
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Contrast Source
Inversion Electrical
Property Tomography
Is the two-dimensional CSI algorithm feasible on
realistic three-dimensional data?

MSc EE Thesis project EEMCS
Nadine van Dam



Contrast Source
Inversion Electrical

Property
Tomography

Is the two-dimensional CSI algorithm feasible
on realistic three-dimensional data?

by

Nadine van Dam
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday August 30, 2024 at 10:00 AM.

Student number: 4912527
Project duration: November 16, 2023 – August 30, 2024
Thesis committee: Dr. ir. R. F. Remis, TU Delft, supervisor

Dr. ir. B. J. Kooij, TU Delft

Cover: Conductivity and relative permittivity of the head of the Ella body
model.

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Preface

From an early age, I wanted to create technologies that help people. During my master’s, I searched for
a thesis subject that fulfilled this purpose. The Advanced Magnetic Resonance Imaging course made
me more aware of the usefulness of an MRI and the opportunities these scanners bring. Therefore, I
decided to meet with Rob Remis and was introduced to the subject of EPT and, more specifically, the
2D-CSI algorithm. This subject challenged me to improve my skills in both mathematics and physics.
Moreover, I needed to think outside the box to handle multiple issues. Under the supervision of Rob
Remis, I have acquired these and many more skills and this thesis would not have been possible with-
out him. Thank you for your support during the previous nine months.

Furthermore, I want to thank Thierry Meerbothe and the Computational Imaging Group for MR Ther-
apy and Diagnostics of the University Medical Centre of Utrecht for creating the ADEPT dataset and
helping me with questions about it. I also want to thank Stefano Mandaija and Nico van den Berg from
the same group for the interesting talk midway through my thesis. This meeting gave me many new
insights, which benefited my understanding and the final product. Besides that, many thanks to Tycho
van Velden and Florens Helfferich for the fun discussions on the subject. Additionally, thanks to the
Terahertz group for creating a welcoming environment where I could work on my thesis. Bert Jan Kooij,
thank you for being a committee member of my thesis defence.

Lastly, I want to thank my friends and family for all the support in the last nine months. Especially,
Evelien de Wolff and Renée Hagenman, thank you for cooking dinner when I worked late and helping
me in many other ways. Thank you, Willemijn Boeije, for always being there for me and making me
laugh at the harder moments. Many thanks to Karel van Dam; I am lucky to be your granddaughter,
and your advice was helpful. Last but not least, I want to thank my parents, sister and Jorick. In my off
days, you just listened to me and made it possible to move on and create the final product.

Nadine van Dam
Delft, August 18, 2024

i



Abstract

Electrical property tomography (EPT) reconstructs the human body’s conductivity and relative permittiv-
ity using the radio frequency field from a magnetic resonance machine. Since conductivity and relative
permittivity can be biomarkers for many illnesses, it is necessary to reconstruct them accurately. To this
end, this thesis focuses on the two-dimensional tranceive phase corrected contrast source inversion
algorithm (2D-CSI).

This 2D-CSI algorithm is significantly faster than its three-dimensional (3D) counterpart. However,
reconstruction artefacts may appear since the 2D field description is not always applicable. In this
thesis, these artefacts are identified and it is investigated if the 2D-CSI algorithm can be improved to
handle them. In particular, the proposed updates are, first, implementing the early stopping principle,
then adding a positivity constraint to the conductivity and relative permittivity, and lastly, initialising with
Helmholtz electrical property tomography (HEPT). The first two enhancements create a more robust
algorithm, while the third update could be useful only in specific cases (with no fine structures and low
noise levels).

After achieving amore robust algorithm, the 2D-CSI algorithm is applied to the realistic 3D dataset ”A
Database for MR-based Electrical Properties Tomography” (ADEPT). The first and foremost challenge
is accurately simulating the incident field, as the reconstructions depend a lot on the incident fields. If
the incident fields do not match perfectly, the algorithm can only produce satisfactory reconstruction
results in a part of the reconstruction domain. The reconstructions are only partly accurate because the
reconstructed electric fields converge to a line creating line artefacts. It is shown that small changes in
the incident fields produce small changes in the position of the artefacts. Based on this observation, a
reconstruction strategy has been developed in which a reconstruction without artefacts is produced by
combining reconstruction results of multiple incident fields. Integrating all modifications of the 2D-CSI
algorithm in one single framework shows that the conductivity and relative permittivity of the brain in
the middle of the birdcage coil can be reconstructed accurately.
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Samenvatting

In Elektrische Eigenschappen Tomografie (EPT) wordt de geleiding en de relatieve permittiviteit van het
menselijk lichaam gereconstrueerd met behulp van het radiofrequente veld van een MRI. De geleiding
en relatieve permittiviteit kunnen biomarkers zijn voor veel ziekten, daarom is het noodzakelijk om ze
nauwkeurig te reconstrueren. Om dit doel te bereiken richt dit proefschrift zich op het TweeDimension-
ale zend- en ontvangfase gecorrigeerd ContrastBron Inversie algoritme (2D-CSI).

Dit 2D-CSI algoritme is aanzienlijk sneller dan zijn DrieDimensionale (3D) tegenhanger. Er kunnen
echter reconstructieartefacten optreden omdat de 2D-veldbeschrijving niet altijd toepasbaar is. In dit
proefschrift worden deze artefacten geïdentificeerd en wordt onderzocht of het 2D-CSI algoritme kan
worden verbeterd om hiermee om te gaan. De voorgestelde updates zijn een implementatie van het
vroegtijdig beëindigen van het algoritme bij de kost functie minimum, het toevoegen van de beperking
dat de geleidbaarheid en de relatieve permittiviteit altijd positief zijn, en het initialiseren met Helmholtz
Elektrische Eigenschappen Tomografie (HEPT). De eerste twee verbeteringen zorgen voor een robu-
uster algoritme, terwijl de derde update alleen nuttig kan zijn in specifieke gevallen (zonder fijne struc-
turen en met een laag ruisniveau).

Nadat het 2D-CSI algoritme door de verbeteringen robuuster is geworden, wordt het toegepast op
de realistische 3D-dataset ”A Database for MR-based Electrical Properties Tomography” (ADEPT). De
eerste en belangrijkste uitdaging is het nauwkeurig simuleren van het invallend veld, omdat de recon-
structies sterk afhankelijk zijn van de invallende velden. Als de invallende velden niet precies kloppen
met de bijbehorende totale velden, kan het algoritme alleen goede reconstructieresultaten opleveren
in een deel van het reconstructiedomein. Dit effect wordt veroorzaakt doordat de gereconstrueerde
elektrische velden convergeren naar een lijn, waardoor lijnartefacten ontstaan. Er wordt aangetoond
dat kleine veranderingen in de invallende velden kleine veranderingen in de positie van de artefacten
veroorzaken. Op basis van deze observatie is een reconstructiestrategie ontwikkeld waarbij een re-
constructie met minder artefacten wordt geproduceerd door reconstructieresultaten van meerdere inci-
dentvelden te combineren. Door alle aanpassingen van het 2D-CSI algoritme in één enkel raamwerk
te integreren, blijkt dat de geleidbaarheid en de relatieve permittiviteit van de hersenen in het midden
van de birdcage-spoel nauwkeurig kunnen worden gereconstrueerd.
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Nomenclature

The scalars and vectors are respectively denoted in italics and bold throughout this thesis. The vari-
ables in the phasor domain have a ĥat. The domain description is given in BLACKBOARD.

Symbols

Symbol Definition Unit

A Vector potential [V]
a Circle radius centre Greens function [m]
A Two dimensional object domain [m2]
B Magnetic field [T]
B0 Static background field [T]
B1 Radio frequency field [T]
B+

1 Transmit field [T]
B−

1 Receive field [T]
c0 Speed of light [m/s]
d Distance to mirror sources [m]
E Electric field [V/m]
F Cost function [-]
G Gradient field [T]
g Cost function derivative [-]
i Unit vector [-]
i Imaginary unit physicists [-]
J Electric current density [A/m2]
j Imaginary unit engineers [-]
K Magnetic current density [V/m2]
k0 Wave number in vacuum [1/m 1

2 ]
N Number of antennas [-]
r Position vector [m]
RA Coil radius [m]
Rs Radio frequency shield radius [m]
S Induced signal [V]
v Update direction [-]
w Contrast source [V/m]
α Step length [-]
γ Gyromagnetic ratio [Hz/T]
ϵ Permittivity [F/m]
η Per-unit-length admittance [S/m]
η′B Data normalization factor [-]
η′E Object normalization factor [-]
θ Offset [-]
κ Factor [-]
µ Permeability [H/m]
ρ0 Proton density [protons/m3]
σ Conductivity [S/m]
τ Radio frequency pulse duration [s]
ϕ Antenna phase [-]
φ Phase [rad]
χ Contrast function [-]
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1
Introduction

Cancer is an illness which affects many people around the world. The International Agency for Re-
search on Cancer estimates approximately 20 million new cancer cases and 9.7 million deceased from
cancer in 2022 [1]. Early detection can help to reduce dying as early treatment is more effective [2].

Currently, there are multiple methods to detect cancer. Examples are biopsies, roentgen, ultra-
sound, and magnetic resonance (MR) imaging. A biopsy can give accurate results. However, it is
invasive, and the wound can be painful. On the other hand, non-invasive methods such as ultrasound
and X-rays have different limitations. Ultrasound can capture tissues using sound, although the sound
has difficulties penetrating hard tissues, resulting in bad-quality images of tissues inside bones [3]. The
X-ray uses roentgen radiation, which shows clear images of hard tissues, while soft tissue is more chal-
lenging to image [3]. Another significant disadvantage is that this radiation can damage the patient’s
tissue [3]. The MR imaging can accurately show the soft and hard tissue and is far less hazardous than
the roentgen images. Therefore, MR imaging is a favourable tool for imaging patients.

Conventional MR images are created by applying a radio frequency (RF) magnetic field to disturb
the magnetic fields in the body, and the relaxation time of different tissue types creates the images.
Instead of considering the relaxation times, the RF field in each pixel could be determined to find the
Electric Properties (EPs) of the tissue inside the body. This method is called Electrical Property To-
mography (EPT). The EPs can function as biomarkers for health issues such as cancer, cysts, and
strokes [4, 5, 6, 7, 8, 9]. Therefore, EPT images are preferred above conventional MR images. The
EPs include conductivity and relative permittivity. In the cancerous regions, strokes and cysts, the con-
ductivity is increased [4, 10]. Hence, especially knowledge about conductivity can help determine a
patient’s health.

In addition to finding abnormalities, EPT can be useful for calculating the Specific Absorption Rate
(SAR). SAR measures the absorption of the electric field, which is safe for the body. If the SAR is
exceeded, the body can be harmed. Especially at high-field MR machines (for example, a background
magnetic field of 7T), the SAR can be violated during the scan. Unfortunately, this SAR is different for
every individual. To avoid damage to the patient, there are large safety margins. However, if the SAR
can be measured simultaneously with the MR imaging scan, this is not necessary. This procedure
increases the image quality as more information can be obtained. Hence, EPT could be a valuable tool
to acquire more knowledge about the patient’s health and avoid damage to the patient’s tissue [4, 5].

The EPT research area can be divided into two subareas: acquiring the radio frequency magnetic
field and reconstructing the EPs from the radio frequency magnetic field. Most research, including this
thesis, is done on the reconstruction of the EPs, as this area allows for many reconstruction algorithms
which can be optimized. The reconstruction algorithms can be divided into the local, the global and the
combinations algorithms. The local algorithms often use the (second-order) derivative of the RF field.
These algorithms are easy to implement and fast. Unfortunately, the derivatives blow up around tissue
boundaries, resulting in inaccurate reconstructions at edges. Moreover, the noise gets amplified in the

1
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presence of noise, resulting in unreliable reconstructions. Helmholtz-EPT (HEPT) and Local Maxwell
Tomography (LMT) are examples of solely local algorithms [9].

The global methods, such as Contrast Source Inversion (CSI) [11] and Global Maxwell Tomography
(GMT) [9], often use an iterative approach to find the EPs. These global methods are less noise-
sensitive and do not have boundary issues. Unfortunately, these methods take longer and are harder
to implement than the local approaches. Furthermore, the iterative approach flattens the data. How-
ever, even with the flattened data, these methods create more accurate reconstructions than the local
methods.

The methods which are both local and global (Transverse EPT (TEPT) [12] and first order induced
current EPT (foIC-EPT) [13]) are easier to implement and faster than the full global methods. Moreover,
the combination algorithms have fewer boundary and noise issues than the full local approaches. How-
ever, the combination methods still fail earlier with high noise levels compared to the global methods,
making it less preferable than the full global methods.

Therefore, the focus of this research is on the CSI method. More specifically, the two-dimensional
(2D) CSI algorithm is implemented. This algorithm is 2D, assuming that the electric field is fully directed
in the longitudinal direction while the RF field only has components in the transversal plane [14]. In the
three-dimensional (3D) CSI algorithm, this assumption is not considered to make it more realistic, but
at the cost of a much more complex, computationally heavy, and slow algorithm [7]. These disadvan-
tages of the 3D-CSI algorithm make it necessary to see if the 2D-CSI algorithm could be used instead.
However, the 2D-CSI algorithm needs to be enhanced to achieve similar-quality images. This thesis
investigates multiple improvements on two datasets.

This thesis uses the HEPT method beside the 2D-CSI algorithm for comparison. In Figure 1.1, a
brain slice with fine structures is reconstructed with both HEPT and CSI. From the HEPT reconstruction,
the problems around boundaries can be seen easily. This results in an image which misses fine details
from the original data. The CSI algorithm is closer to the original; however, the reconstruction seems
to be a filtered version of the original data, and the relative permittivity reconstruction is not completely
accurate.

The algorithms are implemented on two datasets. First, a dataset is considered, named the ”Ella
dataset”, throughout the paper. This dataset includes conductivity and relative permittivity information
of multiple slices of the Ella body model from the Virtual Family [15]. The EPs create the correspond-
ing magnetic and electric fields under the 2D assumption. Hence, the created fields only include 2D
information. Therefore, applying the 2D-CSI algorithm seems straightforward. Note that this dataset
does not include error sources created by an MR machine, such as the limited length of the antennas.
From this dataset, the reconstruction of multiple different body parts is possible. However, the other
dataset only includes brain models. Therefore, the focus is on brain reconstruction for the Ella dataset.
Appendix B discusses the other body parts.

The second dataset is provided by T.G. Meerbothe et al. from the University Medical Center Utrecht
[16]. This dataset is called ”A Database for MR-based Electrical Properties Tomography” or, in short,
ADEPT. The ADEPT dataset includes electric and magnetic field data and the EPs of multiple brain
models. These fields are created with the Sim4Life simulation platform, which applies more information
about the MR machine. Moreover, it creates more realistic 3D fields. Besides that the data is more
realistic, there are brain models which include tumour tissue as well. Therefore, the algorithm can also
be tested to reconstruct data with tumors. As this dataset includes 3D fields, it might sound more rea-
sonable to use the 3D-CSI algorithm. Unfortunately, as mentioned before, the 3D-CSI algorithm takes
much longer than the 2D-CSI algorithm [8]. Therefore, it is investigated if using the 2D-CSI algorithm
to reconstruct a slice in a 3D dataset is possible.



1.1. Research question 3

Figure 1.1: Comparison between the reconstruction of HEPT and CSI. The top and bottom rows show the conductivity and
relative permittivity, respectively. The first column represents the original slice, the middle displays the HEPT reconstruction,
and the last presents the CSI reconstruction. The data on which the algorithms are applied is slice 320 of the Ella body model
(from the Virtual Family [15]) using 2.5 mm resolution.

1.1. Research question
The following research question provides the scope of the project:

How well does the two-dimensional Contrast Source Inversion algorithm perform in finding the
Electrical Properties from realistic three-dimensional field data of the human brain?

To reach an answer to this question, some sub-questions are designed:
• SQ1 How can the 2D-CSI algorithm be improved to be more robust for the 3D data?
• SQ2 How should the incident fields be adjusted to fit the 3D data?
• SQ3 How can information of multiple images be combined automatically?

Note that the CSI algorithm has multiple versions. In this paper, the multiplicative regularisation is not
implemented, but in each iteration, the RF field phase is updated to match the physics better.

1.2. Contribution
During this thesis project, some contributions have been made to improve the reconstruction with the
2D-CSI algorithm. These contributions are categorized into the corresponding sub-question:

• C1a The reconstruction at the cost function minimum is superior to later reconstructions as errors
due to failing assumptions are modelled in later iterations.

• C1b A positivity constraint is implemented to help the algorithm converge to a correct minimum
as the phase reconstruction of the RF field becomes more realistic.

• C2a The dependence of the magnitude of the incident fields and the reconstruction is investigated.
• C2b The offset of the incident fields changes the reconstruction.
• C3 The locations which are not redirected by the positivity constraint include the accurate recon-
structions.

The contributions of C1a and C1b were implemented on both the 2D Ella dataset and the 3D ADEPT
dataset and showed improved reconstructions. The contributions C2a, C2b, and C3 were only applied
in the ADEPT dataset.

1.3. Outline
The thesis is structured as follows. First, a mathematical background is provided in Chapter 2. After
that, some improvements to the 2D-CSI algorithm are proposed and implemented to reconstruct the
EPs of the Ella dataset in Chapter 3. Next, in Chapter 4, the 2D-CSI algorithm is applied to the ADEPT
dataset to create useful reconstructions. Lastly, conclusions are drawn in Chapter 5.



2
Method

In this chapter, the 2D-CSI algorithm is explained in detail. However, it is essential to start with some
background about EPT. To understand the physics behind EPT better, some background knowledge
about MR machines is necessary. The MR machine creates a static background field (B0). When the
imaging object lies inside the MR machine, the magnets create a net magnetisation in the body. The
images are created by applying two additional fields: an RF field (B1) and a gradient field (G). This
RF field is used to bring the net magnetisation out of equilibrium, and the gradient field creates focus
on a specific area in the body. Different tissue types of the body react differently on the RF field due
to the distinct electrical properties of the tissue. The received RF field thus holds EP information. As
mentioned in the introduction, part of the research in EPT is on the B1 mapping. This B1 mapping
includes finding the magnitude and phase of the RF field. Before a small summary of the different B1

mapping can be explained, it is necessary to understand more about the RF field.

2.1. Background Mathematics
2.1.1. Radio frequency field
When a person lies inside an MR machine, a large static magnetic field, B0, aligns the protons in the
body, resulting in a net magnetisation. The net magnetisation rotates in a left-handed manner with the
Larmor frequency (ω0 = γB0, where γ is the gyromagnetic ratio) around the B0 field assuming that
the B0 field is in the negative z direction (negative longitudinal direction). A second smaller field is
then applied, which rotates with the same frequency. This field is the radio frequency field B1 and can
be divided into two parts: a part which rotates left-handed, resulting in the transmit field B+

1 , and a
right-handed field called the receive field B−

1 . The transmit field in the phasor domain is defined as

B̂+
1 (r, jω) = B̂+

1 (r, jω)(ix − jiy) with B̂+
1 (r, jω) =

B̂1,x(r, jω) + jB̂1,y(r, jω)

2
(2.1)

and the receive field is defined as

B̂−
1 (r, jω) =

[
B̂−

1 (r, jω)
]†
(ix + jiy) with B̂−

1 (r, jω) =

[
B̂1,x(r, jω)− jB̂1,y(r, jω)

2

]†
, (2.2)

where ix and iy are the unit vectors in respectively the x and y directions, r is the position vector, B̂1,x

and B̂1,y are the RF fields in the x and y direction, and the dagger denotes the adjoint. The transmit field
rotates with the net magnetisation, which influences the net magnetisation. This influence depends on
the tissue type; therefore, the transmit field contains information about the underlying EPs of the tissue.
Hence, most EPT algorithms use the transmit field in the reconstruction algorithm. The transmit field
is acquired with the B1 mapping.

B1 mapping
As mentioned, a separate research area focuses on B1 mapping. However, it is important to know
some fundamental challenges that affect reconstruction. In B1 mapping, the induced signal caused

4
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by the changes in the net magnetisation due to the RF field is used as a starting point. A simplified
equation for the induced signal is

S(r, jω) = sin(γτ
∣∣B̂+

1 (r, jω)
∣∣) exp [jφ̂±(r, jω)

]
ρ0(r)

∣∣B̂−
1 (r, jω)

∣∣ , (2.3)
where τ , ρ0, and φ± = φ+ + φ− are the RF pulse duration, the spatial-dependent proton density, and
transceive phase, respectively [5, 9, 10, 17]. In the equation, it can be observed that the transmit field
magnitude exhibits non-linear behaviour. Therefore, it is relatively easy to determine the

∣∣B̂+
1 (r, jω)

∣∣
using multiple acquisitions. Methods which have been explored are the Double-Angle Method (DAM)
[18], Bloch-Siegert Shift (BSS) [19], Actual Flip angle Imaging (AFI) [20], and Dual Refocusing Echo
Acquisition Mode (DREAM) [21].

The phase of the transmit field is more difficult to determine as it is entangled with the receive
phase. However, it is known that the transmit and receive fields are very similar for symmetric objects
in circularly polarised fields [10]. Hence, it can be assumed that

φ+ =
φ±

2
, (2.4)

which is often denoted as the Transceive Phase Assumption (TPA) [4, 5, 8, 11, 12, 13, 10, 17]. The
transceive phase can be found using different sequences. For example, Van Lier proposes to use two
spin-echo sequences [22], while Gavazzi took a balanced Steady-State Free Precession (bSSFP) and
a phase cycled bSSFP sequence into account [23].

Many algorithms only require knowledge about the transmit field, not the receive field. On the other
hand, when the receive field is known, it is possible to check if the reconstructions are physically reliable.
Therefore, there are studies which estimate the magnitude of the receive field. The main challenge is
that the magnitude of the receive field is multiplied by the spatial-dependent proton density.

Recently, some machine learning algorithms have been proposed for the B1-mapping [24, 25].
These algorithms need large datasets to estimate the magnitude and phase of the B̂+

1 field correctly.
However, the results from these machine learning algorithms are promising.

Time convention
Another important consideration is the direction of the RF field components. This direction depends
on the chosen direction of the B0 field and the time convention selected to reach the phasor domain.
The chosen time convention in the 2D-CSI algorithm is exp(jω) (equal to the time convention of an
engineer); however, the time convention selected in the ADEPT dataset is exp(−iω) (equal to the
time convention of a physicist). Therefore, the fields of the ADEPT dataset can be adjusted to fit the
algorithm. This adjustment of the fields can be done with the conversion formulas

B̂+
1 (r, jω) =

[
B̂−

1 (r,−iω)
]∗ and B̂−

1 (r, jω) =
[
B̂+

1 (r,−iω)
]∗

, (2.5)

where asterisk represents the complex conjugate. Besides converting the magnetic field, the electric
field is adjusted to handle the time convention change. This conversion is done with the following
formula

Êz(r, jω) =
[
Êz(r,−iω)

]∗
. (2.6)

The description of the transmit field can be used for the 2D-CSI algorithm. This RF field and additional
physical relations are verified to make the algorithm robust to noise. These physical relations come
from the Maxwell equations.

2.1.2. Maxwell equations
The starting point for the physical relations behind EPT is the time-harmonic Maxwell equations (in the
phasor domain shown with a circumflex). These are the Ampère-Maxwell law :

−∇× B̂ + η̂µÊ = −µĴext, (2.7)

and Faraday’s law:
∇× Ê + jωB̂ = −K̂ext. (2.8)
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In these equations η̂, µ, ω, and j are per-unit-length admittance, permeability, angular frequency, and
the imaginary unit, respectively. The per-unit-length admittance can be formulated as η̂ = σ + jωϵ0ϵr
in which σ is the conductivity and ϵ0, and ϵr are respectively the permittivity in vacuum and the relative
permittivity. Moreover, Ĵext is the external electric current density, and K̂ext the external magnetic
current density. In the case of EPT, there are no external electric- and magnetic-current densities
present in the body [9] therefore those are equal to zero. Furthermore, the tissue permeability is almost
constant throughout the body and is assumed to be equal to the permeability of vacuum (µ0). This
results in the following equations:

−∇× B̂ + η̂µ0Ê = 0, (2.9)

and
∇× Ê + jωB̂ = 0. (2.10)

2.2. Two-dimensional Contrast Source Inversion algorithm
Van den Berg and Kleinman proposed the CSI algorithm in 1997 [26]. Since then, the algorithm has
been applied to different inversion problems such as the reconstruction of geological structures using
full-waveform seismic information [27], spoilage detection of grain with microwave imaging [28], and
borehole logging from electromagnetic measurements [29]. The first time CSI was applied to the EPT
problem was in 2013 by Balidema et al. [30]. Thereafter, much research has been performed in im-
proving the CSI algorithm [11, 9, 31, 14].

In the 2D formalism, it is assumed that the fields are E-polarized in the middle of a birdcage coil [32,
33]. Therefore, it is assumed that there is only a longitudinal component for the electric field E = Eziz
and the magnetic field is solely in the transversal plane B = Bxix + Byiy. This assumption simplifies
the algorithm, which makes the algorithm faster. Leijsen formulated the full 3D formalism [7].

2.2.1. Scattering formalism
CSI adopts the scattering formalism and divides the entire field into the incident and scattered fields.
Figure 2.1 shows a schematic of this scattered formalism and

{Ê, B̂+
1 } = {Êinc, B̂+;inc

1 }+ {Êsca, B̂+;sca
1 } (2.11)

shows the corresponding equation, where the incident fields, {Êinc, B̂+;inc
1 }, are the fields which are

present even when the imaging object is not inside the MR machine. This field can be measured
or simulated and, therefore, known beforehand. On the other hand, the imaging object creates the
scattered fields. For the 2D scattered fields, the magnetic and electric fields can be represented by

B̂+;sca
1 (r) =

ω

c20
∂+Âsca(r), and Êsca(r) = k20Â

sca(r), (2.12)

where ∂+ = 1
2 (∂x + j∂y) is the Wirtinger derivative, r is the position vector of the observation point, c0

light speed in a vacuum, k0 =
ω

c0
the wave number in a vacuum, and the scattered vector potential is

Âsca(r) =

∫
r′∈A

Ĝ(r − r′)ŵ(r′)dS, (2.13)

where r′ is the position vector of the source point, the Ĝ(r) is the 2D Green’s function, A the object
domain, and ŵ(r) the contrast source [8, 14]. The 2D Green’s function is given by

Ĝ(r) = − j

4
H

(2)
0 (k0|r|), (2.14)

whereH
(2)
0 (·) denotes the Hankel function of the second kind zeroth order [8, 14]. The contrast source

is defined as
ŵ(r) = χ̂(r)Ê(r), (2.15)
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x

yy

x + =

Figure 2.1: Schematic of the scattering formalism. On the left, an empty coil used for the incident field is shown, where the
pink dots represent the antenna positions, and the dotted circle is the RF shield surrounding the antennas. In the middle, the

head is given as a scattered object. On the right, the situation with the total field is demonstrated.

where χ̂ is the contrast function which can be described as

χ̂(r) =
η̂(r)− η̂0

η̂0
= ϵr(r)− 1− jσ(r)

ωϵ0
, (2.16)

using η̂0 = jωϵ0. The scattered transmit field in Equation 2.12 is referred to as the data equation and
is often written more compactly as

B̂+;sca
1 (r) = G+

B{ŵ}. (2.17)

Moreover, the scattered electric field is often shortened to

Êsca(r) = GE{ŵ}. (2.18)

The object equation is then reached by multiplying the electric fields of Equation 2.11 with the contrast,

ŵ(r) = χ̂Êinc(r) + χ̂GE{ŵ(r)}. (2.19)

2.2.2. Cost function
From equation 2.16, it is clear that the contrast and (indirectly) the contrast source include the EPs;
therefore, the contrast and contrast source should be accurately determined during the CSI process.
A cost function is introduced to successfully determine the contrast and contrast source, which tries to
minimise the error with the data and object equation [7]. Minimising the data equation error ensures
the result is close to the MR data. The object equation error should be minimised to satisfy Maxwell’s
equation. Therefore, the cost function for the simplest 2D-CSI algorithm becomes

F (ŵ, χ̂) =

∥∥∥B̂+;sca − G+
B{ŵ}

∥∥∥2
A∥∥∥B̂+;sca

1

∥∥∥2
A

+

∥∥∥χ̂Êinc − ŵ + χ̂GE{ŵ}
∥∥∥2
A∥∥∥χ̂Êinc

∥∥∥2
A

, (2.20)

where the first term represents the normalised data equation error and the second term the normalised
object equation error [9].

However, the measured magnetic field’s phase is not the transmit but the transceive phase. The
transmit phase can be determined using the known transceive and unknown receive phases (φ+ =
φ±−φ−). Therefore, if the receive phase is included in the cost function, the results should have fewer
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issues related to the TPA. This approach is often called Transceive Phase Correct (TPC) CSI-EPT. The
cost function becomes

F (ŵ, χ̂, φ−) =

∥∥∥∣∣B̂+
1

∣∣ ejφ±
e−jφ− − G+

B{ŵ} − B̂+;inc
1

∥∥∥2
A∥∥∥∣∣B̂+

1

∣∣ ejφ±e−jφ− − B̂+;inc
1

∥∥∥2
A

+

∥∥∥χ̂Êinc − ŵ + χ̂GE{ŵ}
∥∥∥2
A∥∥∥χ̂Êinc

∥∥∥2
A

, (2.21)

[14]. The normalisation factors are necessary to ensure that the optimisation focuses on the data and
object equation equally. To simplify the expressions, these normalization factors can be defined as
single variables as

η′B =

(∥∥∥∣∣B̂+
1

∣∣ ejφ±
e−jφ− − B̂+;inc

1

∥∥∥2
A

)−1

and η′E =

(∥∥∥χ̂Êinc
∥∥∥2
A

)−1

, (2.22)

where η′B and η′E correspond to the data and object equation. The cost function is minimised by fixing
all except one variable, updating this variable, and repeating until all variables have been updated. The
order of updating is first the contrast source, then the contrast and lastly the receive phase.

2.2.3. Updating the contrast source
The contrast source is updated using the formula

ŵn = ŵn−1 + αw
nvn, (2.23)

where ŵn−1, αw
n and vn are the previous contrast source, the step length and the update direction,

respectively. The update direction is the Polak-Ribière conjugate gradient update direction:

vn = gw
n +

ℜ
{〈

gw
n , g

w
n − gw

n−1

〉
A
}∥∥gw

n−1

∥∥2
A

vn−1 with v0 = 0, (2.24)

where the ⟨·, ·⟩A denotes the inner product and gw
n is the gradient of the cost function with respect to

the contrast source [34]. This gradient can be obtained by

gw
n = −

[
η′BG

+;†
B

{∣∣B̂+
1

∣∣ ejφ±
e−jφ−

n−1 − G+
B{ŵn−1} − B̂+;inc

1

}
+ η′E

(
Ên−1 − G†

E

{
χ̂†
n−1Ên−1

})]
,

(2.25)
where G+;†

B and G†
E are the adjoint Green’s operators of G+

B and GE respectively, and the asterisk de-
notes the complex conjugate [34]. Next, to determine the real step length, the following minimisation
problem needs to be solved [34]:

αw
n = argmin

α

[
F (ŵn−1 + αvn, χ̂n−1, φ

−
n−1)

]
. (2.26)

This minimisation problem leads to a step length of

αw
n =

−ℜ
{
⟨gw

n ,vn⟩A
}

η′B
∥∥G+

B

{
vn

}∥∥2
A + η′E,n

∥∥vn − χ̂n−1GE

{
vn

}∥∥2
A

. (2.27)

The above-described update direction and step length can now be substituted in Equation 2.26. Lastly,
the initialisation of the contrast source can have large effects on the resulting reconstructions as an
incorrect initialisation might lead to local minima [31]. However, often, the initialisation is calculated by
back projection. Throughout this thesis, the back projection will be used unless stated otherwise. The
initial contrast source is then obtained by

ŵ0 =

∥∥∥G+;†
B

{
B̂+

1

}∥∥∥2
A∥∥∥G+

B

{
G+;†
B

{
B̂+

1

}}∥∥∥2
A

G+;†
B

{
B̂+

1

}
. (2.28)
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Algorithm 1 2D-Contrast Source Inversion
Initialize ŵ0, and corresponding χ̂0, Ê0, and φ−

0

while n ≤ N do
Fix Ên−1, χ̂n−1, and φ−

n−1 to update ŵn = ŵn−1 + αw
nvn

Fix ŵn, χ̂n−1, and φ−
n−1 to update Ên = Êinc + GE{ŵn}

Fix ŵn, Ên, and φ−
n−1 to update χ̂n =

ŵn·Ê†
n

|Ên|2

Fix ŵn, Ên, and χ̂n to update φ−
n = ∠(B̂−;sca

1;n + B̂−;inc
1 )

if Fn(ŵn, χ̂n, φ
−
n ) < tolerance then

Break
Calculate ϵr = ℜ{χ}+ 1
Calculate σ = −ωϵ0ℑ{χ}

2.2.4. Updating the contrast
If the contrast source is known, the total electric field is updated

Ên = Êinc + GE

{
ŵn

}
. (2.29)

This updated electric field is necessary to calculate the new contrast. The contrast is determined by
minimising the least squares problem

χ̂n = min
χ

∥∥∥ŵn − χÊn

∥∥∥2
A
. (2.30)

Therefore, the contrast is updated using the equation

χ̂n =
ŵn · Ê†

n∣∣Ên

∣∣2 . (2.31)

Note that, at small electric field strengths, the contrast becomes large. Therefore, instead of the least
squares approach, a similar updating scheme for the contrast source could be used [35]. However, this
approach is more complex, increasing the computation time. Hence, this thesis uses the least squares
method to keep the computational time reasonable.

2.2.5. Updating the receive phase
The last variable that is updated is the receive phase. Therefore, the receive field is determined by first
computing the scattered receive field. The scattered field can be determined with

B̂−;sca
1 (r) = − ω

c20
∂−Âsca(r), (2.32)

where ∂− = 1
2 (∂x − j∂y) is the Wirtinger derivative for the receive field. The total transmit field is then

obtained by B̂−
1 = B̂−;inc

1 + B̂−;sca
1 . Lastly, the receive phase is determined by

φ−
n = ∠(B̂−

1;n). (2.33)

A summary of the 2D-CSI is shown in Algorithm 1. Note that additional regularisation often improves
the CSI algorithm, such as the multiplicative regularisation with a total variation factor [31]. However,
this thesis does not implement regularisation, so the focus is on the proposed adjustment.

2.2.6. Weakened Green's function
One last important remark: Green’s function, as described in Equation 2.14, has a logarithmic singu-
larity at zero [36]. In EPT, the source and object domain overlap, and therefore, it is possible that
r− r′ vanishes. Hence, the Green’s function is adjusted to handle this situation, introducing the weak-
ened Green’s function. First, a small circular area Acirc around the origin is implemented with a radius
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a = 1
2 min{∆x,∆y} where ∆x and ∆y are the resolution in the x and y direction respectively. The

weakened Green’s function outside this circle is defined as

ĜW (r) = − j

2k0a
J1(k0a)H

(2)
0 (k0|r|), (2.34)

where J1(·) is the first-order Bessel function of the first kind [36]. This weakened Green’s function is
still very similar to the original Green’s function, but only with a factor difference. Furthermore, the
weakened Green’s function at the origin is now defined as

ĜW (0) = − j

2k0a

[
H

(2)
1 (k0a)−

2j

πk0a

]
, (2.35)

where H
(2)
1 (·) is the Hankel function of first-order second kind. Using the weakened Green’s function,

the scattered action potential becomes

Âsca(r) =

∫
r′∈A

ĜW (r − r′)ŵ(r′)dS. (2.36)

2.3. Helmholtz Electrical Property Tomography algorithm
A simpler HEPT method is also implemented to compare these reconstructions with the 2D-CSI recon-
structions. The first time the EPT algorithm was implemented was in 1991 by Haacke et al. [37]. Many
papers have used this algorithm due to the simplicity and short time the algorithm takes [13, 17, 9, 12,
5, 16]. To obtain the HEPT equations, the two Maxwell Equations 2.9 and 2.10 are combined by first
taking the curl of Equation 2.9. This results in

−∇×∇× B̂ + µ0∇× (η̂Ê) = 0. (2.37)

The next step is to apply the identities ∇×∇× B̂ = ∇∇· B̂−∇2B̂ and ∇× (η̂Ê) = ∇η̂× Ê+ η̂∇× Ê.
Therefore, Equation 2.37 can be rewritten to

−∇∇ · B̂ +∇2B̂ + µ0∇η̂ × Ê + µ0η̂∇× Ê = 0. (2.38)

The equation above still includes both the electric and magnetic fields. Fortunately, from Equation 2.10,
it is known that ∇× Ê = −jωB̂ and Equation 2.9 shows that Ê =

1

η̂µ0
∇× B̂. Hence, the electric field

in Equation 2.38 can be substituted by the equations as mentioned earlier, resulting in

−∇∇ · B̂ +∇2B̂ +
∇η̂

η̂
× (∇× B̂)− jωµ0η̂B̂ = 0. (2.39)

The first term vanishes as the divergence of Equation 2.10 is ∇ · (∇ × Ê) + jω∇ · B̂ = 0 and the
divergence of the curl is always zero. Therefore, ∇ · B̂ must be zero as well. Furthermore, in HEPT, a
homogeneous medium is assumed, resulting in ∇η̂ = 0. Equation 2.39 can be simplified to

∇2B̂ − jωµ0η̂B̂ = 0. (2.40)

The magnetic field can be converted to the transmit field by taking the inner product of Equation 2.40
and i+ = 1

2 (ix + jiy). Consequently,

∇2B̂+
1 − jωµ0η̂B̂

+
1 = 0. (2.41)

Moreover, the formula for the admittance can be substituted, and the terms can be reordered to

∇2B̂+
1

B̂+
1

= jωµ0(σ + jωϵ0ϵr). (2.42)

The conductivity is included in the imaginary part, while the relative permittivity is included in the real
part of the transmit field. Hence, the conductivity can be found using

σ =
1

ωµ0
ℑ

(
∇2B̂+

1

B̂+
1

)
, (2.43)
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Algorithm 2 HEPT algorithm

Calculate σ =
1

ωµ0
ℑ

(
∇2B̂+

1

B̂+
1

)

Calculate ϵr =
−1

ω2µ0ϵ0
ℜ

(
∇2B̂+

1

B̂+
1

)
Gaussian filter over σ and ϵr
if σ(r) > mean{σ(r)}+ 3 ∗ std{σ(r)} then

σ(r) = mean{σ(r)}+ 3 ∗ std{σ(r)}
if ϵr(r) > mean{ϵr(r)}+ 3 ∗ std{ϵr(r)} then

ϵr(r) = mean{ϵr(r)}+ 3 ∗ std{ϵr(r)}

and the relative permittivity

ϵr =
−1

ω2µ0ϵ0
ℜ

(
∇2B̂+

1

B̂+
1

)
. (2.44)

The Laplacian of the transmit field results in boundary issues as the sharp edges between different
tissue areas result in data amplification at the boundaries. Moreover, if noise is present, the HEPT
reconstructions become noisy as the noise intensity is heightened due to the spatial differentiation of
the data. A spatial Gaussian filter is applied to the reconstructions tomitigate these problems. Moreover,
upper limits are implemented to prevent the algorithm from exceeding far above realistic values. The
upper limits are set tomean{σ(r)}+3∗std{σ(r)}, andmean{ϵr(r)}+3∗std{ϵr(r)} for the conductivity
and relative permittivity, respectively [38]. If these values are exceeded in any pixel, the algorithm sets
the pixel equal to the limit. A summary of the HEPT implementation is provided in Algorithm 2.



3
Performance of 2D-CSI on the 2D Ella

dataset

This chapter investigates multiple enhancements on a 2D dataset to make the CSI algorithm more
robust and better at handling 3D data. First, an explanation of the creation of the 2D dataset is provided.
Afterwards, the effect of early stopping on the image quality is considered. Subsequently, the inclusion
of a positivity constraint is discussed. The chapter ends with a small investigation of the effect of the
chosen initialisation.

3.1. Create dataset
The Ella body model from the virtual family [15] includes tissue information of a 26-year-old female and
is used to create the 2D dataset. From the body model, three different slices are chosen (Figure 3.1).
Throughout this thesis, the focus is on the head (slice 320), while the legs (slice 55) and pelvis (slice
168) are discussed in Appendix B. Figure 3.2 shows the 2D conductivity and relative permittivity map
corresponding to the head slice (these values correspond to EP values measured at 3 T ). The EPs
are discretised using a square meshing with a mesh size of 2.5 mm, resulting in images of 120 × 212
pixels.

3.1.1. Incident fields
The incident and scattered fields are created first to determine the total fields. The incident fields are
simulated in an empty bird cage coil with 16 legs. The legs inside the bird cage coil are modelled as 16
equally spaced infinite long wires on a circle with a radius of RA = 0.352m. In the middle of a birdcage
coil, the legs can indeed be assumed to be infinitely long lines, as, at this location, the edge effect of
the coil is negligible. Furthermore, it is necessary to implement an RF shield as this removes external
RF fields [14]. This RF shield is modelled with 16 mirror sources spread evenly on a circle at a distance
of

d =
R2

S

RA
, (3.1)

where Rs = 0.3715 m is the RF shield radius [39, 14]. These mirror sources are also assumed to be
infinite long wires, but the current is going in the opposite direction. Figure 3.3 shows the empty coil
with all distances. Moreover, a parameter θ is introduced, showing the MRmachine’s phase offset. This
offset affects the phase of the simulated incident fields. The incident fields can be calculated similarly as
in Equation 2.12 but with an external vector potential instead of the scattered vector potential. Hence,
the incident fields are defined as

B̂+;inc
1 (r) =

ω

c20
∂+Âext(r), B̂−;inc

1 (r) = − ω

c20
∂−Âext(r), and Êinc(r) = k20Â

ext(r), (3.2)

where the external vector potential becomes

Âext(r) =
1

jωϵ0

∫
r′∈A

Ĝ(r − r′)Ĵext(r′)dS. (3.3)

12
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Figure 3.1: 3D image of the Ella body with the planes of interest shown. From bottom to top, slices 55, 168, and 320 show the
legs, pelvis and head, respectively.

(a) Conductivity (b) Relative permittivity

Figure 3.2: The conductivity and relative permittivity of slice 320 as provided in the Ella dataset.

The external current Ĵext can be modelled as a positive delta at the location of the legs and a negative
delta at the position of the mirror sources. These deltas should be multiplied by a magnitude factor,
representing the inserted power, and a phase factor, due to the operating mode of the MR machine.
The deltas make it possible to reduce integrals to sums. Moreover, the Green’s function is no longer
zero as the sources are outside the imaging domain, making using the normal Green’s function possible.
Therefore, the external vector potential can be described as

Âext(r) =
1

4ωϵ0

N∑
n=1

ej(ϕn+θ)
[
−H

(2)
0 (k0|r − rA;n|) +H

(2)
0 (k0|r − rM ;n|)

]
, (3.4)

where N is the number of legs, ej(ϕn+θ) is the quadrature mode term, and rA;n and rM ;n are the
antenna locations and mirror sources for the n-th leg respectively. The phase ϕn = 2π

N (n − 1) is used
to determine these locations, namely

rξ;n = Rξ

[
cos(ϕn)
sin(ϕn)

]
, (3.5)
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where ξ represents either the antenna locations (A) or the mirror source location (M ). Applying this
external vector potential to Equation 3.2 results in the incident electric, transmit, and receive field in
Figure 3.4, 3.5, and 3.6 respectively. The magnitude of these incident fields indeed corresponds to
fields in quadrature mode [32]. For the phase figures, note that the sharp edges are at locations where
one side is −π and the other side π, which are values very close to each other, so the phases show
smooth patterns.

3.1.2. Total electric field
The simulated incident electric field is necessary to create the total electric field. The total electric field
is found with the Generalized Minimal Residual (GMRES) method [40]. GMRES’s outcome consists of
a vector that minimises an error in a defined residual. In this case, the minimization problem becomes

Êtot = min
E

∥∥E − GE

{
χ̂E
}
− Êinc

∥∥
2
, (3.6)

Rs

RA

y

x x

y

d

Figure 3.3: Schematic of the birdcage coil without (left) and with (right) an offset θ. The pink and blue circles indicate the coil
legs and mirror sources. Moreover, the darker circle represents the main legs. The dotted circle is the RF-shield location.

Figure 3.4: The electric incident field with the magnitude on the left and the phase on the right with an offset θ = 0◦

.

Figure 3.5: The incident transmit field with the magnitude on the left and the phase on the right with an offset θ = 0◦

.
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Figure 3.6: The incident receive field with the magnitude on the left and the phase on the right with an offset θ = 0◦

.

Figure 3.7: The total electric field with the magnitude on the left and the phase on the right with an offset θ = 0◦

.

Figure 3.8: The total transmit field with the magnitude on the left and the phase on the right with an offset θ = 0◦

.

where rE is the residual of the electric field as defined in Equation 2.29 with the contrast source written
in components as defined in Equation 2.15. Figure 3.7 provides the total electric field. The magnitude
of the total electric field is no longer a perfect circle; instead, the EPs are imprinted. The phase is
also adjusted, as the clear lines in the incident field now show a wavy pattern. This suggests that the
GMRES method can indeed be used to create the electric field.

3.1.3. Creation of other variables
When the electric field is known, the contrast source is calculated with Equation 2.15. The contrast
source is then inserted in the scatter field Equations 2.12 and 2.32 to create the scattered transmit and
receive field. Lastly, the scattered transmit and receive fields are combined with the incident transmit
and receive fields to determine the total transmit and receive fields. Figure 3.8, and 3.9 provide these
total transmit and receive fields. In these images, it is possible to see the outline of the head, which
suggests that the contrast has affected the transmit and receive fields. The creation of the Ella dataset
is summarised in Figure 3.10.
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Figure 3.9: The total receive field with the magnitude on the left and the phase on the right with an offset θ = 0◦

.

Figure 3.10: An overview of the process used to create the Ella dataset.

3.2. Experiments
This section starts with the introduction of multiple adjustments, and afterwards, a robustness analysis
is performed, but before discussing multiple improvements, the algorithm is first run without enhance-
ments and with the following parameters:

• Maximum number of iterations: 1000
• Tolerance: 1e− 6

• Update receive phase: on
• Multiplicative regularisation: off
• Data: 2D

The bottom of Figure 3.11 shows the reconstruction after 1000 iterations. When the reconstructions
are compared to the original, the conductivity is close to the original except for small deviations on the
antidiagonal and at boundaries. On the other hand, the relative permittivity has large errors on the
antidiagonal and at boundaries. These larger errors for the relative permittivity compared to the con-
ductivity can originate from the fact that at 3 T , the displacement current is relatively small compared
to the conduction current, where the displacement current is proportional to the relative permittivity and
the conduction current to the conductivity.

Furthermore, the antidiagonal and boundaries are most affected as the TPA fails at those locations.
Therefore, it is important to investigate adjustments to the algorithm to mitigate these effects. Moreover,
seeing if the results are better at another iteration is interesting. Hence, the first proposed improvement
is an implementation of early stopping. Leijsen has mentioned that iterating too far results in the algo-
rithm modelling error sources and so reaching worse reconstructions [31].
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(a) Original conductivity (b) Original relative permittivity

(c) Reconstructed conductivity (d) Reconstructed relative permittivity

Figure 3.11: The conductivity (a, c) and relative permittivity (b, d) of slice 320 with on the top the original EPs and at the bottom
the result after applying the CSI algorithm at the 1000th iteration.

3.2.1. Early stopping
As eyeballing the reconstructions at each iteration is unrealistic, it has been decided to look at three
performance metrics instead. The first is the magnitude of the cost function at each iteration. The
mean squared error between the original and reconstructed conductivity is calculated. The last metric
is the mean squared error between the original and reconstructed relative permittivity. Note that the
first metric can always be taken while the others can only be used when the ground truth is available.
Figure 3.12 shows the results at each iteration. The cost functional first drops, and after 346 iterations,
it increases again. On the other hand, the conductivity error has a minimum at the 677th iteration. The
relative permittivity error first increases and then has a steep decrease until iteration 76 and afterwards
increases slowly again.

Figure 3.13 provides the reconstructions at the different minima. The reconstruction of the 76th
iteration is hardly interpretable, as everything is blurred. The lower relative permittivity error in the early
iterations can be explained by the algorithm converging away from the ground truth in some pixels
after more iterations. Since the difference for each point counts equally, these pixels increase the error
substantially while the reconstruction becomes better interpretable. More specifically, in the beginning,
the boundary is still captured correctly, but later on, parts of the boundary converge to zero. Despite
the increase in error, the readability of the relative permittivity at iterations 346 and 677 is better. When
the 346th iteration is compared to the 677th iteration, it can be seen that the second is a sharper
version of the first. Furthermore, the EPs of the 346th iteration have fewer gaps in the reconstruction
at the edges, which makes this reconstruction better. Lastly, when comparing the final reconstruction
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Figure 3.12: The algorithm’s performance for slice 320 over different iterations measured using the cost function magnitude,
the mean squared error of both the conductivity and the relative permittivity. The light blue, purple, and red vertical lines
represent the iterations with the lowest cost functional, conductivity error, and relative permittivity error, respectively.

and the reconstruction at iteration 346, the latter is closer to the original, especially for the relative
permittivity. Therefore, the reconstruction at the minimum of the cost functional is a reasonable option
for an early stopping mechanism, this effect was even more clearly seen in Appendix B. Additionally,
the early stopping can increase the speed of the algorithm. However, there are still some errors in the
reconstruction. Therefore, a second proposed enhancement is the addition of a positivity constraint for
both the conductivity and relative permittivity.
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(a) Reconstructed conductivity at smallest cost (b) Reconstructed relative permittivity at smallest cost

(c) Reconstructed conductivity with best conductivity (d) Reconstructed relative permittivity with the best conductivity

(e) Reconstructed conductivity with best relative permittivity (f) Reconstructed relative permittivity with best best relative permittivity

Figure 3.13: The conductivity (a, c, e) and relative permittivity (b, d, f) of slice 320, where the upper, middle and bottom rows
show the reconstructions at the minima of the cost functional, conductivity error and relative permittivity error, respectively.

3.2.2. Positivity constraint
It is physically known that both the conductivity and the relative permittivity should be positive, which
could be implemented in the algorithm. However, as the CSI algorithm does not directly depend on
conductivity and relative permittivity, this constraint is implemented in the contrast function update.
Therefore, Equation 2.16 needs to be revised. The real part depends on the relative permittivity, and
the imaginary part depends on the conductivity. Hence, the positivity constraint can be implemented
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by verifying these two conditions:

1. ℜ{χ(r)}+ 1 ≥ 0,
2. ℑ{χ(r)} ≤ 0,

where χ(r) is the contrast function at position r. If these conditions fail for any position at any iteration,
the contrast function is brought back to the Hilbert space through the following rules:

1. χnew(r) = −ℜ{χold(r)}+ jℑ{χold(r)},
2. χnew(r) = ℜ{χold(r)} − jℑ{χold(r)}.

Note that, in this case, the sign of the contrast function part which fails the condition is flipped. Figure
3.14 shows the reconstructions with implemented positivity constraint. The reconstructions are very
close to the original. Moreover, the difference between the final reconstruction at iteration 1000 and
the 993th iteration cannot be seen. Therefore, the 993 iteration reconstruction couldminimally decrease
the computational time. When the positivity constraint is applied, the reconstruction has improvedmuch
compared to the final reconstruction in Figure 3.11. More specifically, the previously noted problems
with the diagonal and in the middle are reduced. Lastly, when studying the differences between the 346
slice (Figure 3.13) without positivity and the reconstructions with positivity, the image is less blurred in
the second case, and the permittivity is reconstructed better around the diagonal. Hence, these results
show that the positivity constraint helps to avoid some issues due to the failing TPA. This behaviour
was also observed for the pelvis slice in Appendix B.

Instead of flipping the sign of the real and imaginary part, the conductivity and relative permittiv-
ity can be set to zero when the condition fails. This zero implementation is investigated in Appendix
A. It can be seen that the reconstructions for the head slice and the different implementations of the
positivity constraint are very close to each other. Moreover, the results were similar in the pelvis slice
(not provided). Further on, as there is not a clear advantage for the zero implementation, the sign flip
implementation is used as it is known that the EPs are larger than zero in the body.

The last adjustment which is considered is choosing a different initialisation. Leijsen mentioned that
the initialisation could significantly impact the reconstructions [31].
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(a) Reconstructed conductivity at smallest cost (b) Reconstructed relative permittivity at smallest cost

(c) Final reconstructed conductivity (d) Final reconstructed relative permittivity

Figure 3.14: The conductivity (a, c) and relative permittivity (b, d) of slice 320 with the positivity constraint implemented. The
upper row shows the reconstruction at the iteration with the minimum cost functional, and the bottom row shows the final
reconstruction.

3.2.3. Initialisation
The other proposed initialisation is to calculate the contrast function using the reconstructions from
HEPT. Figure 3.15 provides the reconstructions with HEPT initialisation. The reconstructions after the
first iteration are difficult to interpret because of the fine structures inside the head. The HEPT algorithm
has difficulties as it amplifies the values at these edges. If the iterations progress, the reconstruction
improves, and at the 980th iteration, the cost function is minimal. The resulting reconstructions include
most details from the original EPs, but the boundaries are not very sharp, and the different tissue
areas are not smooth, which increases the difficulty of interpreting the reconstructions correctly. When
comparing the reconstructions with HEPT and the reconstructions with back projection initialisation
(Figure 3.14), using HEPT does not speed up the algorithm in the head slice. Moreover, the images
with back projection are better around the boundaries and are smoother in the different tissue areas.
If noise is added to the fields, the reconstruction of HEPT is even worse as the field is differentiated
twice, so the noise gets amplified. Therefore, with the HEPT initialisation, the algorithm has even more
problems finding the actual data than the backpropagation initialisation. Hence, it is decided to use
backpropagation throughout the rest of the thesis.
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(a) Reconstructed conductivity after first iteration (b) Reconstructed relative permittivity after first iteration

(c) Reconstructed conductivity at smallest cost (d) Reconstructed relative permittivity at smallest cost

Figure 3.15: The conductivity (a, c) and relative permittivity (b, d) of slice 320 with HEPT initialisation and positivity constraint
implemented. The upper row shows the reconstruction after the first iteration. The bottom row shows the reconstruction at the
cost functional minimum.

3.2.4. Robustness analysis
The robustness analysis first considers the effect of a change in offset. Second, the quality of the
reconstructions with different noise levels is investigated.

Effect on offset
The data created by an MR machine has an uncertain offset θ. Therefore, the algorithm should be
robust even though the wrong offset is chosen for simulating the incident fields. A wrongly chosen offset
is simulated by creating the Ella dataset according to Figure 3.10, after which the incident fields are
simulated again, but with an offset of 5 degrees. Figure 3.16 shows the 2D-CSI algorithm reconstruction
with and without applying the positivity constraint. The conductivity and relative permittivity without
positivity constraint at the cost functional minimum are blurred and too inaccurate to be used. When
the positivity constraint is applied, the conductivity becomes very accurate except for the outer edge
and the centre. The relative permittivity lacks more details at the edge and in the centre than the
conductivity but is still better interpretable than the results without the positivity constraint. Hence,
adding the positivity constraint makes the model more robust to inaccurately known offsets.

Effect on noise
The data used so far is noiseless. Unfortunately, this is not realistic in a real-life setting. Therefore,
the measured data should be distorted by noise. This noise is implemented by adding random values
scaled to the Signal-to-Noise Ratio (SNR) to both the magnitude and phase of the transmit and receive
field. A realistic SNR value for a 3T MR machine is 54 (≈ 34.6dB) [14]. In this thesis, it is decided to
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(a) Reconstructed conductivity without positivity (b) Reconstructed relative permittivity without positivity

(c) Reconstructed conductivity with positivity (d) Reconstructed relative permittivity with positivity

Figure 3.16: The conductivity (a, c) and relative permittivity (b, d) of slice 320 with an offset difference of 5◦ between the
measured fields and the incident fields at the iteration with the smallest cost function. The upper row shows the reconstructions
without positivity constraint, while the bottom shows the reconstruction with positivity constraint.

investigate the reconstruction results for SNRs of 50 (≈ 34dB), 100 (≈ 40dB), and 150 (≈ 43.5dB). After
distorting the transmit and receive field, a Gaussian filter is applied in the frequency domain to create
smoother, more realistic fields. The reconstructions corresponding to the implementation without and
with positivity constraint are seen in Figures 3.17 and 3.18, respectively. As expected, the quality of the
reconstructions increases when the SNR increases. Moreover, if the reconstructions with and without a
positivity constraint are compared, the reconstructions with a positivity constraint are clearer, but noise
is also more present. This behaviour is because the minimum cost function is at a later iteration when
the positivity constraint is implemented, so the algorithm has had more iterations to model the noise.
Another observation is that the positivity constraint still helps by capturing more details on the outer
boundary of the head, especially for the relative permittivity.

3.3. Conclusion
In this chapter, three adjustments to the 2D-CSI algorithm are tested. The early stopping makes the
algorithm faster and ensures that the algorithm does not model many data artefacts. Unfortunately,
the early stopping can result in less sharp images. Nevertheless, the images still become better in-
terpretable. The advances are not evident in the head slice, but the pelvis slice (in Appendix B) does
show large improvements. The larger advances in the pelvis slice originate from this slice being less
circular and symmetric. Therefore, the TPA is known to cause larger issues. Early stopping is a useful
tool to avoid these problems.
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(a) Reconstructed conductivity at SNR 50 (b) Reconstructed relative permittivity at SNR 50

(c) Reconstructed conductivity at SNR 100 (d) Reconstructed relative permittivity at SNR 100

(e) Reconstructed conductivity at SNR 150 (f) Reconstructed relative permittivity at SNR 150

Figure 3.17: The conductivity (a, c, e) and relative permittivity (b, d, f) of slice 320 without the positivity constraint, where the
upper, middle and bottom rows show the reconstructions with an SNR of 50, 100 and 150, respectively.

The second improvement is the implementation of a positivity constraint on the conductivity and rel-
ative permittivity. The positivity constraints are checked at each iteration, and the contrast is adjusted
if a constraint fails. The positivity constraint helps by correctly estimating the receive phase; therefore,
the artefacts due to a failing TPA are reduced. Moreover, for the head slice, the reconstructions are
sharper and more detailed than before the positivity analysis. Hence, the positivity constraint helps
the model to converge to the ground truth. As before, larger advances can be seen in the pelvis in
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(a) Reconstructed conductivity at SNR 50 (b) Reconstructed relative permittivity at SNR 50

(c) Reconstructed conductivity at SNR 100 (d) Reconstructed relative permittivity at SNR 100

(e) Reconstructed conductivity at SNR 150 (f) Reconstructed relative permittivity at SNR 150

Figure 3.18: The conductivity (a, c, e) and relative permittivity (b, d, f) of slice 320 with the positivity constraint, where the
upper, middle and bottom rows show the reconstructions with an SNR of 50, 100 and 150, respectively.

Appendix B due to similar reasons. In the images, the boundary issues are also reduced due to the
positivity constraint. Consequently, this enhancement is useful.

Lastly, the initialisation can help the algorithm to converge to the correct minimum. In this report,
HEPT was considered. In noise-free slices with large areas, such as the pelvis slice, the HEPT func-
tions well (see Appendix B). On the other hand, the slices with detailed structures, such as the head



3.3. Conclusion 26

slice, are more challenging to recover when using the HEPT initialisation. Moreover, in noisy data, the
HEPT reconstruction is not helpful. It can even cause the algorithm to model the HEPT noise instead
of the ground truth. Therefore, it is decided to still use the backpropagation instead of the HEPT initial-
isation.

Lastly, a robustness analysis was made to investigate if the early stopping and positivity constraint
makes the algorithm more robust. First, the data was created with a different offset than the incident
fields. In this case, it was seen that the positivity constraint still makes it possible to create decent re-
constructions, while without this positivity constraint, the reconstructions lost most details. Furthermore,
the positivity constraint helps to get sharp conductivity images even though the data was corrupted by
noise. The relative permittivity was more affected by the noise than the conductivity, so the reconstruc-
tions are less accurate, but they still capture more details than without the positivity constraint. The
early stopping results in blurred images when no positivity constraint is implemented, but the final re-
constructions have far more errors (see Appendix A). Therefore, the robustness analysis suggests that
the enhancements indeed improve the 2D-CSI algorithm.

Algorithm 3 2D-Contrast Source Inversion with enhancements
Initialize w0, χ0, E0, and φ−

0

while n ≤ N do
Fix χ to update wn = wn−1 + αw

nvn

Fix wn to update En = Einc + GD{wn}

Fix wn and En to update χn =
wn ·E†

n

|En|2
Update φ−

n = ∠(B−;sca
1 +B−;inc

1 )
if ℜ{χ(r)}+ 1 ≤ 0 then

χn(r) = −ℜ{χn(r)}+ jℑ{χn(r)}
if ℑ{χ(r)} ≥ 0 then

χn(r) = ℜ{χn(r)} − jℑ{χn(r)}
if F (wn, χn) < tolerance or F (wn, χn) > F (wn−1, χn−1) then

Break
Calculate ϵr = ℜ(χ) + 1
Calculate σ = −ωϵ0ℑ(χ)

Therefore, positivity constraints and early stopping should be implemented. The adjusted algorithm
now becomes Algorithm 3 in which the positivity constraint implementation is cyan coloured and the
early stopping blue coloured.



4
Performance of 2D-CSI on the 3D

ADEPT dataset

4.1. Available dataset
The ADEPT dataset [16] consists of 120 different brain models, of which 84 are healthy brains, and 36
have a tumor inclusion. The brain models are segmented into three distinct tissue types: CerebroSpinal
Fluid (CSF), Gray Matter (GM), and White Matter (WM). Moreover, the tumor data is divided into three
types: Edema, Non-Enhancing Tumor (NET) and Active Tumor (AT). All brains were inserted in the
Duke body model from the virtual family [15]. This thesis considers two randomly chosen brain models
from the dataset, of which one is a healthy brain model (M30) and one is a brain model with a tumor
(M86); see Figure 4.1. Table 4.1 provides the corresponding EPs for all tissue types for both brain
models. Each brain model consists of 164 slices with each dimension of 260 mm by 220 mm and a
1 mm isotropic grid. The main focus is on the 80th slice of both brains, placed in the middle of the
birdcage coil. The assumption for a non-varying electric field in the z-direction is the most viable in the
middle, so the 2D assumption is reasonable. Figure 4.2 provides the EP maps for the two brain models
at the 80th slice.

(a) Brain model M30 (b) Brain model M86

Figure 4.1: The brain models of the considered subjects and the planes of interest, with (a) the healthy brain model M30 and
(b) the brain model M86 with a tumor inclusion (in blue).

4.1.1. Electric and magnetic fields
The corresponding electric and magnetic fields are calculated using the electromagnetic simulation
program Sim4life (Zurich MedTech, Zurich, Switzerland). In Sim4life, a 3T birdcage coil is modelled

27
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Table 4.1: The EPs from each tissue type for both brain models.

Subject information EP healthy tissue (σ [S/m], ε[-]) EP tumor tissue (σ [S/m], ε [-])
Identifier Health σCSF ϵCSF σGM ϵGM σWM ϵWM σEdema ϵEdema σNET ϵNET σAT ϵAT

M30 Healthy 2.13 86 0.56 75 0.35 52 n.a. n.a. n.a. n.a. n.a. n.a.
M86 Tumor 2.14 84 0.59 73 0.34 53 0.74 60 0.94 80 1.14 70

(a) Original conductivity M30 slice 80 (b) Original relative permittivity M30 slice 80

(c) Original conductivity M86 slice 80 (d) Original relative permittivity M86 slice 80

Figure 4.2: The conductivity (a, c) and the relative permittivity (b, d) of slice 80 of M30 in the top row and M86 in the bottom
row, respectively.

with 16 legs, an RF-shield radius of 371.5 mm, and a coil radius of 352 mm. As the 2D-CSI algorithm
assumes a constant electric field in the z-direction, it is important to see to what extent the assumption
is true. In Figure 4.3, phase changes are observed in the middle and at the edges of the brain. Hence,
the algorithm is expected to not work properly in these areas. Moreover, when the Ez magnitude is
considered in Figure 4.4, the magnitude is low at the centre, resulting in even more problems. Fur-
thermore, the surrounding slices have multiple pixels at slightly different magnitudes. However, the
magnitude differences are small. The Ez values show that the assumption is not completely true at
certain locations (in the middle and at the edges). Therefore, it is expected that the algorithm might be
affected at the centre and edged by these factors. Nevertheless, there could still be reasonable results.

Figure 4.5 provides the magnetic fields. The magnitude of the transmit and receive fields are almost
mirrored. Furthermore, if the transmit phase is compared with the transceive phase, there are small
deviations at the edge. Therefore, the TPA does not hold perfectly at the edges, which can cause some
artefacts in the reconstruction.
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(a) Phase difference between slices 76 and 80 (b) Phase difference between slices 77 and 80 (c) Phase difference between slices 78 and 80

(d) Phase difference between slices 79 and 80 (e) Phase of slice 80 (f) Phase difference between slices 81 and 80

(g) Phase difference between slices 82 and 80 (h) Phase difference between slices 83 and 80 (i) Phase difference between slices 84 and 80

Figure 4.3: The phase difference of Ez (a-d and f-i) around (e) slice 80 of the healthy brain model M30.

The dataset did not provide the required incident fields for the CSI algorithm. Therefore, the incident
fields are simulated in a similar way as in Chapter 3. However, the incident fields’ magnitude should
align with the total field’s magnitude. After some research (explained in detail in Appendix C), the best
results were achieved by multiplying the incident electric field with 4

3 and the incident magnetic fields
with 1

10 . Furthermore, the results largely depended on the chosen offset θ; see Figure 3.3. Therefore,
multiple offsets are tested.
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(a) Magnitude difference between slices 76
and 80

(b) Magnitude difference between slices 77
and 80

(c) Magnitude difference between slices 78
and 80

(d) Magnitude difference between slices 79
and 80

(e) Magnitude of slice 80 (f) Magnitude difference between slices 81
and 80

(g) Magnitude difference between slices 82
and 80

(h) Magnitude difference between slices 83
and 80

(i) Magnitude difference between slices 84
and 80

Figure 4.4: The magnitude difference of Ez (a-d and f-i) around (e) slice 80 of the healthy brain model M30.
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(a) |B+
1 | at slice 80 (b) |B−

1 | at slice 80

(c) B+
1 phase at slice 80 (d) Transceive phase/2 at slice 80

Figure 4.5: The magnitude (a, b) and phase (c, d) of the transmit and receive field of M30 at slice 80.
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4.2. Experiments with time convention conversion
This section investigates the effect of the positivity constraint on 3D data. The algorithm is run with and
without this improvement to achieve this. Furthermore, the general settings are the same as for the
Ella dataset, but it is important to note that it is now implemented on 3D data.

• Maximum number of iterations: 1000
• Tolerance: 1e− 6

• Update receive phase: on
• Multiplicative regularization: off
• Data: 3D

Moreover, as mentioned in Chapter 2, the time convention chosen by the designers of the ADEPT
dataset is the physicist’s convention. However, the algorithm expects the time convention of the engi-
neers. Therefore, before the algorithm can be applied to the data, the dataset is converted to the other
time convention by Equations 2.5, and 2.6.

4.2.1. Without positivity
Healthy brain model
Figure 4.6 gives the algorithm’s results for the healthy brain model without the positivity constraint with
two different offsets (0o and 240o). The reconstructed conductivity and relative permittivity underes-
timate the actual EP values; see the top row of Figure 4.2 for comparison, which is expected since
Stijnman found similar effects [14]. Another reason for this underestimation is that the magnitude of
the incident fields does not match the magnitude of the fields in the ADEPT dataset perfectly. Besides
the underestimation, the reconstructions show areas that were reconstructed correctly and others that
show artefacts. For both offsets, the centre causes problems. Moreover, each offset has an additional
line in which the algorithm fails. The artefacts in the reconstructions with the first offset almost coincide
with the vertical line, while the second is a slightly tilted horizontal line.

Figure 4.7 presents the final reconstructed electric fields to understand the cause of these errors.
The electric fields show a magnitude close to zero around the same area where most errors in the
reconstructions were found. In the contrast update, there is a division by the electric field; therefore,
the larger conductivity and relative permittivity values seem reasonable. A solution could be to either
change the update scheme of the contrast to gradient descent (similar to the contrast source update
schema) or calculate the points at the lowest electric field differently (interpolate with surrounding points
or set to zero). The reconstructions show, indeed, a significant difference with another offset. Hence,
it is necessary to choose the offset carefully.
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(a) Reconstructed conductivity (b) Reconstructed relative permittivity

(c) Reconstructed conductivity (d) Reconstructed relative permittivity

Figure 4.6: The reconstructions without positivity constraint of the conductivity (a, c) and the relative permittivity (b, d) of M30
slice 80. The reconstructions in the top row are made with an incident field offset of 0o, while the bottom row has an offset of
240o.

(a) Final electric field (b) Final electric field

Figure 4.7: The total electric field reconstructions without positivity constraint of M30 slice 80. The reconstruction in the left
column was made with an incident field offset of 0o, while the right column has an offset of 240o.
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(a) Reconstructed conductivity (b) Reconstructed relative permittivity

Figure 4.8: The reconstruction without positivity constraint of the conductivity (a) and the relative permittivity (b) of M86 slice
80 with an offset of 0o.

Brain model with tumor
The brain model with the tumor inclusion has results similar to the healthy brain model. Figure 4.8
shows the reconstructions without the positivity constraint. The structure of the original EPs (Figure
4.2 bottom row) is imprinted in some areas in the reconstruction. However, in this case, the algorithm
underestimates the values again for the same reasons. Moreover, the electric field again converged
to a line, resulting in additional artefacts on the line where the electric field is small, in this case on the
vertical axis, just as the results in the healthy brain model. The spot at which this artefact is present
again depends on the chosen offset for the incident field, and the position is changed with a different
offset.

4.2.2. With positivity
Healthy brain model
Figure 4.9 shows the reconstructions of the healthy brain model with the positivity constraint imple-
mented. The algorithm converges to realistic values in small areas of the imaging domain. The con-
ductivity, especially, is only reconstructed correctly in very small areas. A reason for these small areas
could be that the positivity constraint is too strict, considering that the 2D algorithm is now applied to
3D data, and so can not help the algorithm converge correctly everywhere. Nevertheless, the recon-
struction quality is better in those areas than without positivity constraint. Still, there are some pixels
inside the imaging domain in which the values overshoot. The pixel locations correspond to the areas
with a small electric field (Figure 4.10).

Figure 4.11 reveals amatch between the position where the positivity constraint is applied and where
the algorithm does not converge. Furthermore, at most of these positions, the flip is done in almost
every iteration (the amount of flips is close to 1000). Hence, implementing the positivity constraint
does not help the algorithm converge for the entire image, only in small sections. On the other hand,
these constraint maps could help by automatizing the full reconstruction. Namely, the areas where
the positivity constraint is not used are equal to the correctly reconstructed areas, so only these areas
should be used in a full reconstruction.

Combine images

The entire reconstruction with the positivity constraint can be created by combining multiple reconstruc-
tions with different offsets. As the conductivity is reconstructed correctly in small areas, it is decided
to take offset differences of 10o, resulting in 36 independent reconstructions. The constraint maps can
be used as an indication of the proper reconstruction areas. Hence, the images are combined, con-
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(a) Reconstructed conductivity (b) Reconstructed relative permittivity

(c) Reconstructed conductivity (d) Reconstructed relative permittivity

Figure 4.9: The reconstructions with positivity constraint of the conductivity (a, b) and the relative permittivity (b, d) of M30 slice
80. The reconstructions in the top row are made with an incident field offset of 0o, while the bottom row has an offset of 240o.

(a) Final electric field (b) Final electric field

Figure 4.10: The total electric field reconstructions with positivity constraint of M30 slice 80. The reconstruction in the left
column was made with an incident field offset of 0o, while the right column has an offset of 240o.
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(a) Reconstructed conductivity (b) Amount of imaginary part flips

(c) Reconstructed relative permittivity (d) Amount of real part flips

Figure 4.11: The upper row shows the conductivity reconstruction (a) and the number of flips of the imaginary part (b). The
bottom row shows the relative permittivity reconstruction (c) and the number of flips of the real part (d).

sidering how many reconstructions work for each pixel. Figure 4.12 shows the reconstructions when
the multiple runs with different offsets are combined. The conductivity reconstruction is reconstructed
quite well except for some areas in the centre, and the values are still underestimated. The relative per-
mittivity reconstruction also underestimated the actual values. However, the contrast between areas is
seen more clearly in these reconstructions. Unfortunately, the different offset reconstructions did not
all have similar magnitudes, making the upper left and lower right corners brighter. This effect might be
mitigated by taking the median instead of the average in each pixel. Moreover, the centre of the image
still causes some problems, as expected, as the Ez polarization is not small there. Nevertheless, the
reconstructions are of better quality than those without positivity constraints. This positivity constraint
does come at the cost of a longer calculation time, as the reconstruction is now performed 36 times
instead of once.
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(a) Combined conductivity (b) Combined relative permittivity

Figure 4.12: The conductivity (a) and relative permittivity (b) combined reconstructions are given for slice 80 of brain model
M30. The combination comprises 36 images with an offset difference of 10o.

(a) Reconstructed conductivity (b) Reconstructed relative permittivity

Figure 4.13: The reconstruction with positivity constraint of the conductivity (a) and the relative permittivity (b) of M86 slice 80.
The reconstructions are made with an offset of 0o.

Brain model with tumor
Figure 4.13 provides the reconstructions of the brain model with tumor inclusion. The chosen offset
of the incident field is again 0o. As seen before by the healthy brain model, the reconstructions only
converge partly. However, if the reconstructions are compared with Figure 4.8, the reconstructions in
the converge areas are more accurate. This larger accuracy can be observed for the relative permit-
tivity as a larger area converges. As before, masks can be designed for locations where the positivity
constraint is not applied, as the algorithm has converged correctly in those areas.

Combine images

Figure 4.14 combines 36 reconstructions with different offsets to create the combined conductivity and
relative permittivity. The reconstructions in the upper right and lower left corners can be interpreted
correctly. The other areas, however, are less readable, on the one hand, due to slight deviations
between the average of different reconstructions and, on the other, due to an overshoot on the diagonal.
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(a) Combined conductivity (b) Combined relative permittivity

Figure 4.14: The conductivity (a) and relative permittivity (b) combined reconstructions are given for slice 80 of brain model
M86. The combination comprises 36 images with an offset difference of 10o.

These effects can be mitigated by taking the median instead of the average between pixels and not
considering the values of pixels which are sufficiently larger than the other pixels.

4.3. Experiments without time convention conversion
The results show that the algorithm has problems correctly retrieving the entire reconstruction area in
a single run. These problems suggest that there is no perfect match between the incident fields and
the received data or that the 2D constraints are too strict for the algorithm to converge correctly. The
algorithm is run without applying the conversion formulas to the ADEPT data to investigate further if the
results depend on the incident fields. Therefore, the time convention of the data does not correspond to
the time convention of the incident fields and algorithm. Furthermore, the general settings are identical,
and the dataset is still 3D.

• Maximum number of iterations: 1000
• Tolerance: 1e− 6

• Update receive phase: on
• Multiplicative regularization: off
• Data: 3D

4.3.1. Without positivity
Healthy brain model
Figure 4.15 gives the algorithm’s results for the healthy brain model without the positivity constraint with
two different offsets (0o and 240o). The figure shows that the algorithm can still achieve reasonable
reconstructions. As before, the values of the EPs are underestimated. In this case, a larger part of
the conductivity is reconstructed correctly, while the algorithm has more difficulties with the relative
permittivity. Furthermore, the centre is causing problems, and each image has a line at which the
reconstruction is unreliable. Unlike before, the offset of 0o corresponds to artefacts on a horizontal line
instead of the vertical line. The offset of 240o has the artefacts mainly on the anti-diagonal instead of
a slightly tilted horizontal line. When Figure 4.16 is compared with Figure 4.7, similar variations in the
electric field reconstruction are observed. The variations correspond to a shift of 90o, where this shift
between conventions is seen for every offset.
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(a) Reconstructed conductivity (b) Reconstructed relative permittivity

(c) Reconstructed conductivity (d) Reconstructed relative permittivity

Figure 4.15: The reconstruction without positivity constraint of the conductivity (a, c) and the relative permittivity (b, d) of M30
slice 80. The reconstruction in the top row was made with an incident field offset of 0o, while the bottom row has an offset of
240o.

(a) Final electric field (b) Final electric field

Figure 4.16: The total electric field reconstructions without positivity of M30 slice 80. The reconstruction in the left column was
made with an incident field offset of 0o, while the right column has an offset of 240o.
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(a) Reconstructed conductivity (b) Reconstructed relative permittivity

Figure 4.17: The reconstruction without positivity constraint of the conductivity (a) and the relative permittivity (b) of M86 slice
80. The reconstructions are made with an offset of 0o.

Brain model with tumor
Figure 4.17 shows the EPs for the brain model with a tumor inclusion and an offset of 0o. The tumorous
regions are reconstructed quite well in the conductivity, while these regions in the relative permittivity
include quite some artefacts. Furthermore, it can be observed that the location of the artefact line
corresponds perfectly to the line seen in the top row of Figure 4.15. When the offset was adjusted, the
line changed position. Therefore, this again suggests that combining information from multiple images
results in a reasonable estimation of the whole area except for some pixels in the centre, which are
always beneath artefacts.

4.3.2. With positivity
Healthy brain
Figure 4.18 shows the reconstruction with the positivity constraint implemented. The reconstruction
still converges correctly locally instead of for the entire imaging domain. However, a larger section of
the conductivity is reconstructed with each offset compared to the converted data reconstructions. On
the other hand, the correctly reconstructed area for the relative permittivity is smaller than before, but
luckily, it is not by much. Therefore, the conductivity and the relative permittivity can be found with
only a few runs. Moreover, the local results with positivity are better than those without the positivity
constraint. Consequently, there is a preference for using the positivity constraint. Still, there are some
areas in which the values overshoot. These areas correspond to the areas with a small electric field.

Figure 4.20 presents a perfect match between the areas where the positivity constraint is applied
and where the algorithm fails. Therefore, in the 3D dataset, the positivity constraint does not help the
converge in the pixels where it is used; however, it does help the algorithm to focus on accurately re-
constructing local areas. Furthermore the proper reconstruction areas still include unreasonable large
values in the centre. Nevertheless, the positivity constraint maps can help by combining multiple re-
constructions with different offsets as done with the other time convention. In this way, it is possible to
reconstruct the entire imaging domain.

Combine images

In the case that the data is not converted, the correctly reconstructed local areas in conductivity and
relative permittivity reconstructions spread decent areas. The conductivity covers a much larger area
than the conductivity for the converted data. Therefore, it is possible to reconstruct the entire imaging
domain with fewer reconstructions, making the algorithm significantly faster. However, for consistency,
it is decided to take offset differences of 100 and combine reconstructions of 36 runs. As before, the
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(a) Reconstructed conductivity (b) Reconstructed relative permittivity

(c) Reconstructed conductivity (d) Reconstructed relative permittivity

Figure 4.18: The reconstruction with positivity constraint of the conductivity (a, c) and the relative permittivity (b, d) of M30 slice
80. The reconstruction in the upper row was made with an incident field offset of 0o, while the bottom row has an offset of 240o.

(a) Final electric field (b) Final electric field

Figure 4.19: The total electric field reconstructions with positivity constraint of M30 slice 80. The reconstruction in the left
column was made with an incident field offset of 0o, while the right column has an offset of 240o.
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(a) Reconstructed conductivity (b) Amount of imaginary part flips

(c) Reconstructed relative permittivity (d) Amount of real part flips

Figure 4.20: The upper row shows the conductivity reconstruction (a) and the number of flips of the imaginary part (b). The
bottom row shows the relative permittivity reconstruction (c) and the number of flips of the real part (d).

average is taken between each reconstruction that works on a pixel. The reconstruction works on a
pixel when no positivity constraint is applied there. Figure 4.21 provides the combined reconstructions.
The structures in the conductivity are reconstructed with high accuracy except for the centre. These
problems in the centre are as expected as that area has a small electric field. The reconstruction values
are underestimated due to the mismatch between the magnitudes of the incident fields and the total
fields. Moreover, the algorithm is known to underestimate the values. The bright spots in the centre of
the reconstruction are caused by the bright areas seen in, for example, 4.18. The relative permittivity
has large areas that are reconstructed correctly; however, larger bright spots are observed. The large
values could be excluded by removing pixels much larger than the average or taking the median of
the reconstructions instead of the average. Furthermore, there is a horizontal area in the relative per-
mittivity in the centre, which has a larger average value than the surrounding areas. The combination
method should be adjusted to handle this; for example, the magnitude between reconstructions should
be matched. Another option is a filter which finds values depending on the neighbours. A last option
would be to implement the Jacobi update scheme [41] instead of the conjugate gradient scheme. This
method is known to smooth areas; in this way, the reconstruction would have more homogeneity and
sharper edges between different tissues.
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(a) Combined conductivity (b) Combined relative permittivity

Figure 4.21: The conductivity (a) and relative permittivity (b) combined reconstructions are given for slice 80 of brain model
M30. The combination comprises 36 images with an offset difference of 10o.

If Figures 4.12 and 4.21 are compared, the conductivity reconstructions are very similar, but when
the data was converted, more lines are seen in the pictures. These lines result from the small areas
captured in each run. Therefore, the pixels are reconstructed using fewer runs, resulting in slight
magnitude deviations. On the other hand, when the data is converted, the relative permittivity does
not show these lines. At the same time, these lines are visible in the relative permittivity when the
data is not converted. Furthermore, the relative permittivity without conversion includes more extreme
values. On the contrary, this relative permittivity has fewer areas with an overall higher average. In
this case, it is a horizontal strip, while the converted data results in these artefacts in the upper left and
lower right corner. Hence, for the relative permittivity, both combined reconstructions have advantages
and disadvantages. The conductivity does seem to have better reconstructions when the data is not
converted. These advantages suggest a slight preference for applying the algorithm without converting
the ADEPT data.

Brain model with tumor
Figure 4.22 shows the reconstruction for the brain model with a tumor inclusion, with an offset of 0o.
More than half of the conductivity is correctly reconstructed, and the tumor region is already visible. A
small area lies in proper reconstruction where the pixel values are too large. The relative permittivity
has a large area where the reconstruction values exceed logical values. This effect can relate to some
pixels of the relative permittivity reconstruction inside the positivity constraint mask are close to the
areas where the electric field is small. Without the positivity constraint, the relative permittivity is more
affected by the smaller electric field than the conductivity, so it can result in worse images when multiple
runs are combined without taking measures for this observed effect.

Combine images

Figure 4.23 provides the combined reconstruction. The conductivity reconstruction is accurate almost
everywhere. Only the centre has a gap and a circle with extreme values. The circle could be avoided
by measures mentioned before, such as removing the extreme values before taking the average. For-
tunately, a large area is still reconstructed correctly. The relative permittivity has a larger area with
unrealistic larger values. The area almost covers the tumorous region, making it difficult to observe the
exact shape. Therefore, this shows that further research is essential to remove these bright spots.

If Figures 4.14, and 4.23 are compared, the relative permittivity is reconstructed with fewer artefacts
when the data is converted. At the same time, the conductivity is better when the data is not converted.
The conductivity is a promising biomarker for many illnesses, while the relative permittivity is expected



4.4. Conclusion 44

(a) Reconstructed conductivity (b) Reconstructed relative permittivity

Figure 4.22: The reconstruction with positivity constraint of the conductivity (a) and the relative permittivity (b) of M86 slice 80.
The reconstructions are made with an offset of 0o.

(a) Combined conductivity (b) Combined relative permittivity

Figure 4.23: The conductivity (a) and relative permittivity (b) combined reconstructions are given for slice 80 of brain model
M86. The combination comprises 36 images with an offset difference of 10o.

to be effective. Moreover, the relative permittivity should be estimated more easily in a 7T machine
than in the 3T machine used here. Therefore, it is more important to create proper conductivity images.
Hence, it is suggested that it is better not to convert the data before applying the algorithm.

4.4. Conclusion
As seen in this chapter, the 2D-CSI algorithm can reconstruct 3D data for both a healthy brain model
and a brain model with tumor inclusion. Unfortunately, it is less straightforward than for the 2D dataset.
First, the data’s magnitude must match the incident field’s magnitude. After that, one should decide
if the positivity constraint should be implemented. Without the positivity constraint, the entire imaging
area is reconstructed but with significant artefacts, especially at the locations where the electric field is
small. The location at which the electric field is small depends on the chosen incident field offset. In the
2D dataset, the algorithm had difficulties reconstructing the data when there was a mismatch between
the data’s offset and the incident fields’ offset. Eventually, the algorithm could not reconstruct anymore.
Luckily, in this 3D case, the algorithm is still able to reconstruct independently of the offset, but there is
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no offset for which the algorithm is artefact-free. This effect suggests that the simulated incident field
is not an entirely correct fit, and, therefore, the algorithm can still reconstruct something but with errors.
This mismatch is reasonable as the incident fields consider infinitely long wires and no edge effects
present. Moreover, these incident fields do not consider the head’s loading. If the incident fields were
modelled better, the reconstructions could improve a lot.

If the positivity constraint is implemented, the reconstruction focuses on a small section of the en-
tire imaging domain. However, these local areas are reconstructed accurately. The location of the
proper reconstructed areas depends on the chosen offset of the incident field. A more accurate inci-
dent field could help these reconstructions as well. In this case, the dependence on the offset could
be used as a tool. Namely, good local reconstructions with different offsets could be combined to fill
the entire imaging domain. This process can even be automated as the pixels on which the positivity
constraint is not applied correspond to the pixels reconstructed quite well. It is important to note the
local areas include some bright spots. More research should be performed on automatically finding and
removing these bright spots. The resulting images can reconstruct the entire image domain with only
minor artefacts, making it preferred above the reconstructions without positivity constraint. For these
reconstructions, it also holds that a more accurate incident field can help to improve the reconstructions.

A last consideration is whether the received data should be converted to match the incident fields’
and algorithms’ time convention. It might seem straightforward to state that they should match; how-
ever, this chapter found that the algorithm reconstructs the conductivity better when data is not con-
verted. On the other hand, the relative permittivity reconstruction is of a somewhat higher quality when
the conversion is applied. However, as the advances in the conductivity reconstruction are more sig-
nificant than the degrading of the relative permittivity, the reconstructions without the conversion are
recommended.



5
Conclusion

This thesis investigates whether the 2D receive phase-corrected CSI algorithm can reconstruct the
EPs of two brain models (one healthy brain model and one with a tumor inclusion) from the realistic 3D
ADEPT dataset with high quality. The algorithm is first improved on a simpler 2D dataset to make it
more robust. Three enhancements are proposed for this 2D dataset. The first enhancement is an early
stopping at the minimum cost function. The early stopping is chosen because the cost function can
increase when optimising an ill-posed problem, and this increase results in the modelling of artefacts.
This adjustment results in a faster algorithm that models fewer artefacts but with blurred reconstruc-
tions. Therefore, this improvement is already helping the algorithm, although more adjustments are
necessary to achieve sharper images.

The second enhancement is a positivity constraint on the conductivity and relative permittivity. The
constraints are applied to the real and imaginary parts of the contrast function, as the algorithm does
not update the conductivity and relative permittivity directly. The constraint is verified in every iteration
instead of adjusting the cost function, keeping the simplicity. The positivity constraint helps to model
the physics better, resulting in fewer artefacts related to the failing TPA. Additionally, the positivity con-
straint guides the algorithm more towards the ground truth which leads to the cost function minimum
being at a later iteration. This results in sharper reconstructions at this minimum. The combination of
the early stopping and the positivity constraint already leads to high quality images on the 2D dataset.

Lastly, to make the algorithm even faster and more accurate, another initialization is proposed. It
is adjusted from back propagation to HEPT reconstructions. This adjustment is, however, only helpful
in the noise-free at a slice without fine structures. Therefore, it is decided to not implement this further
on.

The early stopping and positivity constraint are then tested in a robustness analysis. First, the offset
of the incident field does not match the offset of the other fields. With the positivity constraint and early
stopping the reconstructions become very close to the original except for some boundary issues. With-
out the positivity constraint but with the early stopping the reconstructions were very blurred. Lastly,
without positivity and early stopping many artefacts are present. Therefore, it can be concluded that
the positivity constraint and early stopping help the algorithm to be more robust to a mismatch in the
fields’ offset.

Furthermore, it is investigated if the early stopping and positivity constraint let the algorithm handle
noise better. The reconstructions show that the positivity constraint shifts the cost function minimum
to a later iteration and so results in sharper images. However, the noise is more present. Still, as the
algorithm is able to capture more details, it is preferred to implement the positivity constraint. When the
early stopping and positivity constraint were omitted the reconstructions include many artefacts and so
this shows again that the enhancements should be used further on in later research. Hence, it can be
concluded that the early stopping and positivity constraint indeed make the algorithm more robust.

46



47

The 2D-CSI algorithm is then applied to the 3D ADEPT dataset. First, the magnitude of the 2D
simulated incident fields are matched to the 3D data. Then the ADEPT dataset is converted to match
the time convention of the algorithm and the incident fields. After that, the 2D-CSI algorithm without
and with the positivity is applied to the dataset to inspect the effect of the positivity constraint on the re-
constructions. Without the positivity constraint, the reconstructions values are underestimated but part
of the structure could be observed. Unfortunately, a large line artefact is formed in the reconstructions.
The position of the artefacts depends on the reconstructed electric fields, which vary with different off-
sets in the incident electric field. This dependence on the offset suggests that the algorithm heavily
depends on correctly simulating the incident fields.

With the positivity constraint, the algorithm only converges in certain areas where the positivity con-
straint was not violated (with still an underestimation of the values). Luckily, the location of the good
reconstructions varies with the different offsets of the incident fields. Therefore, the positivity constraint
maps can be exploited to combine multiple reconstruction areas. In the corresponding reconstructions,
fewer artefacts are present than those without positivity constraint. However, the centre of the recon-
struction domain still causes problems as almost no reconstruction includes the correct point, and some
better pre-processing is necessary to account for value deviations between images and outliers.

The reconstruction of the 3D data depend a lot on the chosen incident fields, therefore, it is anal-
ysed if the algorithm is able to reconstruct if the time convention of the ADEPT data is different from the
time convention of the incident fields and the algorithm. The corresponding reconstructions show sim-
ilar behaviour for without and with positivity constraints. In this case, the conductivity reconstructions
with positivity constraint do have larger correctly reconstructed areas as compared with the converted
reconstructions while the relative permittivity shows the opposite. However, the conductivity is more
important, making this second approach better. Note that this second approach is still not able to recon-
struct the entire imaging domain in one run as the incident fields should not follow the 2D assumption.

In conclusion, the 2D CSI algorithm could be used to reconstruct EPs of brain models with and with-
out a tumor when the brain is in the centre of a birdcage coil. The positivity constraint is a valuable tool
for removing some artefacts, but the centre of the reconstruction domain still has some issues which
can be avoided with more sophisticated post-processing.

In the future, more research should be performed to simulate the incident field better, as the algo-
rithm heavily depends on the incident field. A better estimation of the shielding effect could be imple-
mented in the incident field simulation. Moreover, finite antennas should be modelled, and the loading
of the head should be considered. Another option could be to use the Sim4life software to create the
incident fields by inserting the empty head model of Duke. In this way, the incident fields are very
close to the incident fields underlying the actual data. Additionally, the algorithm could benefit from an
appropriate initialisation. For example, the boundaries seen in the intensity images could be used as a
starting point to give each tissue type an approximate value. Besides the initialisation, the combining
of the different reconstructions should be researched more. This includes the outlier removal but also
balancing the value levels between different reconstructions. An other option would be to put more
effort in making the 3D-CSI algorithm faster. A suggestion could be to use Newton’s method instead of
gradient descent. Lastly, it could be interesting to look at different body parts, as the head is a circular
and relatively symmetric body part compared with, for example, the chest slice. However, there is no
dataset available for this yet.
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A
Ella head slice further investigation

A.1. Setting conductivity and relative permittivity to zero
Instead of the implementation proposed in the text, it is also possible to set the conductivity and relative
permittivity to zero if the conditions are unmet.

1. If ℜ{χ(r)}+ 1 ≤ 0 then χnew(r) = 1 + jℑ{χold(r)}.
2. If ℑ{χold(r)} ≥ 0 then χnew(r) = ℜ{χold(r)}+ j ∗ 0.

In Figure A.1, the reconstruction with the implementation with zeros is given. The reconstructions
are close to the implementation with the sign flip. Moreover, the minimum cost function is very close
together (996 versus 993 iterations). Hence, this implementation is also a reasonable option.
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A.2. No early stopping in robustness analysis 52

(a) Reconstructed conductivity at smallest cost (b) Reconstructed relative permittivity at smallest cost

(c) Final reconstructed conductivity (d) Final reconstructed relative permittivity

Figure A.1: The conductivity (a, c) and relative permittivity (b, d) of slice 320 with the positivity constraint implemented in the
second way. The upper row shows the reconstruction at the iteration with the minimum cost functional, and the bottom row
shows the final reconstruction.

A.2. No early stopping in robustness analysis
A.2.1. Effect on offset
In Figure A.2, the reconstructions after the 1000th iteration are shown for the case where the offset of
the incident field does not match the measured field’s offset. If these reconstructions are compared
to those in Figure 3.16, the reconstructions with positivity do not deviate much. This similarity is as
expected as the 999th iteration is compared to the 1000th iteration. Without the positivity constraint,
there are large differences. The later reconstruction is a lot sharper, but artefacts are present, making
it more difficult to interpret the images correctly. The reconstruction fails, especially for the relative
permittivity. This effect suggests a preference for still using the early stopping and a preference for
using the positivity constraint.

A.2.2. Effect on noise
In Figure A.3, the reconstructions are provided at the 1000th iteration when the SNR was 50. If the
top row of this figure is compared to the top row in Figure 3.17, the noise is modelled more at the later
reconstruction, resulting in worse reconstructions. Even more concerning is that the artefacts seen in
the noise-free case are again present, making reconstructions unreliable. The bottom row of Figure A.3
and the top row of Figure 3.18 are similar, but in the last twenty iterations, the noise is more disturbing
the image. Therefore, these images show that the early stopping helps create readable images with
few artefacts.
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(a) Reconstructed conductivity without positivity (b) Reconstructed relative permittivity without positivity

(c) Reconstructed conductivity with positivity (d) Reconstructed relative permittivity with positivity

Figure A.2: The conductivity (a, c) and relative permittivity (b, d) of slice 320 with an offset difference of 5◦ between the
measured fields and the incident fields at the 1000th iteration. The upper row shows the reconstructions without positivity
constraint, while the bottom shows the reconstruction with positivity constraint.
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(a) Reconstructed conductivity without positivity (b) Reconstructed relative permittivity without positivity

(c) Reconstructed conductivity with positivity (d) Reconstructed relative permittivity with positivity

Figure A.3: The conductivity (a, c) and relative permittivity (b, d) of slice 320 with an SNR of 50 at the 1000th iteration. The
upper row shows the reconstructions without positivity constraint, while the bottom shows the reconstruction with positivity
constraint.



B
Ella dataset other slices

In this Appendix, two more slices in the Ella dataset are investigated. First, the 2D-CSI algorithm is
applied to a leg slice. This slice is interesting as it consists of only a few points, which can cause
problems for a global algorithm such as 2D-CSI. The second slice is the pelvis slice, which is of interest
as this slice is far less symmetric than the head slice, and therefore, the TPA holds even less here.

B.1. No enhancements
B.1.1. Slice 55
Slice 55, which represents the legs, is analysed first. Figure B.1 shows a dip around iteration 140 in
which the cost functional and errors are the smallest. So, this suggests that the reconstructions at the
cost functional minimum might be interesting. When the reconstruction in Figure B.2 is analysed, the
algorithm has modelled data artefacts. These artefacts can be explained by the fact that the data on
the legs is relatively small. Therefore, phase reconstruction can cause problems as there are too few
points to support phase reconstruction, and so does EP reconstruction.

Figure B.1: The algorithm’s performance at slice 55 over different iterations is measured using the cost function magnitude,
the mean squared error of the conductivity, and the relative permittivity. The light blue, purple, and red vertical lines represent
the points at the iteration with the lowest cost function value, conductivity error, and relative permittivity er,ror respectively.
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(a) Original conductivity (b) Original relative permittivity

(c) Final reconstructed conductivity (d) Final reconstructed relative permittivity

Figure B.2: The conductivity and relative permittivity of slice 55. The upper row shows the original image. The bottom row
shows the reconstruction without applying any improvements.

B.1.2. Slice 168
The second slice is the 168th slice (pelvis) of the Ella model. In Figure B.3, the cost function first
decreases and, after 275, starts to increase again. The mean squared error for the conductivity and
relative permittivity shows similar patterns except in the first iterations. Therefore, a logical update could
be to look at the result at the lowest cost functional, which is implemented later. Figure B.4 shows the
reconstruction results without any adjustments. The reconstruction algorithm can capture parts of the
original data, but it fails, especially in the middle, due to the low electric field and on the diagonal. This
effect on the diagonal is expected as the CSI algorithm uses the transceive phase and an estimate of
the receive phase instead of the transmit phase for the reconstruction, which often results in unreliable
data on the diagonal [7, 8].
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Figure B.3: The algorithm’s performance for slice 168 over different iterations was measured using the cost functional
magnitude, the mean squared error of the conductivity, and the relative permittivity. The light blue, purple, and red vertical lines
represent the points at the iteration with the lowest cost function value, conductivity error, and relative permittivity error,
respectively.

(a) Original conductivity (b) Original relative permittivity

(c) Final reconstructed conductivity (d) Final reconstructed relative permittivity

Figure B.4: The conductivity and relative permittivity of slice 168. The upper row shows the original image, and the bottom row
shows the reconstruction without applying any improvements.
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B.2. Minima
In the cost functional and error images, the graphs would decrease first and then increase again. If
the reconstruction at those minima is better than the final reconstruction, then the reconstruction time
could be reduced.

B.2.1. Slice 55
The first update is to look at the EPs at the minima of the cost functional (iteration 146), conductivity
reconstruction error (iteration 134), and the relative permittivity reconstruction error (iteration 133). Note
that the minima for both errors can only be calculated if the EPs are known before the reconstruction.
Hence, the results at the minimum of the cost functional are available in a real live setting, while the
error minima can only be found in simulations. Figure B.5 presents the reconstructions at the minima.
The three reconstructions are very similar. However, the reconstructions are still far from the original
conductivity and relative permittivity. When the reconstructions at the minima are compared with the
final reconstructions, the final reconstruction does include more details of the original EPs. Still, the
values are less reliable, and more spots have large signal values. Therefore, the early stopping seems
to have a better indication of the values but filters out all details. In this case, all the reconstructions are
not reliable enough. This behaviour can be due to the relatively small size and disconnection between
the two legs.
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(a) Reconstructed conductivity at smallest cost (b) Reconstructed relative permittivity at smallest cost

(c) Reconstructed conductivity with best conductivity (d) Reconstructed relative permittivity with the best conductivity

(e) Reconstructed conductivity with best relative permittivity (f) Reconstructed relative permittivity with best relative permittivity

Figure B.5: The conductivity and relative permittivity of slice 55. The upper, middle and bottom rows show the reconstructions
at the minima of the cost functional, conductivity error and relative permittivity error, respectively.

B.2.2. Slice 168
For the pelvis slice, the cost functional, conductivity error, and relative permittivity error minima are
at iteration 275, 396, and 299, respectively. The three reconstructions are very similar. If the recon-
struction at the 1000th iteration is compared to these reconstructions, these earlier reconstructions are
much closer to the original EPs. Moreover, the artefacts on the diagonal are reduced. Only the middle
of the relative permittivity still has some errors. The algorithm modelling errors at later iterations cause
better reconstructions at an earlier iteration.
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(a) Reconstructed conductivity at smallest cost (b) Reconstructed relative permittivity at smallest cost

(c) Reconstructed conductivity with best conductivity (d) Reconstructed relative permittivity with the best conductivity

(e) Reconstructed conductivity with best relative permittivity (f) Reconstructed relative permittivity with best best relative permittivity

Figure B.6: The conductivity and relative permittivity of slice 168. The upper, middle and bottom rows show the
reconstructions at the minima of the cost functional, conductivity error and relative permittivity error, respectively.

B.3. Positivity of conductivity and relative permittivity
As mentioned in Chapter 3, a second possible update is implementing a positivity constraint for both
the conductivity and the relative permittivity. As the legs show problems caused by the small number
of points, it is decided that further investigations should be focused only on slice 168.
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B.3.1. Slice 168
After implementing the positivity constraint, the results become as in Figure B.7. When eyeballing the
final reconstruction without positivity (Figure B.4) and the final reconstruction with positivity, the results
with positivity are improved in the middle. Furthermore, comparing the reconstructions with positivity
constraints shows that the results at iteration 257 are preferred above the final reconstruction as the
final reconstructions have artefacts in the centre and on the diagonal. Lastly, when the results of the
EPs without positivity at iteration 275 (Figure B.6) and with positivity at iteration 257 are observed,
then the results are closely related. However, the positivity constraint does improve the centre of the
reconstruction. The enhancement is primarily noted in the reconstruction of the relative permittivity.
However, the algorithm still has some difficulties reconstructing the relative permittivity boundaries.
These difficulties can be caused by the relatively small displacement currents at 3T.

(a) Reconstructed conductivity at smallest cost (b) Reconstructed relative permittivity at smallest cost

(c) Final reconstructed conductivity (d) Final reconstructed relative permittivity

Figure B.7: The conductivity and relative permittivity of slice 168 with the positivity constraint implemented. The upper row
shows the reconstruction at the iteration with the minimum cost functional, and the bottom row shows the final reconstruction.

B.4. Initialize with HEPT
Another update which might improve the algorithm is adding an appropriate initial condition. The first
contrast source estimate in the images above is determined using back projection as discussed in [34]
Equation 35. A better initialisation could be using the results from HEPT. This HEPT initialisation might
improve both the final result and speed up the convergence. However, the CSI algorithm should be
able to remove the boundary error of HEPT, which is researched here.
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B.4.1. Slice 168
In Figure B.8, the reconstructions are provided when the algorithm is initialised with HEPT results. After
the first iteration, the reconstructions include most of the outlines. However, the values are not repre-
sentative yet, which is reasonable as HEPT at the tissue boundaries becomes very large, resulting in
clear outlines. If the iterations proceed, the reconstruction is improved, and in the 766th iteration, the
cost function is minimal. The resulting conductivity and relative permittivity are close to the original
images (Figure B.4).

Furthermore, when this result is compared to the 257th iteration with back projection (Figure B.6),
the new reconstruction seems sharper but with more variations over a single area and boundary errors.
It is important to note that the HEPT adds 509 iterations to find the optimal solution. So, using HEPT
as an initial condition is slower and is not much more accurate than the previous results. One last
remark: in this case, HEPT is based on noiseless information. The advancements are less in a noisy
environment as the HEPT reconstructions are primarily affected by noise.

(a) Reconstructed conductivity after first iteration (b) Reconstructed relative permittivity after first iteration

(c) Reconstructed conductivity at smallest cost (d) Reconstructed relative permittivity at smallest cost

Figure B.8: The conductivity and relative permittivity of slice 168. The upper row shows the reconstruction after the first
iteration. The bottom row shows the reconstruction at the cost functional minimum. The positivity constraint was implemented
in these reconstructions.



C
Effect of fields magnitude

The magnitude of the ADEPT dataset is not matched to the magnitude of the incident fields. This match
is not straightforward as the dataset is 3D while the incident fields are created under the 2D assumption.
Therefore, this is done manually. First, a factor between the maximum of the incident and the maximum
of the total field is calculated, which results in the two factors

κB;max =
max(B+;inc)

max(B+;tot)
and κE;max =

max(Einc)

max(Etot)
. (C.1)

An extra parameter is introduced to match the field to provide more freedom. Therefore, the incident
fields are scaled to

B+;incsc =
B+;inc

κB;max ∗ κB;sc
and Eincsc =

Einc

κE;max ∗ κE;sc
, (C.2)

where B+;incsc , and Eincsc are the scaled transmit and electric incident fields. Furthermore, κB;sc, and
κE;sc the additional scaling factors. In Figure C.1, the conductivity reconstructions with varying κB;sc is
provided while κE;sc = 1. If the factor is too small, the algorithm does not converge or only converges
at a small area. A scaling factor between 3 and 25 results in good reconstructions. The larger factors
result in larger convergence areas, however, it does create overexposed areas. This is seen by the
scaling factors larger than 25. The transmit field scaling factor, which seems to be best considering
both sides, is κB;sc = 10. In Figure C.2, the κB;sc = 10 and the κE;sc is varied. When the scaling factor
is too small (below 0.5) the values are much underestimated. The reconstructions between 0.5 and 1
are proper. Increasing the values further results in more and more data getting lost. At a factor of 5
already, almost no information is left. Increasing even further results in an entire blue reconstruction. It
is again chosen to meet in the middle and set the κB;sc = 0.75.
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Figure C.1: Different conductivity reconstructions are provided with varying transmit scaling factors while setting κE;sc = 1. The reconstructions inside the blue outline show decent
reconstructions. The positivity constraint is applied in these images and the ADEPT dataset is not converted.
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Figure C.2: Different conductivity reconstructions are provided with varying electric field scaling factors while setting κB;sc = 10. The reconstructions inside the blue outline show decent
reconstructions. The positivity constraint is applied in these images and the ADEPT dataset is not converted.
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