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Abstract

The environmental benefits of low-carbon technologies, such as photovoltaicmodules,

have been under debate because their large-scale deployment will require a drastic

increase in metal production. This is of concern because higher metal demand may

induce ore grade decline and can thereby further intensify the environmental footprint

of metal supply. To account for this interlinkage known as the “energy-resource nexus”,

energy and metal supply scenarios need to be assessed in conjunction. We investigate

the trends of future impacts of metal supplies and low-carbon technologies, consider-

ing bothmetal and electricity supply scenarios.We developmetal supply scenarios for

copper, nickel, zinc, and lead, extending previous work. Our scenarios consider devel-

opments such as ore grade decline, energy-efficiency improvements, and secondary

production shares. We also include two future electricity supply scenarios from the

IMAGE model using a recently published methodology. Both scenarios are incorpo-

rated into the background database of ecoinvent to realize an integrated modeling

approach, that is, future metal supply chains make use of future electricity and vice

versa.We find that impacts of themodeledmetal supplies and low-carbon technologies

may decrease in the future. Key drivers for impact reductions are the electricity tran-

sition and increasing secondary production shares. Considering both metal and elec-

tricity scenarios has proven valuable because they drive impact reductions in differ-

ent categories, namely human toxicity (up to−43%) and climate change (up to−63%),

respectively. Thus, compensating for loweroregrades and reducing impactsbeyondcli-

mate change requires both greener electricity and also sustainable metal supply. This
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1 INTRODUCTION

Although low-carbon technologies are considered essential for climate change mitigation (Bruckner et al., 2014), their environmental benefits are

under debate because of their high metal intensity (Alonso et al., 2012; Fizaine & Court, 2015; Kleijn et al., 2011). Therefore, it is expected that a

large-scale deployment of low-carbon technologieswill lead to a drastic increase ofmetal demand in the future (deKoning et al., 2018; Roelich et al.,

2014; Tokimatsu et al., 2018). This is of concern sincemetal production has severe environmental implications. It is not only highly energy intensive,

consuming around 10%of global primary energy (Fizaine&Court, 2015; Rankin, 2011), and therefore amajor contributor to global greenhouse gas

(GHG) emissions. It also adds to other environmental pressures, such as ecosystem degradation or human health impacts (UNEP, 2013).

These environmental pressures could be further intensified in the futurewere there a continuation of decliningmined ore grades as documented

for copper, nickel, zinc, and lead (Crowson, 2012;Mudd, 2010;Muddet al., 2017). Lowerminedoregradesmean thatmoreoreneeds tobeprocessed

to produce the same amount ofmetal, leading to a rise in energy requirements and thusGHGemissions (Norgate&Haque, 2010;Norgate&Rankin,

2000).Adecline inminedoregradesmay result fromvarious factors, suchas, alteredeconomic conditions, technology improvements (Ericssonet al.,

2019;West, 2011), or from a depletion of higher grade ores due to risingmetal demand as possibly induced by large-scale production of low-carbon

technologies in the future.

Thus, metal and energy supply systems are closely interlinked, which is commonly referred to as the “energy-resource nexus” (Bleischwitz et al.,

2017; Graedel & van der Voet, 2010; Le Blanc, 2015). Therefore, it is crucial to consider both systems when investigating future impacts of metal

production and of low-carbon technologies in order to capture the interplay of the two systems and to avoid problem shifting.

A widely applied environmental assessment tool to analyze “potential impacts associated with a product” is life cycle assessment (LCA) (ISO,

2006). LCA models are often divided into so-called foreground and background systems. The foreground system typically consists of specific pro-

cesses that are modeled by the practitioners. The background system typically consists of many more processes and is drawn from a life cycle

inventory (LCI) database, for example, ecoinvent (Wernet et al., 2016). This background database provides the inputs to the foreground system

such that the practitioners do not have tomodel all processes themselves.

While current product systems are in general analyzed using LCA, impacts of future systems are assessed using prospective LCA (Arvidsson et al.,

2017; Pesonenet al., 2000). For prospective LCA, LCAmodels are adapted according to scenarios. To ensure consistency, scenarios are incorporated

ideally into both fore- and background systems.While the foreground systems usually do reflect future scenarios, adapting the (muchmore numer-

ous) processes in the background typically is not feasible. This is a prevalent shortcoming of prospective LCAs and is referred to as a “temporal

mismatch” between the foreground and the background system (Arvidsson et al., 2017; Nordelöf et al., 2014; Sandén, 2007; Vandepaer & Gibon,

2018).

Metal supply systems in particular are mostly investigated regarding their current characteristics and current environmental performance

(Elshkaki et al., 2016; Kuipers et al., 2018; Norgate & Haque, 2010; Norgate & Rankin, 2000; Nuss & Eckelman, 2014; Paraskevas et al., 2016).

Yet, metal supply and its related impacts have been changing continually in the past, and are expected to continue doing so in the future (Rötzer &

Schmidt, 2020). These changes are not only due to ore grade decline, which leads to higher energy intensity of mining activities, but also to techno-

logical innovation, whichmay lead to increased energy efficiencies, to regional differences between production locations (Northey et al., 2013), and

to changes in secondary production shares or in shares of different production routes. For example, environmental impacts of pyrometallurgical

copper production differ considerably from the hydrometallurgical copper production route (Azadi et al., 2020; Norgate &Haque, 2010; Norgate &

Jahanshahi, 2010).

Van der Voet et al. (2019) developed detailed supply scenarios for sevenmajormetals (copper, nickel, zinc, lead, iron, aluminum, andmanganese)

considering various relevant future developments, such as ore grade decline, energy-efficiency improvements, or changes in secondary production

shares. They model future electricity systems by adapting electricity mixes in the background according to different energy scenarios (IEA, 2012).

Thereby, all processes in the back- and foreground which have electricity as inputs receive the adapted future electricity, or the “futurized” elec-

tricity. However, their future metal supply chains are not integrated in the background database but modeled in the foreground, “on top” of the

background database. This means that all other processes of the background database still make use of the non-future metal supply chains, such

as, the future electricity supply sector (see Supporting Information S8, Section B.1 for a comparison of scenarios in foreground and background

systems).

Other work investigated future impacts of low-carbon technologies taking an integrated scenario incorporation approach. Mendoza Beltran

et al. (2020) and Cox et al. (2018) recently pioneered the integration of comprehensive model data into an LCA background database. They devel-

oped a Python-based software, Wurst (Mutel & Vandepaer, 2019), to incorporate comprehensive electricity supply scenarios from the integrated

assessment model (IAM) from IMAGE (Integrated Model to Assess the Global Environment) into the background database (ecoinvent v3.3) (Ste-

hfest et al., 2014). They confirm that electricity supply systems, or background systems in general, can be the decisive factors for environmental

benefits of low-carbon technologies.

To date, a few studies combined future electricity and metal supply scenarios within an LCI database. The New Energy Externalities Develop-

ment for Sustainability (NEEDS) project generated prospective LCIs by incorporating energy supply and material production scenarios into ecoin-

vent version 1.3. The most comprehensive and recent work is THEMIS (Technology Hybridized Environmental-Economic Model With Integrated

Scenarios) (Gibon et al., 2015; Hertwich et al., 2015). Using hybrid input–output LCAmodels, THEMIS integrates various scenarios, such as NEEDS,
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future electricity mixes from the International Energy Agency (IEA), and material production scenarios, into ecoinvent v2.2 to build prospective

LCIs. The material production scenarios assume one development, namely a reduction of energy inputs during productions due to technological-

efficiency improvements.

Metal supply scenarios considering possible future developments, such as ore grade decline and shares of different production routes, have

not been incorporated into a recent background database yet, despite the substantial environmental contributions of metal supply to impacts of

technology productions.Most of the research so far focused on incorporating detailed energy scenarios, yet did notmodel diverse changes in future

metal production systems (Arvesen et al., 2018).Moreover, comprehensivemetal supply scenarios have not been incorporated into an LCI database

in combination with electricity supply scenarios to create a more consistent background database suitable for accounting for interdependencies,

for instance, due to the energy-resource nexus.

This study aims to incorporate metal supply scenarios, which model several future developments, as well as scenarios for an energy transition

directly into the ecoinvent 3.5 database. This integrated scenario incorporation allows for interactions between these two modified supply chains,

and therefore accounts for the energy-resource nexus.We aim to answer the following research questions:

1. What are the environmental impacts of the future production of copper, nickel, zinc, and lead?

2. How do futuremetal supply changes and electricity supply changes influence future impacts of metal supply and of low-carbon technologies?

To achieve this, we build on approaches and scenarios from previous research as follows. We use the work of Mendoza Beltran et al. (2020) to

incorporate electricity scenarios from IMAGE. For themetal supply scenarios, we build on and extend the study of van der Voet et al. (2019), which

provides comprehensive supply scenarios for sevenmetals.We choose fourmetals whose global GHG emissions are among the top 10 of all metals

(Nuss & Eckelman, 2014) and for which ore grade decline has been documented: copper, nickel, zinc, and lead. We further extend the scenarios of

van derVoet et al. (2019), adapt them fromecoinvent version 2.2 to version 3.5, and integrate them into the background database. Themetal supply

scenarios form themain focus of ourwork. It is important to stress that our scenarios should not be seen as predictions but rather as an exploration

of possible future developments and their role for future environmental performances of a product system.

2 METHODS

2.1 Approach overview

We modeled future metal supply (MS) scenarios for four metals until 2050: copper (Cu), nickel (Ni), zinc (Zn), and lead (Pb). To estimate future

developments inmetal supply,we chose key factors influencing future changes, anddescribe themvia five variables: (1)minedore grade, (2) primary

production locations, (3) energy-efficiency improvements of metal refining, (4) shares of primary production routes, and (5) shares of primary and

secondary production.

Furthermore, we added electricity supply (ES) scenarios which describe possible future energy systems using a recently published approach by

Mendoza Beltran et al. (2020).

Considering both metal and electricity supply scenarios, we investigated how environmental impacts of future metal supply and low-carbon

technologies may develop in the future, and examined the key drivers for those future impact changes. Furthermore, we also assessed the effect of

metal and electricity supply changes on key applications of a low-carbon economy, such as electricity production from photovoltaics (PV) andwind,

as well as the production of Li-ion batteries, and transport with an EV.

The scenarioswere assessed for the timeperiodof 2010–2050 in intervals of 5 years usingBrightway2 (Mutel, 2017a, 2018). Theyweremodeled

by modifying the background database, that is, ecoinvent version 3.5, allocation, cut-off by classification (Ecoinvent Center, 2018; Wernet et al.,

2016). This means that already existing activities in ecoinvent were changed and/or new activities were added according to scenario data (see

Supporting Information S8, Section B.1). Thereby, future versions of ecoinvent are created for each scenario year representing future systems.

This method increases temporal consistency through the creation of future background databases, and it realizes an integrated approach since

processmodificationsbecomeeffective in thewholedatabase.Hence, this approachallows for interactionsbetween themetal andelectricity supply

systems: futuremetal supply chains use future electricity and vice versa, thereby accounting for interlinkages due to the energy-resource nexus.

2.2 Metal supply scenarios

The five variables of our metal supply scenarios address different production stages of metal supply chains, from mining (variable 1, ore grade

decline) over refining (e.g., variable 3, energy-efficiency improvements) to global market shares (e.g., variable 5, primary/secondary production

shares).
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F IGURE 1 Structure of the copper supply chain in ecoinvent 3.5 and themodeled variables at each supply stage
Structure of the copper supply chain in ecoinvent 3.5, the includedmetallurgical processes, and themodeled variables at each supply stage.
Coppermine operation produces a copper concentrate of 30%. Primary copper production refines this concentrate producing refined copper. The
supply chains of the other metals are given in Supporting Information S8 (Figures B.3– B.7). Cu, copper; SX-EW, solvent extraction and
electro-winning; V, variable

Figure 1 illustrates howecoinvent representsmetal supply chains at the example of copper and atwhich production stage the variables are incor-

porated. It distinguishes between three stages: (1)mining andmineral processingwhich produces copper concentrates of 30%; (2)metal production

which comprises copper smelting, converting, and refining, to supply refined copper; and (3) a global market. Furthermore, we distinguish between

pyrometallurgical and hydrometallurgical primary production of copper, and between primary and secondary production shares.

The supply chains of the other metals are described in Supporting Information S8 (Section B.2). For nickel, we model two different types which

cover the majority of the nickel market (van der Voet et al., 2019). Those are “nickel” with a purity of 99.5%, and the less pure “ferronickel,” which

contains 25% nickel (see Supporting Information S8, Section B.2.2).

Primary metal supply (PMS) changes are represented by variables 1 to 4, while variable 5 models secondary metal supply (SMS) changes. The

main focus of our metal supply scenario lies on ore grade decline (variable 1). Therefore, this variable is modeled for all four metals, while the rest

of the primary supply variables, variables 2–4, are only modeled for copper. Copper is of special interest given its expected demand growth and

relevance for low-carbon technologies (Deetman et al., 2018; Hertwich et al., 2015). Variable 5 is modeled for copper, nickel, and lead. Zinc and

ferronickel are excluded for variable 5 as their ecoinvent models do not include secondary supply activities.

The data sources used for each variable are shown in Table 1. Differences to the scenarios of van der Voet et al. (2019) mostly lie in the addition

of regionalized copper scenarios for variables 1 and 2, and in the adaptation of the variable models to the newer supply chains in ecoinvent v3.5.

Each variable is further explained in the following paragraphswith its data being accessible via a repository (Harpprecht et al., 2021). The generated

scenarios are then illustrated in the results section in Figure 2.
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TABLE 1 Variables and data sources for the generation of metal supply scenarios

Variable Metal Data source Information

1. Ore grade decline Ni, FeNi Mudd and Jowitt 2014 Historical ore grades to create a regressionmodel to

project future global ore grades

Norgate and Jahanshahi 2006 Ore grade-energy requirement relation

Zn, Pb Mudd, Jowitt, andWerner 2017 Historical ore grades to create a regressionmodel to

project future global ore grades

Valero, Valero, and Domınguez 2011 Ore grade-energy requirement relation

Cu Mudd and Jowitt 2018 Regionalized instead of global ore grades, historical data

Northey et al. 2014 Regionalized instead of global ore grade scenarios based on
supply–demandmodels

Northey, Haque, andMudd 2013 Ore grade-energy requirement relation

2.Market shares of production

locations

Cu Northey et al. 2014 Regionalized future production scenarios based on
supply–demandmodels

3. Energy efficiency

improvements

Cu Kulczycka et al. 2016 Future energy inputs for pyrometallurgical Cu

production

4.Market shares of primary

production routes

Cu International Copper Study Group

2018

More recent historical data on hydro- and
pyrometallurgical production shares

5.Market shares of primary,

secondary production

Cu, Ni, Pb Elshkaki et al. 2018 Global shares of primary, secondary supply

Crucial updates compared to themodels of van der Voet et al. (2019) are highlighted in italics. Cu, copper; FeNi, ferronickel; Ni, nickel; Pb, lead; Zn, zinc.

2.2.1 Stage 1: Metal mining

Variable 1: Ore grade decline and energy requirements

For all metals, we calculate future ore grade decline, the caused change in energy requirements and in other inputs/outputs in two steps, similarly

to van der Voet et al. (2019) and Kuipers et al. (2018). Detailed explanations are provided in Supporting Information S8 (Section B.3.1).

1. Defining current,G(t0), and future ore grades,G(t > t0):

We estimate current,G(t0), and future ore grades,G(t > t0), with an ore grademodel,G(t). t0 is the year for each ecoinvent mining process.

For nickel, zinc, and lead, G(t) is defined via metal-specific regression models of van der Voet et al. (2019), which are based on historical data

(Table 1).

For copper, future ore grades, G(t > t0), are defined using data from regionalized models of Northey et al. (2014), specifically their “country-

dynamic” scenario. They model copper production amounts and ore grades for 83 regions from 2010 to 2100 with the Geologic Resources

Supply–Demand Model (GeRS-DeMo) developed by Mohr (2010). We match their 83 regions to the 6 pyrometallurgical copper production

regions in ecoinvent, and use the production shares of the individual countries asweighing factors to derive an average ore grade per region (see

Supporting Information S8, Equation B.10 andHarpprecht et al. (2021)). ForG(t0), historic ore grade data is taken fromMudd and Jowitt (2018).

2. Defining current, E(t0), and future energy requirements, E(t > t0), with an ore grade–energy relation, E(G):

The ore grade–energy relations are taken from van der Voet et al. (2019), who generated them from the literature (Table 1) for eachmetal.With

G(t0),G(t > t0), and E(G), we define E(t0) and E(t > t0) as:

E(t0) = E(G(t0)), (1)

E(t > t0) = E(G(t > t0)). (2)

Subsequently, we define a factor, 𝛿E(t, t0), which describes how future energy requirements, E(t > t0), will change relative to current energy

requirements, E(t0) (see Supporting Information S8, Section B.3.1). As a simplification, which was also used by van der Voet et al. (2019), we

assume that this factor, 𝛿E(t), can be applied as a proxy to alsomodel the increase and decrease of all other in- and outflows of themining process

(see Supporting Information S8, Section D.1 for a discussion).
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2.2.2 Stage 2: Primary metal production

Variable 2: Market shares of primary production locations

Since production characteristics, such as energy sources orwaste treatments, are country-specific, environmental impacts associatedwith primary

copper production vary largely between countries (Beylot & Villeneuve, 2017) (Supporting Information S8, Figure B.15).

We apply the future production shares modeled by Northey et al. (2014) to the production shares per ecoinvent region of copper primary pro-

duction using the regional match from variable 1 (see Supporting Information S8, Section B.3.2).

Variable 3: Energy-efficiency improvements during smelting and refining

Wemodel a decrease of required electricity and natural gas inputs (-1.77% and -1.5% per year) during smelting and reduction processes within the

pyrometallurgical primary production route (Supporting Information S8, Figure B.16) with an exponential regression of van der Voet et al. (2019),

which was based on projections of Kulczycka et al. (2016).

2.2.3 Stage 3: Market shares of global metal markets

Variable 4: Market shares of primary production routes

Copper is predominantly produced in two primary production routes, pyrometallurgy and hydrometallurgy. Since their environmental impacts

differ considerably (Norgate & Haque, 2010; Norgate & Rankin, 2000), we build a scenario for their future market shares. While Kuipers et al.

(2018) applied a linear regression model based on historic data showing increasing hydrometallurgical shares, we apply an exponential regression

model taking into account the recent continuous declines of hydrometallurgical shares (International Copper StudyGroup, 2018). Thus, we assume

a decrease over time in the share of copper production fromhydrometallurgical processing of oxide ores, in contrast to the increase in Kuipers et al.

(2018). This is in line with recent forecasts for Chile (COCHILCO, 2019), globally the largest copper miner (see Supporting Information S8, Section

B.3.4).

Variable 5: Market shares of primary and secondary production

Primary and secondary production shares are projected using the models of Elshkaki et al. (2018) (see Supporting Information S8, Section B.3.5),

which they based on the Fourth Global Environmental Outlook scenario set (GEO-4) by the United Nations Environmental Programme (UNEP)

(UNEP, 2007). In line with van der Voet et al. (2019), we select the “Market First” scenario of Elshkaki et al. (2018), since it is a business-as-usual

scenario. The scenario is incorporated into the global markets of copper, nickel (99.5%), and lead.

2.3 Electricity supply scenarios

The electricity supply scenarios are taken from Mendoza Beltran et al. (2020), who use IMAGE 3.0 as scenario source (Stehfest et al., 2014) (see

Supporting Information S8, Section B.4). As an integrated assessment model (IAM), IMAGE models the human system with a focus on energy and

land use systems. Mendoza Beltran et al. (2020) use the Shared Socioeconomic Pathways (SSPs) of IMAGE (O’Neill et al., 2014). Each pathway con-

sists of a baseline scenario, that is, how the future develops without additional climate policies, and various mitigation scenarios (Riahi et al., 2017).

From those pathways, we select SSP2, the “middle-of-the-road” pathway in which current trends continue without considerable change (Fricko

et al., 2017; van Vuuren et al., 2017). From SSP2, we take its baseline and its strongest mitigation scenario, SSP2 and SSP2-2.6. They represent

the two extremes within SSP2 (Fricko et al., 2017). SSP2-2.6 describes the strongest mitigation efforts to reach the two-degree target of 450 ppm

CO2eq.

2.4 Incorporating metal and electricity supply scenarios

To analyze the effect of the MS variables and ES scenarios, we adapt the background database, that is, ecoinvent, with the scenarios described in

Table 2.

The scenario data is incorporated with Presamples (Lesage, 2019; Lesage et al., 2018) and Wurst (Mutel, 2017b) for the MS and ES scenarios,

respectively (see Supporting Information S8, Section B.5).
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TABLE 2 Future scenarios modeled for the prospective LCAs from 2010 to 2050 in time steps of five years

Description MS variables ES scenario Scenario

MS 1–5 n.a. MS

MS, only primary production changes 1–4 n.a. PMS

MS, only secondary production changes 5 n.a. SMS

ES n.a. SSP2 ES-BAU

ES n.a. SSP2-2.6 ES-Mitigation

ES+MS 1–5 SSP2 MS+ ES-BAU

ES+MS 1–5 SSP2-2.6 MS+ ES-Mitigation

BAU, business-as-usual; ES, electricity supply; MS, metal supply; PMS, primary metal supply; SMS, secondary metal supply; SSP, shared socioeconomic path-

way.

TABLE 3 Functional units taken from ecoinvent 3.5 for metal supply andmetal applications

Category Reference flow Process Region

Global

metal

markets

1 kg of copper Market for copper GLO

1 kg of nickel, 99.5%Ni Market for nickel, 99.5% GLO

1 kg of ferronickel, 25%Ni Market for ferronickel, 25%Ni GLO

1 kg of zinc Market for zinc GLO

1 kg of lead Market for lead GLO

Metal applications 1 kWh electricity, high voltage Market group for electricity, high voltage GLO

1 kWh electricity, low voltage Electricity production, PV, 3 kWp slanted-roof installation, multi-Si CH

1 kg of Li-ion battery prismatic Battery production, Li-ion, prismatic GLO

CH, Switzerland; GLO, global; kWp, kilowatt peak; Li, lithium; Ni, nickel; PV, photovoltaics.

2.5 Scenario evaluation

2.5.1 Functional units

The effect of our scenarios on the future environmental performances of the fivemetals’ supply aswell as of electricity supply and low-carbon tech-

nologies are assessed using functional units from ecoinvent (Table 3). We present results for two out of the five low-carbon technology examples:

electricity production fromPV and production of a Li-ion battery (see Supporting Information S8, Section B.6.1). The functional units use ecoinvent,

updated with the scenario data, as background.

2.5.2 Impact assessment

Impacts are assessed for six impact categories: climate change (CC); cumulative energy demand, fossil (CEDF); particulatematter formation (PMF);

photochemical oxidant formation (POF); human toxicity (HT); andmetal depletion (MD). The former five are relevant for impacts related to energy

generation, while the latter two additionally addressmetal supply impacts. This choice is in accordancewith other studies (Bauer et al., 2015; Gibon

et al., 2017;Mendoza Beltran et al., 2020; Nordelöf et al., 2014).

We apply the IPCC 2013 (time horizon 100 years) characterisation model from IPCC (2013) for climate change, but include biogenic carbon as

described byMendoza Beltran et al. (2020) (see Supporting Information S8, Section B.6.2). RECIPE 2008 at themid-point level serves as character-

isationmodel for all other impact categories (Goedkoop et al., 2013).

3 RESULTS

3.1 Development of metal supply variables

Figure 2 illustrates the development of the five variables that feed into theMS scenarios. The modeled decline of mined ore grades into the future

(Figure 2a) results in a corresponding rise in energy requirements (Figure 2b), with the highest change of +78% being for lead from 2010 to 2050.
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(a)

(d) (e)
(f)

(b)
(c)

F IGURE 2 Overview of appliedmetal supply scenarios for the fivemetal supply variables
Overview of the appliedmetal supply scenarios for the fivemetal supply variables (for a detailed description of each variable, see Supporting
Information S8, Section B.3). The scenario data is accessible via a repository (Harpprecht et al., 2021). For Cu, variable 1, only the global average is
shown. The regionalized variables are provided in Supporting Information S8 (Figure B.13). Underlying data used to create this figure can be found
in Supporting Information S2. AU, Australia; Cu, copper; GLO, global; Ni, nickel; Pb, lead; RAS, Asia; RER, Europe; RLA, Latin America and the
Caribbean; RNA, Northern America; RoW, Rest of theWorld; V, variable; Zn, Zinc

For copper and nickel energy requirements increase by +24.1% and +11.9%, respectively. Variable 3 shows substantial reductions in energy con-

sumption during primary production (smelting and refining) of copper. While ore grade decline, variable 1, will cause an intensification of impacts

due to the increasing energy requirements, variables 3 to 5 are expected to have a diminishing effect. The subsequent results show the effect of the

states of variables from Figure 2.

3.2 Future impacts of metal and electricity supply

Figure 3a shows prospective LCA results for allmetals per kg ofmetal supply. For allmetals, a general downward trend becomes apparent especially

under the MS + ES-Mitigation scenario. For the MS + ES-BAU scenario, ferronickel and zinc form an exception, since their models do not include

increasing secondary supply shares which would have a diminishing effect on impacts. Copper shows the highest decreases which could be due to

the fact that it has more variables incorporated which potentially leads tomore drastic changes.

Figure 3b illustrates how the electricity scenario ES-Mitigation reduces climate change and human toxicity impacts of electricity supply by -98%

and -79% by 2050, but on the other hand more than doubles metal depletion impacts. The MS scenarios lower this steep rise of metal depletion

from+105% in 2050 to only+95% (see Supporting Information S8, Figure C.6). Thus, increases in metal depletion impacts of a greener electricity

supply cannot be compensated by ourmodeledmetal supply improvements.

3.3 Drivers of future impacts

Figure 4 illustrates the relative impact changes between 2010 and 2050 for both the modeled metal markets and the applications of electricity

production from PV and the production of a Li-ion battery. The results are given for different combinations of scenarios as defined in Table 2.

3.3.1 Future metal supply impacts

Incorporating PMS variables causes an impact increase for all metals apart from copper. Lead reveals the strongest increase since it also expe-

riences the strongest decline in ore grade and consequently the highest intensification of energy requirements from 2010 to 2050. Copper’s
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F IGURE 3 Prospective LCA results for metal and electricity supply under different scenario combinations.
(a) Prospective LCA results for the five global metal markets per 1 kg of metal supplied
All metal supply variables are included in combination with electricity scenarios; either the business-as-usual electricity scenario (ES-BAU); or the
mitigation electricity scenario (ES-Mitigation). More impact categories are presented in Supporting Information S8 (Section C.1). (b) Prospective
impact developments per 1 kWh from the global electricity mix under the two electricity (ES) andmetal supply (MS) scenarios, relative to impacts
in 2010. Decreasing trends due to the electricity supply scenarios take place for all impact categories apart frommetal depletion, see Supporting
Information S8, Figure C.6. Underlying data used to create this figure can be found in Supporting Information S4. BAU, business-as-usual; DC,
1,4-dichlorobenzene equivalents; ES, electricity supply; Fe-eq, iron equivalent; MS, metal supply

falling PMS impacts can be explained by the fact that its PMS models comprise several variables which have a diminishing effect on impacts,

such as variable 3, that is, reducing energy inputs during smelting and refining, and variable 4, that is, decreasing hydrometallurgical production

shares. The other metals’ PMSmodels only consist of the ore grade decline model which generally increases impacts. Thus, the development of the

copper variables 2 to 4 overcompensate for growing impacts associated with falling mined ore grades, which is further investigated later in this

article.

Increasing secondary supply shares, as done for the SMS scenario for copper, nickel, and lead, proves to decrease impacts associated with these

metals’ total supply, that is, from the averagemarket which includes primary and secondary supply.

From ferronickel’s SMS results, we can see an effect of the integrated scenario incorporation: impacts change although ferronickel’s SMS vari-

ables are unaltered. Since the SMS variables are incorporated for all metals at the same time, this change is induced by other metals’ SMS changes,

specifically by copper (see Supporting Information S8, Figure C.7).

Another crucial feature of our integrated approach is the interaction between scenarios when several scenarios are incorporated jointly. This

can be seen, for example, from the MS results: when all MS variables are incorporated (PMS + SMS variables), results of PMS and SMS scenar-

ios cannot be added up to get the MS results. Therefore, impact changes of individual variables cannot reflect the joint effect of their combina-

tion. This phenomenon can be explained by an example (see, e.g., lead): if ore grades decline in primary production (PMS), but primary production
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F IGURE 4 Prospective LCA results for the global metal markets of copper, nickel, and lead, and for low-carbon technologies
Prospective LCA results for the functional units of the global metal markets of copper, nickel, and lead, and of low-carbon technologies, that is,
electricity production from PV and production of a Li-ion battery (see Table 3). Results are given for 2050 as relative changes (in %) compared to
the respective LCA scores in 2010. Scenario variables are given in Table 2. Results for CEDF, zinc, for more technologies, for electricity supply, and
in the form of a detailed time series are provided in Supporting Information S8, Figures C.5 and C.6. Underlying data used to create this figure can
be found in Supporting Information S5. BAU, business-as-usual; ES, electricity supply; Li, lithium;MS, metal supply; Ni, nickel; PMS, primarymetal
supply; PV, photovoltaics; SMS, secondarymetal supply

shares are partly replaced by secondary production (SMS), then the PMS scenario has a smaller effect onMS (PMS+ SMS), since its share has been

reduced.

MS impacts are only reduced for copper, nickel, and lead, while for zinc and ferronickel MS impacts rise (see Supporting Information S8, Figure

C.5). The reason is that zinc and ferronickel are lacking secondary production improvements in our SMS scenarios which could compensate for

impact increases of the PMS scenarios as is the case for lead and nickel.

As expected, both ES scenarios achieve substantial impact reductions for all metals. These are strongest for the ES-Mitigation scenario and in

the category of climate change, with the highest decrease of -50% for copper. Yet, it stands out that they barely influence impacts of human toxicity

and metal depletion. The reason is that impacts of those categories are primarily caused by flows occurring during mining which ES scenarios do

not affect. These flows are sulfidic tailings for human toxicity and the extraction of metal ore from the ground in the case of metal depletion (see

Supporting Information S8, Section C.3.1). The same applies to PMF and POF, as here electricity-related emissions play only aminor role compared

to emissions frommining, metal refining, and heat supply.

When combining MS and ES scenarios, we can see the interplay of impact changes from both scenarios. They either complement each other,

meaning one achieves impact reductions in a categorywhere the other one has little effect, or they add to each others impact changes. As explained

before, adding up impact changes from the individual scenarios cannot describe their combined effect due to the interaction of scenarios. In most

cases, the combination of MS and ES scenarios achieves higher impact reductions than an individual scenario. For all metals, the energy scenario is

the decisive driver for impact reductions in climate change, whereas human toxicity and metal depletion results are driven byMS scenarios. In the

case of ferronickel and zinc, ES scenarios can only partly compensate for the rising impacts due to MS changes. For ferronickel, impacts are driven

more from heat supply than from electricity supply (see Supporting Information S8, Figure C.11).
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3.3.2 Future impacts of low-carbon technologies

For the metal applications, that is, electricity produced from PV and the production of a Li-ion battery (for results for other technologies see Sup-

porting Information S8, Figure C.6), results show a very similar pattern as for the metal markets. While ES scenarios primarily decrease climate

change, they barely influence human toxicity andmetal depletion impacts, yet those are in turn considerably lowered byMS scenarios.

AlthoughMS scenarios have a considerable influence on climate change impacts for the metal markets, this is not the case for low-carbon tech-

nologies. This reveals that future changes of energy requirements of metal supply play only a minor role for climate change impacts of low-carbon

technologies. In contrast, human toxicity and metal depletion impacts of low-carbon technologies are largely dominated by the performance of

metal supply. Specifically, those impacts are mostly caused bymetal mining activities, that is, human toxicity by sulfidic tailings andmetal depletion

by the metal extraction (see Supporting Information S8, Section C.3.2). This furthermore explains why ES scenarios have, as for the metal markets,

little effect on these categories. The ES-Mitigation scenario demonstrates again its strong power via considerably higher impact reductions than

the ES-BAU scenario with its maximum at 56% for climate change.

As before, combining both MS and ES scenarios reveals how the two scenarios complement each other with impact reductions in different

categories. As a result, impacts are considerably reduced for almost all categories. The smallest changes always appear for metal depletion.

Looking at the applications’ impact changes due to MS, the question arises which metal mainly causes those changes. An analysis presented in

Supporting Information S8 (Section C.2.3, Figures C.8– C.10) reveals that clearly the copperMS scenarios are driving theMS-caused change of the

technologies’ future impacts. All other metals’ scenarios show almost no effect on future impact changes of metal applications.

3.4 Drivers of future copper supply impacts

Copper has proven to be the most relevant metal among the modeled metals for future impact changes of low-carbon technologies. Therefore, we

identify the variable which drives the copper MS scenarios. Figure 5 depicts how the impact of supplying 1 kg of copper through the global copper

market changes due to different MS variables. MS scenarios primarily influence human toxicity and metal depletion impacts of technologies, so

these are selected here. However, the overall pattern is very similar to the other categories, too (see Supporting Information S8, Figure C.4).

Variable 1, ore grade decline, is the only variable considerably increasing future impacts of up to 10–20% by 2050 for all categories. All other

variables cause future impact reduction, with the exception of variable 3, energy-efficiency improvements, which has almost no effect in ourmodel.

This can be explained by the fact that the efficiency improvements are only applied to the primary production stage, smelting, and refining. How-

ever, the mining stage is of much higher energy intensity due to ore comminution (Azadi et al., 2020; Norgate & Jahanshahi, 2011). By and large,

impact increases caused by variable 1 are more than counterbalanced by other variables with the result that the PMS developments, which are

composedof variables 1–4, continuously lower future impacts. Figure 5 further reveals that thePMS trend ismostly dictated by variable 4, a decline

of hydrometallurgical production shares (see discussion).

F IGURE 5 Prospective LCA results for the global market of copper: effect of variables 1 to 5
Prospective LCA results for the global market of copper supplying 1 kg of copper: effect of variables 1 to 5. Relative change refers to the impact of
the scenario in the given year compared to the impact of 2010. No additional ES scenario is incorporated. For other impact categories see
Supporting Information S8, Figure C.4. Underlying data used to create this figure can be found in Supporting Information S6.MS, metal supply;
PMS, primarymetal supply; SMS, secondarymetal supply; V, variable
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Thus, variables 4 and 5 drive the high reductions of future copper supply impacts. Therefore, among our variables, they represent the most

effective ones to curtail future impacts of low-carbon technologies throughMS changes.

4 DISCUSSION

This study aimed to identify the trends and drivers of future environmental impacts of metal supply chains and their influence on low-carbon tech-

nologies. We jointly integrated metal and electricity scenarios (based on Mendoza Beltran et al. (2020)) into the ecoinvent 3.5 (cutoff version)

database. The unique feature of this approach is that it takes into account the interconnected nature of these two sectors as described by the

energy-resource nexus, since it maintains the network of supply chains in ecoinvent. Specifically, it ensures that “futurized” metal supply chains

make use of future electricity and vice versa. Moreover, all other processes in these databases build upon the “futurized” metal and electricity sup-

ply chains, whichmakes the databases suitable for other prospective LCA applications.

Our results indicate that environmental impacts of both metal supplies and low-carbon technologies will decrease in the future per functional

unit, that is, per kg metal or kWh energy, which is good news for the energy transition. However, this is not sufficient to offset increasing metal

depletion impacts of a greener electricity mix. Of the modeled future metal supply changes, we found that increasing recycling shares (variable 5)

is the most powerful to reduce future impacts associated with metal supply and can overcompensate increasing impacts due to ore grade decline

(variable 1). Furthermore, we revealed that the share of hydrometallurgical copper production can affect future impacts of copper supply consider-

ably. Moreover, this study has shown that MS and ES scenarios affect different impact categories: MS scenarios especially drive impact reductions

of human toxicity and metal depletion, while ES scenarios highly reduce climate change impacts. Of all modeled metals, copper has the largest

influence on the environmental impacts of low-carbon technologies.

The approach of integrating both metal and electricity supply scenarios into ecoinvent has proven effective to reveal interdependencies. For

instance, only considering MS in isolation would either underestimate future impact reductions for categories of climate change, PMF, and POF

(see Cu, Pb, Ni), or lead to wrong conclusions. The latter occurs, for example, for ferronickel and zinc, where considering only MS erroneously sug-

gests increased impacts. On the other hand, solely including ES scenarios, as was done byMendoza Beltran et al. (2020), underestimates potential

future impact reductions in human toxicity and metal depletion. Our approach furthermore demonstrated the interacting effect of scenarios, that

is, impact changes due to individual scenarios do not add up to the joint effect of simultaneously incorporated scenarios. This effect was also found

byMendoza Beltran et al. (2020).

These findings seem to be consistent with previous studies. A direct comparison with van der Voet et al. (2019) is only partly possible, due to

differences, for example, inmodeling approaches, assumedmetal supply chains, ecoinvent versions, or choice of ES scenarios and impact categories

(see Supporting Information S8, SectionD.2). Our result that declining copper ore grades increase climate change impacts of copper supply by up to

20% is consistent with van der Voet et al. (2019). They also found that a strong electricity scenario can achieve considerable reductions for climate

change impacts of metal supply, as well as that it can compensate increasing climate change impacts due to ore grade decline.Moreover, our results

are in linewith their findings that higher recycling shares can considerably decrease future impacts, and that increasing energy efficiency only has a

small effect on primary copper production.

Furthermore, our findings are confirmed by Nuss and Eckelman (2014), who found that certain metal production impacts, such as, human toxi-

city, cannot be controlled by energy inputs, but are determined by emissions of toxic elements or treatment of sulfidic tailings resulting from min-

ing activities.

Lastly, our finding that the production of copper is among the most important material supplies influencing impacts of low-carbon technologies

(along with iron and aluminum) is confirmed by Hertwich et al. (2015). Moreover, they also stress the relevance of high toxicity impacts of copper

mining caused by tailings and overburdenmaterial.

Overall, this study stresses the relevance of regulations for a greener electricity supply as well as increased metal recycling rates. Furthermore,

the results show that renewable electricity might reduce impacts for climate change, but achieves little to no benefits for impacts of human tox-

icity, PMF, or POF. Thus, to lower these impacts from metal supply, regulations are required supporting the implementation of technology on a

mine and refining plant level to curb emissions from, for example, tailings or smelter slags. Additional improvements could be achieved through a

greener heat supply where applicable (see Supporting Information S8, Section C.3.1). To support such a transition toward more responsible metal

supply and thereby lowering impacts from low-carbon technologies, sustainable sourcing of metals is key. This could be facilitated, for example,

through certification systems for bothmetal and technology producers. To achieve impact reductions as fast as possible, copper production should

be addressed first.

There are some important limitations associated with our study. Our findings describe relative impact changes, so impacts per kg or per kWh.

Yet, the expected increase in global metal demand may still lead to rising global environmental impact from metal supply chains in the future (no

absolute decoupling) (Elshkaki et al., 2018).

Given the complexity of metal supply chains (Northey et al., 2018), our MS models suffer from certain limitations regarding the factors consid-

ered and their accuracy. First, the effect of declining ore grades (variable 1) is based on an average global ore grade–energy relation instead of one
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specific for different production routes. Second, the modeling factor, 𝛿E(t), derived from this relation is applied as a proxy to all other in- and out-

flows of themining process. Thus, we increased or decreased all inputs and outputs from themining process by the same factor as a function of the

ore grade, thus implicitly assuming that all parts of the mining process are affected by ore grade decline to the same degree as energy inputs (see

Supporting Information S8, Section D.1, for a more detailed discussion). Further research is needed to identify more precise effects of ore grade

decline on other parameters than energy, such as water consumption (Northey et al., 2013) or land use. Third, we assume that hydrometallurgical

copper production shares will decrease from the current 19% to 8% in 2050 (variable 4), which is, although based on an analysis of recent trends,

highly uncertain. Long-term production shares of hydrometallurgical copper production from oxide ores is expected to decline over time as shallow

and highly accessible oxidised copper ores are gradually depleted. There is also potential for increases in the use of hydrometallurgy for extraction

of copper from low-grade sulfide ores, particularly if large advances in bioleaching or in-situ leaching of copper sulfide ores are made. Moreover,

the fact that impacts of hydrometallurgical copper production are higher compared to pyrometallurgical copper production in ecoinvent has to

be interpreted very carefully, since other studies show that environmental impacts of hydrometallurgical copper production are lower than for

pyrometallurgical production (Azadi et al., 2020; Norgate & Jahanshahi, 2010). In our model, hydrometallurgical copper production is represented

via one process in ecoinvent. Such a global average cannot sufficiently represent the current diversity of industrial processes and site-specific condi-

tions such as ore grades and ore types. Since this study focuses on future trends of impacts using background scenarios incorporated into ecoinvent,

such as market share developments, improving the disputed data basis of hydrometallurgical processing is not within our scope. Figure 5 reveals,

that the results of an overall decreasing trend for future impacts of copper and of the low-carbon technologies would not change, if variable 4,

decreasing hydrometallurgical production, was kept constant, since increasing recycling shares is powerful enough to offset impact increases due

to ore grade decline.More detailed, process-specific data is needed tomore accurately determine the role of hydrometallurgical copper production

for future impacts of copper supply.

Another limitation is thatwedid not include recycling (SMS scenarios, variable 5) for zinc and ferronickel due to (a) a lack of data for ferronickel in

the scenarios of Elshkaki et al. (2018); and (b) the fact that zinc’s secondary production projections show the lowest increase compared to all other

metals within the scenarios of Elshkaki et al. (2018), that is, less than 5% from8.1% in 2010 until 2050 (see Supporting Information S8, Figure B.18).

In view of a transition toward a circular economy, it is essential to consider recycling scenarios in the future.

Furthermore, we applied regionalized scenarios only for copper for future ore grade decline and future shares of primary production locations

(variable 1 and 2) since in ecoinvent 3.5 regionalized datasets were available only for copper. Future research should develop refined methods for

regionalization of mining and metal production scenarios via incorporating region- and site-specific mining conditions, as well as industry produc-

tion scheduling. Moreover, the model sophistication could be improved by adding more factors, such as chemical usages, recycling efficiencies, or

treatment of tailings. Our result that copper has the largest influence on the environmental impacts of low-carbon technologies of all modeledmet-

als could be biased, asmore variables andmore radical changesweremodeled for copper than for the othermetals (five variables for Cu, two for Ni

and Pb, and only one for FeNi and Zn). Therefore, it is more likely for copper scenarios to achieve stronger effects than for other metals.

Another model shortcoming is the limited inclusion of technological innovation. We added new technologies to the ecoinvent database for the

ES scenarios (carbon capture and storage, and concentrated solar power), but not for the MS scenarios. The MS scenarios have proven however

that metal supply impacts vary considerably depending on the production routes (see hydrometallurgical and secondary production). Thus, fur-

ther research could explore the potential influence of new technologies, such as, EVs in mining, novel recycling technologies, or pollution control

technologies, and of low-carbon heat supply, for example, through green hydrogen.

Our approach of incorporating several scenarios simultaneously demonstrated the interacting effect of scenarios. This emphasizes the need

for an integrated approach, that is, joint background adaptations, since evaluating scenarios separately instead of in combination fails to capture

system-wide interactions.

So far, our study considers fourmetals. Thus, the completeness of prospective LCAs can be increased by adding supply scenarios formoremetals,

such as steel, aluminum, manganese (Hertwich et al., 2015; van der Voet et al., 2019), lithium (Mohr et al., 2012; Stamp et al., 2012), or cobalt

(Tisserant & Pauliuk, 2016).

To gain more in-depth insights into the consequences of future metal supplies and emerging technologies, more impact categories need to be

examined, such as ecotoxicity or land transformation (Gibon et al., 2017; Nuss & Eckelman, 2014). Additionally, the characterization methods for

metal depletion have been highly debated (Berger et al., 2020; Brent & Hietkamp, 2006; Northey et al., 2018; Sonderegger et al., 2020). Greater

insight may be possible through comparing results usingmultiple impact methods for this category.

Lastly, our scenarios may not always be fully consistent in relation to each other. As IMAGE does not offer scenarios for future metal supply,

we generated these from other sources. We tried to achieve suitable matches, for instance, between the SMSMarket-First and ES-BAU scenarios.

Moreover, theMS variables are neither coupled to each other, nor to the ES scenarios. For our results this means that, for example, the effect of ES

scenarios on metal depletion might have been underestimated, since the type of ES scenario does not influence our ore grade decline scenario. To

ensure higher consistency, research is required on generatingmore integrated scenario models (Pauliuk et al., 2015a, 2015b).

For these reasons, the results presented in this paper should rather be seen as an indication of possible trends until more data andmore sophis-

ticatedmodels can further reduce uncertainties.
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With its scenario incorporation approach, this study contributes toward more consistent and reproducible modeling approaches of prospective

LCAs. Our LCI databases and LCA results are completely reproducible with an ecoinvent license. For this, the Python code and metal scenarios are

documented in Supporting Information S8 (Chapters A and B) and provided in a repository (Harpprecht et al., 2021). The needed data from IMAGE

is available from PBL (PBL, 2019). Moreover, theMS scenario data can be used within the Activity Browser, a graphical user interface of Brightway

(Steubing et al., 2020), also in combinationwith the IMAGEscenarios via a so-called superstructure approach (deKoning&Steubing, 2020; Steubing

& de Koning, 2021).

Thus, our background scenarios can directly be used for prospective LCAs of any other technology, and can thereby help to better inform

decision-makers in the ongoing effort tomove toward a sustainable economy. Being transparently stored in excel files, theMS scenarios can further-

moreeasily be extendedbyother researchers. Althoughwedemonstrate the scenario incorporation at the exampleof ecoinvent, similar approaches

could be applied to other LCI databases.

5 CONCLUSIONS

We modeled future metal supply (MS) scenarios for four metals: copper, nickel, zinc, and lead. The scenarios comprise five variables to estimate

future developments in metal supplies until 2050: ore grade decline, primary production locations, energy-efficiency improvements, primary pro-

duction routes, and shares of primary and secondary production. Furthermore, we added electricity supply (ES) scenarios which describe possible

future energy systems.

Considering both metal and electricity supply scenarios, we investigated how environmental impacts of future metal supply, electricity supply,

and low-carbon technologies will develop in the future via prospective LCAs, and examined the key drivers for those future impact changes. The

distinctive feature of our approach is the concept of incorporating scenario data into an LCI database, namely ecoinvent. This means that ecoinvent

processes are directly modified, so that changes become effective in the entire database, that is, future metal supply chains make use of future

electricity and vice versa. Thereby, new background databases (representingmodels of a future economy) are created.

Based on our scenarios, we found that impacts of metal supply, electricity supply, and low-carbon technologies are likely to decrease per kg

metal or kWh energy. Considering both metal and electricity scenarios has proven to be essential, since they drive impacts in different categories:

improvingmetal supply can lower impacts of human toxicity andmetal depletion,while a greener electricity supply canhighly reduce climate change

impacts. Moreover, we identified increasing recycling shares as the most powerful measure for limiting future metal supply impacts and for com-

pensating impact increases caused by declining ore grades. Furthermore, it was revealed that impacts of low-carbon technologies due to metal

supply could be reduced most effectively through improvements of copper supply. However, these improvements are far from sufficient to com-

pensate increasing metal depletion impacts of a greener electricity mix which may almost double per kWh by 2050. It is important to stress that

these scenarios are not predictions, but an analysis of possible future developments.

Overall, our integrated scenario incorporation succeedednotonly in analyzing interlinked supply systems, as givenby theenergy-resourcenexus,

but also allowed to capture interactions between different scenarios. Calculating impacts of scenarios separately does not add up to their combined

effect. Therefore, capturing the joint effect of a combination of scenarios is crucial, as modeling them in isolation can lead to incorrect conclusions.

With scenario data and Python code supplied in the Supporting Information, our future databases can easily be reproduced, extendedwithmore

scenarios, and used as background for other prospective LCAs. This study thus constitutes one step toward improved consistency of prospective

LCAs, specifically regarding the evaluation of scenarios.However, evaluations strongly rely on the quality of the applied scenarios. Therefore, better

scenarios are needed: scenarios that considermore factors, such as geographical or technological details, that covermoremetal supply chains, and,

ideally, are coupled to each other.
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