
Dataflow Hardware Design for Big Data
Acceleration Using Typed Interfaces

by

Ákos Hadnagy

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday August 26, 2020 at 13:00.

Student number: 4821106
Thesis committee: Dr. ir. Z. Al-Ars, TU Delft, supervisor

Dr. ir. T. G. R. M. van Leuken, TU Delft
Ir. J.W. Peltenburg, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Recent trends in large-scale computing demonstrate continuous growth in the need for raw processing
performance. At the same time, the slowdown of vertical scaling pushes the industry towards more
energy-efficient heterogeneous architectures. With the appearance of FPGAs in the cloud and data
centers, a new architecture is offered for offloading processing tasks and to bundle custom processing
hardware with the applications. However, with great adaptability comes the increased complexity of
development. The adoption of custom accelerators has been bounded by their limited programming
models and the long turnaround time of development.

In this thesis, we look at current trends in the digital hardware design and synthesis to evaluate
them in a big data context and identify the bottlenecks that limit productivity in the development and
integration of domain-specific accelerators.

Based on the findings, we propose a composition language for components that implement typed
interfaces to streamline kernel development. The language allows developers to compose accelerators
from individual processing units that implement custom dataflow interfaces in a productive way. The
productivity boost and utility of the language were evaluated on a practical use-case, showing almost
two orders of magnitude reduction in code size. The performance of the proposed approach was
benchmarked on a Power9 system with OpenCAPI, where our proof-of-concept accelerator kernel was
able to achieve 4.04𝐺𝐵/𝑠 throughput using only 3.75% of the FPGA resources. The integration of the
accelerator led to a 13𝑥 speedup compared to a CPU-based Apache Spark implementation of the same
algorithm.

iii

Preface
This thesis is the result of a nine-month effort to conduct novel research in big data acceleration at
the Accelerated Big Data Systems group. For me, personally, it has been a tremendous learning
experience. These nine months gave me the opportunity to dive into many technologies I wouldn’t
have encountered anyway. Although I was following the field before the start of this thesis, I was
blown away by the vibrant research that’s being carried out. The development moves so fast that
solutions appeared and got discontinued during the course of this thesis. I can safely say that we’re
witnessing large-scale acceleration becoming a hot-topic, it’s simply the best and most rewarding time
to be involved.

I am grateful for being a part of the ABS group for the last nine months; I met many knowledgeable
and passionate people there. The level of research and engineering ingenuity present in the group
always astonishes me. Special thanks to Joost, Johan, and Matthijs from the group for their support
and valuable ideas.

I would particularly like to thank Dr. Zaid Al-Ars, my supervisor, whose energy and drive never
ceased to amaze me. His door was always open, even for lengthy discussions, so no stones were
left unturned. This thesis was written during troubled times in the world, making Zaid’s positivity and
excitement about all the small steps ever so motivating.

I also want to thank Stefan Hofman for giving constructive feedback on the report, and for the (too?)
many coffee breaks we shared.

Finally, I must expressmy very profound gratitude tomy parents Ilona andAttila for providingmewith
unfailing support and continuous encouragement throughout my years of study. This accomplishment
would not have been possible without them. Thank you.

Ákos Hadnagy
Kalocsa, 10th August 2020

v

Contents

List of Figures ix

1 Introduction 1
1.1 Context . 1
1.2 Problem statement . 2
1.3 Outline . 3

2 Background 5
2.1 Apache Arrow. 5
2.2 Fletcher . 6

2.2.1 Development flow . 6
2.2.2 Hardware design . 6

2.3 Tydi . 7
2.3.1 Type system . 8
2.3.2 Container library . 9
2.3.3 Physical streams . 9
2.3.4 Streamlets . 10

3 Solution architecture 13
3.1 Modern hardware description languages . 13

3.1.1 eDSLs for hardware description . 13
3.1.2 Transaction-Level Verilog . 15

3.2 Synthesis frameworks . 17
3.2.1 Spatial. 17
3.2.2 Lift . 19
3.2.3 Fleet. 20

3.3 End-to-end frameworks for big data . 22
3.3.1 Melia . 22
3.3.2 S2FA . 22

3.4 Discussion . 22
3.5 Proposed solution . 23

4 Prototyping 25
4.1 Composition language . 25

4.1.1 Implementation of a streamlet . 25
4.1.2 Parallel patterns . 26
4.1.3 Builders . 31
4.1.4 Clone, split, demux . 32
4.1.5 Discussion . 32

4.2 Practical use-case . 33
4.2.1 Application overview . 33
4.2.2 Accelerator design . 33

5 Evaluation & results 37
5.1 Code size comparison . 37
5.2 FPGA utilization . 37
5.3 Performance . 38
5.4 Discussion . 40

6 Conclusions and recommendations 41
6.1 Conclusions. 41
6.2 Recommendations and future work . 42

vii

viii Contents

A PEST grammar 45

Bibliography 47

List of Figures

1.1 Architecture comparison regarding flexibility, performance, and efficiency. [28] 2

2.1 Fletcher overview. [2] . 6
2.2 Fletcher hardware overview. [32] . 7
2.3 Streaming protocol used in dataflow designs. 8
2.4 Example streamlet with Tydi interfaces. 11

3.1 Hardware block diagram of the Pythagorean theorem calculator pipeline. [18] 15
3.2 Pythagorean theorem calculator pipeline example in TL-Verilog. [18] 16
3.3 Example flow expression for a multiplexer. [19] . 16
3.4 TL-Verilog transaction flow example. [19] . 16
3.5 Spatial dot product example . 18
3.6 Spatial framework top-level hardware architecture overview. 19
3.7 Matrix multiplication in Lift low-level patterns. [27] . 20
3.8 Fleet framework hardware overview. [38] . 21
3.9 Simple stream filter example in Fleet eDSL. [7] . 21

4.1 MapStream pattern hardware architecture. 27
4.2 ReduceStream pattern hardware architecture. 29
4.3 FilterStream pattern hardware architecture. 29
4.4 VectorToSeq pattern hardware architecture. 30
4.5 MapVector pattern hardware architecture. 31
4.6 ReduceVector pattern hardware architecture. 31
4.7 Example application top-level architecture. 33
4.8 The architecture of the example design. 34
4.9 The composition code for the proof-of-concept accelerator. 35
4.10 Streamlet definitions in the ”primitives” and ”compositions” libraries. 35
4.11 The architecture of the example design generated by the Graphviz backend. 35

5.1 Proof-of-concept accelerator stand-alone performance. 39
5.2 Proof-of-concept accelerator performance after integration. [29] 39

ix

1
Introduction

1.1. Context
The data generated by mankind is growing at an exponential rate. Mining this data presents invaluable
opportunities throughout a wide span of industries, such as increasing customer satisfaction, predicting
trends, extracting information for the improvement of processes, or by finding new ways to develop
medicine, and optimizing healthcare.

With the increase in data volume and velocity, a point has been reached where more data is being
produced than what is possible to store and flows in faster than it is possible to process. As a result,
the need for large-scale computing platforms has significantly intensified.

As a consequence to the slowdown of Moore’s law, the failure of Dennard-scaling, and the emerg-
ing problem of dark silicon, the development priority for general-purpose computing fabric is shifting
from performance to energy efficiency to counteract the tighter power budgets. To achieve higher en-
ergy efficiency, more specialized hardware is required as shown in Figure 1.1. However, specialized
hardware, such as ASICs (application-specific integrated circuit) suffer from higher nonrecurring engi-
neering costs compared to more flexible architectures due to their shorter life-cycle and tighter target
application domain. Therefore, for modern computing architectures, both energy-efficiency and flexi-
bility are requirements. Reconfigurable hardware architectures, such as FPGAs (field-programmable
gate array) and CGRAs (coarse-grain reconfigurable architecture) appear to be promising to balance
flexibility, energy-efficiency, and performance.

With the appearance of FPGAs in the datacenters and cloud [14], distributed application develop-
ers are presented with the powerful opportunity of being able to bundle custom processing hardware
with their application. A significant portion of big data workloads consists of a few, massively parallel
workloads that can be executed in a large scale, and are suitable for more efficient implementations
by utilizing custom hardware. FPGAs are being deployed for various compute-intensive big data appli-
cations, such as genomics algorithms [21, 30], data decompression [17], and image processing [20].
However, these applications are routinely written in high-level distributed frameworks, which are no-
toriously far from the bare-bone hardware. Accelerating these applications requires to bridge a vast
semantic gap, involving a thick stack of tools and engineers with a wide area of expertise.

1

2 1. Introduction

Flexibility

E
f
f
i
c
i
e
n
c
y

FPGA

GPU

CPU

CGRA

ASIC

(a) Efficiency vs. flexibility.

Performance

E
f
f
i
c
i
e
n
c
y

FPGA

GPU

CPU

CGRA
ASIC

(b) Efficiency vs. performance.

Figure 1.1: Architecture comparison regarding flexibility, performance, and efficiency. [28]

Challenges
A survey of hardware acceleration on a datacenter scale was published in 2016 by S. Yesil et al. [41]
that categorizes the open problems in the field:

• Host-accelerator, accelerator-accelerator interface

• Memory hierarchy

• Programming and management of accelerators

These can still be viewed as challenges in 2020; however, significant progress can be seen in all
of the areas mentioned. For example, OpenCAPI offers high bandwidth coherent access to system
memory for accelerators, while HBM is making its way onto the FPGA accelerators, improving the
memory hierarchy. On the management side, Blaze [22] is a promising solution to support datacenter-
scale deployment of FPGA accelerators.

Extensive and broad research is being carried out on programming custom accelerators, but to
this day, it remains a deterrent force to the wide adoption because of the limited programming models
and missing straightforward abstraction layers between software and gate-level hardware. While the
hardware offerings and adoptions are widening, developing heterogeneous analytics applications with
a low turnaround time remains a bottleneck.

1.2. Problem statement
This thesis aims at addressing the accelerator kernel programming, development and generation prob-
lem. Based on the challenges discussed above, we can formulate the following research questions:

• What are the current trends in digital hardware design which promise productivity improvements?

• Which solutions are relevant to be used in a big data context?

• Which solutions would be most suitable to be used in a workflow with Apache Arrow and Fletcher?

To carry out the research, we employed an experiment- and discovery-oriented approach by evalu-
ating a broad range of solutions in the context of the target application domain and applying the findings
to build a new proof-of-concept workflow.

Thesis contributions
The contributions of this thesis can be summarized as follows:

• Study of solutions for kernel development — A wide-span outlook of technologies has been
presented for kernel development in a big data context and analyzed in terms of strengths, weak-
nesses and applicability. The surveyed solutions range from modern HDLs to complete end-to-
end frameworks for acceleration.

1.3. Outline 3

• Chisel backend for Tydi — A Chisel backend has been developed for the Tydi reference im-
plementation to support interface and kernel skeleton generation in a modern HCL (Hardware
Composition Language).

• Graphviz backend for Tydi — A Graphviz backend has been developed for the Tydi reference
implementation to be able to generate visualizations for structural implementations.

• Composition language prototype for Tydi—A prototype language specification has been pro-
posed for the purpose of building structural designs using components that implement Tydi in-
terfaces. The language also proposes a number of constructs that move complexity related to
handling complex types and dimensionality from the components to the composition language.
The specification is provided as a PEST parser PEG (parsing expression grammar), in addition,
AST (abstract syntax tree) transformations have been implemented for the constructs featured in
the proof of concept design.

• Proof of concept design—A proof of concept accelerator has been built using the FilterStream
and ReduceStream patterns to show the potentials in the target application domain. The design
has been tested and profiled on a Power9 system with OpenCAPI.

1.3. Outline
The thesis report is organized as follows:

• Chapter 2: Background introduces the relevant background knowledge and technologies.

• Chapter 3: Solution architecture presents the analysis and comparison of existing technolo-
gies, the identified gaps, and proposes a solution that irons out some of the identified shortcom-
ings.

• Chapter 4: Prototyping introduces the proposed language and language constructs along with
details about their hardware implementations.

• Chapter 5: Evaluation & results describes the results of the implemented proof-of-concept
design.

• Chapter 6: Conclusions and recommendations summarizes the work and lessons learned in
addition to providing future development and research ideas.

2
Background

2.1. Apache Arrow
Apache Arrow is described as “a cross-language development platform for in-memory data” [1]. It
includes a specification for in-memory data representation, and also provides computational libraries,
zero-copy messaging, and interprocess communication for various programming languages.

Since the specification for the physical memory layout is language-independent, the data structures
stored in Arrow can be accessed without serialization/deserialization overhead across components
written in different languages.

Apache Arrow is built to be performant on systems that support vectorization. It is a columnar for-
mat, meaning that it contiguously stores values belonging to the same column, enabling vectorized
processing when executing operations on columns, which is a common access pattern in data analyt-
ics. In addition, the columnar format helps to optimize memory accesses when requesting parts of a
column.

The advantages of columnar format in data analytics:
• Data locality for sequential accesses.

• Constant time random access.

• Possibility of vectorization.

• Easily relocatable in memory.

• Columnar compression schemes can be leveraged.
In the big data field, data often comes in a tabular format. Arrow proposes the RecordBatch abstrac-

tion to handle such data efficiently. A RecordBatch bundles several columns that are stored in arrays
with equal length. Arrays are characterized by the logical data type and consist of a sequence of buffers
(contiguous memory region), such as offset buffers, validity buffers, and value buffers. RecordBatches
also contain meta-data, called schema that describes the structure of the data set, including the types
of the fields.

FPGA accelerators can also benefit from this standardized memory representation since they are
also subject to the serialization/deserialization bottleneck. In order to leverage the full potential of FPGA
accelerators, the bandwidth of the data transfer between the host and the accelerator hardware has to
be maximized. This goal can only be achieved if the data resides in contiguous buffers in the memory.
In addition to providing a standardized format, Arrow stores the data in a contiguous way whenever it’s
possible, making it a favorable solution for feeding streaming dataflow hardware.

Leveraging this standardized and well-engineered format, which is currently interfaced with 11 lan-
guages, accelerator hardware can be integrated in an efficient and convenient way with a wide variety
of big data frameworks. [32].

The Fletcher [32] framework already offers acceleration integration with Arrow by generating hard-
ware layers for reading and writing Arrow-formatted data, in addition to runtime libraries to interface
with software.

5

6 2. Background

2.2. Fletcher
While Apache Arrow aims to be a universal, performance oriented data format to be used across the
analytical tools, it is also a good candidate for exchanging data between applications and accelerators.

Fletcher [32] is a framework that provides hardware/software interfaces between the Arrow data
structures in memory and custom hardware accelerators.

2.2.1. Development flow
The high-level overview of Fletcher is shown in Figure 2.1. The accelerated application interacts with
the accelerator by reading and writing Arrow RecordBatches and through a set of API functions. Based
on the Arrow schemas, Fletcher will generate a hardware design with developer friendly dataflow in-
terfaces that can be used to read and write Arrow arrays in memory. The accelerator kernel can be
developed in any language as long as it is possible to interact with the custom stream types. Behind
the generated interfaces, there are multiple platform-agnostic and platform-specific hardware layers to
interact with the host.

Figure 2.1: Fletcher overview. [2]

2.2.2. Hardware design
The schematic overview of the hardware architecture behind the generated interfaces is shown in Fig-
ure 2.2. The components present in the hardware architecture are all derived from the Arrow schema.
The ColumReaders/Writers are supplied with a configuration string, based on which the internal hierar-
chy of the component is recursively instantiated to adjust to the specific type of the field in the schema.
[31] The ColumReaders/Writers are hierarchically grouped together, each supplied schema results in a
RecordBatchReader/Writer. Finally, a wrapper is generated around all the RecordBatchReaders/Writ-
ers which also contains the appropriate bus infrastructure and the kernel instantiation.

The accelerator kernel is presented with element streams that are capable of delivering multiple
elements per cycle, and command streams, on which the kernel can request a range of items from the
memory.

The Fletcher core library and the generated code is hardware-agnostic, the specific platforms are
targeted using platform-specific Fletcher runtimes and hardware wrappers. At the time of writing, the
following platforms are supported end-to-end or work-in-progress: Amazon EC2 F1, Xilinx Alveo, Intel
OPAE, OpenPOWER CAPI SNAP, and OpenPOWER OpenCAPI OC-Accel. The integration is done
using platform-specific wrappers and host-side software libraries.

2.3. Tydi 7

Fletcher	Top-level
Wrapper

A
c
c
e
l
e
r
a
t
o
r
	
k
e
r
n
e
l

Memory

MMIO

Read
Interconn

Write
Interconn

Command
streams

Typed
data

streams

Command
streams

Typed
data

streams

Column
Reader

Column
Reader

RecordBatch
Reader

RecordBatch
Writer

Figure 2.2: Fletcher hardware overview. [32]

2.3. Tydi
Streaming dataflow designs are built from hardware components that are connected using streams in a
producer-consumer fashion. The protocol used for data transfer allows for bidirectional synchronization
using a handshaking mechanism, Figure 2.3 describes such a protocol. The producer asserts the valid
signal when there is a new valid value on the data lines, and the consumer asserts the ready signal
when it is ready to consume data. If at the rising edge of the clock, both the valid and the ready signals
are asserted, the transfer takes place.

Traditionally, streaming data between components is done using an AXI4-Stream-like protocol.
However, the AXI4 specifications were originally designed for the standardization of on-chip CPU
buses, which limits its flexibility in use-cases where more general components are being used.

For instance, AXI4-Stream transfers are byte-oriented, meaning that data can only be exchanged
using transactions carrying one or more bytes. This is a reasonable assumption for CPUs, since CPU
instructions are traditionally byte-, or word-oriented, similarly to how the system memory is organized.
However, in FPGA and ASIC designs, often custom streaming protocols are being used, where this
limitation is not necessary or appreciated. Many of the modern hardware description languages support
the composition of custom dataflow designs by providing standard libraries with primitives. Examples
of these languages are given in Chapter 3.

Streaming dataflow designs have widely settled on streams with ready, valid, and data signals,
where the data vector has an arbitrary bitwidth, allowing the developers to pack composite data types
into a single transfer. However, there is no standard way of mapping complex data types and struc-
tures onto hardware streams. This results in incompatibility between components developed in different
frameworks or by different engineers. Accelerators often require a number of components to be inte-
grated together, so the developers have to make sure that the interfaces are compliant, or conversion
logic has to be inserted.

Tydi (Typed Dataflow Interfaces) [33] proposes a specification for transferring composite and dy-
namically sized data structures on hardware streams, including multi-dimensional sequences, unions,
variants and nested structures.

Tydi proposes a new abstraction to describe the flow of data, called streamspace. Streamspace
reasons about streams not only in space (e.g. bit-vectors), but also in time: stream transfers. This
allows the mapping of complex, dynamically sized data types in a formal way.

8 2. Background

clk

data a b c d

valid

ready

Producer

Valid
Ready

Data

Consumer

Valid
Ready

Data

Figure 2.3: Streaming protocol used in dataflow designs.

2.3.1. Type system
The mapping of higher-level data structures is done by defining logical streams, which transport a top-
level data structure by bundling together multiple physical streams and user-defined signals.

A logical stream node is defined as follows:

𝑆𝑡𝑟𝑒𝑎𝑚(𝑇 , 𝑡, 𝑑, 𝑠, 𝑐, 𝑟, 𝑇 , 𝑥)
where:

• 𝑇 - the data type carried by the logical stream. It can include nested 𝑆𝑡𝑟𝑒𝑎𝑚 nodes.

• 𝑡 - throughput ratio. It represents the number of elements required to be transferable on the child
stream per every element in the parent stream. 𝑡 is a positive real number.

• 𝑑 - dimensionality. It represents the dimensionality of the child stream w.r.t. its parent stream.

• 𝑠 - synchronicity. It represents the relation between the dimensionality information of the parent
stream and the child stream. Must be Sync, Flatten, DeSync, or FlatDesync.

• 𝑐 - complexity level.

• 𝑟 - direction. It represents the direction of the stream w.r.t. its parent stream. Must be Forward
or Reverse.

• 𝑇 - logical stream type representing the user signals. Only element-manipulating types are al-
lowed.

• 𝑇 - boolean, representing whether the stream carries information beyond the user and data
payloads.

Tydi defines 6 basic types that can be used to construct the streamspace representation of higher-
level data structures. These types are categorized into element-manipulating types (Table 2.1) and
stream-creating types (Table 2.2).

The element-manipulating types only manipulate the size of the element (i.e. they can be mapped
to a one-dimensional bitvector). 𝐵𝑖𝑡𝑠⟨𝐵⟩ is a leaf node that adds 𝐵 bits to the element, indicating a
transfer of 𝐵 bits. 𝐺𝑟𝑜𝑢𝑝⟨𝑆 , 𝑆 , ..., 𝑆 ⟩ concatenates the child elements into a single field, resulting in an
element size that is the sum of all the child element sizes, if all the elements are in the same physical
stream (i.e. there are no nested stream nodes inside 𝐺𝑟𝑜𝑢𝑝⟨𝑆⟩). 𝑈𝑛𝑖𝑜𝑛⟨𝑆 , 𝑆 , ..., 𝑆 ⟩ creates an element
with its element size set to the widest element size across the child types. The 𝐺𝑟𝑜𝑢𝑝⟨⟩ and 𝑈𝑛𝑖𝑜𝑛⟨⟩

2.3. Tydi 9

nodes are not limited to element-manipulating types, therefore they can be used to combine multiple
physical streams.

The stream-manipulating types are used to define new physical streams. 𝑁𝑒𝑤⟨𝑆⟩ can be used as
a root node, or to create a new physical stream that has the same dimensionality as its parent. 𝐷𝑖𝑚⟨𝑆⟩
increases the dimensionality of its child type. And finally, 𝑅𝑒𝑣⟨𝑆⟩ creates a physical stream that flows
in the reverse direction with respect to its parent.

Type Description
𝐵𝑖𝑡𝑠⟨𝐵⟩ Primitive element with 𝐵 bitwidth.

𝐺𝑟𝑜𝑢𝑝⟨𝑆 , 𝑆 , ..., 𝑆 ⟩ Concatenates elements of types 𝑆 , 𝑆 , ..., 𝑆 into one
physical stream element.

𝑈𝑛𝑖𝑜𝑛⟨𝑆 , 𝑆 , ..., 𝑆 ⟩ Creates a B-bits element, where B is the
max. element with of 𝑆 , 𝑆 , ..., 𝑆 .

Table 2.1: Tydi basic element-manipulating nodes.

Type Alias Description

𝑆𝑡𝑟𝑒𝑎𝑚⟨𝑇 , 𝑡, 1, 𝑆𝑦𝑛𝑐, 𝑐, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑, 𝑇 , 𝑓𝑎𝑙𝑠𝑒⟩ 𝐷𝑖𝑚⟨𝑇 , 𝑡, 𝑐, 𝑇 ⟩ Creates a streamspace of 𝑇
in the next dimension w.r.t. its parent.

𝑆𝑡𝑟𝑒𝑎𝑚⟨𝑇 , 𝑡, 0, 𝑆𝑦𝑛𝑐, 𝑐, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑, 𝑇 , 𝑓𝑎𝑙𝑠𝑒⟩ 𝑁𝑒𝑤⟨𝑇 , 𝑡, 𝑐, 𝑇 ⟩ Creates a new physical stream
in the current dimension.

𝑆𝑡𝑟𝑒𝑎𝑚⟨𝑇 , 𝑡, 0, 𝑆𝑦𝑛𝑐, 𝑐, 𝑅𝑒𝑣𝑒𝑟𝑠𝑒, 𝑇 , 𝑓𝑎𝑙𝑠𝑒⟩ 𝑅𝑒𝑣⟨𝑇 , 𝑡, 𝑐, 𝑇 ⟩ Creates a new physical stream of
𝑇 in reverse direction w.r.t. its parent.

Table 2.2: Tydi basic stream-manipulating nodes.

2.3.2. Container library
Tydi proposes a standard container library to define the representation of common data structures in
streamspace. The relevant containers can be found in Table 2.3. These containers server a similar
purpose as the containers defined in many programming language’s standard libraries: aliases for
combinations of types from the type system that represent a certain access pattern.

Data type Tydi container Definition
𝐸𝑚𝑝𝑡𝑦 𝑁𝑢𝑙𝑙 𝐵𝑖𝑡𝑠⟨0⟩
𝑃𝑟𝑖𝑚⟨𝐵⟩ 𝐵𝑖𝑡𝑠⟨𝐵⟩ 𝐵𝑖𝑡𝑠⟨𝐵⟩
𝑆𝑡𝑟𝑢𝑐𝑡⟨𝑇 , 𝑇 , ..., 𝑇 ⟩ 𝐶𝑜𝑛𝑐𝑎𝑡𝑆𝑡𝑟𝑢𝑐𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩

𝐷𝑒𝑠𝑦𝑛𝑐𝑆𝑡𝑟𝑢𝑐𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩
𝐺𝑟𝑜𝑢𝑝⟨𝑆 , 𝑆 , ..., 𝑆 ⟩
𝐺𝑟𝑜𝑢𝑝⟨𝑁𝑒𝑤⟨𝑆 ⟩, 𝑁𝑒𝑤⟨𝑆 ⟩, ..., 𝑁𝑒𝑤⟨𝑆 ⟩⟩

𝑉𝑎𝑟𝑖𝑎𝑛𝑡⟨𝑇 , 𝑇 , ..., 𝑇 ⟩
𝑃𝑎𝑐𝑘𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑛𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩
𝐶𝑜𝑛𝑐𝑎𝑡𝑉𝑎𝑟𝑖𝑎𝑛𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩
𝐷𝑒𝑠𝑦𝑛𝑐𝑉𝑎𝑟𝑖𝑎𝑛𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩

𝐺𝑟𝑜𝑢𝑝⟨𝐵𝑖𝑡𝑠⟨⌈𝑙𝑜𝑔 2⌉⟩, 𝑈𝑛𝑖𝑜𝑛⟨𝑆 , 𝑆 , ..., 𝑆 ⟩⟩
𝐺𝑟𝑜𝑢𝑝⟨𝐵𝑖𝑡𝑠⟨⌈𝑙𝑜𝑔 2⌉⟩, 𝐺𝑟𝑜𝑢𝑝⟨𝑆 , 𝑆 , ..., 𝑆 ⟩⟩
𝐺𝑟𝑜𝑢𝑝⟨𝐵𝑖𝑡𝑠⟨⌈𝑙𝑜𝑔 2⌉⟩, 𝑁𝑒𝑤⟨𝑆 ⟩, ..., 𝑁𝑒𝑤⟨𝑆 ⟩⟩

𝑆𝑒𝑞⟨𝑇⟩ 𝐿𝑖𝑠𝑡⟨𝑆⟩
𝑉𝑒𝑐𝑡𝑜𝑟⟨𝑆⟩

𝐷𝑖𝑚⟨𝑆⟩
𝐺𝑟𝑜𝑢𝑝⟨𝐵𝑖𝑡𝑠⟨𝐿⟩, 𝑁𝑒𝑤⟨𝑆⟩⟩

Table 2.3: Tydi container types.

2.3.3. Physical streams
The streamspace types can be mapped into physical streams with the following parameters:

𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑎𝑚(𝐸,𝑁, 𝐷, 𝐶, 𝑈)

10 2. Background

where:

𝐸 − element bits
𝑁 − elements per transfer
𝐷 − dimensionality
𝐶 − complexity level
𝑈 − user bits

The element bits (E) and dimensionality (D) is determined by the streamspace type. The addi-
tional parameters are relevant in controlling the throughput of the stream and determining compatibility
between two interfaces.

N determines the number of elements to be transferred in one transaction. By communicating
multiple elements per cycle, the throughput of the stream can be scaled. N can be derived from the
throughput ratio of the logical stream, as it equals ⌈∏ 𝑡⌉ for all the ancestral nodes.

C is the complexity level of the particular stream. The complexity level determines the guarantees
made by the source and describes how the elements are transferred in streamspace. It can be used
to make trade-offs regarding the control logic on both ends of the stream.

Signal name Bitwidth Function
𝑣𝑎𝑙𝑖𝑑 𝑠𝑐𝑎𝑙𝑎𝑟 Handshaking𝑟𝑒𝑎𝑑𝑦 𝑠𝑐𝑎𝑙𝑎𝑟
𝑑𝑎𝑡𝑎 𝑁 × |𝐸| Data lanes
𝑙𝑎𝑠𝑡 𝑁 × 𝐷 Indicating the last transfer in the signaled dimensions
𝑠𝑡𝑎𝑖 ⌈𝑙𝑜𝑔 𝑁⌉ Index of the first valid lane
𝑒𝑛𝑑𝑖 ⌈𝑙𝑜𝑔 𝑁⌉ Index of the last valid lane
𝑠𝑡𝑟𝑏 𝑁 Individual lane validity mask
𝑢𝑠𝑒𝑟 |𝑈| User-defined additional control information

Table 2.4: Tydi physical stream signals

The signal composition of a physical stream can be seen in Table 2.4. The presence and bitwidth
of some signals are dependent on the complexity level of the stream. The detailed discussion can be
found in the online specification [8].

2.3.4. Streamlets
In a dataflow design, transformations are typically implemented as streamlets, which are components
with streaming interfaces. An example streamlet with Tydi interfaces is shown in Figure 2.4. The
streamlet takes a list of strings on the input which is represented as 𝑆𝑡𝑟𝑒𝑎𝑚⟨𝐵𝑖𝑡𝑠⟨8⟩, 𝑑 = 2, 𝑡 = 20⟩
in streamspace. The 𝐵𝑖𝑡𝑠⟨8⟩ element-manipulating node represents an ASCII character, the 𝑑 = 2
parameter defines the stream to be two-dimensional (a list of strings is modeled as a two-dimensional
sequence of characters), and the 𝑡 = 20 parameter ensures that 20 characters are transferable in
every cycle. The output is a one-dimensional, 64-bit integer stream. From this specification, the HDL
template of the streamlet with the physical streams can be generated in the target language, in this
case VHDL.

2.3. Tydi 11

1 Streamlet ExampleStreamlet (
2 strings: in Stream<Bits<8>, t=20, d=2>,
3 char_count: out Stream<Bits<64>, d=1>)

(a)

1 component ExampleStreamlet_com
2 port(
3 clk : in std_logic;
4 rst : in std_logic;
5 strings_valid : in std_logic;
6 strings_ready : out std_logic;
7 strings_data : in std_logic_vector(159 downto 0);
8 strings_last : in std_logic_vector(1 downto 0);
9 strings_endi : in std_logic_vector(4 downto 0);

10 strings_strb : in std_logic_vector(19 downto 0);
11 char_count_valid : out std_logic;
12 char_count_ready : in std_logic;
13 char_count_data : out std_logic_vector(63 downto 0);
14 char_count_last : out std_logic_vector(0 downto 0);
15 char_count_strb : out std_logic_vector(0 downto 0)
16);
17 end component;

(b)

Figure 2.4: (a) Streamlet definition. (b) Streamlet as a VHDL component.

3
Solution architecture

Despite a seven order of magnitude increase in transistor count, backed by Moore’s law since the
’70s, the hardware design methodology mostly stayed the same. Digital hardware is predominantly
developed in RTL, using languages (namely, VHDL and Verilog) that couple behavior, timing, and
target-specific constraints. With the ever-increasing complexity, RTL descriptions lead to verbose and
error-prone designs. Consecutively, the complexity of verification also increased, making it problematic
to reach sufficient test coverage.

Several HLS (high-level synthesis) tools appeared to raise the level of abstraction by approaching
hardware design from a software background. However, software constructs generally lack crucial
architectural information about the design. Therefore, those decisions have to be made later by the
tool or guidance is required from the developer. Due to the substantial semantic gap between the
software-like description and hardware, the resulting design’s performance is heavily dependent on the
capabilities of the tool and the model’s fit for hardware, which is ultimately determined by the application
profile and the developer. To be able to exploit the capabilities of the target hardware platform and tools,
extensive knowledge is usually required about the hardware to formulate the description in a way that
the HLS tool of choice is capable of synthesizing a design that meets the target metrics.

Recently, new languages and frameworks emerged that are approaching hardware design from
unconventional abstraction levels and trying to find middle-ground between low-level HDLs and HLS.

This chapter gives insight into some of the promising hardware description/composition languages
and synthesis tools with special attention to their advantages and limitations for accelerator kernel
development in a big data context, and their integrability into a workflow with Arrow and Fletcher (Tydi).

3.1. Modern hardware description languages
Experts argue that we’re not only in the ”golden age of computer architectures”, we’re also in the ”golden
age of hardware description languages” [39], driven by the productivity increase desired by hardware
architects. They observe a trend that more advanced designs can be synthesized from fewer lines
of code. Furthermore, the hardware community is starting to apply software programming language
techniques, such as meta-programming, polymorphism, and abstract data types to address some of
the productivity bottlenecks.

The general trend in modern HDLs is to raise the abstraction level, allow greater generalization and
increase IP reusability. In this section, we look at some of the new and promising developments in the
field.

3.1.1. eDSLs for hardware description
There is an emerging subclass of languages that embed their circuit abstractions into a host-language,
leveraging its meta-programming features. These languages are often called Hardware Construction
Languages (HCLs). Chisel, SpinalHDL, MyHDL, etc. all fall into this category, with differences in feature
set and host-language. Arguably, the most common structural language from this class is Chisel [13],
with Scala as its host-language.

13

14 3. Solution architecture

The advantage of using an eDSL (embedded domain-specific language) is that the hardware prim-
itives can be manipulated using the constructs of the host-language. In the case of Chisel, the Scala-
embedding raises the abstraction level of circuit design by providing concepts including object-orientation,
functional programming, parameterized types, and type inference.

In order to build performant accelerators, a number of microarchitectural decisions have to be made.
These parameters are generally determined during a design-space exploration process, but traditional
HDLs lack the necessary features to describe hardware with adequate generality to compose hardware
during these processes. A common approach to overcome these limitations is to use code generators
or macro preprocessors. By relying on an eDSL-based development flow, the necessary abstractions
can be built to capture high-level design patterns required for productive accelerator development.

Diplomacy [15] and RocketChip [13] are prominent examples for Chisel. RocketChip is a SoC gen-
erator, while Diplomacy is a parameter negotiation library in Scala. Diplomacy is used by RocketChip
to negotiate parameters while connecting components to a shared interconnection network. This level
of automation is made possible by the strong support for parametric designs in Chisel, and by the tight
integration with a powerful host-language.

Simulation: VHDL and Verilog were originally developed as hardware simulation languages, and only
later, a subset of the language features were adopted for synthesis. However, with increasing design
complexity, simulation also became cumbersome, especially in the acceleration field where verification
involves complex testbenches to model the host-side application or interact with it in a transparent way.

Therefore, the need emerged for simulation solutions that allow developers to build testbenches in
a higher-level language, possibly in a more software-oriented way. There are promising open-source
solutions to tackle these challenges, like Cocotb [6] and Verilator [9]. Cocotb is a Python library for
coroutine based co-simulation of VHDL and Verilog designs. It allows the developer to write test-
benches in Python, making it possible to use Python’s language features to provide stimulus to the
design or to interface with other languages. Verilator, on the other hand, compiles synthesizable Ver-
ilog designs into cycle-accurate C++ code and provides an API to interact with the design. Verilator is
one of the fastest Verilog simulators on the market.

The former solutions focus on raising the abstraction of simulation testbenches and enabling inte-
gration for Verilog and VHDL designs.

Chisel also has advantages on the simulation front. By being an eDSL in Scala, the full lan-
guage feature set is available for verification as well. By wrapping Chisel’s low-level simulation API
(PeekPokeTester), all the necessary abstractions can be built to develop and execute the simulation
on the desired level. Also, by developing the testbench in Scala, the verification can be seamlessly
inserted into continuous integration pipelines without using a number of external tools.

Chisel’s simulation offerings are also widened by Firesim [24], which is a cycle-accurate, FPGA-
accelerated simulation platform that runs on Amazon AWS F1 instances.

Dataflow design: Although Chisel is not specifically built for dataflow-oriented hardware design, it
has basic support for streaming dataflow design by abstracting away the handshaking for custom types
using the DecoupledIO class. With the possibility of building more abstractions, dataflow designs can
be built in a parametric and productive way, without writing verbose code.

Intel has already published a framework [12] to support dataflow design for accelerators by providing
basic components:

• Load/store units

• Memory arbiter

• Type packer/unpacker

• SDF (static dataflow) actor

All the components use DecoupledIO to abstract away the handshaking between the components.
Using these units, accelerators can be built in a convenient way by wrapping the user logic into SDF
actors.

Chisel supports user objects through the Bundle class, which is similar to a VHDL record. These
types can be used as custom data types between components:

3.1. Modern hardware description languages 15

1 new AccUserIn(new UserBundle, 16, BUF_SIZE)

In Intel’s framework, the functionality of the accelerator is described in the context of SDF actors. It is
an abstraction that implements a dataflow actor that supports multiple inputs and outputs (DecoupledIO
interfaces). It fires when all the inputs are valid, and all the outputs are ready. These SDF actors
can be composed into a dataflow design and integrated into the acceleration flow using the memory
components.

Applicability: Chisel has major advantages compared to traditional HDLs that mostly come from the
parametrization and abstraction capabilities. These features make IP reuse significantly more conve-
nient, which is a must for accelerator development, where a high level of flexibility is required to handle
a variety of use-cases.

The increased productivity is a major factor that contributed to the success of eDSLs, but in the big
data field having the advantage of building the whole design in a powerful host-language is invaluable.
We can take the initial Apache Arrow + Fletcher workflow as an example. As described in Chapter 2,
the developer presents an Arrow RecordBatch to Fletchgen (C++ tool) that generates VHDL with the
necessary components, a simulation testbench and a skeleton for the user kernel. Next, the developer
designs the kernel and simulates it with one of the supported tools (GHDL, ModelSim, etc.). The
simulation testbench is based on the RecordBatch that was provided during the Fletchgen run.

This workflow could be developed in Chisel, under one umbrella. The Apache Arrow-related pro-
cessing using the Java Arrow API, the hardware generation, and simulation using Chisel.

If we limit the scope for kernel development, Chisel would be ideal for hand-built, performance-
oriented, parametric designs, or in use-cases where otherwise a code-generator would have to be
used (e.g. a regular expression matcher generator).

3.1.2. Transaction-Level Verilog
TL-Verilog (Transaction-Level Verilog) is a unique concept across the new hardware modeling lan-
guages. It expresses behavior as timing-abstract pipelines [18], allowing the developer to build control-
intensive applications with cycle-level detail, but keeping the exact staging of the design subject to
change.

Timing-abstract pipelines: In TL-Verilog the behavior is specified withing the context of pipelines in
a timing-abstract manner. An example design is shown in Figure 3.1 and Figure 3.2.

TL-Verilog abstracts away timing by introducing pipesignals (such as $𝑎𝑎) that live in the context of
pipelines (|𝑐𝑎𝑙𝑐) and pipestages (@1). Pipesignals represent the signal and its staged versions. Where
pipesignals cross pipestage boundaries, the necessary sequential elements are inserted by the tool.
The staging is considered to be a physical attribute; thus, retiming does not change the behavioral
model, it just describes one possible implementation in the design space.

^2

^2

D

D

+

D sqrt

a

b

c

1 2 3Stage:

Figure 3.1: Hardware block diagram of the Pythagorean theorem calculator pipeline. [18]

16 3. Solution architecture

1 |calc
2 ?$valid
3 @1
4 $aa_sq[7:0] = $aa[3:0] ** 2;
5 $bb_sq[7:0] = $bb[3:0] ** 2;
6 @2
7 $cc_sq[8:0] = $aa_sq + $bb_sq;
8 @3
9 $cc[4:0] = sqrt($cc_sq);

Figure 3.2: Pythagorean theorem calculator pipeline example in TL-Verilog. [18]

Transaction flow: TL-Verilog also supports building designs from flow components by extending
timing-abstraction to transactions flowing through arbitrary components, including FIFOs, arbiters, and
queues. [19]

An example transaction flow design is shown in Figure 3.4. The design instantiates and connects 4
identical logic blocks in a ring architecture. Each cycle, each of the logic block are allowed to generate
a transaction that will travel the ring to its destination.

In TL-Verilog, a transaction is a collection of signals, or fields. The transaction-level design is sup-
ported in TL-Verilog by the $ANY construct, which can be used to abstract away the signals that are
passed through the component. (Figure 3.3)

1 $ANY = $select ? /in1 $ANY : /in2 $ANY;

Figure 3.3: Example flow expression for a multiplexer. [19]

Ring

/port[1]

/port[2]/port[0]

/port[3]

FIFO

A
R
B

Stall
Pipeline

Free-Flow
Pipeline

Backp.
Pipeline

FIFO

Free-Flow
Pipeline

Figure 3.4: TL-Verilog transaction flow example. [19]

3.2. Synthesis frameworks 17

Applicability: In the context of acceleration, TL-Verilog is beneficial for building complex, control-
heavy processing modules. It is also suitable for building microarchitectures using general flow com-
ponents. The retiming capabilities are attractive in case certain clock speed, performance and area
targets have to be met and are subject to change.

3.2. Synthesis frameworks
This section introduces frameworks that operate on unconventional levels of abstraction, making them
attractive to the target application domain.

Parallel patterns: Parallel patterns are constructs in functional languages that are implicitly parallel,
such as map, filter, reduce, and groupBy. Applications that can be efficiently expressed using parallel
patterns due to their spatial and temporal locality are the ones that can benefit most from FPGA ac-
celeration. These applications are common in image processing, financial analytics, machine learning,
and big data analytics. [34]

3.2.1. Spatial
Spatial [26] (successor of DHDL [25]) is a domain-specific language hosted on Scala that specifically
targets application accelerators. Although Spatial is considered to be an HLS tool, it features hardware-
centric abstractions.

Spatial as a language: Spatial is a timing abstract language with abstract control sequences: FSM,
Foreach, Reduce,Memreduce, Stream, and Parallel. These control structures can be arbitrarily nested
to build hierarchical pipelines and exploit nested parallelism. Spatial also borrows constructs from par-
allel patterns by providing a compact syntax for reductions that implies associativity, allowing the com-
piler to parallelize. The Foreach, Reduce and MemReduce constructs can be parallelized by applying
parallelization factors. Spatial guarantees that the parallelization maintains the same behavior as the
sequential execution. The bodies of the control structures are untimed, the operations are scheduled
by the compiler.

In Spatial, explicit control is given to the developer over the memory hierarchy by providing a variety
of memory templates, including on-chip scratchpads (SRAM), line buffers (LineBuffer), queues and
stacks (FIFO and LIFO), registers (Reg), register files (RegFile) and read-only lookup-tables (LUT).
The DRAM template represents the highest level of the memory hierarchy, it can be accessed using
pre-defined access patterns: load-store and scatter-gather. Spatial offers a variety of interfaces to
the host, including register IO (ArgIn, ArgOut, HostIO), external streaming interfaces for peripherals
(StreamIn, StreamOut), and a high-bandwidth datapath through the DRAM.

The framework allows the developer to write the host application and the accelerator code in the
same Scala project. The partitioning of the host-application and the accelerator code is done using the
Accel scope. All operation within this scope will be allocated to the accelerator, while the rest will run
on the host. As in data types, Spatial supports statically-sized aggregate types in hardware, but lacks
inherit support for dynamically sized, or multidimensional aggregate types.

An example Spatial application is shown in Figure 3.5. It demonstrates the basic structure of a
Spatial application through the calculation of a dot product.

Spatial as a compiler: Since Spatial is a timing-abstract language, scheduling is done by the com-
piler. Where the controller type is not specified explicitly, the compiler will infer one. After the controller
insertion, the compiler will attempt to schedule the operations within the controllers.

Spatial supports loop unrolling and pipelining. These optimizations require support in the memory
hierarchy; therefore, Spatial is capable of partitioning, banking, and buffering on-chip memories to be
able to serve the necessary bandwidth.

After the scheduling and memory banking options are determined, together with loop parallelization
and tile size parameters, the compiler performs an area and runtime estimation to be used during the
design space exploration, for which, Spatial employs a self-learning autotuner called HyperMapper.
The parameters can be implicit pipelining and parallelization parameters, or explicitly included in the
code.

18 3. Solution architecture

1 val output = ArgOut[Float]
2 val v_a = DRAM[Float](N)
3 val v_b = DRAM[Float](N)
4 Accel {
5 Reduce(output)(N by B){ i =>
6 val tile_a = SRAM[Float](B)
7 val tile_b = SRAM[Float](B)
8 val res = Reg[Float]
9

10 tile_a load v_a(i :: i+B)
11 tile_b load v_b(i :: i+B)
12

13 Reduce(res)(B by 1){ j =>
14 tile_a(j) * tile_b(j)
15 }{a, b => a + b}
16 }{a, b => a + b}
17 }

Figure 3.5: Spatial dot product example

After the selection of design parameters, the design gets finalized by performing the unrolling and
retiming based on the prior analysis passes.

Finally, the output product is generated, which is Chisel RTL. The code generator instantiates mod-
ules from a library of parameterized templates written in Chisel, and generates to glue logic to tie them
together.

Spatial as a framework: Spatial is an end-to-end framework, meaning that the Spatial compiler syn-
thesizes the accelerator, and also manages the integration with the host-side software. The high-level
hardware architecture of the framework is depicted in Figure 3.6. The centerpiece of the final hardware
design is the accelerator core generated by the framework in Chisel. The accelerator core is wrapped
in a Fringe, which is also a Chisel design with the purpose of interfacing the generated core with the
target hardware platform by connecting the register, streaming and memory interfaces and instantiating
platform-agnostic modules.

The framework currently supports the following target platforms: Xilinx Ultrascale+ VU9P FPGAs
on Amazon’s EC2 F1 Instances, Xilinx Zynq-7000 and Ultrascale+ ZCU102 SoCs, Altera DE1, and
Arria 10 SoCs.

Applicability: Since Spatial is an end-to-end framework, it is not built to be used as a tool to generate
stand-alone kernels. In particular, the desired Apache Arrow + Fletcher workflow is redundant with
Spatial’s host-side runtime and accelerator interface.

However, using the StreamIn/Out interfaces, it would be possible to include a Spatial design into a
custom dataflow. For this the following components would be required:

• Fringe (Chisel)

• Generic Chisel stream components

• Spatial internals to support custom components

With these modifications, Spatial would be able to interface with non-dimensional Tydi streams that
encapsulate statically-sized aggregate types. By using Spatial this way, major advantages would be
lost, including the rich memory optimization features and DSE. However, a similar DSE approach could
be used to determine an appropriate elements-per-cycle value for the incoming streams.

Not considering the redundant feature set, Spatial represents a unique abstraction level that is ideal
for computational kernels and appeals to developers both with software or hardware backgrounds.

3.2. Synthesis frameworks 19

FPGA

Fringe

Registers
Host

Accelerator

DRAM

Load,	store,
scatter,
gather

AXI	Streams

Figure 3.6: Spatial framework top-level hardware architecture overview.

3.2.2. Lift
Lift [27, 37] is a framework that claims to achieve performance portability across heterogeneous sys-
tems. The applications are described using parallel patterns, in a platform-agnostic language. The
compiler then generates platform-specific code after a design space exploration driven by a set of
rewrite-rules. The rewrite-rules are used to express platform-specific optimization choices, including
algorithmic and low-level hardware optimizations.

FPGA backend: Lift introduces a set of low-level patterns that can be synthesized to FPGAs. The
framework represents the design internally as dataflows; hence, it is possible to synthesize the design
as streaming components connected in a consumer-producer fashion. Lift’s unique feature is that it
supports multidimensional streams on FPGA by having a multi-bit last signal. As in data types, fixed-
size scalar types are supported.

The low-level pattern used by Lift to support FPGA synthesis:

• ZipStream: ZipStreams takes two streams and creates a stream of tuples.

• LetStream: LetStream takes a function and instantiates it next to a Block RAM cache. It allows
the function to consume the input data multiple times.

• MapStream: MapStream takes a function declaration, and applies that function to every element
of the stream.

• ReduceStream: The ReduceStream pattern reduces a sequence of multiple elements into a
sequence of one element.

• SplitStream: SplitStream introduces a new inner dimension to a stream given the size of the
inner dimension.

• JoinStream: JoinStream removes the outermost dimension from a stream by discarding the
corresponding last signal.

• UserModule: User-definedmodule that operates on streamswithout requiring any global context.

20 3. Solution architecture

1 add = fun(x => UserModule.Addition(x))
2 mul = fun(x => UserModule.Multiplication(x))
3 program = fun((x, y) =>
4 ToHost(
5 LetStream(fun (z =>
6 ReduceStream(add , 0,
7 MapStream(mul , ZipStream(z, ToFPGA(y)))
8))
9 , ToFPGA(x)

10)))

Figure 3.7: Matrix multiplication in Lift low-level patterns. [27]

An example application is shown in fig. 3.7. The program performs a dot product calculation and
it is described as nested function calls. It starts with the ToFPGA pattern that sends argument x to
the FPGA. This argument is stored using the LetStream pattern. Then, the second argument is sent
and zipped with the first one. These arguments are pairwise multiplied and reduced using an addition
operation. Finally, the result is returned using the ToHost construct. The addition a multiplication
operators are represented using the UserModule construct which can be implemented as a separate
entity. The nested function calls of the Lift lift program can be translated into a dataflow design and
composed using hardware streams and the described Lift low-level patterns.

Applicability: The Lift framework proposes a unique approach for targeting multiple hardware archi-
tectures from the same application expressed in parallel patterns. The authors evaluated the proof-of-
concept approach of targeting FPGAs on a Xilinx XC7Z010 device and their approach showed a 10x
improvement in matrix multiplication compared to the CPU implementation and a commercial HLS tool.

Since the Lift language relies heavily on parallel patterns, it is a good fit for describing common
algorithms that appear in the big data field. However, the framework has not been evaluated on a
large-scale acceleration platform. In addition, the data type support is currently limited.

The proposed patterns are a good foundation to build on, and to extend them for more complex data
types. These patterns were taken into consideration during the process of defining parallel pattern-like
constructs for Tydi.

3.2.3. Fleet
Fleet [38] is a recently published framework for parallel streaming processing on FPGAs. Fleet expects
the developer to provide a processing unit that takes a single stream of tokens, which is then instantiated
in as many copies as the user wants, along with a soft memory controller that feeds and drains the units.
(Figure 3.8)

Processing units: The processing units have to be provided in RTL, with ready-valid interfaces on
the input and the output. The units can be written by hand or generated by higher-level tools and should
serially process a single stream of tokens.

Fleet eDSL: Fleet also provides a Scala eDSL as an extension to Chisel to write processing units.
The Fleet language abstracts away the handshaking and provides the user with automatically pipelined
BRAM type.

The basic language features include registers, binary operators, and conditional blocks. In addi-
tion, Fleet defines the input keyword to provide access the current input token, emit to produce an
output token, and a while loop construct to take multiple virtual cycles for the current input token. The
statements in the language can be contained in if, else if, and else conditional blocks.

As in data types, Fleet eDSL supports tokens with fixed width defined in compile-time. Operators
are provided for integer and boolean types.

To allow automatic BRAM pipelining, Fleet eDSL introduces the virtual cycle abstraction. Every
execution of the user’s processing logic is one virtual cycle, and Fleet guarantees that a virtual cycle
is one real hardware cycle. To ensure this, Fleet restricts the BRAM access pattern in a single virtual

3.2. Synthesis frameworks 21

Input	controller

PU	1
in

PU	2
in

PU	3
in

PU	n
in

PU	1
out

PU	2
out

PU	3
out

PU	n
out

PU	1 PU	1 PU	1

Output	controller

...

Input	DRAM	buffer

Output	DRAM	buffer

Figure 3.8: Fleet framework hardware overview. [38]

cycle in the following ways: dependent reads are not allowed, the algorithm is only allowed to read the
BRAM at one address and write it at one address, and finally, only one token is allowed to be emitted.

If these restrictions are met, the Fleet compiler can generate a two-stage pipeline for the virtual
cycles, with one stage for writes, and one stage for reads.

In summary, the Fleet eDSL allows users to design stream processing units in a productive way,
while keeping full control over the performance of the resulting hardware. An example stream filter
processing unit is shown in Figure 3.9.

1 class Filter(coreId: Int) extends ProcessingUnit(8, 8, coreId) {
2 onInput {
3 swhen(StreamInput > 127.L) {
4 Emit(StreamInput)
5 }
6 }
7 Builder.curBuilder.compile()
8 }

Figure 3.9: Simple stream filter example in Fleet eDSL. [7]

Memory controller: Fleet provides a soft memory controller with the design that feeds and drains
the processing units in a round-robin fashion.

The Fleet memory controller utilizes an AXI4 memory interface with a 512-bit data bus and an
arbitrary number of AXI4-channels. The controller operates by issuing DRAM requests at the granularity
of multiples of the data bus width. The processing units have BRAM input and output buffers with
enough capacity to store a burst. Since the input and output buffers of the processing units are usually
smaller than the AXI4 data bus width, burst registers are used to feed and drain data from multiple
processing units at once.

On the host-side, the user is expected to prepare a contiguous buffer with the input data, which will
be streamed into the accelerator DRAM and distributed among the processing units. The result are

22 3. Solution architecture

copied back in a similar way to the host.

Applicability: Fleet offers a massively parallel streaming abstraction to scale accelerator perfor-
mance, and a Scala eDSL for building arbitrary streaming pipelines, both of which are valuable for
building high-throughput accelerators. The proposed eDSL is very close to an envisioned abstraction
level for building dataflow kernels in a hardware-oriented way. Although the framework supports cus-
tom, statically sized data types for tokens, it lacks support for nested dynamically-sized data structures.

Fleet is a proof-of-concept with great potential, and could be used to accelerate a number of pro-
cessing tasks in a big data environment. However, to become a more general solution, it needs to
incorporate support for more complex data types, and improve host-side integration, possibly by lever-
aging standard in-memory formats, like Apache Arrow.

3.3. End-to-end frameworks for big data
This section introduces two frameworks that are specifically built for big data applications. These so-
lutions are on the other extreme of the spectrum compared to hand-built accelerators, and show the
level of complexity associated with bridging the huge semantic gap between the application and the
target execution platform.

3.3.1. Melia
Melia [40] is an OpenCL-based framework to build MapReduce [16] applications for FPGAs. It extends
on the idea of FPMR [36], but in Melia, the custom data processing tasks are implemented in OpenCL
instead of a low-level hardware description language like VHDL/Verilog.

Melia is implemented as a software library, and can be used in a similar way as other MapRe-
duce frameworks, specifically, users are required to implement the map() and reduce() transformation
functions in C. Melia then synthesizes these functions and executes them.

The framework proposes optimizations that are attractive for FPGAs, such as memory coalescing,
pipeline replications, and loop unrolling. The design space exploration is done using a cost model
proposed by the authors.

The comparisons between FPGA and CPU/GPU show a steady improvement in energy efficiency,
being 3.6 times more efficient than the GPU implementations, and 16.7 times more efficient than
the CPU implementations in the benchmarked applications (K-means clustering, Word count, Distinct
words, String matching, Matrix multiplication, and Similarity scope).

3.3.2. S2FA
S2FA (Spark-to-FPGA-Accelerator) [42] is a framework that generates FPGA designs directly from
Apache Spark applications, using Blaze [22] as a runtime backend. The framework is able to com-
pile user-written Scala code as long as the function satisfies certain constraints related to data types,
memory allocation, and library calls.

S2FA follows a practical approach to generate the FPGA kernels by generating C code from Java
bytecode which is then advanced using the Merlin transformation library and fed into an HLS tool
(SDAccel) to generate an FPGA design.

The cornerstone of the S2FA framework is the design space exploration, since it has to close a
remarkable semantic gap between the user-written Scala code and generated hardware. The frame-
work employs a learning-based exploration that is built on top of OpenTuner [11]. It works with multiple
reinforcement learning algorithms simultaneously and adopts a multi-armed bandit algorithm to judge
the effectiveness of each technique.

3.4. Discussion
In this section, we looked at various solutions for FPGA accelerator kernel development and synthesis
with a big data focus. The introduced solutions range from low-level HDLs to end-to-end frameworks
that are already integrated with data analytics packages or represent one of the popular programming
models in the application domain: parallel patterns.

Every evaluated solution has its place in accelerator kernel development: HDLs for high-performance,
tailored implementations, synthesis frameworks to raise the abstraction level for increased productivity,

3.5. Proposed solution 23

and end-to-end frameworks for plug-in solutions.
However, none of the described solutions have the necessary integration-level and flexibility to de-

velop performant applications with low turnaround time and adequate control over the hardware. With-
out leveraging standardization on the host-side and on the accelerator-side, the re-use of accelerator
cores is challenging, and results in an ad-hoc mix of software and hardware components.

By looking at the whole spectrum of solutions, we can observe a lack of cross-compatibility. The big
data field utilizes a broad range of algorithms, such as (de-)compression, image processing, machine
learning, graph analytics, sequence alignment, statistical analytics, and text processing. In order to
cover this broad range of distinct areas, it would be beneficial to have the ability to combine components
from different sources, or ones that are written in different languages/frameworks.

In data analytics, complex data types are common. As we observed, handling these types is chal-
lenging in most languages; furthermore, parts of the data structure or the dimensionality information
may not be related to the processing task. As a general design objective, it is desirable to write com-
ponents in a way that they contain functionality and control logic only related to the processing task,
similar to a function in software development. However, to build complex designs using components
designed this way, a solution is required to handle some of the complexity associated with compound
and multidimensional data types outside the processing units.

Currently, there is no language or framework that satisfies all these constraints. Fletcher proposes to
solve the standardized software-side integration, Tydi proposes to provide a standard interface between
components, but at present, there is no solution to describe hardware compositions from components
that implement these interfaces.

3.5. Proposed solution
The proposed solution in this thesis is a composition tool for components that implement Tydi inter-
faces, with higher-level language features analogous to the low-level patterns introduced by the Lift
framework.

A practical example: Assume a column in a dataset that holds the last names of people. The pro-
cessing task is to capitalize all of these names. In this case, the data is a list of strings, that can be
modeled in Tydi streamspace in the following way: 𝑆𝑒𝑞⟨𝑆𝑒𝑞⟨𝑃𝑟𝑖𝑚⟨8⟩⟩⟩. The atomic operation in this
processing task is the capitalization of individual characters. Assuming no help from higher-level pat-
terns, the streamlet that performs the capitalization would have to implement the above input and output
type, even though the dimensionality information is not relevant to the operation. To tackle this issue,
one would want to peel off the outer dimensions, perform the operation on the individual characters,
and construct an output stream with the new elements and with the same dimensionality as the input
was. The described operation resembles the MapStream pattern introduced in Lift.

Using a MapStream pattern defined for Tydi, the description would look like the following:
1 map_strings: MapStream(map_characters: MapStream(op_inst: ops.Capitalize));

A streamlet described as above would instantiate the Capitalize streamlet from the ops library in-
side a Tydi project, the two nested MapStream primitives would advance the stream to make it two-
dimensional, so the kernel would have the desired input and output type.

The proposed approach allows the developer to combine components that are written in different
languages into more complex designs, and increase productivity using the higher-level primitives. As-
suming a set of common operations and accelerator kernels for specific workloads, application-specific
accelerators could be written effectively and effortlessly, while keeping the potential for low-level opti-
mizations. A composition language could also become a solid basis for generating kernels by higher-
level tools, incorporating pre-built and synthesized kernels without the need to produce the complete
hardware description.

4
Prototyping

4.1. Composition language
This section discusses the proposed composition language for Tydi. The grammar specification is
available as a PEST [3] PEG file in Appendix A. PEST is a parser framework written in Rust, it uses
parsing expression grammars (PEGs) as input, making it a productive solution for prototyping.

4.1.1. Implementation of a streamlet
Tydi currently has means to define a streamlet with its interfaces and insert it into a project hierarchy
but has no way to attach an implementation. This section proposes language constructs specifying the
implementation of a streamlet in the project hierarchy.

HDL: The implementation of a streamlet can be specified as one of the supported HDL languages
(currently Chisel and VHDL). In this case, streamlet skeletons should be generated in the target lan-
guage with the appropriate Tydi interfaces.

1 impl lib.Streamlet VHDL

External: The implementation of a streamlet can be specified as ”external”. In this case, the imple-
mentation of the streamlet already exists externally, or has to generated by an external tool. A com-
mand string can be specified that will be executed during the implementation phase. The command
can include parameters that can be assigned during instantiation.

1 impl lib.Streamlet external ”command string with $parameters”

Structural: As the main feature of the proposed language, streamlets can be constructed in a struc-
tural way by instantiating streamlets from the project or pattern nodes and connecting them.

1 impl lib.Streamlet structural {
2 /*instantiations and connections*/
3 }

Instantiation: The instantiation of a streamlet is defined as follows:

1 instance_name: library.Streamlet[param1 := 6, param2 := ”string parameter”,
2 param3 := false];

The instantiation consists of an instance name, a reference to the streamlet to be instantiated, and
a list of parameters. The supported parameter types are: string, number, and boolean.

The parameters should be passed to the implementation backend of the streamlet. In the case of
an HDL backend, the parameters should be declared and assigned as regular generics, while in the
case of an external implementation, these parameters should be used in the command string.

25

26 4. Prototyping

Single connection: A single connection between two interfaces is defined as follows:

1 instance1.interface_a <= instance2.interface_b;

Where the left side is always an interface defined as an input and the right is defined as an output. The
this keyword can be used to access the interfaces of the streamlet to be implemented from the inside.

Using the this keyword, the streamlet’s interfaces appear in the reverse direction, so the input and
output connections can be made in the following way:

1 instance.in <= this.in;
2 this.out <= instance.out;

Before a connection is registered, the compatibility between the source and destination interface
has to be validated based on the type and complexity level. If the type and complexity level allows it,
conversion logic may be inserted.

Chain connection: Streamlet instances can be chained together using the chain connection con-
struct in the following way:

1 inst1 <=> inst2 <=> inst3;

The construct connects the primary input and output interfaces of two streamlets in a more visual
way, without the need for two single connections. Since currently, there is no way to specify primary
interfaces if there is more than one input or output, the interfaces with the names in and out are con-
nected.

Unconnected interfaces: The unconnected output interfaces should be connected to a dummy
sink that has its ready signal asserted at all times to prevent stalling.

4.1.2. Parallel patterns
This subsection defines higher-level primitives that can be applied to Tydi streams and allow the con-
struction of designs that operate on complex stream types from simple streamlets. These pattern nodes
have to be generated during the build process.

MapStream
The MapStream pattern removes the outermost dimension of the input stream, feeds it into a streamlet,
and adds back the removed dimension to the streamlet’s output stream. The construct can be used to
apply an operation to the elements of a multidimensional stream type while keeping the dimensionality
information.

The signature of MapStream is:

𝑆𝑡𝑟𝑒𝑎𝑚(𝑇 , 𝑑 = 𝐷 , 𝑐 = 𝐶) → 𝑆𝑡𝑟𝑒𝑎𝑚(𝑇 , 𝑑 = 𝐷 , 𝑐 = 𝐶)

𝑇 − Type encapsulated in the input stream.
𝐷 − The dimensionality of the input stream.
𝐶 − The complexity level of the input stream.
𝑇 − The type encapsulated in the output stream of the instantiated streamlet.
𝐶 − Instantiated module output stream complexity level.

The syntax of the MapStream pattern is:

1 map_inst: MapStream(op_inst: lib.Streamlet);

Nesting: The MapStream pattern can be nested to process streams with 𝐷 > 1. In case of 𝐷 =
2, 𝑎𝑛𝑑𝐷 = 0:

1 map_outer: MapStream(map_inner: MapStream(op_inst: lib.Streamlet));

4.1. Composition language 27

Hardware design: The hardware architecture of the MapStream pattern is depicted in Figure 4.1.
The design consists of two main components, the stream element counter, and the stream sequencer.
These modules are responsible for managing the outermost dimension of the stream by ensuring that
the same number of elements are handshaked on the input of a streamlet as on its output in the given
dimension. The corresponding last signal is asserted whenever the last element is being handshaked
on the output.

The element counter and sequencer modules are connected through a stream that transfers the
length of the sequence whenever the last element appears on the input. The width of the stream
equals to the system-wide index width, which is a constant representing the bitwidth of the indices.

Since the length of the sequence is unknown before the last element arrives, some of the elements
most likely propagate through the user kernel before the sequence length arrives at the sequencer.
The sequencer module can be implemented as a decrementing counter that counts the handshaked
elements even before the next length value arrived. When the sequence length is known, it is added
to the counter. When it reaches zero, it means the last element is being handshaked; hence, the last
signal is asserted.

In order to accommodate kernels with any latency and sequences with any length, the sequencer
module contains a FIFO for the incoming length values. This makes sure that the sequences shorter
than the latency of the kernel are recreated correctly. The FIFO has to be sized in a way that it can hold
the maximum number of length values that can occur within the maximum latency of the user streamlet,
considering the shortest sequence length.

Additional consideration has to be taken to handle the case when the latency of the user streamlet
is shorter than the latency of the element counter - sequencer path. If the latency is too low in the user
streamlet path (e.g., a combinatorial kernel), short sequences can be missed. In order to ensure this
cannot happen, the latency of the data path has to be adjusted to be longer than the latency between
the element counter and the sequencer’s counter. This is done by inserting stream slices into the data
path. These can be elided in case the user streamlet has long enough latency.

Stream	In
Din	>=	1

Sync

Operation
Streamlet

Stream
Element
Counter

Stream
Sequencer

Length

Stream	Out
Dout	=	Din

Stream
Slices

MapStream

Din-1 Din-1

last

Flow	control	+	transfer
metadata

Dimensionality	data

Figure 4.1: MapStream pattern hardware architecture.

FlatMapStream
The FlatMapPattern, similarly to MapStream, removes the outermost dimension, but instead of recon-
structing the same dimensionality on the output, it discards it.

The signature of FlatMapStream is:

𝑆𝑡𝑟𝑒𝑎𝑚(𝑇 , 𝑑 = 𝐷 , 𝑐 = 𝐶) → 𝑆𝑡𝑟𝑒𝑎𝑚(𝑇 , 𝑑 = 𝐷 − 1, 𝑐 = 𝐶)

28 4. Prototyping

where:

𝑇 − Type encapsulated in the input stream.
𝐷 − The dimensionality of the input stream.
𝐶 − The complexity level of the input stream.
𝑇 − The type encapsulated in the output stream of the instantiated streamlet.
𝐶 − Complexity level of the instantiated module’s output stream.

The syntax of the FlatMapStream pattern is:

1 flatmap_inst: FlatMapStream(op_inst: lib.Streamlet);

Nesting: The FlatMapStream pattern can be nested to process streams with 𝐷 > 1. In case of
𝐷 = 2, and 𝐷 = 0:

1 map_outer: FlatMapStream(map_inner: FlatMapStream(op_inst: lib.Streamlet));

ReduceStream
The ReduceStream pattern reduces a sequence of elements to a single value by collapsing the inner-
most dimension.

The signature of ReduceStream is:

𝑆𝑡𝑟𝑒𝑎𝑚(𝑇 , 𝑑 = 𝐷 , 𝑐 = 𝐶) → 𝑆𝑡𝑟𝑒𝑎𝑚(𝑇 , 𝑑 = 𝐷 − 1, 𝑐 = 1)

where:

𝑇 − Type encapsulated in the input stream.
𝐷 − The dimensionality of the input stream.
𝐶 − Complexity level of the instantiated module’s output stream.

The syntax of the ReduceStream pattern is:

1 reduce_inst: ReduceStream(op_inst: lib.Streamlet);

Chaining: ReduceStream patterns can be chained to process streams with 𝐷 > 1. In case of𝐷 = 2,
and 𝐷 = 0:

1 reduce_inner: ReduceStream(op_inst: lib.Streamlet);
2 reduce_outer: ReduceStream(op_inst: lib.Streamlet);
3 reduce_inner <=> reduce_outer;

Hardware design: The hardware architecture of the ReduceStream pattern is depicted in Figure 4.2.
The architecture of said construct is similar to MapStream, with the difference being the included accu-
mulator and the use of multiple counter-sequencer pairs. In case of ReduceStream, all the dimensions
have to be managed, the outer dimensions to keep the 𝐷 − 1 dimensionality, and the innermost to
validate the output when the last element has been processed.

The streamlet used as the operator takes two operands. It is possible to exploit data parallelism
by allowing the operand stream coming from outside to have multiple data lanes. This introduces a
difference in counting compared to MapStream; the reduce operator doesn’t necessarily produce the
same number of output values as input values it consumed. Hence, in the case of the ReduceStream
pattern, the number of transactions has to be counted instead of individual elements.

If the used complexity level allows it, empty transactions can appear. Since the operator is required
to produce an equal amount of transactions on the input and the output, it’s possible that the last
transaction of the sequence is empty. In that case, the last accumulator value has to be sent, hence
the multiplexer on the output.

4.1. Composition language 29

Stream	In
Din	>=	1

Stream	Out
Dout	=	Din	-	1

Accumulator

Flow	control	+	transfer
metadata

Dimensionality	data

Sync
Operation
Streamlet

Stream
Sequencer

ReduceStream

op1

op2

Stream
Slices

Sync

1Stream
Transfer
Counter

Mux

Figure 4.2: ReduceStream pattern hardware architecture.

FilterStream
The FilterStream construct takes a data and a predicate stream and filters the data stream with the
predicates used as a mask.

The signature of FilterStream is:

𝑆𝑡𝑟𝑒𝑎𝑚(𝑇 , 𝑑 = 𝐷 , 𝑡 = 𝑡 , 𝑐 = 𝐶) → 𝑆𝑡𝑟𝑒𝑎𝑚(𝑇 , 𝑑 = 𝐷 , 𝑡 = 𝑡 , 𝑐 = 7)
where:
𝑇 − Type encapsulated in the input stream.
𝐷 − The dimensionality of the input stream.
𝐶 − The complexity level of the input stream.
𝑇 = 𝑇 .
𝐷 = 𝐷 .
𝑡 = 𝑡 .

The syntax of the FilterStream pattern is:
1 filter_inst: FilterStream(inst.predicate);

Hardware design: The hardware design of the FilterStream pattern is depicted in Figure 4.3. The
incoming predicates are stored in a FIFO and used as a mask for determining the validity bit on the
output for every lane; hence, the throughput parameter of the incoming data and predicate stream has
to be equal.

The FilterStream primitive implements filtering by consuming the elements on the input stream that
have false associated with them on the predicate stream and passing the ones with a true predicate to
the output.

Predicate
Stream

Data	
Stream

Output	Data
Stream

Predicate
FIFO

Controller

FilterStream

Flow	control	+	transfer
metadata

Dimensionality	data

Figure 4.3: FilterStream pattern hardware architecture.

30 4. Prototyping

Handling dimensionality: The FilterStream construct keeps the dimensionality information of the
incoming data stream. In case the last value of a sequence is associated with a false predicate, an
empty transaction is sent on the output stream to signal the end of a sequence.

Output complexity level: The complexity level of the output stream is 7 if the input stream has a
throughput parameter greater than one. In this case, the predicate values are used as a mask for
determining the validity of the output lanes on the strb lanes. The level of complexity is explained by
the case when the last element of a sequence arrives in a transaction that requires some of the lanes to
be passed to the output. Given these conditions, any of the lanes can signal the end of a sequence on
the output, which is the exact definition of complexity level 7. If the throughput parameter of the input
cannot be matched by the sources, or the output complexity level is too high, gearbox and conversion
logic should be inserted.

Nested data structures: The hardware architecture described above processes elementary streams.
If the stream type consists of nested streams, additional sinks would be required to consume the nested
elements. However, for filtering complex data structures with a considerable size, an index-based
approach would be more suitable.

VectorToSeq
The VectorToSeq primitive takes a 𝑉𝑒𝑐𝑡𝑜𝑟⟨𝑇⟩ Tydi container and converts it to 𝑆𝑒𝑞⟨𝑇⟩.

Hardware design: The hardware architecture of the VectorToSeq primitive is depicted in Fig-
ure 4.4. The VectorToSeq primitive unwraps the 𝑉𝑒𝑐𝑡𝑜𝑟 container into the element and length stream.
The length stream is forwarded to the stream sequencer that advances the output stream of the pro-
cessing streamlet with a 𝑙𝑎𝑠𝑡 bit.

The syntax of the VectorToSeq primitive is:
1 seq_inst: VectorToSeq(inst.vec);

VectorToSeq

Stream	In
Vector(T)

Stream	Out
Seq(T)Elements

Length Stream
Sequencer

Flow	control	+	transfer
metadata

Figure 4.4: VectorToSeq pattern hardware architecture.

MapVector
The MapVector construct is analogous to MapStream, but instead of having a multidimensional stream
as input, it takes a 𝑉𝑒𝑐𝑡𝑜𝑟⟨𝑆⟩ container.

In a 𝑉𝑒𝑐𝑡𝑜𝑟⟨𝑆⟩ container, the length of the sequence is indicated using a separate stream instead
of increasing the dimensionality of the stream. Since the dimensionality information is separate from
the data stream, and there are no last bits, counters are not required in this case.

The syntax of the MapVector pattern is:
1 mapvec_inst: MapVector(op_inst: lib.Streamlet);

Hardware design: The hardware architecture of the MapVector primitive is depicted in Figure 4.5.
The MapVector primitive unwraps the 𝑉𝑒𝑐𝑡𝑜𝑟⟨𝑆⟩ container and feeds the element stream into the in-
stantiated processing streamlet. The container is rebuilt on the output by passing the length stream
through the primitive.

4.1. Composition language 31

MapVector

Stream	In
Vector(Tin)

Stream	Out
Vector(Tout)

Operation
Streamlet

Elements

Length

Figure 4.5: MapVector pattern hardware architecture.

ReduceVector
The ReduceVector is analogous to ReduceStream, but instead of having a multidimensional stream as
input, it takes a 𝑉𝑒𝑐𝑡𝑜𝑟⟨𝑆⟩ container.

The syntax of the ReduceVector pattern is:
1 reduce_vectur_inst: ReduceVector(op_inst: lib.Streamlet);

Hardware design: The hardware architecture of the ReduceVector primitive is depicted in Figure 4.6.
The overview of the design is similar to ReduceStream with the difference being that the vector length
is known in advance; therefore, the element counter on the input stream is not required.

0

ReduceVector

Elements

Length

Stream	In
Vector(Tin)

Stream	Out
Tout

Accumulator

Flow	control	+	transfer
metadata

Sync
Operation
Streamlet

op1

op2

Mux

Stream
Sequencer

Figure 4.6: ReduceVector pattern hardware architecture.

4.1.3. Builders
The following constructs are hardware builders for container types. These primitives can be used to
combine streams originating from multiple sources to a single interface.

ConcatStructBuilder The ConcatStructBuilder construct builds a streamlet that has an output
interface of type 𝐶𝑜𝑛𝑐𝑎𝑡𝑆𝑡𝑟𝑢𝑐𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩, where 𝑆 , 𝑆 , ..., 𝑆 are the streamspace types of the input
interfaces.

1 concat_struct_builder: ConcatStructBuilder(field_a <= inst1.a,
2 field_b <= inst2.a);

DesyncStructBuilder The DesyncStructBuilder construct builds a streamlet that has an output
interface of type 𝐷𝑒𝑠𝑦𝑛𝑐𝑆𝑡𝑟𝑢𝑐𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩, where 𝑆 , 𝑆 , ..., 𝑆 are the streamspace types of the input
interfaces.

1 desync_struct_builder: DesyncStructBuilder(field_a <= inst1.a,
2 field_b <= inst2.a);

32 4. Prototyping

PackedVariantBuilder The PackedVariantBuilder construct builds a streamlet that has an output
interface of type 𝑃𝑎𝑐𝑘𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑛𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩, where 𝑆 , 𝑆 , ..., 𝑆 are the streamspace types of the input
interfaces.

1 packed_variant_builder: PackedVariantBuilder(field_a <= inst1.a,
2 field_b <= inst2.a);

ConcatVariantBuilder The ConcatVariantBuilder construct builds a streamlet that has an output
interface of type 𝐶𝑜𝑛𝑐𝑎𝑡𝑉𝑎𝑟𝑖𝑎𝑛𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩, where 𝑆 , 𝑆 , ..., 𝑆 are the streamspace types of the input
interfaces.

1 concat_variant_builder: ConcatVariantBuilder(field_a <= inst1.a,
2 field_b <= inst2.a);

4.1.4. Clone, split, demux
The constructs introduced in this section are defined to unwrap container types.

CloneStream CloneStream takes a list of interface names and replicates the input stream on all
of those. This construct is required to be able to feed a stream into multiple streamlets.

1 clone_stream: CloneStream(a, b, c);

SplitConcatStruct SplitConcatStruct has an input interface with a type of
𝐶𝑜𝑛𝑐𝑎𝑡𝑆𝑡𝑟𝑢𝑐𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩ and splits the containerized members into separate output interfaces.

1 split_concat_struct: SplitConcatStruct(inst.if);

SplitDesyncStruct SplitDesyncStruct has an input interface with a type of
𝐷𝑒𝑠𝑦𝑛𝑐𝑆𝑡𝑟𝑢𝑐𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩ and splits the containerized members into separate output interfaces.

1 split_desync_struct: SplitDesyncStruct(inst.if);

DemuxPackedVariant DemuxPackedVariant has an input interface with a type of
𝑃𝑎𝑐𝑘𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑛𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩ and splits the containerized members into separate output interfaces.

1 demux_packed_variant: DemuxPackedVariant(inst.if);

DemuxConcatVariant DemuxConcatVariant has an input interface with a type of
𝐶𝑜𝑛𝑐𝑎𝑡𝑉𝑎𝑟𝑖𝑎𝑛𝑡⟨𝑆 , 𝑆 , ..., 𝑆 ⟩ and splits the containerized members into separate output interfaces.

1 demux_concat_variant: DemuxConcatVariant(inst.if);

4.1.5. Discussion
The proposed language constructs allow the composition of complex hardware designs from streamlets
that implement interfaces adhering to the Tydi specification. In addition, it defines a variety of patterns
to address the complexity associated with the rich type system of Tydi, including composing, and de-
constructing compound data types, or processing multidimensional streams. These constructs help to
remove the control logic introduced by the context from streamlet.

By separating the context from the processing streamlets, standard libraries can be built featuring
common operations from the big data field. These operations can be combined in a productive way to
offload parts of the processing pipelines to the FPGA that may benefit from acceleration.

Although we focused on manual kernel development so far, the proposed language is also a good
candidate to be used as an intermediate representation for code generation.

4.2. Practical use-case 33

4.2. Practical use-case
To show the potential of the described primitives and composition language, a proof-of-concept design
has been built using the FilterStream and ReduceStream constructs.

The chosen use-case is a typical dataframe query operation on a tabular dataset. The dataset
of choice is the Chicago Taxi Trips dataset [5], which consists of metadata about taxi trips that were
reported since 2013 to the agency in Chicago, such as the identifier of the taxi, the company, trip
duration, and trip distance. The chosen use-case is to filter for a given company and calculate the total
trip duration on the whole dataset.

4.2.1. Application overview
The dataset comes as an 80+ GB CSV file. The dataset was converted into Parquet file format in
addition to selecting the required columns (company name, trip seconds) using Apache Spark. The
Parquet version was then converted into an Apache Arrow RecordBatch using the Arrow Python API.
The final dataset consists of 147M records, stored in a 3.9GB Arrow RecordBatch.

The system-level architecture of the application is depicted in Figure 4.7. It is a specialized case of
the general Fletcher workflow that was explained in Chapter 2.

The host-side application prepares the data to be fed to the accelerator in an Arrow RecordBatch
with a schema that has a UInt64 and a String (𝐿𝑖𝑠𝑡⟨𝑐ℎ𝑎𝑟⟩) field. The Fletcher design is also generated
from this schema.

The data exchange between the host application and the accelerator kernel happens over Open-
CAPI, using the CAPI SNAP framework and the Fletcher runtime.

The host-side application used during the profiling was written in C++ using the Fletcher C++ API.
It copies the prepared RecordBatch from disk into the system memory and measures the elapsed time
for all the accelerator-related calls.

FPGA

KernelFletcher
Integers
Strings
Result

Recordbatch

Spark/C++

OpenCAPI

Host

FletchgenSchema

Figure 4.7: Example application top-level architecture.

4.2.2. Accelerator design
The high-level overview of the designed accelerator is shown in Figure 4.8. The kernel takes the two
typed streams supplied by Fletcher. The stream carrying the company names as strings is connected
to the regular expression matcher that is generated by the vhdre [10] tool. This module emits a boolean
predicate stream for the filtering stage.

The output of the filter stage is fed into the reduce stage, which instantiates a sum operator and
produces the output result. The output dimensionality of the stream is 𝐷 = 0, since the records are
represented as a single vector in the RecordBatch. The result is returned in an MMIO register to the
host.

34 4. Prototyping

Regex	match

FilterStream

ReduceStream

Sum

Seconds
Int64
D=1

Company
List<Utf8>

D=2

Data Predicate

Total
Int64
D=0

Figure 4.8: The architecture of the example design.

The representation of the design in the proposed composition language is shown in Figure 4.9. The
streamlet definitions are separate from the structural implementation description. The definitions of the
instantiated library components are shown in Figure 4.10. A Grahviz backend has been developed
for Tydi that is capable of generating visualizations for the streamlets in a Tydi project, including their
structural implementation. The output generated from the description above is shown in Figure 4.11.
The dot diagram is the direct representation of the instantiated streamlets and the connection between
their interfaces.

In this design there are 3 directly instantiated components: the regular expression matcher library
component (matcher), the FilterStream pattern node (filter_stage), and theReduceStream pattern node
(reduce_stage). The input chars stream is fed into the regular expression matcher, which provides the
predicate stream for the FilterStream node. The chars stream is capable of transferring 20 bytes per
cycle. Since the strings in the company name field have a maximum of 40 characters, and limited to
ASCII encoding, matching a single string takes at most 2 cycles. The FilterStream node filters input
numbers stream and feeds it into the final ReduceStream node. The numbers stream only carries one
element per cycle, since only one string is processed at a time. The output interface of the Top_level
streamlet is the reduced stream.

If no basic operator library is assumed, the parts that would be up to the developer to write are the
regular expression matcher and the sum operator streamlet.

4.2. Practical use-case 35

1 impl compositions.Top_level structural {
2 matcher: primitives.RegexMatcher[regex := ”Blue Ribbon Taxi Association Inc.”];
3 matcher.in <= this.chars;
4 filter_stage: FilterStream(matcher.out);
5 reduce_stage: ReduceStream(reduce_op: primitives.Sum);
6 filter_stage.in <= this.numbers;
7 filter_stage <=> reduce_stage;
8 this.out <= reduce_stage.out;
9 }

Figure 4.9: The composition code for the proof-of-concept accelerator.

1 Streamlet Sum (
2 in: in Stream<Group<op1: Bits<64>, op2: Bits<64>>, d=0>,
3 out: out Stream<Bits<64>, d=0>)
4 Streamlet RegexMatcher (
5 in: in Stream<Bits<8>, t=20, d=1>,
6 out: out Stream<Bits<1>, d=0>)

(a)

1 Streamlet Top_level (
2 numbers: in Stream<Bits<64>, d=1>,
3 chars: in Stream<Bits<8>, t=20, d=1>,
4 out: out Stream<Bits<64>, d=0>)

(b)

Figure 4.10: (a) Streamlet definitions for the ”primitives” library. (b) Streamlet definition for the ”compositions” library.

Top_level

Structural

reduce_stage_gen
reduce_stage

RegexMatcher
matcher

filter_stage_gen
filter_stage

numbers

in

chars

in

out

in

out

out

pred

out

Figure 4.11: The architecture of the example design generated by the Graphviz backend.

5
Evaluation & results

The performance measurements of the proof-of-concept design were conducted on a Power9 system
(PowerNV FP5290G2) with two CPUs (44 cores), and 128GB DDR4 memory. The FPGA card installed
in the system is an AlphaData ADM-PCIE-9H7. The FPGA accelerator is interfaced with the system
using OpenCAPI.

5.1. Code size comparison
The main offering of the structural composition language and Tydi is the productivity boost. To indicate
the effort saved by this approach, we compare the code size of the final RTL design with the repre-
sentation in the proposed language it can be generated from. The code size is measured without the
comments and white spaces, and also excluding the reusable core components.

The code size of the final design is detailed in Table 5.1, and the composition code of the kernel
is shown in Figure 4.9. It can bee seen that design can generated from 9 lines of composition code,
while the composition-related part of the output codebase consists of 605 lines, which is a factor of 67
reduction in lines.

The code that has to be generated from the structural composition is mostly VHDL boilerplate with
component instantiations and connections between streamlets. However, when patterns are instanti-
ated, the code size difference becomes more significant.

Design partition Code size (lines)
Fletcher 2499
Composed kernel 605
Operation (sum) 55
Regex matcher 550

Table 5.1: Code size composition of the example design.

5.2. FPGA utilization
The FPGA utilization of the complete design is shown in Table 5.2. The accelerator occupies 10.45%
of the total FPGA capacity. The area distribution of the various components in the accelerator is further
explained in Table 5.3. It can be seen that the user-kernel (action module) only accounts for 35.93%
of the total design area, the the rest is the overhead introduced by the OC-Accel and CAPI SNAP
framework hardware layers. These components are used to interface with OpenCAPI. The framework
hardware consists of a AXI-to-CAPI bridge, memory-mapped register IO, and host DMA. It provides an
AXI-Lite control interface, and coherent access to the system memory through AXI. These interfaces
are used to integrate Fletcher as the user-action. The Fletcher infrastructure consists of a Read arbiter
and the RecordBatch reader, which make up 2.73% and 27.5% of the area respectively. The share
of the actual composed hardware (described in Section 4.2.2, Kernel module) is 4.86% of the whole
design.

37

38 5. Evaluation & results

Resource Used Available Utilization
CLB 17036 162960 10.45%

Block RAM tile 108 2016 5.33%

Table 5.2: FPGA utilization.

Module Cells %
FPGA

BSP (OC-Accel Board Support Package)
oc_func (OC-Accel + SNAP)
action (SNAP user module wrapper)
Fletcher AXI top
Read arbiter (Fletcher)
RecordBatch reader (Fletcher)
Kernel Nucleus
Kernel
Regular expression matcher
Filter stage
Reduce stage

196929
62620

130525
70748
70709
5381

54147
11180
9575
4834

63
597

100
31.80
66.28
35.93
35.91
2.73

27.50
5.68
4.86
2.45
0.03
0.3

Table 5.3: The area distribution of the relevant modules in the design.

5.3. Performance
The performance of the accelerator was measured using a purpose-built C++ application by directly
profiling the relevant steps of the application execution. The results obtained with scaling the record
count are shown in Figure 5.1. The total execution time is dominated by the ”enable context” step,
which prepares the data and the accelerator for execution, and the ”waiting for kernel” step, which
is the actual computation step executed on the accelerator. It can be seen that the runtime scales
approximately linearly with the input size, as expected. From the results and the size of the dataset it can
be calculated that the current implementation of the kernel is capable of processing 135𝑀 𝑟𝑒𝑐𝑜𝑟𝑑𝑠/𝑠,
which accounts to a throughput of 4.04𝐺𝐵/𝑠. However, taking into consideration the software overhead,
mostly preparing the buffers, the performance drops to an average of 84𝑀 𝑟𝑒𝑐𝑜𝑟𝑑𝑠/𝑠 with an average
throughput of 2.51𝐺𝐵/𝑠.

If we consider that the kernel can consume 24 𝑏𝑦𝑡𝑒𝑠/𝑐𝑦𝑐𝑙𝑒 (character stream: 20 𝑏𝑦𝑡𝑒𝑠/𝑐𝑦𝑐𝑙𝑒,
integer stream: 4 𝑏𝑦𝑡𝑒𝑠/𝑐𝑦𝑐𝑙𝑒), and that the kernel runs at 200𝑀ℎ𝑧, the utilization of the streams
during the execution is . /

. / = 84%.
The dips in the graph need explaining: the buffers inside a RecordBatch are not necessarily aligned;

however, CAPI SNAP expects 64-byte memory alignment. In order to ensure the required alignment,
the buffers are reallocated whenever a misaligned buffer is queued using the Fletcher SNAP runtime.
This reallocation results in a copy that degrades performance. In the case of the three dips that hap-
pened during the measurement, the character buffer happened to be aligned in the RecordBatch. By
resolving the alignment issue, the overhead of preparing the data would be less significant.

Spark integration
Parallel to the development of the accelerator, F. Nonnenmacher explored the possibilities of accel-
erating Spark SQL [29], and the accelerator mentioned above was used as a proof-of-concept for the
integration.

A measurement has been carried out with the same use-case, but using the Parquet input format
and relying on Spark to orchestrate the process. The performance of the accelerated flow was com-
pared to the single-core performance of the same application on a Power9 system. The results are
shown in Figure 5.2. It can be seen that the execution time decreased to about half, with the Parquet
reading step dominating the rest. The FPGA accelerated part of the computation shows a 13𝑥 speedup
compared to the CPU version.

5.3. Performance 39

Figure 5.1: Proof-of-concept accelerator stand-alone performance.

10M 50M 100M 150M
Total number of entries

0

5000

10000

15000

20000

25000

tim
e
[m

s]

Parquet Reading
FPGA Execution
Total [Fletcher&Spark]
Total [Vanilla Spark]

Figure 5.2: Proof-of-concept accelerator performance after integration. [29]

With the proposed composition language, an end-to-end workflow is complete for accelerating big
data frameworks: Apache Arrow for data exchange, Fletcher for integration, and Tydi with the proposed
composition language for describing the accelerator hardware for the offloaded operation.

The proposed approach is a good fit for a library-based acceleration workflow. A library of hardware
accelerated functions can be built, and using the composition language the customized hardware can
be assembled, either manually, or automatically by a code generator tool. The language constructs are
suitable for describing computations present in the Spark dataflow graph, making it a straightforward
representation for the offloaded functions.

40 5. Evaluation & results

5.4. Discussion
Since the FPGA utilization is only ∼ 10%, it would be possible to include more processing kernels.
OpenCAPI is capable of transferring up to 12𝐺𝐵/𝑠 when a 512-bit AXI interface is used. In this case, 3
instances of the existing kernel would saturate the available bandwidth. Using a 1024-bit AXI interface,
the bandwidth limit is 25𝐺𝐵/𝑠, for which 6 kernels would be required to saturate. Since only the kernel
and the relevant parts of the Fletcher infrastructure would needed to be instantiated 6 times, that would
still fit into the FPGA, considering that the kernel and the Fletcher infrastructure only accounts for 3.75%
of the total FPGA capacity.

From a development point of view, it can be seen that the proposed language constructs indeed
represent a productivity boost, and the higher-level, domain-specific constructs have adequate perfor-
mance to be used in high-throughput accelerator development. The performance scaling is currently
done using the throughtput parameter of the streams, which determines the numbers of elements that
are transferable in a single cycle. Since the proposed parallel patterns constructs sit in the control path,
they can handle the same throughput as the individual streamlet components.

6
Conclusions and recommendations

6.1. Conclusions
In this thesis, we aimed at providing a broad overview of the current digital design trends and identi-
fying solutions that can be beneficially used in a big data context, either for manual development or
automatic synthesis. A wide variety of solutions have been evaluated, ranging from modern HDLs to
end-to-end solutions. It has been discovered that although there are frameworks available for produc-
tive accelerator development, there are limitations to their applicability in the envisioned workflow with
Apache Arrow, Fletcher, and Tydi.

To address some of the shortcomings, a structural hardware composition language has been pro-
posed for Tydi. The language includes constructs for defining implementations for streamlets, connect-
ing streamlets, and a set of patterns for streamlining the development of domain-specific accelerators.

The productivity boost and utility of the proposed language has been demonstrated on a proof-of-
concept design that represents the complete workflow of developing an accelerated application using
Apache Arrow, Fletcher and Tydi.

The improvements made to Tydi during the thesis help productivity on two levels: the Chisel back-
end allows the developer to take advantage of a modern eDSL for streamlet development, and the
composition language streamlines the development of dataflow designs using existing components. It
has been shown on a real-world example that even for a simple design, the code-size reduction is close
to two order of magnitude, and the accelerators built using the proposed constructs are performant to
be used in large-scale acceleration. In particular, the sample accelerator that consisted of a filter and a
reduce stage achieved a 13𝑥 speedup compared to the CPU implementation of the same processing
task, while the kernel only occupies 3.5% of the FPGA.

Based on the findings of this thesis, we can answer the research questions in the following way:

1. What are the current trends in digital hardware design which promise productivity improvement?
As the complexity of digital hardware increases with the available manufacturing technologies,
new solutions are being developed to cope with this complexity on the design side. The main goal
of the current state of the art is to move on from the RTL methodology to higher levels of abstrac-
tion. In the 2000s, high-level synthesis tools started to appear both in commercial and academic
setups to approach hardware design from an algorithmic perspective. However, bridging the se-
mantic gap between the sequential software constructs and the inherently parallel hardware has
proven to be difficult. To this day, the main complaint about HLS tools is the detachment from the
hardware. The control that designers have is at the algorithm-level and through constraints, not
through direct specification. Recently, a new set of HLS tools is starting to gain traction, which
synthesize hardware from algorithms described using implicitly parallel constructs: parallel pat-
terns. These tools offer a convenient abstraction-level to describe algorithms that are the most
prominent candidates for hardware acceleration due to their parallelism.
In parallel, extensive research is going into developing new languages that can replace the RTL
methodology, and offer hardware-centric abstractions. Some of these languages are Bluespec,

41

42 6. Conclusions and recommendations

Clash, TL-Verilog, Chisel, etc. Among the new hardware description languages, embedded
domain-specific languages represent a considerable share. These eDSLs embed their hardware
abstractions into a powerful host-language like Scala. This integration allows the developer to
use the host language’s constructs for hardware construction, and build abstractions as desired.
The flexibility of this approach facilitates the engineering of workflows that otherwise may have
been scattered around many tools and code generators.

2. Which solutions are relevant to be used in a big data context?
”Big data” is an umbrella term that covers a wide range of algorithms, applied in many research
and commercial fields, and typically executed on large-scale computing platforms. This compre-
hensiveness leaves room for all of the discussed approaches. Some of the computations can be
synthesized using HLS in a convenient and productive way, others may require hand-built and
heavily optimized accelerators. In summary, we can say that the most promising solutions for big
data are the frameworks that show some level of support for synthesizing hardware from parallel
patterns, or if manual hardware development is required, one of the modern HDLs or eDSLs.

3. Which solutions would be most suitable to be used a workflow with Apache Arrow and Fletcher?
Fletcher provides state of the art integration with big data frameworks through Apache Arrow.
It interfaces with the in-memory, Arrow-formatted data using typed streams in hardware. For
this reason, languages and frameworks that support streaming dataflow design are a natural fit.
However, the custom streaming protocol set (Tydi) used by Fletcher has proven to be hard to
accommodate in many of the existing solutions.
To overcome these limitations, we proposed a composition language which beyond the basic
structural description features offers a number of domain-specific constructs. Using these pro-
posed constructs, the processing streamlets can be built using the most suitable technology, and
combined together in a productive way.

6.2. Recommendations and future work
Buffer sizing: Buffers are inevitable components of dataflow design; however, the buffer sizes have
to be chosen carefully to maximize performance and to prevent stalls. Since the proposed solution
combines designs that can be seen as black-boxes, the latencies required for buffer sizing are not
known. In order to tackle these issues, a solution is required to specify relevant metrics about the
kernel, such as minimum, maximum, average latency, and initiation interval. From a semantics point
of view, this would be a better fit for the streamlet specification rather than the composition language.

Generative constructs: Defining additional, more generative constructs would increase productivity
even more. For example: interface arrays and generative for loop.

Behavioral constructs: In addition to the structural composition of streamlets, it would be desirable
to implement behavioral constructs. The Fleet framework’s eDSL and Spatial (introduced in Chapter 3)
proposes language features that would be genuinely powerful combined with Tydi’s rich, hardware-
oriented type system.

Massively parallel streaming model: Currently, performance scaling is only possible by manipulat-
ing the throughput ratio property of the streams, or by instantiating multiple processing units by hand,
provided that arbitration is feasible. A solution analogous to the one presented in Fleet [38] would be
a valuable construct in the composition language to scale performance.

Formal verification properties for Tydi: Since Tydi aims to be an open specification for component
interfaces, it would be desirable to have a formal and exhaustive way of verifying compliance with the
specification for the given interface type and complexity level.

Using Tydi, complex designs can be composed, involving many individual components, where each
component might come with its own testbench. However, ideally, integration tests should also be per-
formed to verify the design as a whole. In the proposed workflow, this is done by testing on a sample

6.2. Recommendations and future work 43

Arrow RecordBatch, or by using the target platform’s simulator. This may not provide sufficient cover-
age to catch rare bugs.

Generating a set of formal checks and a verification harness for the streamlets in a Tydi project from
the interface specifications would greatly reduce the risk of erroneous behavior, invalid transactions,
and stalls caused by uncaught corner cases.

SymbiYosys [4] is an open source tool that could be used as a formal verification backend to check
the formal properties.

Modern IR backend: Nowadays, Verilog and VHDL are only used as an intermediate representation
by many of the higher-level frameworks to generate the final hardware description to be built using the
toolstack of the hardware target. It would be a leap forward if Tydi were to use one of the emerging
intermediate representations as a backend. LLHD [35] is one of the promising frameworks. LLHD has
3 levels to capture all aspects of digital design: Behavioral LLHD, Structural LLHD, and Netlist LLHD.
LLHD could be used to generate the composition language constructs (Chapter 4), the instantiations of
the streamlets, the connections between them, and to include verification assertions with the design to
be used in simulation or for formal verification. Unfortunately, at the time of the writing, the tools used
in high-performance acceleration do not support LLHD, and LLHD does not have a backend that could
generate Verilog/VHDL that could be synthesized using the commercial tools.

FIRRTL [23] is a similar project that is used by Chisel to perform circuit transformations and emit
Verilog for legacy tools.

Throughput estimation: Based on the throughput ratio and by introducing an average throughput
property to the streamlets it would be possible to estimate the throughput of the composed design and
find the bottlenecks by traversing the implementation graph. This would help during development to
balance critical paths.

Design space exploration Once a wide set of performance-related features is incorporated, such
as buffer sizing and massively parallel streaming model, design space exploration could be performed
using the introduced parameters to find a suitable combination.

A
PEST grammar

1 // Whitespace and comments.
2 WHITESPACE = _{ (” ” | ”\n”) }
3 COMMENT = _{ ”/*” ~ (!”*/” ~ ANY)* ~ ”*/” }
4

5 // Identifiers
6 ident = @{(ASCII_ALPHANUMERIC | ”_”)+}
7

8 // Literals
9 number = @{ ”-”? ~ int ~ (”.” ~ ASCII_DIGIT+ ~ exp? | exp)? }

10 int = @{ ”0” | ASCII_NONZERO_DIGIT ~ ASCII_DIGIT* }
11 exp = @{ (”E” | ”e”) ~ (”+” | ”-”)? ~ ASCII_DIGIT+ }
12

13 bool = {”true” | ”false” }
14

15 char = {
16 !(”\”” | ”\\”) ~ ANY
17 | ”\\” ~ (”\”” | ”\\” | ”/” | ”b” | ”f” | ”n” | ”r” | ”t”)
18 | ”\\” ~ (”u” ~ ASCII_HEX_DIGIT{4})
19 }
20

21

22 inner = @{ char* }
23 string = ${ ”\”” ~ inner ~ ”\”” }
24

25 node_if_handle = { (ident ~ ”.” ~ ident) }
26 streamlet_handle = { (ident ~ ”.” ~ ident) }
27

28 //Assign parameter
29 parameter_assign = { ident ~ ”:=” ~ (ident | string | number)}
30

31 //Parallel patterns
32 map_stream = { ”MapStream” ~ ”(” ~ node ~ ”)” }
33 filter_stream = { ”FilterStream” ~ ”(” ~ node_if_handle ~ ”)” }
34 reduce_stream = { ”ReduceStream” ~ ”(” ~ node ~ ”)” }
35 map_vector = { ”MapVector” ~ ”(” ~ node ~ ”)” }
36 reduce_vector = { ”ReduceVector” ~ ”(” ~ node ~ ”)” }
37 vector_to_seq = { ”VectorToSeq” ~ ”(” ~ node_if_handle ~ ”)” }
38 pattern = { map_stream | filter_stream | reduce_stream
39 | map_vector | reduce_vector | vector_to_seq}
40

41

42 concat_struct_builder = { ”ConcatStructBuilder(” ~ connection_in_place + ~ ”)” }
43 desync_struct_builder = { ”DesyncStructBuilder(” ~ connection_in_place + ~ ”)” }

45

46 A. PEST grammar

44

45 concat_variant_builder = { ”PackedVariantBuilder(” ~ connection_in_place + ~ ”)”
}

46 packed_variant_builder = { ”PackedVariantBuilder(” ~ connection_in_place + ~ ”)”
}

47

48 builder = { concat_struct_builder | desync_struct_builder
49 | concat_variant_builder | packed_variant_builder}
50

51

52 split_concat_struct = { ”SplitConcatStruct” ~ ”(” ~ node_if_handle ~ ”)” }
53 split_desync_struct = { ”SplitDesyncStruct” ~ ”(” ~ node_if_handle ~ ”)” }
54 demux_packed_variant = { ”DemuxPackedVariant” ~ ”(” ~ node_if_handle ~ ”)” }
55 demux_concat_variant = { ”DemuxConcatVariant” ~ ”(” ~ node_if_handle ~ ”)” }
56

57 unwrap = { split_concat_struct | split_desync_struct
58 | demux_packed_variant | demux_concat_variant}
59

60

61 clone_stream = { ”CloneStream” ~ ”(” ~ ident+ ~ ”)” }
62

63 //Single point-to-point connection
64 connection = { node_if_handle ~ ”<=” ~ node_if_handle }
65 connection_in_place = { ident ~ ”<=” ~ node_if_handle }
66

67 //Chain connection
68 chain_connection = { (ident) ~ (”<=>” ~ (ident))+ }
69

70 //Streamlet instantiation
71 streamlet_inst = { streamlet_handle ~ (”[” ~ (parameter_assign)+ ~ ”]”)?

}
72

73 //A node in the implementation graph
74 node = { ident ~ ”:” ~ (pattern | builder | unwrap |

streamlet_inst) }
75

76 //Implementation of a streamlet
77 structural_body = { ((connection | chain_connection | node) ~ ”;”)* }
78 structural = { ”structural” ~ ”{” ~ structural_body ~ ”}”}
79 hdl = { ”VHDL” | ”Chisel” }
80 external = { ”external” ~ string}
81 implementation = { ”impl” ~ streamlet_handle ~ (structural | hdl |

external) }

Bibliography
[1] Apache Arrow website. URL https://arrow.apache.org/.

[2] Fletcher Github. URL https://github.com/abs-tudelft/fletcher.

[3] PEST parser. URL https://pest.rs/.

[4] SymbiYosys Github repository. URL https://github.com/YosysHQ/SymbiYosys.

[5] Chicago Taxi Trips dataset. URL https://data.cityofchicago.org/Transportation/
Taxi-Trips/wrvz-psew.

[6] Cocotb, a coroutine based cosimulation library for writing VHDL and Verilog testbenches in Python.
URL https://github.com/cocotb/cocotb.

[7] Fleet framework Github repository. URL https://github.com/jjthomas/Fleet.

[8] Tydi: an open specification for complex data structures over hardware streams. URL https:
//abs-tudelft.github.io/tydi.

[9] Verilator. URL https://www.veripool.org/wiki/verilator.

[10] vhdre: a VHDL regex matcher generator. URL https://github.com/abs-tudelft/vhdre.

[11] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom,
Una May O’Reilly, and Saman Amarasinghe. OpenTuner: An extensible framework for program
autotuning. Parallel Architectures and Compilation Techniques - Conference Proceedings, PACT,
pages 303–315, 2014. ISSN 1089795X. doi: 10.1145/2628071.2628092.

[12] Ayupov Andrey and Steven Burns. Chisel based HW design. URL https://github.com/
intel/rapid-design-methods-for-developing-hardware-accelerators/wiki/
Chisel-based-HW-design.

[13] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis,
John Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a Scala embedded lan-
guage. Proceedings - Design Automation Conference, pages 1216–1225, 2012. ISSN 0738100X.
doi: 10.1145/2228360.2228584.

[14] Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Stephen Heil,
Joo Young Kim, Daniel Lo, Michael Papamichael, Todd Massengill, Derek Chiou, and Doug
Burger. A Cloud-Scale Acceleration Architecture. IEEE Micro, 2017. ISSN 19374143. doi:
10.1109/MM.2017.265085811.

[15] Henry Cook, Wesley Terpstra, and Yunsup Lee. Diplomatic Design Patterns: A TileLink Case
Study. First Workshop on Computer Architecture Research with RISC-V, 2017.

[16] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters by. Communications of the ACM, 51(1):107–113, 2008. ISSN 00010782. doi:
10.1145/1327452.1327492. URL http://www.usenix.org/events/osdi04/tech/
full{_}papers/dean/dean{_}html/.

[17] Jian Fang, Jianyu Chen, Jinho Lee, Zaid Al-Ars, and H. Peter Hofstee. Refine and recycle: A
method to increase decompression parallelism. Proceedings of the International Conference on
Application-Specific Systems, Architectures and Processors, 2019-July:272–280, 2019. ISSN
10636862. doi: 10.1109/ASAP.2019.00017.

47

https://arrow.apache.org/
https://github.com/abs-tudelft/fletcher
https://pest.rs/
https://github.com/YosysHQ/SymbiYosys
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://github.com/cocotb/cocotb
https://github.com/jjthomas/Fleet
https://abs-tudelft.github.io/tydi
https://abs-tudelft.github.io/tydi
https://www.veripool.org/wiki/verilator
https://github.com/abs-tudelft/vhdre
https://github.com/intel/rapid-design-methods-for-developing-hardware-accelerators/wiki/Chisel-based-HW-design
https://github.com/intel/rapid-design-methods-for-developing-hardware-accelerators/wiki/Chisel-based-HW-design
https://github.com/intel/rapid-design-methods-for-developing-hardware-accelerators/wiki/Chisel-based-HW-design
http://www.usenix.org/events/osdi04/tech/full{_}papers/dean/dean{_}html/
http://www.usenix.org/events/osdi04/tech/full{_}papers/dean/dean{_}html/

48 Bibliography

[18] Steven Hoover. Timing-Abstract Circuit Design in Transaction-Level Verilog. (Iccd):525–532,
2017.

[19] Steven Hoover and Ahmed Salman. Top-Down Transaction-Level Design with TL-Verilog.

[20] Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars. VLIW-Based FPGA Computa-
tion Fabric with Streaming Memory Hierarchy for Medical Imaging Applications. In StephanWong,
Antonio Carlos Beck, Koen Bertels, and Luigi Carro, editors, Applied Reconfigurable Computing,
pages 36–43, Cham, 2017. Springer International Publishing. ISBN 978-3-319-56258-2.

[21] Ernst Joachim Houtgast, Vlad Mihai Sima, Koen Bertels, and Zaid Al-Ars. Hardware acceleration
of BWA-MEM genomic short read mapping for longer read lengths. Computational Biology and
Chemistry, 75:54–64, 2018. ISSN 14769271. doi: 10.1016/j.compbiolchem.2018.03.024.
URL https://doi.org/10.1016/j.compbiolchem.2018.03.024.

[22] Muhuan Huang, DiWu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi, Tyson Condie, and Jason
Cong. Programming and runtime support to Blaze FPGA accelerator deployment at datacenter
scale. Proceedings of the 7th ACM Symposium on Cloud Computing, SoCC 2016, pages 456–
469, 2016. doi: 10.1145/2987550.2987569.

[23] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar, Donggyu
Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan Bachrach. Reusability is FIRRTL
ground: Hardware construction languages, compiler frameworks, and transformations. IEEE/ACM
International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, 2017-
Novem:209–216, 2017. ISSN 10923152. doi: 10.1109/ICCAD.2017.8203780.

[24] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee,
Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang, Kyle Ko-
vacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanović. FireSim: FPGA-
Accelerated cycle-Exact scale-Out system simulation in the public cloud. Proceedings - Inter-
national Symposium on Computer Architecture, pages 29–42, 2018. ISSN 10636897. doi:
10.1109/ISCA.2018.00014.

[25] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou, Christos Kozyrakis, and
Kunle Olukotun. Automatic Generation of Efficient Accelerators for Reconfigurable Hardware.
Proceedings - 2016 43rd International Symposium on Computer Architecture, ISCA 2016, pages
115–127, 2016. doi: 10.1109/ISCA.2016.20.

[26] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel,
Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. Spatial: A lan-
guage and compiler for application accelerators. Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 296–311, 2018. ISSN
0362-1340. doi: 10.1145/3192366.3192379.

[27] Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach. High-level synthesis of
functional patterns with lift. Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 35–45, 2019. doi: 10.1145/3315454.
3329957.

[28] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie Han, Shouyi Yin, and
Shaojun Wei. A survey of coarse-grained reconfigurable architecture and design: Taxonomy,
challenges, and applications. ACM Computing Surveys, 52(6), 2019. ISSN 15577341. doi:
10.1145/3357375.

[29] Fabian Nonnenmacher. Transparently Accelerating Spark SQL Code on Computing Hardware.

[30] Johan Peltenburg, Shanshan Ren, and Zaid Al-Ars. Maximizing systolic array efficiency to ac-
celerate the PairHMM Forward Algorithm. Proceedings - 2016 IEEE International Conference on
Bioinformatics and Biomedicine, BIBM 2016, pages 758–762, 2017. doi: 10.1109/BIBM.2016.
7822616.

https://doi.org/10.1016/j.compbiolchem.2018.03.024

Bibliography 49

[31] Johan Peltenburg, Jeroen van Straten, Matthijs Brobbel, H Peter Hofstee, and Zaid Al-Ars. Sup-
porting Columnar In-memory Formats on FPGA: The Hardware Design of Fletcher for Apache
Arrow. In Christian Hochberger, Brent Nelson, Andreas Koch, Roger Woods, and Pedro Diniz,
editors, Applied Reconfigurable Computing, pages 32–47, Cham, 2019. Springer International
Publishing. ISBN 978-3-030-17227-5.

[32] Johan Peltenburg, Jeroen Van Straten, LarsWijtemans, Lars Van Leeuwen, Zaid Al-Ars, and Peter
Hofstee. Fletcher: A framework to efficiently integrate FPGA accelerators with apache arrow.
Proceedings - 29th International Conference on Field-Programmable Logic and Applications, FPL
2019, pages 270–277, 2019. doi: 10.1109/FPL.2019.00051.

[33] Johannus Willem Peltenburg, Matthijs Brobbel, Jeroen Van Straten, Zaid Al-Ars, and Peter Hofs-
tee. Tydi: an open specification for complex data structures over hardware streams. IEEE Micro,
pages 1–10, 2020. ISSN 19374143. doi: 10.1109/MM.2020.2996373.

[34] Raghu Prabhakar, David Koeplinger, Kevin J. Brown, Hyoukjoong Lee, Christopher De Sa, Chris-
tos Kozyrakis, and Kunle Olukotun. Generating configurable hardware from parallel patterns.
International Conference on Architectural Support for Programming Languages and Operating
Systems - ASPLOS, 02-06-Apri:651–665, 2016. doi: 10.1145/2872362.2872415.

[35] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. LLHD: a multi-level in-
termediate representation for hardware description languages. pages 258–271, 2020. doi:
10.1145/3385412.3386024.

[36] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang. FPMR: MapRe-
duce framework on FPGA a case study of RankBoost acceleration. ACM/SIGDA International
Symposium on Field Programmable Gate Arrays - FPGA, (May 2014):93–102, 2010. doi:
10.1145/1723112.1723129.

[37] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. LIFT: A functional data-parallel IR
for high-performance GPU code generation. CGO 2017 - Proceedings of the 2017 International
Symposium on Code Generation and Optimization, pages 74–85, 2017. doi: 10.1109/CGO.
2017.7863730.

[38] James Thomas, Pat Hanrahan, and Matei Zaharia. Fleet: A framework for massively parallel
streaming on FPGAS. International Conference on Architectural Support for Programming Lan-
guages and Operating Systems - ASPLOS, pages 639–651, 2020. doi: 10.1145/3373376.
3378495.

[39] Lenny Truong and Pat Hanrahan. A golden age of hardware description languages: Applying pro-
gramming language techniques to improve design productivity. Leibniz International Proceedings
in Informatics, LIPIcs, 136(7):1–7, 2019. ISSN 18688969. doi: 10.4230/LIPIcs.SNAPL.2019.7.

[40] Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei Zhang. Melia: A MapReduce Framework on
OpenCL-Based FPGAs. IEEE Transactions on Parallel and Distributed Systems, 27(12):3547–
3560, 2016. ISSN 10459219. doi: 10.1109/TPDS.2016.2537805.

[41] Serif Yesil, Muhammet Mustafa Ozdal, Taemin Kim, Andrey Ayupov, Steven Burns, and Ozcan
Ozturk. Hardware accelerator design for data centers. 2015 IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2015, pages 770–775, 2016. doi: 10.1109/ICCAD.2015.
7372648.

[42] Cody Hao Yu, Peng Wei, Max Grossman, Peng Zhang, Vivek Sarker, and Jason Cong. S2FA:
An accelerator automation framework for heterogeneous computing in datacenters. Proceed-
ings - Design Automation Conference, Part F1377:0–5, 2018. ISSN 0738100X. doi: 10.1145/
3195970.3196109.

	List of Figures
	Introduction
	Context
	Problem statement
	Outline

	Background
	Apache Arrow
	Fletcher
	Development flow
	Hardware design

	Tydi
	Type system
	Container library
	Physical streams
	Streamlets

	Solution architecture
	Modern hardware description languages
	eDSLs for hardware description
	Transaction-Level Verilog

	Synthesis frameworks
	Spatial
	Lift
	Fleet

	End-to-end frameworks for big data
	Melia
	S2FA

	Discussion
	Proposed solution

	Prototyping
	Composition language
	Implementation of a streamlet
	Parallel patterns
	Builders
	Clone, split, demux
	Discussion

	Practical use-case
	Application overview
	Accelerator design

	Evaluation & results
	Code size comparison
	FPGA utilization
	Performance
	Discussion

	Conclusions and recommendations
	Conclusions
	Recommendations and future work

	PEST grammar
	Bibliography

