
Champagne Taste on a Beer Budget: Better Budget
Utilisation in Multi-label Adversarial Attacks

1st Erwin van Thiel
Computer Science

Delft University of Technology
Deflt, Nederland

Abstract—Multi-label classification is an important branch
of classification problems as in many real world classification
scenarios an object can belong to multiple classes simultaneously.
Deep learning based classifiers perform well at image classifica-
tion but their predictions have shown to be unstable when subject
to small input distortions, called adversarial perturbations. There
are multi-class classifiers, which assign images to a single class,
and multi-label classifiers that attribute multiple labels to an
image. In multi-class scenarios these adversarial attacks are
conventionally constrained by a perturbation magnitude budget
in order to enforce visual imperceptibility. In the related studies
concerning multi-label attacks there has been no notion of a
budget and this results in visible perturbations in the image.
In this paper we develop attacks that cause the most severe
disruptions in the binary label predictions, i.e. a maximum
number of label flips, while adhering to a perturbation budget.
To achieve this, we first analyse the applicability of the existing
single label attack MI-FGSM on multi label problems. A naive
way of using MI-FGSM in a multi-label scenario means using
binary cross entropy loss and targeting all labels simultaneously.
Our key observations are that targeting all labels simultaneously
when restricted to a small budgets leads to inefficient budget
use, that all labels have different attackability and also that
labels exhibit different correlation structures which influences the
combined attackability. Moreover, we show that the loss function
determines the optimisation direction through prioritising labels
with certain confidence values. We find that there are two dif-
ferent strategies to optimise budget use and propose two distinct
methods namely, Smart Loss-function for Attacks on Multi-label
models (SLAM) and Classification Landscape Attentive Subset
Selection (CLASS). SLAM comprises a loss function that uses
an estimate for the potential amount of flips to adapt the shape
of the curve, and hence the label prioritisation. CLASS uses
binary cross entropy loss but focuses the budget on merely a
subset of the labels, which was constructed while considering
label attackability and pairwise label correlation. CLASS does
have the drawback that it relies on classifier specific heuristics for
determining the size of the label subset. We extensively evaluate
SLAM and CLASS on three datasets, using two state of the art
models, namely Query2Label and ASL. Our evaluation results
show that CLASS and SLAM are able to increase the flips
given the budget constraint by up to 131% and 61% respectively
compared to naive MI-FGSM.

Index Terms—Deep Learning, Multi-label Classification, Ad-
versarial Attacks,

I. INTRODUCTION

In many real world problems we need objects to be labeled.
In contrast to multi-class classification in which each object
belongs to a single class, there are also often objects that

are associated with multiple labels simultaneously. Hence we
need to also address multi-label classification. Multi-label
classification entails for example detecting different objects
in an image [16] or determining the different subjects of a
text [14]. An example of multi-label classification in computer
vision can be seen in Fig. 1, in which an image shows two
objects, namely fire hydrant and person.

Despite the power of deep neural networks in classification
tasks, these networks still remain vulnerable to adversarial
examples, which are input images that have undergone a
slight perturbation such that the output of the classifier on
this image is changed according to the malicious intent of
the attacker [34]. In multi-class adversarial attacks [26, 29,
10, 21, 23, 22, 27, 1, 46, 44, 45, 25, 41, 37, 22, 38, 2, 28,
15, 39, 12, 35, 17, 33] the goal is to change the prediction
of the classifier from one to another class. In multi-label
classification however an attack can target any subset of labels,
which creates additional attack opportunities. For example
an attack that has the goal of altering as many binary class
predictions, i.e. flipping as many, labels as possible. This attack
is important to understand well because this type of attack
could seriously compromise the practical use of a classifier.
Furthermore, in order to develop secure and robust models we
need to first find and address the greatest vulnerabilities.

The proposed attacks in the related work have drawbacks
when used for maximum flip attacks. There is MLA-LP [47], a
method that assumes that for a small perturbation the influence
on the output is linear and hence uses linear programming
for constructing perturbations. There is also ML-DeepFool[32]
which relies on the same assumption but uses a pseudo-inverse
instead of linear programming to generate a perturbation.
Lastly, there is ML-CW[32], which is a gradient descent
based optimisation of the perturbation. MLA-LP and ML-
Deepfool fail to flip large numbers of labels. On top of that,
ML-DeepFool generates large perturbations which are clearly
recognizable in the image, so the attack can be detected easily
Fig 1 (c). ML-CW[32] generates effective perturbations but
grants no explicit control over the perturbation magnitude. The
adversarial examples generated by ML-CW for a maximum
flip attack thus have large perturbations and consequently show
visible artifacts (see Fig 1 (b)). To conclude, the related work
has not investigated how to perform maximum flip attacks
while adhering to a perturbation budget. In this paper we ad-

(a) original (b) ML-CW (c) ML-Deepfool (d) MLA-LP

predictions:
person(99%)
car(76%)
fire hydrant(99%)
umbrella(85%)

predictions:
person(41%)
car(47%)
fire hydrant(24%)
umbrella(37%)
+ 74 other flips

predictions:
person(32%)
car(33%),
fire hydrant(23%)
umbrella(24%)
+ 4 other flips

predictions:
person(98%)
car(57%)
fire hydrant(24%)
umbrella(45%)
+ 10 other flips

Fig. 1: Adversarial examples of different multi-label attacks from the Query2Label[18] model trained on the MS-COCO
dataset [16]. The figure shows the adversarial examples, the confidence values of the originally positively predicted labels
before and after the attacks and the number of flips (changed binary predictions). Note that the original image does not contain
a car or a umbrella, as the model does not always give a perfect prediction.

0.0

0.5

1.0threshold
post-attack
pre-attack

C
o
n
fi
d
e
n
ce

0 10 20 30 40 50 60 70 80
Label index

Fig. 2: Example output confidence values of the Q2L model
on a MS-COCO data sample before and after attacking with
ϵ = 0.02.

dress this unresolved problem and hence focus on perturbation
constrained maximum label flip attacks.

In order to tackle the aforementioned problem we use MI-
FGSM [6] as the base adversarial attack, because it has a
built-in perturbation restriction mechanism. However naive
MI-FGSM [9], with binary cross entropy as the default loss
function and the entire set of labels as its target, has the
problem that it is very inefficient for small budgets. As shown
in Fig. 2, we calculate the confidence of each class before
and after the attack. After the attack, the confidence of the
majority of classes increases significantly, but a large part of
the labels ends up just below the threshold. It can be observed
that, 14 of the 80 labels end up between 0.4 and 0.5 and cause
no flips. Hence the attack does not flip labels effectively when
the budget is not large enough to flip all labels.

In this paper, we configure MI-FGSM so that it can use
smaller budgets efficiently. We investigate two alternative ap-
proaches to better utilize budget in the case of a small budget.
Firstly, we propose Classification Landscape Attentive Subset

Selection(CLASS). This method uses information about label
attackability and pairwise label correlation to select a subset of
labels to target. Secondly, we propose SLAM a loss function
specifically tailored for the budget constrained multi-label
attack optimisation. This method takes the budget and a flip
estimator for the target classifier as parameters and accordingly
adjusts the shape of the loss function, such that appropriate
label prioritisation is used during optimisation. CLASS and
SLAM are both methods designed to be efficient when the
budget is low. The difference is that CLASS selects a subset
of labels to target explicitly and SLAM targets all labels but
uses the shape of the loss curve to assign different priority
to different labels during attack optimisation. Furthermore,
SLAM has the advantage over CLASS that it does not rely
on classifier specific heuristics.

We evaluate our proposed methods on two state-of-the art
models, namely ASL [3] and Query2Label [18] and three
datasets MS-COCO [16], NUS-WIDE [19] and VOC2007 [7].
We show that we improve upon the naive MI-FGSM baseline
by up to 131% and 61% with CLASS and SLAM respectively.

Our contributions are as follows:
• As opposed to prior related work we look at individual

labels and introduce the notion of label attackability.
Moreover, we analyse the pairwise label correlations that
are embedded in the classifier and propose a method to
extract these correlations.

• We introduce two novel methods, called CLASS and
SLAM that are the first methods specifically designed
for budget constrained multi-label adversarial attacks.

• We demonstrate the superior performance of our solu-
tions on two state-of-the-art multi-label models, i.e., ASL
and Query2Label, on the MS-COCO, NUS-WIDE and
VOC2007 datasets.

II. BACKGROUND

A. Multi-label classification
The objective of a multi-label classifier is to assign the

correct set of labels to a data instance, which is in this case an
image. Suppose we have a model F that takes d-dimensional
input x ∈ Rd and transforms it into a l-dimensional output
vector o ∈ {0, 1}l in which l denotes the number of possible
labels. As shown in Fig. 3, the output values are transformed
to the range [0, 1] by a sigmoid function σ at the last layer
of the DNN and can then be interpreted as class probabilities,
i.e. confidence values, which we denote vector P . A threshold
τ is used to decide upon presence/absence of a class. The per-
formance of state-of-the-art multi-label classifiers[18, 3, 5, 36]
is conventionally measured in mean Average Precision(mAP),
which is the precision averaged over a range of thresholds and
then averaged over multiple samples.

As target model of our attacks we employ one of the state-
of-the-art models proposed by [3]. This model is trained with
an asymmetric loss function known as ASL. ASL addresses
the problem of imbalance between positive and negative labels
in multi-label datasets. It does so by amplifying the impact of
positive labels, attenuating the impact of negative labels on the
loss and also nullifying the influence of easy negative labels
on the loss during training.

In addition to ASL, we also consider Query2Label [18], a
transformer based classifier that leverages transformer decoder
structures to query the presence of certain labels. This model
consists of a backbone network that extracts spacial features
from the input image. Then a cascade of transformer-decoder
blocks take these spacial features and label representations and
perform cross-attention to query the presence of the labels.
This model uses a simplified version of the loss function
proposed in [3], it however omits the nullifying of the easy
negatives.

We choose these two models because they achieve state-
of-the-art performance and because they have different ar-
chitectures, namely convolutional neural network and vision
transformer architectures.

B. Adversarial Attack
An adversarial attack entails perturbing an input such that

when this input is fed to the classifier it causes the classifier to
give whatever prediction the attacker intends. An essential part
of the attack is that the adversarial example is indistinguishable
from clean images by human eyes. In order to ensure this,
the perturbation must be bounded in magnitude. In other
words, the adversarial objective is to change the output while
limiting the change in the input. In multi-class attacks the
objective is simply to change the predicted class. In multi-label
classification however the labels are not mutually exclusive so
any label can be flipped from 0 to 1 (up) or from 1 to 0 (down).
In this work we only concern ourselves with white-box attacks,
which are attacks on classifiers of which the model parameters
are accessible.

An example of a white-box attack is FGSM [9]. A loss
function L is used to compute the loss of the network by

-1.38

1.58

0.89

Fig. 3: An example of multi-label classification for computer
vision. The pixels of the image are passed into the network,
which generates output values for each possible class. Every
output is tuned into a confidence value by applying a sigmoid
function to it. The confidence values are then turned into
binary predictions using a threshold.

comparing the output to the target t. FGSM then calculates
perturbation r by taking the gradient of this loss function with
respect to the input image x, applying the sign function to it,
negating it and then scaling it with a step size factor α (see
equation 1).

r = α · −sign(∇L(F (x), t)) (1)

The resulting perturbation is then added to the image to create
the so called adversarial example. This adversarial example
causes a decrease of the loss between the model prediction
and the target, which the causes prediction to match the target.
The authors of [6] proposed MI-FGSM [6], which performs
multiple such steps in an iterative fashion. Each iteration the
step of the previous iteration is aggregated in the current
perturbation step as an exponential moving average.

MI-FGSM originally implements FGSM with binary cross
entropy loss (equation 2). This function comprises a logarithm
that is applied to the input. The input is the output of a
classifier with sigmoid activation at the end. Two different
logarithms, which are reflections of each other, are applied
for different cases of target t (either 0 or 1).

LBCE(y, t) =

l∑
i=0

−wi(ti × ln(yi) +

(1− ti)× ln(1− yi))

(2)

III. RELATED WORK

A. Multi-label Classifier Attacks

Song et al. [32] propose a framework that consists of a set of
constraints and equations that describe the objective of a multi-
label adversarial attack. Thereafter they propose two attacks
(ML-CW and ML-Deepfool) to solve for these constraints.

a) ML-CW: The first attack, which is called Multi-label-
Carlini&Wagner(ML-CW) attack, comprises Adam optimisa-
tion [13] of an adversarial objective function that considers the
attack-success and also the perturbation magnitude by way
of a regularisation term. This attack generates perturbations
that effectively cause flips. There is however no explicit
control over the perturbation magnitude, which often causes
the resulting adversarial examples to have visible artifacts.

b) ML-Deepfool: The second attack is called ML-
Deepfool [21] and is based on the assumption that for a small
perturbation the effect on the output is linear. Hence, they
generate a perturbation by turning the constraints into a set
of linear equations and solving them with a pseudo-inverse.
This attack generates very large perturbations which are clearly
visible in the image.

c) MLA-LP: Inspired by ML-Deepfool, Zhou et al. [47]
make the same linearity assumption but solve the linear con-
straints not with a pseudo-inverse but with a linear program-
ming engine [24]. This attack generates smaller perturbations
but does not achieve a lot of label flips.

We aim to overcome the drawbacks of these existing attacks
by designing attacks that allow for generating perturbations
with small magnitudes so that they remain imperceptible.
Because of this we constrain the attack with a perturbation
budget, as opposed to these existing attacks. We focus on
flipping as many labels.

B. Attackability Assessments

Yang et al. [43, 42] propose exact adversarial attackability
estimators for multi-label classifiers. Xu et al. [40, 48] em-
pirically investigate the robustness of multi-label models to
adversarial examples. Melacci et al. [20] propose detecting
adversarial examples from the resulting predictions. Using
knowledge of co-occurrence relations between labels they are
able to detect incoherent predictions. In other words, when
labels that usually do not occur together are both predicted
positive for a certain image, this image is considered suspi-
cious. In this case detecting an adversarial example serves as
a way of defending against it.

IV. EMPIRICAL ANALYSIS

1) Problem Statement: We want to construct impercepti-
ble perturbations that cause as many label flips as possible.
Therefore in this paper we investigate the budget constrained
maximum flip attack, as formalised in equation 3. Assume we
have a classifier that takes as input an image with d pixels and
outputs confidences for l different possible labels. The formal
description of our objective is as follows:

maximize
r

Σl
i=0((Fi(x + r) ≥ τ)⊕ (Fi(x)) ≥ τ)

subject to ||r||∞ ≤ ϵ (3)

Given the classifier output for label i Fi, image x, perturbation
r, logical xor operator ⊕, threshold τ and perturbation bound
ϵ, flip as many labels as possible within L∞ perturbation
budget ϵ.

This problem can be envisioned as moving through a d-
dimensional space containing l decision boundaries, having to
traverse as many of these boundaries as possible, while being
limited in travel distance in each dimension.

A. Label Attackabilities

We first investigate which individual decision boundaries
can be crossed the easiest. To study attackability of different
labels, we attack each label separately with a fixed ϵ value and
measure in how many out of a 100 instances we are able to
achieve a flip. This flip ratio can be interpreted as attackability.
We see in Fig. 4(b) that for the ASL model trained on the
MS-COCO dataset that labels have different attackabilities. It
can also be observed that in the plots the pre-attack confidence
values (Fig. 4a) and the attackabilities show a similar structure.
Because of this we examine the correlation between the
attackabilities and the pre-attack confidence values. Moreover,
we investigate how label confidences relate to training dataset
occurrence frequencies. We use Pearson’s correlation coeffi-
cient[31] to perform a correlation analysis. Table II shows the
results of this analysis for different classifiers:

Table II shows the correlations between the pre-attack
confidence value, the attackability and the training data set
occurrence frequency. The rows depict the concerned correla-
tion and each column shows these correlations for a different
model-dataset combination. We separate the flip up cases from
the flip down cases.

As can be observed there is a positive correlation between
the attackabilities and pre-attack confidence values in the case
of a flip-up. This suggests that labels with higher confidence
are flipped up more easily. There is however one exception
to this observation namely the ASL NUS-WIDE model. This
classifier shows no correlation between confidence and attack-
ability. This classifier also outputs very low confidences for
each label. This means that the absolute difference between
the confidence values of the labels is very small. This small
difference apparently does not make a significant difference
for the attackability hence there is no significant correlation
between pre-attack confidence and attackability. The classifiers
show a positive correlation between the training set occurrence
frequency and the pre-attack confidence value. This indicates
that the bias in the confidences of absent labels originates from
the label imbalance of the training dataset.

For the case of flip-downs, there is a negative correlation
between pre-attack confidence value and the attackabilities.
This indicates that a higher confidence value means that it is
more difficult to flip a label down. For the flip-downs there are
no significant correlations between the pre-attack confidence
value and the dataset occurrence frequencies. When analysing
the pre-attack confidence values for positive labels it becomes
apparent that the classifiers predict all labels with very high
probability. This could be caused by the fact that both classi-
fiers were trained with the same asymmetric loss function,
that focuses on true positives. Consequently, the classifiers
show more confident predictions for true positives than for
true negatives. To conclude, we can make two observations:

Flip up
ASL × MS-COCO ASL × NUS-WIDE Query2Label × MS-COCO Query2Label × NUS-WIDE

attackability vs confidence correlation 0.76 -0.05* 0.72 0.73
occurrence frequency vs confidence correlation 0.64 0.57 0.53 0.72

Flip down
attackability vs confidence correlation -0.47 -0.31 -0.54 -0.22

occurrence frequency vs confidence correlation 0.1* 0.08* -0.06* 0.17*

TABLE II: Pearson’s correlation coefficients among attackability, pre-attack confidence value and training set occurrence
frequency. A score of 1 means positive correlation, -1 means negative correlation and 0 means no correlation. Insignificant
correlations (p > 0.05) are marked with *.

Observation 1: The classifier inherits the statistics of the
training data such that the more frequently occurring labels
in the training data are likely to receive a higher confidence
value from the classifier when they are absent in the image.

This suggests that the classifier is more prone to predicting
the presence of certain labels regardless of the nature of the
input. This is an undesirable characteristic of a classifier. In an
ideal scenario the classifier would make its prediction solely
based on features in the input image.

Observation 2: Labels of which the confidence value is
closer to the threshold are easier to flip.

This means we can use the confidence value of a label as
an indication of its attackability. Also this could be a sign of a
decision space exhibiting linearity. It can easily be derived that
when a decision space is linear, so is the decision boundary.
We mathematically support this claim in appendix G. Linear
decision spaces also mean that the confidence value is pro-
portional to the distance to the decision hyperplane, hence we
use the difference between the confidence value of a label and
the threshold as an indication of distance of the clean image
to the decision hyperplane for this specific label.

B. Label Correlations

Besides individual label attackabilities we aim to extract
pairwise label correlations to get a better understanding of
the decision landscape. Multi-label datasets contain samples
belonging to multiple classes, and the labels can be statistically
related to each other. These correlations could be learned by
the model and influence the attackability. The pseudo-code
of the proposed procedure for extracting these correlations is
presented in Algorithm 1.

First we obtain the confidence values of the clean prediction
(line 4). Then we attack the image and obtain the adversarial
example x′

i (line 5). We then calculate the confidence values of
the prediction of the adversarial example (line 6). The average
change in confidence values, and thus correlations, of all the
labels are then calculated by taking the difference between
the clean- and adversarial predictions (line 7). The values
are averaged over the n samples. This procedure is carried
out for each label and also in two-directions (target ∈ 0, 1)
to obtain flip-up and flip-down correlation matrices. In our
experiments, we set n = 100 and for each model we use
an ϵ value has the the average label confidence approach the
target (0.001, 0.005, 0.005 and 0.008 for ASL MS-COCO,

0 20 40 60 80

0.00

0.06

0.12

0

1

co
n
fi
d

e
n
ce

fl
ip

 r
a
ti

o

label index

a)

b)

Fig. 4: Per label flip ratio i.e. attackability plot for ASL
MS-COCO a) and per label average predicted confidence on
image (also from ASL MS-COCO) that does not belong to the
concerned class).

Algorithm 1 Correlation extraction
Inputs: Classifier model F : {d × d −→ l × l}, Perturbation
bound ϵ and a tensor x ∈ Rn×d×d containing n images with
d× d pixels.
Output: a l × l correlation matrix Z

1: Z = zeros(l, l)
2: for target = 1, 2, . . . l do
3: for i = 1, 2, . . . n do
4: Pi = σ(F(xi))
5: x′

i = attack(F, xi, t, ϵ)
6: P ′

i = σ(F(x′
i))

7: Z[target] += P′
i−Pi

n
8: end for
9: end for

10: return Z

ASL NUS-WIDE, Query2Label MS-COCO and Query2Label
NUS-WIDE respectively). Fig. 5(c) represents the positive

correlations of the Q2L model trained on the MS-COCO
dataset. When comparing 5(c) to the co-occurrence frequencies
of the dataset (5(a)), it becomes apparent that the model learns
the correlations of the training dataset. Hence, we make the
following observation:

Observation 3: When a pair of labels occurs often in the
training dataset simultaneously, their confidence values are
likely to positively correlate during an attack.

Fig. 5(b) illustrates the negative correlations, which are ob-
tained by flipping the target labels down. The inverse patterns
visible in between (c) and (b) indicates that the flip-up and
flip-down correlations are negatives of each other. Moreover,
this allows us to use the inverse of the positive correlations so
that we do not have to generate correlation matrices in both di-
rections. Fig. 5(d) shows the same correlations as in Fig. 5(c),
these correlations are however obtained with a dataset that was
not used for training. The resemblance between (c) and (d)
explains that the correlations are ingrained in the model itself.
This means the attacker can extract the correlations without
knowing the training dataset. The correlation heatmaps of the
other models and the cost of generating these matrices are
presented in appendix E and appendix F respectively.

-

0

+

(a) (b)

(c) (d)(c)

Fig. 5: Co-occurrence heatmap for MS-COCO dataset (a),
positive correlation heat map (b), negative correlation heat map
(c) and positive correlation heatmap obtained with different
dataset (d) for Query2Label model trained on MS-COCO.

Strong correlation between two labels can be interpreted as
strong decision hyperplane alignment. This alignment influ-
ences the combined attackability of labels. In order to visually
explain this we provide a illustration. In Fig. 6(a) we see
a point x and decision hyperplanes a,b and c. Adversarial
example x′(a, b) is constructed by crossing the hyperplanes of
a and b and equivalently x′(a, c) by crossing the hyperplanes
of a and c. All three decision hyperplanes are on the same
l∞ distance from x, namely ϵ1. The difference in alignment
of the hyperplanes the pairs (a,b) and (a,b) however causes

that x′(a, b) is within l∞ distance ϵ2 from x and x′(a, c) is
not. This shows that hyperplane alignment is a relevant factor
during adversarial attacks.

C. Targeting a Subset

A possible solution to the inefficient budget use is limiting
the amount of targets. In Fig. 2 we observe that standard
MI-FGSM, which targets all labels simultaneously, wastes its
epsilon budget on certain labels. It increases the confidences
of certain labels significantly yet insufficiently for causing
them to flip. This indicates that distributing the budget over
all labels can be sub-optimal when the budget is too limited.
This insight raises the question, if we cannot flip all labels,
how many and what labels should we target? Intuitively this
problem can be solved by targeting only a subset of labels as
opposed to targeting them all. In order to gain more insight into
this we plot the amount of flipped labels against the amount
of targeted labels while attacking in Fig. 7. Targeting labels
is counter-intuitively achieved not through the target vector
but through the label weight vector in the loss function (see
equation 2). By putting 1 as the weight wi for a targeted label
and 0 for one that is not targeted, the optimisation becomes
indifferent to the labels that are not targeted. The results in
Fig. 7 confirm that targeting too many labels can result in
sub-optimal performance.

In order to better understand how this happens we provide a
visual example. Fig. 6 (b) shows the perturbation boundaries,
the label decision hyperplanes and the attacked image x. If
the attack targets both labels (x′(a, b)), the image is perturbed
towards the cross-section of the hyperplanes but ends up at
the border of the L∞-box. This means that the attack on two
labels simultaneously results in 0 flips. If the attack targets
either one of the labels individually (x′(a) or x′(b)), it will
cross the hyperplane perfectly fine and cause 1 flip.

It would be expected that the optimal number of targets
is equal to the potential number of flips. It can however be
observed that for all four models the maximum number of
flips flipsopt ≈ 0.6 × topt, in which topt is the optimal
number of targets. We only flip a subset of the labels we target.
When increasing our number of targets, some labels we add
as target are not causing extra flips. This can be explained by
the fact that the confidence is not a 100% accurate indication
of distance to the decision hyperplane and also by decision
hyperplane alignment between labels. Because of this the
peaks of the graphs in Fig. 7 move to the right. Consequently,
there is an optimum somewhere between targeting too many
and targeting too few labels.

D. Implicitly targeting through the loss function

The loss function that is used for the attack optimisation
greatly influences how the attack budget ϵ is distributed over
the labels. A key part in the perturbation step calculation is
computing the gradient of the loss with respect to the input
image x. The total loss comprises the sum of individual label
losses. This means that when the gradient is calculated, the
gradient of the loss is a sum of gradients of individual label

x

c
a

b
x

x'(a,c)

x'(b,c)

ε2

ε1

x

x'(a)
x'(b)

a

x'(a,b)

b

(a) (b)

Fig. 6: 2D visualisation with hyperplanes a,b,c, L∞ perturba-
tion box and attack subject x. (a) shows that the distances to
the decision hyperplane do not solely determine the combined
attackability but alignment is a factor that contributes to it as
well. In (b) it can be observed that trying to flip both a and
b simultaneously results in fewer flips than attacking either of
them separately. This shows attacking more labels could result
in fewer flips.

0 20 40 60 0 20 40 60
0

5

10

15

20

25

0

5

10

15

20

25

ε= 0.001

ε= 0.002

ε= 0.003

ε= 0.006

ε= 0.02

ε= 0.04

(a) ASL MS-COCO

ε= 0.007

ε= 0.013

ε= 0.02

(b) ASL NUSWIDE

ε= 0.008

ε= 0.016

ε= 0.024

(c) Q2L MS-COCO

(d) Q2L NUS-WIDE

number of targets

fl
ip

s

Fig. 7: Measured number of flips versus number of targets for
different classifiers and different budgets. for the targets we
used the n-targets with confidence closest to the threshold.
The results are averaged over 100 samples.

losses. One of these individual label losses comprises the loss
function applied to the model output. The derivative of this
then according to the chain-rule evaluates to the derivative
of the loss function applied to the model output, times the
gradient of the model output. As a consequence, if the loss
function has a larger derivative at the confidence value of
a certain label then this label has a larger influence on the
perturbation direction. This idea is formalised in equation 4.

L(F (x), t) =

l∑
i=0

C(Fi(x), ti)

∇L =

l∑
i=0

∂C
∂Fi

∇Fi

=

l∑
i=0

weighti · directioni

(4)

Given total loss function L, individual label loss function C
and classifier F . The gradient of the loss with respect to input
x is a weighted sum of the gradients of all l labels. The weight
of the gradient of each label i in the summation is equal to
the derivative of the loss function evaluated at the confidence
value of that label i, taking into consideration the target t.

It can be derived when LBCE is used that before the
threshold the loss approaches linearity and hence a constant
derivative(see appendix K). From equation 4 it then follows
that the priority of all labels in this confidence region is equal.
This is not what we want when there is little perturbation
budget, as distributing the priority and thus budget over too
many labels means that there is not enough budget per label
too cause the label to flip. Note that the notion of a low or high
budget depends on the classifier its attackability/robustness.

An alternative approach for smaller budgets is to focus on
the decision hyperplanes that are closer by, and thus act more
greedily. This means we adjust the loss curve to prioritise
labels with confidences closer to the threshold. We decrease
the priority, and hence decrease the derivative, when the
confidence is further from the threshold. In other words, we
need a function of which the derivative peaks at the threshold.
A function that has this property is the sigmoid function:

σ(x) =
1

1 + e−x

.
Because we assume a multi-label model has sigmoid acti-

vation at the output, we use a linear loss function. As opposed
to LBCE , which applies a logarithm to a sigmoid, we apply
a linear function to a sigmoid. Our greedy loss is formulated
in 5. In this equation y and t denote the label confidence and
target respectively.

L(y, t) = Σl
i=0 (1− ti) · yi + (ti) · (yi − 1) (5)

Fig. 8 demonstrates the Llinear and the LBCE approaches
work better with a lower budget, and a higher budget, re-
spectively. In appendix H we provide a 2D simulation that
visualizes why this happens.

V. PROPOSED MULTI-LABEL ATTACKS

In this section we propose, SLAM and CLASS, two dis-
tinct approaches for achieving more labels flips with small
perturbation budgets. SLAM is a loss function that adapt its
shape, and hence its prioritisation per equation 4, to prioritise
easier labels when the budget allows for few flips. CLASS

BCELoss
LinearLoss

0 0.01 0.02
0

20

40

60

80

Fl
ip
s

ε

Fig. 8: Mean and std of flips of LBCE vs LLinear on the ASL
MS-COCO model for different values of ϵ.

comprises selecting a subset of labels based on label attacka-
bility and pairwise label correlation. Both these methods rely
on estimates of the potential number of flips. Hence lastly, we
propose a method for modeling the relationship between the
potential flips for a certain budget for a certain classifier.

A. Smart Loss-function for Attacks on Multi-label models
(SLAM)

Given an estimate for the potential number of flips, we aim
to design a loss function that uses this estimate to calculate
a loss curve that exhibits the right amount of prioritisation of
nearer decision hyperplanes. We propose a simple approach
called Smart Loss-function for Attacks on Multi-label models
(SLAM) that comprises a weighted average between the BCE
and linear losses as follows:

LSLAM (y, t, p, q) = (p · q) · LBCE(y, t) +

(1− p · q) · LLinear(y, t)
(6)

The weight factor consists of p×q, where p (not to be confused
with P) is the ratio of labels we can potentially flip. This
way, when our expected number of flips is low our curve
resembles Llinear and when this number becomes larger our
curve starts resembling LBCE more. Consequently, SLAM
always lies between LBCE and Llinear. Furthermore, q is
a hyperparameter that regulates the maximum influence of
LBCE in the mix. The use of this parameter and tuning of it is
discussed in appendix D. To calculate p, we use the following
expression:

p =

1, if ϵ > ϵmax

0, if ϵ ≤ 0
E(ϵ)
C , otherwise

(7)

where ϵ and ϵmax denote the ϵ-value for the attack and the
ϵ-value for which the maximum number of flips is achieved,
respectively. C is the number of classes. Also, E(ϵ) denotes
a polynomial function, specifically modeled for the concerned
classifier, that returns an estimate of the potential number of
flips. This function is elaborated upon in the last part of this
section.

B. Classification Landscape Attentive Subset Selection
(CLASS)

Given an estimate of how many labels we can flip, we
attempt to construct the optimal subset. First we need to

determine the length of the subset. According to the exper-
iment in Fig. 7, we find that the optimal number of flips
is roughly 0.6 times the number of targets, so we will take
1
0.6 = 1.66 times the number of estimated potential flips as
a heuristic. For determining what specific labels we attack
we consider two things. Firstly, the confidence values, which
are interpreted as distances to their corresponding decision
hyperplanes. Secondly, we look at the correlation between the
labels, i.e., the alignment of the decision hyperplanes. We aim
to solve the optimization problem with the following objective
criterion:

S = γ · Z + (1− γ) · P (8)

where S denotes the score of a label in a certain subset. Z
and P are the average correlation to the other labels in the set
and the confidence value respectively. γ determines the weight
between correlation and confidence.

a) Instance correlation matrix: When using label corre-
lations for determining a target subset we need to consider
the flip directions for the specific image. For the generating
a target subset we thus need to generate a specific attack
correlation matrix for each attacked image. Depending on
the targets of each label we select rows from the flip-up
and flip-down matrices to construct an instance correlation
matrix (ICM). We can then obtain the correlations of a certain
label to the other labels by looking at the row in the ICM
corresponding to that label.

b) Branching Algorithm: The complexity of the problem
makes finding an optimal solution infeasible, as this optimiza-
tion problem is an instance of the NP-hard quadratic knapsack
problem [8] (all labels having the confidence as the individual
profit, the correlation as the joined profit, the weights are all
1 and the weight limit is the subset length). Because of this
we use a branching algorithm. The algorithm entails starting
with an empty set and iteratively adding a label until it has
reached the pre-defined length. Each iteration we look d steps
and b branches ahead to find the optimal label to add in that
iteration. This means each iteration we create a tree structure
(see Fig. 9) in which the root node holds a set containing the
so far added labels. A child node is created by copying the
label set of the parent and appending one label. For each parent
we compute a ranking of labels using the objective criterion in
equation 8 and create b children that append the top b labels in
this ranking to their respective sets. The children then become
parent nodes and we repeat the same process up until we have
constructed a tree of depth d with b children per parent. When
the tree has been constructed we apply O =

∑M
i=0 Si as the

objective function on the label sets in the leaves of the tree to
determine the best branch. M is the length of the subset. In
essence, this means looking d steps ahead to calculate what
label should be added per iteration. A visual representation of
such an iteration is presented in Fig. 9. The leaf node with
maximum objective value is regarded as the most lucrative
branch. This means that in this example label 30 is added to

the set and in the next iteration the tree will have [0,30] as
the root. Note that when there are duplicate combinations the
objective values can be the same. In that case the algorithm
will choose the first one encountered and consider that as the
best branch.

[0]

[0,30] [0,31] [0,36]

[0,30,
31]

[0,30,
36]

[0,30,
4]

[0,31,
30]

[0,31
17]

[0,31.
4]

[0,36,
30]

[0,36,
31]

[0,36,
16]

Objective values:

Root

Level 1

Leaves

3.68 3.55 3.51 3.68 3.50 3.51 3.55 3.52 3.27

Fig. 9: An example of a tree in a single iteration of the subset
generation algorithm with d = 2, b = 3. The numbers in the
list denote label indices. The green branch represents the most
lucrative branch.

C. Creating Model Profiles

As mentioned before, we need to create a function that
models the number of potential flips based on the ϵ value.
We probe attack and check the number of flips each i-th
perturbation step with interval i and stop when the number
of flips converges. We used a derivative less than 1% of the
derivative in the origin to establish convergence. We attack
with both LLinear and LBCE and use the maximum of the
two as a lower bound estimate. Because we need to query
this model we fit a 3rd or 4th-order polynomial to the data
points by way of least squares regression. During an attack
we can now apply the polynomial function to the attack-ϵ and
calculate an estimate for the potential flips. For profile plots
and profile cost estimation refer to appendix L.

VI. EVALUATION

In this section we evaluate the performance of the pro-
posed attacks. We attack different models trained on different
datasets and measure the amount of labels we are able to flip
for different budgets.

A. Datasets

MS-COCO: MS-COCO stands for Microsoft Common Ob-
jects in Context which is a real-world object detection
dataset [16]. The dataset contains 82783 training images,
40504 validation images, and 40775 test images belonging to
80 classes.
NUS-WIDE: This dataset was created by Lab for Media
Search [19]. Some of the original samples are however no
longer available. For this reason we used the version provided
by [3]. This version contains 119103 training images and
50720 validation images. The dataset contains 81 classes.
VOC2007: The Visual Object Classes(VOC2007) [7] dataset
consists of 9,963 images from which the test set and training
set both take 50%. The dataset includes 20 different categories.

TABLE III: Models with their respective mean average preci-
sion performance.

Dataset Architecture mAP
MS-COCO ASL / TResnetL[30] 80.1
MS-COCO Q2L / Resnet101[11] backbone 84.1
NUS-WIDE ASL / TResnetL 59.8
NUS-WIDE Q2L / Resnet101 backbone 65.0
VOC2007 ASL / TResnetXL[30] 65.0

B. Models

The models that are used for the experiments are ASL
and Query2Label. For training ASL, we use the default
hyper-parameters values provided in [3]. The Query2Label
models are downloaded from their original github page. The
model architectures and performances are given in Table III.
These model architectures are provided in ASL [3] and
Query2Label [18], respectively.

C. Experimental Setup

The experiments are all performed with MI-FGSM. The
original version of MI-FGSM fixes the number of iterations n
and calculates update step size α by ϵ

n . However we analyze
wide ranges of epsilon values for different values of α. This
lead to poor results when attacking with larger ϵ values, so we
fix α and perform more iterations for larger epsilon values.
Consequently, we calculate the number of iterations n by ϵ

α .
We fix α at 1

256∗10 , which is 10 iterations per discrete pixel
value. This value is chosen because a higher value will cause
that there are too few iterations in the lower epsilon attacks and
the lower values would cause the attacks to require a runtime
we consider infeasible. For each attack we collect statistics
over 100 random samples from the test/validation dataset.
For ϵ we take 5, 10, 20, 40, 60, 80 and 100% of ϵmax as
determined by the constructed profile. Some examples of these
adversarials can be found in appendix M. All classifications
are performed by applying a sigmoid to the network output
and a 0.5 threshold thereafter to obtain the predictions. We
attack while using the different configurations. For the CLASS
attacks we will generate target sets with different values of
γ namely 0, 0,5 and 1. We also search for the optimal
γ value with steps of 0.05 and include the results for the
obtained optimal value of γ. For the branching algorithm
we will use trees with 4 branches and 4 levels, as larger
trees are considered unfeasible. For the SLAM attacks we use
LSLAM (q = 0.5). The baseline attack uses LBCE and targets
all labels. Tables IV, V and VI show the flips. We highlight
the best values per column in bold, if they are significant per
t-test with α = 0.05. Note that * depicts that the subset length
for that CLASS attack equals the total number of labels which
means that the method and hence also the value do not differ
from the baseline. We also evaluate our methods while using
L2 perturbations. The results of this ablation study can be
found in appendix. B. We do not compare our results to the
related work attacks in the same procedure, simply because

https://github.com/SlongLiu/query2labels

those attacks do not allow for specifying a fixed budget. A
separate comparison is provided in table VII.

D. Experiments Results

In Table IV, we present the results of our proposed methods
on MS-COCO dataset. The different rows depict different
methods and the different columns depict different budget
sizes. The values in the cells represent the mean flips and
standard deviation. The last column, denoted with ”Total”
represents the summation of the other columns. It can be
observed that SLAM performs better than the baseline for the
lower budgets for both ASL and Query2Label. For CLASS
applied to the ASL we see that the best version uses γ = 0
with a performance increase up to 130% over the base-
line. This means that for the ASL MS-COCO model using
correlation information in the score calculations grants no
performance benefit. The Query2Label model does benefit
from the correlations, as the optimal γ value is 0.05. This
can be explained by the fact that the Query2Label-MS-COCO
model exhibits much stronger correlations than the ASL-MS-
COCO model, as can be seen in appendix IV-B.

NUS-WIDE is more challenging than MS-COCO and
VOC2007 because it does not only contain tangible objects
but also more complex classes such as scenes or events.
The results are summarized in Table V. As expected, SLAM
achieves higher performance than the BCE baseline. For
the Query2Label model, this performance benefit is larger
than with the other models. This can be explained by the
fact that the robustness of this model strongly limits the
number of labels we can flip, which is a scenario that is
very suitable for SLAM. For the CLASS methods on both
ASL and Query2Label we see that no performance benefit is
gained from correlation information. This can be explained
by the fact that the NUS-WIDE dataset has very few co-
occurrences among the classes and thus the models hardly
exhibit correlations. For the ASL model, the performance
differences between different CLASS methods and the random
subset is very small. This can be explained by the fact that
the confidences are a poor indication of label attackability, as
seen in Table II.

In order to validate our findings we also evaluate our
methods on the ASL model trained on a dataset we did not
include in our analysis section namely, the PASCAL VOC2007
dataset. The results are presented in Table VI. From these
results we conclude that the functionality of the methods
transfers to the VOC2007 dataset as well. The CLASS attacks
perform best with CLASS (γ = 0) achieving up to 94% more
flips than the baseline. Also for the ASL VOC2007 classifier
there is no benefit to including correlation information. This
can be explained by the fact that the VOC2007 dataset has
very few co-occurrences among labels. As is the case with
the other models, SLAM performs better than BCE overall,
with the largest difference for lower budgets.

When comparing SLAM and CLASS we see that overall
CLASS has better performance. CLASS has the drawback
however that it relies on the accuracy heuristic for the subset

size, the accuracy of attackabilities and the correlations. We
see for example that for the ASL-NUS-WIDE model, of which
the confidences are a less accurate indication of attackabilities
and of which the correlations are weak, SLAM outperforms
CLASS. This can be explained by the following principle.
SLAM uses the derivative of the loss to determine label
prioritisation, which means that if after an attack iteration the
ranking of the labels regarding their distance to the confidence
threshold changes, so does the priority. CLASS on the contrary
chooses a subset of labels based on the label confidences
before the attack and sticks to this subset.

In table VII we compare the results of the related work to
our methods. For the budget we use the perturbation magnitude
generated by the related work attack. We observe that our
methods, and also MI-FGSM, flip more labels than ML-
Deepfool and MLA-LP. We achieve competitive results to the
results achieved by ML-CW. Appendix M provides the adver-
sarial examples that were generated by SLAM from the image
presented in Fig. 1. It can be observed that SLAM, as opposed
to ML-Deepfool and ML-CW, is able to produce adversarial
examples that are indistinguishable from the original image.

VII. DISCUSSION AND CONCLUSION

To the best of our knowledge, we are the first study that
considers maximum flip attacks while adhering to perturbation
budgets in multi-label classification. A perturbation budget
is necessary as it prevents visual impairment of the image,
which is a crucial aspect of an adversarial attack. First we
explained how naive MI-FGSM does not efficiently use a
small budget and we explained how different budgets require
different targeting. We proposed two strategies, CLASS and
and SLAM. The first comprises selecting a subset based on
attackabilities and correlations called CLASS. The second
approach is a budget aware loss function called SLAM.

We evaluate both our approaches on multiple models and
datasets. We show that our methods significantly improve upon
the naive MI-FGSM baseline. Only for the Query2Label-MS-
COCO model correlations provide a significant benefit, as
the other models do not exhibit strong enough correlations.
The authors of [42] reason that encouraging the alignment
of decision hyperplanes for correlated labels increases the
classification performance but also increases the adversarial
attackability. Consequently, there exists a trade-off between
classifier robustness and performance. For datasets in which
more there are more label co-occurrences or for models that
are better able to learn these correlations, label correlations
will play a bigger role in adversarial attacks.

When comparing SLAM to CLASS, CLASS has slightly
better performance overall but SLAM has the advantage that
it does not rely on heuristics regarding the optimal number of
targets, a number that differs per model. For the datasets used
in our experiments SLAM and CLASS achieve on average a
maximum performance benefit of 45% and 56% respectively
compared to naive MI-FGSM. The best results of SLAM and
CLASS increase upon this baseline by up to 61% and 131%
respectively.

TABLE IV: Mean and std of the obtained flips for different budgets for the MS-COCO dataset. Cells containing * depict that
the value is equal to the baseline value for that column.

Method ϵ = 0.001 ϵ = 0.003 ϵ = 0.006 ϵ = 0.012 ϵ = 0.018 ϵ = 0.025 ϵ = 0.031 Total
A

SL

BCE 4.33 ± 3.47 13.29 ± 8.57 41.71 ± 18.41 70.47± 11.20 77.51 ±4.13 79.34 ±1.71 79.76 ± 0.80 366.41
SLAM 7.01 ± 4.53 17.01 ± 9.61 43.17 ± 17.00 70.08 ± 10.63 77.04 ± 4.29 79.05 ± 1.86 79.65 ± 0.89 373.01

Random subset 4.53 ± 3.44 13.71 ± 8.68 41.64 ± 17.70 * * * * 366.96
CLASS(γ = 0) 10.00 ± 4.38 20.39 ± 9.22 44.06 ± 17.07 * * * * 383.53

CLASS(γ = 0.5) 7.07 ± 3.77 16.78 ± 7.90 40.99 ± 16.59 * * * * 371.92
CLASS(γ = 1) 6.06 ± 3.79 17.03 ± 8.14 41.08 ± 16.58 * * * * 371.25

Method ϵ = 0.006 ϵ = 0.012 ϵ = 0.024 ϵ = 0.048 ϵ = 0.072 ϵ = 0.096 ϵ = 0.121 Total

Q
2L

BCE 9.2 ± 4.95 16.47 ± 6.69 29.13 ± 8.79 48.66 ± 8.85 60.04 ± 8.03 66.96 ± 7.60 70.7 ± 6.32 301.16
SLAM 11.18 ± 5.89 19.67 ± 7.42 32.06 ± 7.78 49.56 ± 7.95 59.07 ± 7.25 65.41 ± 7.02 69.23 ± 6.24 306.27

Random subset 7.88 ± 4.31 15.17 ± 5.73 27.28 ± 7.48 * * * * 296.69
CLASS (γ = 0) 9.39 ± 4.17 17.98 ± 5.92 30.91 ± 8.97 * * * * 304.64

CLASS (γ = 0.05) 9.15 ± 4.25 18.04 ± 5.97 33.7 ± 7.79 * * * * 307.25
CLASS(γ = 0.5) 8.6 ± 4.32 17.87 ± 6.01 32.93 ± 7.22 * * * * 305.76
CLASS(γ = 1) 8.76 ± 4.60 17.86 ± 5.82 32.75 ± 7.25 * * * * 305.73

TABLE V: Mean and std of the obtained flips for different budgets for the NUS-WIDE dataset. Cells containing * depict that
the value is equal to the baseline value for that column.

Method ϵ = 0.007 ϵ = 0.014 ϵ = 0.028 ϵ = 0.057 ϵ = 0.086 ϵ = 0.115 ϵ = 0.144 Total

A
SL

BCE 8.51 ± 8.47 28.33 ± 17.48 51.96 ± 13.48 66.13 ± 10.72 69.21 ± 10.25 68.6 ± 11.48 65.02 ± 13.77 357.76
SLAM 12.29 ± 10.76 31.52 ± 16.68 51.99 ± 12.88 65.49 ± 10.35 69.15 ± 9.49 68.63 ± 11.02 65.68 ± 12.82 364.75

Random subset 8.24 ± 3.97 18.88 ± 10.45 38.58 ± 15.16 * * * * 334.66
CLASS (γ = 0) 10.81 ± 3.11 22.33 ± 8.23 39.15 ± 13.63 * * * * 341.24

CLASS (γ = 0.15) 10.18 ± 2.52 22.32 ± 7.72 40.42 ± 13.23 * * * * 341.88
CLASS(γ = 0.5) 9.77 ± 2.55 21.34 ± 8.45 38.83 ± 14.33 * * * * 328.36
CLASS(γ = 1) 9.57 ± 2.77 21.11 ± 8.43 38.63 ± 15.30 * * * * 328.33

Method ϵ = 0.011 ϵ = 0.023 ϵ = 0.046 ϵ = 0.093 ϵ = 0.140 ϵ = 0.187 ϵ = 0.234 Total

Q
2L

BCE 7.09 ± 2.67 11.29 ± 3.58 20.89 ± 5.37 33.46 ± 6.45 39.12 ± 6.91 41.85 ± 7.73 42.91 ± 8.36 196.60
SLAM 11.48 ± 3.57 17.99 ± 4.83 27.65 ± 5.32 38.05 ± 6.07 43.73 ± 7.07 46.11 ± 7.69 44.69 ± 8.72 229.7

Random subset 6.98 ± 2.88 12.04 ± 3.90 20.14 ± 5.23 32.1 ± 6.11 37.81 ± 6.91 40.75 ± 8.14 42.28 ± 8.65 192.10
CLASS(γ = 0) 8.83 ± 2.04 15.69 ± 2.60 24.83 ± 4.28 35.77 ± 6.42 41.26 ± 7.46 43.89 ± 8.22 44.64 ± 8.92 214.90

CLASS(γ = 0.5) 8.92 ± 2.56 15.62 ± 2.49 23.94 ± 3.97 33.12 ± 4.97 38.84 ± 6.24 40.85 ± 7.34 42.4 ± 7.77 203.69
CLASS(γ = 1) 8.77 ± 2.62 15.64 ± 2.78 23.5 ± 4.07 33.1 ± 4.56 38.8 ± 6.09 40.75 ± 6.95 41.7 ± 8.00 202.26

TABLE VI: Mean and std of the obtained flips for different budgets for the VOC2007 dataset. Cells containing * depict that
the value is equal to the baseline value for that column.

Method ϵ = 0.0041 ϵ = 0.0082 ϵ = 0.0164 ϵ = 0.0328 ϵ = 0.0492 ϵ = 0.0656 ϵ = 0.0820 Total
BCE 1.16 ± 1.59 4.62 ± 4.08 12.15 ± 4.98 17.77 ± 2.56 19.29 ± 1.14 19.71 ± 0.68 19.83 ± 0.49 94.53

SLAM 1.56 ± 1.97 5.33 ± 4.13 12.54 ± 4.46 17.85 ± 2.38 19.29 ± 1.08 19.68 ± 0.73 19.84 ± 0.44 96.09
Random Subset 1.82 ± 1.4 4.74 ± 3.0 11.84 ± 4.38 * * * * 95.09
CLASS(γ = 0) 2.26 ± 1.32 6.17 ± 2.97 13.22 ± 3.97 * * * * 98.4

CLASS(γ = 0.5) 2.36 ± 1.34 5.66 ± 2.28 11.94 ± 3.81 * * * * 96.67
CLASS(γ = 1) 2.17 ± 1.11 5.25 ± 2.36 12.06 ± 3.93 * * * * 96.16

TABLE VII: Results of the existing multi-label attacks on
the Query2Label model trained for the MS-COCO dataset
averaged over 100 samples. Cells containing * depict that the
attack targets all labels and hence the value equals the baseline.

Method Flips ϵ = |p|∞ MI-FGSM flips SLAM flips CLASS flips
MLA-LP 12.03 ± 3.66 0.044 ± 0.023 46.51 ± 8.36 47.58 ± 7.69 *
ML-CW 76.62 ± 2.52 0.32 ± 0.055 73.20 ± 6.25 73.0 ± 6.38 *

ML-Deepfool 8.62 ± 3.71 0.99 ± 0.021 40.82 ± 9.46 43.0 ± 9.65 *

When comparing our methods to the related work it be-
comes apparent that our methods are more effective than ML-
Deepfool and MLA-LP. ML-CW achieves slightly more flips
but generates large perturbations, which disqualifies it for
the concerned problem. To conclude, our methods are most
effective for generating adversarial examples with the goal of
flipping as many labels as possible, when there is a constraint
on the perturbation budget.

VIII. LIMITATIONS AND FUTURE WORK

First of all the attacks proposed in this work require white-
box access to the model, which limits the practical appli-
cability of the attacks. Also, the attacks require expensive
information about the classifier namely, the profiles for the
potential flip estimates and in the case of CLASS, also the
correlation matrices. Also, the CLASS attack depends on a
heuristic for the optimal length of the targeted subset. This
heuristic could be less accurate for other classifiers. For further
research it would be interesting to investigate how to create
cheaper flip estimation profiles. Also it would be interesting
to see how adversarial examples generated by our proposed
methods perform in a black-box setting. To investigate this it
could be interesting to perform a cross-model transferability
analysis. Furthermore, it could be interesting to use the ad-
versarial examples produced by our techniques to increase the
robustness of neural classifiers against adversarial attacks.

REFERENCES

[1] Anish Athalye, Nicholas Carlini, and David Wagner.
“Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples”. In:
International conference on machine learning. PMLR.
2018, pp. 274–283.

[2] Shumeet Baluja and Ian Fischer. “Adversarial trans-
formation networks: Learning to generate adversarial
examples”. In: arXiv preprint arXiv:1703.09387 (2017).

[3] Emanuel Ben-Baruch et al. “Asymmetric loss
for multi-label classification”. In: arXiv preprint
arXiv:2009.14119 (2020).

[4] Nicholas Carlini and David Wagner. “Towards evaluat-
ing the robustness of neural networks”. In: 2017 ieee
symposium on security and privacy (sp). IEEE. 2017,
pp. 39–57.

[5] Zhao-Min Chen et al. “Multi-label image recognition
with graph convolutional networks”. In: Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 5177–5186.

[6] Yinpeng Dong et al. “Boosting adversarial attacks with
momentum”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018,
pp. 9185–9193.

[7] Mark Everingham et al. “The pascal visual object
classes (voc) challenge”. In: International journal of
computer vision 88.2 (2010), pp. 303–338.

[8] Giorgio Gallo, Peter L Hammer, and Bruno Simeone.
“Quadratic knapsack problems”. In: Combinatorial op-
timization. Springer, 1980, pp. 132–149.

[9] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. “Explaining and harnessing adversarial exam-
ples”. In: arXiv preprint arXiv:1412.6572 (2014).

[10] Jiangfan Han et al. “Once a man: Towards multi-target
attack via learning multi-target adversarial network
once”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 5158–5167.

[11] Kaiming He et al. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–
778.

[12] Ameya Joshi et al. “Semantic adversarial attacks: Para-
metric transformations that fool deep classifiers”. In:
Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2019, pp. 4773–4783.

[13] Diederik P Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[14] David D Lewis et al. “Rcv1: A new benchmark col-
lection for text categorization research”. In: Journal of
machine learning research 5.Apr (2004), pp. 361–397.

[15] Yifeng Li et al. “Generative Transferable Adversarial
Attack”. In: Proceedings of the 3rd International Con-
ference on Video and Image Processing. 2019, pp. 84–
89.

[16] Tsung-Yi Lin et al. “Microsoft coco: Common objects
in context”. In: European conference on computer vi-
sion. Springer. 2014, pp. 740–755.

[17] Aishan Liu et al. “Perceptual-sensitive gan for generat-
ing adversarial patches”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 33. 01. 2019,
pp. 1028–1035.

[18] Shilong Liu et al. “Query2Label: A Simple Transformer
Way to Multi-Label Classification”. In: arXiv preprint
arXiv:2107.10834 (2021).

[19] Lab for Media Search. 2022. URL: https://lms.comp.
nus.edu.sg/ (visited on 04/14/2022).

[20] Stefano Melacci et al. “Domain knowledge alleviates
adversarial attacks in multi-label classifiers”. In: IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence (2021).

[21] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
and Pascal Frossard. “Deepfool: a simple and accurate
method to fool deep neural networks”. In: Proceedings
of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 2574–2582.

[22] Seyed-Mohsen Moosavi-Dezfooli et al. “Universal ad-
versarial perturbations”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition.
2017, pp. 1765–1773.

[23] Konda Reddy Mopuri et al. “Nag: Network for adver-
sary generation”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition.
2018, pp. 742–751.

[24] Mosek. 2022. URL: https : / / www . mosek . com /
documentation/ (visited on 04/12/2022).

[25] Muzammal Naseer et al. “Cross-domain transferabil-
ity of adversarial perturbations”. In: arXiv preprint
arXiv:1905.11736 (2019).

[26] Muzammal Naseer et al. “On generating transfer-
able targeted perturbations”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion. 2021, pp. 7708–7717.

[27] Nicholas Papernot et al. “Practical Black-Box Attacks
against Deep Learning Systems using Adversarial Ex-
amples (2016)”. In: ArXiv e-prints ().

[28] Omid Poursaeed et al. “Fine-grained synthesis of un-
restricted adversarial examples”. In: arXiv preprint
arXiv:1911.09058 (2019).

[29] Omid Poursaeed et al. “Generative adversarial per-
turbations”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018,
pp. 4422–4431.

[30] Tal Ridnik et al. “Tresnet: High performance gpu-
dedicated architecture”. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of
Computer Vision. 2021, pp. 1400–1409.

[31] Scipy. Scipy documentation. 2022. URL: https://docs.
scipy. org / doc / scipy / reference / generated / scipy. stats .
pearsonr.html (visited on 08/02/2022).

https://lms.comp.nus.edu.sg/
https://lms.comp.nus.edu.sg/
https://www.mosek.com/documentation/
https://www.mosek.com/documentation/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html

[32] Qingquan Song et al. “Multi-label adversarial perturba-
tions”. In: 2018 IEEE International Conference on Data
Mining (ICDM). IEEE. 2018, pp. 1242–1247.

[33] Yang Song et al. “Constructing unrestricted adversarial
examples with generative models”. In: arXiv preprint
arXiv:1805.07894 (2018).

[34] Christian Szegedy et al. “Intriguing properties of neural
networks”. In: arXiv preprint arXiv:1312.6199 (2013).

[35] Sanli Tang et al. “Adversarial attack type i: Cheat clas-
sifiers by significant changes”. In: IEEE transactions on
pattern analysis and machine intelligence (2019).

[36] Fadi Thabtah, Peter Cowling, and Yonghong Peng.
“MCAR: multi-class classification based on association
rule”. In: The 3rd ACS/IEEE International Conference
onComputer Systems and Applications, 2005. IEEE.
2005, p. 33.

[37] Desheng Wang, Weidong Jin, and Yunpu Wu. “Generat-
ing Adversarial Examples with Image-To-Perturbation
Network”. In: 2020 39th Chinese Control Conference
(CCC). IEEE. 2020, pp. 7055–7060.

[38] Chaowei Xiao et al. “Generating adversarial exam-
ples with adversarial networks”. In: arXiv preprint
arXiv:1801.02610 (2018).

[39] Jian Xu et al. “Generating universal adversarial per-
turbation with ResNet”. In: Information Sciences 537
(2020), pp. 302–312.

[40] Mengting Xu et al. “Towards evaluating the robustness
of deep diagnostic models by adversarial attack”. In:
Medical Image Analysis 69 (2021), p. 101977.

[41] Qiuling Xu et al. “Towards feature space adversarial
attack”. In: arXiv preprint arXiv:2004.12385 (2020).

[42] Zhuo Yang, Yufei Han, and Xiangliang Zhang. “At-
tack Transferability Characterization for Adversarially
Robust Multi-label Classification”. In: Joint European
Conference on Machine Learning and Knowledge Dis-
covery in Databases. Springer. 2021, pp. 397–413.

[43] Zhuo Yang, Yufei Han, and Xiangliang Zhang. “Char-
acterizing the Evasion Attackability of Multi-label Clas-
sifiers”. In: arXiv preprint arXiv:2012.09427 (2020).

[44] Weijia Zhang. “Generating adversarial examples in one
shot with image-to-image translation GAN”. In: IEEE
Access 7 (2019), pp. 151103–151119.

[45] Yanghao Zhang et al. “Generalizing Universal Adver-
sarial Attacks Beyond Additive Perturbations”. In: arXiv
preprint arXiv:2010.07788 (2020).

[46] Zhengli Zhao, Dheeru Dua, and Sameer Singh. “Gener-
ating natural adversarial examples”. In: arXiv preprint
arXiv:1710.11342 (2017).

[47] Nan Zhou et al. “Generating Multi-label Adversarial
Examples by Linear Programming”. In: 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN).
IEEE. 2020, pp. 1–8.

[48] Nan Zhou et al. “Hiding All Labels for Multi-label
Images: An Empirical Study of Adversarial Examples”.
In: 2021 International Joint Conference on Neural
Networks (IJCNN). IEEE. 2021, pp. 1–8.

APPENDIX A
CONFIDENCE HISTOGRAMS FOR DIFFERENT ATTACK STRATEGIES

The distribution of confidence values before and after an attack with naive MI-FGSM is shown in the histograms in Fig. 10.
The histograms show the distribution 100 sample confidences before the attack (Fig. 10 (a) and after the attack (Fig. 10 (b).
In Fig. 10 all labels in the bins from 0.5 to 1 have passed the threshold and thus achieved a flip. It can be observed that
many labels are being carried to the bins (0.3, 0.4) or (0.4, 0.5) and consequently do not cause flips. Fig. 11 show confidence
distributions after attacking a subset (a) and attacking with linear loss (b). It can be observed that for both these attack strategies
the distributions of outputs values is different from histogram b) in Fig. 10. More labels remain in the pre-attack region (bins
0 - 0.1) (Fig. 10 a)) and less labels end up in the region before the threshold (bins 0.3 - 0.5). This causes more labels to reach
the flip region (bins 0.5 - 1).

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

(b) after attack(a) clean
fr

e
q

u
e
n
cy

confidence

Fig. 10: Histograms of confidence values before attacking a) and after attacking b the ASL MS-COCO model with MI-FGSM
BCELoss targeting all labels. Note that this figure regards flipping labels up.

confidence

fr
e
q

u
e
n
cy

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

(b) LinearLoss(a) Top-40 Subset

Fig. 11: Histograms of confidence values after attacking ASL MS-COCO model with adapted MI-FGSM. ϵ = 0.004. Both
attack approaches yield a similar effect on the confidence distributions.

APPENDIX B
ABLATION STUDY: L2 PERTURBATIONS

In this ablation study we will use the L2 norm, alternative to L∞, to investigate whether our methods work with this type of
perturbation bound as well. When using L∞ norms we search within a hyper-cube around the attacked image. When we use
L2 norms we search within a hyper-sphere around the attacked image. In the L∞ setting we use the sign of the gradient so that
we can enforce the same upper-bound perturbation per dimension. When using L2 distance however, the allowed perturbation
per dimension depends on the other dimensions, as the magnitude is the sum of the squared entries of each dimension. In
other words, we can move further in one dimension if we move less in another. Hence, we must abstain from applying the
sign function to the gradient, because this forces us to move equal distance in every dimension each step. This creates different
opportunities for attackers, since we can now perturb more strongly in smaller regions of the image, as opposed to a smaller
perturbation spread out over the entire image. This will intuitively produce stronger perturbations as it allows for focusing on
more critical parts of the image, whereas the L∞-perturbation wastes budget on the less critical parts such as the borders ad
corners of the image. These regions contain less objects in practice and the prediction will therefore probably be less affected
by perturbations in these areas. In order to investigate these intuitions we perform the same experiment as in Table IV for the
Query2Label model, but we change the perturbation metric to L2 distance. We use steps of the same L2 magnitude as the
attack in Table IV. The results are summarized in Table VIII. CLASS attacks that target all labels, and are hence the same as
the baseline are denoted with *.

TABLE VIII: Flips with L2 perturbations on the Query2Label MS-COCO model.

Method ϵ = 0.7 ϵ = 1.4 ϵ = 2.8 ϵ = 5.6 ϵ = 8.4 ϵ = 11.2 ϵ = 14.0 total
BCE 5.26 ± 3.68 11.96 ± 5.84 21.02 ± 6.97 38.75 ± 9.54 49.13 ± 8.96 54.15 ± 9.57 55.11 ± 9.46 235.38

SLAM 6.67 ± 4.14 13.93 ± 6.17 24.96 ± 7.61 41.58 ± 7.94 50.28 ± 7.86 55.65 ± 8.49 56.49 ± 8.83 249.56
Random subset 4.14 ± 3.34 9.59 ± 4.67 19.29 ± 6.42 36.75 ± 9.11 * * * 146.76
CLASS (γ = 0) 5.62 ± 2.82 11.49 ± 4.36 22.17 ± 6.72 40.15 ± 8.85 * * * 237.82

CLASS (γ = 0.05) 5.48 ± 2.68 11.16 ± 4.26 24.32 ± 5.82 43.9 ± 8.29 * * * 243.25
CLASS (γ = 0.5) 4.73 ± 3.07 10.73 ± 4.79 24.28 ± 6.27 43.69 ± 8.7 * * * 241.82
CLASS (γ = 1) 4.19 ± 2.72 11.03 ± 4.76 24.14 ± 6.21 43.85 ± 8.03 * * * 241.60

(a) (b)

Fig. 12: Comparison between an L∞ = 0.024 adversarial (a) and an L2 = 9 adversarial (b) for a Query2Label MS-COCO
sample. The L2 adversarial achieves slightly more flips (52) than the L∞ adversarial (42) but shows significantly more obvious
signs of being tampered with

Also in the L2 case SLAM outperforms the baseline and as expected achieves most performance increase with the lower
budgets. For the CLASS approach we see that the results are not as good as they are with the L∞ perturbations. This could
be explained by the fact that the heuristic used for the subset length was determined for L∞ optimisations.

We also perform a visual comparison between L∞ and L2 perturbations. In order to ensure fairness, we use a hyper-sphere
that contains the same volume as the L∞ hyper-cube. It can be derived (see appendix C) that for an 448 × 448 RGB the
hyper-sphere ϵ (i.e. radius) is approximately 376 times the ϵ of the L∞ hyper-cube. In the visual comparison we will compare
against the adversarial with L∞ = 0.024. The results of the experiment are presented in Fig. 12. Although the L2 flips slightly
more labels, it can be observed that the L2 perturbation leaves more obvious artefacts in the image. When looking at the
adversarials examples in M it becomes apparent that the L∞ attacks with larger budgets achieve more flips with less visual
impairment of the image.

APPENDIX C
HYPER-SPHERE RADIUS DERIVATION

Suppose we have a hyper-cube with half-width ϵ and dimension N , and we want to calculate the radius r of a hyper-sphere
that has hyper-volume equal to the hyper-cube. We can calculate this volume V with:

V =
π

N
2

Γ(n2 + 1)
rN = (2ϵ)N

π
1
2

Γ(N2 + 1)
1
N

r = (2ϵ)

in which Γ is Euler’s Gamma function. We can accurately approximate the gamma function with Stirling’s approximation:

Γ(n+ 1) =
√
2πn(

n

e
)n

Γ(
N

2
+ 1) =

√
πN(

N

2e
)

N
2

Γ(
N

2
+ 1)

1
N =

√
πN

1
N ×

√
N

2e

This leaves us with:

(2ϵ) =
π

1
2

√
πN

1
N ∗

√
N
2e

∗ r

r =

√
2
(πN)

1
N ∗N
πe

× ϵ

If N = 448× 448 pixels × 3 channels = 602112, r evaluates to:

r =

√
2
(π × 602112)

1
602112 × 602112

68.31
× ϵ

=

√
2× 602112

8.53
× ϵ = 375.73× ϵ

APPENDIX D
SLAM Q-PARAMETER TUNING

Parameter q regulates the maximum weight of LBCE in the mix. This means that q determines the range between LBCE

and Llinear in which SLAM varies, depending on p. Equation 4 tells us that the prioritisation of SLAM is determined by the
derivative. Hence we plot the derivative of SLAM in the t = 0 case for different weights in 13 (to the t = 1 case the same
applies, this is the reflected version). In order to analyse the effect of different weights, i.e. different evaluations of p× q, on
the prioritisation we fix q = 1 and vary p. From this plot it becomes apparent the prioritisation of labels no longer decreases
for labels with more distant hyperplanes if the weight is larger than 0.5. Such prioritisation works best when the potential
number of flips is high. For this reason it is to be expected that the weight of BCE in the SLAM equation should not become
much larger than 0.5. In order to regulate the range of the weight we use hyperparameter q.

p = 1
p = 0.75
p = 0.5
p = 0.25
p = 0

0 2 4-2-4
0

1

x

S
LA

M
(x

,t
=

0
,p

,q
=

1
)

Fig. 13: Derivatives of different parameterisations of SLAM with t = 0.

For the tuning of this q parameter we perform the same experiment as in § VI. Table IX shows the flips of the SLAM attack
with different q values. It becomes apparent that the overall best value for q is 0.5. The one exception is the Query2Label
model on NUS-WIDE. This can be explained by the robustness of the classifier. The model does not allow for flipping many
labels which means that a more greedy approach is most effective. The most greedy, and hence most effective, attack is the
one with q = 0.25 because the weight of the BCE component is restrained the most in this setting.

TABLE IX: Attack results of SLAM with different q values.

Model SLAM (q = 0.25) SLAM (q = 0.5) SLAM (q = 0.75) SLAM (q = 1)
ASL × MS-COCO 372.15 373.01 370.99 370.56
ASL × NUS-WIDE 328.84 364.75 319.83 318.32

Query2Label × MS-COCO 302.93 306.27 305.58 305.31
Query2Label × NUS-WIDE 245.24 229.7 233.29 227.25

APPENDIX E
CORRELATION HEATMAPS

0.2

0.0

0.2

0.4

0.6

0.8

ASL MS-COCO

0.2

0.0

0.2

0.4

0.6

0.8

ASL NUSWIDE

0.0

0.2

0.4

0.6

0.8

Q2L MS-COCO

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Q2L NUSWIDE

Fig. 14: Positive correlation heatmaps of ASL and Query2Label trained on MS-COCO and NUS-WIDE.

0

1000

2000

3000

4000

5000

6000
MS-COCO

0

5000

10000

15000

20000

25000

NUS-WIDE

Fig. 15: Co-occurrence frequency heatmaps of MS-COCO and NUS-WIDE.

0

25

50

75

100

125

150

175

200

Fig. 16: Co-occurrence frequency heatmaps of VOC2007.

APPENDIX F
CORRELATION MATRIX COST

The cost of generating a correlation matrix can be described by the following equation:

Cost = (fp+ bp)× ϵ

α
× C × n (9)

In this equation fp and bp denote a forward- and backward pass respectively, ϵ is the perturbation bound used for the attack,
α is the attack step-size, C is the number of classes and n is the number of samples over which the result is averaged.

APPENDIX G
ASSUMPTION OF LINEAR DECISION BOUNDARIES

For building an intuitive understanding and reasoning about solutions for this problem we make use of the belief that the
decision space of the classifier is close upon linear. Goodfellow et al. [9] reason that the existence of adversarial examples
generated by the one-step FGSM attack serves as evidence that the decision spaces of DNN classifiers are linear. Observation
2 in § IV-A is also in line with this assumption. If a decision space is linear so is the decision boundary, as we will show. A
linear decision space can be formalised as a d−dimensional hyperplane in a d+ 1−dimensional space in which d dimensions
are the input dimensions (pixel values) and there is 1 output dimension P (label confidence value). We can re-write this in
terms of a general hyperplane equation:

P =

d∑
i=0

an · xn (10)

0 =

d∑
i=0

an · xn − P (11)

where a is a scalar weight and x is the input. A decision boundary is a subspace of the decision space where the confidence
equals the threshold (in this case 0.5), which means that the confidence becomes a constant:

0 =

d∑
i=0

an · xn − 0.5 (12)

This means that we have lost 1 dimension and end up with a d − 1−dimensional hyperplane. This means that when a
decision space is linear, the decision boundary is also linear. This idea is visualised in Fig. 17.

confidence value

decision boundary

decision boundary projection

a) b)

x1

x2

co
n
fi
d
e
n
ce

Fig. 17: Visualisation of 3d confidence spaces with 2 decision hyperplanes. a) shows a linear space and b) shows a non-linear
space.

These plots both show a decision space with a decision boundary at the threshold. It can be observed in a) that when
the decision space is linear, so is the decision boundary. On the contrary, in b) we can see how a decision boundary can
be non-linear if the decision space is non-linear. In the 2d visualisations we assume the situation in a) and draw only the
projection of the decision boundary in the x,y-plane, which is referred to as decision hyperplane. Using this simplification we
can envision the problem as the following problem: In a space containing a set of hyperplanes we want to cross as much of
these hyperplanes as possible while staying within a certain distance to the starting point. This way the simplification provides
an intuition for better understanding the problem and reasoning about solutions. Note that for solving the problem we make
use of MI-FGSM which is a gradient descent based optimisation technique that does not assume linearity.

APPENDIX H
SIMULATION

Fig. 18 shows a 2D simulation of optimisation using both greedy and patient approaches. Note that the optimisation works

with L∞ distance and gradient sign updates. This means that every update step is
[
±1
±1

]
. This example can be interpreted as

a simulation of an adversarial attack on a 2-pixel image and a decision landscape with 5 decision hyperplanes. The greedy
approach enforces that we gravitate more towards the nearest decision hyperplane and the patient approach has us oriented
towards the sum of the orthogonal vectors of the decision hyperplanes. As a result we see that in the smaller L∞ space ϵ1 the
greedy approach gives us more flips and in the larger L∞ space ϵ2 the patient approach gives us more flips.

ε1 ε2

patient

greedy
decision
hyperplane

←2 flips

←2 fli
ps

0
fli

ps
→

5 flips→

Fig. 18: 2D simulation of optimisation with BCE and sigmoid as loss functions.

APPENDIX I
MI-FGSM (WITH ADAPTATION DISCUSSED IN SECTION VI)

Algorithm 2 MI-FGSM
Inputs: Classifier model F : {d× d −→ l × l}, Perturbation bound ϵ, step size α and a d× d image.
Outputs: a d× d image x.

1: n = ϵ
α

2: g = 0
3: µ = 1
4: for i = 1, 2, . . . n do
5: P = σ(model(x))
6: L = LBCE(P, target)
7: ∇L = backpropagation(L(F))
8: ∇Lnormalised = ∇L

sum(abs(∇L))
9: g = µ · g +∇Lnormalised

10: x = x− α · g.sign()
11: end for
12: x = clip(x, min = 0, max = 1)
13: return x

APPENDIX J
EXISTING MULTI-LABEL ATTACKS

1) ML-CW: This attack is the multi-label version of the well-known Carlini&Wagner-attack [4]. The attack comprises
optimisation of the following objective function.

Loss = ||r||∞ +

λ max(0, (2 · target− 1)(F (x+ r)− threshold))
(13)

This objective function penalises for two parts namely, the perturbation magnitude and the loss of the prediction w.r.t. the
target. The loss is calculated by the amount the confidence value is larger or smaller than the threshold, depending whether
the target is 1 or 0. This optimisation problem can be solved by gradient descent, as we are dealing with a white-box scenario.
This means that the problem can be solved using Adam optimiser [13]. The value of lambda is searched for by way of binary
search. This means that if no successful attack was performed, the lambda value is multiplied by 10, if success is found, it is
divided by 2. The solution that has least hamming distance to the target is decided to be ultimate solution. In case of a tie,
the one with the smallest perturbation is picked.

2) MLA-LP: This attack achieves multi-label adversarials through linear programming(MLA-LP). This attack starts with
calculating the jacobian matrix, which is the l×d-matrix that holds the partial derivatives of all outputs i.e. labels with respect
to all inputs x i.e. pixels. The authors rely upon the fact that a small perturbation has a linear influence on the output. This
means that for a perturbation r they can compute the output by Eq. 14:

given F (x) = y

y′ = y + Jacobian(F,x)l∗d rd
(14)

In this context an adversarial attack is formulated as the smallest perturbation r for which holds that adversarial prediction y′i
is closer to the target than yi, for each label i. The authors treat this as a linear programming problem in which the equations
are defined as follows:

minimize
ϵ

subject to ϵ ≥ ri ∀ i ∈ [0, d]

ϵ ≤ −ri ∀ i ∈ [0, d]

loss(F (x+ r),y) + Jacobian(F,x)l∗d rd ≤ loss(τ ,y′) (15)

In this equation loss() denotes the element-wise difference. The equation can be interpreted as follows. Minimise ϵ such that
each pixel perturbation ri is within the budget and such that the computed effect of the perturbation on the output makes the
difference between the adversarial output and the target smaller than the difference between the threshold and the target. This
linear programming problem is then solved by mosek inner point solver [24].

3) ML-DeepFool: This attack approaches the problem by linearisation of the decision boundaries around x. The authors
attempt to solve the following optimisation problem:

minimize
r

||r||

subject to Jacobian(F,x)r > 0.5− F (x) (16)

This equations translates to the following: The perturbation on the input multiplied by the Jacobian gives us the change
in the output per label. We aim the change to be larger than the difference between the prediction and the threshold. This
expression works for when the initial prediction is 0 and the target is 1. Note that depending on the initial values of the
initial prediction and target the comparison operator has to be flipped. The authors treat the linear constraints as a system of
undetermined linear equations. ML-DeepFool solves this system in a greedy way by using a pseudo-inverse of the Jacobian
matrix. This optimization does not necessarily converge so the authors limit the amount of iterations and at the end pick the
solution that satisfies the most constraints.

APPENDIX K
LOSS DERIVATIVES

In order to determine label prioritisation during optimisation we analyse the derivative of LBCE . In multi-label classification,
the predictions are performed using a threshold preceded by a sigmoid. This sigmoid function influences the loss derivative
and for this reason we need to analyse the application of the loss function on the sigmoid. We know that the threshold after
applying the sigmoid is 0.5, so we know that the network outputs have an effective threshold of σ−1(0.5) = 0. Because of
this we want to analyse the derivative on either sides of the y-axis. We also need to take into account that the target can be
either 0 or 1. In the case of t = 1 the loss evaluates to:

L = −ln(
1

1 + e−x
) = ln(1 + e−x)

lim
x→∞

= ln(1) = 0

lim
x→−∞

= ln(e−x) = −x

(17)

When t = 0:

L = −ln(1− 1

1 + e−x
)

1− 1

1 + e−x

=
1 + e−x

1 + e−x
− 1

1 + e−x

=
e−x

1 + e−x

= (
1 + e−x

e−x
)−1 = (

1

e−x
+ 1)−1 =

1

1 + ex

L = −ln(
1

1 + ex
) = ln(1 + ex)

lim
x→∞

L = ln(ex) = x

lim
x→−∞

L = ln(1) = 0

(18)

Fig. 19 confirms these limits. When the loss decreases the derivative goes from 1 if t = 0 or -1 if t = 1 to 0.

6 4 2 0 2 4 6
0

1

2

3

4

5

t=1
t=0

Confidence

Lo
ss

Fig. 19: LBCE curves for target ∈ 0, 1.

APPENDIX L
PROFILES

A. Profile Plots

All the results and profiles are displayed in Fig. 20. Note that for d) a larger interval was used because it would stop before
convergence due to stochastic fluctuations.

0.00 0.10 0.20 0.00 0.10 0.20

0.00 0.06 0.100.00 0.01 0.02 0.03

0

20

40

60

80

0

20

40

60

80(a) ASL MS-COCO (b) Q2L MS-COCO

(c) ASL NUS-WIDE (d) Q2L NUS-WIDE

ε

F
li
p
s

data

fitted polynomial

Fig. 20: The profiles of the models. The red dots represent the values that are measured during the probe attacks. The green
line represents the fitted polynomial, which is queried to estimate the potential amount of flips.

B. Profile Cost

The profiling cost can be explained in terms of the amount of attack iterations. The number of iterations depends on the ϵ
required for convergence of flips. The profiling can be described by the following equation:

Cost =
ϵmax

α
((1 +

1

i
)fp+ bp) (19)

In this equation fp and bp denote forward- and backward-pass respectively. α is the step size of the perturbation. We
perform the amount of iterations times a forward pass followed by a backward pass. Then there is another forward pass
once every interval i for measuring the flips. For the Query2Label model on MS-COCO dataset for example this amounts to
0.12

1
2560

× (1 1
50fp+ bp) = 337fp+ 302bp. It is worth mentioning that the cost of a forward/backward pass relies on the model

architecture.

APPENDIX M
VISUALS

(a) clean (b) ε = 0.006 (c) ε = 0.012 (d) ε = 0.024

flips: 15 flips: 27 flips: 42

(e) ε= 0.048 (f) ε = 0.072 (g) ε = 0.096 (h) ε = 0.12

flips: 78flips: 71flips: 64flips: 54

Fig. 21: Examples of adversarial examples generated with different epsilon values for Query2Label MS-COCO with SLAM,
the ϵ values are the ones used in Table IV.

APPENDIX N
LABEL SUBSET GENERATION ALGORITHM

Algorithm 3 n-label subset generation algorithm
Inputs: Model inference outputs, instance correlation matrix icm, number of labels num l, γ, number of branches num b
and branch depth bd.
Output: a subset of labels of length num l [1]
Prankings = argsort(outputs)
root label = Prankings[Prankings.size()− 1].item()
base label set = [root label]
for l = 0, 1, 2, . . . , subset length do

root = Node(base label set)
parents = [root]
children = []
depth = min(bd, num l − (base label set).size())
for d = 0, 1, 2, . . . depth do

for parent in parents do
current label set = parent.get labels()
Zto set = icm[:, current label set].sum(axis = 1)
Zfrom set = icm[current label set, :].sum(axis = 0)
Z = Zto set + Zfrom set
Znormalised =Z / Zmax)
S = γ ×Znormalised + (1− γ)× Pnormalised

Sranking = argsort(S)− current label set
for b = 0, 1, 2, . . . num b do

added label = Sranking[(Sranking).size()− 1− b]
parent.add child(added label)

end for
children.add(parent.children)

end for
parents = children
children = []

end for
max obj value = 0
best option = None
for parent in parents do

obj value = O(p.get list(), icm, normalized confidences, gamma)
if obj value > max obj value then

max obj value = obj value
best option = p

end if
end for
base label set.add((base label set - best option.list)[0])

end for
return base label set

	Introduction
	Background
	Multi-label classification
	Adversarial Attack

	Related Work
	Multi-label Classifier Attacks
	Attackability Assessments

	Empirical Analysis
	Problem Statement
	Label Attackabilities
	Label Correlations
	Targeting a Subset
	Implicitly targeting through the loss function

	Proposed Multi-Label Attacks
	Smart Loss-function for Attacks on Multi-label models (SLAM)
	Classification Landscape Attentive Subset Selection (CLASS)
	Creating Model Profiles

	Evaluation
	Datasets
	Models
	Experimental Setup
	Experiments Results

	Discussion and Conclusion
	Limitations and Future Work
	Appendix A: Confidence Histograms for different Attack Strategies
	Appendix B: Ablation study: L2 perturbations
	Appendix C: Hyper-sphere radius derivation
	Appendix D: SLAM q-parameter tuning
	Appendix E: Correlation Heatmaps
	Appendix F: Correlation Matrix Cost
	Appendix G: Assumption of Linear Decision Boundaries
	Appendix H: Simulation
	Appendix I: MI-FGSM (with adaptation discussed in section VI)
	Appendix J: Existing Multi-label Attacks
	ML-CW
	MLA-LP
	ML-DeepFool

	Appendix K: Loss Derivatives
	Appendix L: Profiles
	Profile Plots
	Profile Cost

	Appendix M: Visuals
	Appendix N: Label Subset Generation Algorithm

