
An evaluation of image segmentation
techniques for MRI scans

by

Claire Wagenaar

to obtain the degree of

Bachelor of Science

in

Applied Mathematics

Student number: 4713036
Thesis committee: Dr.ir. M.B. van Gijzen (supervisor)

Dr. Y. van Gennip

DELFT UNIVERSITY OF TECHNOLOGY
June, 2020

Copyright c© 2020 by Claire Wagenaar. All rights reserved.

Een evaluatie van
beeldsegmentatietechnieken voor MRI

scans

door

Claire Wagenaar

ter verkrijging van de graad van

Bachelor of Science

in

Technische Wiskunde

Studentnummer: 4713036
Beoordelingscommissie: Dr.ir. M.B. van Gijzen (begeleider)

Dr. Y. van Gennip

TECHNISCHE UNIVERSITEIT DELFT
Juni, 2020

Copyright c© 2020 door Claire Wagenaar. Alle rechten voorbehouden.

Preface

Before you lies the bachelor thesis "An evaluation of image segmentation techniques
for MRI scans". This thesis has been written in order to obtain the degree of Bach-
elor of Science in Applied Mathematics. The research has been done under the
supervision of Martin van Gijzen, within the Numerical Mathematics department of
the faculty EEMCS at Delft University of Technology.

When going through the list of possible bachelor projects, I was immediately
interested in this project about image segmentation. What appealed to me, was
the social relevance of this project. This bachelor project is a small link of a bigger
project, in which an affordable MRI scanner is developed for low-income countries,
that will be used to detect hydrocephalus. The main focus of this bachelor project
is to implement and test several image segmentation methods. These methods will
eventually be used to segment MRI brain scans, if they turn out to be helpful.
Hence, I felt like this would be an opportunity to put my knowledge in something
tangible, relevant and real.

In the beginning of March, I started reading about image segmentation, which
was a subject I initially had never heard of. The book that helped me gain general
knowledge was Digital Image Processing written by R. Gonzalez and R. Woods [8], in
which several methods were clearly explained. Next, I gradually started implement-
ing the easier methods and from the beginning of mid April on, I worked full-time
on implementing, extending and testing the methods.

I want to thank Martin van Gijzen for his knowledge and support. Whenever
I did not know how to proceed, he gave me advice and new ideas that kept me on
the right track. Next, I would like to thank Yves van Gennip for taking a seat in
my thesis committee. I also wish to thank Leiden University Medical Center for
providing me their MRI scans. My final word of thanks goes out to my fellow stu-
dents, parents and boyfriend for reviewing parts of my report, their wise words and
keeping me motivated.

I hope you enjoy reading this thesis.

Claire Denise Wagenaar
Delft, June 2020

v

Abstract

In this thesis, several image segmentation techniques will be tested that eventually
will be applied to MRI brain scans in order to detect hydrocephalus. The meth-
ods include Sobel edge detection, Canny edge detection, active contour model (also
known as snakes), k-means clustering and region growing. Furthermore two exten-
sions are discussed. We propose a method to complete disconnected edges and, as
an extension to the k-means clustering algorithm, we suggest a manner to reassign
pixels to different clusters.
The focus of the first part of the research lies on explaining and illustrating these
methods and extensions. Two test images are used, namely the Shepp-Logan Phan-
tom and an MRI scan of a recreated Shepp-Logan Phantom. In the second part, we
evaluate each method by applying the methods to two independent images, that is
an MRI scan of an apple and a CT scan of a brain with hydrocephalus. We discuss
whether methods are useful and behave as expected. Additionally, we investigate
ways to combine methods.

vi

Contents

1 Introduction 1

2 Methodology 3

3 Edge based methods 5
3.1 Basic formulation of edges . 5
3.2 Sobel edge detection . 6

3.2.1 Method description . 7
3.2.2 Result . 7

3.3 Canny edge detection . 7
3.3.1 Method description . 8
3.3.2 Result . 10

3.4 Active contour model . 10
3.4.1 Mathematical formulation . 10
3.4.2 Result . 15

3.5 Completing edges . 16
3.5.1 Finding loose ends . 16
3.5.2 Connecting edges . 18

4 K-means clustering 23
4.1 Method description . 23
4.2 Result . 24
4.3 Influence of the choice of initial cluster centers 24
4.4 Reassigning pixels to different clusters 26

4.4.1 Method description . 26
4.4.2 Result . 27

5 Region growing 28
5.1 Method description . 28
5.2 Result . 29

6 Numerical experiments 30
6.1 K-means clustering and region growing 30

6.1.1 The influence of different cluster centers 31
6.1.2 Reassigning pixels . 33

6.2 Sobel and Canny edge detection . 35
6.3 Active contour model . 37

6.3.1 Sensitivity of the parameters 38

vii

7 Conclusion and discussion 41
7.1 Conclusion . 41
7.2 Recommendations . 42
7.3 Running time . 43

A Manual for the Python code 45
A.1 K-means clustering . 45
A.2 Reassigning pixels . 46
A.3 Region growing . 46
A.4 Sobel edge detection . 47
A.5 Canny edge detection . 47
A.6 Completing edges . 47

A.6.1 Finding loose ends . 47
A.6.2 Connecting edges . 48

A.7 Active contour model . 48

Bibliography 49

viii

1 Introduction

When we, humans, look at an image like Figure 1.1a, we immediately know what
we see. Namely, we recognize a slice of a watermelon, with six pits, its peel, the
pulp and the background with the watermelon’s shadow. However, in a world where
technology is rapidly developing, the question arises: how can computers see the
same in images as what we see?

(a) Photograph of a watermelon, source [15]. (b) Segmented image of the watermelon

Figure 1.1: Example of image segmentation.

This is done by image segmentation. Image segmentation is the process of divid-
ing an image in separate areas, where pixels in one area share the same properties,
such as color or texture. An image is a collection of pixels, with different pixel values.
By image segmentation, each of these pixels get a label. Pixels that share the same
properties, get the same label and are grouped together into one area. This process
gives the image a more meaningful and simple representation and makes it easier to
apply other image processing techniques, such as image recognition. Segmentation
helps to retrieve relevant parts of an image and to detect boundaries and shapes of
objects. For instance, Figure 1.1b shows the result of segmenting Figure 1.1a. We
can easily distinguish between the background, the pits, the shadow etcetera.

This research is part of a bigger research [3]. Namely, Leiden University Medi-
cal Center and TU Delft aim to develop an affordable MRI scanner for low-income
countries in Africa [20]. MRI scanners are usually expensive, difficult to operate
and hence unavailable to many doctors. The MRI scanner will be used to detect
hydrocephalus. This is a disease that affects many newborns and children in Africa,
where too much cerebrospinal fluid is found in the brains, which results in impaired
brain function [14]. Image segmentation will be used to segment head scans, that

1

are made with the developed MRI scanner. Since each material in the head (for
instance bone, water, brain) shows a different intensity in the MRI scan, it would
not be hard to distinguish between the different parts of the head. Segmentation
makes it for instance possible to detect the amount and location of water in the
brain.
The goal of this research is to implement various image segmentation techniques
and test those techniques on real images.

Finally, we give the reader a short overview of this thesis. First, the method
of the research will be explained in Chapter 1. In the following three chapters we
will explain the methods, that is the edge based methods in Chapter 3 (including
Sobel edge detection, Canny edge detection and active contour model), k-means
clustering in Chapter 4 and region growing in Chapter 5. For each of these methods,
a description will be given followed by some examples. For the edge based methods
and the k-means clustering we will also give an extension. Next, in Chapter 6 we
execute several experiments, to evaluate the results and the use of the methods. The
conclusion and discussion can be found in Chapter 7. Finally, the appendix contains
an instruction manual of the Python code.

2

2 Methodology

In this chapter, we will discuss the approach of this research.

In the first part of the research, several methods will be studied, implemented
in Python, and tested. These methods include: Sobel edge detection, Canny edge
detection, active contour model, k-means clustering and region growing. In this
research, only gray-scale images will be considered, which means that the pixel in-
tensities are between 0 (black) and 1 (white).
The methods will be tested on a couple of test images, to determine if the implemen-
tation works. To begin, we have the Shepp-Logan Phantom [16], shown in Figure
2.1a. This is a standard test image and is often used as a model for the human head.
The different regions of the image are very clear by eye and each part has an even
intensity. Therefore it is easy to predict what an algorithm should return, and it is
thus easy to check if the implementation works.
A different Shepp-Logan Phantom is the one shown in Figure 2.1b. This is an MRI
scan of several liquids, that each return different intensities. The MRI scanner that
was used is the self-made scanner, mentioned in Chapter 1. The measurement of
this Shepp-Logan Phantom was taken upside down. The segments are still clear by
eye, however the intensities are not even. It is interesting to test on MRI scans,
since in the end, the methods are used to segment MRI scans as well.

(a) Shepp-Logan Phantom
simulated in Python.

(b) Shepp-Logan Phantom
measured by an MRI scanner.

Figure 2.1: Images that are used to implement and test the methods.

After the testing is done, we use an independent set of images to evaluate the
methods. In the first place, we consider Figure 2.2a. This is a slice from a three-
dimensional MRI scan, that is taken by the same MRI scanner that was used to

3

obtain Figure 2.1b.

In addition, we use Figure 2.2b, which is a brain scan that indicates hydro-
cephalus [17]. This image is interesting to segment since the ultimate goal is to ap-
ply image segmentation on such brain scans containing these shapes. Roughly said,
the white region is bone, the dark gray region is the brain and the black X-shaped
region in the middle of the image are dilated ventricles containing cerebrospinal
fluid. Usually, these are much smaller. The ventricles are the most relevant part of
the scan, since its size indicates hydrocephalus. Note that the transition from the
brain to the ventricles is not smooth. Image segmentation can be used to obtain the
precise shape, and the volume of these ventricles.
The evaluation is quantitative, since the images will be analyzed visually.

(a) MRI scan of an apple. (b) CT scan of a brain with
hydrocephalus, source: [17].

Figure 2.2: Images that are used to evaluate the segmentation methods.

4

3 Edge based methods

In this chapter, we explain some edge based methods. As the name says, these
methods aim to find edges of an image. Edges can be found by using the gradient
of an image. In the first part of this chapter, we will explain this principle. Fur-
thermore, two methods to find edges will be discussed, namely Sobel edge detection
and Canny edge detection. The latter consists of multiple stages which will result in
an image containing only relevant and thin edges. Additionally, the active contour
model is discussed. Finally, we will propose a method to detect unfinished edges
and complete those.

3.1 Basic formulation of edges
An edge can be defined as a sudden change in the gray-level intensity in an image,
since at an edge the intensity changes from one to another. For an ideal edge (Fig-
ure 3.1a), the transition is quick and the intensity profile, with the gray-level on the
vertical axis, will be a vertical line (Figure 3.1b). At the position where the two
different intensities meet, so where the edge is, a jump in the gray-level is found.
However, in reality, the gray-level may be smoothly changing, instead of suddenly.
This results in a sloping profile, instead of a vertical line.

(a) Ideal edge (b) Corresponding intensity
profile.

(c) Corresponding deriva-
tive.

Figure 3.1: An ideal edge with its gray-level intensity profile and derivative. Since
the change in intensities is sharp, the profile is a vertical line.

We have seen that edges are changes in the intensity in an image. Such changes
can be found by taking the first derivative. The first derivative measures the change

5

of intensity of a function, where in this case the image is the function consisting of
pixel values. Places where differences are found to be large, indicate the presence of
an edge. Figure 3.1c shows the corresponding derivative of an ideal edge. The two
peaks belong to the two intensity changes.

Let f(x, y) denote the image at point (x, y), then the gradient is defined as
follows:

∇f =

∂f
∂x

∂f
∂y

 =

Gx

Gy

 (3.1)

Two properties can be derived from this expression. First, the magnitude of
the gradient, which represents the strength of the edge. The stronger the edge, the
stronger the change in intensity, thus the higher the magnitude. The magnitude is
given by:

G =
√
G2
x +G2

y (3.2)

Secondly, the direction of the gradient is given by:

θ = arctan
(
Gy

Gx

)
(3.3)

The direction of the gradient is perpendicular to the direction of the edge. The
gradient direction points to the light side, while the edge direction has the light side
on its right, see also Figure 3.2 that shows both directions. In this case, the angle
of the gradient is 45◦and the direction of the edge is 135◦.

Figure 3.2: The direction of the edge in green and the direction of the
gradient in red.

3.2 Sobel edge detection
We now know that edges can be detected by using the gradient of the image, so
next we will explain how the gradient can be computed.

6

3.2.1 Method description
The gradient at a point in an image can be found by using a 3 × 3 mask, which
represents the 8-connected neighborhood of a pixel (Figure 3.3a). The values zi are
the gray values of the pixels in the image.

(a) Mask that de-
fines a 3 × 3 neigh-
borhood

(b) Sobel mask to
compute Gx

(c) Sobel mask to
compute Gy

Figure 3.3: Masks that are used to compute the gradient

The Sobel masks [18] may be used to compute the gradient in the x- and y-
direction (Figures 3.3b and 3.3c). The partial derivatives Gx and Gy of Equation
3.1 at point z5 are calculated by element-wise multiplying the Sobel masks with the
3 × 3 region and taking the sum subsequently:

Gx = (z3 + 2z6 + z9)− (z1 + 2z4 + z7) (3.4)

Gy = (z1 + 2z2 + z3)− (z7 + 2z8 + z9) (3.5)

When the gradient is calculated over a uniform area, the difference and therefore
the magnitude is 0. Since the values of Gx and Gy add up to a maximum of 4 and a
minimum of -4 (both indicating strong edges), the magnitude should be normalized
to make sure the gray values lie between 0 and 1.
The multiplication of the masks should be done for the whole image, by shifting the
masks in Figure 3.3 over every pixel. This procedure, applying the Sobel masks over
the whole image, is called Sobel edge detection. There are many variations of the
Sobel masks as shown in Figure 3.3b and 3.3c that are used similarly. However, in
this research, we will only use the Sobel masks.

3.2.2 Result
Figure 3.4 shows the result when Sobel edge detection is applied to the measured
Shepp-Logan Phantom. Figure 3.4a and Figure 3.4b show the gradient in the x-
and y-direction. Note that in Figure 3.4c the stronger edges are brighter than the
weaker edges.

3.3 Canny edge detection
Next, we discuss the Canny edge detection algorithm [4], which is a method to find
the most relevant edges in an image. It consists of five steps, that will be discussed
in this section, after which a result is presented.

7

(a) Gradient in the x-
direction

(b) Gradient in the y-
direction

(c) Magnitude of the
gradient

Figure 3.4: Sobel edge detection applied to the measured Shepp-Logan Phantom

3.3.1 Method description
First, we will explain each step of the method.

Blurring
The first step is to blur the image by applying a Gaussian filter. This makes the
images smoother and reduces the noise.

Calculate the gradient
Next, we find the image gradient, which can be done by using the Sobel filters
(Figure 3.3) as discussed in Section 3.2.1. We willl also need both the gradient
magnitude and the gradient direction. These can be calculated by Equation 3.2 and
Equation 3.3.

Non-maximum suppression
Third of all, we apply non-maximum suppression, in order to make the edges thin-
ner. We use the gradient magnitude as well as the direction of the gradient, which
we calculated in the previous step. For each pixel, we compare its magnitude to the
pixels previous and next. When the gray value is greater than both the previous
and the next pixel, it will be preserved, otherwise it will be suppressed. The pixels
that are preserved get the same value in the output image as in the image of the
magnitude, while the suppressed pixels will be marked black (a value of 0).

To obtain the previous and next pixels, we use the direction of the gradient.
Recall that the direction of the gradient is perpendicular to the direction of the edge
itself. The angle is rounded to one of the four possible orientations: horizontal,
vertical, diagonal or antidiagonal. The orientation and the pixels previous and next
are given as follows, for angles between -180◦and 180◦(see also Figure 3.5):

• When the angle is in the interval [0, 22.5◦), [-22.5◦, 0◦], [-180◦, -157.5◦) or
[157.5◦, 180◦], the gradient direction is horizontal, hence the pixel is compared
to the pixels on the left and right.

8

• When the angle is in the interval [22.5◦, 67.5◦) or [-157.5◦, -112.5◦), the gradient
direction is diagonal, so the pixel is compared to the pixels in the upper right
and lower left corner.

• When the angle is in the interval [67.5◦, 112.5◦) or [-112.5◦, -67.5◦), the gradient
direction is vertical, so the pixel is compared to the pixels above and under.

• When the angle is between [112.5◦, 157.5◦) or [-67.5◦, -22.5◦), the gradient
direction is anti diagonal, so the pixel is compared to the pixels in the upper
left and lower right corner.

Figure 3.5: Angles are rounded to one of the four possible orientations.

The output of the non-maximum suppression is an image with edges of mostly
one pixel wide (except for instance in the corners), since only the strong pixels of
an edge are preserved.
Note that the direction and its reverse are handled similarly, so it does not matter
if the direction is for instance from left to right or from right to left.

Double thresholding
The fourth step is to apply double thresholding. Say there are two thresholds T1
and T2, then there are three possibilities for the pixel values in the output image.
Let f(x, y) denote the pixel intensity at coordinate (x, y) of the image after the non-
maximum suppression, and g(x, y) the intensity of the image after thresholding. A
pixel can then either be marked as weak, medium or strong, with the corresponding
intensity values of 0, 0.5 or 1. Which one of the three values the pixel gets, depends
on the intensity of the pixel value in f(x, y). The output image is defined as follows:

g(x, y) =

0, if f(x, y) ≤ T1,

0.5, if T1 < f(x, y) < T2

1, if f(x) ≥ T2

The weak pixels are suppressed, while the medium and strong pixels are preserved
with a different intensity.

9

Hysteresis
The final step is hysteresis. In the previous step, weak pixels are already removed,
since they got the value 0 and the strong pixels are certainly preserved with a value
of 1. Therefore, we should now decide on the medium pixels with a gray value of
0.5, whether they are relevant or not. For all these medium pixels, we check if they
are connected to a strong pixel in the image after double thresholding. If so: they
are also marked strong and hence preserved, else they are marked weak, and hence
suppressed. The image after hysteresis contains only pixels with a value of 0 or 1.

We now explained the five steps that make up the Canny edge detection. The
input of this algorithm is the image, the amount of Gaussian smoothing that is used
during blurring (referred to as σ) and the low and high threshold that determine
the weak, medium and strong edges (T1, T2). The output is an image containing
the relevant thin edges of the original image, with only gray values of 0 (black, the
intensity of the background) or 1 (white, the intensity of the edge). We refer to such
an image as a binary image.

The Python implementation used in this research is partially based on the im-
plementation described in [11].

3.3.2 Result
When we apply the above procedure to the measured Shepp-Logan Phantom, we
get the following result. We used σ = 1, T1 = 0.1 and T2 = 0.2. Figure 3.6c contains
pixel values that are the same as in Figure 3.6b. In Figure 3.6d the values are either
0, 0.5 or 1 and Figure 3.6e contains only pixels with a value of 0 or 1.

3.4 Active contour model
In this section, we discuss the active contour model. This is a way to find the contour
of an object in an image. First, we describe the method mathematically and finally,
we show some results.

3.4.1 Mathematical formulation
The active contour model [12], also referred to as a "snake", is a curve that is moved
over an image, aiming to minimize its energy. It is attracted to features such as
edges, lines or corners, which makes it useful to obtain contours.
The curve is parametrized as: s(p) = (sx(p), sy(p))T , for p ∈ [0, 1]. The vectors sx
and sy contain the x- and y-coordinates of the snake. Often a closed curve is used,
then it holds that: s(0) = s(1). Starting with a initial curve given by the user, the
line will move under the influence of internal and external forces into a shape with
minimal energy. To achieve this, an energy functional is introduced that should
be minimized. The energy function consists of an internal energy and an external
energy, as defined in [12], Section 2:

10

(a) Gaussian blurring (σ=1) (b) Gradient magnitude
(c) Non-maximum suppres-
sion

(d) Double thresholding (e) Hysteresis

Figure 3.6: Result of the Canny edge detection method after each step.

Esnake =
∫ 1

0
Eint(s(p)) + Eext(s(p))dp (3.6)

The internal energy controls the contour of the snake and consists of a continuity
and a curvature term:

Eint = Econt + Ecurve

= 1
2(α(p)|s′(p)|2 + β(p)|s′′(p)|2) (3.7)

In this equation, α controls the amount of stretch and β controls the amount of
curvature. Thus, a lower α makes the snake more elastic and a lower β makes the
snake less smooth and thus able to form corners.

On the other hand, we have the external energy, which is defined on the image.
It consists of an image energy and some constraint energy given by the user:

Eext = Eimg + Econst

The Eimg causes the snake to move towards features in the image, such as lines,
edges or corners. It is given as follows ([12], Section 3):

Eimg = wlineEline + wedgeEedge + wtermEterm

The line energy is defined as the intensity of the image I(x, y), which will attract
the snake to dark or light lines in the image, depending on the sign of wline. The
edge energy is based on the gradient of the image: −|∇I|2. This draws the snake to
edges. Last, Eterm refers to the termination energy, that is used to detect corners,

11

for which the direction of the gradient is used. The mathematical description of this
energy is quite extensive and since we will not use it in this research, we will not
discuss them here.
The variables w indicate the weight for each type of energy. In this research, the
active contour model is used to detect edges, hence wline and wterm are set to zero
and wedge to one. Often, a gaussian filter is applied to the original image to make
the edges smoother, when computing Eedge.

Now that we know how to interpret the energy of the snake (Equation 3.6), we
continue to describe the method numerically. We will follow the implementation as
described in [5], [10] and [19].

We want to find s(p) such that the following function is minimized:

Esnake =
∫ 1

0

1
2(α(p)|s′(p)|2 + β(p)|s′′(p)|2) + Eext(s(p))dp (3.8)

The curve for which this holds, is the final snake. We solve this problem by the
Euler-Lagrange equation, which can be used to solve an optimization problem by
rewriting it into a differential equation [6]. We assume α(p) and β(p) are constants
that do not depend on p. For function 3.8, we introduce the integrand

L(p, s, s′, s′′) := 1
2(α|s′(p)|2 + β|s′′(p)|2) + Eext(s(p)) (3.9)

The corresponding Euler-Lagrange equations for this problem are ([5], p. 18):

∂L

∂s
− d

dp
(∂L
∂s′

) + d2

dp2 (∂L
∂s′′

) = 0 (3.10)

∇Eext − α
d2s
dp2 + β

d4s
dp4 = 0 (3.11)

α
d2s
dp2 − β

d4s
dp4 −∇Eext = 0 (3.12)

The gradient of the external energy is a force, so from now on we write Fext

instead of −Eext. Equation 3.12 can be hard to solve, so we convert the snake into
a function of time: s = s(p, t). We assume that when a minimum has been found,
the derivative of s with respect to time is zero ([19], p. 20). In this case we get
Equation 3.12 back. Thus, the snake converges to a stable state, where the curve
does not change in time, so we can look for a stationary solution of the equation:

∂s
∂t

= α
∂2s
∂p2 − β

∂4s
∂p4 + Fext (3.13)

Since the curve s consists of an x- and y-component, we will from now on separate
the two components and try to find an expression for both sx and sy. The terms
fx and fy denote the two components of the external force Fext. Equation 3.13 is

12

separated as follows:

∂sx

∂t
=α∂

2sx

∂p2 − β
∂4sx

∂p4 + fx (3.14)

∂sy

∂t
=α∂

2sy

∂p2 − β
∂4sy

∂p4 + fy (3.15)

To solve these equations numerically, we make a discrete approximation as pro-
posed in [10], p. 19. Instead of s(p, t) we will write si,t, where i = 0, 1, . . . , N − 1
and N is the number of points of the curve. Since we have a closed contour, we
have: s−1,t = sN−1,t, s0,t = sN,t, s1,t = sN+1,t and so on ([19], p. 19).

Subsequently, the derivatives with respect to p can be approximated by finite
differences. The second and fourth derivatives on the curve at position i, with step
size h = 1

N
defined on the contour, are given by the central differences:

ξ
(2)
i =ξi−1 − 2ξi + ξi+1

h2 (3.16)

ξ
(4)
i =ξi−2 − 4ξi−1 + 6ξi − 4ξi+1 + xi+2

h4 (3.17)

Substituting the approximations of the derivatives in equations 3.14 and 3.15
gives the following equations:

∂sxt,i
∂t

= α

h2 (sxt,i−1 − 2sxt,i + sxt,i+1)− β

h4 (sxt,i−2 − 4sxt,i−1 + 6sxt,i − 4sxt,i+1 + sxt,i+2)

+ fx(sxt,i, s
y
t,i) (3.18)

= − β

h4 s
x
t,i−2 + (α

h2 + 4β
h4)sxi−1,t + (−2α

h2 −
6β
h4)sxi,t + (α

h2 + 4β
h4)sxi+1,t

− β

h4xt,i+2 + fx(sxt,i, s
y
t,i) (3.19)

Similarly for the y-component:

∂syt,i
∂t

= α

h2 (syt,i−1 − 2syt,i + syt,i+1)− β

h4 (syt,i−2 − 4syt,i−1 + 6syt,i − 4syt,i+1 + syt,i+2)

+ fy(sxt,i, s
y
t,i) (3.20)

= − β

h4 s
y
t,i−2 + (α

h2 + 4β
h4)syi−1,t + (−2α

h2 −
6β
h4)syi,t + (α

h2 + 4β
h4)syi+1,t

− β

h4 s
y
t,i+2 + fy(sxt,i, s

y
t,i) (3.21)

These equations, excluding the external forces, can be written in matrix nota-
tion, with the following matrix A of size N × N:

13

α
h2 + 4β

h4
α
h2 + 4β

h4 − β
h4 0 · · · 0 − β

h4
α
h2 + 4β

h4

α
h2 + 4β

h4
α
h2 + 4β

h4
α
h2 + 4β

h4 − β
h4 0 · · · 0 − β

h4

− β
h4

α
h2 + 4β

h4
α
h2 + 4β

h4
α
h2 + 4β

h4
. . . 0

0 − β
h4

α
h2 + 4β

h4
α
h2 + 4β

h4
.

... 0 0

0 − β
h4

− β
h4 0 . . . α

h2 + 4β
h4

α
h2 + 4β

h4 − β
h4 0 · · · 0 − β

h4
α
h2 + 4β

h4
α
h2 + 4β

h4

Equations 3.19 and 3.21 may now be compactly written as:

∂sxt
∂t

= Asxt + fx(sxt , s
y
t) (3.22)

∂syt
∂t

= Asyt + fy(sxt , s
y
t) (3.23)

Where sxt and syt are the position vectors containing the N coordinates of the
snake at time t.

Next, we choose a time integration method to approximate the time derivatives
on the left-hand side. Because of simplicity and stability, we apply the Euler Back-
ward method with time step ∆t to Equations 3.22 and 3.23. This yields:

sxt − sxt−1
∆t = Asxt + fx(sxt , s

y
t) (3.24)

syt − syt−1
∆t = Asyt + fy(sxt , s

y
t) (3.25)

Here we neglected the truncation error of order O(∆t). Since the external forces
are non-linear in st, the equations might be hard to solve. Hence, we evaluate these
functions at sxt−1 and syt−1 instead of sxt and syt . Shifting gives an error of order
O(∆t). This error is of the same order as the truncation error, hence evaluating the
external force at a previous time step does not increase the order of the error. This
gives the following equations:

sxt − sxt−1
∆t = Asxt + fx(sxt−1, s

y
t−1) (3.26)

syt − syt−1
∆t = Asyt + fy(sxt−1, s

y
t−1) (3.27)

14

To make Equation 3.26 explicit, we rewrite it:

sxt − sxt−1
∆t = Asxt + fx(sxt−1, s

y
t−1) (3.28)

sxt = sxt−1 + ∆tAsxt + ∆tfx(sxt−1, s
y
t−1) (3.29)

sxt −∆tAsxt = sxt−1 + ∆tfx(sxt−1, s
y
t−1) (3.30)

sxt (I−∆tA) = sxt−1 + ∆tfx(sxt−1, s
y
t−1) (3.31)

sxt = (I−∆tA)−1(sxt−1 + ∆tfx(sxt−1, s
y
t−1)) (3.32)

Now we can calculate the position vector sx at time t, since all values on the
right-hand side are known. By rewriting Equation 3.27 in a similar way, we also
obtain the equation for the position vector sy at time t:

syt = (I−∆tA)−1(syt−1 + ∆tfy(sxt−1, s
y
t−1)) (3.33)

So for every t, we obtain a new curve, which causes the snake to "move". These
equations have to be solved iteratively to make the snake evolve towards a shape
that minimizes the energy function of Equation 3.8. The output of this method is
the snake s(p) for which a stationary solution of Equation 3.13 is found.

In this research, we used the Python implementation as given in [9]. This imple-
mentation considers a pre-set number of iterations. Additionally, the initial curve
often an ellipse, with p ∈ [0, 2π] instead of p ∈ [0, 1].

While the output of the algorithm is straightforward, the input of this algorithm
is quite extensive. The following parameters should be fine tuned to obtain a good
result:

• the initial curve s(p)

• α, which controls the continuity of the curve

• β, which controls the curvature of the curve

• the time step ∆t

• the amount of smoothing σ

• the number of iterations n

In the implementation, the step size h is taken equal to 1, since this variable is
intertwined with the variables α and β.

3.4.2 Result
Figure 3.7 shows the result when active contour model is applied on the measured
Shepp-Logan Phantom.

The red curve is the initial curve, parametrized by:

15

Figure 3.7: Active contour model is applied on the measured Shepp-Logan
Phantom.

x(p) = 66 + 27 cos(p)
y(p) = 60 + 40 sin(p)

for p ∈ [0, 2π]. The blue curve is the converged snake that follows the contour of
the Shepp-Logan Phantom.

The following values were used to obtain this result: α = 0, β = 0.05, ∆t = 20,
σ = 5 and we used 30 iterations.

3.5 Completing edges
We propose a new algorithm which can be used to detect and complete unfinished
edges, in order to create a closed boundary. Before edges can be completed, their
ends have to be found. In section 3.5.1 we explain how these so-called loose-ends are
detected. Subsequently, in section 3.5.2 is explained how edges are connected. In
this research, only binary images are used, containing solely black and white pixels.

3.5.1 Finding loose ends
In order to complete an edge, the location of the loose end of the edge is needed.
This is the last point of an edge of which the rest of the edge is grown. A pair of
criteria are drawn up to define a loose end in a binary image:

1. A pixel p with only one neighbor in its 8-connected neighborhood is marked
as a loose end.

2. A pixel p with exactly two neighbors in its 8-connected neighborhood are
marked as a loose end if:

(a) Either the pixel before or the pixel after pixel p is suppressed while the
other one is preserved, and

(b) The pixel before or after pixel p that is suppressed, is not connected to a
pixel besides pixel p in the 8-connected neighborhood of pixel p.

16

To obtain the pixels before and after, the direction of the edge is used (recall
that this direction is perpendicular to the direction of the gradient, that can be
calculated by Equation 3.3), which is in turn obtained by Sobel edge detection.
This should be applied to the original image. The angle is rounded to one of the
eight directions: there are four orientations possible (horizontal, vertical, diagonal
and anti-diagonal) and each orientation can be reversed. This procedure is similar
to the non-maximum suppression, since the same intervals are used as shown in
Figure 3.5. The pixels before and after are found in the line of the orientation. For
instance, the edge direction of the red pixel in Figure 3.8a is -150◦, which is rounded
to a reversed diagonal orientation. So, the pixels before and after are located at the
upper right and lower left of the red pixel respectively.

Example
To illustrate why the last condition needs to be extended with subcondition b, we
consider two examples in Figure 3.8. The gray pixels are background and the white
pixels are edges. The pixel that is highlighted in red, referred to as pixel p, is checked
for a loose end and hence also part of the edge. The letters B and A indicate the
pixel before and after. It can be seen that in both examples, either B or A is white,
while the other one is suppressed, so criterion 2a is met in both cases.

(a) Pixel that meets crite-
rion 2b

(b) Pixel that does not meet
criterion 2b

Figure 3.8: Two examples of a pixel (highlighted in red) with two neighbors (marked
with white) in its 8-connected neighborhood. The pixel before and after are marked
with B and A.

Now, let’s take a look at the difference between Figure 3.8a and Figure 3.8b.
In Figure 3.8a, the pixel before is suppressed and not connected to any other pixel
than the highlighted pixel p. Hence criterion 2b is satisfied and pixel p is marked as
a loose end.
On the other hand, in Figure 3.8b, the pixel after is suppressed and connected to
two other pixels: the pixel below A and the pixel below pixel p. This connection
makes that the edge does not stop at pixel p but continues. Note that when only
the pixel below A or the pixel below p is marked, condition 2b is still not met and
the highlighted red pixel is still not a loose end.

17

Result
Figure 3.9 shows the loose ends in red. This is an image of the edge of the measured
Shepp-Logan Phantom, which was found by executing Canny edge detection, with-
out applying Gaussian blurring. To reduce the amount of loose ends, small groups of
pixels, or single pixels (that are not surrounded by any neighbors) may be removed
from the image. This is also done in Figure 3.9, for groups smaller than four pixels.
The loose ends indicated in red are indeed the points one expects to be loose ends.

Figure 3.9: The loose ends of the edges of the measured Shepp-Logan Phan-
tom, marked in red.

3.5.2 Connecting edges
When the loose ends are found, the edges can be connected. The same binary image
is used, that was used for finding loose ends. Connecting is again done by using the
direction of the loose end of the edge, in a similar way as in Section 3.5.1. Namely,
the orientation of the loose end in combination with the gray values of the pixels
before and after, indicate what the position will be of the next pixel. Points that
are marked as an edge, will get the new value of 1 (white), so the output image with
the new edges will still be binary.

For instance, recall Figure 3.8a, where the loose end is highlighted red. Suppose
its direction is still -150◦, which is rounded to a reversed diagonal orientation, as
indicated with the blue arrow in Figure 3.10. Hence, the next pixel will either be
at the upper right or the lower left. Note that the pixel after is white because it is
already part of the edge. Therefore, the pixel before should be marked as an edge
and it gets the value 1, as shown in Figure 3.10. Now, this pixel becomes a new loose
end and the procedure is repeated, until the edge reaches a pixel that is already part
of the image.
Notice that the direction of the edge does not necessarily point to the next point
of the edge, for example in Figure 3.10 where the edge is grown in the opposite
direction. The position of the next edge point depends solely on the intensities of
the pixels previous and next.

When using this algorithm, the odds are that edges will be drawn that do not
improve the image or that do not exist at all. To reduce this effect, we make some

18

Figure 3.10: An edge is grown from the loose end of Figure 3.8a, since the
pixel before, indicated with B, is now also part of the edge. The blue arrow
indicates the direction of the loose end.

assumptions in addition to the above procedure.

First, when a connection consists of more than n pixels, the connection is not
taken into account, so the edge is suppressed. In this research, n will be taken equal
to 20.

Secondly, it may occur that two pixels that are marked as loose ends, lie close
to each other. When the distance between two loose ends is smaller than or equal
to d (calculated by the Euclidean distance), the two ends will not be connected as
proposed above, but will be connected to each other. In this research, we will use
d = 2, so only loose ends that lie on the same horizontal or vertical line, with one
pixel in between, will be connected.

Last, when the edge arrives in the 8-connected neighborhood of another loose
end, the edge is connected to this loose end, instead of going further until an image
point is found. In this case, two loose ends are connected. Important to note is
that this connection can also be grown in the reverse direction, starting from the
other loose end. This may result in a different edge. We do not want to plot both
connections, so to choose the best connection, the length (the number of pixels) of
the two edges is compared. The connection with the smallest length is preserved and
the longer edge is taken into account. It is necessary to make sure the reverse edge
is indeed connected to the the initial loose end of which the edge was first grown.

Result
Figure 3.11a shows the connected edges, where the loose ends are used as shown
in Figure 3.9. Note how the most upper edge is now nicely extended and at some
places the edge makes a curve, see Figure 3.11b. This image is zoomed in on the
top of the right ellipse of Figure 3.11a.

Example
We illustrate the procedure with an example. We will show stepwise how the edge
in Figure 3.11b is achieved. Figure 3.12 shows a recreation of this image, with di-
rections of the edge in blue and coordinates at the top and side. The grey points
are the background, the white points are already edges and the red points are loose
ends, so also edges. The direction of the edge is obtained by applying Sobel edge

19

(a) All edges that are now connected. (b) Close-up of a completed edge.

Figure 3.11: Edges of the measured Shepp-Logan Phantom are now connected,
shown in red.

detection on the original image, in this case the measured Shepp-Logan Phantom.

Figure 3.12: Recreation of Figure 3.11b, to show how this edge is achieved
step by step.

We start at the loose end located at (51,74)1. This is the right red point in Fig-
ure 3.12. This is indeed a loose end, since it has only one neighbor. First, we want
to know in which direction the edge should be grown, in other words if we have
to move backwards or forwards. This step is only done at the beginning, so one
time per edge. The direction of the loose end is -30◦, so its orientation is reversed
anti-diagonal, shown in Figure 3.12 indicated with the blue arrow. We obtain the
direction in which the edge is grown, by looking at the values of the pixels before and
after. The previous and next pixel are located at (50,73) and (52,75), with values
0 and 1 (dark grey and white in Figure 3.12) respectively. Since the next pixel, on
the lower right of the loose end, has value 1, it is already part of an edge, so that
means we have to move backwards. In this case that means we go upwards, and the
previous pixel becomes part of the edge. Therefore, the previous pixel at (50,73),
on the upper left of the loose end, gets the value 1.

1The x- and y-coordinates of pixels in an image are reversed with respect to the usual coordinate
system. This means that the x-axis is vertical and the y-axis is horizontal.

20

Note that the direction of the edge (in this case -30◦, reversed antidiagonal) is thus
not necessarily the direction in which the edge is grown. This depends on the values
of the pixels previous and next.

The new loose end is now at coordinate (50,73). This pixel has a direction of
-45◦, so the orientation is again reversed antidiagonal. Since we already know that
we move backwards, we only need the previous pixel, which is located at (49,72).
This pixel gets the value 1 and becomes the new loose end.

The direction of pixel (49,72) is 0◦, which is a horizontal orientation, therefore
the previous pixel lies next to the loose end, at coordinate (49,71). This becomes
the new loose end.

The direction of pixel (49,71) is 55◦, which means we move diagonally. The pre-
vious pixel is located at (50,70), which now becomes the new loose end.

We now note that the new loose end at (50,70) lies in the 8-connected neigh-
borhood of a loose end at coordinate (51,70), since our pixel is located above this
loose end. We do not have to look at the direction of this pixel, since we make the
connection between the pixel at (50,70) and the loose end at (51,70). This means
the edge we have grown is connected and the algorithm stops.

At the last step, we have to grow the edge in opposite direction, to check if this
edge is eventually smaller. We grow the edge thus starting from the left loose end
at (51,70) in the same way as earlier. The result is shown in Figure 3.13. The edge
indeed connects to the loose end at (51,74). The length of this edge is six pixels,
while the edge of Figure 3.11b consists of four pixels, so the edge that was grown
before (as in Figure 3.11b) is preserved.

Figure 3.13: The edge is grown in the opposite direction, from left to right,
between the same loose ends as in Figure 3.11b. This results in a longer
connection.

When the edge from one of the loose ends were connected to a white pixel in the
image, instead of a loose end, both edges in Figure 3.11b and Figure 3.13 would be
shown in the output image (the image containing all the completed edges). Never-
theless, by connecting the loose ends to another loose end, only one edge is shown,
reducing unnecessary lines and double edges.

In short, we discussed a method in which unfinished edges can be completed.

21

The input consists of two objects. First, we have a binary image containing the
unfinished edges. Secondly, we need the direction of the edge, which is obtained by
applying Sobel edge detection on the original image, so the image of which the edges
are found. By using these two, the location of the loose ends can be found and a
new connected can be created.
This procedure works best in combination with the Canny edge detection. Namely,
Canny edge detection returns an image with edges of (mostly) one pixel wide and
the extension also add edges of one pixel wide.

22

4 K-means clustering

In this chapter, we will discuss the k-means clustering algorithm. This is an algo-
rithm by which all the pixels in an image are divided into k clusters, based on their
intensities. First, we will explain how the method works and show some results.
Next, in section 4.3 we will elaborate on the choice of the initial cluster centers,
which is partly input of the method. Finally, an extension of the method is given,
which makes it possible to reassign pixels after the k-means clustering is completed.

4.1 Method description
The k-means clustering algorithm [13] is a method which is used to divide data into
k different clusters. It assigns each data point to the nearest cluster. In the case
of image segmentation, "nearest" means the smallest difference in gray-scale value.
Within each cluster, the variance should be as small as possible.

The input of the k-means clustering algorithm is the image and a list of k clus-
ter centers, which are characteristic pixel values (not necessarily values from the
image). The first step is to calculate for each pixel the distance to each cluster
center, or more precisely: the difference between its gray-scale value and each of
the k centers. The pixel is appended to the cluster for which the difference between
the pixel’s gray-scale value and the cluster center is minimized. After this is done
for each pixel, the cluster centers are updated. This is done by taking the mean of
each cluster. If these new centers are different from the centers before updating, we
repeat the procedure. If the cluster centers stay the same, the algorithm is done.

The k in the method’s name, refers to the amount of clusters and the means
refers to taking the mean in each step, causing the cluster centers to change.

The pseudocode of the k-means clustering algorithm is described in Algorithm
1.

23

Algorithm 1 K-means clustering
Input: image I, a list of k initial cluster centers C={c1, c2, . . . , ck}
Output: a list of labels, a list of cluster centers
while cluster centers do not change do

for each pixel in I do
Assign pixel to cluster for which the distance is the smallest, by giving it
a label

end
Find new cluster centers by taking the mean of each cluster

end
return list of labels, list of cluster centers

The k-means clustering algorithm returns two objects: a list of labels and a list of
cluster centers. First, the list of the labels refers to the cluster each pixel is assigned
to. For instance, when we have five clusters, the list of labels consists of the values
0, 1, 2, 3 and 4. The length of this list equals the amount of pixels in the image,
since each pixel is labeled.
The second object is a list of the pixel values of each cluster center, so its length is
k. Combining these two lists results in an image. For instance, when the first pixel
has label 2, it gets the third value in the list of cluster centers. So pixels with the
same label, belong to the same cluster and the pixels in each cluster share the same
value, which is the mean of the cluster.

The algorithm aims to minimize the sum squared error of the variance within
clusters:

N∑
n=1

K∑
k=1
||xn − ck||2γnk (4.1)

In this equation, xn is the value of pixel n and ck is the value of cluster center
k. The variables N and K refer to the number of pixels and the number of clusters
respectively. The last variable γnk is an indicator function which is 1 when pixel n
belongs to center k and 0 otherwise.

4.2 Result
In Figure 4.1 is the k-means clustering algorithm applied to the simulated Shepp-
Logan Phantom, with several numbers of clusters. Since the segments are very clear
by eye, it is easy to guess what the algorithm should return. Figure 4.1d is exactly
the same as the original Shepp-Logan Phantom, since this image already contains six
unique gray-scale values. These unique values are the same values that the k-means
clustering algorithm returned.

4.3 Influence of the choice of initial cluster centers
As mentioned in the description of the algorithm, the main input is the initial clus-
ter centers. Each pixel will be assigned to one of the clusters based on the smallest
distance to each center. The question arises whether the choice of the initial centers

24

(a) Three clusters (b) Four clusters

(c) Five clusters (d) Six clusters

Figure 4.1: K-means clustering done on the measured Shepp-Logan Phantom, with
different values of k.

influences the output of the algorithm.

There are several ways to choose the initial centers. For example:

• One can inspect the image and select the pixel values of the segments one wants
to get out. This can also be done by examination of the image’s histogram.
This graph shows the frequency of each intensity, so one could choose for
instance the values that are common.

• One can create an evenly spaced interval. For example, if the image should be
segmented into four clusters, one could use the pixel values 0, 0.33, 0.67 and
1 as initial clusters.

• One could choose the centers based on the Otsu threshold, as proposed in
[22]. The Otsu threshold [21] is the gray-value that optimally separates the
foreground and the background, by maximizing the variance between the two
classes. The initial cluster centers should be chosen such that the difference
between the mean m of the centers and the Otsu threshold O is less than a
preselected threshold T : |m−O| < T .

In some cases, the choice of the initial cluster centers determines the result. For
instance, Figure 4.2 shows three different clustered images, where k is equal to four.
Each of these images started with different cluster centers that are noted below
each image. These different centers result in different outputs and a different sum
squared error. Note that it seems like Figure 4.2c has only three clusters, instead
of four. However, the fourth segment is quite small and located in the left black
ellipse, which makes it rather invisible.
In Figure 4.1 are for each of the figures, the initial cluster centers chosen such that

25

the sum squared error between the image and the clustered image is minimized.
These centers are found by trial and error.

(a) 0, 0.1, 0.4, 1 (b) 0, 0.3, 0.4, 1 (c) 0, 0.1, 0.2, 0.3

Figure 4.2: Different initial cluster centers result in different outcomes.

However, when we use different cluster centers to cluster the measured Shepp-
Logan Phantom, the outcome is always the same. This difference may occur since
the simulated Shepp-Logan Phantom is even: it consists of only six different gray-
scale values and each segment has its own value. Contrary, there are almost no pixels
with the same value in the measured Shepp-Logan Phantom. So by my experience,
the measured Shepp-Logan Phantom seems to be more robust, because of the many
different gray-scale values. The k-means clustering algorithm may be sensitive to
different initial cluster centers, but also may not, depending on the character of the
image.

4.4 Reassigning pixels to different clusters
We now propose an extension to the k-means clustering algorithm, by which pixels
can be transferred to a different cluster than they were originally assigned to.

4.4.1 Method description
In some cases, the k-means clustering algorithm returns an image in which single
pixels or small groups of pixels are assigned to the wrong cluster. For instance, in a
white-colored cluster is a gray pixel located. We know, by eye, that this pixel should
also be part of the white cluster. How can this pixel be relabeled, and thereby as-
signing it to a different cluster?

First, after the k-means clustering is done, all single pixels or small groups of
pixels, that do not have neighbors of the same color, have to be detected. Then,
for each of these pixels, the sum squared error (SSE) between the pixel value in the
original image and each of the existing clusters is calculated (except for the cluster
it was initially assigned to). The cluster that minimizes the SSE, is the cluster
the pixel is assigned to. The cluster that the pixel was originally assigned to is
not taken into account when calculating the SSE, since this is of course the cluster
that minimizes the SSE. Hence, then taking the smallest SSE will not result in a
change of cluster. In short, the pixel is assigned to the cluster for which the distance

26

between its gray value and the cluster center is second to lowest.
This method returns a new list of labels, while the list of the cluster values stays
the same.

4.4.2 Result
Figure 4.3a shows the result after k-means clustering on the measured Shepp-Logan
Phantom shown, with five clusters. Figure 4.3b shows the result when groups of
smaller than five pixels are reassigned. Since the differences might be hard to find,
some groups that are reassigned are marked with a red circle in Figure 4.3a. These
are the groups of pixels that are "gone" in Figure 4.3b. Even though the difference
might be subtle, it makes the image in general less noisy.

(a) K-means clustering is done on the
measured Shepp-Logan Phantom, with
five clusters.

(b) Small groups of pixels are reassigned
to different clusters.

Figure 4.3: The result of reassigning pixels to new clusters.

27

5 Region growing

In this chapter, we will discuss the method region growing. This is a method based
on the idea that neighboring pixels share the same properties and hence form one
connected region. We first explain how the method works, next we show some
results.

5.1 Method description
Region growing [1] is a method to obtain a group of pixels of an image, that is con-
nected and share some predefined criteria. During region growing, a region is grown
starting with one or more seeds. Such a seed is a coordinate of the image. The
neighboring pixels of a seed is checked for a homogeneity criterion. The "neighbor-
ing pixels" refer to all the pixels that are contained in the 8-connected neighborhood
of a certain pixel (see Figure 3.3a). When a neighboring pixel meets the criterion,
it is added to the region. Then for each neighbor that is added to the region, their
neighbors should also be checked for homogeneity. Therefore the region is getting
bigger and bigger every iteration.

In this research, the homogeneity criterion depends solely on the intensity. Namely,
the criterion is met when the difference between the intensities of pixel p and its
neighboring pixel n is smaller than a certain threshold T : |p− n| < T .

The pseudocode of the region growing method is described in Algorithm 2. Ini-
tially, the list S contains only the seed point(s) that are given by the user, but this
list grows every iteration. The variable connected contains up to eight neighbors of
the point that meet the homogeneity criterion. Hence, during each iteration, up to
eight points can be added to S. Namely, each point in connected is added to the
region, consequently each of these points’ neighbors may also be part of the region,
so these are added to the list S. The list R contains all the pixels that form the
region.

28

Algorithm 2 Region growing
Input: a list with the initial seeds S, threshold T
Output: a list of points R that form the region
while S 6= ∅ do

point ← the first element of S
connected ← neighbors(point,T)
for c ∈ connected do

add c to R
if c not yet processed then

add c to S
end

end
Remove point from S

end
return R

5.2 Result
Figure 5.1 shows two results, where region growing is done on the simulated Shepp-
Logan Phantom. The initial seed is indicated with a red dot. Since each of the parts
in this image share the same value, it is easy to guess beforehand what should come
out of the algorithm. Indeed, the outcome meets the expectations.

(a) (b)

Figure 5.1: An example of region growing, done on the simulated Shepp-Logan
Phantom, with the initial seed marked in red.

29

6 Numerical experiments

In this chapter, we evaluate the image segmentation methods on two independent
images: the MRI scan of an apple and the CT scan of a brain. First, we evaluate
the k-means clustering algorithm combined with region growing. Additionally, we
evaluate how the choice of the initial cluster centers influence the result. Further-
more, we discuss the edge based methods and show how these can be combined
with k-means clustering and region growing. Finally, the active contour model is
evaluated.

6.1 K-means clustering and region growing
We apply the k-means clustering algorithm on the CT scan. By inspecting the
image, we determine that it consist of three different gray tones, hence we take
k = 3. The initial cluster centers that we use as input consists of the values 0,
0.5 and 1. These values correspond approximately to each of the three gray tones.
Executing the k-means algorithm results in Figure 6.1a. The method returns the
separate segments as expected.
Region growing gives us the opportunity to obtain solely the area of the ventricles
and to measure its size. The result is shown in Figure 6.1b and the area consists of
17287 pixels. For comparison, the total image consists of 320 ∗ 320 = 102400 pixels.

(a) K-means clustering is applied on the
CT scan, with three clusters.

(b) Region growing applied on the ven-
tricles of Figure 6.1a

Figure 6.1: Result of k-means clustering and region growing.

30

6.1.1 The influence of different cluster centers
When different initial cluster centers are used to cluster the CT scan, for instance 0,
0.1, 0.2, the outcome (the clustered image and the sum squared error) is exactly the
same. However, the running time is twice as long: executing the k-means clustering
algorithm with 0, 0.5 and 1 as initial centers took approximately 6.5 seconds, while
the algorithm took 13.5 seconds with 0, 0.1, 0.2 as initial cluster centers. We can
conclude that, even though the outcome with different initial cluster centers is the
same, choosing accurate centers is profitable for a smooth execution of the algorithm.

A different way to choose the (amount of) initial cluster centers is by looking at
the histogram. Figure 6.2a shows the histogram of the CT scan, with four peaks at
the gray values 0, 0.08, 0.45 and 1. Figure 6.2b shows the result when these values
are used as initial cluster centers. Note that uneven spots with two black tones in
the area of the ventricles are now visible. These arose by adding the value 0.08 to the
list of initial cluster centers. The ventricles of the original image consisted of pixels
with gray values between 0 and approximately 0.1. Therefore, considering two small
value such as 0 and 0.08 as initial cluster centers, results in oversegmentation of the
ventricles. With oversegmentation, we refer to the process where objects itself are
also segmented, resulting in an segmentation that is too refined [7]. Additionally,
note the few black pixels in the gray area and the edge of the ventricles that is now
less smooth in comparison with Figure 6.1a.

(a) The histogram of the CT scan, showing four peaks.

(b) The centers are obtained via
the histogram, resulting in two
black tones.

(c) The centers are obtained
by inspecting, resulting in two
gray tones.

Figure 6.2: Result of k-means clustering with four clusters.

31

Just like the ventricles, the area of the brain (the dark gray part outside the ven-
tricles) is also uneven in the original image. This area consists of pixels with gray
values between approximately 0.4 and 0.6 that also can be found in the histogram.
So, executing the k-means algorithm with values 0, 0.4, 0.6 and 1 as initial centers
will probably result in the same kind of spots as seen in Figure 6.2b. Indeed, Figure
6.2c shows two gray tones in the area of the brain, and therefore in oversegmentation.

Comparing Figure 6.2 with Figure 6.1a, we conclude that adding a fourth clus-
ters does not result in a more useful representation. For this image, choosing k = 3
is therefore the most accurate option.

On the other hand, for the MRI scan of an apple, the choice of k is more relevant.
After clustering, it would be ideal to retrieve the shape of the apple and to count
the number of pits.
By inspection of the image, we note that it consists of two gray tones: the black
background and the pits (a value of 0), versus the pulp of the apple that is a lighter
tone (approximately 0.5-0.7). When we apply the k-means clustering on the apple
with centers 0 and 0.6, we get Figure 6.3a. The apple and its background are
separated and we see the nice shape of the apple. Unfortunately, the result does not
show the pit (except for one pixel) that we expected. Using different initial cluster
centers does not change the result.
Next we take k = 3. By inspecting the histogram, we choose the values 0, 0.4 and
0.6 as initial cluster centers. Figure 6.3b shows the result, where the pit is now
visible. Nevertheless, we cannot distinguish between the two pits. Additionally, the
border of the apple is shown, though it is quite broad at the bottom and thus not
very accurate. Again, different initial cluster centers do not result in a different
outcome.
Finally, when doing k-means clustering with four clusters, oversegmentation occurs,
see Figure 6.3c. This is obtained by using the gray values 0, 0.4, 0.6 and 0.8 as initial
centers. The latter value is added since there is a peak between in the histogram
between gray values 0.6 and 0.8. The image is segmented into areas that are not
necessarily different parts of the apple, see for instance the border that consists of
two gray tones. However, the image does show two groups of pixels representing the
pits, while in Figures 6.3a and 6.3b the two pits were only shown as a whole.

(a) Two clusters (b) Three clusters (c) Four clusters

Figure 6.3: K-means clustering is done on the MRI scan of an apple, with different
values of k.

Segmenting the apple with a variation of four initial cluster centers, results in

32

different outcomes. We show some of the outcomes in Figure 6.4, in addition to
Figure 6.3c. The values of the initial cluster centers are listed below the image.
The differences are sometimes subtle, compare for instance Figure 6.3c with Figure
6.4a and Figure 6.4b with Figure 6.4c. Only a couple of pixels seems to have different
values. Comparing Figure 6.4a with Figure 6.4b does show a significant change.

(a) 0, 0.1, 0.4, 0.6 (b) 0, 0.6, 0.8, 1 (c) 0, 0.4, 0.6,1

Figure 6.4: The result of the k-means clustering applied on the apple is influenced
by the initial cluster centers when using four clusters.

For this image, we can conclude that the choice of k depends on what one wants
the get out of the algorithm. When the size of the apple has to be found, Figure 6.3a
will be preferred. When the number of pits has to be found, most probably Figure
6.3c will be used. Last, Figure 6.3b best distinguishes between the pit, border, pulp
and background.

6.1.2 Reassigning pixels
Next, we evaluate the extension proposed in Section 4.4, where (groups of) pixels
can be transferred to different clusters.

When Figure 6.1a is examined more closely, we see that a small gray border
consisting of groups of pixels runs along the white border (Figure 6.5b). We can
reassign those groups by using the procedure described in Section 4.4. We apply it
to groups consisting of three or less pixels. Figure 6.5a shows the result. The thin
gray border is now part of the thicker white border (Figure 6.5c) and a group in the
dark gray and black part are now gone.
The difference is quite subtle, however it is satisfying to see that the extension works
as expected.

This procedure can also be used to connect separate regions that belong to the
same cluster. For instance, recall Figure 6.3b, where we applied k-means clustering
with three clusters. The gray cluster consists, besides the pit, of the apple’s border.
Nevertheless, by region growing, we determine that this border consists of three
separate regions. Hence, we aim to connect these regions to form one region. To
achieve this, we will also need some user input and we refer to the procedure of
completing edges described in Section 3.5.

First, we want to know which clusters should be connected. We obtain the sep-
arate clusters by applying region growing on the clustered image. This results in

33

(a) Pixels are assigned to
new clusters.

(b) Zoomed-in image of the
border of Figure 6.1a.

(c) Zoomed-in image of the
border of Figure 6.5a.

Figure 6.5: Groups consisting of three or less pixels got relabelled.

Figure 6.6a, where each region has its unique gray tone. We can now easily select
the three clusters that should from the border.
Next, we find the loose ends of these clusters, these are shown in Figure 6.6b. Com-
pleting the edges results in Figure 6.6c. Indeed, the border is now connected and
now consists of one region. Notice that Figure 6.6b also contains two loose ends in
the upper right that are not ends of the border. These ends are connected to each
other in Figure 6.6c. Even though this edge does not disturb the new image too
much, one may choose to discard these two loose ends, since these are irrelevant and
do not contribute to connecting separate regions.

(a) Region growing applied on
Figure 6.3b, showing separate
regions.

(b) Loose ends are shown in
red.

(c) The loose ends are con-
nected, shown in red.

(d) Final result where the bor-
der is now one region.

Figure 6.6: An example of how separate regions of a clustered image are connected
to form one region.

34

The three clusters are now connected and form one cluster. However, in the
clustered image we did not yet make changes, so for the final step we have to give
the pixels that make up the connections (the red pixels in Figure 6.6c) a new value
by relabelling. Figure 6.6d shows the result. We see that the gray border is now
one connected region and our goal is achieved.

Note that this procedure does need some user input, since only the user can
decide which clusters have to be connected and which loose ends are relevant. Fur-
thermore, this is an example where preselected pixels are reassigned instead of all
groups of ≤ n pixels. Therefore, this method can also be applied to relabel specific
clusters or parts of clusters.

6.2 Sobel and Canny edge detection
Furthermore, we demonstrate the edge based methods. In Figure 6.7a is Sobel edge
detection applied on the CT scan. The edges are nicely connected, especially on
the outside of the head. However, there are also several blobs in the region of the
ventricles and the brain since in the original image these areas are also uneven, as
previously noted in Section 6.1.1. Consequently, also the edges of these uneven parts
are obtained by Sobel edge detection. Even though these edges are not very visible,
they are irrelevant.
The idea arises to apply Sobel edge detection on Figure 6.1a. Namely, the clustered
image has the same shapes, but within each segment the pixels share the same value.
Applying edge detection on this image will thus not result in blobs. Indeed, Figure
6.7b is aesthetically more pleasing than Figure 6.7a. Both share the same edges,
but in Figure 6.7b these edges are better visible.

(a) Sobel edge detection applied on the
original CT scan.

(b) Sobel edge detection applied on Fig-
ure 6.1a.

Figure 6.7: Applying Sobel edge detection in two ways.

We continue with Canny edge detection. The result of applying Canny edge
detection on the CT scan is shown in Figure 6.8a. The shapes are again preserved,
however the edge of the ventricles are not connected, probably because the gray
values at these points are too weak. To complete these edges, the procedure of
Section 3.5 is used. Figure 6.8b shows the result, with the connected edges in red.
Note that the border of the ventricles is now closed and the image overall is not

35

much disturbed by new formed edges.
Since applying Sobel edge detection on the clustered image returned quite a nice
result, we do the same with Canny edge detection. Figure 6.8c shows the outcome,
which is almost identical to Figure 6.7b. The result is better than Figure 6.8a and
Figure 6.8b, since the edges are connected and the less relevant edges are not shown
(for instance, the vertical line at the bottom center of these two figures).

(a) Result of Canny edge de-
tection.

(b) The edges are connected. (c) Canny edge detection ap-
plied on Figure 6.1a.

Figure 6.8: Canny edge detection is applied to the CT scan.

We may wonder if this procedure, applying edge detection on the k-means clus-
tered image, always results in a better outcome than applying edge detection on the
original image. To investigate this hypothesis we apply edge detection on the MRI
scan of an apple and on the clustered image (Figure 6.3b). We choose for the image
with three clusters, since Figure 6.3a shows too few features and Figure 6.3c is too
frayed.

First, we apply Sobel edge detection on the two images, resulting in Figure 6.9a
and Figure 6.9b. Again, we note that Figure 6.9a is messy and uneven inside the
apple’s border. This issue has been resolved in Figure 6.9b. However, the edge of
the thick border at the bottom of the clustered image, is also obtained by Sobel
edge detection. One way to get rid of this border is by applying region growing.
We take a point on the edge of the thick border, for instance (20,42), and start to
grow a region with a threshold of 0.1. Deleting this region from the image, results
in Figure 6.9c. Note that for this procedure, the input of the user is necessary to
obtain a coordinate of the border and to set a threshold.

Continuing with the Canny edge detection. In Figure 6.9d and Figure 6.9e is
Canny edge detection applied on the original image and the clustered image respec-
tively. Again we see that the edge of the border is obtained in Figure 6.9e, while
this is not shown in Figure 6.9d. We can get rid of this border by region growing.
Since the border consists of two separate parts, we will need one coordinate for each
part, for instance (38,42) and (40,41). Deleting these two regions results in Figure
6.9f. On the other hand, the edge of the pit is more accurate when applying edge
detection on the clustered image than on the original image. Last, the shape of the
apple is slightly different.

We can conclude that applying edge detection on a clustered image results in
sharper and more relevant edges, since edges of uneven areas are not obtained.

36

(a) Sobel edge detection on
the original image.

(b) Sobel edge detection on
the clustered image.

(c) Region growing is ap-
plied to remove a border.

(d) Canny edge detection
on the original image.

(e) Canny edge detection
on the clustered image.

(f) Region growing is ap-
plied to remove a border.

Figure 6.9: Result of combining edge detection with k-means clustering.

Nevertheless, darker and lighter areas of an image are extra highlighted by clustering.
Edge detection also finds the edges of these areas, even though these are often not
"real edges" of the original image. Such edges may be removed by region growing,
but input of the user is necessary.

6.3 Active contour model
Last, we apply the active contour model on the CT scan and the apple. Figure
6.10 shows the result. The red curve is the initial snake and the blue curve is the fi-
nal snake, wrapped around the contour of the ventricles and the contour of the apple.

The result of the active contour model is very nice, however it takes a lot of time
to fine tune the parameters. As mention in Section 3.4, the following parameters
should be fine-tuned to obtain a good result:

• the initial curve s(p)

• α, which controls the continuity of the curve

• β, which controls the curvature of the curve

• the timestep ∆t

• the amount of smoothing σ

• the number of iterations n

37

(a) Active contour model is applied to
the CT scan.

(b) Active contour model is applied to
the apple.

Figure 6.10: Results of the active contour model.

To obtain Figure 6.10a, the following values were used: α = 0.001, β = 0.001,
∆t = 70, n = 300 and σ = 3. The following parametric representation of the initial
snake s(p) = (x(p), y(p))T is used:x(p) = 150 + 75 cos(p)

y(p) = 150 + 85 sin(p)

for p ∈ [0, 2π].

Similarly, to obtain Figure 6.10b, the following values were used: α = 0.01,
β = 0.1, ∆t = 15, n = 50 and σ = 3. The following parametric representation is
used: x(p) = 33 + 12 cos(p)

y(p) = 31 + 17 sin(p)

for p ∈ [0, 2π].

6.3.1 Sensitivity of the parameters
Note that the values of the parameters of the two snakes differ quite a bit. The
parameters are unique for every image and have to be found by trial and error. This
is a very time consuming task, especially for larger images such as the CT scan,
because the method takes about one minute to return a result for this image. So
when a lot of different values have to be tried in order to make the snake fit the
contour, a lot of waiting time is consequential.
In this section, we show how different values of parameters lead to different results.
As the CT scan is a large image and the apple has no significant contours besides
its shape, we use the measured Shepp-Logan Phantom to illustrate the meaning of
the variables. We aim to find the contour of the so-called eye in the upper middle
of the image.

First, we set the parametric representation of the initial snake as follows:

38

x(p) = 61 + 10 cos(p)
y(p) = 28 + 6 sin(p)

for p ∈ [0, 2π].

To illustrate the meaning of α, we choose respectively 0.001, 0.01 and 0.1. We
set the remaining parameters as follows: β = 0.1, ∆t = 5, n = 50 and σ = 3.
Figure 6.11 shows the result. Comparing Figure 6.11a and 6.11b, we do not see
remarkable differences, except that the curve is slightly pulled inwards in Figure
6.11b. This effect is emphasized in Figure 6.11c, where the curve is notably smaller.
We conclude that a larger value of α shrinks the snake, which corresponds to the
explanation in Section 3.4.1 where we stated that a lower α makes the snake more
elastic.

(a) α = 0.001 (b) α = 0.01 (c) α = 0.1

Figure 6.11: Different values of α

Next, we will show how β contributes to the shape of the snake. We set β equal
to 0.005, 0.1 and 0.5 and set the remaining values as follows: α = 0.01, ∆t = 5,
n = 50, σ = 3. Figure 6.12 shows the result. Note how in Figure 6.12d the contour
is quite frayed, while for a larger β, the contour is much smoother.

(a) β = 0.005 (b) β = 0.1 (c) β = 0.5

(d) β = 0.005 (e) β = 0.1 (f) β = 0.5

Figure 6.12: Different values of β, the images below are zoomed in on the snakes
above.

39

Next, consider the following three values for ∆t: 1, 15 and 30. The remaining
parameters are set α = 0.01, β = 0.1, n = 50 and σ = 3. Note how something
strange occurs for larger values of ∆t, the contour is not fitting the eye at all.

(a) ∆t = 1 (b) ∆t = 15 (c) ∆t = 30

Figure 6.13: Different values of ∆t

Finally, we consider the value of σ. In Figure 6.14, the values are set to 1, 3 and
5 respectively. The other values are set as follows: α = 0.01, β = 0.1, ∆t = 1 and
n = 50. Note how in Figure 6.14a, the contour is nicely wrapped around the eye.
In contrast, for larger values of σ, the contour spreads out. This makes sense, since
a higher σ means more smoothing, hence the edge is not sharp but more blurry and
thicker. In Figure 6.14c, the snake is attracted to the contour of the Shepp-Logan
Phantom, instead of the contour of the eye. This probably occurred since both edges
are blurred in such a way, they come near each other.

(a) σ = 1 (b) σ = 3 (c) σ = 5

Figure 6.14: Different values of σ

We have seen that each parameter contributes to different outcomes, hence it
is a quite time-consuming task to pick the right parameters. On the other hand,
this method is developed to find one contour at a time, while by the edge based
methods, one obtains all edges in an image. Using the active contour model is
therefore fortunate when for instance only the shape of the ventricles have to be
found. One does not have to worry about frayed, irrelevant or disconnected edges.

40

7 Conclusion and discussion

In this chapter, we will recapitulate the methods and give some recommendations
for future work. Last, we evaluate of the running time of the methods.

7.1 Conclusion
In this research, we implemented Sobel and Canny edge detection, active contour
model, k-means clustering and region growing. In addition, two extensions of these
methods were proposed, namely completing edges and reassigning pixels as addition
to the k-means clustering algorithm. Testing (combinations of) these methods gave
us an overview of how these methods can be applied. We will review some of the
results.

Sobel and Canny edge detection are both methods to find all edges in an image.
The main difference is that Canny edge detection returns a binary image, containing
only the relevant edges of one pixel wide. On the other hand, Sobel edge detection
returns all edges, whether they are strong or not. Therefore Canny edge detection is
often preferred, since the result is rather minimalistic. The extension of completing
edges is a nice addition, since it often accurately completes edges. Nevertheless, it
may also create non-existent or irrelevant edges. This issue can be avoided if the
user selects only the edges that should be completed.
The active contour model is a way to retrieve the contour of an object in an image,
without obtaining unnecessary or frayed edges. The result is often nice and accu-
rate, however it is a time-consuming job to fine tune the many parameters. This is
not done in one step, while the other edge based methods return a result with one
click.

The k-means clustering algorithm is a method that is useful to separate an object
from the background or to obtain different areas of an image. Some user input is
necessary, to give the initial cluster centers. These centers can be found simply by
inspecting the image or its histogram, so it is not a difficult or time-consuming task.
However, sometimes different centers may lead to different results or longer running
time. In these cases, several centers should be tried after which the user picks the
center for which the outcome is preferred.
The extension where pixels are transferred between clusters based on the sum
squared error works really well. Even though the changes are often subtle, this

41

is a way to reduce noise and connect regions that belong to the same cluster.

Combining edge based methods with the k-means clustering algorithm also re-
turns sharp and often connected edges. This procedure is mainly useful when the
clustering contains the same shapes as the original image. Otherwise, also edges of
non-existing areas will be found.

Last, we implemented region growing. This method is especially useful in com-
bination with other methods. Namely, the user should give a threshold for the
homogeneity criterion, but in an image with many different intensities, the ideal
threshold is sometimes hard to find. When the image consists of only a few unique
values (such as after clustering or edge detection), setting a right threshold is much
easier.
For instance, combining region growing with k-means clustering gives the opportu-
nity to determine whether clusters are connected and to compute the size of regions.
Region growing can also be used to remove parts of edges that are irrelevant and
disconnected.

7.2 Recommendations
In this research, we considered several image segmentation methods. In addition to
these methods, there exist many more techniques that may be interesting to imple-
ment and test.
First, we have another region based method next to region growing, namely region
splitting and merging [8]. These are two separate techniques that are often used
together. Region splitting is a way to divide an image into square regions that each
meet a certain homogeneity condition. When a region does not meet the condition,
it is splitted into four disjoint quadrants. Then for each of these four quadrants, the
condition is again checked. This procedure is done until no more splitting is pos-
sible. Next, region merging can be applied, where two or more adjacent quadrants
are merged when a condition holds for the union of these quadrants. A beginning
was made with the splitting, but this method was discarded, since the choice was
made to focus on the edge based methods.
A different image segmentation method that may be interesting is morphological
watershedding [2]. The image is interpreted as a topographic image, where the
gray-scale values represent the height. The topography is flooded with water from
below, to find so-called "watershed lines", that represent edges of the image.

Secondly, as mentioned several times, the active contour model contains many
different parameters that may take some time to choose. Further research should
demonstrate whether there exists manners to find these parameters more easily.

Another interesting idea is to extend the methods discussed in this thesis from
2D to 3D. Since MRI scans are three dimensional, it makes sense to apply image
segmentation on the 3D scan, instead of just a slice, as done with the apple. Of
course, a 3D scan can be seen as a stack of 2D images. Since there are three di-
rections to view the MRI scan (from left to right, from the bottom to the top or

42

from the front to the back), the direction in which the images are stacked, should
be considered. We will discuss how a few methods can be adjusted for a 3D image.
For the k-means clustering, no changes are necessary. For instance, the distance
to the nearest cluster corresponds to calculating the differences between a pixel
intensity and the cluster centers, which is not different for three dimensions. Fur-
thermore, in the implementation the image with its pixel values is considered as a
one-dimensional list instead of a 2D- or 3D-array, so the shape or size of the image
does not matter.
Considering region growing, where in the 2D case, the eight neighbors of each pixels
are checked for a homogeneity criteria. In the case of a 3D image, the number of
neighbors increases to 26, since we should now consider a 3 × 3 × 3 cube around a
pixel. This will be the main adjustment when extending to 3D, since the rest of the
procedure is mainly adding points to a region or not.
Finally, we can extend the Sobel edge detection. For the 2D case, two 2D masks are
used to calculate the gradient in the x- and y-direction. Thus for the 3D case, we
can add a third mask to calculate the gradient in the z-direction and extend each
mask to 3D, transforming it into a cube.

7.3 Running time
Extending the methods to three dimensions, will increase the number of pixels.
Hence, it is necessary to elaborate on the running time of the methods, since more
pixels take longer to process and methods that take long (say, a couple of minutes)
to execute are not efficient nor realistic for future use.

During this research it already became clear that for larger images (the simu-
lated Shepp-Logan Phantom of size 400 × 400 and the CT scan of size 320 × 320)
methods take noticeably longer than for the smaller images (the apple of size 64 ×
64, and the measured Shepp-Logan Phantom of size 128 × 128). For the k-means
clustering, and edge detection, it takes only a couple of seconds longer. However,
region growing (over the whole image) and reassigning pixels as extension of the
k-means clustering algorithm, take at least 45 minutes to one hour, which is an
unusually long time. Last, the active contour model takes about one second for the
apple, but over a minute for the CT scan.
The 2D MRI scans are usually smaller in size, but extending to 3D increases the
number of pixels rapidly. For comparison, a 3D MRI scan of size 64 × 64 × 64
contains 262.144 pixels and the simulated Shepp-Logan Phantom of size 400 × 400
contains 160.000. So considering a 3D scan may even take longer than a large 2D
image. Therefore, the more complicated methods should be adjusted to make the
running time feasible for 3D scans.

Figure 7.1 shows the running time for the Sobel edge detection, Canny edge
detection and k-means clustering as function of the number of pixels. For Figure
7.1a, the simulated Shepp-Logan Phantom was resized to obtain different sizes of
the same image (10%, 20% to 100% of the original size). The same is done for
the CT scan to obtain Figure 7.1b. Note that overall, the running time increases
proportionally. The running time of the k-means clustering algorithm applied to

43

the Shepp-Logan Phantom seems quite off. The reason is perhaps that initially the
image consists of only six unique gray values, which makes the k-means clustering
not too difficult. However, during resizing, the gray values change slightly resulting
in more than six unique values.
For the simulated Shepp-Logan Phantom, the six unique values of this image were
used. For the CT scan, the k-means clustering was done each time with the three
values 0, 0.5 and 1.

(a) The simulated Shepp-Logan Phan-
tom is resized.

(b) The CT scan is resized.

Figure 7.1: The running time as function of the number of pixels for several methods.

44

A Manual for the Python code

In this appendix, we explain how to use the functions implemented in Python in or-
der to create the images. In all cases, the in- and output images are two-dimensional
NumPy arrays.

A.1 K-means clustering
The implementation of the k-means clustering algorithm consists of three functions:
kmeans_self, smallestdistance and kmeans_image, where the latter two are used
in kmeans_self.
The function kmeans_self(img,centers) is the function that executes the algo-
rithm itself. It takes two objects, first we have the image img that should be
clustered. Secondly, we have a list (not a NumPy array) containing initial cluster
centers of length k, named centers. The three-piece output consists of centers,
clusterlabels and segm. These refer to the list of final cluster centers, a NumPy
array containing labels and finally the clustered image.
The function smallestdistance(pixel,lst_centers) is used to compute the small-
est distance for a given pixel pixel and the cluster centers lst_centers. It returns
a value between 0 and k, which is in fact the label referring to the cluster the pixel
is assigned to.
Finally, the function kmeans_image(centers,clusterlabels,shp) is used to cre-
ate the image. The three input objects are respectively the final cluster centers, the
pixel labels and the shape of the original image noted as (N,M).
In the function kmeans_self one can see the print statement "empty points,
choose new centers" in the for-loop that is used to compute new cluster cen-
ters. This is done by taking the mean of the current centers. However, it may occur
that one of these centers does not contain any pixels. In that case, the functions
terminates and one should choose new cluster centers.

In addition to these functions, we have a separate function to calculate the sum
squared error of the clustered image, called sse(img,centers,labels).

45

A.2 Reassigning pixels
We extended the k-means clustering algorithm with a method that aims to reassign
pixels to different clusters. To achieve this, we introduce the function
new_labels(img,val,labs,to_change). The object img is the original image, the
objects val and labs are the final cluster centers and labels obtained by the function
kmeans_self. Finally, to_change is a list of coordinates of all the pixels that should
be relabelled. This can either be one coordinate ([y,x]), a list of more coordinates
([[y1,x1],[y2,x2],...]) or a list of lists of coordinates
([[[y1,x1],[y2,x2]],[[y3,x3],[y4,x4]],...]).
This function uses the function sse to calculate the sum squared errors. In addition,
it uses the function kmeans_image to make a new clustered image seg2. This, in
combination with a new list of labels l2, is the output of the function new_labels.

A.3 Region growing
The region growing implementation consists of two functions: regiongrowing and
neighbors.
The function regiongrowing(seeds,img,T) takes three arguments. First, seeds
contains one or more starting seeds, which are coordinates of the image. These can
be a tuple or a list, and should be given as (y,x) or [y,x] for one seed and for
instance ((y1,x1),(y2,x2),...) or [(y1,x1),(y2,x2),...] for more seeds. Next,
the argument img is the original image and T is the threshold that is used for the
homogeneity criterion. This can be a float or integer.
The function neighbors(img,y,x,T) is used to obtain the pixels that are connected
to the pixel at coordinate (y,x) and meet the homogeneity criterion using a thresh-
old T. The default value of T is 1000, which means that when no threshold is set
by the user, all the neighbors in the 8-connected neighborhood are returned, re-
gardless of their values. The function neighbors returns a list of the coordinates
of the neighbors and a list of the pixel values of the neighbors. For the function
regiongrowing, only the first list is used.
The function regiongrowing returns two objects. First, we have the segmented
image segm, showing the region(s). The gray values of the pixels in the region(s)
are the same as in the original image. The rest of the image is black. The second
object is regions, which is a list that contains all the coordinates of each region. For
instance, when two seeds are given that result in two separate regions, the length of
regions is also two. When two seeds are given that make up one region, the length
of regions is just one.
Note that when a black region is grown, the output is just a black image, since also
the background is black. Therefore, the list regions can be used to make an image
of the region with a white background for instance.

Additionally, the function regiongrowing_everywhere(img,T) can be used to
apply region growing over the whole image, so no initial seeds have to be given.

46

A.4 Sobel edge detection
The function that is used to execute Sobel edge detection is called
edges(img,filterx,filtery). This function takes three arguments: the image
img and the two filters filterx and filtery that are used to compute the gradient
in the x- and y-direction. The default is set to the Sobel filters shown in Figure 3.3.
The output consists of five NumPy arrays: the gradient in the x- and y-direction
(called X and Y), the magnitude of the gradient magn, the direction of the edge
edgedir and the direction of the gradient graddir. The latter two are given in
radians.

A.5 Canny edge detection
The Canny edge detection consists of multiple steps. In the implementation, each
step, except the blurring, has its own function. The main function is
canny(img,blur,sigma,low,high). It takes the original image img, the amount
of blurring sigma and the low and high threshold low, high. The default values of
sigma is 1 and the default values of low and high are 0.1 and 0.2. The variable
blur is a boolean value, which indicates whether Gaussian blurring will be applied
(set the value to True) or not (set the value to False).
In the first step is the function edges, mentioned in the previous section, used to
calculate the magnitude of the gradient and the direction of the edge.
Next, the non-maximum suppression is executed in the function
nonmaxsup(magn,direct). The output of this function is an image containing edges
of one pixel wide, where the pixel values equal the values in the magnitude image.
Furthermore, the function double_thresh(img,lower,upper) is used to apply dou-
ble thresholding, returning an image with only medium or strong edges. The values
lower, upper refer to the two thresholds. The argument img is the image after
non-maximum suppression.
The final step of Canny edge detection is hysteresis, which is executed by the func-
tion hysteresis(img,lower). The object img is the output of double_thr and the
value of lower is the same as used previously. The output of this function is the
final result of the Canny edge detection.
The function canny returns the result after each step, excluding the blurring. There-
fore, the output consists of four images: the magnitude of the gradient and the result
after non-maximum suppression, double thresholding and hysteresis.

A.6 Completing edges
We proposed an extension that aims to detect and connect incomplete edges. We will
explain the implementation of finding loose ends and connecting edges separately.

A.6.1 Finding loose ends
The implementation uses the function called loose_ends(img,direct) to detect
the endpoints of edges. The argument img is a binary image of which the edges

47

should be connected. The second argument direct contains the direction of the
edges, obtained by Sobel edge detection. It returns a list of the coordinates of all
the loose ends l and an image where the loose ends are indicated with gray, named
out.
The function loose_ends uses three functions, of which one is the neighbors func-
tion mentioned in Section A.3. This is used to get the amount of neighbors. Next,
the function before_after is used to obtain the values and coordinates of the pixels
before and after a given pixel. Finally, the function condition is used to obtain the
gray values of the pixels that are connected to the suppressed before or after pixel.
The latter two functions are used to check condition 2b, mentioned in Section 3.5.2.

A.6.2 Connecting edges
The function multiple_edges(img,direc,loose_ends) is used to connect the loose
ends. It takes the original image img, the direction of the edges direc and a list of
the coordinates of the loose ends, called loose_ends. The first two arguments are
the same as used in the function loose_ends and the latter argument is the out-
put of loose_ends. It returns a list of the coordinates of each edge edges, so it is
a list of lists. Furthermore, it returns an image out with the new connections in gray.

Two functions are used within multiple_edges. First, we have the function
facetoface that checks for all loose ends whether two of them lie within a distance
d = 2 from each other (in other words: on the same horizontal or vertical line with
one pixel in between). It returns two lists, the first one contains the pixels that
lie in between two loose ends and hence make a connection. Secondly, it returns a
list containing sets of coordinates of the pixels that are connected. This last list is
needed since a record is kept of points that are already connected.
The second function, named connect_edges, is the function in which the connec-
tions are actually made. It returns an image with the connection and a list of
coordinates that make up the connection. Thus, this function is used to make one
single connection given a starting point, where the function multiple_edges is used
to connect all loose ends.

A.7 Active contour model
The implementation of the active contour model consists of three functions. The
main function is iterate_snake. This function takes the original image img, the
initial curve, given by x and y and all the parameters α, β, ∆t, n, σ and h, where
the latter is set to 1 by default. The output of iterate_snake is the final snake,
consisting of two arrays with the x- and y-coordinates separately.
It uses the two functions create_A and external_forces. The first function is used
to create the matrix A, which is called once at the beginning. The second function
is used to calculate the external force and it returns the values of the external force
at the x- and y-coordinates of the curve.

48

Bibliography

[1] Adams, R., & Bischof, L. (1994). Seeded Region Growing.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
16 (6), 641–647. URL: https://pdfs.semanticscholar.org/db44/
31b2a552d0f3d250df38b2c60959f404536f.pdf

[2] Beucher, S., & Meyer, F. (1993). The Morphological Approach to Segmentation:
The Watershed Transformation. Mathematical Morphology in Image Processing,
43, 433–481. DOI: https://doi.org/10.1201/9781482277234-12

[3] Braun, B. (2017, February 16). Do It Yourself MRI. Consulted on
May 27 2020, via http://archief.mareonline.nl/archive/2017/02/16/
do-it-yourself-mri

[4] Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-8 (6), 679–698. DOI:
https://doi.org/10.1109/tpami.1986.4767851

[5] Coste, A. (2012). Image Processing Final Project Active Contours Mod-
els. URL: http://www.sci.utah.edu/~acoste/uou/Image/final_project/
ArthurCOSTE_final_project.pdf

[6] Deriglazov, A. (2016). Classical Mechanics (2nd edition). DOI: https://doi.
org/10.1007/978-3-319-44147-4

[7] Eggleston, P. (1998, December 1). Understanding oversegmentation and region
merging. Consulted on June 9 2020, via https://www.vision-systems.
com/non-factory/security-surveillance-transportation/article/
16739494/understanding-oversegmentation-and-region-merging

[8] Gonzalez, R. C., & Woods, R. E. (2002). Digital Image Processing (2nd
edition). URL: http://web.ipac.caltech.edu/staff/fmasci/home/astro_
refs/Digital_Image_Processing_2ndEd.pdf

[9] Hancock, M. (2015, May 30). Notmatthancock/snakes. Consulted on June 26
2020, via https://github.com/notmatthancock/snakes

[10] Ivins, J., & Porrill, J. (1993). Everything You Always Wanted to Know About
Snakes (But Were Afraid To Ask). URL: https://web.mat.upc.edu/toni.
susin/files/SnakesAivru86c.pdf

[11] Jana, A. (2019, May 20). Implement Canny edge detector us-
ing Python from scratch. Consulted on May 1 2020, via http:

49

//www.adeveloperdiary.com/data-science/computer-vision/
implement-canny-edge-detector-using-python-from-scratch/

[12] Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active Contour
Models. International Journal of Computer Vision, 1 (4), 321–331. URL: http:
//www.cs.ait.ac.th/~mdailey/cvreadings/Kass-Snakes.pdf

[13] Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Transactions
on Information Theory, 28 (2), 129–137. URL: https://cs.nyu.edu/~roweis/
csc2515-2006/readings/lloyd57.pdf

[14] Medtronic. (n.d.). Wat is een waterhoofd (Hydrocephalus)? Consulted on May
27 2020, via https://www.medtronic.com/nl-nl/patienten/aandoeningen/
waterhoofd-hydrocephalus.html

[15] Schaefer, A. (2020). The Watermelon Diet: Fact or Fiction? [Photo].
URL: https://www.healthline.com/health/diet-weight-loss/
watermelon-diet-fact-or-fiction

[16] Shepp, L. A., & Logan, B. F. (1974). The Fourier reconstruction of a head
section. IEEE Transactions on Nuclear Science, 21 (3), 21–43. DOI: https://
doi.org/10.1109/tns.1974.6499235

[17] Simkin, P. (n.d.). Obstructive hydrocephalus [Photo]. URL: https://
radiopaedia.org/cases/obstructive-hydrocephalus

[18] Sobel, I., & Feldman, G. (1973). A 3x3 Isotropic Gradient Operator for Image
Processing. In Pattern Classification and Scene Analysis (pp. 271–272). Hobo-
ken, NJ, Verenigde Staten: Wiley.

[19] Tiilikainen, N. P. (2007). A Comparative Study of Active Contour Snakes. URL:
http://home.iitj.ac.in/~manpreet.bedi/btp/rmaterial/Snakes.pdf

[20] O’Reilly, T., Teeuwisse, W. M., & Webb, A. G. (2019). Three-dimensional
MRI in a homogenous 27 cm diameter bore Halbach array magnet. Journal
of Magnetic Resonance, 307, 106578. DOI: https://doi.org/10.1016/j.jmr.
2019.106578

[21] Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms.
IEEE Transactions on Systems, Man, and Cybernetics, 9 (1), 62–66. DOI:
https://doi.org/10.1109/tsmc.1979.4310076

[22] Yao, H., Duan, Q., Li, D., & Wang, J. (2012). An improved K-means clustering
algorithm for fish image segmentation. Mathematical and Computer Modelling,
58 (3–4), 790–798. DOI: https://doi.org/10.1016/j.mcm.2012.12.025

50

