
Querying Sparse Matrices

for

Information Retrieval

Roberto Cornacchia





Querying Sparse Matrices

for

Information Retrieval

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op dinsdag 29 mei 2012 om 12.30 uur

door Roberto CORNACCHIA

Dottore Magistrale, Università di Bologna, Italië
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One often meets his destiny on

the road he takes to avoid it.

- Jean de La Fontaine, poet 1
Introduction

In the years in which this thesis is being written and published, computer-assisted

search has consolidated as an everyone’s daily activity. The amount of inform-

ation available on the World Wide Web is so large that we no longer wonder

whether what we need is on the Web, but rather where to find it exactly. This is

one of the reasons why search systems have become so crucial in our life. Allow-

ing ourselves to forget and search repeatedly what we need to find is often more

convenient than maintaining a personal list of interesting resources. For the vast

majority of non-specialists, the concept of computer-assisted search corresponds

to ‘to google’ (introduced in the Oxford English Dictionary in 2006 [Oxf]), which

refers to using the Google search engine [Goo] (or other popular alternatives) to

obtain information on the Web.

In spite of what many may think, improving the way we index, search and

present information is far from being a dead-end research topic. “Isn’t there

Google for this already?” is the typical question that a researcher in the field of

information retrieval is asked by friends and relatives. Luckily, search will evolve

much beyond what Google and others can offer today. The author’s children will

probably smile trying to picture how difficult their dad’s life was, when he had

to type keywords on the Web in order to find what he needed.

Information retrieval, in its most generic definition, is the science that studies

how to find information that is relevant to our needs. Simple real-life scenarios

include at least the following entities: a user who has an information need (often

not precisely defined); a query that describes such an information need (e.g. a list

of keywords); a data repository of diverse data kinds (e.g. text, xml, multimedia);

a retrieval method that is used to assess the degree of relevance of each piece of

information to the user query; a search system (e.g. Google), which finally accepts

queries from users and finds relevant information in the available data, applying

1



2 Chapter 1: Introduction

some retrieval methods.

Information retrieval queries represent information needs that in natural lan-

guage would be expressed as e.g. “news about the financial crisis”, “other photos

like the selected one”, or “the books read by users whose taste is similar to mine”.

The ability of automated systems to answer such vague queries is probably what

attracts us the most, as it matches the lack of completeness and structure that

we experience in our life. We usually do not know in the exact detail what we

are looking for, and we know certain questions have no exact answers. Typically,

search systems use a “best effort” approach to produce a ranked list of result

items, so that the probability to be pointed to right direction is maximised when

looking at the items that are highest in this rank. Unfortunately, instructing

an automated system to perform such a “guess” is considerably more difficult

than demanding exact answers, as it requires the formalisation and consequent

simulation of an inductive process.

Retrieval methods are the formalisation of such inductive processes. For ex-

ample, observing that a news article contains many repetitions of words ‘swine’

and ‘flu’, that the two words appear close together in the text and that the

article was written in 2009, gives a high chance, though no guarantee, that its

subject is the ‘Novel Influenza A (H1N1)’ [Wik] (also known as ‘swine flu’) that

caused world-wide concern in 2009. Often, simplifying assumptions are needed

on the theoretical formalisation of sophisticated retrieval methods, either for in-

herent lack of knowledge (e.g. it may be impossible to acquire certain statistical

information on the data to search), or for performance reasons (the full theor-

etical formalisation may be computationally too intensive). Moreover, retrieval

methods may need to be tuned specifically for the data they need to search.

Devising, formalising, validating and refining retrieval methods, together with

a variety of other theoretical aspects (e.g. relevance measures, natural language

processing, information extraction, see [vR79, MRS08] for an overview) are fas-

cinating and demanding research topics that have traditionally dominated the

scene in the field of information retrieval. Relatively little importance has been

given to other aspects of the problem. One of these aspects is the engineering of

search systems.

1.1 Problem definition

The traditional focus of information retrieval research on its most theoretical

aspects is visible in the relatively poor design of search system architectures

developed. For many years the scope of information retrieval has focused on
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relatively simple retrieval methods applied to text collections only. The develop-

ment of search systems has mostly been regarded as the realisation of prototypes

for the specific theoretical aspect being studied (or for a specific market segment

in commercial settings), with a limited set of supported retrieval methods, data

collections and parameters, that are hard-coded in the implementation. If on

the one hand this pragmatic approach may result in efficient search engines for

specific problems, on the other hand it implies low engineering efficiency: scarce

modularity, low re-usability, high coding effort for each new search context to be

addressed. As an example, consider the widely used search engine Lucene [HG04].

Next to the ranking algorithms it provides, new ones can be used, after they are

integrated into the system. While this approach allows for some flexibility, a

number of obstacles need to be addressed before this flexibility can be used in

practice, ranging from the packaging of the new algorithm as a compatible Java

class to the fact that the rather fixed set of statistics available in the system may

not suffice1.

Modern search systems are expected to cope with more diverse scenarios,

accessing multiple and heterogeneous data sources and adapting to an increas-

ing number of parametrisations. A structured engineering of search system ar-

chitectures is required in order to deal with this increasing complexity. More

specifically, the following critical aspects need to be addressed:

Content independence. Search systems tend to be highly specialised for

specific content, retrieval methods and context parameters. Content independ-

ence [dV01, Mih06, WLMZ03], known as the decoupling between search strategies

and logical content representation, is necessary in order to allow more flexibility.

Data independence. Search systems are built on top of physical data-access

primitives (mainly inverted lists [ZM06]), which implies no (or limited) separa-

tion between search strategies and physical details such as algorithms and data

models. Because data independence is one of the main achievements of database

research, the idea of using database solutions as a physical interface for IR has

been pursued for long (see [CRW05]) and resulted in a research field referred to

as IR&DB integration. In spite of its intuitiveness, this integration turned out

to be more difficult than expected, for two main reasons:

• efficiency: no DB implementations have so far provided sufficient run-time

efficiency in comparison to custom-built IR solutions;

1A non-trivial integration of BM25/BM25F [RZ09] into Lucene is described in [PIPAFF09].
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• data model mismatch: the typical set-based database interface is far from

natural for retrieval method specification.

Abstraction layers. The lack of content and data independence in traditional

search systems is due in the first place to the absence of proper abstraction layers

that separate clearly the different stages of retrieval processes: the modelling of

retrieval methods and content within a unified formalism; the declarative specific-

ation of retrieval methods; their implementation-independent and data-driven

representation; their implementation-specific instantiation.

1.2 Approach and research questions

This thesis starts from the problem analysis summarised above and addresses the

following general research question:

What are the requirements for a software architecture that provides

search systems with content independence, data independence

and runtime efficiency and scalability?

Without loss of generality, we assume in the following a layered software ar-

chitecture. We can now refine the question above into more specific research

questions:

1. Assuming a layered architecture, which abstraction layers should be distin-

guished, as a prerequisite for providing search systems with content and data

independence?

2. What are suitable instantiations of such abstraction layers?

3. Can automatic mappings among the identified layers be defined, so that

possible data model mismatches are taken care of by the system?

4. What are the requirements of such a software architecture in terms of

runtime efficiency and scalability?

1.3 Scientific contributions and thesis outline

The actual thesis promoted in this manuscript, based on the problem analysis

and the research questions above, can be summarised in the following thesis

statement:
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IR tasks and concepts can be naturally modelled in terms of matrix

spaces and implemented using the array data model as a conceptual

data-access abstraction. This combination allows to enable content in-

dependence in a real search system architecture. The array data model

can be mapped automatically onto the logical and physical data-access

abstractions of the relational data model, and executed on a rela-

tional engine, which enables data independence. IR search tasks ex-

pressed and mapped this way can be deployed to instantiate a so-called

Parametrised Search System (PSS). Such a layered architecture

can compete with the efficiency and scalability of custom-built search

systems, provided that: (i) mapping from the array to the relational

domains is optimised with a specific set of array-aware transform-

ation rules, with support for sparse arrays; (ii) a database engine

tuned for modern hardware exploitation is employed.

The scientific contributions that support the thesis statement above are ad-

dressed as outlined below.

Chapter 2: Related work. In this chapter, we put our work in perspective

by offering a survey of previous research whose goals overlap with those presented

in this thesis.

Chapter 3: Parametrised Search Systems. This chapter introduces the

concept of a Parametrised Search System, which follows the design principles of

a layered architecture. The resulting abstraction layers are the prerequisite for

the implementation of search systems that support both a declarative language

for their parametrisation and underling data independence capabilities. In the

same chapter, the array data model is identified as a good candidate to support

two layers at the same time: the IR modelling abstraction and the conceptual

data-access layer. The work presented in this chapter addresses research questions

1 and 2, and has been partly published in [Cor06, CdV06, CdV07].

Chapter 4: The database approach to sparse array computations.

This chapter proposes to support the declarative array data model identified in

Chapter 3 with the benefits of the database approach, such as data independence

and query optimisation. To make this proposition more concrete, we describe

SRAM, a prototype mapping tool between the array and the relational domains.

The work presented in this chapter addresses research questions 2 and 3 and has

been partly published in [Cor06, CdV06, CdV07, CHZ+08].
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Chapter 5: Array database optimisation. This chapter focuses on per-

formance aspects of the array-database approach proposed. It describes sev-

eral techniques for the optimisation of each of the query transformation steps

throughout the abstraction layers of the system’s architecture. Finally, it iden-

tifies the requirements a database engine needs to meet in order to provide suf-

ficient execution speed for the proposed application stack. The work presen-

ted in this chapter addresses research question 4 and has been partly published

in [CvBdV04, vBCdV05, CHZ+08].

Chapter 6: Evaluation. This thesis proposes a solution to the aforemen-

tioned research problem and driving questions, which is summarised in the thesis

statement above, and finally attempts to assess its quality. Ideally, the following

questions can be used as quality indicators for this research:

• How does an interface based on the array data model simplify the database-

powered implementation of parametrised search systems?

• How flexible is the proposed ‘array-database’ approach with respect to dif-

ferent IR tasks and/or data collections?

• Is the performance provided by this approach satisfactory? What is the

importance of an optimised automatic translation compared to the raw speed

that the underlining database engine could provide?

However, the nature of some of the goals being pursued makes it hard to evalu-

ate solutions in such a way that these questions can be answered directly. While

efficiency can be numerically measured (although unbiased comparisons may re-

main problematic), this is not the case for goals like engineering simplification

and flexibility. In Chapter 6, we validate the proposed solution on a number of

case studies that address the quality indicators above and provide useful insights

for evaluating the quality of this research.

Chapter 7: Conclusions. In this chapter, we summarise the main scientific

contributions and match those against the driving research questions. Finally,

we outline possible future work directions.



The best ideas are common property.

- Lucius Annaeus Seneca,

Roman philosopher, statesman, dramatist. 2
Related work

With the explicit goal of pursuing a structured approach to the design and imple-

mentation of search engine architectures, one of the main research lines followed in

this thesis addresses the long-standing issue of IR&DB integration. The IR&DB

“gluing layer” identified in the solution proposed is based on the array data-

model. While this three-way combination is a novelty, the array data-model is

familiar to both the database and the information retrieval research communit-

ies: array databases use multi-dimensional array structures to support scientific

applications and multi-dimensional spaces are often the most natural way to ex-

press information retrieval concepts. Aim of this chapter is to allow the reader to

put in perspective the research presented in this thesis, by pointing at a selection

of relevant prior work that is related to the research areas mentioned above.

Section 2.1 suggests key publications that explore the parallels between in-

formation retrieval concepts, multi-dimensional spaces and linear algebra. All

these works can provide useful input for the implementation of information re-

trieval systems based on the array data-model. Section 2.2 deals with motiv-

ations, issues and possible approaches in supporting information retrieval with

database technology. Finally, Section 2.3 gives an overview of research related to

array databases.

2.1 Multi-dimensional spaces and information

retrieval

Modelling of query terms and documents as vectors in high-dimensional spaces

dates back to the SMART system [Sal71, SWY75, SM86], where Salton intro-

duces the Vector Space Model (VSM) for information retrieval. Documents are

7
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represented as vectors in a space that has as many dimensions as unique terms

in the collection to index. The value of each component in a vector reflects the

importance of the associated term in the associated document. Typically, this

value is a function of the frequency with which the term occurs in the document

and/or in the collection and can be 0, which indicates no occurrence. Several dif-

ferent ways of computing these values, also known as (term) weights, have been

developed. One of the best known schemes is tf-idf weighting [SWY75, SM86]. A

collection that contains d documents and t terms is then represented as a matrix

DT [d, t]. Similarly, a query can be seen as a pseudo-document and represented

by a vector Q[t], which indicates which query terms are considered important

for the information need. Having defined document and query representations,

the retrieval process consists of ranking documents by the result of a similarity

measure between query and collection document. Given this geometrical inter-

pretation, the most commonly used similarity measure is computed as the cosine

of the angle between the query and document vectors (a cosine value of zero

means that the query and document vector are orthogonal and have no match).

Refer to e.g. [ZM98, MRS08] for more details and alternative similarity meas-

ures. One severe constraint of the original vector space model is that it does

not allow to take term correlations into account easily. Terms are treated as a

set of orthogonal vectors in the DT [d, t] matrix, i.e. terms are assumed to be

independent. Because of this, the VSM fails to handle correctly text collections

where synonymy (different words with same meaning) and polysemy (words with

more than one meaning) occur frequently.

A number of approaches have been proposed to overcome the limitations im-

posed by the term independence assumption. Wong et al. [WZW85] show how to

compute such correlations automatically during the indexing process and how to

include such information in the retrieval process, variant known as the General-

ised Vector Space Model (GVSM). The Distributional Semantics based Inform-

ation Retrieval (DSIR) model [Run88] focuses on using contexts to characterise

the meaning of a word. Co-occurrence statistics are extracted from a document

collection as a source of distributional information. The co-occurrence statistic

of a word is the number of times that word co-occurs with one of its neigh-

bours within a pre-defined boundary, the ‘distributional environment’, such as

sentences, paragraphs, sections, whole documents, or windows of k words. Each

term is then represented as a vector in the space of this co-occurrence matrix,

and each document, in turn, as a vector of term vectors. Standard VSM simil-

arity measures can be used in this augmented vector space to rank documents

accordingly. Latent Semantic Indexing (LSI) [FDD+88, DDL+90, BF95, BDJ99]

is based on the principle that words that are used in the same contexts tend to
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have similar meanings and performs a dimensional reduction of the term space,

with the effect of preserving the most important semantic information in the text

while reducing noise and other undesirable artifacts of the original matrix spaces.

LSI uses a rank-reduced singular value decomposition (SVD) on a term-document

matrix to identify patterns in the relationships between the terms and concepts

contained in an unstructured collection of text. The rank-reduced SVD trun-

cates the singular value matrix to size k, reducing the original term space into a

k-dimensional space, with k much smaller (typically 300-400) than the total num-

ber of terms. As a general rule, fewer dimensions allow for broader comparisons

of the concepts contained in a collection of text, while a higher number of di-

mensions enables more specific (or more relevant) comparisons of concepts. This

dimensional reduction has two major benefits: the soft clustering of terms into

concepts offers an automatic, language-independent, fully mathematical solution

to retrieval quality issues coming from synonymy and polysemy; as a positive

side-effect, collection indices become much smaller. Latent Dirichlet Allocation

(LDA) [BNJ03, WC06] is a generative probabilistic variant of LSI, which assumes

that words occurring in a collection can be generated from a set of concepts ex-

tracted from a small set of example documents. The Topic-based Vector Space

Model (TVSM) [BK03] removes from the VSM the assumption of orthogonal

term vectors, which allows for flexible specification of term-similarities and in-

tegrates more naturally stemming, stop-word lists and thesauri. A recent work

by Melucci [Mel08] generalises vector spaces used in the VSM to allow retrieval

in context, by making a parallel between a context and the basis of a vector:

a vector, which represents an information object, is generated by a basis in the

same way as the information object, or an information need, is generated in a

context; every vector can be generated by a different basis in the same way as an

information object is generated in different contexts. The probability of context,

that is, the probability that an information-object has been materialised within

a context, is a function of the distance between the subspace that a basis spans

and an information-object vector.

Van Rijsbergen [vR04] shows how logical, probabilistic and vector space mod-

els can be combined in one mathematical framework, the very one used to for-

mulate the general principles of quantum mechanics. Using this framework, van

Rijsbergen presents a new theory for the foundations of IR, in particular a new

theory of measurement. He shows how a document can be represented as a vec-

tor in Hilbert space, and the documents relevance by an Hermitian operator.

All the usual quantum-mechanical notions, such as uncertainty, superposition

and observable, have their IR-theoretic analogues. The standard theorems can

be applied to address problems in IR, such as pseudo-relevance feedback, relev-
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ance feedback and ostensive retrieval. The relation with quantum computing is

also examined. This framework is first used in practice by Piwowarski et al. in

[PFLvR10].

Turtle, in his doctoral dissertation [Tur91], developed a probabilistic model

for information retrieval formulated in terms of a Bayesian Network. Queries,

concepts and documents are nodes in the graph representing an inference net-

work. An edge between nodes a and b in this graph describes the conditional

probability P (a|b) of a causing b. For each node b, a link matrix encodes the

probability of observing one of the m allowed values, given the values observed

at b’s parents (nodes reaching b). For n parents, the link matrix for b must

encode mn+1 coefficients. Despite its name, this link matrix is really a multi-

dimensional array that represents a tensor. Turtle, in his dissertation, shows

how to compute efficiently its coefficients using tensor notation. Because tensors

describe transitions in the inference network, they also describe operators, such

as boolean AND, OR, NOT or weighted sum. These are the building blocks for

the query language offered by the retrieval systems Inquery [CCH92] (now In-

dri [SMTC04]) and Galago [Gal, Str08], resulted from Turtle’s research. Inquery’s

query language can be considered to enable some early version of a parametrised

search system, because of the separation of concerns it allows between documents

and content representation and has been used for precisely this flexibility (for ex-

ample, in cross-language IR). However, it is not very flexible with respect to the

retrieval model assumed.

The General Matrix Framework for Information Retrieval [RTK05] is a well-

defined mathematical framework for modelling information retrieval, in which

collections, documents and queries correspond to matrix spaces and key IR con-

cepts are expressed with a set of standard linear algebra operations. The matrix

spaces defined in this framework allow to express content-based retrieval (in-

cluding some of the most popular retrieval models in the logical, probabilistic

and vector space families), structure-based retrieval, semantic-based retrieval and

evaluation. Finally, the interpretation of the eigenvectors of some content and

structure matrices is discussed.

2.2 IR&DB integration

The information retrieval and database research fields evolved separately despite

their obvious large overlap: essentially, they both study models and techniques

to search in large amounts of complex information. Reasons for this divergence

can be sought in the fundamentally different application areas that drove the de-
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velopment of the two disciplines. DB was driven by business applications, which

emphasised technical aspects such as data consistency, precise and efficient query

processing, deductive inference, and addressed users with high technical skills

who write applications for exact-match searches using SQL, XQuery, etc. On the

other hand, IR research was driven by applications for searching digital librar-

ies, patent collections, etc. Technical requirements for this class of applications

are more focused on best-effort processing, ranking and inductive inference, in

order to maximise satisfaction of non-technical users with imprecise information

needs. The result of this trend may be summarised today with a lack of proper

ranking capabilities in the DB world and a lack of query optimisation in the IR

world. Integration of IR and DB fields is acknowledged to be an important, still

open, challenge [AAB+05], especially in recent years, due to the increasing need

for search applications that respond to both the driving criteria described above

(mixtures of structured and unstructured data, as well as exact and approximate

matches).

Motivations, issues and possible approaches for IR and DB integration are well

summarised in a number of works. From an IR perspective, the need for more

flexible systems with less engineering motivates such an integration, whereas from

a DB view the goal is to embrace new ways of treating uncertain and imprecise

data. Both the concepts of ‘retrieval model independence’ and ‘content descrip-

tion independence’ [Mih06] are described by Mihajlovic. Wen et al. use ‘media

independence’ for a similar separation of concerns as Mihajlovic’s content de-

scription independence [WLMZ03]. De Vries first defined the notion of ‘content

independence’ [dV01] to refer to the decoupling between search strategies and

content representation. A similar but more known concept is that of ‘data inde-

pendence’, which refers to decoupling between search strategies and data primit-

ives and structures. Already in 1996, Fuhr argued in favour of data independence

in IR [Fuh96b], pointing out how this would reduce problems in plain text search

with noun phrase search and treatment of compound words and (semi-)structured

data types to capture attributes like author, journal title or publication year. A

good summary of the DB-community view on integration with IR technology was

presented during the SIGMOD 2005 panel [AYCR+05]. In a SIGMOD 2007 key-

note [Wei07], Weikum gives a chronological overview of IR&DB integration. In

particular, he identifies the challenges of 2007 with those posed by XML IR and

the future ones in the area of semantic web, an old dream that will, according to

Weikum, re-gain attention thanks to the great progress in information extraction

technology (see e.g. Extractiv [Ext]) and to the availability of “spontaneous an-

notations” created by the social web. In [CRW05], Chaudhuri et al. present a set

of motivating examples, discuss different approaches of combining area-specific
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processing techniques, and propose an extension to the relational algebra that

provides various IR features, e.g. a top-k operator, discussing the new challenges

this algebra brings for the relational query optimisers.

Re-thinking the relational model to better support uncertainty. Im-

portant contributions to combined search of structured and unstructured data

come from the research on probabilistic databases. Foundations of this ap-

proach include work by Schek and Pistor [SP82], who studied in 1982 non-first-

normal-forms for IR problems as an alternative to standard relational algebra

and Cavallo and Pittarelli [CP87], who introduced a first approach to probab-

ilistic tuples. The PDM model developed later by Barbara et al. [BGMP92]

uses nested relations to store imprecise attribute values, which overcomes some

limitations of [CP87]. In the line of alternative data models, the AIM-P pro-

totype [DL89, PD89] proposes radical changes, by supporting combinations of

nested sets, records and sequences. The problem of imprecise attribute values

has also been studied in terms of NULL values by the core database community

in the seventies [Lip79, Vas79, IL84]. In particular, Codd [Cod79], with his three-

valued logic (false,true,maybe), realises a simple form of ranking mechanism for

database systems. Modern approaches to probabilistic databases build on the

definition of a probabilistic relational algebra (PRA) and probabilistic datalog,

by Fuhr and Rölleke [Fuh90, Fuh96a, FR97, Fuh00, RWWA08]. They describe

evaluation strategies based on extensional semantics (efficient but not always cor-

rect) and intensional semantics (always correct, but more complex). Dalvi and

Suciu [DS04] describe query evaluation on probabilistic databases in terms of a

‘possible worlds’ semantics and show how this is formally equivalent to the inten-

sional semantics. They however discard the latter as an actual query evaluation

method, due to its impractical complexity, and pursue a less generic approach.

First they prove that certain classes of queries admit ‘safe query plans’, i.e. query

plans that deliver correct answers when evaluated using extensional semantics.

Then they describe an algorithm for safe query rewrites and approximations for

those queries that do not allow safe query plans.

Taking state-of-the-art DB and IR solutions closer together. IR and

DB research communities have made numerous attempts to apply lessons learnt

from each other, with the explicit goal of minimising the impact on the respective

pre-existing technologies.

First implementations of IR methods in database systems date back to the

seventies, with e.g. the SEQUEL language [Mac79] and the work by Craw-

ford [Cra81], who advocates the use of the relational model for IR. Stonebraker
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et al. [SAH87] proposed in 1987 a DB extension for text retrieval encapsulated

in Abstract Data Types (ADT). This mechanism is relatively easy to implement,

but has the disadvantage of remaining inaccessible to relational query optimisa-

tion. Today, we find this approach in loosely-coupled combinations of database

systems and inverted file index structures, such as Sphinx [Sph]. Among the

attempts to realise the inverse loose coupling, i.e. use a database system as

a storage and index layer for an existing information retrieval engine, Inquery

was integrated with an object-oriented database system in [CST92] and with the

Mneme persistent object store, used to manage the Inquery’s inverted file, in

[BCCM93].

The idea to use DBMS technology as a building block in an IR system is

pursued e.g. in [GFHR97], where the authors store inverted lists in a Microsoft

SQLServer and use SQL queries for keyword search. Similarly, in [GBS04] IR

data is distributed over a PC cluster, and an analysis of the impact of concurrent

updates is provided.

Inverted files are the most widely used indexing structure in text search en-

gines. In its simplest form, an inverted file is composed by a dictionary of all

terms appearing in a collection and a set of inverted lists (or posting list) of

document identifiers. Each term entry in the dictionary points to an inverted

list of document identifiers in which the term occurs. [ZM06] offers an excel-

lent overview on indexing techniques based in inverted files, including recent

advances in terms of index compression, distribution and efficient resource utilisa-

tion [HBYFL92, MZ94, JO95, MMR00, Tro03, AM05b, MWZ06, MGC07, BB07].

Inverted files were also proven to always outperform signature files for text

retrieval [ZMR98]. Various attempts were made to mimic the efficiency of

inverted files in database systems and combine this with the data-oriented

efficiency provided by query optimisation techniques, not only in text re-

trieval [Bla88, Put91], but also in XML retrieval [FKM00, ZND+01, KKNR04]

and multimedia retrieval [dV00]. Notable works on alternative text indexing ap-

proaches suitable for database systems include string B-Trees [FG99] and gram

indices for exact substring matching on large text corpora [TSB09].

In 1985, Buckley and Lewit [BL85], in one of the earliest works on op-

timisation of retrieval based on inverted files, take a term-at-a-time approach

to compute partial scores and decide when inverted lists need not be further

examined. The state of the art on top-k queries over large (inverted) index

lists has been defined in seminal work on variants of the threshold algorithm

(TA) [Fag99, FLN01, GBK00, GBK01, NR99] 1. Seamless combination of such

1Only in [TSW05] the connection between the TA algorithm and Buckley’s work has been
noticed.
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IR-style top-k similarity queries with DB-style query processing and optimisation

techniques is one of the open research challenges. Chaudhuri et al. [CDY95] stud-

ied query execution strategies with external text sources. Bruno et al. [BCG02]

mapped top-k queries onto multidimensional range queries. Carey and Koss-

mann [CK97, CK98] introduced a stopping operator into pipelined query execu-

tion plans, supported by an extension to SQL which overloads the ORDER BY

clause to request ranked results. Ciaccia et al. [CCG00] extended this work

with generalised top queries, to allow per-group ranking of results. Blok et

al. [BdVB99] and De Vries et al. [dVMNK02] describe, respectively, top-N and

k-NN query optimisation techniques for multimedia databases that are designed

to exploit a vertically decomposed storage model [CK85]. Theobald et al. invest-

igate the computation of approximate top-k processing and evaluate this on both

structured and unstructured data [TWS04] and describe how advanced variants

of the TA algorithm can be used for efficient XML IR [TBM+08]. Chaudhuri et

al. [CDHW06] tackle the problem of returning the top-k matching tuples from

conjunctive and range queries, by applying principles of probabilistic models in-

spired to information retrieval.

XML IR is what Weikum [Wei07] describes as the present challenge of IR&DB

integration. Semi-structured data in XML format inherently call for IR-style

flexible search functionalities combined with exact match queries. XQuery is the

established equivalent of SQL in the XML world, i.e. its database query lan-

guage; XQuery Full Text (XQFT) [AyS05, AYBC+06] is an extension designed

to incorporate text-matching, scoring and ranking functionalities. However, the

highly flexible language currently defined in the W3C standard comes with se-

mantic pitfalls [AYHR+08] that are not addressed sufficiently to allow software

developers to follow reliable guidelines. A number of XML IR systems have

been developed nevertheless, supporting XQFT at their best, the much simpler

NEXI (Narrowed Extended XPath) [RT04] language, or proprietary extensions.

TopX [TBM+08] supports both XQFT and NEXI and implements approximated

TA-style top-k processing for semi-structured data. [KKNR04] studies the integ-

ration of structure indices for path traversal with inverted files for text ranking,

with support for top-k queries based on the TA algorithm. Tijah [LMR+05] is

an XML retrieval system that follows the database design principles, by sep-

arating the conceptual (NEXI), logical (Scored Region Algebra, SRA [Mih06])

and physical (MonetDB [CWI]) layers. PF/Tijah [HRvOF06] extends Tijah

by integrating it with the MonetDB/XQuery system [BGvK+06], which enables

seamless combination of database queries and IR ranking over XML data. The

Staircase join [GvKT03] extends the set of physical operators available in Mon-

etDB/XQuery to provide the database kernel with explicit support for XML tree-
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structures. XRank [GSBS03] proposes a ranking function for the XML “result

trees”, which combines the scores of the individual nodes of the result tree. The

tree nodes are assigned PageRank-style scores [PBMW99] off-line. XCDSearch

(also known as CXLEngine) [TE09, TE08] focuses on the importance of context-

driven processing for loosely structured queries, which allow combinations of

keywords and element labels. The notion of context is defined by parent-child

XML node relationships.

In recent years keyword search on relational DBMSs has emerged as a simpli-

fied query approach to databases. Here, rather than DB technology supporting

information retrieval applications, the goal is a non-structured database query-

language that is more suited for user characteristics that are addressed in IR –

low programming skills, partial and imprecise definition information needs. The

main idea is to provide the user with a simple keyword search interface – the one

familiar from web search engines – to access a database, without them having

a detailed knowledge of the database schema or of the native query language.

The system performs two main tasks (not necessarily in the presented order):

it finds relevant tuples in the database with the help of standard IR techniques

and explores the graph of connections (defined by both schema and data) ex-

isting among those tuples, to enable both result ranking and database browsing

capabilities. The SIGMOD 2009 tutorial [CWLL09]2 offers an excellent over-

view of this fields of research. Some of the most relevant results include the

implementations BANKS, Discover, DBXplorer, NUITS, Spark, and refinements

of techniques therein used [HN02, HP02, ACD02, HGP03, LYMC06, WPZ+06,

LLWZ07, MYP09, QYC09, LFW09]

2.3 Array databases

The expression array database is used to indicate software for the management

of data that are represented using multi-dimensional array structures. Array

databases are commonly used to support scientific applications, such as for earth

sciences, space sciences, life sciences, engineering and multimedia. Unfortunately,

the overlap with general-purpose database technology is more limited in practice

than the expression array database would suggest.

The concept of order in relational DBMSs, based on sets of tuples, is known

during result presentation and data access optimisation. It is however irrelevant

in the very core of a DBMS, the relational algebra. This is the key reason why

2Slides are currently available online: http://www.cse.unsw.edu.au/~weiw/project/

keyword_sigmod09_tutorial.pdf
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data structures such as lists and arrays are difficult to process natively in rela-

tional algebra, together with their inherent element orders. Maier and Vence,

with “A Call to Order” [MV93] convinced the database research community in

1993 that this data-model mismatch is the primary cause for DBMSs failing to

support adequately the development of scientific applications, often based on

ordered data structures. An important milestone is reached by Libkin et al.

in 1996 with the introduction of the functional array-language AQL [LMW96].

They show that inclusion of array support in their nested relational language en-

tails the addition of two functions: an operator to produce aggregation functions

and a generator for intervals of natural numbers. Sparse matrix operations are

considered a query optimisation problem in [KPS97], confirming the potential of

database technology for array processing. Here, however, the objective was to

compile these into standalone programs, rather than to store and query sparse

arrays in a DBMS. High re-usability of standard relational algebra and optimisa-

tion techniques, following the way paved by [LMW96], is the aim of the approach

chosen in the dense-array mapping system RAM [vB09] that is used as a starting

point for this thesis. Proposed as a general-purpose array mapping framework for

scientific applications, [vB09] offers a detailed overview of the array data-model in

programming languages, scientific software development and data management

systems. More radical than [LMW96] is the approach of [Ng01], which proposes

a partially ordered relational algebra (PORA) and an ordered SQL (OSQL) as

a query language. The AQuery system [LS03], targeting financial stock analysis,

uses the concept of “arrables”, ordered relational tables, and an extension of SQL

based on the clause ASSUMING ORDER. However, it only supports uni-dimensional

arrays. The ADT/blob approach has been pursued in [HM04, How07], where an

algebra for the manipulation of irregular topological structures, called gridfields,

is applied to the natural science domain. The RasDaMan DBMS [BDF+98, FB99]

is a commercial array database system, implemented as an abstract data type

in the O2 object oriented DBMS [BDF+98, FB99]. Its RasQL query language

is a SQL/OQL like query language based on a low level array algebra, consist-

ing of three basic operators: a tabulation-style array constructor (MARRAY),

a condenser for computing aggregations (COND) and an index sorter (SORT).

SciDB [CMKL+09] and SciLens [Sci, KIML11] are currently the largest, ongoing,

joint efforts towards the ambitious goal of realising an array database able to

face most of the challenges encountered during all previous attempts. SciDB key

features include a storage layer and algebra based on multi-dimensional arrays,

bulk-oriented read/write operations, limited support for transactions, massive

parallel execution, and built-in optimised operations for complex analytics. Sci-

Lens relies on the first-class efficiency of modern column-store databases, together
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with innovative (when applied to the relational world) approaches such as self-

adaptive, approximate, incremental query answering, to introduce the necessary

intelligence for handling massive amount of data.

Online analytical processing (OLAP) systems are based on the notion of

data-cubes, structures that store data of interest over multiple dimensions, for

an overview see [Vas98, VS99]. Data-cubes closely resemble multidimensional ar-

rays. In [GB07], OLAP pre-aggregation techniques are formulated in terms of an

array algebra and applied in raster image databases for geo services. The multi-

dimensional array query model proposed in [Mac07] shares with this thesis the

notion of shapes and index-based array operations, but focuses on more formal

exploration of efficient bounds analysis and rule minimisation procedures of ar-

ray queries. The ideas proposed in the RodentStore approach [CMWM09] aim at

more flexible and efficient semi-automatic storage of complex data-structures and

can contribute towards the definition of a full architecture for array databases.

Rodentstore uses a declarative storage algebra whose expressions are interpreted

to generate a physical representation of the data. Storage efficiency is also the

focus of the RIOT (R with I/O Transparency) project [ZHY09]. Aim of the pro-

ject is to extend R [R], an open-source statistical computing environment widely

used by statisticians, to transparently provide efficient I/O. This is achieved by

implementing highly efficient storage and I/O optimisation techniques and inter-

face them with the language provided by the scientific application at hand (in the

longer run, not limited to R), by means of an interpreted host language. Though

the RIOT project targets for now a specific application domain, it also addresses

the general problem of integrating database-style querying with programming

languages. In particular, RIOT can interface with external database systems and

make run-time decisions about the expected cost of (partially) pushing R oper-

ations into the DBMS and have them executed as relational operations versus

moving part of data into the R system and process it internally. Its native storage

manager is optimised to handle efficiently dense and sparse arrays, in a way that

is similar to that described in this thesis; a linearisation function f : Nn → N
maps n-dimensional array indices in the form (i1, . . . , in) to scalars representing

addresses inside a linear addressable storage container (e.g., a file on disk).
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What would life be like if we had no courage

to attempt anything?

- Vincent van Gogh, painter 3
Parametrised Search Systems

3.1 Introduction

For many years, information retrieval (IR) systems could have been adequately

described as applications that assign an estimate of relevancy to a pair of doc-

ument and query, each represented as a ‘bag-of-words’. The implementation of

such search systems has been relatively straightforward, and most engineers code

the retrieval model directly on top of an inverted file structure.

Trends in research and industry motivate however a reconsideration of the

above characterisation of IR. First, modern retrieval systems have become more

complex, as they exploit far more than “just” the text. For example, the rank-

ing function combines query and document text with other types of evidence,

derived from, e.g., document markup, link structure or various types of ‘con-

text information’ and includes filtering for spam or adult content. Also, work

tasks supported by search have become diverse. Within organisations, enterprise

search refers to intranet search, but also search over collections of e-mail, finding

expertise, etc. [Haw04]. People use web search indeed for the goal of ‘finding

information about’, but also to book a hotel, find a job, hunt for a house, just to

name a few. Companies are targeting these niche markets with specialised search

engines (referred to as vertical search).

Today, the development of such specialised applications is the job of inform-

ation retrieval specialists. We expect however that, very soon, any software

developer should be able to develop applications involving search. Actually,

Hawking has stated that “an obvious reason for poor enterprise search is that

a high performing text retrieval algorithm developed in the laboratory cannot be

applied without extensive engineering to the enterprise search problem, because

of the complexity of typical enterprise information spaces” [Haw04]. Simplifying
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the process of tailoring search to a specific work task and user context should

therefore be an important goal of IR research.

3.2 Engineering of Search Systems

Modern IR application requirements challenge us to reconsider the design char-

acteristics of search systems. We promote an innovation in the search system

engineering process, by introducing more flexibility in the IR system’s archi-

tecture. The increased flexibility aims to reduce the effort of adapting search

functionalities to work task and user context.

This thesis proposes the engineering of search systems to proceed analogous to

the development of office automation applications using relational database man-

agement systems: define the ‘universe of discourse’; design a conceptual schema;

express the user application in terms of this schema; and, design the user in-

terface. So, software developers of a search application should have access to a

high-level declarative language to specify collection resources and retrieval model.

The search engine can then be parametrised for optimal effectiveness: adapted

to the work task and user context, optimised for specific types of content in the

collection and specialised to exploit domain knowledge.

3.3 Parametrised Search Systems

We refer to this new generation of information retrieval systems as parametrised

search systems (PSS).

Fig. 3.1 illustrates how a PSS differs from a traditional search engine, in the

so-called abstraction layers:

application interface - to express the user information need

(e.g. a simple keyword-list, a query-by-example interface, etc.)

application abstraction - to model and abstract the information need

(IR details are abstracted away)

IR modelling abstraction - to model an abstract IR task

(data-access details are abstracted away)

conceptual data-access layer - to express an IR task declaratively

(actual expression of a modelled IR task, logical/physical data-access details

are abstracted away)
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logical data-access layer - to express a data-access plan declaratively

(instantiation of a conceptual data-access abstraction, physical details are

abstracted away)

physical data-access layer - to express a physical data-access plan.

The reader may refer to Section 6.1 for an example of how each of the layers

above can be instantiated in a real PSS.

Leaving un-specified the first two, application-related, layers, we focus in this

chapter on identifying good candidates for the IR modelling abstraction and in-

dicate possible choices for its data-access implementation. The layered approach

to these two phases of the search, IR modelling and data access, is what really

makes a PSS different from a traditional search system and takes the name of

parametrisation. A PSS provides a declarative abstraction in which search ap-

plication developers specify the desired search strategies with less effort. These

specifications should stay as close as possible to the problem definition (i.e., the

retrieval model to be used in the search application), abstracting away the de-

tails of the actual organisation of data and content. The system translates such

specifications, customised for a specific user and task context, into operations on

its internal data structures to perform the actual retrieval. The main rationale

for this approach is to create an opportunity for decoupling search strategies

from content representation, algorithms and data structures, enabling content

and data independence in IR systems.

Compare this to current practice using IR software like Lucene [HG04],

Lemur [OC01] or Terrier [OAP+06]. These systems provide a variety of well-

known ranking functions, implemented on top of the physical document repres-

entation. The modular design of the IR toolkit allows application developers to

select one of these ranking functions suited for their search problem. Design de-

cisions about e.g. how to rank – weighting various types of documents differently

with respect to their expected contribution to relevancy – will however be part of

the application code. Indri [SMTC04] and Galago [Gal, Str08] provide some more

flexibility with their query languages based on Inquery [CCH92], even though the

retrieval model specification remains not easily accessible.

The proposed layered architecture raises many open questions, the obvious

ones of course what the IR modelling and data-access abstractions could look

like. This thesis investigates a possible solution based on the array data-model,

which is discussed in the remainder of this chapter, and its interaction with the

relational data-model, which is the topic of chapters 4 and 5.
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(b) Parametrised, IR and data engineering
are two separate roles (possibly automated
data engineering in grey)

Figure 3.1: Comparison of Search System architectures

3.4 An IR modelling abstraction

Many IR problems are naturally described in terms of multi-dimensional spaces

[Sal71, SWY75, SM86, WZW85, MRS08]. The Matrix Framework for IR [RTK05]

(abbreviated to Matrix Framework) is a mathematical formalism that maps a wide

spectrum of IR concepts to matrix spaces and matrix operations, providing a

convenient logical abstraction that facilitates the design and the analysis of IR

models. Indexing, retrieval, relevance feedback and evaluation measures can all

be described within the Matrix Framework. Also, it establishes a consistent nota-

tion for frequencies in event spaces, readily available as building blocks for IR

applications in common matrix operation libraries. To see the Matrix Framework

as an IR modelling abstraction in our desired PSS software architecture facil-

itates the engineering of extensible retrieval systems. It allows to express IR

tasks declaratively, delegating physical details to a dedicated layer. At the same

time, a matrix-based formalism is very well suited for being turned into concrete

computational plans.

We introduce here the part of the Matrix Framework that is focused on index-

ing and retrieval. First, we define three vectors, one for each of the dimensions
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used in the framework: D = [wd]N×1 for documents, T = [wt]S×1 for terms and

L = [wl]R×1 for locations, with 1 ≤ d ≤ N , 1 ≤ t ≤ S and 1 ≤ l ≤ R. The quant-

ities wd ≥ 0, wt ≥ 0 and wl ≥ 0 are the weight of document d, term t and location

l, respectively. In the simplest case, these weights are boolean values that denote

presence/absence in the collection. The term “location” refers initially to term

position in (linear) text documents, but can be generalised to cover concepts in-

dicating document components of varying granularity, such as section, paragraph,

position or XML element.

The content and the structure of each data collection are entirely described

by the two boolean matrices LDL×D (location-document) and LTL×T (location-

term), whereas each query is described by a vector QT×1. As defined in Equation

(3.1) below, each value LD(l, d) tells whether location l belongs to document d

and each value LT (l, t) encodes the occurrence of term t at location l of the

collection. Finally, each query Q is described as a bit-vector with the length of

the number of unique collection-terms.

LD(l, d) =

{
0, if l /∈ d
1, if l ∈ d

, LT (l, t) =

{
0, if t /∈ l
1, if t ∈ l

, Q(t) =

{
0, if t /∈ Q
1, if t ∈ Q

(3.1)

Standard IR statistics are defined as simple operations on matrices LD and LT

(the n in subscript should be read as ‘number of’):

Dnl – how many locations of a collection belong to a document?

Dnl = LDT · L
Tnl – how many locations a term occurs at, in the collection?

Tnl = LTT · L (3.2)

DTnl – how many locations a term occur at, in a document?

DTnl = LDT · LT
DT – does a term occur in a document?

DT = min(DTnl ,1|D|×|T |)

Dnt – how many distinct terms appear in a document?

Dnt = DT · T
Tnd – how many distinct documents contain a term?

Tnd = DTT ·D

where 1m×n defines a matrix of size m × n, filled with 1s, and A · B denotes
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matrix multiplication.

A number of standard IR frequencies are easily derived from the quantities

defined above:

DTf – within-document term frequency

DTf (d, t) =
DTnl(d, t)

Dnl(d)
,

Dtf , Ditf – term frequency and inverse term frequency of a specific

document d

Dtf (d) =
Dnt(d)

|T |
, Ditf (d) = −logDtf (d), (3.3)

Tdf , Tidf – document frequency and inverse document frequency of a

specific term t

Tdf (t) =
Tnd(t)

|D|
, Tidf (t) = −logTdf (t),

Tf – collection frequency of a term

Tf (t) =
Tnl(t)

|L|
.

Finally, it is possible to define a number of retrieval models using the quantit-

ies and the frequencies described above. For example, tf.idf, Language Modelling

and Okapi BM25, are shown below. Refer to [RTK05] for formal details on how

these and other retrieval models are defined in the Matrix Framework.

tf.idf. The retrieval status value (RSV) of all documents against a query Q,

following the basic tf.idf approach, is specified as:

RSVtf .idf = DTf ·

Tidf (t1) · · · 0
...

. . .
...

0 · · · Tidf (t|T |)


|T |×|T |

·Q

Language Modelling. The retrieval status value (RSV) of all documents

against a query Q, following the Language Modelling approach, is specified as:

RSVLM =

 log(P (t1|d1)) · · · log(P (t|T ||d1))
...

. . .
...

log(P (t1|d|D|)) · · · log(P (t|T ||d|D|))

 ·Q
P (t|d) = λ ·DTf (d, t) + (1− λ) · Tf (t)
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Okapi BM25. The retrieval status value (RSV) of all documents against a

query Q, following the Okapi BM25 approach, for given parameters k1 and b, is

specified as:

RSVBM25 =

 ω(d1, t1) · · · ω(d1, t|T |)
...

. . .
...

ω(d|D|, t1) · · · ω(d|D|, t|T |)

 ·Q
ω(d, t) = Tidf (t) · (k1 + 1) ·DTf (d, t)

DTf (d, t) + k1 · ((1− b) + b · |D|·|D||L| )

3.5 Data-access abstractions

The focus of the Matrix Framework for IR is to define an IR modelling abstrac-

tion; that is, to model IR concepts and tasks in mathematical terms, defining and

manipulating multi-dimensional spaces, without leaving the theoretical domain.

Shifting the focus towards implementation, a first point of concern is whether

such a modelling abstraction is amenable to actual implementation in a software

architecture, either directly or after some translation steps. This thesis proposes

to use the Matrix Framework not just for modelling and analysis, but also as a

declarative specification interface in actual IR system engineering. The concept

of multi-dimensional spaces can be directly implemented by the multidimensional

array data-model, available in a large variety of programming languages and sci-

entific software.

One significant difference between the theoretical and the implementation-

oriented points of view is that implementation cannot ignore concerns about

feasibility and efficiency. For example, while size and value distribution of matrix

spaces are irrelevant in the Matrix Framework, they are a crucial implementation

issue. In particular, we should take advantage of the fact that most values of

some matrices, such as LD and LT are equal to 0 (such matrices are commonly

referred to as sparse matrices). Naive storage and manipulation of such matrices,

when dealing with sufficiently large collections, would result in data structures im-

possible to handle, even with the hardware resources available nowadays. A first

requirement is therefore that such mathematical spaces need optimised imple-

mentations that can store and manipulate efficiently sparsely distributed values.

The solution explored in this thesis is to support the identified IR model-

ling abstraction using array database technology. That is, to implement the

Matrix Framework (IR modelling abstraction) with the array data-model (concep-

tual data-access abstraction), which is mapped onto the relational data-model and
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database technology (logical and physical data-access abstractions). This choice

is motivated in the first place by the following observation: the ultimate goal of a

search system, irrespective of the chosen system architecture, is to retrieve data

that is relevant to users. The relational data-model and the database technology

that support it are the obvious candidate building blocks for the implementa-

tion of logical and physical data-access layers. Despite its intuitiveness, this has

to overcome a number of open issues in the topic of database and information

retrieval integration [CRW05, AYCR+05, Wei07]. Implementing linear algebra

operations by means of database operations and hoping to compete with the per-

formance of specialised numerical algorithms sounds admittedly like a hard chal-

lenge. A large number of software solutions can handle sparse multi-dimensional

arrays efficiently. To mention one, Matlab [Mat] is a well-known numerical com-

puting environment that provides array manipulation among other features and

can be used as a computational back-end from custom-built applications. A

more direct approach would implement array operations directly in the search

application, by using highly optimised primitives such as the ones provided by

the BLAS [LHKK79, bla02] development library. These packages are however

rather limited with respect to data management facilities like access control and

recovery, and they are usually not designed for scalability. Also, they focus on

(and are optimised for) numeric data types only.

This thesis research advocates the benefits provided by database technology,

such as query optimisation and data independence, over the importance of ul-

timate efficiency of basic array operators taken in isolation. Chapters 4 and 5

present the solution proposed for the automatic mapping of the array to the

relational data-models, so that the concept of a PSS can be entirely implemen-

ted. Evaluation of the complete architecture and of some of its main aspects in

particular (e.g. flexibility or efficiency) is the topic of Chapter 6.



Make everything as simple as possible,

but not simpler.

- Albert Einstein, physicist 4
The database approach to sparse array

computations

Sparse array computation is widely addressed in numerical linear algebra, with

a large amount of literature and many software implementations, in particular

for two-dimensional arrays (matrices) [GL83]. Such solutions focus on the op-

timisation of single operations rather than full expressions (for example, many

different implementations exist for matrix multiplication), assuming specific data

encodings, or even specific hardware. The ‘database approach’ proposed in this

thesis turns instead the numerical problem into a query optimisation problem,

providing the following potential benefits:

data independence - relational expressions are transparent to the physical or-

ganisation of data. The data access optimisation problem is taken care

of by a relational engine, rather than being bound to specific numerical

algorithms.

resource utilisation - modern database engines are tuned for effective ex-

ploitation of the (possibly limited) hardware resources, and use cache-

conscious, CPU-friendly algorithms, becoming more and more attractive

for computational-intensive applications.

open ‘black boxes’ - instead of providing ad-hoc implementations of, say, mat-

rix multiplication or matrix transposition algorithms, express them as a

combination of native database primitives (join, selection, etc.). This al-

lows the query optimisation process to take such operations into account

within a larger problem and look for the overall best query plan.

Black boxes are pieces of software described in terms of their input, output

and transfer characteristics without any knowledge of their internal workings.

27
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Their correct usage in software architectures can bring important advantages,

above all modularity and absence of side-effects. Their main disadvantage is that,

given the impossibility to access their internal details, they are hard to adapt to

work at their best in a context different from the one they were designed for.

Specialised array-computation routines such as those in e.g. BLAS [LHKK79,

bla02] are, from the point of view of an application using them, black boxes.

Each operation has several optimised implementations, in order to cover a variety

of matrix types in input (e.g. sparse/dense, small/large, clustered, triangular,

etc.). For some applications this solution may be optimal. Especially in the

context of data-intensive applications, such as search applications, black boxes

of different granularity may however yield reduced engineering effort and better

overall performance. Relational algebra forms the set of black boxes that this

thesis proposes to use for sparse array computations.

In a nutshell, while high-performance computing approaches problems with

a strong focus on highly efficient and possibly highly distributed specialised al-

gorithms, database technology focuses on query optimisation in search of the

most efficient overall strategy to make large datasets flow through a sequence of

algorithms. Both approaches have made attempts to learn from each other in

the past. Kotlyar showed in [KPS97] how matrix multiplication can be solved

efficiently when it is interpreted as a relational query optimisation problem that,

given the characteristics of matrices in input, composes on the fly an algorithm

based on relational primitives, with the aim of maximising properties as data-

locality. On the other hand, recent database technology has evolved with more

mature data processing capabilities, offering, next to the traditional optimisa-

tion of disk-based data access, careful design of CPU-friendly algorithms (see

e.g. [Bon02, BZN05, ZBNH05]). While not that common, and leaving many

open questions, these previous works support the feasibility of the investigations

carried out in this thesis.

Now picture the following example scenario: an application is given a number

of keywords that describe a book topic and has access to several online book-

shops and social networks for user ratings; its task is to suggest the user books

about the topic in input and highly rated by other readers, each with a pointer

to the best online deal. This complex task requires a mixture of data retrieval

(find titles, prices and ratings, join different sources on e.g. their ISBN) and

information retrieval (rank books on their relevance to the topic in input) op-

erations. Data retrieval operations naturally fall into the domain of database

technology. Information retrieval operations can be described in terms of sparse

array computations (see Chapter 3). The arguments presented above support

an implementation of the latter based on relational black boxes. Suppose the
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data retrieval task outputs book items logically sorted by ISBN and grouped by

edition, and physically stored by table columns rather than table rows. Will a

subsequent sequence of non-relational operations be able to exploit such know-

ledge for best performance? Probably not, unless the available black boxes are

break open and modified as needed. On the contrary, expressing the whole prob-

lem within the database domain allows a query optimiser to connect seamlessly

the two different tasks and see them as one. Possible benefits include: iden-

tification and elimination of common sub-expressions, steering of the data-flow

for optimal exploitation of data characteristics, such as ordering and grouping,

which typically enable faster algorithms. Suppose now that a new algorithm for

multi-threaded join proves to be faster than the existing ones. Its implementa-

tion in the database execution engine will immediately improve multi-threading

capabilities and boost performance of both data and information retrieval tasks,

which both use join operations extensively. Conversely, two different domains,

one for data access and one for data processing, would force to maintain and

improve two sets of efficient algorithms.

4.1 SRAM: Sparse Relational Array Mapping

The SRAM (Sparse Relational Array Mapping) system is a prototype tool that

adds multidimensional array structures to existing database systems, by mapping

arrays to relations and array operations to relational queries. The ability to in-

terface to standard relational engines is a distinguishing aspect of SRAM, as most

array oriented database efforts rely on proprietary data-structures. For example,

the AQL language depends on a custom prototype back-end [LMW96], and lan-

guages such as AML [MS97], designed for image processing, and AQuery [LS03],

designed for ordered data in the business domain, are realised by stand-alone

applications. A notable exception is the RasDaMan system [Bau99], which does

use proprietary data structures, but is implemented as an extension module for

an object oriented database system. Storing arrays as relations instead of pro-

prietary data structures allows the full spectrum of relational operations to be

applied to the array data. This indirectly guarantees complete query and data-

management functionalities, and, since the array extensions naturally blend in

with existing database functionalities, the SRAM front-end can focus solely on

problems inherent to the array domain.

SRAM builds on the RAM system [vB09], sharing many aspects of the user

interface and the internal array algebra. Support for sparse arrays and for map-

ping to a relational algebra layer, together with the implementation of vari-
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Array paradigm

∀(x, y, z) ∈ DR

R(x, y, z) = A(x, y) ∗ B(y, z))

Array language

R = [ A(x,y) * B(y,z) | x,y,z ]

Array algebra

Map(∗)

Pivot([1, 2, 0])

Replicate(|z|)

Ax,y

Replicate(|x|)

By,z

Optimised array algebra

JoinMap(∗, [[1, 0]])

Ax,y By,z

SQL DBMS

SELECT x, A.y, z, v=A.v*B.v

FROM A, B

WHERE A.y = B.y;

MonetDB/X100

Project(

HashJoin(A, B, A.y==B.y)

[ x, A.y, z, v=A.v*B.v ]

)

Relational algebra

πx,y,v=∗(A.v,B.v)

ony

A(x, y , v) B(y , z, v)

DB

Figure 4.1: Life-cycle of an array expression, from its mathematical formulation
to its execution on a database (MonetDB/X100 query format is the default).

ous optimisation strategies, are however only available in SRAM. While SRAM

syntax allows to express array operations on an element by element basis, the

system translates such element-at-a-time operations to collection-oriented data-

base queries, suited for (potentially more efficient) bulk processing. SRAM

is RDBMS-independent, supporting translation to relational expressions. The

experiments presented in this thesis are conducted using the database engine

MonetDB/X100 [BZN05, ZBNH05], described in Section 5.4.1.

The life-cycle of array expressions through the SRAM architecture is depicted

in Figure 4.1 and can be summarised by the following sequence of transformations:

1. Array paradigm 7→ Array language (Sections 4.2 and 4.3)

2. Array language 7→ Array algebra (Section 4.4)

3. Array algebra 7→ Relational algebra (Section 4.5)

4. Relational algebra 7→ Relational plan (Chapter 5)
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Both array and relational algebra expressions are rewritten by a cost-based op-

timiser, the usual method in implementation of relational systems [Cha98]. This

transformation process happens offline, i.e. without the necessity of a connection

to a database engine that operates on actual data. This limits the availability

of up to date statistics over the data and makes it impossible to apply run-time

optimisation strategies, but allows to test the prototype and the quality of trans-

lations with reduced effort.

The next sections introduce the array paradigm, the array-syntax of the SRAM

front-end, the array algebra layer, the relational algebra layer, and a set of map-

ping rules from array algebra to relational algebra.

4.2 Array paradigm: notation and definitions

Let us now introduces the notation for arrays used throughout this thesis. Sec-

tion 4.2.1 includes general remarks on presentation aspects. Section 4.2.2 gives

formal definitions of arrays and their properties.

4.2.1 General remarks on notation

This section may include terms and symbols that are defined formally only later

on in Section 4.2.2 (e.g. “array” A, “default value” ε, etc.). Given the secondary

role of such terms in the context presented, knowledge of such concepts is however

not mandatory for a correct reading.

Let array names be capitalised and displayed in italic. The symbol A is used

in most cases to indicate a generic array. When more arrays are involved, they

are usually called B, C, and so on. When presenting real-life applications, longer

and more descriptive names can be used, as Scores, TopScores, DT , etc.

Array names may appear as subscripts of other symbols. This indicates that

the concepts expressed by such symbols are bound to the array in subscript, e.g.:

• SA: the shape of array A

• TScores: the element type of array Scores

• εB : the default value of array B

When symbols appear with no array subscript, their relationship with a spe-

cific array is not known or not important. They are to be interpreted as a generic

instantiation of the concept they represent, e.g.:

• S: the shape of an array
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• T : the element type of an array

• ε: the default value of an array

Matrices (2-dimensional arrays) are displayed in row-major order: their first

and second axes refer to rows and columns respectively. For example,

Ax,y[2, 3] =

[
1 0 0

0 1 1

]
is a matrix with 2 rows (axis x) and 3 columns (axis y).

Examples often show how array computations are translated from one

domain to another. We use a mono-space font for code snippets, e.g.:

[ A(x,y) + B(x,y) | x,y ]. Array algebra expressions are displayed in it-

alic, as mathematical formulae. Depending on their length, they may appear as

normal text or be depicted graphically as a tree:

Map(+, A,B) ≡
Map(+)

Ax,y Bx,y

Likewise, relational expressions may appear as text or as trees. For relational

tables and attributes, a Sans Serif font is used, as in A.v .
Special arrows indicate translations from one domain to another: A and R

map expressions to their array algebra and relational algebra equivalent, respect-
ively. When a mapping is shown as in-lined text, the arrow 7→ may be used and
the specific mapping domains are only implied through text fonts. For example,
Array 7→ Array 7→ Array denotes an array mapped from array syntax onto its ar-
ray algebra and relational algebra representations. The following example shows
two subsequent translations, from array comprehension syntax to array algebra
and finally to relational algebra.

[ A(x,y) + B(x,y) | x,y ]

A

Map(+)

Ax,y Bx,y

R

πx,y,v=+(A.v,B.v)

onx,y

A(x, y , v) B(x, y , v)
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Table 4.1: Notation used for arrays

Notation Meaning

SA ∈ Nn
0 shape (vector of dimension lengths) of A

SA(i) length of the i-th dimension of A
DA ⊂ Nn

0 index domain of array A : enumeration of indices of SA
ı̄ ∈ Nn

0 n-dimensional index vector (i0, . . . , in−1)
TA element type of array A

(array type if A is nested, base type otherwise)
(SA, TA) array type of array A
TA base type of array A
A n-dimensional array A : DA → TA

(Ai0,...,in−1 ) (with dimension variables i0, . . . , in−1)
A[S] n-dimensional array A of shape S
|A| =

∏n−1
i=0 SA(i) size of array A

|SA| valence (number of dimensions) of array A
A (ı̄) array element indexed by ı̄
εA default value of A
non-εA a value v 6= εA
δA density of A
c a constant value c

To present translation patterns, rule of inference notation from formal logic is

extensively used throughout this thesis. A rule of inference is a function which

takes premises and returns a conclusion. The conclusion is then said to be in-

ferable from the premises. In other words, a rule of inference can be read as

“whenever in the course of some logical derivation the given premises have been

obtained, the specified conclusion can be taken for granted as well”:

premise 1 premise 2 . . .

conclusion

A rule of inference is also called transformation rule, because it can be used

to describe a transformation rule from a syntactic pattern (the premises) to a

different syntactic pattern (the conclusion).

4.2.2 Definitions

An n-dimensional array An is defined as a function An : DAn → TAn that maps

n-dimensional array indices to array elements of type TAn . The array domain

DAn is a set of n-dimensional array indices that forms a dense hyper-rectangle

in Nn0 . In other words, n-dimensional array indices are vectors of discrete non-

negative numbers. Because the lower bound of DAn is chosen to be positioned
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at the origin of its hyperspace, a vector of axis lengths, called the shape SAn , is

sufficient to describe the bounding box of DAn . Unless differently stated, arrays

are assumed to be n-dimensional. In the remainder, the term n-dimensional can

be omitted and the symbol A can be shorthand for An.

Because arrays are defined as functions, it is correct to read the array ap-

plication A(i0, . . . , in−1) as “array A is applied to index i0, . . . , in−1”. The more

familiar “index i0, . . . , in−1 is applied to array A ” is appropriate in the context

of programming languages where arrays are defined as data structures.

Definition 4.1 (n-dimensional array shape). An n-dimensional array

shape SA is a vector of n integer values that represent the lengths of an

n-dimensional array A’s axes:

SA ∈ Nn0 = (SA(0), . . . ,SA(n− 1))

Square brackets can also be used, as in e.g. [4, 2, 10]. �

Definition 4.2 (n-dimensional array valence). The valence |SA| of an

n-dimensional array A is the number of its dimensions, equivalent to the length

of its shape vector SA:

|SA| = |(SA(0), . . . ,SA(n− 1))| = n

For example, the valence of atomic values, vectors and matrices is 0, 1 and 2,

respectively. �

Definition 4.3 (n-dimensional array domain / index). An n-dimensional

array domain DA of array A is a set of n-dimensional indices that forms a dense

hyper-rectangle in Nn0 . DA can be derived from SA:

DA = {ı̄n = (i0, . . . , in−1) | 0 ≤ i0 < SA(0), . . . , 0 ≤ in−1 < SA(n− 1)}

An n-dimensional array index ı̄ = ı̄n = (i0, . . . , in−1) is a vector of discrete non-

negative numbers. �

Definition 4.4 (element type). The symbol TA indicates the type of A’s ele-

ments. There are no restrictions on the element types that can be defined. Com-

mon types are for instance bit, sht, int, lng, flt, dbl, but more complex types

as temperature or color, can be defined. Recursive types are also allowed, in-

cluding an array type, which allows for the definition of nested arrays. Notice

that tuple types, such as (int or dbl) are also allowed, which makes it possible

to define multi-valued arrays (not used in this manuscript). �
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Definition 4.5 (n-dimensional array). An n-dimensional array A is a func-

tion that maps n-dimensional indices ı̄ ∈ DA to elements A(̄ı) ∈ TA:

A : DA → TA. (4.1)

Note that the constraint that all elements in A are of the same type TA follows

directly from (4.1). Note also that atomic values can be thought as 0-dimensional

arrays.

An array A whose shape is S can be denoted as A[S]. �

Definition 4.6 (array type). Given an array A, its domain DA can be derived

from its shape SA. Therefore, the pair (SA, TA) is a compact way to describe

domain and range of the function A : DA → TA. The entire set of possible array

functions from a domain D to a range T is captured by the pair (S, T ), called

the array type. �

Definition 4.7 (n-dimensional nested array). An n-dimensional nested ar-

ray A is an array whose elements are arrays themselves:

∀ı̄ ∈ DA : |SA(ı̄)| > 0 �

Definition 4.8 (n-dimensional flat array). An n-dimensional flat array A is

an array whose elements are atomic values:

∀ı̄ ∈ DA : |SA(ı̄)| = 0 �

Definition 4.9 (base type). A base type T is any type that is not an array

type. The base type TA of array A is TA if A is a flat array. If A is a nested

array, its base type is the base type of its elements. �

Definition 4.10 (shape-aligned arrays). Arrays A and B are called

shape-aligned or simply aligned when SA = SB . �

Definition 4.11 (n-dimensional sparse array). A sparse array A is an array

in which a default value

εA ∈ TA

occurs with a known or estimated frequency. Notice that this definition allows

to choose arbitrarily an εA value (not necessarily the most common one), so long

as its frequency in array A is known or can be estimated.
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The density δA ∈ [0, 1] of array A, which quantifies the portion of A that is

not populated by εA values, is defined as:

δA = 1− number of occurrences of εA in A

|A|
.

�

Definition 4.12 (n-dimensional dense array). An array A is called dense

when no default value is defined for it. The density δA of a dense array is defined

as equal to 1. �

Sparsity is not an intrinsic property of arrays as mathematical entities. In-

stead, declaring arrays as sparse or dense is an arbitrary decision, that makes the

computational framework in which they are used aware of such a property.

Example 4.1 (Sparse and dense arrays).

Consider the following array:

A[4, 4] =


2 2 2 4

2 0 2 2

2 2 0 2

2 2 2 0


As such, it cannot be called sparse nor dense. When we intend to use it in a

computational framework as SRAM however, we may want to enforce its sparsity

properties.

A number of options are possible:

• array A is sparse with εA = 2 and therefore δA = 1− 12
16 = 0.25.

• array A is sparse with εA = 0 and therefore δA = 1− 3
16 = 0.8125.

• array A is sparse with εA = 4 and therefore δA = 1− 1
16 = 0.9375.

• array A is dense, which implies δA = 1

• array A is sparse with εA = 5, even though value 5 never occurs in A. This

yields δA = 1− 0
16 = 1. �

As we will see later on, especially in Chapter 5, the definition of the sparsity

property of an array has a performance impact on the evaluation of expressions

involving such an array. In general, this impact is more positive as the density

δA decreases, but can be negative when δA increases over a certain threshold.

Table 4.1 summarises the notation used for arrays throughout this thesis.
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1 /*****************************
2 * SRAM script: bestCities.ram
3 *****************************/
4

5 // standard base type and function declarations
6 #include "types.ram"
7 // some application-specific constants and macros
8 #include "cityAppeal.ram"
9

10 // Cities is an explicit array of strings
11 Cities = [ "Amsterdam", "Madrid", "Moscow", "Rome", "Tokyo" ]
12

13 /* CityTemp and CityRainCm are stored nested arrays that contain,
14 for each city, one-year data on temperature and rain falls */
15 CityTemp = ([5],([365,24], flt)) "Table_CityTemp"
16 CityRainCm = ([5],([365,24], int)) sparse(0, 0.1) "Table_CityRainCm"
17

18 // let’s define a vector of "city appeal factors"
19 CityAppeal = [ cityAppeal(CityTemp(city), CityRainCm(city)) | city ]
20

21 // find the id of the 2 cities with highest appeal factor
22 BestIdx = topN(CityAppeal, 2, Desc)
23

24 // finally, store the name of these "best" cities
25 BestCities := [ Cities(BestIdx(x)) | x ]

Figure 4.2: An example SRAM script: bestCities.ram

4.3 A language for sparse array computations

The SRAM language allows to read/write from/to persistent storage, create and

manipulate arrays as defined in Section 4.2. This section introduces its syntax.

4.3.1 Structure of SRAM scripts

SRAM scripts are composed by language constructs that are oriented at array

operations. Figure 4.2 shows a toy SRAM script that is used throughout this

section as a running example. It reads weather statistics related to a number

of cities from persistent storage, and determines the best cities where to live

(weather-wise). Although this script is trivial in many respects, it shows most of

the main syntax elements.

SRAM scripts can contain empty lines, comments, statements and loop con-

structs.

Comments

Single-line as well as multi-line comments are allowed:
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1 /*****************************
2 * SRAM script: cityAppeal.ram
3 *****************************/
4

5 // alpha is a constant
6 alpha = 0.2
7

8 /* city appeal factor is computed as a function
9 of temperature and rain falls */

10 cityAppeal(Temp,RainCm) = alpha * avg(Temp) / avg(RainCm)

Figure 4.3: cityAppeal.ram

Single-line comment (e.g. Figure 4.2, Line 5)

// this is a comment

Multi-line comment (e.g. Figure 4.2, lines 1-3)

/* this is

a comment */

Statements

Each line of a SRAM script belongs to one of the following statements:

Include directive (e.g. Figure 4.2, Line 6)

#include <filename>

Inserts the content of an external SRAM script at the current position.

Declaration of a base type (e.g. Figure 4.4, Line 6)

<base type>

Declares <base type> as available in the system.

Declaration of a function prototype (e.g. Figure 4.4, Line 15)

<function name> (<base type>, <base type>, ...) <base type>

Declares a function prototype: name, input types and output type. Such a

function is thereafter available in the system and can be applied to atomic

elements with the correct base type. Its implementation is expected to be

available in the execution engine.

Declaration of an aggregation function prototype

(e.g. Figure 4.4, Line 25)

<function name> {<base type>} <base type>

Declares an aggregation function prototype: name, input type and output

type. Such a function is thereafter available in the system and can be
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applied to arrays with the correct base type. Its implementation is expected

to be available in the execution engine.

Declaration of a persistent array (e.g. Figure 4.2, Line 15)

<array name> = <persistent array>

Creates an array variable <array name> and binds it to a persistently stored

array.

Persistent storage of an array (e.g. Figure 4.2, Line 25)

<array name> := <array constructor>

Creates an array variable <array name>, binds it to <array constructor>

and stores it persistently

Deletion of an array from persistent storage

delete <array name>

Makes the array associated to the variable <array name> no longer persist-

ently stored.

Macro definition (e.g. Figure 4.3, lines 6 and 10)

<macro name>(x,y,z,...) = <macro body>(x,y,z,...)

Defines a parametric macro that is symbolically expanded throughout the

rest of the script.

Loop constructs

Loop constructs are available with limited functionality. Because relational al-

gebra has no means to express loop constructs, the only way to implement them

at the SRAM syntax level is to unroll loops by explicitly replicating their body

the specified number of times. Besides the growth of the SRAM script to pro-

cess and of the resulting relational expressions, which can pose efficiency issues,

the main disadvantage of such an implementation of loop constructs is that only

fixed-length loops can be expressed. This is a limitation that prevents to express

e.g. iterative algorithms whose stop condition is dynamically based on the data

itself, rather than on a pre-defined number of steps. Two forms of loop construct

are available:

Without control variable

repeat(n)

<loop body>

end repeat

replicates <loop body> n times.



40 Chapter 4: The database approach to sparse array computations

With control variable

repeat(x,n)

<loop body>

end repeat

This second construct makes available the integer variable x that can be

used to identify the current step in the iteration, in case the expressions

in <loop body> need such a knowledge. This variable, however, cannot be

used to quit the loop before the specified number of steps n.

4.3.2 Naming conventions and scope of syntax elements

Within each statement, the SRAM language allows the following syntax elements:

Literals

(e.g. Figure 4.2: "Amsterdam", Figure 4.3: 0.2)

Text strings (between quotes), numerals, booleans, etc.

Array identifiers

(e.g. Figure 4.2: Cities, CityTemp, CityRainCm, BestIdx)

Naming convention: they start with an uppercase letter.

Scope: global, downward.

Axis identifiers

(e.g. Figure 4.2: city, x)

Naming convention: they start with a lowercase letter.

Scope: local to the array definition they appear in.

Function identifiers

(e.g. Figure 4.3: *, /)

Naming convention: they start with a lowercase letter or a non-numeric

symbol. They cannot be 0-ary functions. Infix notation is allowed for binary

functions, (e.g. 2 + 3), parentheses and comma-separated arguments, must

be used for other functions (e.g. log(2.0)).

Scope: global, downward.

Base type identifiers

(e.g. Figure 4.4: bit, str, int, etc.)

Naming convention: they start with a lowercase letter.

Scope: global, downward.
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Parametric macro identifiers

(e.g. Figure 4.3: cityAppeal)

Naming convention: they start with a lowercase letter.

Scope: global, downward.

Macro parameter identifiers

(e.g. Figure 4.3: cityAppeal(Temp,RainCm))

Naming convention: macro parameter identifiers can represent anything

that is allowed in the syntax, thus no specific naming convention for them.

Scope: local to the statement they appear in.

Constant (non-parametric macro) identifiers

(e.g. Figure 4.3: alpha)

Naming convention: start with a lowercase letter.

Scope: global, downward.

A simple example may clarify a few important points:

1 A = ([10,5], int) "Table_A"

2

3 mxTrnsp(A) = [ A(j,i) | i,j ]

4

5 [ log(mxTrnsp(A)(i,j)) + 2.0 | i,j ]

The symbol A in the first expression is an array identifier and its definition has

global, downward scope. The symbol A in the third expression refers to that

definition. The symbol A in the second expression, however, is a macro parameter

identifier and its scope is local to that statement: it has no relation with the

definition in the first expression (to avoid confusion, such name conflicts should

be avoided when possible). Similarly, axis identifiers i and j are only valid within

the statement the appear in: those in the second expression have no relation with

those in the third expression.

4.3.3 Type system

The SRAM type system is extensible, in that base types, functions and aggrega-

tion functions are completely user-defined. This is possible because SRAM type

checking is static (i.e. it happens at compile-time) and because base types and

functions are mapped onto the final relational query language without interpret-

ation steps. The only exception is the base type int, which is always defined, as

it is used by the system for array indices.

Figure 4.4 shows an excerpt of type and function declarations. The follow-

ing three sections detail on such declarations and may refer to specific lines of

Figure 4.4.
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Base type declarations

Base types are declared by simply listing them, as in Line 6. This enables the

definition of subsequent arrays and functions that use such types as base types.

Function declarations

Function prototype declarations follow the pattern:

<function name> (<base type>, <base type>, ...) <base type>

For example, Line 15 declares the prototype of a binary function *, whose

first and second input atomic values must be of types flt and int respectively,

and whose output atomic value is of type flt. This line ensures that the system

is able to statically derive the base type of any expression that contains function

*. Note that base types flt and int must have been previously declared.

Cast function declarations define the prototype of functions that cast an

atomic value from one base type to another. Although they play a specific role in

the programming environment, technically they are no different from any other

unary function. An example cast function declaration is shown at Line 20: a func-

tion called flt takes an atomic value of type int and returns an atomic value of

type flt. Note that, although by convention the name of cast functions matches

their return base type, this is not mandatory: "cast to flt" (int) flt would

be also possible, provided that such a function name is finally mapped correctly

onto a function name supported by the relational engine.

Aggregation function declarations

Aggregation functions are special functions that take arrays and return atomic

values. Their declaration follows the pattern:

<function name> {<base type>} <base type>

Notice the syntactic difference with the declaration of standard functions: the

expression in curly brackets, {<base type>}, indicates a bag of values of the

same type in input. Line 25 shows a typical example of aggregation function,

sum. Once aggregation functions are declared, they can be used in expressions,

as explained in Section 4.3.7.
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1 /*****************************
2 * SRAM script: types.ram
3 *****************************/
4

5 // list available base types
6 bit,str,int,flt,dbl,color,url
7

8 // list available functions (random excerpt)
9 "log" (dbl) dbl

10 "pow" (dbl,dbl) dbl
11 "<" (int,int) bit
12 "==" (int,int) bit
13 "and" (bit,bit) bit
14 "+" (int,int) int
15 "*" (flt,int) flt
16 "/" (dbl,dbl) dbl
17 // ...
18

19 // list available cast functions (random excerpt)
20 "flt" (int) flt
21 "dbl" (flt) dbl
22 // ...
23

24 // list available aggregation functions (random excerpt)
25 "sum" {dbl} dbl
26 "avg" {dbl} dbl
27 // ...

Figure 4.4: types.ram

4.3.4 Declaration of persistent arrays

Arrays must be described in the system before they can be read from persistent

storage and used. In alternative to a fully fledged system catalogue, a data

dictionary can be made available to the system at run-time by declaring arrays

explicitly in each SRAM script. A persistent array declaration binds an array

variable name to the following information:

• An array type (S, T ) (see Section 4.6)

• Sparsity information (ε, δ) (see sections 4.11 and 4.12)

• The name of the relational table(s) where the array is stored

In SRAM syntax, the declaration of a persistent array follows this pattern:

<array name> = <array type> <sparsity> <storage specification>

Figure 4.2 shows the declaration of both a dense and a sparse array. The dense

array CityTemp is declared at Line 15. Notice that an empty <sparsity> spe-

cification is synonymous of dense. The <array type> ([5],([365,24], flt))
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declares a nested array of type (SCityTemp = [5], TCityTemp = ([365, 24], flt)).

The inner array’s type is (S = [365, 24], T = flt), which can host temperatures

(expressed as float values) for 365 days a year, 24 hours a day. The base type of

the nested array CityTemp is therefore TCityTemp = flt.

The sparse array CityRainCm is declared at Line 16. Here, the array

sparsity is defined as sparse(0, 0.1), which informs the system that the ar-

ray is to be considered sparse, with ε = 0 and δ = 0.1. The <array type>

([5],([365,24], int)) is similar to the one of CityTemp, except that the

base type of the nested array CityRainCm is TCityTemp = int.

Note that <storage specification> can be used in combination with both

the widely used N-ary storage model (NSM) and the Decomposed Storage Model

(DSM) [CK85, BK99, SAB+05]. With an NSM-oriented table representation,

<storage specification> is a single table name, as in:

A = ([10,20], int) "Table_A"

With a DSM-oriented table representation, used in column-store database en-

gines, all index and value columns are addressed independently, as in:

A = ([10,20], int) (["i0_A", "i1_A"], "v0_A")

4.3.5 Persistent storage of arrays

Arrays can be saved to persistent storage for later usage, using the array variable

assignment symbol ‘:=’, as in the following syntax:

<array name> := <array constructor>

This creates an array variable <array name>, binds it to the result of

<array constructor> and stores it persistently. An example of array stor-

age is given in Figure 4.2 at Line 25: the array resulting from the expression

[ Cities(BestIdx(x)) | x ] is associated to the array variable BestCities

and stored with that name.

Note that a similar pattern

<array name> = <array constructor>

where the symbol ‘=’ is used instead of ‘:=’, is a macro definition (see 4.3.8),

which does not store the array persistently.
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4.3.6 Array construction

Within each statement, different array constructors can appear. These are expres-

sions whose result is an array. Array construction is side effect-free and cannot be

used to define how to modify an existing array in-place: it always defines shape

and content of a new array (this aspect is further analysed in Section 4.4.1)

Different types of array constructor are available: comprehension syntax, ex-

plicit syntax, array element extraction, Sort, TopN, Concat, If-Then-Else. Here-

after they are discussed in detail.

Comprehension syntax

Comprehension syntax [BLS+94] is the core of SRAM language. It allows to

declare arrays by means of the following construct:

[ f(i0, . . . , in−1) | i0<S(0),. . . ,in−1<S(n− 1)]

or, in a more compact form:

[ f(ı̄) | ı̄<S ].

The part denoted by i0<S(0),. . . ,in−1<S(n− 1) specifies the new array’s shape

S (see Definition 4.1), namely the number of dimensions and the length of each

dimension, which in turn defines the array index domain D (see Definition 4.3).

Note that ı̄<S corresponds to ı̄ ∈ D. The value of each dimension variable ij

ranges from 0 to (S(j)− 1). Dimension variables must be specified and named.

The part denoted by f(i0, . . . , in−1) maps each n-dimensional index

ı̄ = (i0, . . . , in−1) ∈ D to a value, by applying a function f . Recall from Defini-

tion 4.5 how arrays are formally defined: an array A is a function from its domain

index DA to its array type TA. It is important to note how comprehension syntax

matches this definition: a comprehension describes such a function f : DA 7→ TA,

by explicitly defining the mapping from each ı̄ ∈ DA to the corresponding array

element A(̄ı) ∈ TA = f (̄ı).

Example 4.2 (Comprehension syntax).

The expression

B = [ log(A(y,x)) | x<5, y<6 ]

defines a new array Bx,y with SB = [5, 6], where the value of each element B(x, y)

is computed by applying the function log to element A(y, x) of array A. Element

A(y, x) is in turn obtained by applying function A to indices y, x. �
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Nested comprehension syntax

Recall from Section 4.2 that array elements can be arrays themselves, which yields

nested arrays. This is supported in comprehension syntax by allowing f (̄ı) to be,

in turn, a comprehension syntax:

[ <comprehension syntax> | ı̄<S ]

Example 4.3 (Nested comprehension syntax).

The expression

B = [ [ log(A(y,x)) + z | z < 10 ] | x<5, y<6 ]

defines a new array Bx,y with SB = [5, 6] and TB = ([10], dbl). The value of

each element B(x, y) is an array with a single axis named z, shape S = [10] and

type T = dbl. The value of each element B(x, y)(z) of such an array of arrays

is computed by the expression log(A(y, x)) + z), which determines a base type

TB = dbl. �

Comprehension syntax with implicit axis domain

The ı̄<S part of a comprehension syntax may contain axes with implicit axis

domain. For those axes, only the name is given, while the length is omitted as

it can be inferred automatically by the system. This possibility is particularly

important for the definition of useful macros (see Section 4.3.8).

For each axis with implicit domain, the largest possible domain is chosen,

such that it is contained in the index domain of all the arrays using that axis

name. This means that in case the axis is used to index more than one array,

and different index domains are defined for that axis, the intersection of those

domains is chosen. In case of empty intersection, the implicit domain for these

axes cannot be computed.

Example 4.4 (Implicit axis domain).

The expression

A = ([6,5], dbl) "table_A"

B = [ log(A(y,x)) | x, y ]

is equivalent to the following:

A = ([6,5], dbl) "table_A"

B = [ log(A(y,x)) | x<5, y<6 ]

In the first expression, the domains of axes x and y of array B are assumed to be

equal to the domains of the second and first axes of array A respectively. Hence,

Bx,y[5, 6] is derived automatically.

Result shapes with partially implicit domains are also allowed:
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A = ([6,5], dbl) "table_A"

B = [ log(A(y,x)) | x<5, y ]

or

A = ([6,5], dbl) "table_A"

B = [ log(A(y,x)) | x, y<6 ]

Again, the shape [5, 6] is derived automatically for array B. In the first case, axis

y is bound to the first axis of array A, whereas in the second case axis x is bound

to the second axis of array A.

Finally, we see an example that deals with conflicting index domains:

A = ([6,5], dbl) "table_A"

B = ([3], dbl) "table_B"

C = [ log(A(y,x)) + B(x) | x, y<6 ]

The result of this expression is an array Cx,y[3, 6]. Axis x is used to index both

arrays A and B. Its length is 5 in A’s index domain, while it is 3 in B’s index

domain. Intersecting the two corresponding index domains yields a length 3 for

axis x: as large as possible but small enough not to exceed the index domain of

both A and B. �

Figure 4.2 shows additional examples of comprehension syntax with implicit

axis domain, at lines 19 and 25. At Line 19, the length of axis city is inferred

as 5, as this axis is used to index arrays CityTemp and CityRainCm, both with

shape [5]. At Line 25, the length of axis x is inferred as 2, as this axis is used to

index array BestIdx, whose shape is [2].

Explicit syntax

A second constructor enumerates all the array elements explicitly. The definition

of a one-dimensional explicit array of shape S = [5] looks like this:

[ 10 42 0 3 1 ]

Explicit arrays of higher dimensionality can be specified by array nesting.

The following expression defines the explicit array of type ([2], ([5], int)):

[ [10 42 0 3 1] [7 4 19 5 6] ]

In Figure 4.2, at Line 11, array Cities is defined using explicit syntax. Its

shape is SCities = [5] and its element type is TCities = str.
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Array element extraction

Array element extraction is the result of the application of an array, which is a

function, to an array index: given an array A and an array index ı̄, the application

A(̄ı) performs an array element extraction operation. When element extraction

is performed on a nested array, the result is again an array. This makes it fall in

the category of array construction operations.

Figure 4.2 shows an example at Line 19: in the expression

[ cityAppeal(CityTemp(city), CityRainCm(city)) | city ] two arrays of

shape [365, 24] are extracted from CityTemp and CityRainCm respectively, for

each value of city.

Sorting

Sorting array values is allowed for one-dimensional arrays only. The resulting

array does not contain sorted array element values, but indices of the sorted

values in the original array, which would otherwise be lost during sorting.

The following construct returns a dense array S, with SS = SA and TS = int:

S := sort(A, <ASC|DESC>)

The actual values can subsequently be fetched by element extraction from the

original array, using indices stored in array S:

[ A(S(x)) | x ]

Notice that the domain of axis variable x can be implicit, as it is used to index

array S, whose shape is known as SA.

Sorting multi-dimensional arrays along one or more dimensions is a well-

defined operation in the array domain (e.g. sort each column of a matrix sep-

arately). The restriction to one-dimensional arrays is due to the lack of a stand-

ard relational operation that would perform a “grouped-sort”, i.e. which would

sort tuples within each group (in this case, groups would be identified by all

dimension attributes but the one on which the sort is performed). Although a

work-around is possible by using sorting as an expensive means for grouping,

this remains a fundamental limitation in the relational algebra. The problem is

identified already in [CCG00], where per-group top-N processing is studied.

Retrieving top-N values

Retrieving the top-N values is allowed for one-dimensional arrays only. The

resulting array does not contain sorted array element values, but indices of the

sorted values in the original array, which would otherwise be lost during sorting.
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The following construct returns a dense array T , with ST = [n] and TT = int:

T := topN(A, n, <ASC|DESC>)

The actual values can subsequently be fetched by element extraction from the

original array, using indices stored in array T :

[ A(T(x)) | x ]

The domain of axis variable x can be implicit, as it is used to index array T , whose

shape is known as [n]. Examples of these two steps are shown in Figure 4.2, at

lines 22 and 25 respectively. Retrieval of the top-N values from multi-dimensional

arrays (e.g. retrieve the 20 top values of each column of a matrix separately) is,

as for sorting, not possible in standard relational algebra (see [CCG00] for a more

complete analysis) and therefore not allowed in SRAM. Notice that, unlike for

the sorting construct, the grouping cannot be expressed by means of sorting as

a work-around.

Array concatenation

Array concatenation between two arrays appends the second array to the first

one, along their first dimension. The shapes of the two arrays must therefore be

identical, except for the first dimension, and their base types must be the same.

Array concatenation is performed by the operator ++:

C = A ++ B

with |SA| = |SB |, TA = TB , ∀i ∈]0, n[: SA(i) = SB(i).

For example, concatenating matrices A[5, 10] and B[3, 10] results in a matrix

C[8, 10]: rows of B are appended to rows of A.

Concatenation along different dimensions is possible by pivoting arrays before

and after concatenation. For example, concatenating columns of matrices A[20, 7]

and B[20, 8], results in a matrix C[20, 15]:

C = mxTransp(mxTransp(A) ++ mxTransp(B))

where macro mxTransp() performs matrix transposition (see Section 4.3.8).

If-Then-Else

Conditional expressions can be specified using the if-then-else construct:

if (<boolean condition>) then <value a> else <value b>
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where the type of <value a> and <value b> must be the same. This construct

covers several needs, for example:

• selection of values from two different arrays, based on a condition

[ if(x<10) then A(x) else B(x) | x ]

• value-based selection, where, for example, ε = 0 could indicate absence of an

element in the result array (this is an arbitrary choice made at application-

level)

[ if(log(A(x)) > 2.0) then A(x) else 0.0 | x ]

• construction of arrays with specific value patterns, e.g. a diagonal matrix

[ if(x == y) then 1 else 0 | x<10,y<10 ]

4.3.7 Array reduction

Array reduction operations reduce an array to an atomic value. The two avail-

able operations of this type, array element extraction and array aggregation, are

discussed hereafter.

Array element extraction

Array element extraction can be either an array construction operation, as de-

scribed in Section 4.3.6, or an array reduction operation. The latter is true

whenever element extraction is applied to a flat array, which yields an atomic

value.

An example is shown in Figure 4.2, at Line 25. The expression

[ Cities(BestIdx(x)) | x ] contains two array reductions by element extrac-

tion: BestIdx(x) returns an int value, while Cities(BestIdx(x)) returns a

str value.

Array aggregation

Array aggregation operators are defined as functions that entirely collapse any

given n-dimensional array by aggregating all its values into a single atomic value.

Possible aggregation functions include sum, prod, avg, min, max.

The following examples clarify how this simple definition allows for any com-

plex aggregation pattern when used in combination with comprehension syntax.
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Example 4.5 (Complete aggregation).

Given the 3-dimensional array Ax,y,z, the simplest case aggregates all its values

into a single atomic value:

s =
∑
x

∑
y

∑
z

Ax,y,z

The expression

s = sum(A)

or, explicitly in comprehension syntax

s = sum([ A(x,y,z) | x,y,z ])

returns the summation of all the elements in A, as an atomic value s. �

Example 4.6 (Partial aggregation).

Given the 3-dimensional array Ax,y,z, we want to sum over the x and z axes only:

By =
∑
x

∑
z

Ax,y,z

This is achieved by exploiting the possibility of defining nested arrays.

In a hypothetical 2-step process, the first step is to reshape array A from its

flat form

[ A(x,y,z) | x,y,z ]

into a nested variant, a vector (y) of matrices (x,z):

[ [ A(x,y,z) | x,z ] | y ]

For every instantiation yj ∈ [0, |y|[ of the y axis, [ A(x,yj,z) | x,z ] is a

properly defined flat array with axes x and z. As a final step, the summation can

be applied to this sub-array, which collapses axes x and z and yields the desired

By vector:

B := [ sum([ A(x,y,z) | x,z ]) | y ] �

4.3.8 Macro definition

Macros allow to write reusable expressions in SRAM scripts. Their syntax follows

the pattern:
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<macro name>(x,y,z,...) = <macro body>(x,y,z,...)

During a pre-processing phase, each macro-call in the script that matches

<macro name> is replaced by the corresponding <macro body> definition.

If a macro has parameters (“x,y,z,...” in the syntax above), they are sub-

stituted into the macro body. Because no type check is performed on the macro

definition itself, but only on the expanded body after the pre-processing phase,

macro parameters can represent anything that is allowed in the syntax: atomic

values, constants, arrays, and even other macro names, provided that those were

previously defined. If no parameters are defined, the macro expands to a constant

expression. Thus, a macro can mimic the definition of functions or constants,

not otherwise available in the language. However, the macro mechanism does

not provide useful features of functions such as dynamic type checking, argument

stack management, recursivity. In-line functions are more similar to macros in

that they perform the same type of body expansion, but dynamic type checking

still differentiates the two constructs. A closer comparison can be made with the

functionality provided by the #define directive of C/C++ pre-processors.

Figure 4.3 shows two examples of macro definitions. At Line 6 a non-

parametric macro is used to define a constant. Line 10 shows a macro with

two parameters, called Temp and RainCm. Because macro parameters are basic-

ally place-holders that can in principle represent any syntactic element, the fact

that Temp and RainCm start with capital letters is simply a convention to indicate

that the body of the corresponding macro is known to expect arrays in place

of those parameters. This is particularly useful when the macro name gives no

indication on the type of expected parameters.

It is good practice to organise commonly used macro definitions in libraries,

i.e. scripts to be included with #include statements where needed. For example,

a library script that defines macros for standard linear algebra operations would

include the following code snippet:

1 // Matrix transposition. A is expected to be a matrix

2 mxTrnsp(A) = [ A(j,i) | i,j ]

3

4 // Matrix diagonal. A is expected to be a square matrix

5 mxDiag(A) = [ A(i,i) | i ]

6

7 // Matrix multiplication

8 // A and B are expected to be multiplication-compatible matrices

9 mxMult(A,B) = [ sum([ A(i,k) * B(k,j) | k ]) | i,j ]
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4.4 Mapping SRAM syntax onto core array al-

gebra

Comprehension syntax is a natural choice for describing the instantiation of arrays

defined mathematically in Section 4.2.2. An array A is a function from its index

domain DA to its element type TA:

A : DA 7→ TA

Comprehension syntax allows to define such a function explicitly, by specifying

arrays in terms of their indices and elements, rather than as entire entities:

A = [ f (̄ı) | ı̄ ∈ DA ]

The direct advantage of this element-by-element approach at the user-interface

level is that complex expressions can be described rather easily and the exact

content of array elements can be derived precisely from their definition. When

such a fine granularity is not desired, the macro mechanism can hide unneces-

sary details. For example, although SRAM syntax does not provide any built-in

matrix multiplication operation, which therefore needs to be defined explicitly in

comprehension syntax, its details can be hidden by a mxMult() macro:

1 Macro definitions

2 mxMult(A,B) = [ sum([ A(i,k) * B(k,j) | k ]) | i,j ]

3 mxTrnsp(A) = [ A(j,i) | i,j ]

4

5 Macro calls

6 C = mxMult(A,B)

7 D = mxMult(C, mxTrnsp(C))

When the aim is to translate array expressions into a bulk-oriented language

such as relational algebra, a representation based on comprehension syntax is not

an ideal starting point. Having an intermediate translation step into an array

algebra provides a twofold benefit: firstly, it reduces the semantic gap between

array syntax and relational algebra, by operating on the array domain, as the

former, but being a bulk-oriented algebra, as the latter; secondly, it facilitates

tree rewriting-based optimisations that are specific of the array domain.

Table 4.2 briefly describes the main operators of this array algebra, also called

core array algebra throughout this thesis. This core array algebra is extended

with new operators in Chapter 5, for optimisation purposes.
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Table 4.2: Core array operators

Array operator Operation

Variable(Adef) binds an array declaration to the description Adef of its
physical representation.

Grid(S, j) creates an array of shape S, whose element values are the
index values of its j-th dimension.

Const(S, c) creates an array of shape S, whose element values are all
equal to the given constant c.

Apply(A, I0, . . . , In−1) applies the n-dimensional array A, to n arrays whose ele-
ment values are index values for A.

Map(f,A0, . . . , Am−1) maps a m-ary function f to corresponding elements of
shape-aligned arrays A0, . . . , Am−1.

Aggregate(f, j, A) collapses the last j dimensions by applying the aggrega-
tion function f .

Concat(A,B) concatenates arrays A and B along their first dimension.
ISort(A, <ASC|DESC>) for vectors only, it returns the indices of A’s values in the

desired order.
ITopN(A,n, <ASC|DESC>) for vectors only, it returns the indices of the top n values

of A in the desired order.

4.4.1 Normalisation of SRAM syntax

Before the actual translation of array expressions into array algebra, two norm-

alisation steps, flattening and shape alignment, rewrite SRAM syntax expressions

into a form that facilitates the recognition of specific patterns.

We present here motivations for and an informal description of the flattening

and shape alignment normalisations. Formal translation rules to carry out this

process are shown in Appendix A.1.

Flattening nested arrays

The array algebra operators are defined over non-nested arrays only. For this

reason, a normalisation step called flattening converts nested arrays to their

equivalent non-nested representations. For example, a nested array with type

([10, 5], ([20], int)) is equivalent to a higher dimensionality, flat, array with type

([10, 5, 20], int). A crucial rule of this normalisation step flattens a nested com-

prehension construct by appending the domain specification of the inner com-

prehension to the one of the outer comprehension. This means that the axes of

the outer comprehension become the major axes in the new comprehension. For
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example:

[ [ f(x,y,z) | z<20 ] | x<10,y<5 ]

↓
[ f(x,y,z) | x<10,y<5,z<20 ]

Shape alignment

A second normalisation step reformulates array expressions to make them easier

to handle for rule-based translation engines, by emphasising two aspects:

• element-by-element formulation of array expressions is a syntactic aid for

writing expressions, but operations are defined over arrays to benefit bulk

processing;

• all operations defined in array expressions are functions of the result array’s

index domain.

This step is called shape alignment in that it has the effect of reshaping every ele-

ment in the expression to the result array’s index domain. For example, consider

the following expression and its equivalent after the shape alignment normalisa-

tion:

[ 2 + j | i<3,j<4 ]

↓
[ [ 2 | i<3,j<4 ](i,j) + [ j | i<3,j<4 ](i,j) | i<3,j<4 ]

The result’s index domain, identified by [ | i<3,j<4 ], is propagated recurs-

ively to every element of the original expression (notice how 2 and j are expanded

into an explicit array comprehension), making it become more clearly an expres-

sion involving shape-aligned arrays.

Rewriting SRAM expressions in terms of their result index domain allows

for simple translation patterns to array algebra, because of the shape alignment

effect.

Comparison to set-comprehension

It is important to emphasise that, although the shape-alignment procedure has

the effect of reshaping every element in the original expression to the result’s

shape, its actual role is more strictly related to the formal definition of arrays:
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the shape alignment procedure replicates the result’s index domain for each ele-

ment in the array expression and applies such an element to the indices created.

This subtle difference between modifying an array (which could be the imperative

programmer’s solution) and creating a new array (the latter, functional program-

ming approach being our goal) is best illustrated by the following example.

Example 4.7 (Shape alignment).

Selecting elements of a matrix in transposed order is not the same as transposing

a matrix. Consider the following matrix A

A[3, 4] =

1.0 1.5 3.0 3.0

1.5 1.0 1.5 3.0

3.0 1.5 1.0 1.5


and the following SRAM expression:

A’ = [ A(y,x) | x<4,y<3 ] (4.2)

We now break down the translation process of the expression in (4.2). As a

first step, the shape of the result array A′ is computed:

SA′ = [4, 3].

The new array A′ has two axes, named x and y in the expression. The shape

alignment normalisation rewrites them in terms of index arrays, which we assign

temporary names X and Y for clarity of presentation, with shape [4, 3], as the

result shape, containing their own x or y axis values respectively.

X = [ x | x<4,y<3 ]

Y = [ y | x<4,y<3 ]

Finally, expression A(y,x) translates to the application of array A to index arrays

Y and X:

[ A(Y(x,y), X(x,y)) | x<4,y<3 ]

Putting it all together, the original SRAM expression translates as follows (for
completeness, the array algebra intermediate translation is also shown, although
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only introduced in Section 4.5.3):

A’ = [ A(y,x) | x<4,y<3 ]

↓
[ A([ y | x<4,y<3 ](x,y), [ x | x<4,y<3 ](x,y)) | x<4,y<3 ]

A

Apply(A,Grid([4, 3], 1), Grid([4, 3], 0))

↓

A




0 1 2

0 1 2

0 1 2

0 1 2

 ,


0 0 0

1 1 1

2 2 2

3 3 3




↓
A(0, 0) A(1, 0) A(2, 0)

A(0, 1) A(1, 1) A(2, 1)

A(0, 2) A(1, 2) A(2, 2)

A(0, 3) A(1, 3) A(2, 3)

 =


1.0 1.5 3.0

1.5 1.0 1.5

3.0 1.5 1.0

3.0 3.0 1.5



�

We can easily recognise the definition of a matrix transposition in (4.2). How-

ever, it is more correct to describe that expression as the definition of a new matrix

A′, whose values are obtained by the application of matrix A (recall that arrays

are functions) to indices y, x. The important distinction is that matrix A′ is not a

direct manipulation of matrix A, but rather a new matrix constructed by copying

the values of A into A′ in a different (transposed) order. The comprehension-style

array constructor is called generative, because it always generates a new array

and subsequently assigns each element a value, which is obtained by applying a

function to the newly introduced indices. In the example, the function applied is

array A itself.

For comparison, the same operation specified in a set-oriented syntax such as

relational calculus could look like the following:

A′ = {〈y, x,A(y, x)〉|x, y ∈ DAx,y} (4.3)

This expression specifies that A′ is a set of elements, here defined as 〈y, x,A(y, x)〉
tuples, where axes x and y belong to the index domain of array A.

The main difference between the set-oriented and the generative formulations

of the matrix transposition is that whereas in (4.3) indices x and y are defined as

belonging to A, they belong to A′ in (4.2) and they have no formal relationship
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with A. Generalising, the indices used in comprehension syntax belong to the

result array, whereas they belong to the input arrays in the set-oriented syntax.

More formally, in the generative array comprehension-based approach, the value

of each element of a new array A′ is computed by a function f : DA′ → TA′ . Note

that the domain of such a function is DA′ , hence the value of each element is a

function of the result array’s index values.

4.4.2 Mapping rules

This section defines the mapping rules from normalised SRAM syntax constructs

(see Section 4.4.1 for normalisation) to array algebra operators. Note that, for

clarity of presentation, the examples shown in this section do not include the nor-

malisation phase, stepping from user-level SRAM syntax to array algebra directly.

Each mapping rule is presented as a rule of inference (see Section 4.2.1), where

the conclusion shows the resulting array algebra operator and its properties (S,

T, ε, δ, etc). Some of these properties can be computed exactly, some other need

estimations, whose quality depends on the information available in the frame-

work. For example, a correct estimation for ε and δ often requires information

on the distribution of ε values in the input arrays, as well as specific knowledge on

functions that may be used (for example in Map). When such additional inform-

ation is not available, conservative choices are made (e.g. uniform distributions,

no prior knowledge on functions used). Note however, that wrong estimates for ε

and δ can only affect performance and not correctness. Extending the framework

to exploit additional information in order to achieve better estimates for array

properties is considered future work.

Variable

Persistently stored arrays are included in array-algebra expressions using the

operator Variable, obtained by applying the following equivalence rule:

A = (S,T) <sparse(ε,δ)|dense> "<table name>"

A 7→ A = Variable(Adef)

Adef =


SA = S, TA = T

εA = ε, δA = δ

storageA = <table name>

The Variable operator encapsulates all the information available from the data

dictionary about the array associated to it: properties, physical storage, statistics,

etc.
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Example 4.8.

A = ([2,3],dbl) sparse(0,0.1) "Table A"

A

A = Variable(Adef), Adef =


S = [2, 3], T = dbl

ε = 0, δ = 0.1

storageA = "Table A"
�

Grid

Indices introduced in comprehension expressions are translated to index arrays.

The array-algebra operator that is used to represent index arrays is Grid(S, j):

I = [ ij | ı̄<S ] ij ∈ ı̄
I 7→ I = Grid(S, j)
SI = S TI = int

@εI δI = 1

The operator Grid creates an array of shape S and assigns its elements the value

of its own indices in the j-th dimension, replicated in all the remaining dimen-

sions. Any array produced by Grid is dense by definition. A similar operator is

defined in [SS92].

Example 4.9.

[ x | x<2,y<3 ]

A

Grid([2, 3], 0)

↓[
0 0 0

1 1 1

]

[ y | x<2,y<3 ]

A

Grid([2, 3], 1)

↓[
0 1 2

0 1 2

]
�
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Const

Constant expressions result in arrays of the given shape, where each element is

assigned a given constant c:

A = [ c | ı̄<S ]

A 7→ A = Const(S, c)
SA = S TA = (type of c)

εA = c δA = 0

A constant array is by definition sparse, with ε = c and δ = 0.

Example 4.10.

[ 1.0 | x<2,y<3 ]

A

Const([2, 3], 1.0)

↓[
1.0 1.0 1.0

1.0 1.0 1.0

]
�

Apply

Index-based array operations such as element extraction, replication, pivoting

and slicing, can be performed by the Apply operator:

A 7→ A ∀j ∈ [0, n[: Ij 7→ Ij
A’ = [ A(I0(ı̄),...,In−1(̄ı)) | ı̄<S ]

A’ 7→ A′ = Apply(A, I0, . . . , In−1)

SA′ = S = SI0 = · · · = SIn−1

TA′ = TA
εA′ = εA δA′ = δA

Each index array Ij contains the j-th dimension coordinates of the values to select

in A. Index arrays are limited by the following constraints: they must be dense

and their base type must be int. Typically, such index arrays are generated by

means of Grid operators.

The result of an Apply operator is an array whose shape is the same as that
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of index arrays I0, . . . , In−1, and whose type TA′ is the same as type TA of array

A. The set of unique element values that can possibly appear in A′ is of course

a subset of the ones appearing in A.

Example 4.11 (Creating a matrix with values taken from a vector).

A[4] =


1.0

1.5

2.0

2.5

3.0

 , I[4, 4] =


0 1 4 4

1 0 1 4

4 1 0 1

4 4 1 0



A’ = [ A(I(x,y)) | x<4,y<4 ]

A

A′ = Apply(A, I)

↓

A′[4, 4] =


A(0) A(1) A(4) A(4)

A(1) A(0) A(1) A(4)

A(4) A(1) A(0) A(1)

A(4) A(4) A(1) A(0)

 =


1.0 1.5 3.0 3.0

1.5 1.0 1.5 3.0

3.0 1.5 1.0 1.5

3.0 3.0 1.5 1.0

 �

Example 4.12 (Taking a matrix diagonal).

A[4, 4] =


1.0 1.5 3.0 3.0

1.5 1.0 1.5 3.0

3.0 1.5 1.0 1.5

3.0 3.0 1.5 1.0

 , I0[4] =


0

1

2

3

 , I1[4] =


0

1

2

3


A’ = [ A(I0(x),I1(x)) | x<4 ]

A

A′ = Apply(A, I0, I1)

↓

A′[4] =


A(0, 0)

A(1, 1)

A(2, 2)

A(3, 3)

 =


1.0

1.0

1.0

1.0

 �
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Example 4.13 (Slicing a matrix to obtain a column).

A[4, 4] =


1.0 1.5 3.0 3.0

1.5 1.0 1.5 3.0

3.0 1.5 1.0 1.5

3.0 3.0 1.5 1.0



A’ = [ A(x,2) | x<4 ]

A

A′ = Apply()

A Grid([4], 0) Const([4], 2)

↓

A′[4] =


A(0, 2)

A(1, 2)

A(2, 2)

A(3, 2)

 =


3.0

1.5

1.0

1.5

 �

Example 4.14 (Replicating a vector up to a matrix).

A[4] =


3.0

1.5

1.0

1.5



A’ = [ A(y) | x<3, y<4 ]

A

A′ = Apply()

A Grid([3, 4], 1)

↓

A′[3, 4] =

A(0) A(1) A(2) A(3)

A(0) A(1) A(2) A(3)

A(0) A(1) A(2) A(3)

 =

3.0 1.5 1.0 1.5

3.0 1.5 1.0 1.5

3.0 1.5 1.0 1.5


�
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Map

The operator Map maps an m-ary function f to corresponding elements of arrays

A0, . . . , Am−1:

∀l ∈ [0,m[: Al 7→ Al
f : TA0

× · · · × TAm−1
→ Tf

A’ = [ f(A0(ı̄), ..., Am−1(ı̄)) | ı̄<S ]

A’ 7→ A′ = Map(f,A0, . . . , Am−1)

SA′ = S TA′ = Tf

εA′ = f(εA0
, . . . , εAm−1

) δA′ = max(δA0
, . . . , δAm−1

)

Estimation of the sparsity properties of the output array takes a conservative

approach, by assuming a large index overlap among the default elements of the

arrays in input.

Example 4.15 (Taking the log of every value in a matrix).

A =


1.0 1.5 3.0 3.0

1.5 1.0 1.5 3.0

3.0 1.5 1.0 1.5

3.0 3.0 1.5 1.0



A’ = [ log(A(x,y)) | x<4,y<4 ]

A

A′ = Map(log, A)

↓

A′ =


log(1.0) log(1.5) log(3.0) log(3.0)

log(1.5) log(1.0) log(1.5) log(3.0)

log(3.0) log(1.5) log(1.0) log(1.5)

log(3.0) log(3.0) log(1.5) log(1.0)

 �
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Example 4.16 (Value-by-value addition).

A =


1.0 1.5 3.0 3.0

1.5 1.0 1.5 3.0

3.0 1.5 1.0 1.5

3.0 3.0 1.5 1.0

 , B =


0.0 1.5 1.0 2.0

0.5 1.0 1.5 2.0

0.0 1.5 1.5 1.0

0.0 1.0 1.5 2.0



C = [ A(x,y) + B(x,y) | x<4,y<4 ]

A

C = Map(+, A,B)

↓

C =


A(0, 0) +B(0, 0) A(0, 1) +B(0, 1) A(0, 2) +B(0, 2) A(0, 3) +B(0, 3)

A(1, 0) +B(1, 0) A(1, 1) +B(1, 1) A(1, 2) +B(1, 2) A(1, 3) +B(1, 3)

A(2, 0) +B(2, 0) A(2, 1) +B(2, 1) A(2, 2) +B(2, 2) A(2, 3) +B(2, 3)

A(3, 0) +B(3, 0) A(3, 1) +B(3, 1) A(3, 2) +B(3, 2) A(3, 3) +B(3, 3)



=


1.0 3.0 4.0 5.0

2.0 2.0 3.0 5.0

3.0 3.0 2.5 2.5

3.0 4.0 3.0 3.0


�

The if-then-else construct

The if-then-else construct of the SRAM syntax needs no dedicated array al-

gebra operator, as it can be translates to the Map of a function ifthenelse:

C 7→ C A 7→ A B 7→ B

TC = bit TA = TB

A’ = [ if(C(ı̄)) then A(ı̄) else B(ı̄)) | ı̄<S ]

A’ 7→ A′ = Map(ifthenelse, C,A,B)

SA′ = S TA′ = TA = TB

εA′ = εB δA′ = δB

Predicting εA′ and δA′ is very hard without additional knowledge on the arrays

in input and on the condition that yields boolean array C. The arbitrary choice

of assigning default value and density of array B gives the possibility of steering

a more efficient translation at SRAM syntax level, where some of this knowledge

may be available. Given that choice, one would write the boolean condition in

such a way that the else branch, that corresponds to array B, is the one that is

selected most frequently.
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Aggregate

Array aggregation is supported by the operator Aggregate, with the following

syntax:
A 7→ A

f : {TA} → Tf

A’ = aggr(f, j, A)

A’ 7→ A′ = Aggregate(f, j, A)

SA′ = [SA(0), . . . ,SA(n− j − 1)] TA′ = Tf

@εA′ δA′ = 1

Recall from Section 4.3.7 how nested array semantics is exploited in order to

express partial aggregation. During the shape-alignment phase (see Section 4.4.1

and Appendix A.2), the j dimensions that are to be collapsed by the aggregation

function are moved to the last j positions in the internal representation of array A

in the algebra expression. The j parameter of the Aggregate operator represents

precisely the number of dimensions that are dropped by the aggregation function

f . This semantics simplifies the translation, without compromising the possibil-

ity of aggregating along any dimension, by first performing an axis re-ordering.

Possible aggregation functions include sum, prod , avg , min, max . The result of

an aggregation is defined as dense, also when the input array is sparse. This is a

conservative choice that is due to the difficulty of estimating, in general, correct

values for ε and δ. Investigating this issue is part of future research. Possible

solutions include the management of detail statistics on the data distribution at

hand, perhaps even provided by the user directly, or run-time estimations based

on a sample of data.

Concat

The operator Concat concatenates two arrays, by appending the second to the

first one. The concatenation happens, by an arbitrary design choice, along the

first dimension. For examples, given two matrices A and B with equal number
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of columns, the Concat operator appends B’s rows to A’s rows:

A 7→ A B 7→ B

TA = TB |SA| = |SB | = n ∀i ∈]0, n[: SA(i) = SB(i)

C = A ++ B

C 7→ C = Concat(A,B)

SC = [SA(0) + SB(0),SA(1), . . . ,SA(n− 1)] TC = TA

εC =


εA if εA = εB

εA if εA 6= εB ∧ |Aε| ≥ |Bε|
εB if εA 6= εB ∧ |Aε| < |Bε|

δC =


|A|δA + |B|δB
|A|+ |B|

if εA = εB

δA if εA 6= εB ∧ |Aε| ≥ |Bε|
δB if εA 6= εB ∧ |Aε| < |Bε|

where |Xε| = |X|(1− δX)

When the two arrays in input have the same default value ε, this is also the default

value of the result array, with density δ trivially recomputed. When εA 6= εB ,

the default value and density of the array with the most non-stored values (see

definition of |Xε|) is chosen.

ISort

For vectors only, ISort returns the indices of an array’s values in the desired

order.
A 7→ A

|SA| = 1

S = sort(A,<ASC|DESC>)

S 7→ S = ISort(A, <ASC|DESC>)

SS = SA TS = int

@εS δS = 1

The actual values can subsequently be fetched by element extraction from the



Section 4.4: Mapping SRAM syntax onto core array algebra 67

original array, using indices stored in array S:

S = sort(A,<ASC|DESC>)

[ A(S(x)) | x ]

A

Apply()

A ISort(<ASC|DESC>)

A

ITopN

For vectors only, ITopN returns the indices of the top n values in the desired

order.
A 7→ A

|SA| = 1

T = topN(A,n,<ASC|DESC>)

T 7→ T = ITopN(A,n, <ASC|DESC>)

ST = [n] TT = int

@εT δT = 1

The actual values can subsequently be fetched by element extraction from the

original array, using indices stored in array T :

T = topN(A,n,<ASC|DESC>)

[ A(T(x)) | x ]

A

Apply()

A ITopN(n, <ASC|DESC>)

A
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4.5 Mapping array algebra onto relational al-

gebra

This section explains the most important translation step in the framework, that

maps expressions from the array domain onto the relational domain. This entails

the definition of procedures aimed at addressing the following two aspects:

• How are arrays mapped onto relations?

• How are array operations mapped onto relational operations?

Rules for these mappings are shown in detail in sections 4.5.1 and 4.5.3. The

same sections introduce some restrictions as well as some extensions that are

applied to the relational algebra used throughout this thesis.

4.5.1 Relational representation of sparse arrays

Outside the scope of relational domain, many storage schemes have been proposed

for storing sparse multi-dimensional arrays, with strong emphasis on the special

case of matrices [DDRvdV00] and more in particular sparse matrices [DER86].

Most of them are tuned for specific data access patterns (e.g. Compressed

Row/Column Storage, Compressed Diagonal Storage, Skyline Storage) that are

required by specific applications.

A generic and simple choice for storing sparse n-dimensional arrays in rela-

tional databases maps every array to one relation, and every array element to a

tuple in a relation. Table 4.3 summarises the notation used throughout this thesis

for relations that represent sparse arrays. Notice that arrays and their associated

relations are denoted by a different text font: an array A (see Table 4.1) is stored

in the database as a relation A.

Rule 4.1 (Relational mapping of a sparse array). An n-dimensional

sparse array A, with default value εA, is mapped onto a relation A, where each

tuple corresponds to one array element and enumerates index values and element

value explicitly. Only those elements for which A(̄ı) 6= εA need to be represented

in the relation:

Aı̄
ı̄ = (i0, . . . , in−1)

A 7→ A(̄ı, v) = {(̄ı, A(̄ı)) | ı̄ ∈ DA, A(̄ı) 6= εA}
ı̄ = i0, . . . , in−1

Index columns together form the primary key of relation A. �
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Table 4.3: Relational algebra notation for arrays

Notation Meaning

A relation A corresponding to array A
|A| size (number of rows) of relation A
A.a generic attribute a of relation A
a generic attribute a of the relation in context
A.ij attribute ij of relation A

corresponding to the j-th index of array A
A.vj attribute vj of relation A

corresponding to the j-th value of array A
A.v A.v ≡ A.v0

A.̄ı attributes A.i0, . . . ,A.in−1

corresponding to indices i0, . . . , in−1 of array A
A.v̄ attributes A.v0, . . . ,A.vm−1

corresponding to values v0, . . . , vm−1 of array A
c a constant value c
rowid() identity column: a dense sequence of integers starting from 0

This representation scheme is particularly convenient for the following reasons:

• it implies a one-to-one relationship between arrays and relations;

• it implies a one-to-one relationship between array elements and tuples.

• it naturally includes dense arrays, for which no ε value is specified, and

therefore all the tuples are represented;

Because the array algebra layer is independent of its physical (relational in this

case) representation, other choices could be considered, provided that operations

are mapped accordingly between the two domains. Section 5.2.1 lists some al-

ternative storage schemes, that may provide more compact storage and better

performance in some cases.

The relational scheme proposed makes explicit the possibility for arrays to

contain more than one value per element (see Definition 4.4). Although SRAM

syntax and array algebra are tuned for handling single-value arrays, multi-value

arrays can be represented easily by extending the list of value attributes to

v0, . . . , vm−1, as shown in Table 4.1, which yields an array A-compatible schema

A(̄ı, v̄). Relations that represent multi-value arrays are introduced to repres-

ent the intermediate results of some of the mapping rules in Section 4.5.3 (e.g.

Rule 4.7). Note however that Rule 4.1 needs not be extended, as it deals with

those single-value arrays that are visible explicitly at syntax and algebra level.
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Table 4.4: Relational algebra operators

Operation Name Comments / restrictions

σp(A) Selection p = boolean combination of {ij θ ik, ij θ c}
θ ∈ {<,≤,=, 6=,≥, >}

πa′1,...,a
′
m

(A) Projection ∀a′i ∈ {a′1, . . . , a′m} : a′i = fi(A.a1, . . . ,A.an),

ı̄′Gv0=g(v0)(A) Aggregation ı̄′ ⊂ A.̄ı, g ∈ {sum, prod,min,max}
A ∪ B Union
A \ B Difference
A× B Cartesian product
A onp B Equi-join p = conjunctive combination of {A.a = B.b, a}

where a means A.a = B.a
A =./p B Left outer-join
A =./=p B Full outer-join
A np B Semi-join πA.̄ı,A.v̄ (A onp B)
A .p B Anti-join A \ (A np B)
A←−−=./̄ı B πA.̄ı,v̄ (A =./̄ı B)
A ˇ=./=ı̄ B π(∀i∈̄ı : A.i∨B.i),v̄ (A =./=ı̄ B)

IndexTable(S) populates a relation G(i0, . . . , i |S|−1)
with the enumeration of index values defined by S

Ã π̄ı,v=εA (IndexTable(SA) \ π̄ı(A))

4.5.2 Relational algebra operators

This section introduces the operators used in the relational algebra layer, sum-

marised in Table 4.4. When compared to standard relational algebra, some pre-

dicates are restricted while a few extra operations are defined.

The projection operator (π) is supported as in standard relational algebra. It

is mostly used to compute new array values, modify array indices, and compose

new relations with array A-compatible schemas A(̄ı, v̄).

The selection operator (σp) is only used to select tuples based on the value

of index attribute, which corresponds to allowing index-based selections only in

the array domain. Predicate p is a boolean combination of conditions on index

attributes, that can use any of the following relations: {<,≤,=, 6=,≥, >}.
The aggregation operator (G) works as in standard relational algebra, except

that it is only used to reduce the number of index attributes and compute the

aggregate value on the first value attribute of the input relation and to the first

value of the output relation.

Union (∪), difference (\) and cartesian product (×) operators are supported

with no extensions nor restrictions with respect to standard relational algebra.

A number of different join operators are used. All of them indicate join
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conditions as a predicate p in subscript, that is a conjunctive combination of

equality conditions. Each equality condition is expressed in one of the following

forms:

• A.a = B.b

• a ≡ A.a = B.a

(A and B are the left and the right relations respectively)

• A.̄ı = B.̄ı ≡ ∀j ∈ [0, L[: A.ij = B.ij , L = |A.̄ı| = |B.̄ı|

• ı̄ ≡ A.̄ı = B.̄ı

(A and B are the left and the right relations respectively)

The standard equi-join operator (onp) is the only one used in this chapter. When

presenting some optimisation techniques, in Chapter 5, the following join oper-

ators are also used: left outer-join (=./p), full outer-join (=./=p), semi-join (np)
and anti-join (.p).

Compound operators ←−−=./̄ı and ˇ=./=ı̄ perform a projection on top of left-

and outer-join respectively, in order to select only the non-NULL attributes from

the join outputs. They should be used only under the assumptions explained in

Section 5.2.3.

is the relational implementation of array operator Grid (see Section 4.5.3).

Function IndexTable(S) creates a relation G (i0, . . . , in−1) filled with the enu-

meration of all index values in the D domain defined by S. This forms the basis

for the relational mapping of the Grid operator, as shown in Rule 4.4 below.

Given the relational representation for sparse arrays defined in Section 4.5.1,

the support for sparse array computations in terms of relational queries may

require materialisation of the non-stored portion of a sparse array relation. Be-

cause the nominal SA of array A is known, the domain of the index columns in

the associated relational table A is known as well, which makes the non-stored

portion of the relation, denoted as Ã, always computable as:

Ã = π̄ı,v=εA(IndexTable(SA) \ π̄ı(A))

4.5.3 Mapping rules

Given a tree structure representing an array algebra expression, the mapping

rules presented in this section are applied in a bottom-up fashion, which yields a

new tree structure representing the corresponding relational expression.

Array algebra operators may produce sparse or dense arrays in output, have

dense or sparse arrays as inputs, or have no input array at all. In each case,
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the complexity of the array-to-relational mapping rules varies depending on the

necessity of taking care of the non-stored portion of sparse arrays, both in the

input relations and in the output relation. The mapping rules defined in this

section yield correct results for both sparse and dense computations. In general,

mappings for sparse array A include some extra processing needed for handling

non-stored elements, denoted as Ã (Chapter 5 discusses optimisation techniques

aimed at reducing this additional cost). By applying Rule 4.2, sub-expressions

containing Ã are removed in presence of dense computations.

Rule 4.2 (Empty Ã). When array A is dense, its default value εA is not

defined. Its relational representation is fully stored, which makes Ã an empty

relation:
A 7→ A @εA

Ã ≡ {} �

Variable

Persistently stored arrays are included in array-algebra expressions using the

Variable operator:

Rule 4.3 (Relational mapping for Variable).

A = Variable(Adef)

A 7→ (Adef.storage) = A �

Grid

The array operator Grid cannot be implemented by any standard relational op-

erator. We assume an extended relational algebra that provides a IndexTable(S)

operator, which creates a table with the enumeration of all indices defined by

shape S (see Section 4.5.2 for further details).

Rule 4.4 (Relational mapping for Grid).

A = Grid(S, j)
A 7→ A = π̄ı,v=ij (IndexTable(S)) �

The projection on top of the IndexTable(S) relation constructs the index array,

by propagating all index columns and replicating the j-th index columns as a

value column.
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Already in one of the first array query languages, AQL [LMW96], it is shown

that a prerequisite for the implementation of array structures and computations

in a relational system is the availability of a generator for intervals of integer

numbers. Although no standard relational operator can generate such a relation,

most modern RDBMS can easily be extended to provide such a functionality.

Support for table functions, i.e. external functions that can return a table, is

also included in the SQL-2003 standard [EMK+04]. Note that this functionality

cannot be provided by mechanisms such as the RANK() OVER window function

(also defined in SQL-2003 standard), which can only add a column with integer

identifiers based on the values of an existing table.

Const

A constant array can be mapped to a relational expression that projects the con-

stant c on the value attribute of a table representing the index domain specified

by a shape S.

Rule 4.5 (Relational mapping for Const).

A = Const(S, c)
A 7→ A = π̄ı,v=c(IndexTable(S)) �

Recall that a constant array is fully sparse by definition, with ε = c and δ = 1.

In practice, this means that the relational expression defined by Rule 4.5 never

needs materialisation.

Apply

Selection of array element values based on their array index is performed by the

Apply operator:

Apply(A, I0, . . . , In−1)

Each index array Ij contains in its value column the j-th dimension coordinate

of the values to select in A. Index arrays are dense and their base value must be

of integer type. Rule 4.6 defines this operator by performing a series of primary

key joins between relations I 0 · · · In−1 – to construct a new relation X(̄ı,v̄ ) that

combines all value columns into one tuple per array index – and a foreign-primary

key join (X.v̄ = A.̄ı) to retrieve the correct values from relation A.
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Rule 4.6 (Relational mapping for Apply).

A 7→ A ∀j ∈ [0, n[: Ij 7→ I j
B = Apply(A, I0, . . . , In−1)

B 7→ B = π̄ı=X.̄ı,v=A.v (X onX.v̄=A.̄ı A)

X = I 0 onı̄ · · · onı̄ In−1 �

This rule remains identical when applied to sparse and dense arrays.

Map

The operator Map maps an m-ary function f to corresponding elements of arrays

A0, . . . , Am−1. This results in two relational steps:

1. (Join) perform a join on corresponding indices to gather input arrays’ ele-

ment values in one tuple per array index.

2. (Projection) apply function f to values gathered in step 1.

The simple case of a function applied to one array, Map(f,A), needs not

perform step 1, and translates as in (4.4) for both dense and sparse evaluation.

A 7→ A

B = Map(f,A)

B 7→ B = π̄ı,v=f(A.v)(A)
(4.4)

Consider now the case of two shape-aligned dense arrays A and B and the

expression Map(f,A,B). This maps to a join over index columns, followed by a

projection on value columns:

A 7→ A @εA
B 7→ B @εB
C = Map(f,A,B)

C 7→ C = π̌ı,v=f(A.v ,B.v)(A onı̄ B)
(4.5)

If shape-aligned arrays A and B are sparse, with εA and εB , the array
algebra expression Map(f,A,B) requires a more complex relational mapping,
in order to take care of the non-stored portion of arrays A and B, denoted
as Ã and B̃. Because sparse arrays consist of two parts (stored,omitted),
the join phase of a Map operation results in the union of four combinations,
(stored,omitted)×(stored,omitted), and the Map consists of the union of
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four relational joins:
A 7→ A B 7→ B

C = Map(f,A,B)

C 7→ C =

4⋃
j=1

C j

C1 = π̌ı,v=f(A.v,B.v)(A onı̄ B)

C2 = π̌ı,v=f(A.v,εB)(A onı̄ B̃)

C3 = π̌ı,v=f(εA,B.v)(Ã onı̄ B)

C4 = π̌ı,v=f(εA,εB)(Ã onı̄ B̃)

(4.6)

Notice how Rule 4.2 converts (4.6) into (4.5), should arrays A and B be dense.

The rule removes expressions C 2, C 3 and C 4 from (4.6). The same rule removes

either C 2 or C 3, together with C 4, in case of a combination of dense and sparse

input arrays.

The translation rule for three sparse shape-aligned arrays A, B and C is
similar. The join phase involves in this case the (stored,omitted) parts of
three arrays, which yields 23 = 8 combinations:

A 7→ A B 7→ B C 7→ C

D = Map(f,A,B,C)

D 7→ D =
8⋃

j=1

Dj

D1 = π̌ı,v=f(A.v,B.v,C.v)(A onı̄ B onı̄ C)

D2 = π̌ı,v=f(A.v,B.v,εC)(A onı̄ B onı̄ C̃)

D3 = π̌ı,v=f(A.v,εB ,C.v)(A onı̄ B̃ onı̄ C)

D4 = π̌ı,v=f(εA,B.v,C.v)(Ã onı̄ B onı̄ C)

D5 = π̌ı,v=f(A.v,εB ,εC)(A onı̄ B̃ onı̄ C̃)

D6 = π̌ı,v=f(εA,B.v,εC)(Ã onı̄ B onı̄ C̃)

D7 = π̌ı,v=f(εA,εB ,C.v)(Ã onı̄ B̃ onı̄ C)

D8 = π̌ı,v=f(εA,εB ,εC)(Ã onı̄ B̃ onı̄ C̃)

(4.7)

(4.6) and (4.7) are represented graphically in figures 4.5a and 4.5b respectively.

Disks show relations that represent the stored part of sparse arrays. Overlapping

regions show relations that result from join operations.

The Map on two and three arrays generalises to any number m of arrays, by

considering all the possible 2m combinations of (stored,omitted) portions for

the m arrays. Rule 4.7 describes the relational translation of a Map operation

over m shape-aligned arrays.
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(a) Two relations – (4.6). (b) Three relations – (4.7).

Figure 4.5: Graphical representation of Map relational translation for two and
three relations respectively. Disks show relations that represent the stored part
of sparse arrays. Overlapping regions represent join operations. The union of all
coloured regions is the result of the Map operation.

Rule 4.7 (Relational mapping for Map).

∀l ∈ [0;m[: Al 7→ Al
B = Map(f,A0, . . . , Am−1)

B 7→ B =

2m⋃
j=1

Bj

B1 = π̌ı,v=f(A0.v ,...,Am−1.v)(A0 onı̄ · · · onı̄ Am−1)

B2 = π̌ı,v=f(A0.v ,...,Am−2.v ,εAm−1
)(A0 onı̄ · · · onı̄ Am−2 onı̄ Ãm−1)

...

B2m−1 = π̌ı,v=f(εA0
,...,εAm−2

,Am−1.v)(Ã0 onı̄ · · · onı̄ Ãm−2 onı̄ Am−1)

B2m = π̌ı,v=f(εA0
,...,εAm−1

)(Ã0 onı̄ · · · onı̄ Ãm−1)
�

This rule is valid for any combination of dense and sparse arrays. Note how the

result expression simplifies to B = B1 in case only dense arrays are involved, by

applying Rule 4.2.

The exponential number of combinations generated (2m) does not make

Rule 4.7 itself impractical in terms of complexity, as there is no global solution to

be found (as in the boolean satisfiability problem [Coo71]) after the simple enu-
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meration step. Still, the complexity of the overall relational optimisation may

explode with query plans involving many relations. In practice however, this it

is not likely to happen, as common value for m are never larger than 3.

Aggregate

Array aggregation is supported by the operator Aggregate, with syntax:

Aggregate(f, j, A)

Assuming associative and commutative operators as defined in Table 4.4,

the relational evaluation of this operator on sparse arrays can be mapped as

the corresponding dense version (a standard relational aggregate), subsequently

patched for all the non-stored tuples in each group. For example, if a given one-

dimensional sparse array A, with εA = 2, is stored as a relation A that misses

x tuples, the summation over A needs to be patched adding 2 ∗ x to the result.

This naturally extends to multi-dimensional arrays. Before presenting the formal

mapping rule, we define binary functions f− and f+
− for a number of aggregation

functions:

f = sum⇒ f− = +, f+
− = ∗

f = prod⇒ f− = ∗, f+
− = pow

f = min/max⇒ f− = min/max, f+
− = id1

where function id1 always returns its first argument.

Rule 4.8 (Relational mapping for Aggregate).

A 7→ A gs =

j−1∏
k=0

SkA

B = Aggregate(f, j, A)

B 7→ B = π̄ı,v=f−(G.v,f+
− (εA,M.v))(G onı̄ M)

G = π(i0=ij ,...,in−j−1=in−1,v)((ij ,...,in−1)Gv=f(v)A)

M = π(i0=ij ,...,in−j−1=in−1,v=gs−v)((ij ,...,in−1)Gv=count(*)A)

where gs denotes the nominal group size, and relations G , M and B compute the

aggregation on stored data, the number of missing tuples per group and the final

aggregation, respectively. �
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ITopN

Top-N operations are not defined in standard relational algebra. However, most

modern database systems implement operators to support such a functionality.

SRAM assumes an extended relational algebra that includes a top-N operator τn,

whose syntax is:

τn[attr1 <↑ | ↓> ;attr2 <↑ | ↓> ; . . . ](A)

where n is the number of desired tuples in the result, attr1 ,attr2 ,. . . , are the

ranking attributes, and <↑ | ↓> denotes <ASC|DESC> order. If no ranking at-

tributes are specified, a sample of up to n tuple is returned. Rule 4.9 describes

the relational translation of the array operator ITopN(A,n,DESC). A similar rule

exists for ascending order.

Rule 4.9 (Relational mapping for ITopN ).

A 7→ A

|SA| = 1 B = ITopN(A,n, DESC) n ≤ |A|
B 7→ B = πi0=rowid(),v=i0(τn[v ↓](T ∪M))

T = τn[v ↓](A) M = τn[ ](Ã)

First, the top n candidates are selected from stored relation A into relation T .

Then, a second set of n candidates M is created for the non-stored portion of

the relation, representing εA values. Finally, a regular top-N is performed on the

union of these two set of candidates, and the index column of the result relation

is projected as an array value. �

4.6 Discussion

The prototype system described in this chapter adds the missing building blocks

to the layered software architecture envisioned in Chapter 3. The SRAM language

allows to implement easily most of the operations of the Matrix Framework for IR.

While other languages can describe sparse array computations more powerfully,

like Matlab, or in a more standard data-oriented way, like SQL, SRAM is designed

to bridge gracefully two domains with fundamental differences: the array domain,

focused on cell positions and with a concept of order, and the relational domain,

focused on unordered sets of values. A set of mapping rules is presented to

provide a concrete answer to the question whether relational algebra can be

used as a data-access interface to support basic linear algebra operations on



Section 4.6: Discussion 79

sparse matrices. All elementary operations between scalars, vectors, matrices

and n-dimensional arrays can be fully supported.

Iterative algorithms remain however an issue. Bounded loops over known

index spaces are natively encoded in both SRAM and relational algebra as

the enumeration of all possible combinations. As an example, a simple mat-

rix multiplication requires 3 explicit loops over the index variables in the C

language, while SRAM and the relational algebra encode these loops in nat-

ive index-space enumeration constructs: a comprehension [ | i,j,k ] and

a join on, respectively. However, the lack of a flexible looping mechanism

(while <condition> do {<body>}) in the relational algebra, which is its funda-

mental limitation in expressive power, does not allow SRAM to support iterative

methods based on a convergence condition, such as eigenvalue algorithms and

cluster analysis. Without specific extensions of the relational algebra for loop-

ing mechanisms, the only viable approach for such class of problems is to wrap

single-step operations with loop constructs of external (scripting) languages.
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If everything seems under control,

you’re just not going fast enough.

- Mario Andretti, car racer 5
Array database optimisation

This chapter faces the problem of how to make array database queries perform

efficiently. In the relational domain, query optimisation is a well-studied topic

(for a survey, see [Cha98]). It is likewise known how relational query optimisation

is an NP-complete problem [IK84, SM97] and how relational query optimisers are

designed to aim at reasonably efficient query plans, rather than at the best pos-

sible query plan. Because array database queries translate to relational queries,

they are not less hard to optimise. However, the techniques presented in this

chapter aim at exploiting the peculiarities of relational queries that come from

a translated array-domain. The additional knowledge of the domain in which

relational technology is applied provides many handles for more focused, and

hopefully more effective, query optimisation.

5.1 Array optimisation

Chapter 4 presents an algebra for array computations and shows how it can be

fully mapped onto relational algebra. This suggests the possibility to ignore all

optimisation issues in the array domain and shift them to the relational domain,

once the translation has taken place, relying on the high availability of research

results and solutions from the field of relational optimisation.

Relational query optimisation is indeed one of the benefits provided by this

approach. Nevertheless, we advocate the importance of an additional optimisa-

tion phase, which operates in the array domain, for the following three reasons:

domain-contained optimisation - to keep optimisation strategies in the do-

main where they belong: the question should not be “is it technically feas-

ible to move this array optimisation to the relational domain?”, but rather

“would it fit there?” (see Example 5.3).

81
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representation independence - to keep array optimisations independent of

relational mapping: array optimisation may map naturally to the relational

domain, but only assuming a specific relational representation of arrays (see

Example 5.1).

early optimisation - for efficiency: array algebra expressions are typically

shorter than their relational equivalent (see Example 5.1).

5.1.1 Core algebra transformation rules

The most basic transformation rules for an array optimiser deal with the special

case of constant arrays.

Avoid materialising constant arrays

Rule 5.1 (Map over Const). A function mapped to constant arrays is equi-

valent to a constant array where the function is performed just once over the

constant values:

A = Map(f,Const(S, c0), . . . ,Const(S, cm−1))

A ≡ Const(S, f(c0, . . . , cm−1))

�

Example 5.1 (Map over Const).

Expression [ 2 + 1 | x<500,y<500 ] translates to the mapping of function ‘+’

over two constant arrays: Const([500, 500], 2) and Const([500, 500], 1). By apply-

ing Rule 5.1, +(2, 1) is detected as a function on constant values, and used as an

element value for the resulting constant array:

[ 2 + 1 | x<500,y<500 ]

A

Map(+)

Const([500, 500], 2) Const([500, 500], 1)

A

Const([500, 500],+(2, 1))
�
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It is interesting to note that the same result would have been achieved by relying

on relational optimisation only. Because each Const array has density δ = 0,

it maps to an empty relation, which makes the subsequent join and projection

operators produce empty relations as well (most relational optimisers would sim-

plify such empty relations away). This is correct, as the result of the operation

is a constant array, again with density δ = 0. The previous example would then

be translated as follows:

Map(+)

Const([500, 500], 2) Const([500, 500], 1)

R

πx,y ,v=+(A.v ,B.v) 7→ {}

onx,y 7→ {}

A(x , y , v) 7→ {} B(x , y , v) 7→ {}

However, as anticipated in Section 5.1, having a native optimisation rule in the

array domain has the following advantages:

• Representation independence: the fact that it is possible to postpone this

optimisation to the relational domain obtaining the same effect relies on the

relational mapping for arrays chosen in Section 4.5.1. In particular, on the

the fact that sparse arrays with density δ = 0 map to empty relations. On

the contrary, is always possible to perform this optimisation in the array

domain, where only the array properties are exploited.

• Early optimisation: performing the simplification at array level reduces the

search space for the subsequent relational optimisation.

Rule 5.2 (Apply over Const). Another optimisation opportunity is the ap-

plication of a constant array to a set of indices. The result is computable imme-

diately as a constant array of the selected shape and the same constant element

value:
A = Apply(Const(S, c), I0, . . . , Ik−1)

A ≡ Const(SI0 , c)

Recall from Section 4.4.2 that the result of an Apply operator has the shape of
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any of its index arrays, i.e. SA = SI0 = · · · = SIk−1 �

Example 5.2 (Apply over Const).

Expression [ 2 | x<500,y<500 ] constructs a constant array with element value

2. Any subsequent selection on such an array is still a constant array with the

same element value, which makes it possible to remove the selection and produce

the correct constant array directly (e.g. A = [ 2 | x<5,y<5 ]):

A = [ 2 | x<500,y<500 ]

[ A(x,y) | x<5,y<5 ]

A

Apply

Const([500, 500], 2) Grid([5, 5], 0) Grid([5, 5], 1)

A

Const([5, 5], 2)
�

The same result would be achieved by delegating this optimisation to the rela-

tional domain. However, handling the simplification in the array domain has the

same advantages as in Rule 5.1: representation independence and early optimisa-

tion.

Remove identity transformations

The result of an identity transformation is by definition identical to the original.

Some identity transformations are not easily identifiable. For example, using

persistent arrays as index arrays for an Apply operator makes it impossible to

predict the result, unless some additional knowledge allows for that. However,

some other patterns are easily identified as identity transformations and can be

simplified away.

Rule 5.3 (Apply with identity Grids). The following pattern, where index

arrays are generated by the Grid operator, is fully predictable as an identity
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transformation, which can be simplified away:

A′ = Apply(A, I0, . . . , In−1)

n = |SA|
I0 = Grid(SA, 0), . . . , In−1 = Grid(SA, n− 1)

A′ ≡ A

�

Example 5.3 (Apply with identity Grids).

Given a matrix A[3, 4], the following expression defines an identity transforma-

tion:

A = ([3,4],int) "A"

[ A(x,y) | x<3,y<4 ]

A

Apply

A Grid([3, 4], 0) Grid([3, 4], 1)

A

A
�

Similarly to the previous rules on constant arrays, the simplification operated by

Rule 5.3 could in principle be handled in the relational domain. The expression
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in Example 5.3 would be translated as follows:

Apply

A Grid([3, 4], 0) Grid([3, 4], 1)

R

onA.x=I0.v ,A.y=I1.v

A(x , y , v) onx,y

I 0 = IndexTable([3, 4], 0) I 1 = IndexTable([3, 4], 1)

R

A(x , y , v)

Postponing this rule to the relational domain would pose more fundamental issues

than the previous rules do. The last step of the translation process above, that

removes the join between relation A and the indices, assumes that a relational op-

timiser would take into account the semantics of the IndexTable operator, which

is far from reasonable to assume. Notice that this is not in contrast with allowing

the extension of a relational engine with the IndexTable operator. Introducing

values from a different domain (the array domain in this case) into the relational

domain is not a problem, as long as the original semantics of the values inserted

is dropped. In other words, once they entered the relational domain, array index

values become integer values, and relational optimisers should interpret them as

such. In some cases it would be possible to infer properties that allow to trans-

late the same type of reasoning from one domain into another without domain

clashes. The identity transformation in the example would be straightforward

to detect if matrix A were one-dimensional. In that case, the index space would

result in a single dense sequence of integers. Because dense sequences of integers

are understood by some relational engines (e.g. MonetDB [BK95]), these could

detect a join between equal sequences as a redundant join. However, in case of

multi-dimensional arrays, indices would translate to arbitrarily complex groups

of sequences of integers, which are beyond the scope of any existing relational
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system. We can conclude that, in order to guarantee a domain-contained optim-

isation process (see Section 5.1), any optimisation that involves interpretation of

array properties in the array domain, like Grid operators, should not be post-

poned to the relational domain, unless such properties can be fully translated as

well.

Reduce (intermediate) result sizes

Early reduction of the result space, with the aim of reducing the data volume

to be processed by each operator in the expression tree being analysed, is one of

the most important optimisation principles. In the relational domain, this cor-

responds to pushing selective operators down the query tree, whenever possible.

Similar reasoning leads to the following rule in the array domain, where an Apply

operator can reduce the result’s size, acting as a selection.

Rule 5.4 (Apply through Map (downward)). An Apply operator can al-

ways be pushed down through a Map operator, on top of all its children:

A′ = Apply(Map(f,A0, . . . , Am−1), I0, . . . , In−1)

A′ ≡ Map(f,Apply(A0, I0, . . . , In−1), . . . ,Apply(Am−1, I0, . . . , In−1))

�

Example 5.4 (Apply through Map (downward)).

This example shows how an Apply operator that reduces the result’s shape is

pushed down through a Map operator, which therefore needs to process smaller
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arrays.

A = ([500], int) "A"

B = ([500], int) "B"

[ [ A(x) + B(x) | x<500 ](y) | y<10 ]

A

Apply[10]

Map(+)[500]

A[500] B[500]

Grid([10], 0)

A

Map(+)[10]

Apply[10]

A[500] Grid([10], 0)

Apply[10]

B[500] Grid([10], 0)
�

Because the Apply operator could however increment the result’s size as well,

an optimiser should consider such a transformation as bi-directional, and take

into account the following rule too.

Rule 5.5 (Apply through Map (upward)). A number of Apply operators

with identical index arrays can always be pulled up through a Map operator

and applied only once on top of it with the same index arrays:

A′ = Map(f,Apply(A0, I0, . . . , In−1), . . . ,Apply(Am−1, I0, . . . , In−1))

A′ ≡ Apply(Map(f,A0, . . . , Am−1), I0, . . . , In−1)

�

Example 5.5 (Apply through Map (upward)).

This example shows how two Apply operators that increase the result’s size are

pulled up through a Map operator, which therefore needs to process smaller
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arrays.

A = ([10], int) "A"

B = ([10], int) "B"

[ A(x) + B(x) | y<50,x<10 ]

A

Map(+)[50, 10]

Apply[50, 10]

A[10] Grid([50, 10], 1)

Apply[50, 10]

B[10] Grid([50, 10], 1)

A

Apply[50, 10]

Map(+)[10]

A[10] B[10]

Grid([50, 10], 1)

�

Rule 5.6 (Substitution). An interesting aspect of array application is the fact

that arrays are functions. For any array expression applied to indices it is possible

to perform the application – i.e. to evaluate the array function – directly through

substitution. In other words, it is possible to substitute an Apply operator that

performs the extraction of elements from an array A with the array elements

themselves, provided that these are deductible analytically. This is true when

e.g. A is a function of Grid arrays, but not when A is a persistent array. Another

way to describe this rule is that two consecutive definitions of the result space

can be merged into one.

A′ = Apply(A, I0, . . . , In−1)

A′ ≡ subst(A, I0, . . . , In−1)

The auxiliary function subst(A, I0, . . . , In−1) replaces recursively any Grid(SA, i)
in A by Ii. In order to substitute only the latest (thus up in the expression

tree) shape definition for A, the recursion of function subst is limited as follows.

At each node in A’s subtree, it only propagates to the children that may be
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directly responsible for defining the shape of A by means of Grid operators, or

to those children that do not alter the shape. For example, the recursion would

be propagated to the index arrays of an Apply operator in A’s subtree (not to its

first child though, which has no role in the result’s shape definition), or to the

children of a Map operator (that cannot modify shapes). However, it would not

be propagated to the children of operators like Aggregate, that do alter the shape

of their children by other means than Grid operators (thus, not in a predictable

way). �

Example 5.6 (Substitution).

In the following expression,

[ [ f(z) | z<10 ](x+y) | x<3,y<3 ]

the index z can be substituted and the result obtained directly:

[ f(x+y) | x<3,y<3 ]

Such a simplification is detected and performed by an array algebra optimiser

applying Rule 5.6 (in dashed boxes, the patterns that are recognised as A and I0
in the rule):

[ [ f(z) | z<10 ](x+y) | x<3,y<3 ]

A

Apply

Map(f)

Grid([10], 0)

Map(+)

Grid([3, 3], 0) Grid([3, 3], 1)

A

I0

A

Map(f)

Map(+)

Grid([3, 3], 0) Grid([3, 3], 1)
�
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Rule 5.7 (Independent axes). This rule can be applied to an array whose

element values are independent of some of its axes. The element value can be

evaluated over only the axes it depends on and extended afterwards to the desired

shape.

A

U = set2array({j | Grid(S, j) is in A’s tree})
l = |U | l < |SA|

A ≡ Apply(A′,Grid(SA, U(0)), . . . ,Grid(SA, U(l − 1)))

A′ = subst(A,S ′, U)

S ′ = [SA(U(0)), . . . ,SA(U(l − 1))]

where:

set2array() sorts the elements of a set in ascending order, producing an array

subst(A,S ′, U) replaces recursively any Grid(S, i) in A by Grid(S ′, pos(i, U))

pos(i, U) returns the position of element i in vector U

This transformation rule can be described more informally as follows. Given an

array A, if the axes used for its definition (U) are fewer than its valence (|SA|),
then the definition of A can be decomposed in two steps:

1. subst() restricts the shape of A to S ′, that is identified by U . This step

evaluates only the elements of A that depend on U .

2. Apply() replicates the result of the previous step for each value of the axes

that are not in U , yielding the original shape SA. Recall that when an axis

is not used in the definition of an array element, this element is the same

for each value of that axis. �

Example 5.7 (Independent axes).

The expression

[ f(x) | x<3,y<4 ]

defines a bi-dimensional array of shape [3, 4] with axes x and y. However its

element values depend only on the value of the x axis. If f is an expensive

function, it may be cheaper to re-formulate the expression above as follows:

[ [ f(x) | x<3 ](x) |x<3,y<4 ],
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where f is first evaluated for all values of x and the result subsequently replicated

for all values of y.

Applying Rule 5.7, the same rewriting can be performed on the equivalent

algebra expression:

[ f(x) + g(x) | x<3,y<4 ]

A

Map(+)[3, 4]

Map(f)[3, 4]

Grid([3, 4], 0) Grid([3, 4], 0)

Map(g)[3, 4]

Grid([3, 4], 0) Grid([3, 4], 0)

A

Apply()[3, 4]

Map(+)[3]

Map(f)[3]

Grid([3], 0) Grid([3], 0)

Map(g)[3]

Grid([3], 0) Grid([3], 0)

Grid([3, 4], 0)

�

5.1.2 Reusing indices: the input space approach

The shape alignment normalisation step for SRAM syntax, described in Sec-

tion 4.4.1, emphasises the definition of arrays as functions of their own result

index domain (see Definition 4.5). This normalisation step has the effect of

reshaping every element in an SRAM expression to the index domain of the ex-

pression itself. Such induced reshaping operations, together with those explicitly

entered by the user, translate to array algebra expressions that involve the com-

bination of Apply and Grid operators. The advantage of such a combination

is that it captures a wide spectrum of array manipulations (e.g. reshaping, rep-

lication, index-based selection) in an unified manner. However, one important

drawback of this approach can be a loss of explicit information on the original

array expression, which may in turn result in translation patterns that are too
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generic to be efficient. For instance, the translation

A = ([300,400],dbl) "A"

A’ = [ A(y,x) | x<400,y<300 ]

A

A′ = Apply(A,Grid([400, 300], 1),Grid([400, 300], 0))

makes the original matrix transposition pattern be blotted out by a generic

Apply + Grid combination.

In practice, the “Apply + Grid approach” suffers from two problems:

1. the Apply operator, in combination with Grid , covers too many function-

alities, such as shuffling array contents, zooming in on a small part of an

array, or replicating values for shape alignment with a different array. This

complicates the mapping onto highly optimised expressions in the target

language;

2. the operator Grid produces by definition only dense index arrays. Unfortu-

nately, the generic processing style through Apply and Grid operators is not

well-suited for the efficient handling of sparse arrays, although still correct.

In general, the indices that address only the stored part (non-ε values) of

a sparse array do not follow a regular pattern, and therefore could not be

generated by a Grid-like operator. When used in combination with Apply

to index a sparse array, the generation of indices through Grid operators

may nullify the benefits of the compressed storage scheme for sparse arrays,

and result in a considerable waste of system resources, often not acceptable

in practice.

The challenge in the efficient evaluation of expressions involving sparse arrays

is to use a compact representation of data during all the intermediate computation

steps. The input space approach described in this section aims to achieve this

goal by directly manipulating existing indices whenever possible, thus only using

the stored portion of sparse arrays and minimising the need for potentially very

expensive Grid operations.

This is possible through the addition of new array operators to the core set

presented in Section 4.4, that are equivalent to specific Apply + Grid patterns:

Pivot(A,P) permutes the dimensions of A following the axis order permutation

specified in P (e.g. P = [1, 0] for matrix transposition).
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RangeSel(A,O,S) selects from A the sub-array identified by offset O from the

origin and shape S.

Replicate(A, k) increases the number of dimensions of A by 1, by replicating it

k times.

JoinMap(f,J , A0, . . . , Am−1) maps the function f to corresponding elements

of arrays A0, . . . , Am−1. J indicates the list of axes that A0, . . . , Am−1

have in common.

This list may of course be further expanded with additional specialised operat-

ors that are expected to yield efficient relational query plans for specific pat-

terns. Interesting examples include different selection patterns, such as for se-

lecting diagonals, and complex operators that would e.g. support MapReduce

algorithms [DG04, LD10], facilitating the efficient execution of split, map, join

and aggregate operations there involved.

Such operators are introduced by the optimiser by rewriting expressions that

use core array operators (see Table 4.2) into more specialised operators, and never

directly derived from the SRAM syntax. In other words, the input space approach

forms a second optimisation phase, after the application of the transformation

rules presented in Section 5.1.1, that is specialised for handling the sparse arrays

compressed representation. This has the following advantages:

• dense and sparse arrays share a common first optimisation phase, that is

based on transformation rules defined over a compact set of operators;

• the clean direct relationship among the functional definition of arrays, the

SRAM syntax and the core array algebra is preserved. This provides a

more theoretically solid ground for the definition and the application of the

transformation rules presented in Section 5.1.1.

Minimising the usage of Grid operators is especially beneficial for processing

sparse arrays. The underlying assumption is that the physical representation of

a sparse array may be several orders of magnitude smaller than its nominal size.

Given a sparse array that fits well in the physical resources available, its dense

representation, and Grid operators in the same nominal size, may cause a severe

waste of the same physical resources or even exceed them. Grid operators are

less critical in the evaluation of dense arrays, as they use physical resources in the

same order of magnitude of the arrays being evaluated, which are supposed to be

reasonably sized. However, the input space oriented approach may be beneficial

for evaluating dense arrays too, even though to a possibly smaller extent. The
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potential benefit depends on the problem at hand and the choice to introduce

these operators is determined by the optimiser.

Splitting Apply operations

One of the advantages of the “Apply + Grid” combination is that consecutive

occurrences of such a pattern can be merged into one single operation, thanks

to the functional (thus predictable analytically) nature of the Grid operator (we

focus here on the Grid operator, but for the same reason, patterns including the

Const operator qualify as well for such a merging). For example, given array

A[3], the two reshaping operations

A′ = Apply(A,Grid([4, 3], 1)) (replication)

B = Apply(A′,Grid([3, 4], 1),Grid([3, 4], 0)) (pivoting)

can be merged into a single one:

B = Apply(A,Grid([3, 4], 0))

The inverse transformation, that is to split Apply operations into a series of more

elementary ones, is also possible. Although it does not provide any direct benefit

in terms of optimisation, this second transformation may simplify the detection

of elementary reshaping operations like the ones described by Pivot , RangeSel

and Replicate operators.

Rule 5.8 (Splitting Apply operations). This rule states that it is always

possible to split Apply operations in two steps (when no simpler transforma-

tions are deductible analytically, these two steps are the original transformation

and an identity transformation):

B = Apply(A, I0, . . . , In−1)

∃ I ′0, . . . , I ′n−1, ∃ I ′′0 , . . . , I ′′k−1 : B′ ≡ B
B′ = Apply(Apply(A, I ′0, . . . , I

′
n−1), I ′′0 , . . . , I

′′
k−1)

Note that the split transformation may be not unique: several combinations of

I ′0, . . . , I
′
n−1 and I ′′0 , . . . , I

′′
k−1 may exist that make the equivalence true (while the

inverse transformation is unique). For this reason, it is not possible to provide a

set of rules that cover all patterns. An array optimiser can implement the detec-

tion of a number of patterns, triggered by heuristic strategies aimed at achieving

specific goals (e.g. translating Apply into combinations of Pivot , RangeSel and

Replicate). �
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In the following, the operators Pivot , RangeSel , Replicate and JoinMap are

described, including the rewriting rules to generate them from core algebra and

the rules to map them onto relational algebra.

Pivot

The Pivot operator captures Apply + Grid combinations that perform axis trans-

position operations.

Rule 5.9 (Apply to Pivot).

B = Apply(A,Grid(S, j0), . . . ,Grid(S, jn−1))

[S(j0), . . . ,S(jn−1)] = SA
B ≡ Pivot(A, [j0, . . . , jn−1])

The premise [S(j0), . . . ,S(jn−1)] = SA makes the pattern qualify for the trans-

formation rule when the shape S is a permutation of the original shape SA, and

that the permutation order is identified by integers [j0, . . . , jn−1] �

The relational mapping for Pivot uses a projection operation to exchange the

order of index columns in the original relation.

Rule 5.10 (Relational mapping for Pivot).

B = Pivot(A, [j0, . . . , jn−1]) A 7→ A

B 7→ B = πij0 ,...,ijn−1
,v (A)

�

Example 5.8 (Sparse matrix transposition).

Consider the following sparse matrix transposition

A = ([300,400],dbl) sparse(0,0.1) "A"

A’ = [ A(y,x) | x<400,y<300 ]

A

Apply()

A[300, 400]) Grid([400, 300], 1) Grid([400, 300], 0)

This is first translated into a Pivot operation, and then mapped onto relational
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algebra with a project operation:

A

Pivot([1, 0])

A[300, 400])

R

πi1,i0,v

A(i0,i1,v)
�

RangeSel

The RangeSel operator performs range selections over arrays. Given an array A,

it zooms in on a sub-array identified by an offset O from the origin and a shape S,

that together define a multi-dimensional index range. This operator is equivalent

to a pattern that uses an Apply operator together with optional Const operators

to define the offset O, Grid operators to define the index domain identified by

the new shape S and Map operators to sum the previous two.

Rule 5.11 (Apply to RangeSel).

B = Apply(A, I0, . . . , In−1)

|B| < |A| |SB | = |SA|

∀k ∈ [0, n[ :
∨{

Ik = Grid(S, k)

Ik = Map(+,Const(S, ck),Grid(S, k))
|S| = |SA|

B ≡ RangeSel(A,O,S)

∀k ∈ [0, n[ : O(k) =

{
0 if Ik = Grid(S, k)

ck if Ik = Map(+,Const(S, ck),Grid(S, k))

�

The relational mapping for RangeSel involves two steps:

1. (σ) perform the selection of tuples whose index attributes satisfy the range

condition imposed by O and S;

2. (π) shift the selected sub-array to the origin (in accordance with Defini-

tion 4.5).
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Rule 5.12 (Relational mapping for RangeSel).

B = RangeSel(A,O,S) A 7→ A

B 7→ B

B = πi0=i0−O(0),...,in−1=in−1−O(n−1),v (X )

X = σi0≥O(0)∧···∧in−1≥O(n−1)∧i0<S(0)+O(0)∧···∧in−1<S(n−1)+O(n−1)(A) �

Replicate

The operator Replicate increases by one the number of dimensions (valence) of

an array, by replicating it k times. The new dimension, that becomes the first

one in the new array, is long k.

Rule 5.13 (Apply to Replicate).

B = Apply(A,Grid(S, 0), . . . ,Grid(S, n− 1))

|S| = |SA|+ 1

[S(1), . . . ,S(n)] = SA k = S(0)

B ≡ Replicate(A, k) �

The relational mapping for Replicate performs a cartesian product between the

enumeration of the new axis values and the original array.

Rule 5.14 (Relational mapping for Replicate).

B = Replicate(A, k) A 7→ A

B 7→ B = IndexTable([k])× A �

Although a potentially large IndexTable() operator is used in this mapping, the

equivalent based on the Apply + Grid combination materialises a Grid in the size

of result array B and then produces the result, which needs nearly twice as much

system resources.
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Example 5.9 (Splitting a complex Apply + Grid combination).

Consider the following array transformation:

A = ([30],int) sparse(0,0.1) "A"

A’ = [ A(x) | x<10,y<5 ]

A

Apply[10, 5]

A[30] Grid([10, 5], 0)

It performs a range selection on axis x and replicates the result 5 times along a new

dimension y. This example shows a possible transformation of this Apply + Grid

combination into a sequence of more specialised operators.

First, a RangeSel operator is extracted out of the original Apply , which yields

an array of shape [10]. The residual Apply still needs the same Grid as before:

Grid([10, 5], 0). However, no more selection is needed on the new input.

A

Apply[10, 5]

RangeSel([0], [10])[10]

A[30]

Grid([10, 5], 0)

The next operator extracted from the residual Apply is Replicate:

A

Apply[10, 5]

Replicate(5)[5, 10]

RangeSel([0], [10])[10]

A[30]

Grid([10, 5], 1) Grid([10, 5], 0)
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The Replicate operator creates a new major axis of length 5, which yields a

shape [5, 10]. The residual Apply must then swap the two axes, in order to

produce the desired shape [10, 5] (note that because the new intermediate result

is bi-dimensional, two Grid operators are now needed). The last Apply matches

indeed the pattern required for a Pivot transformation:

A

Pivot([1, 0])[10, 5]

Replicate(5)[5, 10]

RangeSel([0], [10])[10]

A[30])
�

JoinMap

Operators like Pivot , RangeSel and Replicate may handle their input array more

efficiently than their Apply-based equivalent. Further improvements are possible,

however, when more than one input array are to be processed by the same oper-

ator. Such an opportunity arises with the Map operator.

Recall that, because of the shape-alignment normalisation step described in

Section 4.4.1, every element of an SRAM expression is reshaped as to match

the shape of the result array. In a Map(f,A0, . . . , Am−1) expression, all the

A0, . . . , Am−1 arrays are expected to match the Map’s result shape after reshap-

ing. Combinations of Pivot , RangeSel and Replicate operators may be estimated

to perform such reshaping operations more efficiently than their equivalent ex-

pressions based on the Apply operator. However, the resulting Map expression

may still translate into a sub-optimal relational plan when considered as a whole

(more details follow):

lazy shape alignment - reshaping the Ak, k ∈ [0,m[) arrays may create large

intermediate results before the actual processing of the Map operator.

These could be avoided: the correct result can be produced starting from

the stored index values of all the Ak arrays, also when these are not shape-

aligned. This “lazy” approach to shape alignment aims at minimising ex-

pensive intermediate result materialisations by operating directly on non

shape-aligned arrays;
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early filtering of non-qualifying indices - the performance loss caused by a

“short-sighted” reshaping of the Ak arrays (i.e. unaware of the Map ex-

pression as a whole) has a dramatically larger impact when sparse arrays

are to be processed: the lower the input arrays’ density, the the lower the

chances of materialised indices in the result array.

The examples shown hereafter consider Map operations between two arrays A

and B, and their possible rewriting into newly introduced JoinMap operations.

The mappings onto relational plans refer to dense arrays or to sparse arrays with

εA = εB = 0. In both this cases we are allowed to reduce the result of 4.6 down to

expression C 1 = π̌ı,v=f(A.v ,B.v)(A onı̄ B), which simplifies the presentation of the

concepts in this section (that are however valid for any expression).

Consider the following three expressions:

arrays A and B are both aligned to the result array already:

[ A(x,y) * B(x,y) | x,y ] (5.1)

arrays A and B share one of their axes (y):

[ A(x,y) * B(y,z) | x,y,z ] (5.2)

arrays A and B share no axis:

[ A(x,y) * B(w,z) | x,y,w,z ] (5.3)

One way to explain what these three expressions have in common is that the

elements of A and B that are to be multiplied are functions of the result array

index domain. Such index domains are identified by all the combinations of values

for the axes in the comprehension expression: x,y for (5.1), x,y,z for (5.2) and

x,y,w,z for (5.3). In array algebra, the enumeration of such combinations is

obtained “per-array”, that is reshaping each array as mentioned above, due to

the shape-alignment normalisation step. We can see such an approach depicted

in Figure 5.1 for the three expressions. Notice that the array algebra translation

shown there is already partially optimised with Pivot and Replicate operators in

place of Apply and Grid operators. Nevertheless, such an optimisation does not

remove the main disadvantage of this approach: each array is replicated up to

the result’s index domain.

However, in the three expressions above, all the axis combinations can be
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[ A(x,y) * B(x,y) | x,y ]

A

Map(∗)

Ax,y By,z

(a) Expression (5.1)

[ A(x,y) * B(y,z) | x,y,z ]

A

Map(∗)

Pivot([1, 2, 0])

Replicate(|z|)

Ax,y

Replicate(|x|)

By,z

(b) Expression (5.2)

[ A(x,y) * B(w,z) | x,y,w,z ]

A

Map(∗)

Pivot([2, 3, 1, 0])

Replicate(|w|)

Replicate(|z|)

Ax,y

Replicate(|x|)

Replicate(|y|)

Bw,z

(c) Expression (5.3)

Figure 5.1: The standard array algebra translation and optimisation for three
different Map operations

obtained “collaboratively”, each array contributing the axis values that it con-

tains. In relational algebra, obtaining all the combinations from values stored

in different tables translates to using the cartesian product operator. On top of

those combinations, the three expressions differ as follows: in (5.1), axes x and y

have the same value for each combination in both arrays (only the combinations

that satisfy this condition should be retained); in (5.2), only axis y is shared

between the two arrays (only the combinations that satisfy this condition should

be retained); in (5.3), arrays A and B share no axis (all the combinations should

be considered). The restrictions to the enumeration of axis combinations of (5.1)

and (5.2) remove duplicates that would be created due to the existence of the

same axis values in more than one array. In relational terms, such restrictions

translate into joins: selections on top of the cartesian products. Figure 5.2 shows

this approach on the three expressions discussed above.

Such relational translations, compared to the ones derivable from array ex-

pressions as in Figure 5.1, allow for the achievement of the two advantages anti-

cipated at the beginning of this section:

lazy shape alignment - the result index domain is created only once, using

the index domains of arrays A and B, rather than three times (one for array

A, one for array B and one for the result array). This is possible thanks to

the relational cartesian product operator. The impact of this optimisation

is equal for both dense and sparse array processing.

early filtering of non-qualifying indices - A selection on top of the
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[ A(x,y) * B(x,y) | x,y ]

R

πx,y,v=∗(A.v,B.v)

σA.x=B.x,A.y=B.y

×

A(x, y , v) B(x, y , v)

R

πx,y,v=∗(A.v,B.v)

onx,y

A(x, y , v) B(x, y , v)

(a) Expression (5.1)

[ A(x,y) * B(y,z) | x,y,z ]

R

πx,y,z,v=∗(A.v,B.v)

σA.y=B.y

×

A(x, y , v) B(y , z, v)

R

πx,y,z,v=∗(A.v,B.v)

ony

A(x, y , v) B(y , z, v)

(b) Expression (5.2)

[ A(x,y) * B(w,z) | x,y,w,z ]

R

πx,y,w,z,v=∗(A.v,B.v)

×

A(x, y , v) B(w , z, v)

(c) Expression (5.3)

Figure 5.2: The desired relational translation for three different Map operations

cartesian product operator filters out the index combinations that do not

qualify as belonging to the result index domain. However, these get mater-

ialised before such a selection. Thanks to the relational join operator, the

selection is embedded in the cartesian product, so that combinations that

do not satisfy the selection criteria do not get materialised. The impact

of this optimisation step can be extremely high, especially when processing

sparse arrays: the lower the density of arrays A and B, the lower the chance

to find tuples from the resulting tables that match the join conditions (that

become therefore more selective).

Summarising the three cases above, a new JoinMap array operator can be

introduced as a generalisation of the Map operator, to allow direct handling of

non shape-aligned arrays. This new operator captures patterns that can be easily

translated into efficient relational expression that use the join operator and no

Apply + Grid combinations.

Rule 5.15 (Map to JoinMap). The pattern captured by this rule is a Map

on top of arrays that are to be reshaped to the result’s shape, by means

of Apply + Grid combinations. Arrays that need no reshaping, because they

are shape-aligned to the result array already, can always be interpreted as

Apply + Grid combinations that result in identity transformations. For this
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reason, the rule can assume all the A0, . . . , Am−1 arrays are Grid applications.

B = Map(f,A0, . . . , Am−1)

∀k ∈ [0,m[ : Ak = Apply(A′k, Ik0, . . . , Ik|SA′
k
|−1)

∀l ∈ [0, |SA′k |[ : Ikl = Grid(SAk
, jkl)

B ≡ JoinMap(f,J , A′0, . . . , A′m−1)

J = [J0, . . . ,J|L|−1]

∀l ∈ [0, |L|[ : Jl = [pos(L(l), L0), . . . , pos(L(l), Lm−1)]

L = L0 ∩ · · · ∩ Lm−1

∀k ∈ [0,m[ : Lk = [jk0, . . . , jk|SA′
k
|−1]

where pos(x,X) returns the 0-based position of element x in vector X.

The result is a JoinMap expression that operates directly on the A′0, . . . , A
′
m−1

arrays (thus skipping all the Grid applications). The additional knowledge that

this operator needs to carry in order to be processed in relational algebra is a

list of the axes that are shared among the A′0, . . . , A
′
m−1 arrays and the result

array. This knowledge is encoded as vector of vectors, J . For each shared axis l,

J (l) = Jl lists the positions of that axis in each of the A′0, . . . , A
′
m−1 arrays. This

determines which table attributes will form the join conditions in the relational

translation. �

Rule 5.16 (Relational mapping for JoinMap). The relational mapping for

JoinMap is similar to the one for Map (see Rule 4.7), except that the join condi-

tions do not entail all the index attributes, but only those listed by J .

∀l ∈ [0;m[: Al 7→ Al
B = JoinMap(f,J , A0, . . . , Am−1)

B 7→ B =

2m⋃
j=1

Bj

B1 = πJ ,v=f(A0.v ,...,Am−1.v)(A0 onJ · · ·onJ Am−1)

B2 = πJ ,v=f(A0.v ,...,Am−2.v ,εAm−1
)(A0 onJ · · ·onJ Am−2 onJ Ãm−1)
...

B2m−1 = πJ ,v=f(εA0
,...,εAm−2

,Am−1.v)(Ã0 onJ · · ·onJ Ãm−2 onJ Am−1)

B2m = πJ ,v=f(εA0
,...,εAm−1

)(Ã0 onJ · · ·onJ Ãm−1)
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where

onJ =onp,

p =

|J|−1∧
l=0

(
m−2∧
k=0

(
iJ (l)(k) = iJ (l)(k+1)

))

and

πJ = πq,

q = iJ (0)(0), . . . , iJ (|J|−1)(0) �

Now we can reformulate in terms of JoinMap the three expressions previously

seen, obtaining the transformations shown in Figure 5.3. The second transform-

ation is shown hereafter in detail, to illustrate Rule 5.16.

Example 5.10 (Map to JoinMap).

This example shows the complete transformation path of the expression in (5.2).

The standard array algebra expression contains a Map on top of two arrays A

and B, reshaped through Grid applications. Rule 5.16 transform such a pattern

into a JoinMap operator. In the following, only the symbol S is shown in place

of the result’s shape S = [|x, |, |y|, |w|, |z|], for presentation purposes.

[ A(x,y) * B(y,z) | x,y,z ]

A

Map(∗)

Apply

Ax,y Grid(S, 0) Grid(S,1)

Apply

By,z Grid(S,1) Grid(S, 2)

Application of Rules 5.15 and 5.16 yields an optimal relational plan for this array
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pattern:

JoinMap(∗, [[1, 0]])

Ax,y By,z

R

πx,y ,v=∗(A.v ,B.v)

ony

A(x , y , v) B(x , y , v)

The only axis that is shared between A’s and B’s reshaping applications is the

one with order number 1 in the result’s shape, thus axis y. Vector J contains

only one vector with the position of axis y in arrays A and B. Formally, the rule

is applied to this example as follows:

C = Map(∗, C0, C1)

C0 = Apply(A,Grid(S, 0),Grid(S, 1))

C1 = Apply(B,Grid(S, 1),Grid(S, 2))

C ≡ JoinMap(∗,J , A,B)

J = [J0]

J0 = [pos(1, L0), pos(1, L1)] = [1, 0]

L = L0 ∩ L1 = [1]

L0 = [0, 1] L1 = [1, 2] �

5.1.3 Array fragmentation

Identification of suited fragmentation patterns for given data and query expres-

sions is a prerequisite for a number of advanced execution strategies. For example,

fragmentation can be employed to limit the consumption of system resources, by

dealing with only one sub-problem at the time. When multiple processing units

are available, several fragments can be evaluated in parallel, provided that they

do not have inter-dependencies. The same considerations can be extended to a

distributed environment, with processing units connected by a network.

Data fragmentation strategies can be divided into two main classes: static
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[ A(x,y) * B(x,y) | x,y ]

A

JoinMap(∗, [[0, 0], [1, 1]])

Ax,y Bx,y

R

πx,y,v=∗(A.v,B.v)

onx,y

A(x, y , v) B(x, y , v)

(a) Expression (5.1)

[ A(x,y) * B(y,z) | x,y,z ]

A

JoinMap(∗, [[1, 0]])

Ax,y By,z

R

πx,y,v=∗(A.v,B.v)

ony

A(x, y , v) B(x, y , v)

(b) Expression (5.2)

[ A(x,y) * B(w,z) | x,y,w,z ]

A

JoinMap(∗, [ ])

Ax,y Bw,z

R

πx,y,w,z,v=∗(A.v,B.v)

×

A(x, y , v) B(w , z, v)

(c) Expression (5.3)

Figure 5.3: The desired relational translation for three different Map operations,
using the JoinMap algebra operator

data fragmentation and query-driven fragmentation. The former tries to derive

fragmentation patterns that can accommodate well the query patterns expected

in the context of the application accessing such data, and makes those fragments

persistent on disk. The main cost factors involved in such a scenario have been

well studied in the context of distributed relational databases, e.g. see [CP85].

The latter tries to adjust the fragmentation strategy to each query at hand. Each

derived fragment can be made persistent on disk, which realises an incremental

fragmentation when more similar queries are issued on the same data (see e.g.

[IKM09]), or forgotten at each query, when the queries to be issued are not

expected to benefit from their mutual induced data fragmentation.

Arrays are in principle well suited for the identification of fragmentation pat-

terns. In particular, fully predictable fragmentation patterns in terms of inter-

dependencies, costs and evenly distributed workloads can be identified for dense

arrays [vBCdVK05]. This is not the case for sparse arrays, especially when data

are distributed non-uniformly, which makes the impact of fragmentation less pre-

dictable.

We consider non-incremental query-driven data fragmentation only, achieved

by fragmenting the result space of complex array algebra expressions.
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5.1.4 Result space fragmentation

Disjunct algebra sub-expressions are independent from each other: in the ex-

pression f(EA, EB), sub-expressions EA and EB have no side effects and can

potentially be evaluated in parallel. This makes each argument of any algebra

operator a candidate for being considered as independent execution fragment.

By fragmenting the result space this way, a fragmentation on the input data

space is induced by the structure of query expressions, rather than being defined

explicitly upfront.

However, when simply using those opportunities readily available in an exist-

ing query expression it is hard to achieve a balanced query load across fragments:

it is rare to find sub-expressions that are equally expensive to compute.

The structured nature of dense arrays allows the creation of new, balanced

opportunities to split the query expression, such as in presence of aggregate oper-

ators. The same strategy can be used against sparse arrays. In this case however,

non-uniform data distributions are most likely to induce a non-even workload dis-

tribution across the derived fragments.

Aggregate fragmentation

The following equivalence can be (repeatedly) applied to any commutative and

associative aggregate:

Rule 5.17 (Aggregate fragmentation). Recall from Section 4.5.3 the defini-

tion of f−.

A′ = Aggregate(f, j, A)

k = number of fragments

A′ = f−(A0, f−(· · · f−(Ak−2, Ak−1) · · · ))
∀l ∈ [0, k[ : Al = Aggregate(f, j,RangeSel(A,Ol,Sl))

The choice of Ol and Sl determines how the data contained into array A is

fragmented across the n arrays Al. In absence of additional information, the

standard rule makes each fragment equally sized (except one when the shape of

A cannot be divided equally into n fragments). �

Aggregate unfolding

Rule 5.17 can be repeatedly applied until the original aggregation func-

tion is fully unrolled into a series of basic binary operations For ex-

ample, a sum over a vector would unroll to a series of explicit addi-



Section 5.1: Array optimisation 109

tions: Aggregate(sum, 1, A) 7→ A(0) +A(1) + · · ·+A(n− 1). This transforma-

tion should be used with care, as it produces query trees whose size s is data-

dependent: s =
∏j−1
k=0 SA(k). Such query trees are obviously not manageable in

practice for large values of s. However, when s is known to be small (where

‘small’ is heuristically defined), such query formulations become viable and may

in some cases lead to better performance, due to the avoided cost of aggregation

operations.

Aggregate unfolding on explicit index arrays. Full aggregate unfolding is

particularly interesting when applied to explicit arrays. The following example

illustrates a typical scenario that may benefit from such a query transformation

(the example uses array syntax instead of array algebra for the sake of readabil-

ity).

Example 5.11 (Aggregate unfolding on explicit index arrays).

A persistent array Ax,y[100, 1000] and an explicit array I[3] are defined:

A = ([100,1000],int) "A"

X = [ 30 50 90 ]

We now perform an element-wise sum of the 3 vectors resulting from using X as

an index vector for the first axis of A, i.e.
∑2
i=0A(X(i), y):

[ sum([ A(X(i),y) | i ]) | y ]

The summation in this expression can be unrolled to as series of additions:

[ A(X(0),y) + A(X(1),y) + A(X(2),y) | y ]

Because X is an explicit array, values X(0), X(1) and X(2) are known at compile-

time, and can be directly replaced in the original query:

[ A(30,y) + A(50,y) + A(90,y) | y ] �

Section 6.3.2 shows the impact of aggregate unfolding on a large scale text

retrieval scenario.

5.1.5 Array optimisation algorithm and cost model

Given an array expression, an array optimiser defines strategies to devise a num-

ber of equivalent formulations and select the one that is estimated to be cheaper
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to evaluate.

The enumeration of alternative expressions is obtained by applying transform-

ation rules such as those described in sections 5.1.1, 5.1.3 and 5.1.2. To reduce the

complexity of this enumeration, SRAM applies such rules using principles from

randomised and greedy optimisation algorithms [MR96, PGL02, Joh90], as well

as some heuristic strategies. A predefined (or, alternatively, randomly chosen) se-

quence of rules is applied to the entire expression-tree recursively (in a bottom-up

or in a top-down fashion, depending on the specific rule at hand). The algorithm

is greedy in that it makes locally optimal choices at each stage and never re-

considers choices that were made at previous stages. Finally, it includes some

heuristics, for example in the length of the rule sequence to be applied. Also,

the output of some transformation rules (e.g. those defined in Section 5.1.3) may

be preferred to the original expressions due to the application of some heuristic

strategies, rather than deterministic measures as cost functions (see below).

Every time a transformation rule is applied to an expression, the cost of both

the old and the new expression is evaluated using a predefined cost function, and

the cheapest expression retained. The cost function used in SRAM is computed

on a single parameter, the total data volume processed by an operator:

cost(X) = size(X) + cost(children(X))

The simplicity of this cost function is based upon the assumption that the size of

arrays in input to and in output from each operator does not depend on the phys-

ical (relational) implementation of such operator and can therefore used safely

for a quick optimisation phase that precedes relational optimisation. Table 5.1

lists the instantiations of this cost function for each array algebra operator.

Example 5.12 (Cost function).

We consider again the transformation in Example 5.10 (Map to JoinMap), this
time with real shapes, and annotate every node with cost estimations according
to Table 5.1. For the sake of simplicity, we consider here dense arrays, so that
costs are easier to compute from shapes. For sparse arrays, density estimations
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Table 5.1: Cost measure for each array operator based on data volume

Operator Cost

R = Variable(Adef) cost(R) = |R| · δR
R = Grid(S, j) cost(R) = |R| · δR = |R|
R = Const(S, c) cost(R) = |R| · δR = 0

R = Apply(A, I0, . . . , In−1) cost(R) = |R| · δR + cost(A) +
∑n−1

k=0 cost(Ik)

R = Map(f,A0, . . . , Am−1) cost(R) = |R| · δR +
∑m−1

k=0 cost(Ak)
R = Aggregate(f, j, A) cost(R) = |R| · δR + cost(A)
R = Concat(A,B) cost(R) = |R| · δR + cost(A) + cost(B)
R = ISort(A, <ASC|DESC>) cost(R) = |R| · δR + cost(A) = |R|+ cost(A)
R = ITopN(A,n, <ASC|DESC>) cost(R) = |R| · δR + cost(A) = |R|+ cost(A)
R = Pivot(A,P) cost(R) = |R| · δR + cost(A)
R = RangeSel(A,O,S) cost(R) = |R| · δR + cost(A)
R = Replicate(A, k) cost(R) = |R| · δR + cost(A)

R = JoinMap(f,J , A0, . . . , Am−1)) cost(R) = |R| · δR +
∑m−1

k=0 cost(Ak)

must be taken into account.

A = ([10,2],int) "A"

B = ([2,30],int) "B"

C = [ A(x,y) * B(y,z) | x,y,z ] (SC = [10, 2, 30])

A

600 + 1820 + 1860 = 4280

Map(∗)[600]

600 + 20 + 600 + 600 = 1820

Apply[600]

20

Ax,y [10, 2]

600

Grid(SC , 0)

600

Grid(SC , 1)

600 + 60 + 600 + 600 = 1860

Apply[600]

60

Bx,y [2, 30]

600

Grid(SC , 1)

600

Grid(SC , 2)

A

600 + 20 + 60 = 680

JoinMap(∗, [[1, 0]])[600]

20

Ax,y [10, 2]

60

By,z [2, 30]

�
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5.2 Relational mapping optimisation

Both array algebra and relational algebra are suitable representations for the

application of rule-based tree-rewriting optimisation techniques. Section 5.1 dis-

cusses optimisations in the array algebra domain. Section 5.3 reviews the well-

known relational optimisations that are most relevant for SRAM. Important

optimisation opportunities arise during the mapping between array algebra and

relational algebra, by exploiting knowledge in both domains simultaneously. This

is the topic of this section.

Section 5.2.1 discusses how to improve upon the straightforward relational

representation scheme for sparse arrays introduced in Section 4.5.1. Section 5.2.2

introduces generic simplification mechanisms that allow for the optimisation of

specific mapping rules between the two domains. Some alternative mapping rules

so obtained for the Map are shown in Section 5.2.3.

5.2.1 Relational representation of sparse arrays

Recall from Section 4.5.1 how a sparse array A can be mapped onto a relation

A(̄ı, v):

A 7→ A(̄ı, v) = {(̄ı, A(̄ı)) | ı̄ ∈ DA, A(̄ı) 6= εA}

The following sections present some optimisations over this standard repres-

entation. Although all such optimisations result in more compact representations

for given array patterns, saving storage space is only a secondary goal. The main

aim is to represent arrays on disk such that the reduced I/O cost involved has a

beneficial impact on query processing efficiency.

Encoding sparseness

A first choice that concerns the optimisation of relational sparse array representa-

tion is whether to use a special encoding for sparse arrays at all. Such encodings

imply a trade-off between the benefits they provide and the overhead they in-

troduce inevitably (space- and/or computation-wise). For example, the storage

scheme proposed in this thesis becomes less and less beneficial in terms of saved

storage space as the array density grows, while the overhead introduced by sparse

array evaluation remains. In such cases, it may result more efficient to pay some-

thing more in terms of storage space, storing the array as dense, and profit from a

faster dense array evaluation. The decision of whether to use the sparse or dense

representation for an array is an optimisation problem that can be addressed by

a mixture of cost-based and heuristic-based strategies. This decision depends
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on many factors, including the characteristics of the particular application, the

storage space available and the density of the array.

The sparse array representation can be seen as a compression mechanism. In

principle, this scheme could be extended by recursively applying such a compres-

sion, on different ε values at each applications, and managing a list of missing

elements (ε1
A,ε2

A,. . . ) from the initial table.

Optimising special cases

In case of persistent dense arrays, all values in the primary key are present and

thus form a computable sequence. As an optimisation, columns (i0, . . . , in−1)

could therefore be omitted from the dense physical representation, as the full

table can be regenerated by using identity-columns or sequence generators, as

supported by SQL-2003. For example, given a dense array A[3, 4], the SEQUENCE

construct can be used to generate a single index column for the array, as if it was

one-dimensional. Finally, the one-dimensional array obtained can be re-shaped

into an n-dimensional one by using the row-major index transformation technique

described in Section 5.2.1:

CREATE SEQUENCE seq_int AS INTEGER START WITH 0;

CREATE VIEW A1 AS

SELECT NEXT VALUE FOR seq_int as i0, A.v as v

FROM A;

CREATE VIEW A2 AS

SELECT (i0/4)%3 as i0, i0%4 as i1, v

FROM A1;

A special case worth mentioning is the one of boolean sparse arrays. Here, the

value stored in column v is always the same (v = ¬ε), hence for sparse boolean

arrays column v can be omitted from the physical representation.

Optimising access patterns

The optimisation of different data access patterns can be achieved by means

of standard relational indexing structures on top of such relations, or by explicit

tuple clustering/sorting. SRAM uses the policy to store all persistent arrays in re-

lations that are clustered on their primary key (e.g. using index-organised tables).

This means that the order in which the array dimensions (that for a compound

primary key) are specified matters, and puts the tuples in the underlying data-

base relation in dimension order. Further improvements, not yet implemented in

the current SRAM prototype, include array storage fragmentation into tiles (or
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different fragment patterns) and replication of array relations. Both tiles and

array replica can be optimised independently for different access patterns.

Index transformations

The storage scheme proposed in Section 4.5.1 implies that the list of index at-

tributes in the relational domain matches the list of axes in the array domain.

However, this is not strictly necessary: one of the properties of array algebra is

to be independent of its physical representation (relational, in our case).

The list of index attributes in the relational domain may be a transforma-

tion of the list of axes in the array domain. A useful index transformation maps

every n-dimensional index ı̄ onto a one-dimensional index. By doing so, only one

index column is needed in the relational representation, which can save much

storage space and in some cases allow for a faster query execution. Because the

transformation maps indices from a n-dimensional space to a one-dimensional

space, the relational operations involved may need to be modified, and some of

the array operations may not be easily translated into relational plans when such

transformation is applied in between. For example, a simple Pivot(A, 1, 0), which

swaps the order of axes 0 and 1, may require to be executed on the n-dimensional

space in the relational domain. Transformations between the two spaces may be

decided at several points in the relational plan, provided that the inverse trans-

formation is possible. We present here some of such transformation functions.

Support for additional transformations, which include the Morton-order [Mor66]

(also known as Z-order) and Hilbert curves [Hil91], together with other variants

of space filling curves [Pea90], would be interesting future work in the context of

locality-preserving transformations.

Rule 5.18 (Generalised column-major index transformation). The gen-

eralised column-major index transformation is a method for mapping multidimen-

sional arrays indices onto the linear address space of physical memory [Knu97],

used by programming languages such as Fortran and mathematical tools such as

Matlab. When applied to matrices, this method has the effect of concatenating

columns (see Figure 5.4a). Generalising to n dimensions, the concatenation pro-

ceeds from the last to the first dimension. Function cΓn:1 takes a shape S and

an n-dimensional index ı̄ as inputs, and returns the 1-dimensional index i′:

ı̄ = (i0, . . . , in−1) S = (s0, . . . , sn−1)

i0 < s0, . . . , in−1 < sn−1

i′ = cΓn:1(S, ı̄) =

n−1∑
j=0

(
ij ·

j−1∏
k=0

sk

)
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To map indices back onto their original n-dimensional space, the n-dimensional

shape S is required by function cΓ1:n (÷ and % are integer division and modulo,

respectively):

S = (s0, . . . , sn−1) i′ <

n−1∏
j=0

sj

ı̄ = (cΓ1:n(S, i′, 0), . . . , cΓ1:n(S, i′, n− 1))

∀j ∈ [1, n[ : cΓ1:n(S, i′, j) =

(
i′ ÷

j−1∏
k=0

sk

)
% sj

�

Rule 5.19 (Generalised row-major index transformation). The general-

ised row-major index transformation is a method for mapping multidimensional

arrays indices onto the linear address space of physical memory [Knu97], used by

programming languages such as C. Compared to the column-major transforma-

tion, the axis order is reversed. When applied to matrices, this method has the

effect of concatenating rows (see Figure 5.4b). Generalising to n dimensions, the

concatenation proceeds from the first to the last dimension. Function rΓn:1 takes

a shape S and an n-dimensional index ı̄ as inputs, and returns the 1-dimensional

index i′:
ı̄ = (i0, . . . , in−1) S = (s0, . . . , sn−1)

i0 < s0, . . . , in−1 < sn−1

i′ = rΓn:1(S, ı̄) =

n−1∑
j=0

ij · n−1∏
k=j+1

sk


To map indices back onto their original n-dimensional space, the n-dimensional

shape S is required by function rΓ1:n (÷ and % are integer division and modulo,

respectively):

S = (s0, . . . , sn−1) i′ <

n−1∏
j=0

sj

ı̄ = (rΓ1:n(S, i′, 0), . . . , rΓ1:n(S, i′, n− 1))

∀j ∈ [0, n[ : rΓ1:n(S, i′, j) =

i′ ÷ n−1∏
k=j+1

sk

% sj

�

Column- and row-major index transformation are two variants of the same

family of transformations, Γn:1 and Γ1:n (notice the absence of c and r subscripts).
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The choice of which one to use depends on the specific problem at hand. It is

worthwhile mentioning a particular case when they can be used together: using

the complementary version of this transformation to map an array’s indices back

to their n-dimensional space is equivalent to reversing the array’s axis order. For

example, given a 2-dimensional array A:

∀ı̄ ∈ DA : rΓ1:2(SA, cΓ2:1(SA, ı̄)) ≡ Pivot(A, [1, 0])

Γn:1 transformations map n-dimensional index domains to 1-dimensional index

domains. This property is important for dense arrays, in that dense sequences do

not require storage (see Section 5.2.1). One disadvantage of Γ1:n transformations

(from 1 to n dimensions), is that they contain integer division (÷) and modulo

(%) arithmetic. Compared to the addition (+) and multiplication (·) involved in

Γn:1 transformations, integer division and modulo are very slow operations, that

even modern CPUs cannot optimise (for example through parallelisation). The

following method modifies the original shape at hand before applying Γn:1 and

Γ1:n transformations, in order to be able to perform faster division and modulo

operations.

Rule 5.20 (Exploiting fast arithmetics on powers of 2). This method

uses Γn:1 and Γ1:n transformations on a modified shape dSe(2). In this modified

shape, each dimensionality is raised up to the next number that is a power of

two (e.g. [3, 10] becomes [4, 16]):

ı̄ = (i0, . . . , in−1) S = (s0, . . . , sn−1)

i0 < s0, . . . , in−1 < sn−1

(S ′, i′) = Γn:1(dSe(2), ı̄)

dSe(2) = (ds0e(2), . . . , dsn−1e(2))

dxe(2) = 2dlog2(x)e

The transformation that maps indices back to their n-dimensional domain uses
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Γ1:n, again on the modified shape dSe(2):

S = (s0, . . . , sn−1)

dSe(2) = (ds0e(2) = 2e0 , . . . , dsn−1e(2) = 2en−1)

i′ <

n−1∏
j=0

dsje(2)

ı̄ = (Γ1:n(dSe(2), i′, 0), . . . ,Γ1:n(dSe(2), i′, n− 1))

with:

i′ % dske(2) ≡ i′ & (dske(2) − 1)

i′ ÷ dske(2) ≡ i′ >> ek �

The advantage of using the dSe(2) shape is that division and modulo operations

can be performed much faster when their second operand is a power of two:

When a = 2b :

{
x% a ≡ x & (a− 1)

x÷ a ≡ x >> b

Binary AND (&) and SHIFT (>>) operations can be executed very efficiently, even

10 times as fast as % and ÷ operations. If λ% and λ÷ are the CPU-cycles saved by

implementing % and ÷ operations with & and >> operations respectively, the total

number λ of CPU-cycles saved by applying a dΓ1:ne(2) transformation instead of

a Γ1:n transformation to the 1-dimensional encoding of an n-dimensional array

A is:

λ = (n · λ% + (n− 1) · λ÷) · |A| · δA

This cost can easily result in wall-clock time differences in the order of milli-

seconds for medium-complexity queries on reasonably sized arrays (e.g. the scen-

arios described in Chapter 6), which, depending on the application, may have a

high impact on the overall performance.

By enlarging a shape S to dSe(2), part of the associated index domain is

not used by the original array (see figures 5.4c and 5.4d). This does not result

in wasted storage space, as the “holes” created in the linear representation of

n-dimensional correspond to non-stored tuples. However, such holes introduce

additional complications, because they may be erroneously interpreted as non-

stored tuples corresponding to common values in a sparse array, if not handled

with care during relational processing.
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Example 5.13 (Generalised row- and column- major index transformation).

Consider the 3-dimensional array A with:

SA = [5, 20, 12]

ı̄ = (3, 10, 9) ∈ DA

S ′A = [5 · 20 · 12] = [1200]

column-major index transformation:

i′ = cΓn:1(SA, ı̄) = 3 + 10 · 5 + 9 · 5 · 20 = 953

i0 = cΓ1:n(SA, 953, 0) = 953 % 5 = 3

i1 = cΓ1:n(SA, 953, 1) = (953÷ 5) % 20 = 10

i2 = cΓ1:n(SA, 953, 2) = (953÷ (5 · 20)) % 12 = 9

row-major index transformation:

i′ = rΓn:1(SA, ı̄) = 3 · 12 · 20 + 10 · 12 + 9 = 849

i0 = rΓ1:n(SA, 849, 0) = (849÷ (20 · 12)) % 5 = 3

i1 = rΓ1:n(SA, 849, 1) = (849÷ 12) % 20 = 10

i2 = rΓ1:n(SA, 849, 2) = 849 % 12 = 9

column-major index transformation on dSAe(2):

dSAe(2) = [8, 32, 16]

i′ = cΓn:1(dSAe(2), ı̄) = 3 + 10 · 8 + 9 · 8 · 32 = 2387

i0 = cΓ1:n(dSAe(2), 2387, 0) = 2387 % 8 = 2387 & 7 = 3

i1 = cΓ1:n(dSAe(2), 2387, 1) = (2387÷ 8) % 32 = (2387 >> 3) & 31 = 10

i2 = cΓ1:n(dSAe(2), 2387, 2) = (2387÷ (8 · 32)) % 16

= (2387 >> (3 + 5)) & 15 = 9
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a b c

d e f

a d b e c f

cΓn:1 cΓ1:n

(a) Column-major.

a b c

d e f

a b c d e f

rΓn:1 rΓ1:n

(b) Row-major.

a b c

d e f

a d b e c f • •

cΓn:1 cΓ1:n

(c) Column-major on d[2, 3]e(2).

a b c

d e f

a b c • d e f •

rΓn:1 rΓ1:n

(d) Row-major on d[2, 3]e(2).

Figure 5.4: Index transformations for an array A[2, 3]

row-major index transformation on dSAe(2):

dSAe(2) = [8, 32, 16]

i′ = rΓn:1(dSAe(2), ı̄) = 3 · 16 · 32 + 10 · 16 + 9 = 1705

i0 = rΓ1:n(dSAe(2), 1705, 0) = (1705÷ (32 · 16)) % 8 =

= (1705 >> (5 + 4)) & 7 = 3

i1 = rΓ1:n(dSAe(2), 1705, 1) = (1705÷ 16) % 32 = (1705 >> 4) & 31 = 10

i2 = rΓ1:n(dSAe(2), 1705, 2) = 1705 % 16 = 1705 & 15 = 9 �

5.2.2 Arithmetic optimisation

Many expressions compute arithmetic formulae over the array data. These com-

putations provide often the opportunity for simplification, using very basic laws

of mathematics. During the translation from array algebra to relational algebra,

a simple analysis takes place for every arithmetic expression. Common patterns

such as
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• (x ∗ 0) = 0, (x ∗ 1) = x

• (x/1) = x

• (x+ 0) = x

• (x− 0) = x, (x− x) = 0

• log(1) = 0

• (x== x) = true

• (x ! = x) = false

and so on, are identified and simplified. Besides avoiding the runtime compu-

tation of such patterns, the main rationale for such a simplification is to reduce

arithmetic expressions to known values, which can in turn activate other im-

portant simplification rules. In particular, arithmetic optimisation is a crucial

mechanism to identify ε values in arbitrarily complex expressions and avoid their

storage in intermediate results, which has several important consequences:

• Unnecessary tuples are not stored in the relational representation of sparse

arrays.

• The actual density of sparse arrays stays closer to the estimated one. This

makes the optimisation process more reliable.

• The complexity of generic sparse array evaluation can be drastically re-

duced. The effects of arithmetic optimisation can activate rules that sim-

plify the relational expressions needed to implement sparse array computa-

tions.

A perfect example of the last item is the following rule, which has a great

impact on the simplification of several mapping rules, most notably those of

Map, JoinMap and Aggregate operators.

Rule 5.21 (Empty projection). This rule avoids the storage of relations that

represent sparse arrays, when all values in their v attribute are or become equal

to the default value of such arrays:

Y 7→ Y = π̄ı,v=f(v̄)(X )

f(X.v̄) = εY

Y ≡ {} �

Example 5.14 (Simplifying sparse matrix multiplication).

Consider the matrix multiplication in the expression

C = [ sum( [ A(x,y) * B(y,z) | y ] ) | x,z ]

where A and B are sparse arrays with εA = 0 and εB = 0. For presentation

purposes, we split the original expression in two sub-expressions: the first, P,
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considers only the multiplication part, while the second, C, performs the final

summation:

P = [ [ A(x,y) * B(y,z) | y ] | x,z ]

C = [ sum( [ P(x,z)(y) | y ] ) | x,z ]

The first sub-expression defines an array P , with εP = ∗(0, 0) = 0. The

Map operation corresponding to function ‘∗’ and the associated shape-alignment

procedure on arrays A and B can be substituted by a JoinMap operator, as in

Rule 5.15. This maps onto relational domain as shown in the following steps:

P = JoinMap(∗, [y])

Ax,y By,z

R
(Rule 5.16)

∪

P1 = π̄ı,v=∗(A.v ,B.v)

ony

A B

∪

P2 = π̄ı,v=∗(A.v ,0)

ony

A B̃

∪

P3 = π̄ı,v=∗(0,B.v)

ony

Ã B

P4 = π̄ı,v=∗(0,0)

ony

Ã B̃

R
(Rule 5.21)

πx,y ,z,v=∗(A.v ,B.v)

ony

A(x , y , v) B(y , z , v)

The generic relational mapping of JoinMap between 2 arrays requires the union

of 4 join operations, each representing a different portion of the result array. On
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top of each join, a projection computes the value of each sub-array’s elements. By

applying arithmetic optimisation and subsequently Rule 5.21 to such projections,

3 of them can be removed:

• P2.v = ∗(A.v , 0) = 0 =⇒ P2 ≡ {}

• P3.v = ∗(0,B.v) = 0 =⇒ P3 ≡ {}

• P4.v = ∗(0, 0) = 0 =⇒ P4 ≡ {}

Expression P4 is removed by Rule 5.21, as the result of ∗(εA, εB) coincides by

definition with the default value εP , which requires no storage. Expressions P2

and P3 are also removed by Rule 5.21, because εA = εB = εP . This makes the

relational mapping of sparse array P simplify to sub-expression P1, the same as

if arrays A and B were dense.

The second part of the original expression computes a summation over array

P :

C = [ sum( [ P(x,z)(y) | y ] ) | x,z ]

Its complete mapping onto relational algebra is as shown below:

C = Aggregate(sum, 1)

Py,x,z

R
(Rule 4.8)

π̄ı,v=+(G.v ,∗(0,M.v))

onı̄

G = x,zGv=sum(v)

P

M = π̄ı,v=((|x|·|z|)−v)

x,zGv=count(*)

P
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R

x,zGv=sum(v)

P

Relation G computes the summation of stored tuples in P. This is the equivalent

to the mapping of array P as if it were dense. Relation M computes the number

of non-stored tuples per group in relation P. The final join and projection add

the contribution of non-stored tuples per group to the regular aggregation values

in G . The key simplification that triggers the optimisation to the final relational

tree takes place in the top projection and is triggered by arithmetic optimisation:

+(G.v , ∗(0,M.v)) = G.v =⇒ π̄ı,v=+(G.v ,∗(0,M.v)) = π̄ı,v=G.v

Because the value M.v is no longer needed in the top expression, relation M and

its join with relation G can be removed altogether.

Combining the two sub-expressions back into one, the final relational plan

for the matrix multiplication between sparse arrays A and B, with εA = 0 and

εB = 0, is:

x,zGv=sum(v)

πx,y ,z,v=∗(A.v ,B.v)

ony

A(x , y , v) B(y , z , v)
�

5.2.3 Alternative mapping rules for the Map operator

The Map operator is defined over shape-aligned arrays. This property allows to

rewrite the mapping rule for Map from its original formulation given in Rule 4.7

to alternative ones that may result in more efficient relational query plans when

some conditions holds, for example when the density of arrays in input is low, or

when Rule 5.21 has a low impact. The alternative formulations considered use

the anti-join and the outer-join operators.
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Using the anti-join operator

Recall (4.6), the instantiation of Rule 4.7 for two sparse arrays A and B:

A 7→ A B 7→ B

C = Map(f,A,B)

C 7→ C =

4⋃
j=1

C j

C 1 = π̌ı,v=f(A.v ,B.v)(A onı̄ B)

C 2 = π̌ı,v=f(A.v ,εB)(A onı̄ B̃)

C 3 = π̌ı,v=f(εA,B.v)(Ã onı̄ B)

C 4 = π̌ı,v=f(εA,εB)(Ã onı̄ B̃) ≡ {}

Rule 5.21 removes expression C 4, as its element values are by definition equal to

εC . Expressions C 2 and C 3 still contain Ã and B̃ relations, that may be very

large when the density of arrays A and B is small, causing severe efficiency issues.

Because A and B are shape-aligned, relations A, B, Ã and B̃ all share the

same schema and the same compound primary key ı̄. This, together with the

fact that all join conditions are on the primary key ı̄, makes the following rule

applicable:

Rule 5.22 (Join to anti-join for retrieving non-stored indices). When

A and B are shape-aligned, i.e. when SA = SB , the primary key join A onı̄ B̃

matches all the indices stored in A and in B̃. This is equivalent to matching

all the indices stored in A but not stored in B. The latter formulation allows

to avoid computation of relation B̃ by means of an anti-join between stored

relations A and B:
A 7→ A B 7→ B SA = SB

A onı̄ B̃ ≡ A .̄ı B

Depending on the density of array B, therefore on the relative sizes of relations B

and B̃, the anti-join operation may be cheaper to evaluate than the original join

operation. Although the latter requires in principle a simpler evaluation, its cost

may be dominated by the materialisation of relation B̃, potentially very large. �

By applying Rule 5.22 to 4.6, an equivalent formulation that uses the anti-join
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operator can be derived for the Map over two sparse aligned arrays A and B:

A 7→ A B 7→ B

C = Map(f,A,B)

C 7→ C =

4⋃
j=1

C j

C 1 = π̌ı,v=f(A.v ,B.v)(A onı̄ B)

C 2 = π̄ı,v=f(A.v ,εB)(A .̄ı B)

C 3 = π̄ı,v=f(εA,B.v)(B .̄ı A)

C 4 = π̌ı,v=f(εA,εB)(Ã onı̄ B̃) ≡ {}

(5.4)

Expression C 4 is always removed by Rule 5.21. The join sequences of the different

parts of relation C should read informally as:

[C 1: A onı̄ B ] All indices stored in A and B.

[C 2: A .̄ı B ] All indices stored in A but not in B.

[C 3: B .̄ı A ] All indices stored in B but not in A.

The same formulation for three sparse arrays A, B and C is shown in (5.5):

A 7→ A B 7→ B C 7→ C

D = Map(f,A,B,C)

D 7→ D =

8⋃
j=1

Dj

D1 = π̌ı,v=f(A.v ,B.v ,C.v)(A onı̄ B onı̄ C )

D2 = π̌ı,v=f(A.v ,B.v ,εC)(A onı̄ B .̄ı C )

D3 = π̌ı,v=f(A.v ,εB ,C.v)(A onı̄ C .̄ı B)

D4 = π̌ı,v=f(εA,B.v ,C.v)(B onı̄ C .̄ı A)

D5 = π̌ı,v=f(A.v ,εB ,εC)(A .̄ı B .̄ı C )

D6 = π̌ı,v=f(εA,B.v ,εC)(B .̄ı A .̄ı C )

D7 = π̌ı,v=f(εA,εB ,C.v)(C .̄ı A .̄ı B)

D8 = π̌ı,v=f(εA,εB ,εC)(Ã onı̄ B̃ onı̄ C̃ ) ≡ {}

(5.5)

The join sequences of the different parts of relation D should read informally as:

[D1: A onı̄ B onı̄ C ] All indices stored in A, B and C .

[D2: A onı̄ B .̄ı C ] All indices stored in A and B but not in C .

[D3: A onı̄ C .̄ı B ] All indices stored in A and C but not in B.
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[D4: B onı̄ C .̄ı A ] All indices stored in B and C but not in A.

[D5: A .̄ı B .̄ı C ] All indices stored in A but not in B nor in C .

[D6: B .̄ı A .̄ı C ] All indices stored in B but not in A nor in C .

[D7: C .̄ı A .̄ı B ] All indices stored in C but not in A nor in B.

Generalisation of (5.4) and (5.5) to m arrays in input is shown in Rule 5.23:

Rule 5.23 (Relational mapping for Map using anti-join join).

∀l ∈ [0;m[: Al 7→ Al
B = Map(f,A0, . . . , Am−1)

B 7→ B =

2m⋃
j=1

Bj

B1 = π̌ı,v=f(A0.v ,...,Am−1.v)(A0 onı̄ · · · onı̄ Am−1)

B2 = π̌ı,v=f(A0.v ,...,Am−2.v ,εAm−1
)(A0 onı̄ · · · onı̄ Am−2 .̄ı Am−1)

...

B2m−1 = π̌ı,v=f(εA0
,...,εAm−2

,Am−1.v)(Am−1 .̄ı · · · .̄ı A1 .̄ı A0)

B2m = π̌ı,v=f(εA0
,...,εAm−1

)(Ã0 onı̄ · · · onı̄ Ãm−1)
�

Using the outer-join operator

Recall from previous section (5.4), the formulation of Map for two arrays in input,

that uses anti-join operators:

A 7→ A B 7→ B

C = Map(f,A,B)

C 7→ C =

4⋃
j=1

C j

C 1 = π̌ı,v=f(A.v ,B.v)(A onı̄ B)

C 2 = π̄ı,v=f(A.v ,εB)(A .̄ı B)

C 3 = π̄ı,v=f(εA,B.v)(B .̄ı A)

C 4 = π̌ı,v=f(εA,εB)(Ã onı̄ B̃) ≡ {}

Because A and B share the same relational schema and all the join and anti-join

conditions are defined on their primary keys, we are allowed to rewrite such a
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formulation by means of a single outer-join operation:

A 7→ A B 7→ B C = Map(f,A,B)

C 7→ C = π̄ı,v=f(A.v∨εA,B.v∨εB)(A ˇ=./=ı̄ B)

(A ˇ=./=ı̄ B) = π(∀i∈̄ı : A.i∨B.i),v̄ (A =./=ı̄ B)

(5.6)

This captures with one single relational operator all four cases described in (4.6)

and (5.4). Expression (A ˇ=./=ı̄ B) makes sure that no NULL value survives the

outer-join operation. Either side of the outer-join may produce NULL values for

index attributes, but not both sides at the same time. This means that the correct

values for index attributes are to be found on either side. Projection π∀i∈̄ı : A.i∨B.i

propagates the one that is not equal to NULL between A.̄ı and B .̄ı.

Removal of C 2 and/or C 3 in (4.6), and consequently in (5.4), corresponds

to substitution of the outer-join in (5.6) for left join or inner join operations

respectively. Table 5.2 describes this informally, i.e. ignoring projections.

Table 5.2: Effect of Rule 4.7 on (5.4) and (5.6)

A,B (5.4) (5.6)

∃εA,∃εB C = (C 1 ∪ C 2 ∪ C 3) C = (A ˇ=./=ı̄ B)

@εA,∃εB C = (C 1 ∪ C 2) C = (A←−−=./̄ı B)

∃εA,@εB C = (C 1 ∪ C 3) C = (B ←−−=./̄ı A)

∃εA,@εB C = C 1 C = (A onı̄ B)

f(εA,B.v) = εC

@εA,@εB C = C 1 C = (A onı̄ B)

Likewise, (5.5) for three sparse arrays A, B and C can be reformulated in

terms of a single outer-join operation in replacement for a union of anti-join

operations, as shown in (5.7):

A 7→ A B 7→ B C 7→ C D = Map(f,A,B,C)

D 7→ D = π̄ı,v=f(A.v∨εA,B.v∨εB ,C.v∨εC)(A ˇ=./=ı̄ B ˇ=./=ı̄ C )

(A ˇ=./=ı̄ B) = π(∀i∈̄ı : A.i∨B.i),v̄ (A =./=ı̄ B)

(5.7)

The removal of sub-expressions from (5.5) by the application of Rule 5.21 cor-

responds to the reduction of some full outer-joins to left-outer and inner joins in

(5.7). Table 5.3 describes this informally, i.e. ignoring projections. A comparison
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between the second and the third rows of Table 5.3 shows why the solution based

on outer-join is not always to be preferred to the one based on anti-joins. Outer-

join operators can capture the result of unions of joins and anti-joins with single

operations, which is potentially more efficient. However, they can only express

computations with larger granularity. The example shows that both expressions

D = (D1 ∪ D2 ∪ D4 ∪ D6) and D = (D1 ∪ D6) in (5.5) correspond to the same

expression D = (B ←−−=./̄ı A←−−=./̄ı C ) in (5.7). Expression (R ←−−=./̄ı S) is defined as a

simple projection on top of standard left-outer-join: πR.̄ı,v̄ (R =./̄ı S)

The choice of the most efficient solution in each case can only be made by

estimating the cost of each query plan in a relational optimiser.

Table 5.3: Effect of Rule 4.7 on (5.5) and (5.7) (few cases)

A,B,C (5.5) (5.7)

∃εA,∃εB ,∃εC D =
⋃8
j=1 Dj D = (A ˇ=./=ı̄ B ˇ=./=ı̄ C )

∃εA,@εB ,∃εC D = (D1 ∪ D2 ∪ D4 ∪ D6) D = (B ←−−=./̄ı A←−−=./̄ı C )

∃εA,@εB ,∃εC D = (D1 ∪ D6) D = (B ←−−=./̄ı A←−−=./̄ı C )

f(εA,B.v ,C.v) = εD

@εA,∃εB ,@εC D = (D1 ∪ D3) D = (A onı̄ C ←−−=./̄ı B)

@εA,@εB ,@εC D = D1 D = (A onı̄ B onı̄ C )

The generalisation of (5.6) and (5.7) to m arrays in input is shown in

Rule 5.24:

Rule 5.24 (Relational mapping for Map using outer-join).

∀l ∈ [0;m[: Al 7→ Al
B = Map(f,A0, . . . , Am−1)

B 7→ B = π̌ı,v=f(A0.v∨εA0
,...,Am−1.v∨εAm−1

)(X )

X = A0 ˇ=./=ı̄ · · · ˇ=./=ı̄ Am−1

(R ˇ=./=ı̄ S) = π(∀i∈̄ı : R.i∨S.i),v̄ (R =./=ı̄ S) �

By applying Rule 5.21, Rule 5.24 can be reduced to a more efficient variant

that uses a combination of outer and inner joins. This is possible by splitting

the set {A0, . . . ,Am−1} in two disjunct sets {A−0 , . . . ,A
−
q−1} and {A+

0 , . . . ,A
+
w−1},

and reformulating the union of the 2m cases in Rule 5.23 into “the computation

of all indices stored in all the relations A−0 , . . . ,A
−
q−1 but not stored in any of the
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relations A+
0 , . . . ,A

+
w−1”:

Rule 5.25 (Relational mapping for Map using outer and inner joins).

∀l ∈ [0;m[: Al 7→ Al
B = Map(f,A0, . . . , Am−1)

B 7→ B = π̌ı,v=f(A0.v∨εA0
,...,Am−1.v∨εAm−1

)(X )

X = A−0 onı̄ · · · onı̄ A−q−1
←−−=./̄ı A+

0
←−−=./̄ı · · · ←−−=./̄ı A+

w−1

(R ←−−=./̄ı S) = πR.̄ı,v̄ (R =./̄ı S) �

5.3 Relational optimisation

Relational optimisation is known to be a NP-complete problem [IK84, SM97].

This forces the optimisation process to limit the space of query plan alternatives

to be searched, for example by exploring only a subset of the possible transform-

ation rules. For this reason, most available relational optimisers come with a set

of transformation rules that is most likely to be suited to the typical query scen-

arios of the expected application domain. Because the development of relational

technology was tightly coupled to the business-oriented application domain, sup-

ported by the SQL query language, most available relational software, including

optimisers, are geared towards business-oriented application needs. This is the

main reason why, although possible, translating array expressions to SQL is not

an optimal choice: the array query language and SQL are designed to address

different application domains and therefore they need to exploit different handles

in order to use relational technology efficiently.

The relational layer of SRAM implements standard relational algebra. How-

ever, the mapping phase between the array and the relational domains, described

in Section 5.2, translates additional array-specific knowledge and makes it avail-

able to the relational optimiser, which is then able to rely on more focused pieces

of information and use more effectively the set of transformation rules that are

expected to have a high impact.

5.3.1 Domain-independent optimisation handles

The following is a sample of properties and pieces of information that may be

difficult to exploit by an available (SQL-oriented) relational system that is given

an expression coming from the array domain:
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• all relations have a very strict schema: n − 1 index columns, one or more

value columns;

• the domain of index values is known;

• index columns of some relations (those resulting from IndexTable and dense

arrays) are organised as predictable dense sequences;

• index columns together always form a compound primary key, also for in-

termediate relations.

The following example shows how some integrity constraints can be derived

due to the characteristics of the involved relations.

Example 5.15 (Derived referential constraints).

Consider the following expression between a sparse array A[10, 8] and a dense

array B[5]:

A = ([10,8],int) sparse(0,0.1) "A"

B = ([5],int) dense "B"

[ A(x,y) * B(y) | x, y<5]

R

πi0=A’.i0,i1=A’.i1,v0=∗(A’.v0,B.v0)

onA’.i1=B.i0

A’ = σi1<5

A(i0, i1, v0)

B(i0, v0)
F-P key constraint

A’.i1 −→ B.i0

The following integrity constraints exist:

• (A.i0,A.i1) −→ A: (A.i0,A.i1) is a primary key for A

• B.i0 −→ B: B.i0 is a primary key for B.

No foreign key can be defined on relation A to relation B. However, after the

selection on relation A, the domain of its i1 axis becomes identical to the domain

of attribute B.i0. Therefore, a query-driven referential constraint can be derived.

If we name A’ = σi1<5(A):
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• A’.i1 −→ B.i0: A’.i1 is a foreign key for the primary key B.i0.

Such a referential constraint can be inferred without any array-specific knowledge,

but with the availability of the following pieces of information: (i) values in

B.i0 form a dense sequence of integer numbers from o to 4; (ii) values in A’.i1
range from 0 to 4. Note that the latter requires a static analysis of the selection

criterion. �

The referential constraint inferred in Example 5.15 is not likely to be inferred

by many available relational optimisers. This is not due to complexity reasons,

but rather to its expected impact: while that pattern occurs very often for rela-

tions representing arrays, it may be considered unimportant by the developers of

a general-purpose database system.

5.3.2 Standard transformation rules with high impact

Standard relational optimisers may include rules that are not necessary when

dealing with such well-structured relations and a restricted set of operations (e.g.

only equi-join, only selections on index attributes). On the contrary, other rules

prove to be highly effective in the array scenario.

Outer-join simplification

Outer-join is an expensive operator and should be simplified to inner-join

whenever it can be proved that such a simplification does not alter the final

result. This can be informally described as follows: if all the NULL values pro-

duced by an outer-join operator are discarded by a following operator before they

can influence the final result, then they could as well not be produced. Therefore,

the outer-join originating them can be turned into an inner-join. When only the

NULL values originating from either the left or right side of an outer-join are to

be discarded, this can be turned into a left- or right-outer-join respectively. As a

simple example, consider the following relational expression:

σA.a>10(A =./=A.a=B.b B)

The implicit selection of non-NULL values for A.a allows to rewrite the full outer-

join into a left outer-join, which avoids creation of those NULL values in the first

place:

σA.a>10(A =./A.a=B.b B)

Less trivial patterns may discard NULL values, for example, by means of a sub-

sequent inner-join with a relation that is guaranteed not to contain NULL values
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in the join attribute (e.g. when the attribute is a primary key). A full description

of this family of relational optimisation rules can be found in [GLR97].

The application of outer-join simplification in the array domain arises from

a previously described optimisation step. Rules 5.24 and 5.25 are alternative

translation rules for the Map operator, aimed at better exploitation of shape

alignment and less data management overhead. To this end, the optimiser intro-

duces outer-join operators to replace unions of inner-join and anti-join operators,

possibly more expensive. While such newly introduced outer-join operators may

optimise the sub-query they belong to, it may happen that they perform more

work than necessary in the context of a larger query plan.

Section 6.3.2 describes in details a real scenario, a large-scale text retrieval

application powered by SRAM, where outer-join simplification plays an important

role. An array expression is composed by two main parts, that we report here

graphically (each relation contains an attribute d which is primary key):

ond

ond

ond

A B

C

=./=d

=./=d

A B

C

−→

ond

ond

ond

A B

C

ond

ond

A B

C

Because the top-level join is performed on a primary key (thus not-NULL), all

outer-join operations can be turned into inner-join operations (see the complete

discussion in Section 6.3.2 for further details).

Self-join elimination

Joining a relation with itself, with an equality join condition on the relation’s

primary key is a superfluous operation that can be simplified away. This query

pattern is not as unusual as it may seem, as it can result from rather common

array expressions like [ A(x) * A(x) | x ]. It can also arise from previous op-

timisations steps. For example, the result of the outer-join simplification example
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shown above is a primary key join between two identical sub-trees:

ond

ond

ond

A B

C

ond

ond

A B

C

−→

ond

ond

A B

C

Redundant join elimination

Self-join elimination can be seen as an extreme case of elimination of redundant

join operations. Consider the following transformation:

ond

ond

ond

A B

C

ond

ond

D A

E

−→

ond

ond

ond

A B

C

ond

D E

The conditions that allows to remove relation A from the second sub-tree are: (i)

the same relation appears in both the left and the right sub-trees of a primary-key

inner join; (ii) the relation is propagated up to the main inner join by means of

primary-key inner joins; (ii) no operation in between modifies the attributes that

are used in join conditions (e.g. projections). In essence, two identical relations

may appear in a query tree (even in different branches and at different depths)

and be simplified by removing one of the two when the query tree transports

untouched all their tuples up to the result.

Join reordering

Because the inner join operator is commutative (and associative under certain

conditions), the order in which a relational system joins tables does not change the

final result-set of the query. However, join order may have an enormous impact

on the cost of the complete query, so choosing the best join order becomes very

important. Here, we use again the result of a previous optimisation step (self-join

elimination), to show how this can be further refined, computing most selective
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joins first:
ond

ond

A B

C −→

ond

ond

B C

A

5.4 Physical optimisation: relational back-end

Many attempts of using database technology as a back-end for scientific applic-

ations have failed in the past, due to the lack of runtime performance that such

solutions provided in comparison with ad-hoc data management solutions. For

example, Howe and Maier [HM04] were successful in applying the array data-

model to a scientific dataset, using real examples from an Environmental Ob-

servation and Forecasting System. However, despite the power of their algebraic

framework, efficient data access was achieved by a custom-built data management

layer, after the database approach had been proven too slow for their needs. In

the Information Retrieval field, the first attempts of an integration with database

solutions date back to the seventies (e.g. [Mac79, Cra81]). Until today, no further

attempt has succeeded [CRW05, Wei07], consolidating the belief that the benefits

of database technology cannot be used to without a significant loss in term of

performance.

The statement “databases cannot support efficiently data-intensive applica-

tions” (such as IR) proved to be true with all the existing database engines that

were developed following the classical design principles that stem from general

purpose OLTP roots and historical hardware architectures. These design prin-

ciples in a nutshell focus on the fact that traditionally disk I/O is the main

bottleneck, while CPU processing is fast. Because query execution is expected to

be I/O bound, no or little attention is paid to exploiting the processing power of

the CPU. This picture has changed dramatically with modern storage hardware

and when data is physically structured in such a way that sequential access to

disk is predominant. In such cases, I/O throughput can be so high that even

modern CPUs cannot keep up with it. The design of next-generation database

engines has started from dropping the assumption that data cannot be delivered

at high rates to the CPU. This immediately calls for completely new query exe-

cution strategies and algorithms, that finally focus on the exploitation of modern

CPUs capabilities (e.g. large high-speed cache memories, super-scalar design,

branch prediction, speculative execution, out-of-order execution), enabling data-

crunching rates that can compete with those of customised solutions.
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5.4.1 Using the MonetDB/X100 backend

This section gives a brief introduction on the experimental MonetDB/X100 data-

base engine 1, which was identified as the next-generation database engine to best

fit in the scope of the SRAM project (other column-store, CPU-efficient engines,

such as MonetDB [CWI], would be possible candidates).

MonetDB/X100 provides a non-declarative relational query language, and

does not include an automatic query optimiser. SRAM, when used in com-

bination with MonetDB/X100, maps relational algebra expressions directly onto

the MonetDB/X100 query language, using its ad-hoc relational optimiser, which

adopts common strategies, such as join reordering and join elimination (see Sec-

tion 5.3). Chapter 6 details on the evaluation of experimental results using SRAM

in combination with MonetDB/X100.

MonetDB/X100 overview

MonetDB/X100 is an experimental relational database engine, optimised for high

performance data warehousing and OLAP workloads. It relies on the concept

of vectorised in-cache query execution to achieve good CPU utilisation [BZN05],

and a column-oriented storage manager that provides transparent light-weight

data compression [ZHNB06] to improve I/O-bandwidth utilisation. An overview

of the system architecture is presented in Figure 5.5.

MonetDB/X100 offers a language based on physical relational algebra,

providing operators such as e.g. Scan, ScanSelect, Project, Aggr, TopN, Sort,

MergeJoin, HashJoin.

Vectorised in-cache query execution.

Figure 5.5 shows an operator tree, being evaluated within MonetDB/X100 in a

pipelined fashion, using the traditional open(), next(), close() interface from the

Volcano [Gra94] iterator model. However, each next() call within MonetDB/X100

does not return a single tuple, as is the case in most traditional DBMSs, but a

collection of vectors, with each vector containing a small horizontal slice of a

single column. Vectorisation of the iterator pipeline allows MonetDB/X100 prim-

itives, which are responsible for computing core functionality such as addition

and multiplication, to be implemented as simple loops over vectors. This results

in function call overheads being amortised over a full vector of values instead of

a single tuple, and allows the compiler to produce data-parallel code that can be

1As of July 29th, 2009, the MonetDB/X100 engine development continues as the In-
gres/Vectorwise project [Vec].
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executed efficiently on modern CPUs. Furthermore, the size of a vector is chosen

in such a way that all vectors needed by a query fit the CPU cache. This avoids

materialisation of tuples that are being passed from one operator to the next,

minimising main memory access overheads. Such a vectorised in-cache architec-

ture allows MonetDB/X100 query evaluation to be an order of magnitude faster

than existing technology on data- and query-intensive workloads [BZN05].

Column-oriented storage and compression

The processing power of MonetDB/X100 can make the system extremely I/O-

hungry on certain queries. If the database does not fit in main memory, the only

solution to this problem is to increase the available I/O bandwidth. This can

be done by adding more hardware, or by optimising the DBMSs buffer manager

for bandwidth utilisation. With respect to the latter, MonetDB/X100 employs

a buffer manager, called ColumnBM, that relies on a column-oriented storage

scheme, to avoid reading unnecessary columns from disk. Further, the granularity

of disk accesses is in blocks of several megabytes, to optimise for fast sequential

I/O.

MonetDB/X100 takes the point of I/O-bandwidth utilisation even further, by

integrating ultra light-weight column compression, that happens on the bound-

ary between RAM and CPU cache (whereas other compressed database systems

typically target the disk-RAM boundary). These compression schemes are integ-

rated into the DBMS in such a way that data blocks are stored in compressed

form in memory (such that more data fits the buffer cache), and data is only de-

compressed on-demand, at vector granularity, directly into the CPU cache, where

it is fed into the operator pipeline, without writing the uncompressed data back

to main memory, as can be seen in Figure 5.5.

For compression to improve speed when using RAID storage systems deliv-

ering hundreds of megabytes per second, we need decompression routines that

can uncompress several gigabytes of data per second. To reach such speeds,

MonetDB/X100 is provided with the compression algorithms PFOR and PFOR-

DELTA [ZHNB06], that are designed to sacrifice some performance in terms of

compression ratio, in exchange for fast decompressibility.

Frame Of Reference (FOR) is a database compression method that stores

numerical table columns in a disk-block as the increment to a certain base value.

The increments are represented in a small integer, with a fixed bit width b. Each

disk-block may define a different base value and b. PFOR (Patched FOR) is an

extension of FOR [ZHNB06] that stores values as either a code or an exception. In

PFOR, codes are small integer increments to a base, like in FOR. Exception values
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PFOR-DELTA carryover-12

comp comp dec comp comp dec

ratio MB/s MB/s ratio MB/s MB/s

INEX 1.75 679 3053 2.12 49 524

TREC fbis 3.47 788 3911 4.26 98 740

TREC fr94 3.12 682 3196 3.49 84 689

TREC ft 3.13 761 3443 3.47 84 704

TREC latimes 2.99 742 3289 3.30 79 683

Table 5.4: PFOR-DELTA vs carryover-12

are stored in uncompressed form at the end of a disk block walking backwards.

PFOR-DELTA is PFOR on the differences between subsequent column values.

PFOR and PFOR-DELTA can handle data distributions with outliers bet-

ter than FOR, because they can represent outliers as exceptions, allowing b to

stay low. This makes them better suited to compress inverted lists, which con-

sist of increasing integer document identifiers that contain a term (or gaps, the

differences between subsequent identifiers). Custom-built IR systems routinely

employ compression of inverted lists [ZM06]. Recently in IR there is a trend

towards compression schemes that sacrifice some compression ratio for better

decompression speed [YDS09]. Carryover-12 is a recent example of such a com-

pression scheme [AM05c].

Table 5.4 shows that on a number of IR datasets, PFOR-DELTA is 5-6 times

faster than Carryover-12, at a cost of 15-20% lower compression ratio. Given the

bandwidth provided by modern multi-disk hardware (i.e. 300-600MB/s), and IR

compression ratios of around 3, a CPU needs to be able to produce 1-2GB/s of

uncompressed data just to keep up with the disks. As the CPU needs to compute

the IR ranking as well, decompression bandwidth must actually be significantly

higher to prevent the IR system from being I/O bound. The main drivers behind

the high speed in PFOR and PFOR-DELTA are their vectorisable algorithms, i.e.

they decompress column values without control dependencies (if-then-else), using

a technique called “patching”. By avoiding if-then-elses, modern CPUs are not

slowed down by branch-misprediction events, and the vectorisation exposes data

parallelism which modern super-scalar CPUs can exploit using loop pipelining

and speculative execution to reach high IPC (Instructions Per Cycle) [ZHNB06].

5.5 Discussion

This chapter describes a number of optimisation techniques for the “database

approach to sparse array computations” proposed in Chapter 4, with particu-
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lar emphasises on the challenges and opportunities that array sparsity involves.

The set of techniques presented can be further expanded to better reflect the

difference between a prototype research system and more production-oriented

software. New specialised operators can be introduced, for example to perform

non-rectangular selections (diagonal, triangular, chessboard) that cannot be cap-

tured by the RangeSel operator. More sophisticated storage schemes can be

used, for example to support data partitioning and replication, which in turn

can provide efficient access patterns on multiple array dimensions (e.g. efficient

access to both rows and columns of a matrix) and more opportunities for parallel

processing. Optimisation techniques alone are not the whole story though. An

important concept that this chapter aims to bring across is that the optimisation

of inter-domain applications should be specialised to each stage of the transform-

ation process from one domain to another, using the right technique at the right

moment – exploit each domain’s unique properties and propagate/translate in-

formation whenever possible. The effectiveness of this approach is the discussed

in Chapter 6.
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Figure 5.5: MonetDB/X100 architecture (IR query example)
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Extraordinary claims require

extraordinary evidence.

- Carl Sagan, astronomer 6
Evaluation

To evaluate the work proposed in this thesis, we experiment on a number of scen-

arios with the proposed ‘array-database’ approach: (i) specify the given IR task

in the array data-model (using the Matrix Framework for IR [RTK05]); (ii) express

such specifications in SRAM syntax; (iii) obtain optimised database queries for

such SRAM expressions; (iv) execute these queries on top of the MonetDB/X100

database engine [BZN05, ZBNH05]. Not all the steps above are analysed in detail

in every scenario, as each of these targets a different evaluation aspect.

Aim of this chapter is to verify which conclusions can be drawn from such

experiments in order to answer the questions posed in Chapter 1. In particular,

the following quality indicators can provide insights on the success of this work.

Engineering simplification (Section 6.1) - How does an interface based on

the array data model simplify the database-powered implementation of paramet-

rised search systems? This question links back to Chapter 3, where the design

principles of a Parametrised Search System (PSS) were introduced. Section 6.1

presents Spiegle, a real-life PSS implementation that instantiates ad-hoc data-

base queries for given combinations of retrieval models (expressed declaratively

as Matrix Framework for IR [RTK05] recipes using SRAM syntax) and data collec-

tions.

Flexibility (Section 6.2) - How flexible is the proposed ‘array-database’ ap-

proach with respect to different IR tasks and/or data collections? To show ap-

plicability of this approach to an IR task that goes beyond the classical keyword

search, Section 6.2 discusses the implementation of a social network search model.

141
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Efficiency (Section 6.3) - Is the performance provided by this approach satis-

factory? What is the importance of an optimised automatic translation compared

to the raw speed that the underlining database engine could provide? Section 6.3

presents the evaluation of a large scale text retrieval application based on a

SRAM + MonetDB/X100 implementation of a retrieval model as defined in the

Matrix Framework for IR [RTK05]. Efficiency, and in particular the impact that a

flexible approach has on efficiency, are tested on a classical IR task, but challen-

ging for its data size.

6.1 Spiegle: a PSS for XML retrieval

Chapter 3 introduces the concept of a Parametrised Search System (PSS). Dis-

tinctive feature of a PSS is to decouple search strategies from conceptual, logical

and physical content representation, bringing to IR systems what the database

field calls data independence and what De Vries has defined in [dV01] as content

independence. This is achieved by carefully introducing abstraction layers for the

declarative specification of search strategies, that stay as close as possible to the

problem definition, while abstracting away the details of the physical organisation

of data and content. In the same chapter, the array data-model is indicated as a

well-suited data-access abstraction and the Matrix Framework for IR [RTK05] as

a good framework for modelling IR in this abstraction. Chapters 4 and 5 detail

on how to map the array data-model onto efficient query processing on top of a

relational database engine.

Aim of this section is to show how this approach simplifies the engineering

of a real PSS, Spiegle, which instantiates efficient database queries for specific

combinations of search strategies and XML data collections.

6.1.1 PF/Tijah: a DB-powered XML retrieval system

PF/Tijah [HRvOF06] is a flexible XML search system implemented on top of a

relational database system. It offers a good starting point towards a PSS, for

two reasons: its relational backend natively implements data-independence and

its clear separation between structure and content, from its application interface

down to its application abstraction, facilitates the extension of the architecture

layers responsible for content management.

PF/Tijah’s layered system architecture, depicted in Figure 6.1a, uses the

PathFinder (PF) XQuery compiler [AYBC+06, BGvK+06] to query by structure,

as well as to construct the preferred result presentation. PathFinder translates the

XQuery (non-ranked) part of a query into a relational query plan, independently
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from the ranking component of the system. The Tijah [BMR+06] XML retrieval

system provides the content IR support, by processing the NEXI expressions in a

query. NEXI [RT04] is a subset of XPath (it allows only descendant and self axis

steps) that supports an additional about() clause, which ranks the selected XML

elements by their content. The resulting query language provides a powerful way

to customise (mainly) the structural aspects of a retrieval strategy.

PF/Tijah translates the NEXI expression into an internal logical query plan

consisting of Score Region Algebra (SRA) operators [Mih06]. The SRA algebra

operates on regions, portions of a collection with the following properties: start,

end, name, type (e.g. note, attribute, word) and score. SRA includes operators

that perform the following tasks on regions:

• element and term selection (σn=name,t=type);

• element score computation (Ap), implementing the about() clause accord-

ing to the desired retrieval model;

• element score combination (up, tp), to compute AND and OR combinations;

• element score propagation (I,J), to propagate scores to a common ancestor

or descendant.

Consider the simplified excerpt of an XML database of scientific publications:

<PAPERS>

<DOC>

<text>

<Abstract>IR as simple as cakes</Abstract>

...

</text>

</DOC>

<DOC> ..... </DOC> ...

</PAPERS>

The following example retrieves The title of documents written by John Smith,
where the abstract is about “IR DB integration”:

let $c := doc("papers.xml")//DOC[author = "John Smith"]

let $nexi := ".//text[about(.//Abstract, IR DB integration)];"

for $res in tijah-query($c, $nexi)

return $res/title/text()

The internal result of the XQuery expression $c is a non-scored region C.

Then, the NEXI expression $nexi computes a scored result region Rnexi start-

ing from region C. We show below the SRA formulation for region Rnexi, with
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Figure 6.1: Architectures of PF/Tijah and Spiegle

the following shorthands for the selection operator: Rnname = σn=name,t=node(C),

Rwname = σn=name,t=word(C).

Rnexi = Rntext I ((RnabstractApR
w
IR)up(RnabstractApR

w
DB)up(RnabstractApR

w
integration))

Each SRA operator implementation is given in terms of relational database

queries (by a system engineer). SRA operators are parametric to some extent:

several retrieval models are supported out-of-the-box for the ranking operator

Ap; scoring combination (up, tp) can be performed using different functions,

e.g. addition, multiplication, min, max; scoring propagation (I,J) is similarly

parametrised, with e.g. sum, average, weighted sum. Such parameters can be

chosen for each query using an extra ‘options’ parameter to the tijah-query()

function. However, the implementation corresponding to such parameters must

be hard-coded in the system. The SRA layer is identified as the application

abstraction layer in a PSS architecture. Although it provides a logical abstraction

of the original user query, it does not contain the specification of the retrieval

model to be used to accomplish such tasks.

6.1.2 PF/Tijah + Matrix Framework for IR + SRAM = Spiegle

While PF/Tijah provides a powerful query language to embed search functionality

in data processing, it does not support easy customisation of the retrieval model.
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Although advanced users may in principle modify the pre-defined mapping of

SRA operators to relational query plans to implement new ranking functions,

doing so is far from trivial. In other words, PF/Tijah supports the customisation

of the structural aspects of various search strategies, but it is inflexible with

respect to modifying the content aspects.

Spiegle overcomes this limitation in two steps. First, it supports the declar-

ative specification of retrieval models, by employing the Matrix Framework for IR.

This way, the search system engineer may implement information retrieval mod-

els at a high level of abstraction. Second, SRAM translates the specified retrieval

model automatically into a relational query plan.

Figure 6.1a shows how in PF/Tijah the modelling and the implementation

of retrieval models on top of the logical data-access abstraction are hard-coded

as black-boxes in the system by a system developer, who is then required to be

an IR and a DB engineer. Compare this with the desired Spiegle architecture

in Figure 6.1b, where the modelling and the specification of retrieval models

are open: the IR engineer employs the Matrix Framework for IR to define and

modify dynamically retrieval models in a declarative array syntax, which are

then translated to DB queries for the specific query-context automatically.

In the following, we detail how the Spiegle system uses its main components in

practice. We first explain how the Matrix Framework can handle XML documents.

Next, we see how to bootstrap, index and rank XML collections using the array

data-model. The SRAM scripts shown are translated on-the-fly into database

queries executed by the backend.

The Matrix Framework and XML data

The formalism of the Matrix Framework is not restricted to flat text search. Map-

ping the XML structure to the three dimensions location, document and term is

all that is needed to apply the Matrix Framework to semi-structured collections.

Each XML file can be seen as a collection of documents, where each distinct XML

element represents a different one. The main difference from modelling plain text

collections is that locations are now shared among different (nested) elements.

Therefore, locations are defined as term and XML tag position in the file. Con-

sider the following excerpt of the papers.xml collection of scientific publications,

where location, document and term identifiers are annotated next to each piece
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of text for the reader’s convenience, with l, d and t prefixes respectively:

<PAPERS>[l0,d0]

<DOC>[l1,d1]

<text>[l2,d2]

<Abstract>[l3,d3] IR[l4,t0] as[l5,t1] simple[l6,t2] as[l7,t1] cakes[l8,t3]</Abstract>[l9]

...

</text>[l40]

</DOC>[l41]

<DOC>[l42,d15] ..... </DOC>[l120] ...

</PAPERS>[l30000000]

Notice that: (i) the two <DOC> elements have different identifiers; (ii) the two as

occurrences have the same term identifier t1; (iii) locations l3 to l9 belong to

documents d0, d1, d2 and d3.

Bootstrapping XML collections

A Matrix Framework representation of a collection is obtained from vectors L

(location weight), D (document weight) and T (term weight), and matrices

LD (location-document) and LT (location-term). For the example collection

papers.xml, this corresponds to an SRAM script with the following definitions.

papers.ram :

#

"

 

!

// global information for collection "papers.xml"

nLocs=30000000 , nDocs=2000000 , nTerms=400000

L = [ 1 | l < nLocs ]

D = [ 1 | d < nDocs ]

T = [ 1 | t < nTerms ]

LD = [nLocs,nDocs], bool, sparse("0"), "LD_table"

LT = [nLocs,nTerms], bool, sparse("0"), "LT_table"

First, the length of each dimension is defined as nLocs, nDocs, nTerms. Then,

vectors L, D and T are defined, using a constant weight 1. Finally, matrices LD

and LT are declared as persistently stored in the database, as they are supposed

to be the outcome of an earlier parsing and pre-processing phase on the XML file.

For each persistent matrix, the dimensionality, the element type, the information

on sparsity (LD and LT are both sparse with common value 0) and the name of

the corresponding relational table are specified.

A script file similar to papers.ram is created automatically for each collection

and it is included in every SRAM script that uses that particular collection. Notice

that the script file above only contains SRAM definitions and no assignments (see

Section 4.3), which result in simple in-memory declarations.

Array System Libraries

The uniform approach to IR tasks like indexing and retrieval that the

Matrix Framework provides is easily operationalised by collecting the formulae
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#include "MF_DocContext.ram"

bm25(d,k1,b) = sum( [ w(d,t,k1,b) * Q(t) | t ] ) // Okapi BM25

w(d,t,k1,b) = log( nDocs / Tdf(t) ) * (k1+1) * DTf(d,t)

/ ( DTf(d,t) + k1 * (1 - b + b * Dnl(d) / avgDnl) )

langmod(d,a) = sum( [ lp(d,t,a) * Q(t) | t ] ) // Language Modelling

lp(d,t,a) = log( a*DTf(d,t) + (1-a)*Tf(t) )

(a) MF RetrievalModels.ram

// create index arrays as defined

// in the Matrix Framework for IR
#include "LinearAlgebra.ram"

DTnl := mxMult(mxTrnsp(LT), LD)

Dnl := mvMult(mxTrnsp(LD), L)

Tnl := mvMult(mxTrnsp(LT), L)

DT := [ min(DTnl(d,t),1) | d,t ]

DTf := [ DTnl(d,t)/Dnl(d) | d,t ]

Tf := [ Tnl(t)/nLocs | t ]

(b) MF Indexing.ram

// filter index arrays on the docs given in DX

DTnl = [ DTnl(d,t) * DX(d) | d,t ]

Dnl = [ Dnl(d) * DX(d) | d ]

DT = [ DT(d,t) * DX(d) | d,t ]

DTf = [ DTf(d,t) * DX(d) | d,t ]

(c) MF DocContext.ram

mxTrnsp(A) = [ A(j,i) | i,j ] // matrix transposition

mxDiag(A) = [ A(i,i) | i ] // matrix transposition

mxMult(A,B) = [ sum([ A(i,k) * B(k,j) | k ]) | i,j ] // matrix multiplication

mvMult(A,V) = [ sum([ A(i,j) * V(j) | j ]) | i ] // matrix-vector multiplication

mxNormRows(A) = [ A(i,j) / sum([ A(i,k) | k ]) | i,j ] // normalise to 1 each row of a matrix

(d) LinearAlgebra.ram

Figure 6.2: SRAM libraries (excerpts)

presented in Section 3.4 in a system library composed by SRAM expressions

(automatically made collection-dependent using a unique prefix for the collec-

tion’s stored arrays). Figure 6.2 shows an excerpt of such a library, that is used

in the subsequent paragraphs about indexing and retrieval of XML collections.

One can observe that the SRAM expressions are an almost direct transcription

of mathematical formulae to ASCII characters, which demonstrates the intuit-

iveness of array comprehensions as an IR query language.

Indexing XML collections

The indexing phase creates statistical information about a given collection. As

described in Section 3.4, this entails computation of some of matrices that de-

scribe quantities and frequencies. Definition of such matrices in SRAM syntax

is given in Figure 6.2d. Notice that this file contains array assignments, that

create persistent arrays in the database. The SRAM script for indexing the

example papers.xml collection becomes straightforward: load the collection’s

global definitions, followed by the generic index-creation assignments:
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�
�

�

#include "papers.ram" // global definitions for papers.xml

#include "MF_Indexing.ram" // create index arrays

Ranking XML documents

Recall the example query of Section 6.1.1, where the NEXI expression

.//text[about(.//Abstract, IR DB integration)] ranks the “text” elements that

contain an “Abstract” element about “IR DB integration”. This structured IR

part of the query is translated into SRA algebra. Selection of text and their

containing Abstract elements is performed by structure operations implemented

using PathFinder primitives. We call the resulting node-set the ranking-context,

represented in the Matrix Framework by a binary vector DX, where 1 means that

the corresponding document is in the ranking-context.
Ranking the Abstract elements of the ranking-context is performed by the

content Ap SRA operation. This corresponds to an internal function with signa-
ture:

Function rank(collection, rankingContext, queryTerms, N,

retrievalModel, param1, param2, ...) := rankedContext

This function turns the ranking-context of a given query into a top-N ranked-

context against the specified query terms, by applying the desired retrieval

model. Its body executes an SRAM script, customised at each call with the

value of the current function parameters. The script of the example NEXI query

above, with parameters collection=“papers”, retrievalModel=“langmod”

and N=20, corresponds to:'

&

$

%

// global definitions for collection papers.xml

#include "papers.ram"

// ranking-context and query terms

DX = [nDocs], bool, sparse("0"), "DX_table"

Q = [nTerms], bool, sparse("0"), "Q_table"

// include retrieval model definitions

#include "MF_RetrievalModels.ram"

// retrieve top N documents using "langmod" (Language Modelling)

S = [ langmod(param1,param2,...) | d ]

D20 := topN( [S(d) | d<20], DESC )

S20 := S(D20)

First, global definitions for the collection papers.xml are loaded. Then, the

ranking-context and the query terms are declared as persistent arrays, previously

stored in the database by the system. Definitions of the available retrieval models

are loaded (file MF RetrievalModels.ram) and the selected one used to rank

documents. Finally, the top 20 document identifiers and scores are computed

and used together as the ranked-context returned by the SRA operator.
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Figure 6.2a shows an excerpt of the available retrieval model expressions.

These get customised to the current querying scenario by declaring the two arrays

DX (ranking-context) and Q (query-terms) before each query is executed. The

first line includes library file MF DocContext.ram (Figure 6.2c). The array re-

definitions in this script limit the document axes of index arrays to the current

ranking-context by multiplying with the binary vector representing the ranking-

context (the result of this multiplication corresponds to those portions of index

arrays that contain information about the node-set to be ranked).

6.1.3 Discussion

The quality indicator addressed by the experiment discussed in this section is

engineering simplification. More precisely, the question driving the Spiegle PSS

example is: does an interface based on the array data model allow the database-

powered implementation of parametrised search systems, lowering the require-

ments in terms of database engineering expertise needed?. The discussed PSS

Spiegle builds upon PF/Tijah, which does provide a database implementation of

the search strategies supported. However, the definition of such search strategies

demands rather high database engineering skills. Spiegle replaces the hand-

written database queries by automatic translations of search strategy specifica-

tion, abstracting away physical details. In other words, the information retrieval

engineer who writes search strategies for Spiegle no longer needs to cover the

second role of (or be dependent on) a database engineer.

The task of the IR engineer working with Spiegle is additionally simplified by

the usage of a formal framework like the Matrix Framework for IR. The unified

approach that this provides to IR tasks facilitates the construction of search

systems based on well-defined building blocks, preferably organised in a stack

of array definition “libraries”, from low-level linear algebra macros up to single-

line instructions for indexing and retrieval. The Spiegle example also shows the

flexibility of the Matrix Framework when it comes to handle transparently different

kinds of collections, such as flat text or XML collections.

A possible direction for future work is indicated by the analysis of the LD

(location-document) matrix defined in the Matrix Framework. The distribution

of values 1 in this matrix is such that many consecutive locations belong to

the same document (this is true for both flat text and XML collections). The

relational representation of this matrix could employ a range-based encoding,

rather than the 1 relational tuple = 1 array cell encoding proposed in this thesis

(see Section 4.5.1). For example, a series of tuples in the relation storing the LD

matrix for a nested-documents collection (e.g. XML) could be encoded as two
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tuples only in the range-based representation:

locations 12-38 belong to both document 30 and 31

locations 39-54 belong to document 30

l d v

12 30 1

12 31 1

...

38 30 1

38 31 1

39 30 1

40 30 1

...

54 30 1

−→
l start lend d start lend v

12 38 30 31 1

39 54 30 30 1

In the case of an LD matrix, the range-based representation would have a po-

tentially large impact in terms of storage space needed and, more importantly,

in terms of number of tuples to be processed, which can determine dramatic per-

formance differences. The disadvantages that can be foreseen for this solution are

however a higher complexity of the query plans and of the relational operators

needed for array processing. For example, simple join operations would be re-

placed by expensive combinations of theta-joins with range-based join conditions

(e.g. A.d start > B.d start), selections and projections. A similar encoding is used

e.g. in the XQuery system [BGvK+06], which implements specialised relational

operators for efficient processing. Because one of the design goals of SRAM is to

rely on standard relational algebra as much as possible, we intentionally did not

take the route of special operators implementation, with the only, well justified,

exception of IndexTable. The choice of alternative relational encodings, with con-

sequent alternative relational query mappings, is an optimisation problem that

is considered a very promising direction for future work.

6.2 Personalised search in social networks

Aim of this section is to show the applicability of an array database approach to

Information Retrieval tasks beyond the classical keyword search. The emphasis is

put on the evaluation of how easily the problem can be expressed in terms of array

computations, and on validating practical applicability of its automatic relational

translation. For both aspects, achievements and hints for future improvements

are highlighted.
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6.2.1 Social networks

A social network is a map of the relationships between individuals. Social net-

working is the practice of active participation in the development of a social

network. By being part of social networks and expanding their connections with

others, individuals can boost their chances to find help for the tasks they aim

to achieve (e.g. finding a job, making business, establish personal relationships).

While such a concept has always existed in society (a family or a community are

examples of social networks), the unparallelled potential of the Internet to pro-

mote such connections is only now being fully recognised and exploited, through

Web-based groups established for that purpose.

Online social network services make virtual communities grow around the

concepts of connection, affinity and similarity among users. However, the focus

of each social network service can vary. Some focus on the interaction among

users, the possibility of communicating and sharing personal information and are

mostly used to keep in touch with or find new users considered “friends” (e.g.

Facebook [Fac], MySpace [MyS]). Others rely on the concept of trust among

connected users in some context (e.g. LinkedIn [Lin] helps to find and offer job

opportunities by trusting the mutual professional opinion of connected users).

Other social network services focus on specific topics and the knowledge of the

virtual community created around them, in order to store, annotate, rate and

suggest content of interest to their users (e.g. YouTube [You] for videos, Lib-

raryThing [Lib] for books). These networks are referred to as social content

networks.

6.2.2 Search in social content networks

Social content network services focus on particular items (books, videos, images,

etc). They provide a variety of mechanisms to help users find their way through

the network and reach relevant content. A mechanism that has become popular

in recent years is the possibility for users to annotate items with tags, which are

short textual descriptions (often one or two words), and subsequently use these

tags as query terms to find relevant items. For example, books can be assigned

tags “fiction”, “mystery” and “religion”. By using such tags as a query, the result

list would most probably include The Da Vinci Code, by Dan Brown, and other

similar books.

Social networks whose main entities are users, items and tags can be visu-

alised as a graph (Figure 6.3a). The act of tagging items creates connections

between nodes. By assigning counts to connections, the following interpretations

are possible (see Figure 6.3b):
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(a) A User-Item-Tag graph. (b) User-Item-Tag connections.

Figure 6.3: In the random walk model, the social content network is represented
as a tripartite graph, containing users, items and tags as nodes. The edges
between these entities are determined by ratings or tag counts.

User-Item indicates how many tags each user assigned to each item

User-Tag indicates how many items each user tagged with which tag

Item-Tag indicates how many users tagged each item with which tag

Intuitively, nodes in the graph whose connections have higher counts are more

likely to be related. The same concept extends to multi-step paths in the graph:

non-adjacent nodes are likely to be related when the sum of the counts along

the path between the two is maximised. Therefore, browsing the network to

find relevant entities corresponds to finding nodes that are reachable through

high-score paths from a given node.

6.2.3 The random walk model

In this section, we implement a flexible social network search model based

on Markov random walks, developed by Clements, De Vries and Reinders

in [CdVR08]. Although the model captures a number of possible retrieval tasks,

we focus on the task of personalised item recommendation: retrieve items that

are relevant to a user’s profile and to a specific query tag. We show how the

model can be implemented on a database engine using SRAM. As in [CdVR08],

we apply the model to a subset of LibraryThing data (see Section 6.2.4). We

slightly simplify the model by omitting some weight parameters, to put more

emphasis on its implementation.
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A random walk on a graph is a special case of a Markov chain, a stochastic

process with the Markov property: given the present state, the next state is

given by a certain probability distribution and is independent of the past states.

This probability distribution can be represented by a square transition matrix

Ai,j [nN, nN ], with ∀i :
∑
j A(i, j) = 1, where nN is the number of nodes in the

graph. Each element A(i, j) contains the probability of a one-step transition

from node i to node j. Elements A(i, i) in the diagonal of matrix A describe the

probability of self transitions. Self transitions have the effect of slowing down the

diffusion of the walk through the network. While transition matrix A describes

transition probabilities during the random walk, state vector V
(n)
i [nN ], with∑

i V
(n)(i) = 1, describes the probability distribution of being at a certain node

at step n. Transition and state probability distributions are the two ingredients

used in the implementation of a random walk model.

When representing a social content network as a transition matrix, nodes
referring to the same entity can be grouped together for convenience (changing
the order in which nodes are represented does not influence the connections among
them). Values for both axes i and j of matrix Ai,j [nN, nN ], as well as values for

axis i of vector V
(n)
i [nN ], refer to IDs of users, items and tags, in this order:

[0, . . . , (nU − 1)︸ ︷︷ ︸
nU

, nU, . . . , (nU + nI − 1)︸ ︷︷ ︸
nI

, (nU + nI), . . . , (nU + nI + nT − 1)︸ ︷︷ ︸
nT︸ ︷︷ ︸

nN

],

where nU , nI and nT are the number of users, items and tags in the network,

respectively, and nU + nI + nT = nN . Figure 6.7 visualises the random walk for

a personalised search (see Section 6.2.6), which finds items that are relevant to

both a user and a tag.

Query entities can be selected by specifying with known probabilities the

initial state of the graph, i.e. by assigning, in the initial state vector V (1), high

probabilities to query nodes and 0 to all the remaining nodes. At any step n in the

random walk, given a state vector V (n) and a transition matrix A, the multiplic-

ation V (n+1) = V (n)A computes the new state vector at step n+1. This iterative

process stops after a number nSteps of steps. The lower this number of steps, the

more the final ranking is influenced by the probabilities in the initial state vector

V (1) rather than by the background distribution of the network. Section 6.2.7

discusses how to estimate an optimal value for nSteps. Multi-step probabilit-

ies can be found by repeating the multiplication V (n+1) = V (n)A or multiplying

the initial state vector with the n-step transition matrix An (matrix power):

V (n+1) = V (1)An. Although this approach requires only one vector-matrix mul-

tiplication at query time for an n-steps random walk, it has two disadvantages:
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first, the density of matrix An, δAn , grows quickly to 1, even for small values of n

(we observed this already when n = 5), which makes matrix An not manageable

for non-trivial vales of nN ; second, this solution is less flexible, as it would require

a matrix An to be stored for every random walk’s length available at query time.

6.2.4 LibraryThing

LibraryThing is a prominent social content network service for storing and sharing

personal library catalogues. Users of LibraryThing can store books and provide

public and private annotations. In particular, they can rate each book and assign

it tags. The resulting user, item, tag entities form a tripartite graph that is

suitable to be browsed using the random walk model discussed in Section 6.2.3.

We use annotation data relative to the same subset of the entire LibraryThing

network as in [CdVR08] (crawled in July 2007). The authors of [CdVR08] have

collected a trace from the LibraryThing network, containing 25,295 actively tag-

ging users. After pruning this data set they retained 7279 users that have all

supplied both ratings and tags to at least 20 books. They removed books and

tags that occur in less than 5 user proles, resulting in 37,232 unique works and

10,559 unique tags. This pruned data set contains 2,056,487 UIT relations, res-

ulting in a density of 7.2·107. The derived UI, UT and IT matrices have size and

density as shown in Table 6.1b and all show the power-law behaviour common to

social networks [HRS07]. After a training phase as described in Section 6.2.7, an

optimal random walk length for personalised search on this network is estimated

to be 13 (see Table 6.1a).

Specialisation of the random walk model for the LibraryThing network here

considered is obtained by simply including the definitions in Figure 6.4 before the

execution of scripts in figures 6.6 (indexing, see Section 6.2.5), 6.8 (personalised

search, see Section 6.2.6) and 6.10 (parameter estimation, see Section 6.2.7).

6.2.5 Indexing: building the transition matrix

Figure 6.5a shows how matrix A can be composed by concatenating smaller

matrices that represent specific portions of the graph. For example, all connec-

tions between user and item nodes are captured by matrix UI. Matrices UI, UT

and IT come from user annotations:

User-Item (UI) matrix contains user-item ratings

User-Tag (UT ) matrix contains user-tag counts

Item-Tag (IT ) matrix contains item-tag counts
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Table 6.1: Parameters and arrays used in a random walk over a subset of the
LibraryThing social network, as described in Section 6.2.4.

(a) Parameters.

Symbol Description Value

nU # users 7279
nI # items 37232
nT # tags 10559
nN # nodes 55070

nSteps # steps 13
θ item/tag weight 0.6

(b) Arrays.

Array S ε δ

UI [nU, nI] 0 2.8 · 10−3

UT [nU, nT ] 0 5.2 · 10−3

TI [nT, nI] 0 2.0 · 10−3

A [nN, nN ] 0 1.3 · 10−3

V (1) [nN ] 0 3.6 · 10−5

1 // Dimensions of LibraryThing annotations (number of users, items,tags)
2 nU = 7279
3 nI = 37232
4 nT = 10559
5

6 // Dimension of state vector and transition matrix
7 nN = nU + nI + nT
8

9 // Collaborative tagging output: relations between Users, Items, Tags
10 UI = ([nU,nI], int) sparse(0, 2.8E-3) "UI_LibraryThing"
11 UT = ([nU,nT], int) sparse(0, 5.2E-3) "UT_LibraryThing"
12 IT = ([nI,nT], int) sparse(0, 2.0E-3) "IT_LibraryThing"
13

14 // Optimal parameters found for personalised search on LibraryThing data
15 nSteps = 13
16 theta = 0.6

Figure 6.4: LibraryThing Defs.ram

Note that User-Item “preference” relations were described by the number of tags

assigned to items from users (see Section 6.2.2). Explicit user ratings per item

are however available in our dataset and are expected to give better indications

of user preferences than tag counts.

By transposing matrices UI, UT and IT , matrices IU , TU and TI are ob-

tained. Matrices UU , II and TT are identity matrices (diagonal matrices of 1’s)

representing self-transition edges in the graph. Figure 6.6 shows the SRAM script

that performs such operations. Each row of matrix A is finally normalised to sum

to 1, so that it contains transition probabilities.

Figure 6.5b shows the distribution of non-ε elements in matrix A relative to

the subset of LibraryThing data introduced in Section 6.2.4. Such a clustered

distribution could be better exploited by using more sophisticated storage and

processing schemes. For example, one could see matrix A as the combination

of 4 sparse matrices (1 per side) with relatively high density and 3 extremely
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(a) Transition matrix A for a random
walk on a social content network con-
sists of matrices UI, UT and IT .

(b) Visualisation of non-ε elements of matrix A
for LibraryThing data.

Figure 6.5: Construction of matrix A and its visualisation for LibraryThing data.

sparse matrices (the ones on the diagonal), and apply separately different map-

ping strategies. Other properties of array data, like symmetry, could be effectively

exploited. Notice however, that matrix A is not symmetric due to the row-wise

normalisation. Further investigations in these directions are part of future work.

6.2.6 Personalised search

Depending on the combination of the entities selected as starting nodes in a

random walk model, different tasks are possible in a social content network service

(e.g. “find more items like this”, “find alike users”, “find experts on a certain

topic”. See [WCY+10] for a complete taxonomy). Personalised search is the task

of finding items relevant to both a given tag and a user profile: “find items related

to this tag, taking my personal preferences into account”.

Figure 6.8 shows the SRAM script for performing a personalised search. The

script is completely network-independent, and specialised to be used on the Lib-

raryThing network by the inclusion of specific definitions, at Line 2.

Model parameter θ ∈ [0, 1] is used to tune the influence of the query user

profile versus the query tag. Recall that the probabilities in the initial state

vector must sum to 1. At Line 7, query user and tag are assigned values 1 − θ
and θ, respectively, in the initial state vector. When θ is set to 0, the query tag

will be ignored and the most relevant items to the query user will be retrieved.



Section 6.2: Personalised search in social networks 157

1 #include "LinearAlgebra.ram"
2 #include "LibraryThing_Defs.ram"
3

4 // UI, UT, IT come from network-specific definitions
5 // Declare their transpositions
6 IU = mxTrnsp(UI)
7 TU = mxTrnsp(UT)
8 TI = mxTrnsp(IT)
9

10 // Self-transition diagonal matrices
11 UU = [ int(x==y) | x<nU, y<nU ]
12 II = [ int(x==y) | x<nI, y<nI ]
13 TT = [ int(x==y) | x<nT, y<nT ]
14

15 // Build row-blocks of transition matrix A
16 Au = mxTrnsp(UU ++ IU ++ TU)
17 Ai = mxTrnsp(UI ++ II ++ TI)
18 Au = mxTrnsp(UT ++ IT ++ TT)
19

20 // Concatenate the row-blocks, normalise rows, store matrix A
21 A := mxNormRows(Au ++ Ai ++ At)

Figure 6.6: randomWalk Index.ram

When θ is set to 1, the profile of the query user will be ignored, yielding a standard

user-independent, tag-based, popularity search.

The random walk is implemented by repeatedly updating the state vector

through multiplication with transition matrix A (Line 12). The length of the

walk is determined by nSteps. At the end of the loop that implements the walk,

item relevance probabilities are to be found in the corresponding portion of vector

V (nSteps). Figure 6.7 visualises this process.

At Line 16, only those items from vector V (nSteps) that have been assigned

the selected query tag are retained. Items that have not been assigned such a tag

are removed only at the end of the random walk because even though they do

not qualify the tag selection, their connections in the network can provide useful

information to reach relevant content.

Analysis of the SRAM implementation

Figure 6.9 shows the relational translation of the SRAM script in Figure 6.8

into the MonetDB/X100 query language. The following sections highlight some

of the key optimisation strategies used, as well as some of the aspects that need

to be further investigated.

Creation of very sparse arrays. The SRAM expression at Line 1 of Fig-

ure 6.9, that initialises the state vector V (1) with query user and tag IDs, creates
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Figure 6.7: The personalised search task.

1 #include "LinearAlgebra.ram"
2 #include "LibraryThing_Defs.ram"
3

4 // Select the query user and tag in the initial state vector
5 // Query ID’s ‘userID’ and ‘tagID’ come from an external application
6 V := [ if (x == userID) then (1-theta)
7 else if (x == (nU+nI+tagID)) then theta else 0 | x<nN ]
8

9 // Random Walk
10 repeat(nSteps)
11 // Take one step
12 V := vmMult(V,A)
13 end repeat
14

15 // Retain only items from V that have been assigned the tag ‘tagID’
16 Items := [ if (IT(i,tagID) != 0) then V(nU+i) else 0 | i<nI ]

Figure 6.8: LibraryThing Search.ram

a very sparse array (only 2 in nN non-ε values). This is mapped onto relational al-

gebra by selecting the two corresponding values of attribute x from those created

by the IndexTable([nN ]) operator (implemented with Array in MonetDB/X100).

While such a solution does not pose severe efficiency issues with relatively small

arrays such as those for the LibraryThing subset used here, it could become less

viable when large IndexTable(S) relations need to be created. A cheaper altern-

ative, when a sparse array only has a few known non-ε values, would be to insert

those values directly into an empty table.

Avoiding materialisation in sparse arrays triggers relational simplific-

ations. One can notice how the initialisation of vector V (1) has lost one of

its original if-then-else constructs during the translation (compare definitions

starting at lines 1 and 3). The reason is that the last else branch of the SRAM
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1 // V := [ if (x == userID) then (1-theta)
2 // else if (x == (nU+nI+tagID)) then theta else 0 | x<nN ]
3 V := Project(
4 Select(
5 Array(x = dim(nN)),
6 (x == userID) || (x == (nU+nI+tagID))
7 ),
8 [x, v = ifthenelse(x == userID, 1.0-theta, theta)]
9 )

10

11 repeat(nSteps)
12 // V := vmMult(V,A)
13 V := Aggr(
14 Project(
15 MergeJoin(V, A, V.x == A.x ),
16 [V.x, A.y, v = V.v * A.v]
17 ),
18 [x=A.y], v = sum(v)
19 )
20

21 // Items := [ if (IT(i,tagID) != 0) then V(nU+i) else 0 | i<nI ]
22 Items := Project(
23 MergeJoin(
24 Select( IT, IT.t == tagID ),
25 Project(
26 Select( V, (x >= nU) && (x < (nU + nI)) ),
27 [i = V.x - nU, v],
28 )
29 IT.i == V.i
30 ),
31 [i = V.i, v = V.v]
32 )

Figure 6.9: LibraryThing Search.x100

definition produces the value 0. Because εV = 0, the tuples corresponding to that

branch need not be stored (and therefore computed), which turns the remaining

if-then construct into a projection of the then branch over a selection on the

if branch. The same simplification happens for the conditional expression at

Line 21 of Figure 6.9, where the else branch needs no storage, which turns the

then branch into a projection and the if branch into a selection (a selection over

a cartesian product in this case, i.e. a join).

Not needing to store, and therefore to compute, the results of the else branch

propagates its benefits to the sub-expressions upon which this depends. At

Line 21 of Figure 6.9, the values that would make true the else branch are

identified by the boolean expression (IT(i,tagID) == 0). Because those values

correspond to ε elements, they are not stored in the IT table. In case the else

branch had needed storage, they would have had to be created by an expensive

IndexTable(S) operation.
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Arithmetic optimisation. A number of simplifications that are crucial for

efficient processing of sparse arrays are enabled by the arithmetic optimisation

that takes place during the array to relational algebra mapping (see Section 5.2.2).

The boolean condition in the if branch of the conditional expression at

Line 21 of Figure 6.9, (IT(i,tagID) != 0), is true for every tuple stored

in table IT, as εIT = 0. This allows to simplify the translation of the

original condition from Select( IT, (IT.t == tagID) && (IT.v != 0) ) to

Select( IT, IT.t == tagID ).

A single step in the random walk (Line 12 of Figure 6.9) is performed by

a vector-matrix multiplication, which is expressed as an SRAM macro (see Fig-

ure 6.2d). This is a setting similar to Example 5.14 on page 120, where we apply

the principle of arithmetic optimisation (see Section 5.2.2). All the ε elements

from both input arrays are recognised not to influence the final result at any

stage in the query tree, which makes it possible to evaluate the expression based

on the stored tuples only. This arithmetic optimisation together with a careful

relational mapping optimised for sparse arrays (see Section 5.1.2), allow for a final

translation into MonetDB/X100 syntax that is completely free from any overhead

related to sparse array processing.

Choice of physical operators. Physical storage layout has a high impact on

the choice of relational algorithms and consequently on the overall efficiency. The

(repeated) vector-matrix multiplication at Line 12 of Figure 6.8 illustrates the

problem. In the first loop iteration, the join condition (V.x == A.x), at Line 15

of Figure 6.9, is defined on the attributes on which the two tables are sorted

(the major axis for both arrays), which triggers the usage of a fast MergeJoin

algorithm. The MergeJoin operator processes tuples sequentially and preserves

their order in output (here on V.x or, equivalently, A.x).

Unfortunately, this property cannot be further exploited, as the aggregation

that follows the join happens on a different attribute (A.y). This forces the usage

of a hash-based aggregation operator, which can be much more expensive than

one optimised for exploiting tuple order or grouping. Moreover, a hash-based

aggregation outputs tuples in no defined order, which limits the optimisation

opportunities of following operators.

This is indeed the case when vector V (n) is used to compute the new vec-

tor V (n+1) = V (n)A at the next iteration in the loop. In order to exploit the

MergeJoin algorithm, table V needs to be sorted on its axis x before being used

for the next iteration. This happens implicitly here, as the example stores array

V at every iteration, which implies sorting table V on its major axis (the default

policy of SRAM before every persistent storage). An alternative plan would use
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a much slower HashJoin algorithm for the join, but save the cost of sorting table

V before using it for the next iteration. By not forcing table V to be sorted, such

a plan would be considered by an optimiser.

6.2.7 Parameter estimation

Every combination of retrieval task and social content network gives the best

results with a different instantiation of the parameters that influence the random

walk model. We focus in this section on the estimation of parameters for person-

alised search (see Section 6.2.6) through a parameter sweep on a subset of the

LibraryThing network (see Section 6.2.4). The parameters to be estimated are:

• n, that determines the optimal length of the random walk

• θ, that balances the influence of query user and query tag

The estimation process can be briefly described as follows: for every com-

bination of parameters to be estimated, perform a personalised search of items

belonging to a validation set and evaluate the performance of that search; the

parameter combination that yields the best performance on the validation set is

assumed to be optimal for that network.

More in detail, the process consists of three main steps:

1. The validation set is defined by holding out part of the users, with their

annotations, from the network. These are called the test users, while the

tags and the items relative to each of them are called the test tags and the

test items, respectively.

2. For each test user tu, for each test tag tt used by tu, for each combination

of the parameters to be estimated, a random walk on the entire network is

performed, with tu and tt as initial nodes in the query.

3. The retrieved items (for each test user, test tag and parameter combination)

include the test items of the validation set. By retaining those only and

comparing their ranking to the the ground truth in the explicit UI ratings,

it is possible to evaluate the performance of each random walk. The optimal

parameters for n and θ are found by averaging the performance over all test

tags and users.

Figure 6.10 shows the SRAM script that focuses on the second step only. The

script is completely network-independent, specialised to be used on the Libra-

ryThing network only by the inclusion of specific definitions, at Line 2. The
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extraction of a validation set from the entire network (step 1) is omitted. In the

script, two macros, isTestUI(u,i) and isTestUT(u,t), are used to determine

whether given user-tag or user-item combinations belong to the validation set,

independently of how this is chosen. These macros are assumed to be defined

externally.

1 #include "LinearAlgebra.ram"
2 #include "LibraryThing_Defs.ram"
3

4 // Test values for theta
5 nth = 10
6 Thetas = [ x / nth | x<nth ]
7

8 // Select a test user and tag per initial state vector
9 V := [ [ if isTestUT(u,t)

10 then if (x == u) then (1-Thetas(th))
11 else if (x == (nU + nI + t)) then Thetas(th) else 0
12 else 0
13 | x<nN ]
14 | u, t, th ]
15

16 // Random Walk
17 Items := [ [ 0 | i<nI ] | n<maxSteps, u<nU, t<nT, th<nth ]
18 repeat(step,maxSteps)
19 // Take one step per state vector
20 V := [ vmMult(V(u,t,th),A) | u, t, th ]
21

22 // Select Test user-item-tag combinations
23 Items := [ if (n == step) then [ if (isTestUT(u,t) && isTestUI(u,i))
24 then V(u,t,th)(nU+i) else 0
25 | i<nI ]
26 else Items(n,u,t,th)
27 | n, u, t, th ]
28 end repeat

Figure 6.10: LibraryThing ParEst.ram

Analysis of the SRAM implementation.

The following sections discuss some of the highlights and issues of both the SRAM

script for parameter estimation (Figure 6.10) and its relational translation into

the MonetDB/X100 query language (Figure 6.11).

Multiple simultaneous personalised searches. The SRAM script that per-

forms step 2 is very similar to the one for personalised search (see Figure 6.8).

However, several random walks take place instead of only one, which makes the

arrays involved have higher dimensionalities. At Line 9 of Figure 6.10, one state

vector per test user, test tag associated to that user, and theta value (here ran-

ging from 0 to 1 in steps of 0.1) combination is initialised. For each initial state
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1 // Figure~6.10, Line~9

2 V := Project(

3 MergeJoin(

4 FetchJoin(

5 Select(

6 Array(u = dim(nU), t = dim(nT), th = dim(nth), x = dim(nN)),

7 (x == u) || (x == (nU + nI + t))

8 ),

9 Project( Array(ith = dim(nth)), [ theta = ith / nth ] ),

10 th

11 ),

12 Select(UT, isTestUT(UT.u,UT.t)),

13 (u == UT.u) && (t == UT.t)

14 ),

15 [ u, t, th, x, v = ifthenelse(x == u, (1-theta), theta ]

16 )

17

18 repeat(step,maxSteps)

19 // V := [ vmMult(V(u,t,th),A) | u, t, th ]

20 V := Aggr(

21 Project(

22 HashJoin(V, A, V.x == A.x ),

23 [V.u, V.t, V.th, V.x, A.y, v = V.v * A.v]

24 ),

25 [u = V.u, t = V.t, th = V.th, x=A.y], v = sum(v)

26 )

27 // Figure~6.10, Line~23

28 Items :=

29 Union(

30 Project( // then output

31 HashJoin( // then branch

32 MergeJoin(

33 Select(UI, isTestUI(UI.u,UI.i)),

34 Select(UT, isTestUT(UT.u,UT.t)),

35 UI.u == UT.u

36 ),

37 Project(

38 Select(V, (x >= nU) && (n < (nU + Ni))),

39 [u, t, th, i = x - nU, v]

40 ),

41 (UT.u == V.u) && (UT.t == V.t) && (UI.i == V.i)

42 ),

43 [ n = step , V.u , V.t, V.th, V.i, V.v ]

44 )

45 Project( // else output

46 MergeJoin(

47 Select(Array(n = dim(maxSteps)), n != step) // if (n != step)

48 Items, // else branch

49 ),

50 [ Items.n, Items.u, Items.t, Items.th, Items.i, Items.v ]

51 )

52 )

Figure 6.11: LibraryThing ParEst.x100

vector, a random walk long maxSteps steps is executed and the item ranking at

every step n saved to array Itemsn,u,t,th[maxSteps, nU, nT, nth].

Nested arrays for increased expressiveness. Line 20 of Figure 6.10, which

performs a single step (for all combinations) in the random walk, shows one of

the advantages of allowing nested arrays in the syntax (see Section 4.3.6). The

type of array Vu,t,th is ([nU, nT, nth], ([nN ], dbl)). For every combination of axes
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u, t and th, the expression V(u,t,th) returns a vector (a 1-dimensional array),

that is fed to macro call vmMult(V(u,t,th),A) for a vector-matrix multiplica-

tion. Vector V can also be flattened into a 4-dimensional array Vu,t,th,x, with

type ([nU, nT, nth, nN ], dbl). The underlying relational representations for the

nested and flattened versions of V are identical. However, the flattened ver-

sion would reduce significantly the benefits of having a standard library of lin-

ear algebra macros. In our example, in order to use macro vmMult(), which

expects a 1-dimensional array as a first parameter, a much less straightfor-

ward selection on V would be needed before the macro call can take place:

vmMult([ V(u,t,th,x) | x ],A).

Access patterns. The expression at Line 20 of Figure 6.10 raises however

the issue of how to automatically disentangle a declarative array syntax and

the choice of efficient access patterns to array data. Nested array Vu,t,th, with

TV = ([nU, nT, nth], ([nN ], dbl)), is physically stored as a flat array Vu,t,th,x, and

therefore the associated table is sorted on axes u,t,th and x in this order. SRAM

expression vmMult(V(u,t,th),A) returns an array whose relational represent-

ation is a non-ordered subset of tuples in table V. For this reason, the rela-

tional translation of the vector-matrix multiplication cannot use a MergeJoin

algorithm, but has to use a HashJoin algorithm instead (see Line 22 of Fig-

ure 6.11). One could imagine reformulating the script in such a way that V is

a vector of 3-dimensional arrays (TV = ([nN ], ([nU, nT, nth], dbl))), rather than

a 3-dimensional array of vectors (TV = ([nU, nT, nth], ([nN ], dbl)), to have axis

x as the major one. However, this would prevent the usage of macro call

vmMult(V(x),A), as the expression V(x) would return a 3-dimensional array.

All the computations that are based on array V would have to be transformed.

For example, instead of computing one vector-matrix multiplication for each com-

bination of axes u,t and th, one would have to compute three-dimensional inter-

mediate steps of one vector-matrix multiplication. Compare the two resulting

options for Line 20 of Figure 6.10:

1 // When TV = ([nU,nT,nth],([nN], dbl))

2 vmMult(V,A) = [ sum([ V(x) * A(x,y) | x ] ) | y ]

3 V = [ vmMult(V,A) | u,t,th ] =

4 = [ [ sum([ V(u,t,th)(x) * A(x,y) | x ] ) | y ] | u,t,th ]

5

6 // When TV = ([nN],([nU,nT,nth], dbl))

7 v3mMult(V3,A) = [ [ sum([ V3(x)(a,b,c) * A(x,y) | x ] ) | c,b,c ] | y ]

8 V = v3mMult(V,A)

9 = [ [ sum([ V(x)(u,t,th) * A(x,y) | x ] ) | u,t,th ] | y ]

The disadvantage of the second solution is that macro v3mMult() is far less

generic than macro vmMult(). While macro vmMult() corresponds to a well-
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defined algebraic pattern (the multiplication of a vector and a matrix) and can be

used inside comprehension expressions of any dimensionality, macro v3mMult()

can only be used with a vector of 3-dimensional matrices.

Although array computations can be expressed declaratively in SRAM syntax,

this is not completely disentangled yet from some of the physical details that can

influence the efficiency of relational translations. This example shows that the

optimal order of tuples of array tables still needs, in some cases, to be steered

manually at syntax level.

The NDCG evaluation in SRAM. The final evaluation of the retrieved item

ranking (step 3) is omitted from Figure 6.10. In [CdVR08], the Normalised Dis-

counted Cumulative Gain (NDCG) [JK02] is used to perform such an evaluation.

The computation of NDCG includes a cumulative sum, which is expressible in

SRAM as

1 cs(V) = [ sum([ V(i) | i<j+1 ]) | j<len(N,0) ]

2 CSI := cs(Items(n,u,t,th))

and translated to the following MonetDB/X100 query:

1 CSI := Aggr(

2 Join(

3 V,

4 Array(j = dim(nI)),

5 V.i <= j

6 )

7 [ V.n, V.u, V.t, V.th, j ],

8 sum(V.v)

9 )

However, the performance of this solution is dramatically worse than what a

native support in the database engine for this type of functions would provide.

The number of relevant items found varies for each combination of n, u, t and

th. In order to be able to compare the Discounted Cumulative Gain of different

item rankings, these have to be normalised. The normalisation phase includes

sorting the sub-vector of relevant items. SRAM syntax allows this operation on

vectors only (see Section 4.3.6), which is not a problem when nested arrays are

used:

I := [ sort(Items(n,u,t,th), DESC) | n, u, t, th ]

However, recall that nested arrays are flattened before being translated into re-

lational algebra. Therefore, sorting each vector contained in the 4-dimensional

array Items corresponds to sorting separately each group of table Items identi-

fied by attributes n, u, t and th. Such a per-group sort is not part of the standard
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set of relational operators available in database engines. The problem is identi-

fied in [CCG00], where per-group top-N processing is explicitly supported in a

standard RDBMS with extensions at all levels (SQL interface, relational internal

representation, algorithmic implementation).

6.2.8 Discussion

The scenario presented in this section aims to show that the proposed framework

can support other IR tasks than classical keyword search. Personalised search in

social networks is implemented using a random walk approach, which makes ex-

tensive use of the array data model. It is worthwhile summarising a few elements

of interest that arise from this exercise.

While it may be hard to match the final MonetDB/X100 queries shown in this

section with the original random walk tasks, the SRAM definitions that describe

the raw data and the indexing and search processes are remarkably concise and

close to the elegance of their respective mathematical formulation. Even the

definition that describes parameter estimation, which is inherently more complex

due to the higher-dimensional nature of the problem (parameter estimation can

be seen as a multi-random walk process), remains compact and fairly easy to

read. This is mainly due to the abstraction of nested arrays, which allows for

simplified programming at no additional computational cost.

This experiment clearly indicates that some of the limitations already iden-

tified in Chapter 4 translate indeed into reduced expressive power in practice,

which can often be circumvented at the cost of efficiency and / or elegance. Most

notably, the lack of a an explicit looping mechanism in the relational algebra

makes non-trivial iterative tasks hard to express efficiently (as a work-around,

looping may be handled externally by a scripting language). Per-group sorting

(used in the Normalised Discounted Cumulative Gain computation) is another

operation not directly supported in the relational algebra. A possible, though

inefficient, work-around selects groups into new arrays, which are then sorted

individually and finally recombined. Finally, the current implementation takes

a simplistic approach for what concerns access pattern efficiency, in that SRAM

syntax in not completely independent of physical storage patterns and their in-

herent efficiency (ordered access is guaranteed on the first dimension of each

array). This topic, not limited to array databases, needs further attention, for

example by allowing redundant storage to accommodate multiple access patterns,

similar to how relational optimisers use index structures for the same purpose.

A dedicated optimisation phase could try to find the minimal set of physical

representations to choose from at each computation, so that the number of ex-
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pensive access patterns is minimised. This problem is not specific to the array

nor to the relational domains. Tools like Matlab [Mat], although very optimised

for fast array computations, exhibit extremely different performance when, say,

the same matrix is accessed by row or by column (matrices in Matlab are stored

column-wise, which makes accesses by row perform expensive hops in memory).

Similarly, some information retrieval tools that use inverted files rely on multiple

copies of their indices, differently ordered to optimise access speed to different

entities, e.g. get documents given a term, or get terms given a document.

6.3 Large scale text retrieval

This section illustrates how we used SRAM, following the indications of the

Matrix Framework for IR [RTK05], to build a text IR application on top of the

MonetDB/X100 database engine [BZN05, ZBNH05]. Our main purpose with

this application is to demonstrate the efficiency with which IR retrieval models

can be specified and implemented using the array data model interface on an

adequately fast database engine. To validate our results, we tested our applic-

ation on a standardised large scale efficiency task, the TREC TeraByte track

(TREC-TB) [CSS05]. Section 6.3.1 describes the setup of this IR application,

including the IR methods we selected for it. Thereafter, Section 6.3.2 discusses

experiments and achieved results.

6.3.1 TREC-TB

TREC TeraByte track [CSS05] has introduced a task to evaluate IR system effi-

ciency on ranking a (back then) large web-crawled collection of documents (the

GOV2 collection). This data set consists of 25 million web documents, with a

total size of 426GB. System efficiency is measured by total execution time of

50,000 queries. Effectiveness is evaluated by early precision (p@20 ) on a subset

of 50 pre-selected queries for which relevance judgements are available.

Okapi BM25 as an array query

We selected the Okapi BM25 [RWB98] formula as the IR retrieval model for

these experiments. Note that we select BM25 just for its ubiquity and aptness

for TREC-TB.
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The BM25 document scoring formula is:

ωD,T = log

(
nD
fT

)
· (k1 + 1) · fT,D
fT,D + k1 · ((1− b) + b · |D|avgdl )

(6.1)

S
(D)
BM25 =

∑
T∈Q

ωD,T (6.2)

The constants used in this formula are shown in Table 6.2 and all arrays used in

Table 6.3. Note that these arrays are defined as in the Matrix Framework for IR

(see 6.3.1 for more details), although the naming conventions can differ slightly

from [RTK05]. The SRAM script that computes the top 20 results according to

the BM25 document score model is:

1 w(d,t) = log( nDocs / F(t) ) * ((k1 + 1) * TD(t,d))

2 / (TD(t,d) + k1 * ((1 - b) + (b * S(d) / avgdl)))

3 s(d) = sum( [ w(d,Q(t)) | t ] )

4 D20 := topN( [ s(d) | d ], 20, DESC )

One can observe that the SRAM expression is an almost direct transcription of the

mathematical formula to ASCII characters, which demonstrates once more the

intuitiveness of array comprehensions as an IR query language. Array expressions

at lines 1 and 3 correspond to (6.1) and (6.2), respectively. Arrays Ft, TDt,d and

Sd contain document frequency for terms t, within-document term frequency

for (t, d) pairs and document size (length) of documents d, respectively. Dense

array Qit enumerates query terms for each query Qi. These query vectors are

temporary objects, typically instantiated inside the query, using the explicit array

constructor syntax defined in Section 4.3.6. Finally, the expression at Line 4

selects the 20 best scored documents and materialises their identifiers in array

D20. Notice that the array of all scored documents is not stored persistently

before selecting the top 20 documents. This allows sophisticated relational top-

N implementations to perform an early-stop of the stream of tuples in input,

limiting the cardinality of intermediate results in their sub-tree, under certain

conditions [CK97].

TREC-TB data preparation

To parse the TREC-TB GOV2 collection, we used a program that performed

standard Porter stemming [Por80] and stop word removal (the 19 most common

words were used as stop words). It sequentially scans all files in the collection, and

for each term it encounters writes out a term identifier and a document identifier,

to two separate files. Term identifiers are encoded into a 64-bit number, using a

base-27 encoding [Ste09]. Encoding with base 27 allows to represent all the letters
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Table 6.2: Global constants used for TREC-TB

Symbol Meaning

k1 BM25 parameter (1.2)
b BM25 parameter (0.5)
nD number of documents (25M)
avgdl average document length (491)

Table 6.3: SRAM Arrays used for TREC-TB

Name Symbol Meaning T Sparsity

LDl,d ∃dL,D doc location ([12.3G,25M],bool) sparse(0)
LTl,t ∃tL,T term location ([12.3G,12M],bool) sparse(0)
TDt,d fT,D freq of (term,doc) ([12M,25M],int) sparse(0)
Sd |D| size of doc ([25M],int) dense
Ft fT doc-freq of term ([12M],int) dense
Qi

t T term id ([variable],lng) dense

in the English alphabet and results in a maximum term-length of 13 characters.

Though not a perfect general-purpose encoding, it proved sufficiently reliable to

index English text and efficient thanks to the encoding reversibility, which makes

an explicit term dictionary unnecessary.

We can view the resulting single-column files as two-column [location,term]

and [location,document] relations, if we attach to each value a (virtual) densely

increasing sequence number location. MonetDB/X100 has support for identity

columns (#rownum), as well as tables stored in binary files, such that these files are

treated by it as database relations. These two binary relations, in turn, repres-

ent the two sparse boolean matrices location-term LTl,t and location-document

LDl,d, as used in the Matrix Framework for IR [RTK05]. As mentioned in Sec-

tion 5.2.1, sparse boolean arrays need not materialise their value column because

it is known to be the negated default value. Thus, tables LD and LT representing

sparse boolean matrices LDl,d and LTl,t just consist of their dimension columns

(which together form the primary key).

As described in the Matrix Framework for IR, TDt,d is computed in SRAM

as a simple matrix multiplication between LTl,t and LDl,d (Line 1 in the code

snippet below), Sd as a summation over LD (Line 2) and Ft as a summation over

TDt,d (Line 3), whose values are first converted from term-document frequency

to term-document presence/absence:
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Table 6.4: MonetDB/X100 Relations resulting from Table 6.3

Symbol Column Meaning Data Compression
name type Scheme Bits

LDl,d LD table – 12.3 Gtuples (output file of parsing)
l major-key LD.location location id long #rownum 0
d minor-key LD.docid document id int none 32

LTl,t LT table – 12.3 Gtuples (output file of parsing)
l major-key LT.location location id long #rownum 0
t minor-key LT.termid term id long none 64

TD∗t,d TD table – 3.5 Gtuples, term-document info
t major-key TD.termid term id long PFDb=1 2.13
d minor-key TD.docid document id int PFDb=8 11.98
fT,D TD.tf frequency of T in D int PFb=8 8.13
ωT,D TD.score score of T in D float none 32
ω′T,D TD.scoreQ quantised score int PFb=8 8

Sd D table – 25 Mtuples, document info
d key D.docid document id int #rownum 0
|D| D.doclen document length int none 32

Ft T table – 12 Mtuples, term info
t key T.termid term id long #rownum 0
fT T.ftd doc frequency int none 32

Q1
t ..Q

50000
t transient Qi tables – avg. 4 tuples (query len)

t Qi.termid term id long none 64

Compression: PF=PFOR, PFD=PFOR-DELTA, for all base=0

1 TD := mxMult( mxTrnsp(LT), LD )

2 S := [ sum([ LD(l,d) | l ]) | d ]

3 F := [ sum([ min( TD(t,d), 1 ) | d ]) | t ]

Table 6.4 shows the resulting database schema, with suggestive column names

for clarity of presentation.

Since we store the sparse arrays listed above persistently, SRAM makes the

corresponding tables clustered on their primary key (i.e. sorted by that order).

The most expensive step in data preparation is doing so for TDt,d. Sorting its

underlying relational table corresponds exactly with creating an inverted list from

a table of postings. In all, our Pentium4 server took 7 hours for all TREC-TB

data preparation.

As Table 6.4 shows, the full index (the D, T and TD(docid, score) tables)

occupies approximately 29GB uncompressed when we ignore the termid column

in TD and replace it with a range index of negligible size. After compressing

TD.docid, using PFOR-DELTA (see Section 5.4.1), and quantising and com-
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pressing TD.score using PFOR, the total index size is reduced to roughly 9GB.

6.3.2 TREC-TB experiments

We now report on experiments running the TREC-TB 2005 efficiency task with

our IR application on top of SRAM and MonetDB/X100. For these experiments,

we used a dual-CPU 3GHz Pentium Xeon (only 1 CPU used for processing) with

4GB of main memory, and a software-RAID system consisting of 12 disks. In

all tests we run each query twice, which allows presenting results of cold and hot

runs. The hot run represents pure processing time for a query, while the cold run

gives insight into the overhead of fetching the data from disk. In all experiments

presented in this section we used a full Terabyte TREC 2005 dataset and a

subset of 5000 randomly chosen queries (with average length of 4 terms). In

the following, we describe a number of IR and array optimisation techniques, of

which Table 6.5 displays the successive results.

Basic BM25 Query

The array-query in Figure 6.12a, representing BM25 document scoring (see Sec-

tion 6.3.1), results in the MonetDB/X100 query plan of Figure 6.12b when no

optimisation is enabled. Here, the computation of partial scores, as in (6.1), has

been replaced with macro BM25() for sake of clarity. This physical query plan can

be viewed as a logical relational plan by substituting DenseAggr for Aggr, and

MergeJoin and FetchJoin for Join (see e.g. [Gra93] for an overview on database

operators and their physical operators).

Since termid is the first attribute of the primary key of table TD and is

ordered, the join with the (tiny) query table Q can be handled with a MergeJoin

(Line 6). This join is quite fast, as it has a sequential access pattern and only

touches those disk blocks actually needed, thanks to auxiliary lookup tables with

pointers to the first occurrence of termid values in TD. The fetch-joins perform a

foreign-primary key join with an identity column (both T.termid, at Line 5, and

D.docid, at Line 4, are of type #rownum) of the small, memory-resident, tables D

and T. This particular kind of join is implemented efficiently in MonetDB/X100

as a pointer-based lookup (see also pointer-based joins in [Gra93]).

Some additional performance analysis showed that of the 1.58 seconds this

query takes (see Table 6.5, run BM25) in the hot run, almost 1.35 seconds are

spent in the final aggregation. We first experimented with hash-based aggrega-

tion. In the TREC-TB queries, hash-based aggregation inserts on average 1.4M

documents (from the total 25M) into a hash table, and each aggregate value is

processed 3 to 4 times (i.e. as many terms as a query has). The inefficiency of



172 Chapter 6: Evaluation

1 Q = [ 10 42 ]
2 w(d,t) = log( nDocs / F(t) ) * ((k1 + 1) * TD(t,d))
3 / (TD(t,d) + k1 * ((1 - b) + (b * S(d) / avgdl)))
4 s(d) = sum( [ w(d,Q(t)) | t ] )
5 D20 := topN( [ s(d) | d ], 20, DESC )

(a) BM25.ram

1 TopN(
2 DenseAggr(
3 Project(
4 FetchJoin(
5 FetchJoin(
6 MergeJoin(Q, TD, TD.termid == Q.termid),
7 T, T.termid == Q.termid),
8 D, D.docid = TD.docid),
9 [ D.docid, scores = BM25(TD.tf,D.doclen,T.ftd)]),

10 [ score = sum(scores) ]),
11 [ score DESC ], 20)

(b) BM25.x100

1 TopN(
2 Project(
3 MergeOuterJoin(
4 RangeSelect( TD1=TD, TD1.termid==10 ),
5 RangeSelect( TD2=TD, TD2.termid==42 ),
6 TD1.docid = TD2.docid),
7 [ S.docid = TD1.docid || TD2.docid, score = TD1.scoreQ + TD2.scoreQ ]),
8 [ score DESC ], 20)

(c) BM25UCMQ.x100

Figure 6.12: The implementation of BM25 (see formulae (6.1) and (6.2)) in
our SRAM + MonetDB/X100 system. Figure (a) shows an SRAM 2-term, top-
20, query. Figures (b) and (c) show the MonetDB/X100 queries for the basic
implementation (BM25) and for the implementation with aggregate unfolding,
compression, materialisation and quantisation (BM25UCMQ), respectively.

the hash-based aggregation is explainable as relational implementations of this

operator tend to be optimised for the inverse usage pattern (i.e. updating few

aggregate values many times). Dense aggregation (DenseAggr) can be applied if

the GROUP-BY is a single cardinal attribute with a known domain size. In this

case, docid indeed is a cardinal between 0 and 25M. Internally, dense aggrega-

tion creates an in-memory array, used to keep all aggregate totals, that can be

accessed by position. Even though the minor ordering of the TD table on docid

will cause “nice” sequential passes over this array for each term in the query, the

required initialisation of all 25M floating point aggregate totals to a value of 0.0,
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and the processing of this 25M result by the top-N operator, still make dense

aggregation a costly operator.

Aggregate unfolding

Computing IR scores in queries with many documents and few terms in a query,

does not fit well the aggregation algorithms offered by relational database sys-

tems (which prefer few often-updated aggregate values over many infrequently

updated aggregates). Consider the following SRAM 2-term query, where terms

are enumerated explicitly, and used in an aggregate:

1 Q = [ 10 42 ]

2 s(d) = sum( [ w(d,Q(t)) | t ] )

The very low cardinality of array Qt (i.e. few query terms), together with the

availability of explicit query term IDs in the SRAM expression, make the array

optimiser consider an alternative plan (see Section 5.1.4), where the summation

over the query terms is unfolded to a series of additions (here only 1 addition for

2 terms):

s(d) = w(d,10) + w(d,42)

Because the addition w(d,10) + w(d,42) represents a Map(+, A,B) operation

between shape-aligned arrays, the corresponding tables can be joined by means

of an outer-join operation (see Section 5.2.3). Figure 6.12c shows such a mapping

into MonetDB/X100 syntax. Generalising for any query length, the aggregate over

the join between TD and query table Q is transformed into |Q|−1 projections over

outer-join operations between tuple sequences obtained by selections on table TD,

based on constant term identifiers as they appear in the explicit array Q. Because

table TD has termid as the major column of its primary key, the RDBMS can

use an efficient clustered RangeSelect operator per term to obtain such tuple

sequences, which avoids the necessity to scan the full column TD.termid, by using

instead a fast index lookup. This means that the unfolded approach performs less

I/O, as the per-query term score-columns layout, together with the column-wise

storage of MonetDB/X100 make that only those columns that are used must be

read from disk. After such selections based on single termids, tuples are still

ordered by docid, that is the join attribute, which makes it possible to use the

implementation MergeOuterJoin, optimised for exploiting tuple order.

Apart from allowing such fast sequential access patterns to data, this ap-

proach has the additional benefit that it transforms the inefficient sum aggregate

(see end of Section 6.3.2) into a series of additions, computed with the Project
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operator. Table 6.5, run BM25U, clearly shows the effect of eliminating the ag-

gregation from the query plan, which accounted for 1.35 seconds both cold and

hot: performance improves to 468ms (cold) and 328ms (hot).

The query plan obtained by unfolding the sum aggregate coincides with the

well known Document-At-A-Time (DAAT) IR processing model, which scores

by document, rather than by term as in the Term-At-A-time (TAAT) processing

model (see [TJ95] for a comparison). The equivalence with the DAAT processing

model is completed by the observation that the clustered storage of arrays dis-

cussed in Section 5.2.1 makes the TDt,d array act as an inverted list for this

processing model. It is interesting to note that the system needs not be expli-

citly instructed to implement such a strategy. It comes as the result of a more

generic rewriting rule, which can be applied to a variety of patterns that do not

necessarily find an equivalent in the IR application domain.

Compression

Both in the BM25 and the BM25U runs, we used uncompressed columns. This

means that, in case of BM25U, which only touches the TD.docid and TD.tf

columns, we read 32 + 32 = 64 bits per tuple. If we use the compressed vari-

ants of these columns instead (see Table 6.4), the per tuple data size is reduced

significantly to 11.98 + 8.13 = 22.11 bits.

Table 6.5 shows, however, that using the compressed TD (run BM25UC) table

improves the cold run only marginally. The reason is that the unfolded queries

(BM25U as well as BM25UC) are fully computation-bound on the BM25 expres-

sion. However, if we estimate the I/O time as the difference between the cold and

hot runs, we can still see the benefit of compression (140ms uncompressed versus

106ms compressed). The hot run is only slightly slower than in the uncompressed

case, which illustrates that decompression overhead is very minimal. When we

use the materialised TDω
t,d, which avoids computation of partial BM25 scores, we

see a significant performance enhancement.

One drawback of the materialised representation is that TD.score is a 32-bits

floating point, which is not easily compressible.

Score materialisation and quantisation

The BM25 score for document D is the sum of all ωD,T term-document scores

for all terms T in the query. The corresponding SRAM macro w(d,t) is quite

computationally-intensive, as it contains four floating point multiplications and

additions, three divisions, and one logarithm. It is a best-practice in IR to pre-

compute (materialise) such partial scores. In principle, SRAM could actually use
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compiler techniques similar to loop-invariant code motion [BGS94], to automat-

ically extract query-independent parts from a scoring formula, and materialise

these. We consider this further work. For these experiments, we just declared

w(d, t) as a stored array instead of a macro. Run BM25UCM of Table 6.5 shows

the large impact of materialisation.

A drawback of materialising floating point ωD,T scores, is that, unlike the

small integer numbers fD,T , floating point numbers are much harder to compress

(see Section 5.4.1 for more on compression). An alternative to storing the ωD,T
values is to replace these by so-called score ranks [AM05a] – small integer values

that are the result of quantisation of floating point scores. For example, the linear

Global-By-Value quantisation

ω
′

D,T =

⌊
q · ωD,T − L

U − L+ η

⌋
+ 1,

where L and U are the minimum and maximum values of ωD,T in the entire

collection, produces integer values between 1 and q, and η is a small threshold.

Quantisation with too small integers can lead to precision loss in retrieval, and

after some tuning experiments we settled for 8-bit integers (bytes). Quantising

TD.score into the 8-bits TD.scoreQ reduces the tuple size to 19.98 bits. This

size reduction saves another 33ms in the cold run, bringing it down to 161ms (see

Table 6.5, run BM25UCMQ). As expected, quantisation however slightly reduces

the precision.

Conjunctive and 2-Pass

The BM25 retrieval model scores each document, regardless the number of match-

ing query terms. Broder et al. [BCH+03] have proposed a 2-pass processing

strategy based on the heuristic that documents that contain more query terms

are likely to obtain a better score. The first pass ranks only documents that

contain a set of terms with summed weights exceeding a pre-defined threshold.

This may reduce significantly the number of documents considered, improving

execution time. Only when the first pass does not return enough documents, a

second pass is performed that considers all documents.

We experimented with a simplified version of this approach, where the first

pass ranks only documents containing all query terms. As this strategy does not

compute the true BM25 score, we use the term BM25C for it. The C-suffix stands

for “Conjunctive”, as we look for documents that have the conjunction of all query

terms (similarly, we may call the real BM25 computation “Disjunctive”). Thus,

in TREC-TB, our IR application first computes the top 20 documents using the
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conjunctive expression, and only if |D20| < 20, it actually computes the top-N

of the disjunctive expression. If a query has fewer terms, if these terms are more

frequent, or if these are likely to co-occur, the probability of the conjunctive

expression finding enough documents increases. In the TREC-TB query set, the

second pass turns out to be necessary in only 15% of the queries.

The conjunctive scoring formula multiplies the BM25 score with a (0,1)

boolean value that is only 1 for those documents that have all terms:

S
(D)
BM25C =

∏
T∈Q

(ωD,T > 0) ∗
∑
T∈Q

ωD,T

This is transcribed in SRAM syntax as follows:

1 s(d) = prod( [ w(d,Q(t)) > 0 | t ] )

2 * sum( [ w(d,Q(t)) | t ] )

Multiplications of arrays with such sparse (boolean) matrices can significantly

improve the running time of a query. The underlying reason is that such mul-

tiplications can make the result sparser, and thus smaller, when considering its

representation as a relational table. This is why the conjunctive variant, being a

multiplication on the disjunctive (normal) BM25 formula, turns out to be much

faster, and makes the 2-pass strategy beneficial (see Section 6.3.2).

Although this expression adds computations to the one for the normal BM25

query, we describe here how query optimisation makes this formula much faster to

compute (all the optimisation techniques used here are described in Chapter 5).

By unfolding both aggregates, as explained in the previous section, the expression

above is rewritten into:

s(d) = (w(d,t1) > 0) * (w(d,t2) > 0) * ...

* ( w(d,t1) + w(d,t2) + ... )

The arithmetic optimisation (see Section 5.2.2) and rules 4.7, 5.21 and 4.2 trans-

late the multiplications in the expression above into projections on top of join

operators. In contrast, for the additions in the second line, according to Rule 5.24,

full outer-join operators are needed.

If W tj denotes the relation corresponding to each partial score w(d,tj), the

join sequence for a 3-term expression becomes as follows (ignoring projections):
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ond

ond

ond

W t1 W t2

W t3

=./=d

=./=d

W t1 W t2

W t3

All join and outer-join equality conditions are on attribute d , which is the only

dimension of the corresponding array, thus the key attributes for all the relations

W tj . Following the optimisation techniques introduced in [GLR97], this allows

the simplification of outer-join operators into join operators, as all the NULL-

padded tuples produced by outer-joins will be subsequently discarded by the

joins on the same key:

ond

ond

ond

W t1 W t2

W t3

ond

ond

W t1 W t2

W t3

The same equality conditions allow to verify that the expression above contains re-

dundant key equi-join operations. Standard join elimination techniques [CGM90]

reduce it to the following expression:

ond

ond

W t1 W t2

W t3

Thus, the MonetDB/X100 query plan for the conjunctive version of BM25, named

BM25UCMQC, is equivalent to the disjunctive version in Figure 6.12c, except for

the MergeJoin operator that has replaced the MergeOuterJoin operator. Finally,

standard join order optimisation [SMK93] can schedule the execution of the most

selective join operations first, to reduce as soon as possible the cardinality of

intermediate results. In IR words, this means computing the score of the least

frequent terms first, exploiting the typical skew of the Zipfian term distribution

to discard document candidates early, as done in [BL85] in the context of an

upper-bound search algorithm.
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Table 6.5: SRAM and MonetDB/X100 on TREC-TB

Run name (+ added feature) p@20 Avg (ms)

Cold Hot

12-disk 3GHz Pentium4 4GB RAM server

BM25 0.546 1826 1584
BM25U (+ Unfolding) 0.546 468 328
BM25UC (+ Compression) 0.546 439 333
BM25UCM (+ Materialisation) 0.546 194 65
BM25UCMQ (+ Quantisation) 0.543 161 63
BM25UCMQC (+ Conjunctive) 0.538 109 13
BM25UCMQC2 (+ 2-Pass) 0.547 117 21

Replacing the outer-joins with joins and re-ordering them by cardinality (i.e.

term frequency) has as effect that the number of candidate documents quickly

decreases. Whereas the top-N in the default plan chooses among 1.4M docu-

ments on average, in the conjunctive case the average amount of candidates is

down to 62K, such that the query executes much quicker in the hot run (from

63ms to 13ms). The number of candidates still varies widely, and in 15% of the

TREC-TB queries, the conjunctive strategy yields in fact less than the 20 doc-

uments required for P@20. This explains the deterioration in precision to 0.538,

visible in Table 6.5, run BM25UCMQC. This deterioration is mitigated using the

2-pass strategy, settling our cold run at 117ms and the hot run at 21ms (run

BM25UCMQC2).

6.3.3 Discussion

To put our results in perspective, Table 6.6 summarises the efficiency and preci-

sion of three custom IR engines that were made available for comparative runs in

the 2006 TeraByte Track. These runs were performed on the same hardware as

our single server-based runs, using the same 2005 efficiency topics, and operating

on cold data. This makes for a fair comparison of the various systems.

Table 6.6 illustrates that the results of SRAM + MonetDB/X100 are compet-

itive, second only to Wumpus in terms of efficiency (117ms vs. 91 ms on cold

data). In terms of precision, SRAM + MonetDB/X100 scores second as well, after

Indri (0.561 vs. 0.547). However, Indri’s win in terms of precision comes at a

significant cost in terms of execution time (117ms vs. 1724 ms).

The following sections highlight some of the conclusions we were able to draw

from the experiments on TREC-TB. In this context, the array data model turned
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Table 6.6: Performance compared to custom IR systems (cold runs)

System Index p@20 CPUs Time per
size (GB) query (ms)

Indri 100 0.5610 1 1724
Zettair 44 0.4770 1 390
Wumpus 14 0.5310 1 91
SRAM-MonetDB/X100 9 0.5470 1 117

out to be well-suited for describing IR tasks not only theoretically (as in the

Matrix Framework for IR), but also in practice when properly mapped onto the

relational domain.

Next-generation databases are good for IR. A first way to interpret these

results is as a proof that there is a misconception around the belief of data-

base technology not being able to provide raw performance that is competitive

with that of custom-built IR solutions. The research on MonetDB/X100 ad-

vocates that the engineering of existing database engines did not keep up with

recent hardware’s evolution and that next-generation execution models are ne-

cessary to exploit the advantages of modern hardware, following the example of

other application areas (e.g. computer graphics, scientific tools, computer games,

see [ABH09]). The results presented in this section show that, from a perform-

ance point of view, exploitation of the computational power offered by modern

hardware by database engines is indeed a key missing ingredient in the so far

failed attempts for DB and IR integration (see [CRW05, Wei07]).

IR and array optimisations mapped onto relational optimisations. The

second necessary ingredient for high-performance DB-powered IR, together with

a next-generation database engine, is the ability to feed this engine with proper

inputs, that is, to generate optimised physical query plans for the declarative

problem specification at hand. In the past, this has not even succeeded when

starting from SQL, even though SQL is much closer to the database domain

than to the IR domain. A second achievement of the experiments presented in

this section is to show how database query plans suited for IR can be obtained

starting from the array domain, which is then confirmed to represent a well-suited

abstraction between IR and DB domains (after the work in [RTK05] showed it is

a well-suited abstraction for IR alone).

The relational DAAT query plans that perform inverted list merging, used

here to achieve our highest performance results, are not new at all, but we
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do consider it a major success that we were able to generate these plans auto-

matically, basically starting from the mathematical formula that defines BM25

and with no IR-specific array mapping rule. Experiments on large collec-

tions such as TREC-TB demonstrate that the array paradigm proposed in the

Matrix Framework for IR can only be implemented using sparse arrays (dense ma-

terialisation arrays like LT or TD is simply unfeasible on non-trivial collections).

The results confirm that the effort put in mapping sparse array computations

onto efficient relational queries is an approach that is practically viable, resulting

in performance competitive with that of customised IR systems.

One database-powered framework for many retrieval models. The

same collection index based on LDl,d and LTl,t matrices can be used to im-

plement other retrieval models as described in [RTK05]. We briefly discuss the

Language Modelling approach [Hie98, PC98]:

S
(D)
LM =

∑
T∈Q

ωD,T (6.3)

ωD,T = log (λ · P (T |D) + (1− λ) · P (T )) (6.4)

∝ log

(
λ · P (T |D)

(1− λ) · P (T )
+ 1

)
(6.5)

P (T |D) =
fT,D
|D|

, P (T ) =
fcT
nL

where fcT and nL denote collection term-frequency and collection size (number

of locations), respectively.

Formulae (6.4) and (6.5) produce equivalent rankings. The latter uses a pres-

ence (as opposed to presence/absence) weighting scheme [RSJ88] and can be

implemented more efficiently, as it assigns a zero weight to terms that are not

present in a document. In sparse matrix operations, this means significantly less

computation.

The following SRAM expression implements Language Modelling with pres-

ence weighting scheme:

1 s(d) = sum([ w(d,Q(t)) | t ])

2 w(d,t) = log( l * ptd(t,d)

3 / (1 - l) * pt(t)) + 1 )

4 ptd(t,d) = TD(t,d) / S(d)

5 pt(t) = Fc(t) / nLocs

with the additional array fcT created at indexing time:

Fc := [ sum([ LT(l,t) | l ]) | t ]
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An interesting area for future research includes automatic mathematical re-

formulations such as the one from (6.4) to (6.5). The system would be allowed

to consider the two versions as equivalent when a query asks for a ranking, with

the topN syntax, but not for the actual scores.
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Last words are for fools

who haven’t said enough

- Karl Marx, economist 7
Conclusions

The research presented in this thesis, summarised in Section 7.1, proposes a

structured approach to the engineering of search systems. A clean separation of

concerns is realised through the identification of abstraction layers, which provide

the correct amount of declarativeness at each stage in the search process. This

layered architecture, together with suitable instantiations of the abstraction lay-

ers identified and carefully deigned mapping strategies, allows to enable content

independence (search strategies independent of content representation) and data

independence (data access strategies independent of data representation). As ex-

perimentally shown, although this high degree of flexibility can be obtained with

a fully automated translation and optimisation process, efficiency and scalability

can compete with highly optimised custom-built search solutions.

7.1 Contributions

Assuming a layered architecture, which abstraction layers should be

distinguished, as a prerequisite for providing search systems with con-

tent and data independence?

Chapter 3 introduces the concept of a Parametrised Search System (PSS). Distin-

guishing feature of a PSS is a layered architecture that facilitates the decoupling

of search strategies from logical content representation, algorithms and physical

organisation of data, which is the pre-requisite for enabling content and data

independence in search systems. The abstraction layers identified in Chapter 3

for a generic PSS are:

application interface - to express the user information need

(e.g. a simple keyword-list, a query-by-example interface, etc.)
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application abstraction - to model and abstract the information need

(IR details are abstracted away)

IR modelling abstraction - to model an abstract IR task

(data-access details are abstracted away)

conceptual data-access layer - to express an IR task declaratively

(actual expression of a modelled IR task, logical/physical data-access details

are abstracted away)

logical data-access layer - to express a data-access plan declaratively

(instantiation of a conceptual data-access abstraction, physical details are

abstracted away)

physical data-access layer - to express a physical data-access plan.

The first two abstraction layers depend on the specific application-domain and do

not play a major role in providing the pursued architectural flexibility. Content

independence is enabled by choosing suitable instantiations for the IR model-

ling abstraction and the conceptual data-access abstraction. Data independ-

ence is enabled by mapping the conceptual data-access abstraction chosen onto

suitable logical and physical data-access abstractions. As the results in Chapter 6

show, content and data independence can be achieved in a PSS because of the

clean separation of concerns: this allows to index and search different content

(e.g. XML, flat text, graphs) without modifying the software, but describing

data, indexing and search strategies declaratively.

What are suitable instantiations of such abstraction layers?

Leaving the first two application-specific abstraction layers unspecified, as they

are not expected to influence the PSS flexibility, this thesis proposes to instantiate

each remaining abstraction layer as follows:

IR modelling abstraction: a framework based on matrix spaces, as the

Matrix Framework for IR

conceptual data-access layer: the array data model

logical data-access layer: the relational algebra

physical data-access layer: a database engine
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Chapter 6 applies these concepts to a real PSS implementation. The im-

plementation experiments in sections 6.1, 6.2 and 6.3 show that modelling IR

problems in terms of matrix spaces is independent of the specific content rep-

resentation (XML, graphs and flat text respectively). This is in line with what

claimed in [RTK05]. Additionally, we have shown feasibility of such a content-

independent modelling by mapping the theoretical matrix framework onto a real

implementation based on the array data-model.

Data independence is well-known as one of the crucial benefits provided by

database technology. This reason, together with the amount of solutions for

data retrieval and database query optimisation, assumed relational algebra and

database technology the preferred instantiation of the logical and physical data-

access abstraction layers. Chapter 6 shows implementation of the complete stack

of layers.

Can automatic mappings among the identified layers be defined, so

that possible data-model mismatches are taken care of by the system?

Identifying reasonable instantiations for each abstraction layer in isolation, so

that it plays well its role, is only part of the challenge. Another important aspect

is to make sure that such abstraction layers work well together, in a pipeline

that smoothly brings the required information from the underlying raw data up

to the user interface. Some abstractions are very close to each other, such as a

framework based on a matrix-space and a data-access abstraction based on the

array data-model. The next step, mapping the array data-model onto relational

algebra, is less trivial. This is the topic discussed in Chapter 4, where a complete

mapping framework is presented for the array-syntax proposed. All experiments

in Chapter 6 show that when most common IR problem are modelled as in the

Matrix Framework for IR and expressed in SRAM syntax, these can be mapped

successfully onto relational algebra and physical query plans.

What are the requirements of such a software architecture in terms of

runtime efficiency and scalability?

This topic is addressed in Chapter 5 and evaluated mainly in Section 6.3. We

can draw a number of conclusions:

• Mappings from one domain to another should include expressions as well as

optimisations. The array-to-relation mapping process is supported by a set

of specific optimisation rules, that operate in three distinct phases: in the

original domain, during the mapping itself and in the target domain. Im-
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plementing the needed optimisations at all levels can enable all-round and

transparent optimisations, as exemplified in Section 6.3.2, where the typical

IR processing based on inverted-file structure is mimicked in the relational

world, thanks to generic optimisation techniques, or in Section 6.3.2, where

a mathematically-defined IR optimisation has been propagated and trans-

lated into relational optimisations, without any specific customisation.

• Database engines have been described in past experiments as too slow for

the computation-intensive processing typical of IR tasks [CRW05]. Sec-

tion 5.4.1 advocates that this statement, as it is, should be considered

ill-posed nowadays, as it starts from an outdated conception of database

technology. Not only we could show for the first time how a new-generation,

hardware-conscious database architecture can provide IR applications with

efficient data access (see Section 6.3). We have also shown that this com-

petitive performance can be obtained through automatic query translation,

starting from declarative problem specifications in the array domain.

7.2 Future work

This section summarises some challenges that this thesis leaves open (or opens

up) and that should be considered as interesting future work.

Increased awareness of IR data distributions. The search system powered

by SRAM and MonetDB/X100 technologies proved highly efficient for large-scale

retrieval tasks. However, neither technology is specifically optimised for the typ-

ical Zipfian distribution of data in IR corpora. The standard implementation of

hash-aggregation in database engines is one of the crucial non-IR friendly DB

technologies. When, for example, a per-group summation can be computed on a

set of values, groups of tuples must be identified. This is an easy problem when

tuples are already sorted on the grouping-attributes. Otherwise, a common way

to identify groups is to construct a hash table, where buckets keep the current

aggregated value for each group (see [Gra93]). One of the key factors that de-

termine the efficiency of hash-aggregation is the number of buckets of the hash

table, which depends on the expected number (or average size) of the groups in

the input data. Using too few buckets results in many groups per bucket and

consequently many lookup steps needed per tuple; using too many buckets con-

sumes more memory, with possible consequences on the overall performance of

the system. Typically, the correct hash table size is estimated by reading small

samples of input data. This works reasonably well on uniformly distributed data,
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but is bound to produce bad estimations on highly skewed data. In the IR do-

main this happens when, for example, a per-document term frequency needs to

be computed from a binary (presence/absence) term-document relation, using a

count aggregation function. Because of the Zipfian distribution of natural lan-

guage terms, the size of term-doc groups can vary greatly: few terms occur very

frequently, whereas the majority of terms occur only few times. A more effective

way of solving the problem would properly propagate detailed information from

domain-specific corpora down to the relational execution engine. How to collect

such knowledge, propagate it through all the architecture layers and exploit it

at best in general-purpose data-access algorithms is a challenging topic to be

explored.

More flexible and efficient relational representations. The relational

storage scheme proposed in Section 4.5.1, in combination with array-to-relational

mapping and optimisation rules (see chapters 4 and 5), enables a powerful and

flexible engine for array computations (see Chapter 6). However, a large amount

of literature on array storage and computation supports the argument that a

“one size fits all” storage scheme is not likely to provide overall efficient array

processing, especially when dealing with sparse arrays. For example, Section 6.1.3

shows how the default SRAM storage scheme can be sub-optimal when used to

encode hierarchically structured data as XML, where range-based encodings may

be more suited, following the example of MonetDB/XQuery [BGvK+06]. Also,

sections 6.2.6, 6.2.7 and 6.3.1 make explicit that efficient physical query plans

depend on the chosen storage properties for each array. Within the same storage

scheme, the choice of which is the major axis (and which is the importance order

of the remaining axes) translates into the choice of which index column an ar-

ray table is sorted on. This triggers the choice of physical operators to use (e.g.

hash-join instead of a faster merge-join, when join columns are not sorted). Be-

cause it is not possible to have the same table sorted on different attributes, the

same tables are bound to be accessed with different efficiency by different queries.

One possible solution would be to support replication of tables into a number of

copies optimised for different access patterns. Ability to support and integrate

diverse storage schemes with an efficient array-to-relational mapping process is of

primary importance in the future development of this research (see [CMWM09]

for a closely relate work on this topic).

Support for iterative computations. The random walk on a social network

(Section 6.2) is an iterative retrieval task. Because this is based on a fixed and re-

latively small number of iterations, the limited support for loops provided by the
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SRAM system (see Section 4.3.1) is sufficient. However, a number of tasks that

are common in IR require a high and non-fixed (i.e. data-dependent) number of

iterations. Examples include clustering algorithms used in unsupervisioned learn-

ing, such as k-means and expectation maximisation (EM). Support for iterations

in the array domain that overcomes the limitations imposed by the SRAM syn-

tax is certainly possible. Also, the internals of some relational execution engines

provide rich data-interfaces that include proper support for loops (e.g. [CWI]).

However, relational algebra completely lacks the concept of iteration, if not ex-

plicitly unrolled and encoded as data-replication. While replication is possible

using cartesian products, it is inefficient and does not support data-dependent

loop-exit conditions. Extending the relational algebra layer with iterations would

bridge the gap and enable relational-powered, iterative array computations.



A
SRAM syntax normalisation rules

This appendix presents details about the SRAM syntax normalisation process

that is described informally in Section 4.4.1. The process consists of two stages:

flattening and shape alignment, indicated with Φ(E) and Υς(E), respectively. In

practice, the normalisation process is a top-down application of translation rules

dealing with the different constructs of comprehension syntax. First, the original

expression is flattened. Then, the flattened expression is recursively aligned to

the shape of the result array:

E′ = Φ(E)

E′′ = Υς(E
′), ς = (ψ(E′)<SE′)

Table A.1 summarises the notation used in this appendix.

A.1 Flattening

Recall from Definition 4.4 that array elements can be arrays themselves, which

yields nested array structures. The flattening step normalises arrays to their

non-nested equivalent. The basic principle is that a nested array E can always

be represented as a flat array E′ whose valence is the sum of the valences of the

array structures nested in E.

The set of rules below, which are matched in the presented order against input

expressions, are applied repeatedly to the top of the expression tree, until this

cannot be further transformed:
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Table A.1: Notation used in normalisation rules (see Table 4.1 at page 33 for
other symbols used)

Notation Meaning

E A generic array expression in comprehension syntax
Φ(E) Flatten array expression E

Υς(E) Align shape of array expression E to ς
ς (ı̄<S), axis identifiers and shape to be used for reshaping an array expression
ψ(E) Vector of axis identifiers defined for E

repeat

E_old = E

E = Φ(E old)

until E = E old

Φ(E) = {
E = Rule A.1 (E)

E = Rule A.2 (E)

. . .

}

This is necessary because some of the rules presented below may generate nested

sub-expressions as a side-effect.

Only Rule A.1 actually removes nesting layers. All the other rules either make

implicit nestings explicit, by translating them into comprehensions, or merely

propagating the flattening operator throughout the different expression patterns.

Rule A.1 (Flattening nested comprehensions). This is the only rule that

actually performs unnesting. The outer comprehension is removed and its index

domain pre-pended to the inner comprehension’s index domain. The result is a

higher-dimensionality, flat array:

Φ([ [ E | ē<S ′ ] | ı̄<S ])

Φ([ E | ı̄<S, ē<S ′ ])

Once removed the most “external layer of the onion”, the process is applied again

to the result. �

Rule A.2 (Flattening comprehensions). When the expression inside a com-

prehension is not a comprehension itself, the flattening process is applied to it.

Φ([ E | ı̄<S ])

[ Φ(E) | ı̄<S ]

Note that this, depending on the syntactic pattern of the expression, may generate
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new comprehensions. This requires a new flattening process to take place at the

syntactic tree root. �

Rule A.3 (Flattening nested expressions). When a generic expression E is

nested (recall Definition 4.7), every element E(ψ(E)) is an array itself. This

rule transforms expression E into a comprehension, which makes array elements

explicit. The comprehension just created can later be removed by Rule A.1 and

the array elements flattened recursively.

Φ(E) ∀ı̄ ∈ DE : |SE(ı̄)| > 0

[ Φ(E(ψ(E))) | ψ(E)<SE ]

Intuitively, this rule takes a step deeper into the recursive structure of nested

arrays, from an upper-level into its elements. �

Rule A.4 (Flattening applications of persistent arrays). This rule is one

of the termination points of the flattening algorithm. Applications of persistent

arrays to a set of index vectors cannot be further flattened when they yield an

atomic value. This rule applies to both nested and flat arrays.

Φ(A(ı̄)· · · (̄)) |SA(ı̄)···(̄)| = 0

A(ı̄)· · · (̄) �

Rule A.5 (Flattening applications). Applications that do not match the

patterns described in Rules A.3 and A.4 deal with possibly nested non-persistent

arrays that are applied to a set of index vectors. Because the array is non-

persistent, it can be recursively flattened and matched with the flat concatenation

of its index vectors.
Φ(E(ı̄)· · · (̄))

Φ(E)(ı̄,. . . ,̄) �

Rule A.6 (Flattening functions). Because functions are defined over atomic

values, their arguments are guaranteed not to be arrays. However, sub-

expressions of these may result in intermediate nested arrays, which need to
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be flattened by propagation of the flattening operator.

Φ(f(E1,...,Em))

f(Φ(E1),...,Φ(Em)) �

Rule A.7 (Flattening aggregations). Aggregation functions are defined

from arrays to atomic values. The flattening operator is propagated to their

argument to ensure that the result is indeed an atomic value.

Φ(f(E))

f(Φ(E)) �

Rule A.8 (Flattening sort and topN constructs). Sub-expressions of Sort

and topN operators may result in intermediate nested arrays, which need to be

flattened by propagation of the flattening operator.

Φ(sort(E,d))

sort(Φ(E),d)

Φ(topN(E,n,d))

topN(Φ(E),n,d) �

Rule A.9 (Flattening anything else). The most generic termination rule for

the flattening algorithm deals with all expressions that do not match any of the

previous patterns, such as atomic values, axis identifiers or flat arrays.

Φ(E)

E �
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Example A.1 (Flattening a nested array).

A = ([10,5],([20],int)) "A"

Φ([ A(x,y) | y, x ])

Rule A.2 −→ [ Φ(A(x,y)) | y, x ]

Rule A.3 −→ [ [ Φ(A(x,y)(z)) | z ] | y, x ]

Rule A.4 −→ [ [ A(x,y)(z) | z ] y, x ]

2nd pass −→ Φ([ [ A(x,y)(z) | z ] y, x ])

Rule A.1 −→ [ A(x,y)(z) | y, x, z ]

Example A.2 (Flattening a nested comprehension).

A = ([10,5],int) "A"

Φ([ [ [ A(x,y) | x,y ] | z ](z) | z ])

Rule A.2 −→ [ Φ([ [ A(x,y) | x,y ] | z ](z)) | z ]

Rule A.3 −→ [ [ Φ([ [ A(x,y) | x,y ] | z ](z)(x,y)) | x,y ] | z ]

Rule A.5 −→ [ [ Φ([ [ A(x,y) | x,y ] | z ])(z,x,y) | x,y ] | z ]

Rule A.1 −→ [ [ Φ([ A(x,y) | z,x,y ])(z,x,y) | x,y ] | z ]

Rule A.2 −→ [ [ [ Φ(A(x,y)) | z,x,y ](z,x,y) | x,y ] | z ]

Rule A.4 −→ [ [ [ A(x,y) | z,x,y ](z,x,y) | x,y ] | z ]

2nd pass Φ([ [ [ A(x,y) | z,x,y ](z,x,y) | x,y ] | z ])

Rule A.1 −→ [ [ A(x,y) | z,x,y ](z,x,y) | z,x,y ]

A.2 Shape alignment

This normalisation process, which takes place on a previously flattened expres-

sion, helps the recognition of patterns that match the definition of array algebra

operators (see Section 4.4.1). It works by reshaping all sub-expressions to match

the shape of the expression’s result, which is denoted in the following rules, to-

gether with its axes, as ς = (̄ı<S). Note that these rules are not robust against in-

correct or ill-defined expressions, such as [ [ f(x,y) | x,y ](z) | z ], where

a 2-dimensional array is applied to one array index (z). The rules below are

matched in the presented order against input expressions. Input expression cor-

rectness must be checked before normalisation takes place.

Rule A.10 (Aligning comprehensions). Align comprehensions to a new

shape simply involves replacing the existing shape specification with a new one.

Υς([ E | ē<S ′ ]) ς = (̄ı<S)

[ Υς(E(ı̄)) | ı̄<S ]
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It is assumed that E(ı̄) is well-defined, i.e. ψ(E) ⊂ ı̄. �

Rule A.11 (Aligning persistent arrays). In order to align persistent arrays,

these need to be first rewritten into an explicit comprehension expression, which

can then be aligned to a new shape by replacing the existing shape specification.

Υς(A) ς = (̄ı<S)

[ A(ψ(A)) | ı̄<S ]

It is assumed that ψ(A) ⊂ ı̄. �

Rule A.12 (Aligning applications of persistent arrays). Alignment of

persistent array applications to sets of indices cannot be further propagated. An

explicit comprehension is created around the original expression, which often

yields an identity transformation.

Υς(A(̄)) ς = (̄ı<S) |SA(̄)| = 0

[ A(̄) | ı̄<S ](ı̄)

It is assumed that ̄ ⊂ ı̄. �

Rule A.13 (Aligning applications). Alignment of array expression applica-

tions to a set of indices can be recursively propagated to both parts of the original

expression.
Υς(E(̄)) ς = (̄ı<S)

Υς′(E)(Υς (̄ı))

ς ′ = ı̄′<S

∀ı̄′l ∈ ı̄′ : ı̄′l =

{
ψ(E)k if ∃k : jk = il

il otherwise

Because expression E is guaranteed to be aligned to the new shape S, the axis

identifiers ̄ need to be replaced with ı̄, in order to match the new shape. However,

when aligning recursively expression E, axis identifiers in ς need to be renamed

so that they match those available inside E. The example below shows this

renaming. �

Rule A.14 (Aligning aggregations). Aggregation is perhaps the least

straightforward construct in array comprehension syntax. Recall that, in

f([ E | ̄<S ′ ]), expression ̄<S ′ does not identify the comprehension’s shape,

but rather the axes that are to be collapsed by the aggregation in (therefore lost

from) expression E. The shape alignment operation can be propagated as normal,
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except that the shape being propagated must include those axes ̄ that are being

discarded by the aggregation. The final result will not include them, but the

argument of the aggregation does.

Moreover, this rule performs an additional transformation that is not strictly

concerned with shape alignment. It rewrites the aggregation function into an

aggr(f,n,E) construct that facilitates the transformation into an array algebra

operator, by shifting to the end the n axes that are to be collapsed. See the

transformation rule to the Aggregate array algebra operator, in Section 4.4.2, for

further details.
Υς(f([ E | ̄<S ′ ])) ς = (̄ı<S)

aggr(f, |̄|, Υς′(E))

ς ′ = (ı̄++ ̄)<(S ++ S ′) �

Rule A.15 (Aligning functions). Shape alignment is simply propagated from

functions to their arguments.

Υς(f(E1, ..., Em))

f(Υς(E1),...,Υς(Em)) �

Rule A.16 (Aligning axis vectors). Aligning axis vectors is translated into

alignment of each axis in that vector.

Υς(̄) ς = (̄ı<S)

̄ = (j1, ..., jk)

(Υς(j1),...,Υς(jk)) �

Rule A.17 (Aligning axes). A single axis identifier is aligned to a shape by

creating a comprehension of the given shape and selecting the enumeration of

given axis as an array value. This corresponds to creating an array index, that



196 Chapter A: SRAM syntax normalisation rules

is, an array whose values are index values.

Υς(j) ς = (̄ı<S)

j ∈ ı̄
[ j | ı̄<S ](ı̄) �

Rule A.18 (Aligning constants). A constant value is aligned to a shape by

creating a comprehension of the given shape and selecting given constant as an

array value. This corresponds to creating constant array.

Υς(c) ς = (̄ı<S)

[ c | ı̄<S ](ı̄) �

Rule A.19 (Aligning sort and topN constructs). Sort and topN operat-

ors, like functions, simply propagate the flattening operator to their arguments.

Υς(sort(E,d))

sort(Υς(E),d)

Υς(topN(E,n,d))

topN(Υς(E),n,d) �

Example A.3 (Aligning a flattened comprehension).

A = ([10,5],int) "A"

Υς([ A(x,x) | x ](z) | z<4,w<20), ς = z<4,w<20

Rule A.13 −→ [ Υς′ ([ A(x,x) | x ])(Υς(z)) | z<4,w<20 ]

ς′ = x<4,w<20, ς = z<4,w<20

Rule A.10 −→ [ [ Υς′ (A(x,x)) | x<4,w<20 ]([ z | z<4,w<20 ](z,w)) | z<4,w<20 ]

ς′ = x<4,w<20

Rule A.12 −→ [ [ [ A(x,x) | x<4,w<20 ](x,w) | x<4, w<20 ]([ z | z<4,w<20 ](z,w)) | z<4,w<20 ]
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Summary

Enter some keywords and a magic box will find documents for you. Only relat-

ively simple variations of this familiar search scenario for digital systems have

reached the large audience in the past two decades. Search technology has how-

ever become more complex over the years, with new and improved theoretical

models and algorithms hidden behind the “Search” button. For example, new

models can better exploit word correlations or thesauri to improve search qual-

ity, while algorithms and data structures can use parallelisation and compression

techniques. Search has evolved in other directions, too. More and more contex-

tual information is exploited during the search process. Online stores can refine

product retrieval based on user profiles, behaviour history and similarity with

other users. Also, search has extended beyond the scope of “simple” text search.

The diversity of evidence types used by modern systems includes text, markup

languages, emails, audio/video material, online social content such as blogs or

social network posts, to mention a few.

We view each specific setup of the search system as a search application. The

development of such specialised applications requires considerable effort even to

highly skilled information retrieval engineers, who need to apply the latest labor-

atory results to a growing variety of real-world complex scenarios [Haw04]. This

thesis investigates how the architecture design of a search system could be recon-

sidered to simplify the creation of these custom search applications, focusing on

two main concepts: content independence and data independence. Content inde-

pendence [dVMNK01, Mih06, WLMZ03] is referred to as the decoupling between

search methods and logical content representation (e.g. ranking XML data should

not be different from ranking flat text data). Data independence is referred to

as the decoupling between algorithms and data organisation. Absence of these

two properties yields search systems that are inflexible with respect to changes in

the expected range of tasks, contextual information, content representation and
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physical data organisation.

This thesis proposes an innovation in the search system engineering pro-

cess, by introducing a layered approach typical of database systems, that

allows to enable both content and data independence. Content independ-

ence is achieved by expressing data and operations uniformly within the

Matrix Framework for IR [RTK05]. Data independence is achieved by mapping

this mathematical framework to database technology for actual data access: the

SRAM abstraction layer allows IR engineers to “see matrices while touching rela-

tional tables”. Information retrieval tasks can be specified using a matrix-based

query language, in a way that directly corresponds to the underlying mathem-

atical formulas. SRAM translates and optimises array queries into equivalent

relational queries that can be executed on relational database systems.

A second goal of this research is to investigate how such an increased flexibil-

ity can be obtained without significant performance losses. Previous attempts of

using database technology for supporting information retrieval tasks have shown

repeatedly that the runtime efficiency of such solutions could not compete with

specialised applications based on inverted file structures [CRW05]. The results

presented in the evaluation section of this thesis, which show top-level perform-

ance and scalability scores, are particularly significant in that the database queries

used were obtained automatically from a declarative specification of the math-

ematical problem at hand. This research identifies two main requirements for

achieving competitive efficiency in the software architecture proposed: (i) map-

ping from the array to the relational domains is optimised with a specific set

of array-aware transformation rules, with support for sparse arrays; (ii) the

underlying database engine is tuned for modern hardware exploitation, like the

MonetDB/X100 database system [ZBNH05] used for this research, which uses vec-

torised in-cache query execution to achieve good CPU utilisation [BZN05] and

a column-oriented storage manager that provides transparent light-weight data

compression to improve I/O-bandwidth utilisation [ZHNB06].
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Samenvatting

Type een paar trefwoorden en een magische doos vindt geschikte documenten: een

bekend scenario voor zoeken in moderne computersystemen. Slechts een klein

aantal, relatief simpele variaties op dit thema bereikten de laatste twee decennia

het publiek. Zoektechnologie is echter door de jaren heen complexer en krach-

tiger geworden, met nieuwe en verbeterde theoretische modellen en algoritmes

verborgen achter de “Zoek” knop.

Die nieuwe modellen maken bijvoorbeeld beter gebruik van verbanden tussen

woorden of van thesauri om de kwaliteit van de resultaten te verbeteren. Al-

goritmes en data structuren gebruiken parallellisme en compressie voor betere

efficiëntie. Zoeken is ook in andere richtingen gegroeid. Meer en meer contex-

tuele informatie wordt benut tijdens het zoekproces. Online winkels verfijnen

het zoeken in producten op basis van gebruikersprofielen, gedrag en overeenkom-

sten met andere gebruikers. Daarnaast is zoeken meer geworden dan enkel het

“eenvoudige” zoeken in tekst. Moderne systemen baseren zoekresultaten op een

diversiteit aan bronnen, zoals de tekst zelf, annotaties in verschillende formaten

(bv. HTML, XML), maar ook e-mail, audio/video materiaal, en berichten op

online sociale netwerken.

Elk zoeksysteem wordt vaak gezien als een losstaande applicatie. De ont-

wikkeling van zulke gespecialiseerde applicaties kost een aanzienlijke hoeveelheid

tijd, zelfs voor ervaren ontwikkelaars. Zij moeten de nieuwste onderzoeksresul-

taten op een groeiend aantal in de praktijk voorkomende complexe scenario’s

toepassen [Haw04]. Dit proefschrift beoogt zoeksystemen anders te ontwerpen,

om zo het bouwen van zoekapplicaties te vereenvoudigen. Het richt zich op twee

hoofdaspecten: onafhankelijkheid van inhoud en onafhankelijkheid van data. On-

afhankelijkheid van inhoud [dVMNK01, Mih06, WLMZ03] betekent het scheiden

van zoekmethoden van de logische representatie van de inhoud (het rangschik-

ken van XML data moet bijvoorbeeld niet anders zijn dan het rangschikken van
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platte tekst). Onafhankelijkheid van data staat voor het scheiden van algoritmes

en fysieke data organisatie. Omdat zoeksystemen worden gebouwd zonder deze

twee aspecten in aanmerking te nemen, zijn gebouwde zoeksystemen vaak in-

flexibel met betrekking tot latere wijzigingen in de verwachte omvang van taken,

contextuele informatie, representatie van de inhoud en fysieke data organisatie.

Dit proefschrift introduceert daarom een innovatie in het ontwikkelproces van

zoeksystemen. Door het overnemen van de gelaagde aanpak die kenmerkend

is voor databasesystemen, wordt zowel onafhankelijkheid van inhoud als onaf-

hankelijkheid van data haalbaar. Onafhankelijkheid van inhoud wordt bereikt

door data en algoritmiek uniform uit te drukken in het Matrix Framework for IR,

een theoretisch raamwerk voor information retrieval (IR) op basis van matrices

[RTK05]. Onafhankelijkheid van data wordt vervolgens gerealiseerd door uitdruk-

kingen in dit raamwerk te vertalen operaties in database systemen, door middel

van de abstractielaag SRAM. Zo kunnen IR ontwikkelaars zich uitdrukken in

matrices en toch relationele tabellen manipuleren. Information retrieval taken

worden beschreven in een matrix-gebaseerde querytaal die een op een overeen-

komt met de onderliggende wiskundige formules. SRAM vertaalt en optimaliseert

operaties op arrays in equivalente relationele operaties zodat deze uitgevoerd kun-

nen worden op relationele database systemen.

Een tweede doel van dit proefschrift onderzoekt hoe deze grotere flexibili-

teit verwezenlijkt kan worden zonder significant verlies in prestaties. Eerdere

pogingen om databasetechnologie te gebruiken voor het ondersteunen van infor-

mation retrieval systemen konden herhaaldelijk qua efficiëntie niet wedijveren

met gespecialiseerde applicaties gebouwd op gëınverteerde lijsten [CRW05]. De

in de evaluatie gepresenteerde resultaten tonen aan dat competitieve prestaties

en schaalbaarheid realiseerbaar is; een opmerkelijke prestatie omdat de operaties

op de onderliggende database automatisch gegenereerd worden uit een decla-

ratieve specificatie van het wiskundige probleem. Het onderzoek identificeert

twee belangrijke vereisten voor het behalen van de benodigde efficiëntie in de

voorgestelde software architectuur: (i) de projectie van het array- naar het re-

lationele domein wordt geoptimaliseerd met array-bewuste vertalingsregels, met

specifieke ondersteuning voor sparse arrays; (ii) het onderliggende database sys-

teem is toegespitst op het benutten van moderne hardware, zoals het voor dit

onderzoek gebruikte MonetDB/X100 database systeem [ZBNH05]. Dit databa-

sesysteem voert database vragen uit per-vector in-cache om de CPU optimaal

te benutten [BZN05], en, het gebruikt een kolom-georiënteerde datarepresentatie

met, transparante, lichtgewicht data compressie om de maximale performance te

halen uit de I/O-bandbreedte [ZHNB06].
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