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Comparative Analysis of
Mathematical Models
Magela Odriozola*, Edo Abraham, Maria Lousada-Ferreira, Henri Spanjers and

Jules B. van Lier

Department of Water Management, Delft University of Technology, Delft, Netherlands

The application of cationic polymers to enhance membrane fluxes in anaerobic

membrane bioreactors has been proposed by several authors. However, literature

shows contradictory results on the influence of those chemicals on the biological

activity. In this research, we studied the effect of a cationic polymer on the production

of methane from acetate by acetoclastic methanogens. We assessed the effect

of polymer concentration on the accumulated methane production (AMP) and the

specific methanogenic activity (SMA) in batch tests. Batch tests results showed lower

SMA values at higher concentrations of polymer and no effect on the final AMP.

Different inhibition models were calibrated and compared to find the best fit and to

hypothesize the prevailing inhibition mechanisms. The assessed inhibition models were:

competitive (M1a), non-competitive (M2a), un-competitive (M3a), biocide-linear (M4a),

and biocide-exponential (M5a). The parameters in the model related to the polymer

characteristics were adjusted to fit the experimental data. M2a and M3a were the only

models that fitted both experimental SMA and AMP. Although M1a and M4a adequately

fitted the experimental SMA, M1a simulations slightly deviated from the experimental

AMP, andM4a considerably underpredicted the AMP at concentrations of polymer above

0.23 gCOD L−1. M5a did not adequately fit either experimental SMA and AMP results.

We compared models a (M1a to M5a), which consider the inhibition by the concentration

of polymer in the bulk liquid, with models b (M1b to M5b) considering the inhibition being

caused by the total concentration of polymer in the reactor. Results showed that the

difference between a and b models’ simulations were negligible for all kinetic models

considered (M1, M2, M3, M4, and M5). Therefore, the models that better predicted

the experimental data were the non-competitive (M2a and M2b) and un-competitive

(M3a and M3b) inhibition models, which are biostatic inhibition models. Consequently,

the decreased methanogenic activity caused by polymer additions is presumably a

reversible process

Keywords: anaerobic membrane bioreactor (AnMBR), cationic polymer, flux enhancers, langmuir isotherm,

methanogenesis inhibition, modeling, Monte Carlo (MC), specific methanogenic activity (SMA)
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INTRODUCTION

Anaerobic membrane bioreactor (AnMBR) is an innovative
technology for municipal wastewater treatment (Smith et al.,
2012) and an established technology for industrial wastewater
treatment with several full-scale AnMBRs already treating
wastewater from food processing industries (Dereli et al., 2012).
However, the deposition and accumulation of particles on the
surface and in the membrane pores, generally designated as
“fouling,” causes a reduction in the permeate flux. Lower fluxes
translate into higher membrane surface requirements, which

leads to increased construction costs, taking into account that
membranes represent a significant amount in the total cost of an
AnMBR (Lin et al., 2013). Therefore, fouling control is the main
challenge in AnMBRs, with the low flux being the main factor

limiting economic feasibility and applicability of this technology
(Ozgun et al., 2013).

Several papers report the use of adsorbents, coagulants,

and flocculants, usually called flux enhancers, to decrease
membrane fouling and to increase the operational flux in
membrane bioreactors. Cationic polymers, such as commercial
synthetic polymers composed of Polydiallyldimethylammonium
chloride (polyDADMAC), have been successfully used as flux
enhancers in both aerobic and anaerobic membrane bioreactors.
Koseoglu et al. (2008) tested three cationic polymers (MPL30,
MPE50, KD452), a biopolymer (Chit), a starch (Sta) and
two metal salts (FeCl3, PACl) and concluded that cationic
polymers have the most steady and best performance for fouling
control. Conclusions were based on results of sludge filterability
improvement and flux increase by changes in the mixed liquor
characteristics, for example extracellular and soluble polymeric
substances removal and particle size increase. However, the
effect of flux enhancers on the biological activity in anaerobic
conditions needed further study.

Iversen et al. (2008) studied the biological inhibition of
different flux enhancers on aerobic sludge. Their results showed
no inhibitory effects on the endogenous oxygen uptake rate with
the four synthetic cationic polymers tested. However, the effect
on the exogenous uptake rate was different for each polymer,
namely negative, positive, and no effect. In anaerobic digestion,
to the authors’ best knowledge, only two reports assessing
the impact of cationic polymers on the microbial activity are
available. These reports showed no change on the COD removal
(Díaz et al., 2014) and on the biogas production (Zhang et al.,
2017) after polymer addition. However, in different research
fields, polyDADMAC has been reported as an anti-microbial
agent (Zhao et al., 2016; Tran et al., 2017; Wang et al., 2017)
that can physically disrupt the prokaryotic cell wall. Another
possible effect of a cationic polymer on anaerobic sludge is the
decrease in substrate availability caused by diffusion limitation
inside the formed aggregates (Kooijman et al., 2017). This is,
the addition of cationic polymers causes the neutralization of
charges promoting the formation of large aggregates (Gregory
and Barany, 2011), consequently the surface to volume ratio
decreases and a diffusion limitation inside the aggregate could be
observed. Pavlostathis and Giraldo-Gomez (1991) suggested that
internal mass transfer limitations are significant at aggregate sizes

above 0.8mm for acetate removal. With polymer additions we
obtained aggregates with a mean diameter below 0.003mm for
all polymer concentrations used. Therefore, diffusion limitations
were not considered in this research. Contradictory reports are
published on the effect of cationic polymer on the microbial
community. Consequently, prior to the application of a flux
enhancer in an AnMBR, the possible effect on biomass activity
needs to be studied.

The biochemical conversion processes of anaerobic digestion
are hydrolysis, acidogenesis, acetogenesis and methanogenesis.
These processes are carried out by complex microbial
communities. Methanogenesis is carried out by acetoclastic
and hydrogenotrophic methanogens. In a conventional
mesophilic digester, the slow-growing acetoclastic methanogens
are responsible for approximately 70 % of the methane produced,
and are generally considered the most sensitive to the presence of
inhibitors (Astals et al., 2015). Therefore, the classical approach to
study the inhibitory effect of a specific compound on the biomass
activity is by studying its effect on the acetoclastic methanogens.

Since models are a mathematical encoding of a more complex
and detailed system or process, they do not exactly capture
reality. As such, models can have both structural and parametric
uncertainties. Nevertheless, models are a powerful tool to reveal
insight into the processes and interactions in a given system.
The most common approach to model biological inhibition in
anaerobic digestion, including weak acid/base, hydrogen, pH
and cation inhibition, is the biostatic inhibition that considers
the effect on growth and substrate uptake kinetics, and which
is included in the Anaerobic Digestion Model No. 1 (Batstone
et al., 2002). Furthermore, the disruption of the cells caused by a
substance is considered a reactive irreversible toxicity and it is
defined as biocidal inhibition (Batstone et al., 2002). Knowing
the underlying inhibition mechanisms allows understanding of
the long-term implications in a continuous reactor. For example,
if the polymer exerts a biocidal effect on the microorganisms,
then cell lysis will likely occur resulting in a release of soluble
polymeric substances. The latter compounds are reported to
deteriorate the sludge filterability (Krzeminski et al., 2012),
leading to the need for more polymer addition to counteract the
effect. A biocidal effect is irrecoverable, therefore continuously
dosing of polymers can lead to severe biomass death and the need
for re-inoculation. However, if the polymer will exert biostatic
inhibition, it will not have a direct impact on filterability, and the
effect on the biology will immediately recover when the polymer
concentration decreases in the system. Additionally, depending
on the dosage of the polymer and the microbial growth rate, the
overall microbial activity might be recovered by an increase in the
biomass content.

In this research, we assessed the effect of a cationic polymer
concentration on the biological activity of anaerobic sludge. We
used modeling as a tool to study the inhibition mechanism
of the polymer on the acetoclastic methanogenesis. We
compared biostatic and biocidal inhibition models based on their
capacity to predict the dynamic methane production in batch
experiments. The models were calibrated to fit the experimental
data, namely the specific methanogenic activity (SMA) and the
accumulated methane production (AMP) obtained in batch tests

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 May 2019 | Volume 7 | Article 93

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Odriozola et al. Model-Based Evaluation of Methanogenesis Inhibition

at different concentrations of polymer. During the calibration
procedure, we used the Monte Carlo (MC) method to identify
the parameters subsets composed only of influential parameters
and to define the boundaries of these parameters. Additionally,
using the MC method we studied the uncertainty in the models’
predictions caused by the uncertainty in the estimators.

MATERIALS AND METHODS

Analytical Methods
We measured chemical oxygen demand (COD) using Hach
Lange test kits, the total suspended solids (TSS) and volatile
suspended solids (VSS) concentration following Standard
Methods for the Examination of Water and Wastewater
(American Public Health Association, 1999) and the particle
size distribution by using a Microtrac Bluewave diffraction
analyzer (Malvern Instruments Ltd., UK). We reported the
particle size diameter as 50th percentile (D50), which is the
diameter at which 50 % of the sample’s mass is comprised of
particles with a diameter less than this value. All variables were
measured in triplicate, immediately before and after the batch
tests experiments. Reported results are averages of the triplicates.

Batch Reactor Tests
We assessed the effect of increasing polymer concentration
on the SMA using Adifloc KD451 (Adipap, France), which is
a low molecular weight cationic polymer. The polymer was
selected based on its capacity to significantly enhance the sludge
filterability of municipal and industrial sludge samples when
applied at very low concentrations, while no effect on pH was
observed (Odriozola et al., 2018).

We performed the inhibition tests in 250mL Schott glass
bottles (200mL filled with liquid and 50mL as head-space)
under mesophilic conditions using sodium acetate as carbon
source. We collected the inoculum at an anaerobic digester of
a near-by sewage treatment plant (Harnaschpolder, Den Hoorn,
The Netherlands). The characteristics of the inoculum were
as follows: 29.3 gTSS L−1, 21.0 gVSS L−1 and D50 of 50 nm.
We pre-mixed the polymer with the inoculum, in 1 L jars of
a jar-test apparatus by mixing at 90 rpm during 30min. We
filled each SMA bottle with 2.5 gCOD L−1 of sodium acetate,
inoculum-polymer mixture, 0.6mL L−1 micro and 6mL L−1

macro nutrients solutions (Muñoz Sierra et al., 2018), 10mM
phosphate buffer solution at pH 7.0 (Spanjers and Vanrolleghem,
2016) and demineralized water, and then flushed the bottles
with nitrogen gas for 1min. The inoculum concentration in the
bottles was 4 gVSS L−1 (corresponding to 6 gTSS L−1), and
we used the following concentrations of polymer: 0, 0.06, 0.11,
0.17, 0.23, 0.28, 0.34, 0.40, and 0.46 gCOD L−1. The maximum
concentration of polymer tested was approximately ten times the
concentration of KD451 applied to a pilot AnMBR for fouling
control (Odriozola et al., 2019), namely 0.05 gCOD L−1. We
performed the SMA tests in triplicate and placed the bottles
inside an orbital shaker at 130 rpm with temperature control at
35◦C and over a 10-day period.

We determined the methane production using an “automated
methane potential test system” (AMPTS from Bioprocess

Control, Sweden). The AMPTS generates a digital pulse after a
fixed volume of gas (∼10mL) has flowed through the gas cells,
and measures the temperature and pressure in the water bath
containing the gas cells. The AMPTS calculates and records the
volume of gas under normal conditions (N-mL, 0◦C, 1 bar). We
calculated the AMP, expressed in kgCOD kgVSS−1, by dividing
the data recorded in the AMPTS by the mass of VSS inoculated
and by the stoichiometric methane production per kg COD, i.e.,
3.5 × 105 N-mL kgCOD−1. We calculated the SMA following
Spanjers and Vanrolleghem (2016).

Mathematical Models Description
In this research, we compared the results from five different
models, predicting the methane production from acetate in
batch reactors in the presence of an inhibitory compound
(the polymer). With the first three models, M1a to M3a, we
described the biostatic inhibition of the acetate degradation by
the concentration of inhibitor in the bulk liquid. The biostatic
models assume that the inhibitor binds to the enzyme or the
complex enzyme-substrate and does not allow the product
formation. The kinetic models considered were as follows:
competitive (M1a) where the inhibitor attaches to the enzyme
in the same place as the substrate, non-competitive (M2a) where
the inhibitor attaches to the enzyme in a different place changing
the structure of the enzyme, and un-competitive (M3a) where
the inhibitor attaches to the complex enzyme-substrate (Garcia
Orozco, 2008). In the fourth (M4a) and fifth (M5a) models we
described the biocidal effect of the inhibitor concentration in
the bulk liquid on the microbial decay. In M4a we included a
linear model describing the decay rate change with the inhibitor
concentration, and M5a an exponential model.

We considered the following soluble components: total acetate
(ac), methane gas (ch4), inorganic carbon (IC), carbon dioxide
gas (co2), nitrogen gas (n2), and inhibitor (polymer) (I);
and particulate components as follows: acetate degraders and
adsorbed polymer. The model included the following processes:
adsorption of the polymer (inhibitor) into the biomass, uptake of
acetate by methanogens, liquid-gas transfer of nitrogen, carbon
dioxide and methane, acid-base equilibria for inorganic carbon
and biomass decay. The uptake of acetate was assumed to be
performed by the dispersed biomass in the bulk liquid.

Polymer Adsorption
In this research we assumed that equilibrium conditions for
polymer adsorption were achieved after 30min mixing the
inoculum with the polymer, as shown by other authors for the
absorption of PolyDADMAC onto waste activated sludge (Zhao
et al., 2016) and onto cellulosic fibers (Horvath et al., 2006).
We used the Langmuir adsorption isotherm to describe the
equilibrium conditions as follows:

Qe = Qm
KLCe

1+ KLCe
(1)

where Ce (kgCOD m−3) is the concentration in the
bulk liquid after equilibrium, Qe (kgCOD kgTSS−1) the
adsorbent phase concentration after equilibrium, Qm (kgCOD
kgTSS−1) the maximum adsorption capacity corresponding
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to monolayer coverage and KL (m3 kgCOD−1) the Langmuir
affinity coefficient.

The mass balance of polymer inside the reactor was as follows:

Qe = (C0 − Ce)
V

MR
(2)

where C0 (kgCOD m−3) is the initial concentration in the bulk
liquid,V (m3) the volume of liquid in the reactor andMR (kgTSS)
the mass of adsorbent (or total solid content) inside the reactor.
Therefore, we estimated the equilibrium concentrations Ce and
Qe by combining Equation (1) and Equation (2). We determined
experimentally the values of C0, V , and MR, and estimated Qm

andKL by fitting themodel to the experimental data.We assumed
the concentration of polymer in the bulk liquid (SI , kgCODm−3)
as equal to the equilibrium concentrations, namely SI = Ce.

Kinetic Processes
We included the conversion of acetate to methane and inorganic
carbon by acetoclastic methanogenic archaea, and the biomass
decay processes in the kinetic models, as summarized in Table 1.
In models M1a, M2a, and M3a, we considered the biostatic
inhibition (competitive, non-competitive and un-competitive)
of the acetate degradation rate (ρ1, kgCOD m−3 d−1) by the
concentration of inhibitor in the bulk liquid.

We included first order kinetics to describe the biomass decay
rate (ρ5, kgCODm−3 d−1) in all models. Additionally, in models
M4a and M5a we described the biocidal inhibition by relating
the concentration of inhibitor with the first order decay rate.
Therefore, as shown in Table 1, we proposed a simple linear
model between the first order decay rate and the concentration
of inhibitor in the bulk liquid SI in M4a, and an exponential term
in M5a. The latter was analogous to the microbial inactivation
kinetics by chemical compounds (Casolari, 1988).

TABLE 1 | Description of kinetic process used in the evaluated models.

Model Inhibition type Uptake of acetate (ρ1)
a Decay of acetate

degraders (ρ5)
b

M0 No inhibition km,ac
Sac

Ks.ac+Sac
Xac kdXac

M1a Biostatic,

competitive

km,ac
Sac

Ks.ac

(

1+
SI
KI

)

+Sac
Xac kdXac

M2a Biostatic,

non-competitive

km,ac
Sac

(Ks.ac+Sac)
(

1+
SI
KI

)Xac kdXac

M3a Biostatic,

un-competitive

km,ac
Sac

Ks.ac+Sac

(

1+
SI
KI

)Xac kdXac

M4a Biocide, linear km,ac
Sac

Ks.ac+Sac
Xac

SI
KI
kdXac

M5a Biocide,

exponential

km,ac
Sac

Ks.ac+Sac
Xac 10

SI
KI kdXac

aSac (kgCOD m−3) is the total acetate concentration, Xac (kgCOD m−3 ) the concentration

of acetate degraders, KS,ac the Monod half saturation constant (kgCOD m−3 ), km,ac (d
−1)

the Monod maximum specific uptake rate and KI (kgCOD m−3) the concentration of

inhibitor giving 50% inhibition.
bkd (d

−1 ) is the first order decay rate.

Liquid-Gas Mass Transfer
We estimated the specific liquid-gas mass transfer rates for
methane (ρ2, kgCOD m−3 d−1), carbon dioxide (ρ3, kmol
m−3 d−1), and nitrogen (ρ4, kmol m−3 d−1) as follows
(Batstone et al., 2002):

ρ2 = kLa
(

Sch4 − KH,ch4pgas,ch4
)

(3)

ρ3 = kLa
(

Sco2 − KH,co2pgas,co2
)

(4)

ρ4 = kLa
(

Sn2 − KH,n2pgas,n2
)

(5)

where kLa is the dynamic gas–liquid transfer coefficient, KH,n2

(kmol m−3 bar−1), KH,co2 (kmol m−3 bar−1), and Kch4 (kgCOD
m−3 bar−1) are the Henry’s law coefficients, pgas,ch4, pgas,co2
and pgas,n2 (bar) the partial pressures of gases, and Sch4 (kgCOD
m−3), Sco2 (kmol m−3), and Sn2 (kmol m−3) the concentrations
of methane, carbon dioxide and nitrogen in the liquid phase,
respectively. We assumed the same value for kLa for all
gaseous components.

We estimated the composition of the gas phase assuming that
gas-liquid equilibrium was reached for all gaseous components
in accordance to Henry’s law, and that the total gas pressure
pgas (bar) was the sum of the partial pressures of all the gaseous
components inside the reactor. Consequently, we estimated the
partial pressure pgas,i as follows:

pgas,i = pgas

Si
KH,i

Sn2
KH,n2

+
Sch4
KH,ch4

+ Sco2
KH,co2

(6)

We used the acid-base equilibrium equation for inorganic carbon
(CO2,ac/HCO−

3 ) to estimate the Sco2 from the concentration of
inorganic carbon in the liquid phase (SIC, kmol m−3), as follows:

Sco2 = SIC

(

1−
Ka,co2

Ka,co2 + 10−pH

)

(7)

where Ka,CO2 (-) is the acid-base equilibrium coefficient and pH
(-) is the pH of the solution. In this research, we considered a
constant pH, because we added a pH-buffer into the bottles in
the batch-tests experiments.

Mass Balances
We estimated the AMP (Pch4, kgCOD kgVSS−1) from the specific
liquid-gas mass transfer rates (ρ2), as follows:

∂Pch4

∂t
=

ρ2

tcX (0)
(8)

where X (0) (kgVSS m−3) is the initial concentration of VSS in
the reactor, experimentally determined, and tc (86,400 s d

−1) is a
time conversion factor.

We used the following mass balance equation for component
i in the bulk liquid:

∂CB,i

∂t
=

1

tc

∑

j=[1−6]

νijρj (9)
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where CB,i is the concentration of the soluble (Si) or particulate
(Xi) component i in the bulk liquid, t (s) the time, νij the
stoichiometric coefficients of component i on process j and ρj
(kgCOD m−3 d−1 or kmol m−3 d−1) the rate of process j. The
νij are presented in Table 2.

Model Implementation
Computational Implementation
We performed all computations inMatlab R© R2018a and used the
built in ordinary differential equations (ODE) solver ode15s to
integrate the ordinary differential equations system. The initial
conditions and parameters of the experiments needed for model
resolution were: pgas, pH, V , MR, C0, Si(0) and Xac(0). We
calculated the SMA simulations (kgCOD kgVSS−1 d−1) as the
maximum methane production rate, as follows:

SMA prediction = max

(

1Pch4

1t
tc

)

(10)

We estimated the goodness of fit based on the sum of squared
errors (SSE), as follows:

SSE =
∑

i

(

ye,i − ym,i

)2
(11)

where ye,i is the experimental observation i and ym,i the
corresponding model prediction. We estimated the SSE both
using SMA as the output variable (SSE-SMA, kgCOD2 kgVSS−2

d−2) and using the AMP as output variable (SSE-AMP, kgCOD2

kgVSS−2). We used different polymer concentrations C0 in each
SMA tests (see section Batch Reactor Tests); thus, we solved the
models (M1a to M5a) individually for each C0 tested to estimate
the SSE.

As described in section Batch Reactor Tests, the AMPTS
generates a digital pulse after a fixed volume of gas has flowed
through the gas cells; consequently, the time at which each data
point was measured was different for each bottle, even for the
triplicates of the same SMA test. Therefore, to estimate the SSE-
AMP, the models needed to predict the methane production at
the exact experimental time instant. To achieve this, the models
were solved with a sufficiently small time step (that is t = 1000 s),
and the AMP prediction values were linearly interpolated at the
exact experimental time instants for each SMA bottle.

TABLE 2 | Stoichiometric coefficients (υi,j ).

Component i → 1 2 3 4 5

j Process ↓ Sac Sch4 SIC Sn2 Xac

1 Uptake of acetate −1 1− Yac
a −

∑

i 6=3 Ciνi,1
b

2 Liquid-gas transfer of ch4 −1

3 Liquid-gas transfer of co2 −1

4 Liquid-gas transfer of n2 −1

5 Decay of Xac −1

aYac is the yield coefficient.
bCi (kmole kgCOD

−1) is the carbon content of component i.

Nominal Values of Parameters
The values of most parameters were obtained from literature,
and are summarized in Table 3. The values of parameters related
to the polymer characteristics, namely Qm, KL, and KI , were
selected based on specific assumptions, and the most influential
ones estimated to fit the experimental data. There are several
commercial cationic polymers with similar compositions but
each of them with different charges and molecular weights.
To our best knowledge, there are no specific values for the
parameters related to the polymer characteristics reported in
literature. The parameters for the Langmuir adsorption model,
Qm and KL, are conditioned to the type of adsorbent and
adsorbate. We used experimental data for the adsorption of
polyDADMAC onto different adsorbents from previous reports
and estimated the values of Qm and KL. The estimated values
of Qm were 0.032, 0.450, and 0.035 kg kg−1 for adsorption onto
silica gel of 6 nm pore size (Hubbe et al., 2011), activated sludge
(Zhao et al., 2016), and cellulosic fibers (Horvath et al., 2006),
respectively, and those for KL were 2.0, 7.6 and 1,960 m3 kg−1,
respectively. Qm and KL results were highly dispersed, therefore
we used the values proposed for adsorption onto activated sludge
as an initial guess. We assumed the KI equal to the Ce calculated
using Equation (1) and Equation (2) by substituting for the values
for Qm and KL from activated sludge and for the value for C0

equal to the experimental concentration of polymer at which the
SMA value was 50% smaller than the SMA without polymer.
Therefore, the KI was set equal to 0.014 kgCODm−3.

Initial Conditions and Experimental Parameters
We estimated the total solids content inside the reactor (MR,
kgTSS) as the initial concentration of TSS in the reactor, which
was experimentally determined, times the liquid volume of
the reactor (V). The initial concentration C0 in Equation (2)
represents the concentration of polymer added to the SMA
bottles. We assumed a constant total gas pressure pgas equal
to the mean experimentally measured pressure, which was 1.01
bar. We introduced the ratio between partial pressure and total
gas pressure at time zero as an initial condition in each model
and estimated the soluble components concentrations [Sch4 (0),
SIC (0) and Sco2 (0)] using Equations (6) and (7), assuming that
the system starts at gas-liquid equilibrium. Since the bottles
were initially flushed with nitrogen gas, we assumed that the

initial
pgas,i
pgas

were 0, 0 and 1 for methane, carbon dioxide and

nitrogen, respectively.
We calculated the initial concentration of acetate degraders as

Xac (0) = fXac,0 VSS (0), where fXac,0 (kgCOD kgVSS−1) is the
initial fraction of acetate degraders of the VSS. We estimated the
fXac,0 value to fit the model M0 (Table 1) to the experimental
AMP when no polymer was added to the SMA bottles. We did
not include the adsorption model since no polymer was present
in the reactor. We estimated the initial guess assuming that all the
methane produced from acetate left the bottles and considering
Sac≫Ks,ac. Consequently, the initial guess for fXac,0 was estimated
as follows:

fXac,0 =
SMA

km,ac (1− Yac)
(12)
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TABLE 3 | Nominal parameter values at 35◦C.

Component i −→ 1 2 3 4 5 References

Parameter Units Sac Sch4 SIC Sn2 Xac

KH,i kmol m−3 bar−1a 0.108 0.027b 5.5 × 10−4 Sander, 2015

Ka,CO2 × 107 4.94 Batstone et al., 2002

Ci kmol kgCOD−1 0.0313 0.0156 0 0.0313 Batstone et al., 2002

km,ac d−1 8 Batstone et al., 2002

Ks,ac kgCODm−3 0.15 Batstone et al., 2002

Yac – 0.05 Batstone et al., 2002

kd d−1 0.1 Batstone et al., 2004

kLa d−1 178 178b 178 Metcalf et al., 2002

aKH,i units for methane: kgCOD m−3 bar−1.
b for CO2.

where the SMA (kgCOD kgVSS−1 d−1) was
experimentally measured.

Models Calibration
As described in sections Nominal Values of Parameters and
Initial Conditions and Experimental Parameters, we estimated
the parameters fXac,0, Qm, KL and KI to fit the experimental
data. We used the AMP without polymer addition as the model
output (y) to estimate fXac,0, and for the remaining parameters we
used SMA for different initial polymer concentrations C0 as the
model output.

We carried out the model calibration in five steps, namely:
(1) identification of a parameter subset (θ) containing only
the influential parameters based on the standardized regression
coefficients (βi) from the linear regression model built using
the MC simulations; (2) definition of the boundaries for the
parameters based on the behavior of the SSE with respect to
uncertain model parameters; (3) parameter estimation (PE) with
θ and evaluation of the quality of the estimators; (4) (when
needed) identification of the θ that can be reliably estimated
from the given experimental data, by modification of the model
structure and/or identifiability analysis; and (5) PE with new θ

and/or model. Additionally, we performed a model prediction
uncertainty analysis using the MC method with the parameter
uncertainty obtained from PE.

Monte Carlo and Linear Regression
We performed a global sensitivity analysis to identify the effect of
the parameters on the model output. We executed the analysis
based on linear regression models built from MC simulations.
We defined the input uncertainty as a uniform distribution
with 99.9 % variability, we used 99.9 % instead of 100 % to
avoid null values; zero values for some parameters would cause
numerical problems, for example, if KH,i is zero (for any i)
then there is a division by zero in Equation (6). Consequently,
the minimum and maximum value of the distributions were
0.001θ◦ and 1.999θ◦, respectively, where θ◦ is the initial/nominal
parameter vector. The notation θ ∼ U (0.001θ◦, 1.999θ◦) is
further used in this document. The θ included all parameters
in each model. We used Latin hypercube sampling (Iman and
Conover, 1982) with 500 samples (Sin et al., 2009); computed
the βi using the mean-centered sigma-scaling (Helton and Davis,

2003), and estimated the βi using the constrained linear least
square minimization function lsqlin with −1 and 1 as lower
and upper bound, respectively. The estimation of the βi requires
a scalar input; therefore we computed the βi individually for
each C0 in M1a to M5a and for each time (t) in M0. We
used the coefficient of determination (R2) to evaluate the quality
of the regression model, that is: the model was considered
sufficiently linear when R2 ≥ 0.7 (Sin et al., 2011). We calculated
the mean, minimum and maximum R2 with the βi obtained
for each parameter in the range of C0 or t were R2 ≥ 0.7.
The parameters with a mean abs(βi) ≥ 0.10 were considered
influential (Sin et al., 2011).

Parameter Estimation
We studied the behavior of the SSE with the parameter values
in the subset θ varying in a wide range to research the
existence of local minimums and determine the boundaries and
initial guess for the PE. We performed MC simulations with
Latin hypercube sampling with 500 samples, using a uniform
distribution with 99.9% variability for the parameter subset
defined in section Monte Carlo and Linear Regression and
calculated the SSE for each simulation. We defined the range of
the parameters based on the behavior of the SSE with respect to
uncertain model parameters.

Subsequently, we estimated the parameters using the non-
linear least squares solver lsqnonlin in Matlab R© R2018a, using
the trust region reflective algorithm and with the lower and upper
bounds previously identified. The input function for the lsqnonlin
solver was an array with the residuals, where Residuals = ye−ym.
Afterwards, the solver found the optimal value (θ̂) that minimizes
the sum of squares of the input function, consequently, it
minimizes the SSE in Equation (11). We calculated the standard
deviation (σθ ) and 95% confidence interval (CI) of the estimators
in accordance to Sin and Gernaey (2016).

The normality of the residuals needs to be evaluated since it is
an underlying hypothesis for the implementation of least square
method for parameter estimation. We assessed the distribution
of the residuals graphically and used Shapiro-Wilk test to test the

hypothesis of normality using the function swtest © (BenSaïda,
2009). When the null hypothesis of normality was rejected at
a significance level 0.05, we estimated the parameters using
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bootstrap method, implemented as described in Sin and Gernaey
(2016).

We assessed the quality of the estimators based on the
uncertainty of the estimators and the pairwise linear correlation
between the parameters and considered a good estimation when
the relative error, namely σθ

θ̂
, was below 10 % and a poor

estimation when it was above 50 % (Sin and Gernaey, 2016).
Additionally, if the correlation coefficient between any pair of
parameters was above 0.5, we assumed that the PE problem was
ill conditioned. Then, we performed an identifiability analysis to
select the parameter subset that can be identified uniquely from
the experimental data. Therefore, we computed the collinearity
index of the parameter subset k (γ k) (Sin and Gernaey, 2016).
The threshold to select a uniquely parameter subset is reported
between 5 and 15 (Sin and Gernaey, 2016). We selected the
parameter subset with γ k below 10 for the PE.

Modeling Scenarios
Two different scenarios were studied. The first scenario (models
a: M1a, M2a, M3a, M4a, andM5a), considered that the inhibition
is caused by the polymer (inhibitor) present in the bulk liquid.
As described in section Polymer Adsorption, when a polymer
is added to a sludge sample a fraction of the polymer is
adsorbed onto the sludge and a fraction remains in the bulk
liquid. The concentration of polymer in the bulk liquid after the
adsorption reaching equilibrium is Ce, and Ce was considered as
the concentration of polymer responsible for the inhibition in the
first scenario, namely SI = Ce.

In the second scenario (models b: M1b, M2b, M3b, M4b,
and M5b), the inhibition was assumed to be caused by the total
amount of polymer added to the SMA bottles. The inhibition is
caused by both the fraction of polymer adsorbed onto the sludge
and the fraction remaining in the bulk liquid. Consequently, the
adsorption model was not needed to describe the inhibition and
it was removed from the model structure in models b and the SI
was set equal to the total concentration of polymer added to the
SMA bottles (C0), namely SI = C0.

Model Prediction Uncertainty
We selected the most suitable models based on the model
capacity to predict the experimental data (goodness of fit),
which was assessed graphically and with the SSE-SMA and SSE-
AMP. For the selected models, we studied the model prediction
uncertainty caused by the uncertainty in the estimators, using
the MC method with Latin hypercube sampling. We defined
the uncertainty in the parameters using the results from the PE,
as a normal distribution with mean θ̂ and standard deviation
σθ , namely θ ∼ N

(

θ̂ , σθ
2
)

, and represented the uncertainty

propagation graphically.

RESULTS

Experimental Results
The polymer presented an inhibitory effect on the SMA. The
SMA of the sludge without polymer was 0.219 gCOD gVSS−1

d−1. A 50 % SMA inhibition was obtained at 0.27 gCOD L−1

of polymer, the value was obtained by linear interpolation (see

Supplementary Material). No significant effect was observed in
the AMP achieved at the end of the tests, for further information
see the Supplementary Material.

Modeling AMP Without Polymer
Addition (M0)
The linear regression models built using the MC simulations of
M0 resulted in R2 above 0.7 between 2 and 79 h. The mean,
minimum and maximum βi values for the range with R2 > 0.70
are presented in Table 4. The SSE-AMP was calculated for each
MC simulation and the results are presented in Figure 1. The
behavior of the SSE-AMP with fXac,0, for uncertainty only in
fXac,0, is shown in Figure 1C.

The initial guess for fXac,0 estimation was 0.02, and the lower
and upper bounds were 0.01 and 0.03, respectively. The PE results
were as follows: 0.0198 kgCOD kgVSS−1 optimal value (θ̂), 1.9
× 10−4 standard deviation (σθ ), 3.8 × 10−4 95 % confidence
interval (CI) and relative error σθ

θ̂
of 1 %. We performed PE

varying the initial guess and the same results were obtained. The
null hypothesis of normality was rejected at a significance level
0.05 using the Shapiro-Wilky test with a p-value of 2 × 10−7.
The optimal value obtained using Bootstrap was equal to the
one obtained with least squares method, namely 0.0198 kgCOD
kgVSS−1. Figure 2 displays the experimental AMP and themodel
predictions at the optimal values obtained with PE. Although the
experimental data was collected over a 10-day period, not enough
biogas to generate a new pulse in the AMPTS was produced
in the bottles after 80 h, further explanation was presented in
Supplementary Material.

Modeling the Methanogenesis Inhibition by
the Polymer
The results from the linear models performed with
the MC simulations with parameter uncertainty θ ∼

U (0.001θ◦, 1.999θ◦) are summarized in Table 5. From the
parameters present in the initial subsets θ , the ones with mean βi

≥ 0.10 were: {KI ,KL,Qm} in M1a to M4a and {KI , KL} in M5a.

TABLE 4 | Sensitivity analysis results for M0: mean, minimum (min) and maximum

(max) of the standardized regression coefficients (βi ) of linear models with R2 >

0.7 of AMP as a function of time.

Parameter M0 (mean R2 = 0.81)

Mean Min Max

fXac,0 0.52 0.43 0.60

km,ac 0.71 0.56 0.75

Ks,ac −0.05 −0.06 0.01

Yac 0.05 −0.05 0.07

kd −0.03 −0.05 −0.02

kLa 0.03 0.02 0.10

KH,ch4 −0.09 −0.30 −0.07

KH,co2 0.00 −0.02 0.02

KH,n2 0.03 0.02 0.04

Ka,CO2
0.02 −0.04 0.06

CXac −0.01 −0.02 0.01
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FIGURE 1 | Correlations between the SSE-AMP and uncertain parameters

with θ ∼ U (0.001θ◦, 1.999θ◦) for M0: correlation of SSE-AMP with fXac,0 (A)

and SSE-AMP with fXac,0km,ac (B) using MC simulations performed with

uncertainty in all parameters; correlation of SSE-AMP with fXac,0 using MC

simulations performed with uncertainty only in the fXac,0 (C).

The results from the PE in M1a to M5a are shown in
Table 6. Figure 3 shows the comparison between the best-
fit results of the five models and the experimental data.
The correlation coefficients and collinearity index for all
the possible combinations of parameters are summarized in
Table 7. Based on the results, a new parameter subset was
defined containing only KI , and the values of KL and Qm

were set at their nominal values (defined in section Nominal
values of parameters)

Figures 4A,B display the behavior of the SSE for SMA with
KI ∼ U (0.001θ◦, 1.999θ◦) for models a (M1a, M2a, M3a, M4a,
and M5a) and b (M1b, M2b, M3b, M4b, and M5b), respectively.
The results from the PE estimation are summarized in Table 8.
Figure 5 compare between the best-fit results of the models with
the experimental data.

FIGURE 2 | Experimental and simulated AMP in the absence of polymer (M0).

Simulations performed with the optimum value obtained from parameter

estimation, namely fXac,0 = 0.0198 kgCOD kgVSS−1.

TABLE 5 | Sensitivity analysis results for M1a to M5a: mean of the standardized

regression coefficients (βi ) and mean R2 (R2) of linear models with R2 > 0.7 of the

SMA with different concentrations of polymer.

Parameter↓

R2 →

M1a M2a M3a M4a M5a

0.80 0.80 0.80 0.83 0.80

KI 0.17 0.19 0.20 0.18 0.15

KL 0.12 0.15 0.17 0.11 0.10

Qm 0.13 0.17 0.20 0.16 0.08

km,ac 0.76 0.78 0.69 0.77 0.79

Ks,ac −0.24 −0.14 −0.14 −0.15 −0.13

Yac 0.28 0.30 0.30 0.31 0.32

kd −0.09 −0.11 −0.08 −0.12 −0.12

kLa 0.02 0.03 0.00 −0.02 −0.01

KH,ch4 −0.01 0.00 −0.01 −0.05 −0.02

KH,co2 0.01 −0.01 0.00 −0.01 0.01

KH,n2 −0.01 0.01 −0.02 −0.03 0.02

Ka,CO2
0.00 −0.01 0.05 −0.01 −0.02

CXac 0.03 0.02 0.01 0.01 0.00

Model Prediction Uncertainty
The uncertainty in the M2a and M2b predictions caused by the

uncertainty in KI , with θ ∼ N
(

θ̂ , σθ
2
)

, are compared with the

experimental data in Figure 6.

DISCUSSION

In this research, we assessed the inhibition of SMA and AMP
caused by cationic polymer addition to anaerobic sludge. The
results showed that the polymer inhibited the SMA but did not
have an effect on the final AMP achieved. The experimental
results are further presented in the Supplementary Material.

To the authors best knowledge, two reports are available
that use Adipap polymers for fouling control in membrane
bioreactors. Significant fouling decrease was achieved by adding
0.05 gCOD L−1 of KD451 to a pilot AnMBR (Odriozola
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TABLE 6 | Parameter estimation results for the SMA inhibition for M1a to M4a

with parameter subset θ =
{

KI,KL,Qm
}

and M5a with θ =
{

KI,KL
}

: optimal

values (θ̂ ), standard deviation (σθ ) and 95% confidence intervals (CI); and sum of

square errors for SMA (SSE-SMA) and AMP (SSE-AMP) of the models.

Parameter Model θ̂ σ θ 95% CI
σ θ

θ̂
×100 SSE-SMA SSE-AMP

KI 1 0.001 0.029 0.060 2529 % 0.0021 0.67

2 0.014 0.031 0.065 231 % 0.0027 0.48

3 0.014 0.021 0.044 152 % 0.0027 0.57

4 0.005 0.076 0.158 1400 % 0.0122 7.26

5 0.016 0.112 0.231 689 % 0.0101 7.81

KL 1 11.1 12.2 24.0 110 %

2 152.6 1025.6 2014.9 672 %

3 61.9 383.6 753.7 620 %

4 2.0 4.2 8.3 211 %

5 6.4 22.6 44.4 351 %

Qm 1 0.17 0.05 0.10 29 %

2 0.24 0.03 0.06 13 %

3 0.24 0.04 0.08 18 %

4 0.45 0.47 0.92 104 %

et al., 2019) and 70mg L−1 (0.077 gCOD L−1) of KD452 to
a pilot MBR (Iversen et al., 2009). These concentrations are
considerably below the 50 % SMA inhibition concentration,
namely 0.27 gCOD L−1. However, we obtained 24 and 27 % SMA
inhibitions at 0.06 and 0.11 gCOD L−1 of polymer concentration,
respectively. Consequently, in a continuous AnMBR reactor,
adding polymer might decrease the methane production rate,
increase the acetate concentration and decrease the organic
matter removal when organic loading rates remain at the same
level. The effect would start immediately after addition and it can
be compensated by a decrease in the organic volumetric loading
rate. Additionally, if the inhibition is reversible (biostatic) the
overall conversion capacity of the bioreactor could be recovered
by an increase in the biomass content. If the methanogenic
microorganisms are in excess when adding the polymer to the
AnMBR then the methane production, acetate concentration and
organic matter removal might not be affected by small dosages
of polymer.

Validity of Nominal Values of Parameters
The results from the global sensitivity analysis showed that
a 99.9% variability on the gas-liquid transfer (kLa, KH,i) and
carbon content (CXac) parameters had a negligible effect (βi

< 0.10) on the SMA inhibition (Table 5) and on the AMP
without polymer (Table 4). Consequently, for those parameters,
the selection of the exact (true) parameter values was not crucial
and we considered it acceptable to use the nominal parameter
values from literature presented in section Nominal Values
of Parameters.

Contrarily, the kinetic and stoichiometric parameters related
to acetate degradation and biomass decay presented a significant
effect on the model output. Particularly, the Monod maximum
specific uptake rate km,ac was the most influential parameter
in all considered models. The fXac,0 was highly correlated with

FIGURE 3 | Simulations with parameter estimation results for the SMA

inhibition for M1a to M4a with parameter subset θ =
{

KI,KL,Qm
}

and M5a

with parameter subset θ =
{

KI,KL
}

: experimental and simulated SMA (A),

SSE-AMP (B), experimental and simulated AMP at 0.11 gCOD L−1 of polymer

(C) and experimental and simulated AMP at 0.28 gCOD L−1 (D).

km,ac, meaning that the optimal value for fXac,0 is determined
by the value of km,ac used (Figure 1B). Although, good model
fits could be obtained with different combinations of fXac,0
and km,ac, this was outside the scope of this research. In this
manuscript, we focused on modeling the SMA inhibition and
comparing different inhibitionmodels and not on the acetoclastic
methanogenesis kinetics itself. Therefore, we used widely applied
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TABLE 7 | Correlation and collinearity index for M1a to M5a for different parameter combinations k.

Model↓

k →

Collinearity index (γ k ) Correlation coefficient

{

KI,KL
} {

KI,Qm
} {

KL,Qm
} {

KI,KL,Qm
} {

KI,KL
} {

KI,Qm
} {

KL,Qm
}

1 93 15 13 1828 −0.9999 −0.99 0.98

2 135 18 16 2143 −0.92 0.35 −0.70

3 134 19 16 2139 −0.74 −0.98 0.60

4 116 19 16 2131 −0.98 −0.94 0.87

5 283 36 32 7631 −0.99 −0.64 0.55

FIGURE 4 | Correlations between the SSE-SMA and uncertain parameters using MC simulations with uncertainty θ ∼ U (0.001θ◦, 1.999θ◦) only in KI. Results using

M1a to M5a (A) and M1b to M5b (B).

values for km,ac, Yac, Ks,ac and kd, presented in section Nominal
Values of Parameters.

Modeling AMP Without Polymer
Addition (M0)
The initial fraction of acetate degraders of the VSS (fXac,0) showed
a significant effect on the AMP model output (Table 4): 28 %
(βi

2 × 100) of the output variability could be explained by
the variability on fXac,0. Therefore, we could estimate the fXac,0
to predict the methane production obtained experimentally.
Results did not show a clear pattern of the behavior of SSE-
AMP with fXac,0 with uncertainty in all parameters (Figure 1A).
However, the SSE-AMP with fXac,0 with uncertainty only in fXac,0
(Figure 1C) showed a unique (global) minimum value at fXac,0
around 0.02 gCOD gVSS−1. Parameter estimation results showed
that the quality of the estimator is good since the relative error
was small and the model predictions fit the experimental data, as
shown in Figure 2.

Calibration of SMA Inhibition Models
Ill Conditioned Models
We identified the influential unknown parameters, for PE, using
the results from the sensitivity analysis (Table 5). The subsets
identified, with a threshold value of the mean βi ≥ 0.10, are as
follows: θ = {Qm, KL, KI} in M1a to M4a and θ = {KL, KI}

in M5a.
The SMA simulations, at the optimal values obtained with

PE, showed a good fit to the experimental data for the

biostatic models (M1a, M2a and M3a) and the biocide-lineal
model (M4a), as observed in Figure 3A. Accordingly, Figure 3C
shows a good fit to the experimental AMP with M1a to M4a
for a polymer concentration of 0.11 gCOD L−1. However,
for higher concentrations (Figure 3D) the M1a simulations
slightly deviated from the experimental data, and the M4a
simulations were considerably below the experimental data
after 50 h. The previous deviations are reflected by the SSE-
AMP in Figure 3B. The accelerated biomass decay predicted in
M4a caused a noticeably low concentration of microorganisms
resulting in an extremely low methane production rate after
50 h. Similarly, in M5a the AMP was underpredicted for
high concentrations of polymer. Additionally, the biocide-
exponential model (M5a) overpredicted and underpredicted the
SMA at polymer concentrations C0 below and above 0.3 gCOD
L−1, respectively.

Models a (M1a to M5a) considered the inhibition caused by
the concentration of inhibitor in the bulk liquid SI , where SI
was determined by the Langmuir isotherm adsorption model
(section Polymer Adsorption). Consequently, as expected, high
pairwise correlation coefficients were obtained for all parameter
combinations (Table 7). As a result, the relative errors obtained
with PE were considerably high (Table 6). Therefore, although
some of the models were able to predict the experimental data,
the quality of the estimators was considered poor, namely the
relative error was above 50 % (Sin and Gernaey, 2016).

From the collinearity indexes presented in Table 7, no
combination of parameters could be used to achieve unique
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TABLE 8 | Parameter estimation results for the SMA inhibition process with parameter subset θ for M1a to M5a (with SI = Ce) and M1b to M5b (with SI = C0).

Model θ θ̂ σ θ 95% CI
σ θ

θ̂
× 100 SSE-SMA SSE-AMP

1 KI 0.0017 4.4 × 10−5 0.0001 2.6 % 0.0024 0.73

1b KI 0.0338 9.8 × 10−4 0.0019 2.9 % 0.0030 0.83

2 KI 0.0168 3.6 × 10−4 0.0007 2.2 % 0.0025 0.53

2b KI 0.3341 7.5 × 10−3 0.0149 2.2 % 0.0028 0.63

3 KI 0.0143 3.1 × 10−4 0.0006 2.1 % 0.0026 0.61

3b KI 0.2840 6.1 × 10−3 0.0122 2.2 % 0.0028 0.69

4 KI 0.0016 7.3 × 10−5 0.0001 4.5 % 0.0106 6.91

4b KI 0.0321 1.5 × 10−3 0.0030 4.7 % 0.0109 6.60

5 KI 0.0165 4.4 × 10−4 0.0009 2.7 % 0.0090 7.69

5b KI 0.3234 7.9 × 10−3 0.0158 2.4 % 0.0076 7.36

estimators from the experimental data, namely γ k > 10 for all k.
Therefore, we performed a new PE with a subset containing only
one parameter. We selected the inhibition coefficient KI for the
PE because it presented a slightly higher effect on the simulated
SMA (higher mean βi, Table 5) compared to Qm and KL, and we
used the nominal Qm and KL values. The simulation results with
the optimal values obtained with PE (Figure 5, on the left) were
very similar to the ones obtained at the optimal values from PE
using θ = {Qm,KL, KI} (or θ = {KL, KI} in M5a), Figure 3.

Additionally, we considered a different inhibition approach,
where the inhibition was assumed to be caused by the total
amount of polymer added to the SMA bottles, namely SI = C0.
Therefore, we defined the models b (M1b to M5b) and compared
them with the original models a (M1a to M5a), where SI =

Ce. In Figure 5 the simulation results for models a and b are
displayed on the left and right graphs, respectively; the results
are further discussed in section Bulk Liquid vs. Total Polymer
Concentration Inhibition.

Biostatic and Biocidal Inhibition Models
As we discussed in section Ill Conditioned Models, biocide
models (M4a and M5a) underpredicted the experimental
methane production at high polymer concentrations due to the
accelerated biomass decay. Therefore, the biocide models M4a
and M5a were not appropriate models to describe the inhibition
of methanogenesis by the polymer. Contrarily, predictions with
biostatic models (M1a, M2a, and M3a) showed satisfactory fit
to the experimental SMA and AMP (Figure 5). Therefore, it is
likely that the polymer inhibition on the SMA is a reversible
process (biostatic inhibition), instead of a reactive irreversible
toxicity (biocidal inhibition). Consequently, in a continuous
reactor, the inhibitory effect will be eliminated when the polymer
concentration decreases. Additionally, based on the dosage of
the polymer and the microbial growth rate, the overall microbial
activity could be recovered by an increase in the biomass content.

Figure 5A shows that the simulations using the un-
competitive (M3) and non-competitive (M2) inhibition
models successfully fitted all the experimental SMA, while the
competitive inhibition model (M1a) simulations slightly deviate
from the SMA at the higher concentrations of polymer tested,
namely 0.40 and 0.46 gCOD L−1. Additionally, Figure 5G shows

that the M5a overpredicted the AMP between 40 and 100 h at
0.28 gCOD L−1, while the M2a and M3a model simulations
fitted the AMP remarkably well.

Therefore, although the M1a fitted the experimental data
significantly well, the process was better described by M2a
and M3a. Additionally, as the competitive inhibition model
(M1) considers that the inhibitor binds to the same place as
the substrate (Garcia Orozco, 2008), and because the polymer
(inhibitor) and the acetate (substrate) are different molecules, the
latter result was not unexpected.

The difference between the un-competitive and non-
competitive models could only be observed in the AMP
predictions at high concentration of polymer (Figure 5G).
Based on the SSE presented in Table 8 the M2a seems to predict
slightly better the experimental data. However, the difference
was not considered sufficient to select one model over the other
and both models were considered appropriate to describe the
methanogenesis inhibition process.

Bulk Liquid vs. Total Polymer Concentration Inhibition
The behavior of the SSE-SMA with KI revealed a unique (global)
minimum for all models. Figure 4 displays the SSE-SMA as a
function of KI for models with inhibition by the concentrations
of polymer in the bulk liquid (Figure 4A) and by the total
amount of polymer added to the system (Figure 4B). Results
presented a similar behavior for both inhibitionmodels, however,
the KI values that minimize the SSE-SMA are 20 times larger
for the models with SI = C0, which corresponds to the ratio
between the C0 and Ce obtained by applying the adsorption
model (section Polymer Adsorption) with the nominal parameter
values and experimental conditions.

Parameter estimation results showed that the models a (with
SI = Ce) presented a slightly smaller SSE-SMA and SSE-AMP
for each biostatic inhibition model considered with respect to the
models b (with SI = C0), as shown in Table 8. However, the
difference in the simulations with the models a (left plots) and
models b (right plots) was negligible for each kinetic inhibition
model used, as observed in Figure 5. The similarity between
models a and b was due to the approximately linear relationship
between C0 and Ce obtained using the polymer adsorption
model (results not shown). This approximately linear behavior
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FIGURE 5 | Simulations with parameter estimation results for the SMA inhibition, with parameter subset θ =
{

KI
}

: experimental and simulated SMA for M1a to M5a

(A) and M1b to M5b (B), SSE-AMP for M1a to M5a (C) and M1b to M5b (D), experimental and simulated AMP at 0.11 gCOD L−1 of polymer for M1a to M5a (E) and

M1b to M5b (F) and experimental and simulated AMP at 0.28 gCOD L−1 for M1a to M5a (G) and M1b to M5b (H).

was obtained using the experimental conditions tested (C0, MR,
and V) and with the Langmuir parameter values obtained by
parameter estimation (KL and Qm).

Therefore, both modeling approaches (bulk liquid or total
polymer concentration inhibition) were considered appropriate
to describe the methanogenesis inhibition caused by the
polymer in the range of concentrations studied. Additionally,
the uncertainty in the estimated parameters did not cause a
considerable uncertainty on the model prediction for M2a and
M2b, Figure 6.

CONCLUSION

The cationic polymer showed a negative effect on the biological
activity of the anaerobic sludge. A 50 % SMA inhibition was
obtained at 0.27 gCOD L−1 of polymer whereas no significant
effect on the final AMP was observed.

Different models were presented and calibrated to fit the
experimental data. The Monte Carlo method was successfully
applied to study the sensitivity of the model outputs to the
parameters and identify the parameter subsets for parameter
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FIGURE 6 | Monte Carlo simulations with uncertainty θ ∼ N
(

θ̂ , σθ
2
)

and subset θ =
{

KI
}

for M2a and M2b. Experimental data, MC simulations (MC sim.) and mean

MC simulations for: SMA for M2a (A) and M2b (B), AMP at 0.11 gCOD L−1 of polymer for M2a (C) and M2b (D) and AMP at 0.28 gCOD L−1 for M2a (E) and M2b (F).

estimation. The collinearity indexes and pairwise correlation
coefficients showed that the parameters Qm, KL and KI are
all highly correlated. Based on the Monte Carlo results and
collinearity indexes the parameter subsets selected for parameter
estimation was θ = {KI} for all the models considered.

We studied an alternative modeling approach, models M1b
to M5b, considering that the inhibition was caused by the total
amount of polymer added to the reactor (SI = C0), and not by

the concentration that remains in the bulk liquid after adsorption
(SI = Ce, M1a to M5a). The difference in the models simulations
with both approaches, namely SI = Ce and SI = C0, was
negligible for each kinetic inhibition model used.

The simulated AMP values obtained with the biocide models,
namely M4a andM5a, were below the experimental AMP at high
concentrations of polymer, which was caused by a rapid decay of
the acetate degraders simulated. The only models that adequately
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fitted the experimental SMA and AMP were the non-competitive
(M2a and M2b) and un-competitive (M3a and M3b) inhibition
models. Therefore, it is likely that the polymer inhibition on the
SMA is reversible, instead of toxic and irreversible.

The concentrations of polymer (inhibitor) in the bulk liquid
giving 50 % inhibition were 0.014 and 0.017 gCOD L−1 for M2a
and M3a, respectively; and the total concentrations of inhibitor
in the reactor giving 50 % inhibition were 0.334 and 0.284 gCOD
L−1 for M2b and M3b, respectively.

The simulated SMA obtained with M1a and M4a adequately
fitted the experimental SMA. However, the simulated AMP
was below the experimental AMP for those models. Therefore,
it is crucial to analyze both outputs, SMA and AMP, during
model calibration.
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NOMENCLATURE

COD chemical oxygen demand

MC Monte Carlo

PE Parameter estimation

AMP accumulated methane production

SMA specific methanogenic activity

SSE sum of squared errors

VSS volatile suspended solids

TSS total suspended solids

Variables and parameters

C0 initial concentration of polymer in the bulk liquid (kgCOD m−3)

Ce concentration of polymer in the bulk liquid after equilibrium

(kgCOD m−3)

Ci carbon content of component i (kmole kgCOD−1)

fXac,0 initial fraction of acetate degraders of the VSS (kgCOD kgVSS−1 )

Ka,CO2
acid-base equilibrium coefficient (CO2,ac/HCO

−
3 )

kd first order decay rate (d−1)

KH,i Henry’s law coefficient for component i (kgCOD m−3 bar−1
†
)

KI concentration of inhibitor (polymer) giving 50% inhibition (kgCOD m−3)

KL Langmuir affinity coefficient (m3 kgCOD−1)

kLa dynamic gas-liquid transfer coefficient (d−1)

km,ac Monod maximum specific uptake rate (d−1)

Ks,ac Monod half saturation coefficient (kgCOD m−3 )

MR total solids mass inside the reactor (kgTSS)

Pch4 accumulated methane production (kgCOD kgVSS−1 )

pgas gas pressure (bar)

pgas,i gas i partial pressure (bar)

Qe adsorbent phase concentration of polymer after equilibrium

(kgCOD kgTSS−1)

Qm maximum adsorption capacity corresponding to monolayer coverage

(kgCOD kgTSS−1)

R2 coefficient of determination (in linear models)

Si concentration of soluble component i in the bulk liquid (kgCOD m−3
†
)

t time (s)

tc time conversion factor (86,400 s d−1)

V Volume of liquid in the reactor (m3)

X concentration of VSS in the reactor (kgVSS m−3)

Xac concentration of acetate degraders in the bulk liquid (kgCOD m−3 )

Yac yield coefficient

ye,i experimental observation i (SMA or AMP)

ym,i model prediction of experimental observation i (SMA or AMP)

Greek letters

βi standardized regression coefficient for parameter i

γ k collinearity index of the parameter subset k

υi,j stoichiometric coefficients of component i in process j

ρj rate of process j (kgCOD m−3 d−1
†
)

σθ standard deviation of estimators

θ parameter subset for estimation

θ◦ initial guess

θ̂ parameter estimators (optimal value)

Subscripts

ac acetate

ch4 methane

co2 carbon dioxide

IC inorganic carbon

n2 nitrogen

I inhibitor (polymer)

†
For inorganic carbon, carbon dioxide and nitrogen the units are expressed in kmol instead of kgCOD.
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