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A B S T R A C T

Aiming to address soft sensing model degradation under changing working conditions, and to accommodate
dynamic, nonlinear, and multimodal data characteristics, this paper proposes a nonlinear dynamic transfer
soft sensor algorithm. The approach leverages time-delay data augmentation to capture dynamics and projects
the augmented data into a latent space for constructing a nonlinear regression model. Two regular terms,
distribution alignment regularity and first-order difference regularity, are introduced during data projection to
address data distribution disparities. Laplace regularity is incorporated into the nonlinear regression model to
ensure geometric structure preservation. The final optimization objective is formulated within the framework
of partial least squares, and hyperparameters are determined using Bayesian optimization. The effectiveness
of the proposed algorithm is demonstrated through experiments on three public datasets.
1. Introduction

The advancement of big data and artificial intelligence (AI) tech-
nology provides unprecedented opportunities and challenges for the
development of industrial AI [1]. Data-driven soft sensing [2–4] is
a typical application of AI technology in the industrial field. It uti-
lizes regression models built from easy-to-measure and unmeasurable
variables to achieve rapid prediction of unmeasurable variables. Eas-
ily measurable variables refer to the data measured by conventional
sensors, such as pressure, temperature, flow, level, and other signals.
Unmeasurable variables refer to the variables that cannot be monitored
online due to the limited installation environment, or the lag is too
large to meet the real-time requirements, or the instruments are too
expensive and the maintenance costs are too high and cannot meet the
economic requirements. For example, in the high-temperature environ-
ment of the gasification melting furnace, the melting index cannot be
measured online [5]; The ore grade in the beneficiation production pro-
cess [6] and the harmful components in waste incineration residues [7]
need to be tested by instruments in a laboratory environment, with
serious lags; The monitoring of flue gas components in the coal-fired
power generation process requires online analytical instruments [8],
which are costly to operate and maintain.

Traditional data-driven soft sensing methods comprise statistical
and machine learning methods. Representative methods include Partial
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Least Squares (PLS) [9] and Extreme Learning Machine (ELM) [10]. As
a supervised method, the PLS has achieved many successful applica-
tions in the fields of soft sensing and process monitoring. However, the
original PLS is a static and linear modeling method and needs to follow
the basic Gauss–Markov assumption [11], which is difficult to satisfy
in the actual industrial process.

With the rapid development of industry and the intensification
of market competition, the demand for product diversification is in-
creasing. To meet the market’s diverse needs and reduce costs, the
production process has been continuously optimized, and advanced
control strategies such as optimal and boundary control have been
gradually applied to the real production process. Meanwhile, accom-
panied by equipment reorganization, and the changes in internal and
external operating conditions, the actual production process is fre-
quently switched between different working conditions, making the
data present characteristics such as dynamic [12], nonlinear [13],
non-stationary [14], and multi-modal [15].

In response to the dynamic characteristics of data, a series of
dynamic modeling methods have been proposed, which can be divided
into three categories: dynamic extension methods, dynamic feature
extraction methods, and state space methods [16]. The dynamic ex-
pansion methods expand the original data utilizing direct data aug-
mentation and then apply traditional multivariate statistical methods
https://doi.org/10.1016/j.isatra.2024.08.002
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to the augmented data. For instance, Ricker [17] extended the PLS
method based on the Finite Impulse Response (FIR) and proposed
the dynamic PLS (DPLS) model. The direct data extension methods
are simple and convenient to implement, so they are broadly used
in process monitoring and soft sensing. Whereas, the ways of direct
data augmentation cause the increase of variable dimension, which are
computationally inefficient. Based on this, dynamic feature extraction
methods are proposed, for example, Dong and Qin [18] proposed
the dynamic inner model (DiPLS), by constructing the autocorrelation
relationship among latent variables, explicitly expressing the dynamic
properties, and making the model explanatory. State-space models are
another approach to modeling dynamical systems, the most commonly
used state-space model is Canonical Variable Analysis (CVA) [19].

Process nonlinearity is another important characteristic of modern
industry. There are often existing nonlinear relationships between pro-
cess variables [20]. The original PLS model and the above-mentioned
dynamically extended DPLS and DiPLS models are entirely linear
models, which cannot reveal the nonlinear relationships. The kernel
method is a common nonlinear modeling method, which maps the
low-dimensional process variables to the high-dimensional feature
space through a nonlinear function, and then constructs a linear re-
gression model in the high-dimensional feature space. Applying the
above principles, Rosipal and Trejo [21] proposed the KPLS algorithm,
and Bennett and Embrechts [22] proposed the DK-PLS algorithm. These
methods based on kernel expansion linearize nonlinear relationships
between variables, improving the model’s ability to explain nonlinear
data. Another common nonlinear modeling method is the extension
method based on the inner model, which maps the process variable into
the latent space, and constructs a nonlinear model in the latent space.
Qin and McAvoy [23] used the neural network to establish an inner
model between latent variables and proposed the NNPLS algorithm.
Lv et al. [24] used the LSSVM method to construct the inner model
and proposed the LSSVM-PLS method. Yang et al. [25] and Liu et al.
[26] proposed the D-RVM-PLS and D-GPR-PLS algorithms, which use
direct matrix augmentation to expand input features and apply RVM
and GPR on the augmented data to build an inner model between latent
variables, those algorithms improve the fitting ability to nonlinear data
while obtaining the dynamic characteristics.

The dynamic, nonlinear, non-stationary, and multi-modal charac-
teristics of data under multiple working conditions require that the
soft sensor model has sufficient expressive ability. At the same time,
the samples used for training can cover these characteristics, so that
the model can learn these characteristics, which is difficult to meet
in actual industrial applications. This is because the samples used for
training are always limited and it is difficult to cover all production
conditions. When a new working condition appears, the existing model
is difficult to adapt to the variation of the new working condition,
which may easily cause a mismatch of the model. In response to this
problem, Wang et al. [27] introduced transfer learning into the process
of linear dynamic system modeling to solve the cold start problem of
new working conditions in process monitoring. Nikzad-Langerodi et al.
[28] combined transfer learning with the nonlinear iterative partial
least squares method, and provided a transfer regression model with
domain invariant expression. Zhao et al. [29] added domain adaptation
regularization in the dynamic system modeling process, and proposed
a dynamic transfer soft sensor algorithm, which reduced the impact
of data distribution differences on the soft sensor model. Gao et al.
[30] applied the meta-learning method to the multi-modal soft sensing
process, which significantly improved the prediction accuracy of the
model.

Transfer learning [31] can apply the knowledge learned in a certain
task or field to a different but related task or field, so that it can be used
to address the issue of difficult data label acquisition. At the same time,
transfer learning breaks the independent and identical distribution (iid)
hypothesis that traditional machine learning requires so that the fields

or tasks involved in learning can obey different marginal or conditional
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probability distributions. For the problem of soft sensor modeling, using
plenty of existing operating condition data to train the model and
transfer it to the unknown operating condition can effectively handle
the problems of model mismatch and degradation attributable to the
data distribution shift under variable operating conditions.

Aiming at the dynamic, nonlinear, and multi-modal characteristics
of data in the soft sensor modeling process of the modern process
industry, so as to handle the problems of model mismatch and model
degradation caused by data distribution differences under variable
operating conditions, this paper proposes a nonlinear dynamic transfer
partial least squares algorithm (NDTPLS). Firstly, sample data are
augmented with time delay to obtain the dynamic characteristics.
Secondly, the augmented sample data which are high-dimensional are
projected into the latent space, and a nonlinear regression model among
label data and latent variables is constructed. In the process of data
projection, two regular terms named distribution alignment and first
order difference regularization are added to deal with the distribution
difference of the data. In the nonlinear regression model, the Laplace
regular term is added to achieve geometric structure preservation.
The final optimization objective is solved under the framework of
partial least squares. The hyperparameters are obtained by the Bayesian
optimization method.

The main contribution of this article can be summarized as follows:

(a) A brand new adaptive soft sensor modeling method has been
proposed by combining unsupervised domain adaptation and dy-
namic Partial Least Squares under variable operation conditions.

(b) The proposed dynamic transfer outer model based on matrix
augmentation realizes adaptive alignment of data distribution
differences.

(c) The proposed nonlinear Laplacian inner model realizes the non-
linear mapping of the data through the kernel method, and the
Laplacian regularization guarantees the manifold structure of
the mapped data. The Laplacian regularization is constructed
through transductive learning. To the best of our knowledge,
this is the first time that a nonlinear inner model has been
constructed using transductive learning, in contrast to previ-
ous nonlinear inner models that have been constructed using
inductive learning.

The remaining sections of this article are organized as follows:
Section 2 introduces the baseline methods which include linear PLS,
nonlinear PLS, dynamic PLS, and dynamic nonlinear PLS. Section 3
provides a problem statement about transfer soft sensors and describes
our proposed method. Section 4 presents the experimental setup, and
hyperparameter analysis and discusses the results. Section 5 concludes
this paper.

2. Preliminaries

In this section, the linear PLS, nonlinear PLS, dynamic PLS, and dy-
namic nonlinear PLS methods are described in mathematical language.

2.1. Linear PLS and nonlinear PLS

Given feature input matrix 𝑿 ∈ R𝑛×𝑚, label output matrix 𝒀 ∈ R𝑛×𝑑 ,
here the index 𝑛 is the number of samples, 𝑚 and 𝑑 represent the

feature dimension. The PLS algorithm projects the matrices 𝑿 and 𝒀
into the hidden spaces to obtain the first pair of principal components
𝒕 and 𝒖, so that on the one hand 𝒕 and 𝒖 carry as much variation
information as possible, on the other hand, the correlation between
𝒕 and 𝒖 is maximum. The formal mathematical expression should be
ormulated as an optimization task,

𝑎𝑥 𝑐𝑜𝑣 (𝒖, 𝒕) = 𝒄T𝒀 T𝑿𝒘

𝑠.𝑡. ‖𝒄‖ = 1, ‖𝒘‖ = 1
(1)

where 𝒘 and 𝒄 represent the input and output weighting vectors,
which can be solved by eigenvalue decomposition or nonlinear iterative

method (NIPALS) [32].
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Remark 1. 𝑐𝑜𝑣 (𝒖, 𝒕) =
√

𝑣𝑎𝑟 (𝒖) 𝑣𝑎𝑟 (𝒕) 𝑟 (𝒖, 𝒕). Maximizing the co-
variance of 𝒖 and 𝒕 implies that the variance of 𝒖 and 𝒕 should be
maximized, while their correlation coefficient 𝑟 (𝒖, 𝒕) should be maxi-
mized.

After obtaining 𝒘 and 𝒄, the latent variables can be computed as
follows,

𝒕 = 𝑿𝒘

𝒖 = 𝒀 𝒄
(2)

establish the regression equation of 𝑿, 𝒀 to 𝒕, 𝒖,

𝑿 = 𝒕𝒑T + 𝑬

𝒀 = 𝒖𝒒T + 𝑭
(3)

where 𝒑 and 𝒒 represent loading vectors, and 𝑬 and 𝑭 are the residual
matrices. For linear PLS, the intrinsic relationship between 𝒖 and 𝒕 is
obtained by simple linear regression,

𝒖 = 𝑏𝒕 + 𝒓 (4)

where 𝑏 is the regression coefficient, 𝒓 is the residual. For nonlinear
PLS, the intrinsic relationship between 𝒖 and 𝒕 is obtained through the
nonlinear mapping function 𝑓 (∙),

𝒖 = 𝑓 (𝒕) + 𝒓 (5)

when 𝒕 and 𝒖 do not extract enough information, the original data
matrix is deflated through the regression relationship established above
to further extract the second pair of principal components, for linear
PLS,

𝑬 = 𝑿 − 𝒕𝒑T

𝑭 = 𝒀 − 𝑏𝒕𝒒T (6)

for nonlinear PLS,

𝑬 = 𝑿 − 𝒕𝒑T

𝑭 = 𝒀 − 𝑓 (𝒕) 𝒒T (7)

replace 𝑿 and 𝒀 in the formula (1) with 𝑬 and 𝑭 respectively, so as
to obtain the second pair of principal components. Repeat the above
process until the required 𝐴 pair principal components are obtained.
Since the formulas (2) and (3) express the relationship between external
variables and latent variables, it is customarily called an outer model.
The formulas (4) and (5) express the relationship among internal latent
variables, so they are customarily called inner models.

2.2. Dynamic PLS and dynamic nonlinear PLS

The linear (formula (4) and (6)) and nonlinear (formula (5) and (7))
PLS models are static models and fail to represent the dynamic charac-
teristics of the data. The method of direct matrix augmentation converts
the dynamic modeling problem of time series into a static modeling
problem in space by expanding the serialized historical samples into
features, which can effectually obtain the dynamic characteristics of the
data. In the field of soft sensing, the Finite Impulse Response (FIR) and
the Auto-regressive with Exogenous Inputs (ARX) are two commonly
used data augmentation methods.

For the input matrix 𝑿 =
[

𝒙0 𝒙1 … 𝒙𝑛−1
]T ∈ R𝑛×𝑚 and the output

matrix 𝒀 =
[

𝒚0 𝒚1 … 𝒚𝑛−1
]T ∈ R𝑛×𝑑 , the matrix augmented by FIR can

e expressed as,

𝜏 =
[

𝑿𝜏 𝑿𝜏−1 … 𝑿0
]

𝜏 =
[

𝒚𝜏 𝒚𝜏+1 … 𝒚𝑛−1
]T (8)

here 𝜏 is the delay coefficient, 𝑿𝑖 =
[

𝒙𝑖 𝒙𝑖+1 … 𝒙𝑖+𝑛−𝜏−1
]T, for 𝑖 =
, 1, 2,… , 𝜏. d
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Applying the linear and nonlinear PLS to the augmented data ma-
rix, the optimization objective formula of the dynamic linear and
ynamic nonlinear partial least squares algorithm can be obtained as,

𝑎𝑥 𝑐𝑜𝑣
(

𝒖𝑖, 𝒕𝑖
)

= 𝒄T
𝑖 𝒀

T
𝜏𝒁𝜏𝒘𝑖

.𝑡. ‖𝒄𝑖‖ = 1, ‖𝒘𝑖‖ = 1
(9)

he inner and outer models are as follows,

𝜏 =
𝐴
∑

𝑖=1
𝒕𝑖𝒑T

𝑖 + 𝑬 = 𝑻𝑷 T + 𝑬

𝜏 =
𝐴
∑

𝑖=1
𝒖𝑖𝒒T

𝑖 + 𝑭 = 𝑼𝑸T + 𝑭

𝑖 = 𝑏𝒕𝑖 + 𝒓𝑖 𝑜𝑟 𝒖𝑖 = 𝑓
(

𝒕𝑖
)

+ 𝒓𝑖

(10)

In summary, the nonlinear PLS method can be obtained by changing
the relationship between the principal components 𝒖 and 𝒕 from linear
to nonlinear. QPLS, NNPLS, and LSSVMPLS, introduced in Section 1,
all belong to the nonlinear expansion method. At the same time, the
dynamics of the system can be obtained through direct data augmen-
tation (such as FIR), thereby extending the linear PLS and nonlinear
PLS methods into dynamic PLS and dynamic nonlinear PLS methods. D-
GPR-PLS and D-RVM-PLS in the literature both belong to this dynamic
expansion method. These different nonlinear modeling and dynamic
expansion methods are compared and summarized in Table 1.

3. Methodology

Under variable working conditions, the non-stationary and multi-
modal characteristics of the data make the distribution of the data to be
predicted different from that used for modeling. This section provides
a detailed description of the unsupervised transfer soft sensor modeling
method, focusing on the perspective of data distribution.

3.1. Problem statement

The labeled historical working condition data 𝑿s, 𝒀 s and the unla-
beled working condition data 𝑿t are respectively augmented to obtain
the dynamics of the data. The augmented historical operating data
is recorded as (𝒁s

𝜏 , 𝒀
s
𝜏 ), which is defined as the source domain DS.

The augmented target operating condition data is recorded as 𝒁t
𝜏 ,

which is defined as the target domain DT. Assume that DS and DT
share the same feature space (𝒁s

𝜏 ,𝒁
t
𝜏 ∈ Z) and label space (𝒀 s

𝜏 , 𝒀
t
𝜏 ∈

Y), but the data distribution is different, that is 𝑃s(𝒁s
𝜏 ) ≠ 𝑃t(𝒁t

𝜏 ),
𝑄s(𝒀 s

𝜏 |𝒁
s
𝜏 ) ≠ 𝑄t(𝒀 t

𝜏 |𝒁
t
𝜏 ). Define ℎ ∶ Z → Y as the labeling function.

Domain adaptation transfer soft sensor aims to find out an empirical
mapping ℎ̂ ∶ Z → Y through the knowledge of the source domain to
minimize the expected error under the target domain, that is,

𝑚𝑖𝑛 𝜖T
(

ℎ̂, ℎ
)

= EDT

[

|ℎ̂ − ℎ|
]

(11)

By the theory of Structural Risk Minimization (SRM) [35], empirical
labeling function ℎ̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐿(ℎ(𝑥), 𝑦) + 𝑅(ℎ), where 𝐿(ℎ(𝑥), 𝑦) is the
mpirical loss, and 𝑅(ℎ) is a regular term representing the complexity
f the model. For the domain adaptation soft sensor modeling task,
he empirical loss is obtained through the source domain since the
arget domain has no labels. However, due to the different distribution
nd non-stationary nature of the data, it is not enough to learn the
abel mapping function only through the empirical loss. Therefore, the
istribution alignment regularization term and the first-order differ-
nce regularization term are introduced to learn the domain invariant
epresentation so as to minimize the expected error on the target

omain.
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Table 1
The comparison of different kind of PLS methods.

Year Method Type Pros and Cons

1975 NIPALS [32] Linear The first PLS method, which solves the multicollinearity problem,
but it is a linear model not applicable to nonlinear problems

1988 DPLS [17] Dynamic Extending the PLS method using FIR, makes it feasible to solve
dynamic problems

1989 QPLS [33] Nonlinear Nonlinear extension of PLS methods using quadratic polynomials
1992 NNPLS [23] Nonlinear Nonlinear extension of PLS methods using neural networks
2001 KPLS [21] Nonlinear Kernel extensions of the PLS method, inefficient when the data size

is large
2003 DKPLS [22] Nonlinear Direct kernel extension of PLS methods, making it feasible for

large-scale problem
2012 LSSVMPLS [24] Nonlinear Nonlinear model with internal and external consistency by using

inner model error to update outer model weights
2018 DiPLS [18] Dynamic and linear Dynamic models that are internally and externally consistent, more

explanatory, but still linear models
2019 D-GPR-PLS [26] Dynamic and nonlinear The dynamic problem is considered as well as the nonlinear

problem
2020 DIPALS [28] Linear Introducing domain-invariant expressions to reduce the effect of

differences in data distribution, but still linear model
2021 D-RVM-PLS [25] Dynamic and nonlinear Adaptive dynamic expansion mechanism
2022 DTPLS [29] Dynamic and linear Internally and externally consistent dynamic models that take into

account differences in data distribution
2022 GRU-PLS [34] Dynamic and nonlinear Using GRU to express internal dynamics
2023 TDLVR [12] Dynamic and linear Introduction of co-dynamic variations and error compensation

mechanisms, but still linear model
a

=

3.2. Reconstruct error minimization

Based on the above SRM theory, a source domain Empirical Risk
Minimization (ERM) function is established on the FIR augmented data,
which is,

arg min
‖𝒘‖=1,‖𝒄‖=1

 = ‖𝒁s
𝜏𝒘 − 𝒀 s

𝜏𝒄‖
2
2 (12)

he objective is to find the optimal weighting vectors w and c so that the
istance between the hidden variables 𝒕 (𝒕 = 𝒁s

𝜏𝒘) and 𝒖 (𝒖 = 𝒀 s
𝜏𝒄) can

be as small as possible. The above objective function has two unknown
vectors and can be solved by some numerical optimization algorithm,
but a closed-form solution cannot be obtained. To make it easy to solve,
it is assumed that 𝒀 s

𝜏 is univariate, and thus 𝒄 = 1. To prevent symbol
abuse, the vector 𝒚s

𝜏 is used in place of the matrix 𝒀 s
𝜏 . According to the

ompatibility relationship between vector norm and Frobenius norm,

𝒁s
𝜏𝒘 − 𝒚s

𝜏‖
2
2 ≤ ‖𝒁s

𝜏 − 𝒚s
𝜏𝒘

T
‖

2
F‖𝒘‖

2
2 (13)

nder the constraint ‖𝒘‖ = 1, an upper bound of empirical error can
e obtained, which represents the reconstruction error of the source
omain. This upper bound serves as a loss function, which is,

rg min
𝒘

ERM = ‖𝒁s
𝜏 − 𝒚s

𝜏𝒘
T
‖

2
F (14)

esides, according to the properties of Frobenius norm, it can be
nferred that,

𝒁s
𝜏 − 𝒚s

𝜏𝒘
T
‖

2
F = 𝑡𝑟

(

𝒁s
𝜏
(

𝒁s
𝜏
)T) + 𝑡𝑟

(

𝒚s
𝜏
(

𝒚s
𝜏
)T) + 𝑡𝑟

(

−2𝒁s
𝜏𝒘

(

𝒚s
𝜏
)T)

= −2 𝑐𝑜𝑣
(

𝒁s
𝜏𝒘, 𝒚s

𝜏
)

+ constant

(15)

omparing the formulas (9) and (15), it can be seen that for a single
utput system, minimizing the source domain reconstruction error is
quivalent to maximizing the hidden variable covariance.

.3. Dynamic transfer outer model

Based on the source domain reconstruction error, and introducing
istribution alignment regularization and first-order difference regular-
zation at the same time, a dynamic transfer outer model is established
265 
s follows,

arg min
𝒘

ERM + 𝜆DDA + 𝜌FOD

arg min
𝒘

‖𝒁s
𝜏 − 𝒚s

𝜏𝒘
T
‖F + 𝜆| 1

𝑛S

(

𝒁s
𝜏𝒘

)T 𝒁s
𝜏𝒘 − 1

𝑛T

(

𝒁t
𝜏𝒘

)T 𝒁t
𝜏𝒘|

+ 𝜌
(

‖𝒁̇s
𝜏𝒘‖

2
2 + ‖𝒁̇t

𝜏𝒘‖

2
2

)

(16)

in the formula (16), the second item is the distribution difference
alignment item, which is defined as DDA. The third term is the first-
order difference regular term, which is defined as FOD. 𝜆 and 𝜌 are
regularization coefficients, 𝑛S and 𝑛T are the number of samples after
matrix augmentation. 𝒁̇s

𝜏 and 𝒁̇t
𝜏 represent the first difference of data.

The architecture of proposed dynamic transfer outer model is shown in
Fig. 1.

Sample statistics are an effective description of data distribution,
and many of the most commonly used statistics can be constructed
from sample moments. When the data distribution is unknown, the
difference between data distributions can be judged by comparing the
moments of each order of the samples. DDA realizes the distribution
alignment by minimizing the sample moments of the latent space pivot,
in which the sample first-order moment is implicitly realized utilizing
data centering.

DDA regularization mainly considers the impact of difference in
feature distribution between the source and target domain. We hope
that the trained model will be insensitive to changes in feature dis-
tribution. The assumption here is that changes in data features have
no impact on labels or that the distribution of labels does not change.
This assumption widely exists in real applications. For example, if
different sensors are used to measure the same material composition,
the characteristics of the sensors are different, but the composition of
the material remains unchanged.

Data difference is an effective means to achieve the stabilization
of non-stationary data. FOD minimizes the first-order difference of
pivots of the source and target domain, which can effectively deal with
the data redundancy caused by oversampling, and at the same time
suppress the adverse effects caused by data mutations, improving the
robustness of the model. The idea of data difference can be originated
from the ARIMA model (Box–Jenkins method) [36]. This model first
determines whether the data is stationary, and then differentiates the
non-stationary data one or more times to achieve stationarity. The
difference of data as a regularization can be found in the ‘‘Smooth-

ing regularization’’ section of Stephen Boyd’s famous book ‘‘Convex
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Fig. 1. The framework of dynamic transfer outer model. Transform the original time series data into the feature space through FIR matrix expansion, and find the optimal
transformation axis 𝒘, after projection transformation, the empirical error of the source domain sample in the latent space is minimized, and the distribution difference between
the source domain and the target is minimized too.
Optimization’’ [37]. In Dr. Huang Biao’s paper ‘‘Output relevant slow
feature extraction using partial least squares’’ [38], the difference of
data is also used as a regularization. The above literature provides
theoretical support that data difference can stabilize non-stationary
data.

The formula (16) defines a convex optimization problem, but the
second term is not differentiable at the zero point, so a closed-form
solution cannot be obtained. Note that 1

𝑛S

(

𝒁s
𝜏
)T 𝒁s

𝜏 −
1
𝑛T

(

𝒁t
𝜏
)T 𝒁t

𝜏 is a
symmetric matrix, scale it by eigenvalue decomposition and absolute
value triangle inequality to obtain a semi-positive definite matrix 𝑫, as
follows,

DDA =
|

|

|

|

1
𝑛S

(

𝒁s
𝜏𝒘

)T 𝒁s
𝜏𝒘 − 1

𝑛T

(

𝒁t
𝜏𝒘

)T 𝒁t
𝜏𝒘

|

|

|

|

= |

|

|

𝒘T𝑯𝜦𝑯T𝒘|

|

|

≤ 𝑣21|𝜆1| + 𝑣22|𝜆2| +⋯ + 𝑣2𝑘|𝜆𝑘|

= 𝒘T𝑫𝒘

(17)

where 1
𝑛S

(

𝒁s
𝜏
)T 𝒁s

𝜏 −
1
𝑛T

(

𝒁t
𝜏
)T 𝒁t

𝜏 = 𝑯𝜦𝑯T, 𝜦 = 𝑑𝑖𝑎𝑔
(

𝜆1, 𝜆2,… , 𝜆𝑘
)

,
𝒘T𝑯 = [𝑣1, 𝑣1,… , 𝑣𝑘], 𝑫 = 𝑯|𝜦|𝑯T. Let ′

DDA = 𝒘T𝑫𝒘, 𝑮 =
(

𝒁̇s
𝜏
)T 𝒁̇s

𝜏+
(

𝒁̇t
𝜏

)T
𝒁̇t

𝜏 . From formula (16) and formula (17), a structural
risk upper bound can been achieved,

arg min
𝒘

ERM + 𝜆′
DDA + 𝜌FOD = arg min

𝒘
‖𝒁s

𝜏 − 𝒚s
𝜏𝒘

T
‖F

+𝒘T (𝜆𝑫 + 𝜌𝑮)𝒘
(18)

deriving the above formula, and the finally obtained common optimal
transformation axis is,

𝒘 =
⎛

⎜

⎜

⎝

𝑰 +
𝜆𝑫 + 𝜌𝑮
(

𝒚s
𝜏
)T 𝒚s

𝜏

⎞

⎟

⎟

⎠

−1
(

𝒁s
𝜏
)T 𝒚s

𝜏
(

𝒚s
𝜏
)T 𝒚s

𝜏

(19)

after obtaining the common weighting vector 𝒘, the input score vectors
can be computed as,

𝒕s𝜏 = 𝒁s
𝜏𝒘

𝒕t𝜏 = 𝒁t
𝜏𝒘

(20)

for univariate prediction 𝒄 = 1, the source domain output score vector
𝒖s
𝜏 is calculated as follows,

𝒖s
𝜏 = 𝒀 s

𝜏𝒄 = 𝒚s
𝜏 (21)

Next, how to construct the nonlinear inner model 𝒖s
𝜏 = 𝑓

(

𝒕s𝜏
)

is
described in detail.

3.4. Nonlinear Laplace inner model

The nonlinear inner model between input and output scores is built
via kernel methods. The source and target domain score vectors 𝒕s
𝜏
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and 𝒕t𝜏 are mapped into the high-dimensional feature space to obtain
the data 𝛷(𝒕s𝜏 ) and 𝛷(𝒕t𝜏 ). Find an optimal transformation axis 𝜽 in the
feature space to minimize the empirical error between the transformed
data and output score, which is described in mathematical language as,

arg min
𝒇

‖𝑓 (𝒕s𝜏 ) − 𝒖s
𝜏‖

2
2 = arg min

𝜽
‖𝛷(𝒕s𝜏 )𝜽 − 𝒖s

𝜏‖
2
2 (22)

According to the reproducing kernel theory [39], the optimal trans-
formation axis 𝜽 in the sense of minimum mean square error must be
a linear combination of all samples in the feature space, which means
that 𝜽 is located in the subspace spanned by the sample of the feature
space. The labeled source domain samples constitute the feature space,
and its optimal transformation axis can be expressed by the following
formula,

𝜽 =
𝑛S
∑

𝑖=1
𝛼𝑖𝝓

(

𝑡s𝜏𝑖
)

=
[

𝛷(𝒕s𝜏 )
]T 𝜶 (23)

where 𝜶 =
[

𝛼1, 𝛼2,… , 𝛼𝑛S

]T
, 𝛷(𝒕s𝜏 ) =

[

𝝓
(

𝑡s𝜏1
)

,𝝓
(

𝑡s𝜏2
)

,… ,𝝓
(

𝑡s𝜏𝑛S

)]T
.

According to the regularization theory, imposing certain constraints on
𝜽 can effectively prevent the model from overfitting. Substituting the
formula (23) into the formula (22) and introducing the vector norm
regularization, using the kernel method, the following optimization
objective formula is obtained,

arg min
𝜽

‖𝛷(𝒕s𝜏 )𝜽 − 𝒖s
𝜏‖

2
2 + 𝜁‖𝜽‖22 = arg min

𝜶
‖𝑲s𝜶 − 𝒖s

𝜏‖
2
2 + 𝜁𝜶T𝑲s𝜶 (24)

where 𝑲s is the kernel matrix constructed by source domain input score
vector, 𝑲s = 𝛷(𝒕s𝜏 )

(

𝛷(𝒕s𝜏 )
)T ∈ R𝑛S×𝑛S , 𝜁 is the regularization coefficient.

In addition, the above kernel-based nonlinear mapping process does
not consider the sequential structure of the latent variable space after
matrix augmentation. In order to further utilize the similar geomet-
ric structure of neighboring points, this paper introduces Laplacian
regularization terms to retain the geometric structure. The Laplace
regularization on the source domain is constructed by the following
formula,

s
LAP =

𝑛S
∑

𝑖,𝑗=1
𝑨s

𝑖𝑗

(

𝑓 (𝑡s𝜏𝑖) − 𝑓 (𝑡s𝜏𝑗 )
)2

=
𝑛S
∑

𝑖,𝑗=1
𝑨s

𝑖𝑗

(

𝝓T(𝑡s𝜏𝑖)𝜽 − 𝝓T(𝑡s𝜏𝑗 )𝜽
)2

= 𝜽T (𝛷(𝒕s𝜏 )
)T 𝑳s𝛷(𝒕s𝜏 )𝜽

= 𝜶T(𝑲s)T𝑳s𝑲s𝜶

(25)

in the formula (25), the source domain Laplacian matrix 𝑳s = 𝑫s −𝑨s,
𝑨s is the source domain affinity matrix, 𝑫s is the source domain

s ∑𝑛S s
diagonal degree matrix, its diagonal elements 𝑫𝑖𝑖 = 𝑖 𝑨𝑖𝑗 . The
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neighbor matrix is constructed by the following temporal neighbor
method,

𝑨s
𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑒𝑥𝑝
(

− ‖

‖

‖

𝑡s𝜏𝑖 − 𝑡s𝜏𝑗
‖

‖

‖

)

0 ≤ |𝑖 − 𝑗| ≤ 𝜅,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(26)

here 𝜅 is a positive integer greater than zero.
Similarly, the Laplace regularization on the target domain can be

onstructed,
t
LAP = 𝜶T(𝑲 t)T𝑳t𝑲 t𝜶 (27)

here 𝑲 t is the kernel matrix constructed by the input score vector of
he target domain, 𝑲 t = 𝛷(𝒕t𝜏 )

(

𝛷(𝒕s𝜏 )
)T ∈ R𝑛T×𝑛S , 𝑳t ∈ R𝑛T×𝑛T is the

arget domain Laplacian matrix.
On the basis of the formula (24), adding Laplace regularization (25)

nd (27), the final nonlinear Laplace inner model is obtained as follows,

arg min
𝜶

‖𝑲s𝜶 − 𝒖s
𝜏‖

2
2 + 𝜁𝜶T𝑲s𝜶 + 𝜂𝜶T(𝑲s)T𝑳s𝑲s𝜶 + 𝜉𝜶T(𝑲 t)T𝑳t𝑲 t𝜶

(28)

here 𝜂 and 𝜉 is the regularization coefficient. The final optimal
nalytical solution can be solved by deriving the above formula,

=
(

𝑲s + 𝜁𝑰 + 𝜂𝑳s𝑲s + 𝜉(𝑲s)−1(𝑲 t)T𝑳t𝑲 t)−1 𝒖s
𝜏

(29)

fter obtaining the inner model regression coefficient vector 𝜶, the
stimate of the source and target domain output scores 𝒖̂s

𝜏 and 𝒖̂t
𝜏 can

e calculated,

̂ s
𝜏 = 𝑲s𝜶

𝒖̂t
𝜏 = 𝑲 t𝜶

(30)

he loading vectors are,
s
𝜏 =

(

𝒁s
𝜏
)T 𝒕s𝜏∕

(

𝒕s𝜏
)T 𝒕s𝜏

t
𝜏 =

(

𝒁t
𝜏
)T 𝒕t𝜏∕

(

𝒕t𝜏
)T 𝒕t𝜏

(31)

he residual matrixes are,
s = 𝒁s

𝜏 − 𝒕s𝜏
(

𝒑s
𝜏
)T

t = 𝒁t
𝜏 − 𝒕t𝜏

(

𝒑t
𝜏
)T

s = 𝒚s
𝜏 − 𝒖̂s

𝜏

(32)

urther calculations are performed on the residual matrix until the
equired 𝐴 hidden variables are obtained. The final target domain
rediction value can be obtained by the following formula,

t
𝜏 =

𝐴
∑

𝑖=1
𝒖̂t
𝜏𝑖 (33)

Fig. 2 displays the iterative flow chart of the NDTPLS algorithm. It
emonstrates that the outer model efficiently extracts dynamic features
nd aligns data distribution during the input–output mapping process.
his is achieved by projecting onto a common weighting vector in
oth the source and target domains. The inner model realizes nonlinear
apping of projection data and maintains the mapping structure, which

s achieved through the construction of kernel matrix and Laplacian
atrix. Loading vector enables reconstruction of the projected data

o calculate the residual matrix. The whole procedure of the NDTPLS
lgorithm is summarized in Algorithm 1.

.5. Hyperparameter optimization

The nonlinear dynamic transfer partial least squares method (NDT-
LS) proposed in this paper contains many hyperparameters, and dif-
erent model structures can be obtained by selecting different hyper-

arameters. The highest model complexity can be obtained when all
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Algorithm 1 NDTPLS algorithm.
Input: Source domain data 𝑿s , 𝒚s, target domain data 𝑿t, number of principal components

𝐴, delay factor 𝜏, outer model tradeoff coefficient 𝜆 and 𝜌, inner model tradeoff
coefficient 𝜁 , 𝜂, 𝜉 and 𝜅

Output: target domain label 𝒚t
𝜏

1: (Augmentation):Construct the augmented matrix 𝒁s
𝜏 ,𝒁

t
𝜏 , 𝒚

s
𝜏 from the raw data 𝑿s ,𝑿t , 𝒚s

2: (Normalization):Data normalization to zero mean and unit variance
3: for 𝑖 𝑖𝑛 [1, 𝐴] do

(Projection):
4: Calculate the input weight vector 𝒘 by formula (19)

(Regression):
5: Calculate the score vectors for 𝒁s

𝜏 and 𝒁t
𝜏 : 𝒕s𝜏 = 𝒁s

𝜏𝒘, 𝒕t𝜏 = 𝒁t
𝜏𝒘

6: Construct kernel 𝑲s and 𝑲t using the score vectors 𝒕s𝜏 and 𝒕s𝜏
7: Calculate inner model regression coefficient vector 𝜶 by formula (29)

(Deflation):
8: Calculate inner model estimates 𝒖̂s

𝜏 = 𝑓
(

𝒕s𝜏
)

= 𝑲s𝜶
9: Calculate inner model estimates 𝒖̂t

𝜏 = 𝑓
(

𝒕t𝜏
)

= 𝑲t𝜶
10: Calculate the loading vectors for 𝒁s

𝜏 and 𝒁t
𝜏 : 𝒑s

𝜏 =
(

𝒁s
𝜏
)T 𝒕s𝜏∕

(

𝒕s𝜏
)T 𝒕s𝜏 , 𝒑t

𝜏 =
(

𝒁t
𝜏
)T 𝒕t𝜏∕

(

𝒕t𝜏
)T 𝒕t𝜏

11: Calculate the residual matrices 𝑬s = 𝒁s
𝜏 − 𝒕s𝜏

(

𝒑s
𝜏
)T

⇒ 𝒁s
𝜏 , 𝑬t = 𝒁t

𝜏 − 𝒕t𝜏
(

𝒑t
𝜏
)T

⇒ 𝒁t
𝜏 ,

𝑭 s = 𝒚s
𝜏 − 𝒖̂s

𝜏 ⇒ 𝒚s
𝜏

12: end for
13: Calculate target domain label 𝒚t

𝜏 =
∑𝐴

𝑖=1 𝒖̂
t
𝜏𝑖

hyperparameters are non-zero. The algorithm retreats to the D-LSSVM-
PLS algorithm when the regularization coefficients 𝜆, 𝜌 of the outer
model and the regularization coefficients 𝜁 , 𝜂, 𝜉 of the inner model
are all set to zero. The algorithm retreats to the DPLS algorithm when
the kernel function of the inner model is selected as a linear kernel
and all the above regularization coefficients are set to zero. Further-
more, the algorithm retreats to the ordinary PLS algorithm, when the
delay coefficient 𝜏 is also set to zero. Therefore, although too many
hyperparameters increase the difficulty of model selection and model
optimization, the introduction of these hyperparameters also improves
the expressive ability of the model, enabling the model to learn complex
data patterns. For the process under multi-working conditions, the
sample data are likely to be mixed data of various modes, the model
needs to have a strong expressive ability to match the complexity of
the data.

In practice, many hyperparameter tuning methods can be chosen,
among which grid search, random search, heuristic algorithm, Bayesian
optimization, etc. are the most widely used. Grid search tries every
combination of hyperparameters in the parameter space. When the
number of parameters is large, the calculation amount increases expo-
nentially, and the calculation efficiency is low. Random search samples
hyperparameters in the parameter space according to a certain proba-
bility distribution, and the calculation efficiency is improved, but each
parameter search is independent, and the search capabilities depend
on the number of iterations. The heuristic calculation uses a swarm
intelligence algorithm to give feasible solutions to hyperparameters
within an acceptable time range. The disadvantage of this type of
algorithm is that it is easy to be limited to local optimal solutions. The
Bayesian optimization method uses the results obtained by each step
of parameter sampling (prior knowledge) to calculate the optimization
direction of hyperparameters (posterior distribution), which has high
computational efficiency and is not easy to fall into local optimum, so
it is widely used in the field of AutoML.

Bayesian optimization is a method that uses surrogate models to op-
timize unknown black-box functions. First, by introducing prior knowl-
edge of the objective function, a probabilistic surrogate model that can
reflect the possible behavior of the objective function is established.
Secondly, based on the obtained observation data, Bayes’ theorem is
run to update the model to the posterior distribution. This process
not only reflects the new understanding of the objective function, but
also quantifies the uncertainty of the prediction. On this basis, an
acquisition function (such as expected improvement EI) is used to guide
the next step of exploration. This function aims to balance exploring

unknown areas to discover potential better solutions and using existing
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Fig. 2. The iterate flow chart of the proposed NDTPLS algorithm. The inner model is constructed by the kernel method with Laplacian regularization. The direction of the green
arrow indicates the data deflation process. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
The properties of the comparison methods.

Method NIPALS DIPALS DPLS DiPLS KPLS D-LSSVM-PLS DTPLS NDTPLS

Dynamic or Static Static Static Dynamic Dynamic Static Dynamic Dynamic Dynamic
Nonlinear or linear Linear Linear Linear Linear Nonlinear Nonlinear Linear Nonlinear
Transfer or not No Yes No No No No Yes Yes
information to deepen the understanding of known beneficial areas. By
iterating through this process of data collection, model updating and
optimization decisions, Bayesian optimization gradually approaches
the global optimal solution while effectively managing the trade-off
between exploration and exploitation.

In this paper, the data is divided into training set, validation set
and test set. Bayesian optimization is selected as the hyperparameter
tuning method, the optimal hyperparameter combination is searched
on the verification set, and the obtained hyperparameter combination
is applied to the test set to evaluate the effectiveness of the model.
An extensive analysis of the hyperparameters will be carried out in
Section 4.

4. Experiments

This paper selects the data generated by the WWTP Benchmark
Simulation Model (BSM1) [40], Debutanize Column data set (DC) [41]
and Sulfur Recovery Unit data set (SRU) [42] to verify the effectiveness
of the proposed algorithm. Choose Nonlinear Iterative Partial Least
Squares (NIPALS) [32], Dynamic Partial Least Squares (DPLS) [17],
Dynamic inner Partial Least Squares (DiPLS) [18], Kernel Partial Least
Squares (KPLS) [21], Domain-Invariant Iterative Partial Least Squares
(DIPALS) [28], Dynamic LSSVM Partial Least Squares (D-LSSVM-PLS)
[24], Dynamic Transfer Partial Least Squares (DTPLS) [29] as the com-
parison methods. Among the above methods, NIPALS is a static linear
modeling method; DIPALS aligns the variance of hidden variables on
the basis of the static model, and first introduces the transfer learning
into the PLS modeling process; DPLS is a dynamic extension of the
traditional PLS method; DiPLS considers the sequence structure of data
but is still a linear method; The KPLS method is a kernel extension of
the PLS method and is a nonlinear modeling method; D-LSSVM-PLS
uses LSSVM to build the inner model, which is a dynamic nonlinear
method; DTPLS not only considers the sequence structure of the inner
model, but also aligns the variance of hidden variables, but it is still
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a linear method. The properties of the different comparison methods
are summarized in Table 2. All comparison methods use Bayesian
optimization to obtain hyperparameters for fair comparison.

The experiments are conducted on a high-performance hardware
server with two Intel Xeon Gold 6226R Processors, 8X32G memory,
and two Geforce RTX 3090 GPUs. The software is implemented using
Python 3.10 in the Anaconda environment.

Three criteria are used to evaluate the performance of different
models, which are mean square error (MSE), mean absolute error
(MAE), and coefficient of determination (𝑅2),

MSE
(

𝑦̂𝑖, 𝑦𝑖
)

= 1
𝑛

𝑛
∑

𝑖=1

(

𝑦̂𝑖 − 𝑦𝑖
)2

MAE
(

𝑦̂𝑖, 𝑦𝑖
)

= 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦̂𝑖 − 𝑦𝑖||

𝑅2 (𝑦̂𝑖, 𝑦𝑖
)

= 1 −
∑𝑛

𝑖=1
(

𝑦̂𝑖 − 𝑦𝑖
)2

∑𝑛
𝑖=1

(

𝑦̂𝑖 − 𝑦𝑖
)2

(34)

where 𝑛 is the number of test samples, 𝑦̂𝑖, 𝑦𝑖, and 𝑦𝑖 are the predicted,
mean, and measured values, respectively.

4.1. BSM1 data set

BSM1 is an activated sludge wastewater treatment model proposed
by the European Organization for Scientific and Technological Cooper-
ation in its project ‘‘COST 682’’. Based on the Anaerobic-Anoxic-Oxic
(AAO) process flow, BSM1 is used to describe the precipitation reaction
and biochemical reaction and is dedicated to the elimination of organic
carbon and nitrogen. The BSM1 wastewater treatment process is shown
in Fig. 3 [40], and the entire reaction process consists of an activated
sludge reactor and a secondary settling tank. The activated sludge
reactor includes two anaerobic sections and three aerobic sections, and
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Fig. 3. BSM1:Benchmark Simulation Model 1 [40].
Table 3
The selection of process variables.

No. Variable description Symbol Unit

1 Flow rate of influent 𝑄_𝑖𝑛 m3∕d
2 Ammonia concentration of influent 𝑆NH_𝑖𝑛 g N∕m3

3 Nitrate concentration of the second reactor 𝑆NO_𝑟𝑒𝑎𝑐𝑡𝑜𝑟2 g N∕m3

4 Dissolved oxygen concentration of the third reactor 𝑆O_𝑟𝑒𝑎𝑐𝑡𝑜𝑟3 g COD∕m3

5 Dissolved oxygen concentration of the fourth reactor 𝑆O_𝑟𝑒𝑎𝑐𝑡𝑜𝑟4 g COD∕m3

6 Total suspended solid concentration of the fourth reactor 𝑇𝑆𝑆_𝑟𝑒𝑎𝑐𝑡𝑜𝑟4 g SS∕m3

7 Oxygen transfer coefficient of the fifth reactor 𝐾𝐿𝑎_𝑟𝑒𝑎𝑐𝑡𝑜𝑟5 ∕d
8 Internal recycle rate 𝑄_𝑖𝑛𝑡𝑟𝑎 m3∕d
9 Nitrate concentration of effluent 𝑆NO_𝑒𝑓𝑓 g N∕m3
Table 4
Experimental results on BSM1.

Method NIPALS DIPALS DPLS DiPLS KPLS D-LSSVM-PLS DTPLS NDTPLS

Training set
MSE 1.217 1.215 0.386 0.677 1.017 0.180 0.286 0.056
MAE 0.877 0.879 0.518 0.738 0.785 0.331 0.421 0.186
𝑅2 0.668 0.669 0.890 0.806 0.723 0.949 0.919 0.984

Validation set
MSE 1.849 1.906 0.815 0.674 1.513 0.717 0.749 0.822
MAE 1.044 1.052 0.677 0.678 0.948 0.599 0.594 0.599
𝑅2 0.774 0.767 0.905 0.921 0.815 0.915 0.911 0.902

Test set
MSE 1.855 1.928 0.897 0.657 1.471 0.588 0.870 0.485
MAE 1.055 1.073 0.654 0.673 0.916 0.537 0.590 0.475
𝑅2 0.695 0.683 0.856 0.895 0.758 0.905 0.859 0.921
the sewage treated by the activated sludge reactor flows into a 4-
meter-high 10-layer clarifier. The BSM1 simulation model can input
data from three different weather types, to be specific, dry weather,
rainy weather, and stormy weather. The data of each weather type
corresponds to 14 days of data input, and the data is sampled every
15 min on average, accumulating 1345 samples.

The wastewater treatment process is a typical nonlinear dynamic
system. The various biochemical reaction processes involved in it have
different reaction times, and the composition and flow rate of the
incoming wastewater are variable. Therefore, the collected data have a
time delay and non-stationary, nonlinear, and dynamic characteristics.
In this paper, the data under dry weather conditions are chosen as
the training set, the data under rainy weather conditions are chosen
as the test set, and the data under stormy weather are chosen as
the validation set, so a multi-condition soft-sensing model for the
wastewater treatment process is established to predict nitrate in the
effluent concentration. The selection of input process variables refers
to the selection method in [25], detailed in Table 3. Finally, the
comparison results of different methods in the training, verification,
and test sets are shown in Table 4. Table 5 shows the hyperparameters
of different models obtained by the Bayesian optimization method. The
final prediction results on the test set are visualized in Fig. 4.

From the experimental results in Fig. 4 and Table 4, it is apparent
that on the BSM1 dataset, the dynamic modeling methods have better
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prediction accuracy than the static modeling methods. The MSE of
the DiPLS method is 44.4%, 63.5%, and 64.6% lower than that of
NIPALS on the training, validation, and test set respectively. The MSE
of the DPLS method based on direct matrix augmentation is reduced
by 68.3%, 55.9%, and 51.6% respectively compared with NIPALS. This
fully illustrates the importance of obtaining data dynamics. Nonlinear
modeling methods have higher prediction accuracy than linear mod-
eling methods. The MSE of KPLS, a nonlinear modeling method based
on kernel expansion, is 16.4%, 18.2%, and 20.7% lower than that of
linear NIPALS respectively. The nonlinear nature of the data determines
that nonlinear modeling methods are more accurate than linear ones.
Simultaneously considering dynamic and nonlinear modeling methods,
such as D-LSSVM-PLS and the method NDTPLS proposed in this paper,
are better than pure dynamic modeling methods and pure nonlinear
modeling methods. The MSE of the D-LSSVM-PLS method is 85.2%,
61.2%, and 68.3% lower than that of NIPALS respectively, and better
than those of DiPLS, DPLS, and KPLS. The proposed method in this
paper takes account of the non-stationary and drift characteristics of
the data on the basis of the dynamics and nonlinearity, so it obtains
the best prediction results. The MSE is reduced by 73.9%, 26.2%, and
17.5% compared to NIPALS, DiPLS, and D-LSSVM-PLS on the test set,
respectively.

At the same time, comparing the data in Table 4, it can be seen
that, traditional dynamic modeling methods such as DPLS and DiPLS
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Fig. 4. Visualization results of the comparison methods on the BSM1 test set.
Table 5
List of hyperparameters obtained by Bayesian optimization on the BSM1 validation set.

Hyperparameter NIPALS DIPALS DPLS DiPLS KPLS D-LSSVM-PLS DTPLS NDTPLS

Latent variable dimension 𝐴 7 8 2 1 6 4 2 7
Time-lagged coefficient 𝜏 – – 89 87 – 60 68 65
Gaussian kernel width 𝛾 – – – – 0.013 5.754e−05 – 4.806e−05
Distribution alignment regularization 𝜆 – 9.177e+07 – – – – 4.555e−03 1.597+04
First order difference regularization 𝜌 – – – – – – 5.317e−04 3.829e+04
L2 regularization 𝜁 – – – – – 0.010 – 1.657-05
Source lapace regularization 𝜂 – – – – – – – 5.598e−03
Target lapace regularization 𝜉 – – – – – – – 8.001e−04
Adjacency parameter 𝜅 – – – – – – – 1332
methods are prone to overfitting in the process of parameter opti-
mization on the verification set, making the model fit the data well
on the verification set. But when the data distribution of the test set
changes, the optimal model obtained on the validation set degenerates.
This is because the traditional dynamic modeling methods DPLS and
DiPLS have no mechanism to prevent the model from overfitting,
so the generalization ability is poor. The D-LSSVM-PLS method, in
the nonlinear inner model, is designed with L2 regularization, so the
generalization ability is improved. In the method of this paper, both
inner and outer models are designed with regularization parameters.
While ensuring the accuracy of prediction, it effectively improves the
generalization ability of the model, so that the prediction ability of the
final model on the training set, verification set, and test set has been
consistently improved.

From the parameters obtained from the Bayesian optimization in Ta-
ble 5, it can be seen that the optimal hidden variable dimension of the
DPLS and DiPLS methods is small (2 and 1, respectively), but requires a
larger delay coefficient (89 and 87). The hidden variable dimension of
the D-LSSVM-PLS method is in the middle (4), and the lag coefficient
is smaller (60) than the DPLS and DiPLS methods. The hidden variable
dimension (2) and lag coefficient (68) of DTPLS are both small. The
method NDTPLS proposed in this paper has a relatively small delay
coefficient (68) but requires a large hidden variable dimension (7).
The larger the hidden variable dimension, the more components are
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extracted from the data, and the more data information is used. The
larger the lag coefficient, the greater the expansion of the data, which
means an increase in the amount of calculation.

4.2. DC data set

The Debutanizer Column is a fractionation column used to recover
light gases (C1–C4) and liquefied petroleum gas (LPG) from the over-
head distillate prior to the production of light naphtha in the refining
process. The DC data set is a commonly used data set in the field of
industrial soft sensors, which describes a real industrial distillation pro-
cess. Since the DC data set and the SRU data set to be introduced later
are often found in the literature, due to space limitations, the detailed
description of these data sets will not be repeated in this article. The DC
data set contains seven input process variables and one output variable
(butane concentration), with a total of 2394 samples. The first 1100
data are chosen as the training set, the 1100th–1600th data as the
verification set, and the rest as the test set. The final prediction results
of different methods on the training set, verification set, and test set
are shown in the Table 6. Table 7 shows the hyperparameters of the
different models obtained by Bayesian optimization on the validation
set. The prediction results of the final test set are visualized in Fig. 5.

It can be seen from the experimental results of Fig. 5 and Table 6
that for the DC data set, the dynamic modeling method DPLS and
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Table 6
Experimental results on DC.

Method NIPALS DIPALS DPLS DiPLS KPLS D-LSSVM-PLS DTPLS NDTPLS

Training set
MSE 0.015 0.021 0.005 0.005 0.019 0.004 0.004 0.002
MAE 0.073 0.091 0.053 0.052 0.080 0.049 0.049 0.037
𝑅2 0.200 −0.168 0.749 0.742 −0.029 0.790 0.771 0.880

Validation set
MSE 0.025 0.023 0.004 0.003 0.021 0.004 0.004 0.004
MAE 0.125 0.118 0.046 0.040 0.113 0.045 0.052 0.049
𝑅2 −0.239 −0.138 0.713 0.792 −0.018 0.738 0.691 0.729

Test set
MSE 0.039 0.043 0.013 0.012 0.039 0.011 0.010 0.010
MAE 0.154 0.158 0.089 0.085 0.149 0.084 0.081 0.078
𝑅2 −0.030 −0.135 0.589 0.624 −0.045 0.650 0.667 0.692
Table 7
List of hyperparameters obtained by Bayesian optimization on the DC validation set.

Hyperparameter NIPALS DIPALS DPLS DiPLS KPLS D-LSSVM-PLS DTPLS NDTPLS

latent variable dimension 𝐴 4 1 3 4 1 5 3 5
time-lagged coefficient 𝜏 – – 29 26 – 24 27 20
Gaussian kernel width 𝛾 – – – – 0.003 2.784e−04 – 2.391e−05
distribution alignment regularization 𝜆 – 9.99e+08 – – – – 1.478e+09 6.765e+03
first order difference regularization 𝜌 – – – – – – 6.631e+06 5.901e+04
L2 regularization 𝜁 – – – – – 7.660 – 2.546e−05
source lapace regularization 𝜂 – – – – – – – 6.215e−05
target lapace regularization 𝜉 – – – – – – – 2.776e−04
adjacency parameter 𝜅 – – – – – – – 702
Fig. 5. Visualization results of the comparison methods on the DC test set.
DiPLS have achieved better prediction results, with MSE of 0.013 and
0.012 on the final test set, which are 66.7% and 69.2% lower than
the baseline method NIPALS, respectively. However, DPLS and DiPLS
lack an effective mechanism to prevent overfitting, which makes them
achieve good results on the validation set, but have poor results on
the final test set. The MSE of DiPLS on the validation set is 0.003,
which is the lowest among all methods, but its results on the test set
are not as good as D-LSSVM-PLS, DTPLS and NDTPLS, which indicates
that the overfitting mechanism in the model is very important. The
kernel function-based nonlinear modeling method KPLS shows a 16%
decrease in the MSE metric on the validation set compared to the linear
NIPALS method, but does not work as well on the test set, due to the
271 
fact that the model is trapped in a local optimum and thus does not
generalize enough. The D-LSSVM-PLS method do not show sufficient
advantage over DTPLS due to the insignificant non-linearity of the data.
The DIPALS method cannot improve prediction performance, although
the method attempts to reduce the distribution difference between
the training set and the test set. Because the dynamic characteristics
of data in this DC data set are more significant than the differences
in data distribution. Only by prioritizing the acquisition of dynamic
characteristics and then considering the distribution differences of the
data can the prediction performance of the model be further improved.
The NDTPLS method proposed in this paper takes into account both the
dynamic properties and nonlinearity of the process, while introducing
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Fig. 6. Visualization results of the comparison methods on the SRU test set.
mechanism to avoid overfitting the model, resulting in good accuracy
nd generalization.

.3. SRU data set

The SRU data set contains five observed variables and two response
ariables. In this paper, SO2 concentration is selected as the response
ariable, the first 2000 data are used as the training set, the 2000th–
000th data are used as the verification set, and the 3000th–4000th
ata are used as the test set. The list of hyperparameters obtained by
erforming Bayesian optimization on the validation set is shown in the
able 9. The prediction results are shown in Fig. 6 and Table 8.

From the experimental results, it appears that the situation for
he SRU dataset is similar to that of the DC. The nonlinear modeling
ethod KPLS has improved over the linear modeling method NIPALS,

ut not much, 𝑅2 increased from −0.018 to 0.029. All dynamic mod-
ling methods achieve significant improvements in consistency. The
PLS method is superior to DiPLS in terms of accuracy. DIPALS fail

o improve the model’s predictive performance. The modeling methods
-LSSVM-PLS, DTPLS, and NDTPLS proposed in this paper, which con-

ider the dynamic and nonlinear characteristics of the data at the same
ime, have achieved high prediction accuracy. In addition to the above
ynamic and nonlinear characteristics, the method proposed in this
aper also considers the model degradation caused by the difference in
ata distribution, so it has the best prediction results. In contrast, the
iPLS method only considers the dynamic characteristics of the inner
odel, and its final prediction effect is poor.

The experimental results on the above DC and SRU data set once
gain show that the dynamic and nonlinear modeling method can
ffectively improve the modeling accuracy of the soft sensor model. At
he same time, the regularization technology introduced in this article
nsures that the parameter optimization process does not fall into a

ocal optimal solution.
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4.4. Hyperparameter analysis

The method proposed in this article adds multiple regularization
terms to the inner and outer models, which makes the model more
complex. For the soft sensor modeling problem with complex multi-
working conditions, the complexity of the data is high, and a cor-
responding high-complexity model is required to match it. However,
high-complexity models also bring a series of problems, such as in-
creased calculations and difficulties in hyperparameter optimization.
In this paper, the Bayesian optimization framework [43] is used to
optimize hyperparameters, the regression determination coefficient 𝑅2

is used as the optimization goal, and TPE (Tree-structured Parzen
Estimator) sampling is performed on the parameter search space. This
Bayesian optimization method uses the optimization results of each
step to optimize the search space, which effectively improves the
search efficiency. Fig. 7 is the optimization history graph of Bayesian
optimization on the verification set of the three data sets used in this
paper. 100 trials are conducted on the WWTP dataset and 200 trials on
the DC and SRU datasets respectively, and finally obtained the optimal
combination of hyperparameters.

Through the above Bayesian optimization process, different hyper-
parameter combinations and their corresponding optimization target
𝑅2 values can be obtained. By analyzing this data, the effect of various
hyperparameters on different datasets can be clarified. The importance
plot of the model hyperparameters was obtained by conducting a
functional ANOVA [44] on the optimized data, as illustrated in Fig. 8.
It can be seen from Fig. 8 that for the WWTP data set, the importance
of the target domain Laplacian regularization parameter 𝜉(xi) and the
source domain Laplacian regularization parameter 𝜂(eta) rank first
and fifth respectively, indicating that the inner model regularization
parameters are effective. The first-order difference regularity 𝜌(rho)
and the distribution difference regularity 𝜆(lambda) rank second and
third in importance, which shows the effectiveness of the regularization
parameters of the outer model. For the DC data set, the importance
of the target domain Laplace regular parameter 𝜉(xi) and the neigh-

bor parameter 𝜅(kappa) rank first and second respectively, and the
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Table 8
Experimental results on SRU.

Method NIPALS DIPALS DPLS DiPLS KPLS D-LSSVM-PLS DTPLS NDTPLS

Training set
MSE 0.0033 0.0033 0.0015 0.0016 0.0033 0.0013 0.0011 0.0014
MAE 0.036 0.036 0.024 0.024 0.036 0.023 0.021 0.023
𝑅2 0.034 0.034 0.565 0.545 0.038 0.622 0.685 0.576

Validation set
MSE 0.0030 0.0030 0.0007 0.0018 0.0030 0.0006 0.0007 0.0006
MAE 0.034 0.033 0.020 0.030 0.034 0.020 0.020 0.019
𝑅2 0.053 0.052 0.779 0.448 0.065 0.804 0.771 0.803

Test set
MSE 0.0018 0.0018 0.0005 0.0009 0.0017 0.0005 0.0004 0.0004
MAE 0.031 0.031 0.016 0.020 0.031 0.017 0.016 0.015
𝑅2 −0.018 −0.013 0.749 0.516 0.029 0.741 0.771 0.789
Table 9
List of hyperparameters obtained by Bayesian optimization on the SRU validation set.

Hyperparameter NIPALS DIPALS DPLS DiPLS KPLS D-LSSVM-PLS DTPLS NDTPLS

Latent variable dimension 𝐴 5 4 5 3 5 5 2 5
Time-lagged coefficient 𝜏 – – 13 49 – 12 12 12
Gaussian kernel width 𝛾 – – – – 0.003 2.992e−05 – 4.889e−05
Distribution alignment regularization 𝜆 – 9.07e+08 – – – – 6.677e+08 0.559
First order difference regularization 𝜌 – – – – – – 2.341e+03 0.006
L2 regularization 𝜁 – – – – – 0.002 – 0.0798
Source lapace regularization 𝜂 – – – – – – – 1.794e−04
Target lapace regularization 𝜉 – – – – – – – 7.302e−04
Adjacency parameter 𝜅 – – – – – – – 284
Fig. 7. Optimization history plot.
Fig. 8. Hyperparameter importances plot.
t
r

ource domain Laplace regular parameter 𝜂(eta) ranks fifth, which also
hows the effectiveness of the inner model parameters. Hidden variable
imension A and lag coefficient 𝜏(tau) rank third and fourth in impor-
ance. For the SRU dataset, the importance of the neighbor parameter
(kappa) ranks first, and other parameters are not significant.

Slice graphs of different hyperparameters under different data sets
an be obtained according to the results of Bayesian optimization.
hrough the slice graphs, a visual display of the parameter distribution
nd optimization goals of different hyperparameters can be obtained.
he slice diagram of the hyperparameters under the WWTP data set

s shown in Figure A.1, It can be seen from the figure that a larger
idden variable dimension A and a lag parameter 𝜏 can obtain a
igher optimization goal, but the lag parameter 𝜏 cannot be too large,

otherwise it is easy to cause overfitting. The regular parameters 𝜆 and

of the outer model need to be selected within a suitable interval. The o
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selection of parameters 𝜁 and 𝛾 should not be too large. The selection of
regular parameters 𝜉 and 𝜅 of the inner model should not be too small.

The slice diagram of the hyperparameters under the DC dataset is
shown in Figure A.2. It can be seen from the figure that the higher
the hidden variable dimension A is, the easier it is to obtain a higher
optimization target value. This is because there are more hidden vari-
able dimensions and more useful information can be extracted. The lag
parameter 𝜏 should not be too large or too small. If it is too large, it will
easily cause overfitting, and if it is too small, the historical information
retained is not enough. Smaller distribution difference regularization
parameter 𝜆 and larger difference regularization parameter 𝜌 can make
he model obtain higher prediction performance. The selection of pa-
ameters 𝜁 and 𝛾 should not be too large. The larger the selection

f the inner model parameters 𝜂, 𝜉, and 𝜅, the better the results are,
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indicating that the maintenance of the inner model manifold structure
has a positive impact on the prediction results.

The slice diagram of the hyperparameters under the SRU dataset
is shown in Figure A.3. It can be seen from the figure that a larger
hidden variable dimension A leads to better optimization results. But
the selection of lag parameter 𝜏 should not be too large. At the same
time, the regular parameters 𝜆 and 𝜌 of the outer model should not be
too large. The value of the parameter 𝜁 needs to be selected within
a suitable interval. The parameter 𝛾 and the inner model neighbor
parameter 𝜅 tend to choose smaller values.

The experimental results of the above slice graphs show that the
selection of regularization parameters of the inner and outer models
of different data sets is different. This is due to the different dynamics
of different data sets and distinct time constants. For data sets with
large time constants, it is easy to choose large lag time and neighbor
parameters. On the contrary, for data sets with small time constants,
it is easy to choose the smaller lag time and neighbor parameters.
Nevertheless, under the framework of Bayesian optimization, we can
always obtain the optimal set of hyperparameters.

5. Conclusion

To handle the dynamic, nonlinear, and multi-condition characteris-
tics of data in modern industrial processes, a new nonlinear dynamic
transfer partial least squares algorithm has been proposed in this ar-
ticle. The traditional PLS framework of outer projection has been
changed by minimizing the reconstruction error of the source domain.
The paper proves that minimizing the reconstruction error is equivalent
to maximizing the covariance of latent variables, but an empirical error
upper bound can be found.

The algorithm adds distribution difference regularization and first-
order difference regularization in the process of outer projection and
adds Laplacian regularization in the process of inner nonlinear map-
ping. The hyperparameters are solved by a Bayesian optimization pro-
cedure. The experimental results show that the variance of the latent
variables can be reduced, and the difference in distribution between
the source and target domains can be decreased too. The first latent
variable can capture the trend information of the data and thereafter
remove the trend information, the remaining latent variables become
more stable.

The above conclusion suggests that the proposed algorithm is well-
suited for multiple working conditions and non-stationary processes.
However, further improvement is still necessary. The inner model
utilizes the kernel method to extract nonlinear features, but the compu-
tational efficiency of the algorithm is hindered by the need to calculate
the inverse of the matrix. Moreover, the model was developed of-
fline, and its applicability in an online environment requires additional
research into the update mechanism. To overcome the current limita-
tions, the study will prioritize the development of efficient nonlinear
models and recursive model update mechanisms in the future.
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