa and µ = 26269 MPa for the Lamé
constants at room temperature.

4.2 ALE-formulation of the electromagnetic field

If a good approximation to the forces is required an ALE-based method is more promis-
ing. Here, the electromagnetic mesh is adapted to the moving structure such that always
the same elements are covered by the moving mechanical structure (see Figure 4). Con-
sequently, the character of the discretization in a particular element does never change,
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Workpiece Workpiece

Figure 4: Comparison of the data transfer for a Lagrange-Euler-formulation (left hand side) and a
Lagrange-ALE-approach (right hand side).

which avoids those jumps of ∂a that are typical of a Lagrange-Euler formulation. Meshes
constructed by this algorithm are displayed in Figure 5 and 6. While the simulation dis-
played in Figure 5 represents the same realistic forming process that was considered in
subsection 4.1, the simulation displayed in Figure 6 is still of academic character. The
incorporation of realistic three-dimensional geometries represents work in progress.

0 10 20 30 40 50
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Y
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Vector potential [Tmm]

Figure 5: Mesh adaption in an ALE formulation (two-dimensional case). The same forming process as
in the afore mentioned simulation based on an Eulerian formulation has been considered.

The movement of the electromagnetic mesh is arbitrary in the sense that the position
of the discretizing mesh is not determined by requirements of the electromagnetic field
equations themselves, but by accompanying conditions. To obtain a high quality mesh for
the electromagnetic system with hexahedra elements that deviate as little as possible from
the shape of a parallelepiped and that matches the mesh for the mechanical structure,
the following algorithm is applied2: Before a new time step is started each component

2Here, the three-dimensional case is described. The axisymmetric situation is treated analogously.
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Figure 6: Mesh adaption in an ALE formulation (three-dimensional case).

of the deformation increment dξ = ξn+1 − ξn is considered as the boundary value of a
one-dimensional Dirichlet problem

∂2uk

∂x2
1

+
∂2uk

∂x2
2

+
∂2uk

∂x2
3

= 0 , k = 1, . . . , 3 , (39)

in the air around tool coil and workpiece (i.e., in those parts of R that are outside the
workpiece and outside the tool coil) with boundary values uk = dξk, k = 1, .., 3, on the
interface between workpiece and air as well as uk = 0 on the interface between tool coil
and air and on the outer boundary ∂R (i.e., the mesh nodes are held fixed there). The
solution of these problems (all possessing the same stiffness matrix) is added to the current
positions of the electromagnetic mesh in the air-region around tool coil and workpiece to
obtain a mesh for the next time step.

To get an impression of the quality of the arising meshes, one can consider the trans-
formation from the old to the new mesh as an elastic deformation with no transversal
contraction and with elasticity module 1. This deformation is conducted by the boundary
values on the interface to the tool coil, on the workpiece, and on the outer boundary since
no forces are assumed to be present. In contrast to remeshing strategies, this approach
preserves the combinatorial structure of the mesh, which allows an effective solution of
the arising huge systems of linear equations by multigrid techniques.

The discrete field relations of the electromagnetic mesh have to be reformulated such
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that the movement of the mesh is correctly considered. Surprisingly, the resulting equa-
tions simplify. Instead of working with the partial time derivative ∂a, it is convenient in
this case to employ the material time derivative ȧ = ∂a+(∇sa)v since its discretization is
a function of the vertices of the moving mesh inside the mechanical structure rather than
of spatial points. Thus, no interpolation is necessary to link past data to current data.
Inside the fixed tool coil ȧ = ∂a applies and in the air surrounding the tool coil and the
workpiece the field assumes an equilibrium position instantaneously, which is explicitly
neither depending on values of ∂a nor on values of a from a preceding time step. The
weak form for the electromagnetic problem – still under the assumption that a Coulomb
gauge is provided for – then takes the form

∫

R

κ−1
EM

{ȧ + ∇sχ − (∇sa)Tv} · a∗ + ∇sa · ∇sa∗ =

∫

∂R

{ζ I + κ
EM
∇sa}n · a∗ ,

∫

R

∇sχ · ∇sχ∗ =

∫

∂R

(∇sχ · n)χ∗ .

(40)

Figure 7 shows results of a three-dimensional simulation carried out with this method.

Figure 7: Visualization of the results of a coupled three-dimensional simulation based on an ALE-
formulation for the electromagnetic field relations. The arrows represent the magnetic flux density vectors.
The same geometric conditions as in Figure 6 have been chosen.

5 CONCLUSIONS

A fully-coupled three-dimensional simulation of EMF has been presented based on
a thermoelastic, viscoplastic, electromagnetic material model incorporated in a large-

18



Marcus Stiemer, Jaan Unger, Bob Svendsen, Heribert Blum

deformation dynamic Lagrangian formulation and Maxwell’s equations under quasistatic
conditions. To compute the Lorentz forces in high accuracy, an ALE approach for the
electromagnetic fields has been chosen. The adaption of the electromagnetic mesh to the
moving structure avoids, on the one hand, unphysical oscillations of the computed forces
and simplifies, on the other hand, the field equations. In contrast to remeshing strategies
this approach preserves the combinatorial structure of the mesh, which allows an effective
solution of the arising huge systems of linear equations. To discretize the electromag-
netic system, a novel, non-isoparametric version of Nédélec elements is employed. This
formulation avoids a bad approximation at material interfaces due to the discontinuity of
the normal component of the vector potential, guarantees a Coulomb gauge to decouple
the electromagnetic field relations, and avoids a loss of accuracy in case of large mesh
deformation, which would arise in an isoparametric context. A comparison of simulations
based on the methods presented here to experimental data represents work in progress.
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