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ABSTRACT

The field of atomistic simulations of multicomponent materials and high entropy alloys is progressing rapidly, with challenging problems
stimulating new creative solutions. In this Perspective, we present three topics that emerged very recently and that we anticipate will deter-
mine the future direction of research of high entropy alloys: the usage of machine-learning potentials for very accurate thermodynamics, the
exploration of short-range order and its impact on macroscopic properties, and the more extensive exploitation of interstitial alloying and
high entropy alloy surfaces for new technological applications. For each of these topics, we briefly summarize the key achievements, point
out the aspects that still need to be addressed, and discuss possible future improvements and promising directions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0025310

I. INTRODUCTION

High entropy alloys (HEAs),1–3 more broadly referred to as
compositionally complex alloys, are metallic mixtures of several ele-
ments in non-dilute concentrations. HEAs are typically
nearly-equiatomic alloys of four, five, or more components with
similar atomic radii and low mixing enthalpies and, despite the
chemical complexity, are characterized by simple structures (fcc,
bcc, or hcp solid solutions, even at room temperature) with often
remarkably better mechanical properties than the elemental
components.4–11 Original works on HEAs suggested the large con-
figurational entropy as the driving force behind the formation of
simple solid solutions, hence their name, but it was proved later
that these solutions are, in most cases, only metastable.12

Atomistic simulations of HEAs, based on first principles cal-
culations or interatomic potentials, are complicated by a large
number of constituents that entail a combinatorially high computa-
tional (and in some cases human) effort. Modeling HEAs from first
principles is challenging because of the difficulty to sample chemi-
cal (and possibly magnetic) disorder: typical setups employ either
finite supercells that may introduce spurious ordering effects due to
periodic boundary conditions or mean-field approximations that

neglect local effects such as atomic relaxations. Modeling HEAs
with interatomic potentials, on the other hand, requires the param-
etrization of the multi-body interactions among several atomic
species, which in turn necessitates extensive training databases,
flexible potentials, and robust, efficient, and, preferably, fully auto-
mated fitting strategies, whose implementation is usually far from
straightforward.

Early atomistic simulations of HEAs focused on phase stabil-
ity, magnetic arrangement (especially in alloys of the
Cr-Mn-Fe-Co-Ni family), short-range order, elasticity, local lattice
distortions, and stacking fault energies. Comprehensive reviews
on atomistic simulations of HEAs are provided, for instance, in
Refs. 13 and 14. Rather than offering a broad overview of what has
been done in the past, in this Perspective we selected three aspects
of atomistic simulations of HEAs that very recently experienced the
most substantial advancements and that we anticipate will be key
topics in the immediate future of HEAs: (i) the accuracy boost in
thermodynamic calculations arising from the usage of machine-
learning potentials (Sec. II), (ii) the more mature understanding of
the consequences of short range order on macroscopic quantities
(Sec. III), and (iii) the characterization and utilization of defects:
interstitials and surfaces (Sec. IV).
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These three topics demonstrate how quickly the atomistic
modeling of HEAs evolved from more general simulations
toward very elaborate applications, which are difficult to explore
from experiments alone, for example, chemical short-range
order. They also reveal how severe approximations in the early
simulations can nowadays be overcome. For instance, phase
diagram calculations do not need to involve harmonic or quasi-
harmonic approximations, solid solutions are not treated as fully
disordered anymore, varying the compositional phase space may
also include interstitial defects, and not only bulk but also
surface calculations can be addressed.

Since in the present Perspective we focus on atomistic simu-
lation of metallic alloys, we intentionally neglect other important
aspects of modeling HEAs that flourished in the recent years.
One example is the data-driven design of HEAs: as the availabil-
ity of data on HEAs is rapidly growing, a variety of descriptors
and machine-learning algorithms are being used to guide the
exploration of the multidimensional composition space of HEAs,
often leading to the discovery of new materials.15–21 There are
also interesting materials classes related to HEAs which we on
purpose do not discuss. To give one example, high entropy
ceramics were recently explored for the most disparate applica-
tions, as detailed in Ref. 22.

II. ACCURATE THERMODYNAMICS: THE MACHINE
LEARNING REVOLUTION

A. Machine-learning potentials for HEAs and active
learning

Given the large number of adjustable parameters in the func-
tional form, machine-learning potentials are extremely flexible and
thus outperform classical potentials or force fields in terms of accu-
racy, albeit often at the expense of transferability and interpretability.

The idea of exploiting multiparameter models to represent the
interatomic interaction is not new23,24 and the utilization of
machine-learning potentials was, at least at the beginning, gradual
and limited to simple systems. The application to HEAs was later
enabled by two factors: (1) the emergence of a great variety of
machine-learning approaches based on different mathematical
formalisms,23–31 some of which turned out to work better than
others for multicomponent alloy systems; (2) the advancement in
the computational infrastructure to produce and store large
amounts of computational data also for more complex alloys, facili-
tated by the organization of data in databases and repositories32–35

that also promoted knowledge transfer and data mining.
The major challenge in the parametrization of machine-

learning potentials for HEAs remains the availability of data: for
simpler systems, reference data can be computed manually or semi-
automatically, but the chemical disorder in HEAs complicates sub-
stantially this task because of the combinatorially high number of
possible configurations (curse of dimensionality in the machine-
learning jargon). An inevitable incompleteness of the training set
in this case may lead to severe overfitting and large extrapolation
errors. Moreover, even if a machine-learning potential is somehow
obtained, it is not always clear exactly what data are needed to
improve the model.

A possible solution to the incompleteness of the training set is
active learning (AL): within AL, new training instances are sug-
gested automatically in order to maximize the accuracy of the
machine-learning potential and to avoid extrapolation into unex-
plored territory, the latter being a key challenge in the exploration
of the complex structure-energy landscape of HEAs. The advantage
is that the calculation of the suggested structures can be performed
on-the-fly during a simulation, meaning that only the structures
that are highly relevant for the simulation enter the (time-
dependent) fitting database. The disadvantage is that the obtained
machine-learning potentials are often hardly transferable to other
simulations unless fitting or active learning are performed again.

An intuitive approach for estimating the uncertainty of a predic-
tion of a machine-learning potential is to train an ensemble of models,
incorporating some randomness in the fitting, and define the points of
maximum uncertainty as those at which different models disagree the
most.36,37 These points will then be the optimal candidates to extend
the training database. However, this way of estimating the uncertainty
may be biased by the fact that the models, being trained on the same
data, are never fully statistically independent from each other.

Another method,38–40 termed Bayesian AL, is used in combina-
tion with Gaussian kernel-based machine-learning models, such as
the Gaussian approximation potentials.25 The fitting coefficients
entering these models are determined from a set of observations at
points {Xj} in the space of descriptors. The prediction for any other
point x is then made based on how x overlaps with the known parts
of the descriptor space {Xj}: the less overlap is observed, the more
uncertainty is associated with the prediction. This overlap is usually
quantified in terms of the Smooth Overlap of Atomic Positions
descriptors.41 If the uncertainty of the prediction at x is larger than a
defined threshold, the configuration corresponding to x is added to
the fitting database and the model is retrained.

Alternatively, a geometric non-probabilistic AL approach42

was proposed for moment tensor potentials (MTPs).29 For these
potentials, the fitting equations take the form

A(x)θ ¼ r(x), (1)

where

A ¼
b1(x(1)) bm(x(1))

..

. . .
. ..

.

b1(x(n)) bm(x(n))

0
B@

1
CA (2)

is the matrix of the basis functions bk, θ ¼ (θ1, . . . , θm) is the
vector of fitting coefficients, and r ¼ (E(x(1)), . . . , E(x(n))) contains
the reference energies.

The geometric AL approach for MTPs assumes that r contains
some noise and proposes to choose A so that the noise in the
fitting coefficients θ is minimized. It can be shown that such an
approach leads to maximizing the determinant of A, i.e., the
volume of the training domain in the space of bk (see Fig. 1).

At the present stage, AL was employed for molecules, simple
metals, and intermetallic compounds to fine-tune or optimize the
training database. But the formalism can be easily extended to
HEAs, for simulations within completely unexplored regions of

Journal of
Applied Physics PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 128, 150901 (2020); doi: 10.1063/5.0025310 128, 150901-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


configurational space, where the problem of incomplete training
databases is so severe that one needs to rely on data-driven
approaches rather than heuristics. In parallel, the application of
machine learning potentials to multicomponent alloys is becom-
ing more and more common, as the examples provided in
Subsection II B attest, highlighting the huge potential of these
techniques for further exploration of HEAs.

B. Application to thermodynamics

A field that vastly benefited from the usage of machine-learning
potentials is the calculation of thermodynamic properties, such as
phase stabilities and phase diagrams, and other temperature-
dependent quantities. The main reason for the good performance of
interatomic potentials, in particular, of machine-learning potentials,
for predicting high temperature thermodynamics is the localization of
the interactions in the system at finite temperatures:43,44 T ¼ 0K
long-ranged quantum mechanical interactions often disappear when
atomic vibrations are introduced and crystal symmetry is broken,
hence the free energies at high temperature can be calculated from a
well-defined and local part of the phase space—a task that is ideally
suited for potentials characterized by a finite distance cutoff.

The superior accuracy of machine-learning potentials for
HEAs was demonstrated in a recent work45 where an MTP was
fitted to calculate the free energy of the bcc refractory NbMoTaVW
HEA at 3000 K up to DFT accuracy. Numerically exact vibrational
free energies were obtained by a two-stage thermodynamic integra-
tion using Langevin dynamics (TU-TILD) technique,46

F ¼ Fref þ
ð1
0
dλ1 EMTP � Eref

� �
λ1

þ
ð1
0
dλ2 EDFT � EMTP

� �
λ2
, (3)

where the MTP with energies EMTP acts intermediately between
DFT and an analytical reference potential, such as the quasihar-
monic approximation, with energy Eref and free energy Fref , and
. . .h iλ signifies a thermodynamic ensemble average on the mixed
potential Eλ ¼ λEDFT þ (1� λ)EMTP. The TU-TILD approach
explored in that work was successful and rapid owing to the ability
to fit very accurate MTPs that resemble DFT data, thereby making
the more expensive second stage of the TU-TILD much faster. This
method helps to go beyond the quasi-harmonic approximation by
taking into account the high-temperature anharmonic effects that,
especially in refractory elements/alloys, are as significant as the
electronic contributions at high temperature.

The method has also been applied to various bcc refractory
alloys ranging from two- to five-component alloys. Figure 2(a) shows
the accuracy of the MTPs in the calculation of the free energy for
four such alloys. For the sake of comparison, the free energy differ-
ence obtained with an embedded atom method (EAM) potential47,48

is also displayed for the five-component system. Besides, Figs. 2(b)
and 2(c) report the force correlations between DFT and EAM, and
DFT and MTP, respectively. The actual fitting and construction of
the MTPs has taken less computational time (by an order of magni-
tude) as compared to that for the EAM and the predicted values of

FIG. 1. Pictorial representation of the geometric criterion employed for AL with
MTPs. The optimal training set is the one maximizing the volume of the domain,
ensuring interpolation for as many points as possible.

FIG. 2. (a) Free energy differences for various bcc refractory HEAs from atomic
vibrations predicted by MTPs vs EAM at 3000 K revealing MTPs predictive
power. Correlation between DFT forces vs forces predicted by the (b) EAM and
(c) MTP for the MoNbTaVW alloy at 3000 K. The color represents local density.
The root mean square error of the distributions is provided in the inset.
Reproduced from Grabowski et al., NPJ Comput. Mater. 5, 80 (2019). Copyright
2019 Author(s), licensed under a Creative Commons Attribution (CC BY)
license.
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the free energy are within 2meV/atom of DFT, an order of magni-
tude more accurate than EAM. The root mean square error in the
forces predicted by the MTP is one-third of that predicted by the
EAM. These promising results instil confidence in systematically
extending the fitting of machine-learning potentials to arbitrary
compositions and crystal structures.

Other examples in the recent literature confirm the success of
machine-learning potentials for the analysis of the high-
temperature properties of HEAs: low rank potentials49 were used to
investigate the phase diagrams of bcc MoNbTaW and fcc
CrFeCoNi with Monte Carlo simulations50,51 and the formation of
new structures was observed in both cases; a neural network poten-
tial was exploited to study a refractory high entropy melt;52 and
local lattice distortions and elastic constants were calculated at
finite temperature with another MTP for the fcc medium entropy
alloy FeCoNi.53

With the current methodology and the predictive capabilities
of machine-learning potentials, total free energies can be efficiently
calculated at different temperatures and volumes, including accu-
rate anharmonic contributions. From this, free energy surfaces can
be obtained for novel HEAs from which material properties like
the bulk modulus, heat capacities, and thermal expansions can be
accurately computed. With a combination of molecular dynamics
and Monte Carlo techniques, phase diagrams could also be evalu-
ated, simplifying the exploration of the complex compositional
space of HEAs and thus serving as an optimization tool for the
design of new alloys.

III. SHORT RANGE ORDER IMPACTS THE PROPERTIES
OF HEAs

Early atomistic simulations of HEAs usually assumed that
these metals form random solid solutions [Fig. 3(a)] and consis-
tently modeled perfectly disordered configurations either with
mean-field approaches, such as the coherent potential approxima-
tion,54,55 or with particular supercells that mimic the multi-body
correlations of random configurations, such as special quasirandom
structures or related concepts.56–59 This is a realistic approximation
at high temperature, where the configurational entropy dominates
all the other contributions to the free energy; at lower temperature,
instead, the distribution of the atoms deviates from random as mul-
tiplets of elements arrange in specific, energetically more favored
configurations that lower the degree of disorder, giving rise to
spatial correlations. If these spatial correlations are long-ranged,
they could lead to clustering and phase separation [Fig. 3(c)],
whereas if they are short-ranged [Fig. 3(b)], they produce short
range order (SRO).

SRO is usually quantified in terms of pairwise correlations
between species i and j with the Warren–Cowley parameters60,61

αm
ij ¼ 1� pmij

cic j
, (4)

with pmij being the probability to find the pair i–j in the mth pair
cluster (shell) and ci and c j being the concentrations of i and j. As
an example, we show in Fig. 4 the temperature dependence of the
Warren–Cowley parameters for the first shell of four different pairs

in the quaternary MoNbTaW HEA.50 For this alloy, if atomic relax-
ation is not taken into account for simplicity, the two phases B2
(Mo,Ta) and B32(Nb,W) separate at very low temperature, while
the long-range ordered B2(Mo,W;Nb,Ta) phase is stable up to
roughly 600 K. For a detailed discussion on the impact of relaxation
effects for this alloy and the consequences of its ordered phases, we
refer to Ref. 50. It can be noted, however, that the Warren–Cowley
parameters are not zero even at a relatively high temperature, reveal-
ing the presence of SRO in the solid solution regime (T . 600K).

Since it depends on the immediate chemical surrounding of
an atom (typically the first three neighbor shells), SRO is a local
property, difficult to capture experimentally. To compensate for
this deficiency, different atomistic techniques were successfully
applied to calculate SRO in HEAs. The most popular approaches
involve Monte Carlo simulations on large supercells: these can be
performed from first principles, but substantial computational
resources are required to sample the whole configurational space
and the possible supercell size is anyway restricted to a few hun-
dreds of atoms. To overcome these limitations, classical or
machine-learning potentials can be employed.50 Alternatively, Ising
Hamiltonians can be used, where the parameters describing the
effective interactions can be fitted to a database of total energies,62

constructed from a cluster expansion,63 or calculated in a

FIG. 3. (a) Random configuration of the elements in a quinary HEA at a tem-
perature much higher than the critical ordering temperature (Tc). (b) Short range
order at an intermediate temperature: multiplets of neighboring atoms (e.g.,
pairs of red–green, red–blue, and purple–purple) are favored over other combi-
nations. (c) Long range order induces separation of three phases at a tempera-
ture lower than Tc.
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perturbative approach based on the coherent potential approxima-
tion, as proposed in the generalized perturbation method.64,65 In
contrast to Monte Carlo, within the analytical Concentration-wave
approach,66 the SRO parameters are evaluated in the reciprocal
space. Ordering tendencies can be identified by particular “modes”
corresponding to specific symmetric arrangements in real space
revealing peaks at particular k-vectors.

Despite its local character, SRO can substantially impact the
macroscopic properties of HEAs. The most obvious effect of SRO is
on thermodynamic quantities and phase diagrams, and this was the
focus of early works on SRO in HEAs.67,68 More recently, however, it
was realized by experiments and simulations that SRO affects deeply
also the magnetic and mechanical properties of HEAs.

A. SRO and magnetism

The interdependence between SRO and magnetism is critical in
the alloys of the Cr-Mn-Fe-Co-Ni family. This family of alloys pre-
sents a peculiar magnetic situation in which ferromagnetic metals
(Fe, Co, and Ni) and antiferromagnetic metals (Cr and Mn) are ran-
domly mixed. The competing magnetic exchange interactions
between atomic spins with different orientations may, however,
result in magnetic frustration, which could prevent to realize energet-
ically favorable configurations due to geometrical and chemical con-
straints. This is likely to produce a coupling between magnetic and
chemical ordering as a result of this magnetic frustration, thereby
leading to a preferential arrangement of atoms in the quinary alloy
and some of its subsystems. Previous investigations already indicated
the tendency toward ordering in binary alloys containing Cr and
another magnetic metal.69–72 For instance, a strong Cr-Cr repulsion
at the nearest neighbor positions in Fe-Cr alloys was observed71,72

and the analogous presence of SRO in Ni-Cr binary alloys69,70

further suggests that similar ordering might also occur in several
magnetic medium and high entropy alloys.

These observations for Cr-based alloys have led to several inves-
tigations on SRO in ternary CrCoNi and quaternary CrCoFeNi

alloys.65,73–77 Tamm et al.73 examined SRO in fcc CrCoNi using first-
principles lattice Monte Carlo simulations. Their calculations at
500 K yielded Warren–Cowley parameters which deviated signifi-
cantly from a random solid solution: the average number of Cr-Cr
nearest neighbor pairs was reduced by �40%, whereas the number
of Ni-Cr pairs was increased by �25%. The necessary energetic
driving force for the SRO in this alloy is provided by the magnetic
exchange interactions. For Cr atoms, the most preferred sites are
second nearest neighbor sublattices with the parallel alignment of
magnetic moments while Co atoms tend to have an antiparallel
alignment of magnetic moments to those of neighboring Cr atoms.77

In a random solid solution, the Cr magnetic moments have an irreg-
ular distribution of magnitude and direction originating from mag-
netic frustration. The structure with SRO, however, lowers this
irregularity with most Cr atoms having magnetic moments close to
+2 μB.

73 Thus, the preferred arrangement of atoms triggered by
magnetic exchange interactions reduces magnetic frustration and can
lead to a lower energy state in this alloy.

Qualitatively similar trends of SRO as in the case of CrCoNi are
also present in quaternary fcc CrCoFeNi.65,73,74,78 Lattice Monte
Carlo simulations at 500 K revealed a reduction of approximately
60% in the number of Cr-Cr nearest neighbor pairs, while a signifi-
cant increase in the number of Co-Cr, Ni-Cr, and Ni-Fe pairs was
found.73 This suggests that the Cr atoms were ordered at the corner
sites of a cubic sublattice. Based on ab initio calculations, Niu et al.74

indeed demonstrated that the formation of a L12 ordered phase,
with Cr occupying the corner sites and rest of the atoms randomly
mixed at the face centered sites, lowers the free energy as compared
to a fully random solid solution. Additionally, Schönfeld et al.65

recently calculated the effective pair interactions in this alloy with
the Generalized Perturbation Method and used them subsequently
in Monte Carlo simulations to predict an order–disorder transition
at approximately 500 K. Their simulations yielded a strong interac-
tion between Cr-Co and Cr-Ni nearest-neighbor pairs that originated
from the electrostatic interaction between the atoms due to their size
difference. The analysis of magnetic exchange interactions in the first
coordination shell further revealed a dominant antiferromagnetic
interaction between Cr and the rest of the atoms, whereas the inter-
actions between Fe, Co, and Ni are mainly of the ferromagnetic type.
Hence, the magnetic moments of Fe, Co, and Ni are usually aligned
parallel, while Cr prefers an antiferromagnetic alignment to the fer-
romagnetic elements.74 The spin-driven ordering of atoms in
CrCoFeNi, similar to the CrCoNi alloy, thus avoids magnetic frustra-
tion and stabilizes the L12 ordered phase.

Similar to Cr in this alloy class, the other antiferromagnetic
element Mn also plays a pivotal role in determining the atomic
ordering in HEAs. For example, recent ab initio calculations employ-
ing a conventional four-atom fcc unit cell within the coherent poten-
tial approximation predicted an antiferromagnetic ordering ({100}
layered) for Mn atoms in some medium and high entropy alloys.79,80

This antiferromagnetic ordering lowers the total energy with respect
to the ferrimagnetic state, commonly chosen within single-atom cal-
culations (see Fig. 5). Our own calculations showed that all magnetic
elements in alloys with composition close to the equiatomic
CrMnFeCoNi have a preference for some layered antiferromagnetic
arrangement of magnetic moments, at least within the coherent
potential approximation and assuming collinear ordering. Note that

FIG. 4. Warren–Cowley short range order parameters as a function of tempera-
ture in MoNbTaW for four pairs of atoms. Adapted from Kostiuchenko et al.,
NPJ Comput. Mater. 5, 55 (2019). Copyright 2019 Author(s), licensed under a
Creative Commons Attribution (CC BY) license.
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the initial configurations of local magnetic moments [Fig. 5(b)] were
stable throughout the self-consistent calculations, i.e., no spin flips
were observed. Interestingly, chemical SRO in CrMnFeCoNi, unlike
for the ternary CrCoNi and quaternary CrCoFeNi alloys, has not yet
been reported, a possible indication of the additional complexity
introduced by the simultaneous presence of Cr and Mn.

Although the role of magnetism in magnetic HEAs can be
significant as discussed above, the current understanding is still
rather limited. The presence of multiple magnetic elements gives
rise to complex scenarios, which are difficult to measure or simu-
late. For instance, strong magnetic ordering energies (which could

be anticipated for local environments rich in Fe, Co, or Ni, whose
alloy derivatives have high Curie temperatures) may locally
promote magnetic ordering and thus alter the overall phase stabil-
ity. We thus anticipate that further improved predictions of these
processes will be required to better address the interplay of mag-
netism, chemical ordering, and structural as well as functional
properties of these multicomponent alloys.

B. SRO and mechanical properties

SRO can change drastically the mechanical properties of fcc
HEAs. Different local chemical arrangements have been observed to
influence the stacking fault energy (SFE) in ternary, quaternary, and
quinary alloys of the Cr-Mn-Fe-Co-Ni family,81–84 to a degree that
the SFE even qualitatively changes from negative to positive. Higher
degrees of SRO generally increase the SFE, because favorable local
arrangements must be broken to create a stacking fault, but excep-
tions cannot be excluded. Increasing the SFE in an fcc HEA can
change the dominant deformation behavior from martensitic trans-
formation to hcp (leading to transformation induced plasticity,
TRIP) to formation of twins (twinning induced plasticity, TWIP) or
simple dislocation slip. In general, it has been found that SRO also
promotes local dislocation pinning and leads to strengthening.85,86

The effect of SRO on the mechanical properties has sparked a
vivid debate, in particular, on the medium-entropy alloy CrCoNi
that is worth to explore in detail. CrCoNi is one of the toughest
known metallic alloys and its damage-tolerance even improves at
low temperature.87 As discussed in Sec. III A, SRO in this alloy is
strongly influenced by magnetism, as Cr-Cr pairs tend to avoid
magnetically frustrated configurations and thus appear repulsive in
the first-neighbor shell. Ding et al.88 proved with ab initio Monte
Carlo simulations that SRO increases the SFE and the related
energy difference between hcp and fcc in CrCoNi: starting from a
random alloy, both these quantities were negative, i.e., the hcp
phase of the alloy is thermodynamically more stable. Performing
Monte Carlo simulations at 500 K, these values became positive,
i.e., SRO stabilized the experimentally observed fcc phase. Li et al.85

used a classical potential for the same alloy to show that SRO sig-
nificantly modified the energy landscape and influenced the
motion of dislocations. However, experiments performed by Yin
et al.89 demonstrated that the strength and hardness of CrCoNi
samples prepared under different annealing conditions, and hence
with presumably different degrees of SRO, were not affected by
SRO. They therefore suggested that SRO would be non-negligible
only for rather atypical low-temperature processing routes, which
are not technologically relevant in practice. They also questioned
the accuracy of first-principles calculations on CrCoNi by showing
that misfit volumes, related to local atomic environments, are very
poorly predicted by simulations. This critical position was though
contradicted by a joint experimental-theoretical investigation,76 in
which SRO was detected by energy-filtered transition electron
microscopy after aging at high temperature and strong evidence of
its impact on dislocation motion and plasticity was revealed.

Based on these examples, one can expect that this exciting
discussion will be soon also extended to other fcc HEAs of the
Cr-Mn-Fe-Co-Ni family, while SRO was recently investigated
also beyond this class of alloys.86,90 As there is an ongoing debate

FIG. 5. (a) Total energy as a function of volume for paramagnetic (PM), ferri-
magnetic (Ferri), and two antiferromagnetic (AFM1 and AFM2) states of
MnFeCoNi at 0 K. All total energies are referenced with respect to the total
energy of the AFM1 state at its equilibrium volume. (b) The schematics of three
different magnetic states. Adapted with permission from Rao et al., Phys. Rev.
Mater. 4, 014402 (2020). Copyright 2020 American Physical Society.

Journal of
Applied Physics PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 128, 150901 (2020); doi: 10.1063/5.0025310 128, 150901-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


on the interpretation of very recent simulations and experiments,
mainly due to the inherent technical difficulties involved in
probing this subtle feature, we predict that the analysis of SRO
will remain a very popular topic in future atomistic investigations
of HEAs.

IV. NEW DEFECTS IN HEAs: INTERSTITIALS AND
SURFACES

Early atomistic simulations of defects in HEAs analyzed either
point defects (vacancies and self-interstitials) in an effort to explain the
observed sluggish diffusion in some of the alloys91 or extended defects
involved in deformation (dislocations, stacking faults, twin boundaries)
to provide an atomistic picture of the outstanding mechanical proper-
ties of these alloys. More recently, however, two new types of defects
were considered: interstitial elements, which broaden the possibilities
for materials design by considering off-lattice alloying and pave the
way for efficient storage of gases, and surfaces, which extend the
domain of application of HEAs to chemical reactions.

A. Interstitials

Interstitial alloying is a common approach to improve the
mechanical properties of alloys and HEAs are no exception. The
impact of alloying C in HEAs was investigated in several experi-
mental studies92–102 and, for the Cr-Mn-Fe-Co-Ni family, the addi-
tion of this element increased the yield and the ultimate
strengths92,95,98–100 while also impacting ductility.

For atomistic simulations, there are two challenges in the
study of interstitial solutions in HEAs. First, since interstitial alloy-
ing induces significant lattice distortions around the interstitial
atoms, typical mean-field approximations used to model HEAs (for
example, the coherent potential approximation) usually cannot be
employed directly, meaning that computationally more expensive
supercell-based approaches need to be used. Second, the solution
energy of interstitial atoms depends strongly on the local chemical
environment, thus the computational cost of the simulations is also
combinatorially high. For example, even taking into account only
the first and the second nearest neighbor shells of the octahedral
sites in the fcc structure (six and eight atoms, respectively), for a
five-component system there are as many as 514 different atomic
arrangements around an interstitial and considering them all is
computationally intractable.

As mentioned above, due to the different chemical environ-
ments, the interstitial solution energy in a HEA does not take a
single value, but is rather characterized by an almost continuous
spectrum of different energies because of the large amount of pos-
sible local environments. Such a spectrum was calculated for the
solution energies of C in the equiatomic CrMnFeCoNi alloy by
sampling more than 1000 interstitial sites utilizing 20 supercell
models with different atomic arrangements (Fig. 6).103 The impact
of C addition to CrMnFeCoNi was compared between the fcc and
the hcp phases at 0 K and at finite temperature. It was found that
the addition of C energetically destabilizes the hcp phase with
respect to the fcc phase and thus increases the SFE in fcc
CrMnFeCoNi, consistently with the experimental observation.100

The variation of the SFE with respect to the C content
depends strongly on the constituent elements and the overall

composition of the considered HEA. A similar approach as
above was applied to Al0:5MnFeCoNi104 and a decrease of the
SFE was observed upon C addition, as confirmed also by experi-
ments. However, this trend is reversed in the Al-free MnFeCoNi
alloy, indicating that the reduction of the SFE in Al0:5MnFeCoNi
is driven mainly by the interaction between Al and C. These
different trends demonstrate the potential of manipulating the
impact of interstitial alloying to fine-tune the mechanical properties
of HEAs.

Another application of interstitial alloying in HEAs is relevant
for hydrogen storage.105–114 The lattice distortions induced by
chemical disorder and the quasi-continuous distribution of solution
energies and volumes are believed to be the main reasons of high
H-storage capability of some refractory HEAs. For example,
Sahlberg et al.107 observed a hydrogen content as high as 2.7 wt.%
for TiVZrNbHf and it may be expected that, by replacing heavy ele-
ments like Hf with lighter ones, an even higher content of H (in

FIG. 6. Distribution of computed solution energies ΔEsol of interstitial C atoms
at the octahedral sites in CrMnFeCoNi. The upper and the lower panels show
the results for the fcc and the hcp phases, respectively. The average (avg.) and
the standard deviation (SD) of ΔEsol are also shown in the panels. Reproduced
with permission from Ikeda et al., Phys. Rev. Mater. 3, 113603 (2019). Copyright
2019 American Physical Society.
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weight fraction) can be achieved. Hu et al.115 studied the property
of bcc ScTiZrMoHf as an H-storage material by both experiments
and first-principles calculations. By analyzing the energy of more
than 100 different configurations, the authors demonstrated that
ScTiZrMoHf is stable with H content at least up to 2.14 wt.%, con-
firming the potential of this alloy as an H-storage material. Hu
et al.116 investigated TiZrNbMoHf with first-principles calculations
and observed a bcc-fcc phase transition at high H content, in agree-
ment with experimental findings.110 They also discussed the rela-
tion between H solubility and lattice distortions and reported that
lattice distortions in HEAs may enhance H solubility. At the
present stage, atomistic simulations of HEAs as potential candi-
dates for H storage are still in their infancy, but we foresee a blos-
soming of this field in the near future.

B. Surfaces

Surfaces are another type of defect in HEAs that attracted the
attention of the community only very recently. They determine the
reactivity and response of metals to chemical substances and, in the
context of HEAs, their properties are of interest for corrosion and
heterogeneous catalysis.

Understanding corrosion in HEAs is crucial for two techno-
logical aspects. First, HEAs with high mechanical performance that
endure harsh environments are desirable to extend the potential
fields of application. Second, the composition of HEAs could be
tailored to obtain high entropy coatings that maximize adherence
and corrosion resistance to protect standard metals or other HEAs.

The corrosion resistance can often be improved by the addition
of other elements to promote the formation of a passive layer, but rel-
atively high concentrations of alloying elements are usually required
(for example, almost 20% Cr is added to form stainless steels);118 for
HEAs, though, this would mean adding another element with a con-
centration comparable to the other components, possibly leading to
modifications in the overall functionality of the alloy.

Atomistic simulations of HEAs related to corrosion mostly
focused on oxidation, specifically on the bonding between the com-
ponent elements in the alloys and O. In fact, different elements
may have different interactions with O, leading either to segrega-
tion of one (or more) species to the surface or to complex absorp-
tion mechanisms if segregation is kinetically hindered. The trend of
the binding energies Ebind between O and the metals in a HEA can
be qualitatively described by the canonical Hammer–Nørskov
theory,119 for which Ebind anticorrelates to the baricenter of the
d-band of the metal,

Ebind /�
Ð
gd(ϵ)(ϵ� ϵF) dϵÐ

gd(ϵ) dϵ
, (5)

where gd is the density of states for the d-valence electrons and ϵF is
the Fermi energy. For instance, in Cr-Mn-Fe-Co-Ni alloys, the ele-
ments Cr and Mn, with a high baricenter, bind more strongly to O,
in agreement with Eq. (5) and thus tend to segregate to the surface;
these elements actually form Cr2O3 and Mn2O3 oxides that partially
protect from corrosion, with a mechanism similar to stainless
steels.117 In the refractory Mo-W-Ta-Ti-Zr HEAs, the binding ener-
gies of O on the surface follow the trend Zr , Ti , Ta , Mo , W;

in this alloy, the binding of O with refractory HEAs is so strong that
O is absorbed on the surface even at a pressure as low as 10�9 atm
and a temperature as high as 2000 K.120

The composition and structure of the surfaces of HEAs are
very significant also for heterogeneous catalysis. Highly disordered
configurations on the surface offer a broad variety of absorption
sites with different binding energies for reactants and reaction
intermediates and a higher chemical complexity increases the
probability of occurrence of highly active sites. As the overall cat-
alytic activity is dominated by the sites with the best absorption
energy (the Sabatier principle), the overall composition of a can-
didate HEA catalysts can be tuned to maximize the number of
sites with optimal binding energy, making them superior to any
catalysts based on simple metals [Figs. 7(a) and 7(b)]. Ideally,
other reaction intermediates could also be taken into account
during this optimization process, potentially increasing the cata-
lytic activity even further.

An issue that may impact the stability of HEA catalysts is
surface segregation, because the larger number of components
increases the likelihood of having large driving forces that pull or
push certain elements to or from the surface. However, very weak

FIG. 7. (a) Schematics of a possible chemical reaction catalyzed by a quinary
HEA, assuming that surface segregation does not take place. (b) The composi-
tion of the alloy can be tuned so that the distribution of binding energy peaks at
the optimal absorption energy for one or more reactants. (c) Surface segregation
energies of the component elements in CrMnFeCoNi. The calculation setup is
detailed in Ref. 117. Statistical error bars due to the different atomic environ-
ments are indicated.
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segregation was so far observed in simulations under non-reactive
conditions for Co-Mo-Fe-Ni-Cu121 and Co-Ir-Ni-Ru-Rh,122 hinting
that a disordered configuration of these particular alloys may be
stable even at relatively low temperature. For Cr-Mn-Fe-Co-Ni, ab
initio calculations117 also suggest that the segregation is weak, espe-
cially if compared to common bimetallic alloys: for instance, as
shown in Fig. 7(c), the surface segregation energies of the single
elements in CrMnFeCoNi are relatively small in magnitude
(�0:3 eV , Esegr , 0:3 eV). Monte Carlo simulations with a
modified embedded atom potential,123 however, pointed out a
somewhat stronger segregation of Mn in CrMnFeCoNi, presum-
ably a consequence of the low surface formation energy of Mn
predicted by that particular potential. Although the presence of
molecules at the surface severely enhances segregation, this is
expected to be hindered by slow diffusion and HEA catalysts
should be able to retain a metastable disordered configuration
also when exposed to the reactants.

A combination of first principles calculations and machine
learning for the quinary HEAs Ir-Pd-Pt-Rh-Ru, Co-Cu-Ga-Ni-Zn,
and Ag-Au-Cu-Pd-Pt was employed to guide the discovery of new
catalysts for the O2, CO2, and CO reduction reactions:124,125 for
these alloys, a database of absorption energies for different permuta-
tions of the elements surrounding the absorbed molecule was fitted
using as descriptors the chemical identities of the atoms in the first
three neighbor shells around the absorbate. The obtained model was
then used to determine the best composition by maximizing the
occurrence of sites with a predefined optimal absorption energy,
leading to a significant increase of the computed catalytic activity.

HEA catalysts look so promising that they were even desig-
nated as “paradigm-shifting” discoveries for heterogeneous cataly-
sis.126 Given the novelty of this particular research direction for
HEAs, the structure, composition, and properties of the surfaces of
HEAs are still largely unexplored from both experiments and simu-
lations.127 Nevertheless, the prospect for diverse technological
applications is currently clearly attracting the attention of a rapidly
growing community of material scientists, chemists, and physicists
in this field.

V. CONCLUSIONS AND OUTLOOK

HEAs have quickly evolved to one of the most important
research fields in materials science. First mainly explored experi-
mentally, atomistic simulations of these alloys have now entered a
golden age as well. In this Perspective, we commented on three
aspects that significantly advanced the field of atomistic simulations
of HEAs only very recently: the introduction of machine-learning
potentials, which provided unprecedented accuracy in the calcula-
tion of thermodynamic properties; the analysis of short-range
order, which improved the approximation of a random lattice and
can couple to macroscopic properties; and the study of interstitials
and surfaces, which greatly extended the domain of application of
HEAs to hydrogen storage or heterogeneous catalysis, or enhanced
even more the mechanical properties.

The future of atomistic simulations of HEAs looks more and
more intimately connected with the concept of materials design
and the three highlights presented here will likely be key
approaches to discover new HEAs with better properties. In

particular, machine learning potentials can advance the under-
standing of phase stabilities, ultimately leading to the construction
of complete phase diagrams for these alloys; SRO can be controlled
experimentally by different processing routes to adjust the relative
occurrence of specific atomic arrangements and even obtain a tail-
ored distribution of atoms; complex defects can be introduced to
achieve multifunctional alloys optimized for more than one task or
condition, which are particularly appealing in the context of
sustainability.

The chemical complexity and the generality of the concept
of HEAs so far encouraged innovation in the form of extension of
standard techniques, and out-of-the-box thinking in the form of
creation of new research paths. As the HEA community is rapidly
expanding, we anticipate that many more original and exciting
methods will be developed in upcoming years, not only advancing
our understanding of this particular alloy class, but lifting the sim-
ulation tools for various materials design aspects and broader appli-
cability to a new level.

ACKNOWLEDGMENTS

A.F., B.D., K.G., P.S., and F.K. acknowledge funding from
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO) / Stichting voor de Technische Wetenschappen (STW),
VIDI Grant No. 15707. Y.I. and B.G. acknowledge funding from
Deutsche Forschungsgemeinschaft (DFG), Research Project No.
GR 3716/5-1, and European Research Council (ERC) under the
EU’s Horizon 2020 research and innovation programme, Grant
Agreement No. 639211.

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data
were created or analyzed in this study.

REFERENCES

1J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau,
and S.-Y. Chang, “Nanostructured high-entropy alloys with multiple principal
elements: Novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6,
299–303 (2004).
2B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural
development in equiatomic multicomponent alloys,” Mater. Sci. Eng. A 375,
213–218 (2004).
3B. S. Murty, J.-W. Yeh, S. Ranganathan, and P. P. Bhattacharjee, High-Entropy
Alloys (Elsevier, 2019).
4O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical proper-
ties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy
alloys,” Intermetallics 19, 698–706 (2011).
5A. Gali and E. P. George, “Tensile properties of high-and medium-entropy
alloys,” Intermetallics 39, 74–78 (2013).
6F. Otto, A. Dlouhy,̀ C. Somsen, H. Bei, G. Eggeler, and E. P. George, “The influ-
ences of temperature and microstructure on the tensile properties of a
CoCrFeMnNi high-entropy alloy,” Acta Mater. 61, 5743–5755 (2013).
7B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and
R. O. Ritchie, “A fracture-resistant high-entropy alloy for cryogenic applications,”
Science 345, 1153–1158 (2014).
8D. B. Miracle, J. D. Miller, O. N. Senkov, C. Woodward, M. D. Uchic, and
J. Tiley, “Exploration and development of high entropy alloys for structural
applications,” Entropy 16, 494–525 (2014).

Journal of
Applied Physics PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 128, 150901 (2020); doi: 10.1063/5.0025310 128, 150901-9

Published under license by AIP Publishing.

https://doi.org/10.1002/adem.200300567
https://doi.org/10.1016/j.msea.2003.10.257
https://doi.org/10.1016/j.intermet.2011.01.004
https://doi.org/10.1016/j.intermet.2013.03.018
https://doi.org/10.1016/j.actamat.2013.06.018
https://doi.org/10.1126/science.1254581
https://doi.org/10.3390/e16010494
https://aip.scitation.org/journal/jap


9B. Gludovatz, E. P. George, and R. O. Ritchie, “Processing, microstructure and
mechanical properties of the CrMnFeCoNi high-entropy alloy,” JOM 67,
2262–2270 (2015).
10D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and
related concepts,” Acta Mater. 122, 448–511 (2017).
11P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.-P. Maria,
D. W. Brenner, K. S. Vecchio, and S. Curtarolo, “High-entropy high-hardness
metal carbides discovered by entropy descriptors,” Nat. Commun. 9, 1–10 (2018).
12F. Otto, A. Dlouhy,̀ K. G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and
E. P. George, “Decomposition of the single-phase high-entropy alloy
CrMnFeCoNi after prolonged anneals at intermediate temperatures,” Acta
Mater. 112, 40–52 (2016).
13Y. Ikeda, B. Grabowski, and F. Körmann, “Ab initio phase stabilities and
mechanical properties of multicomponent alloys: A comprehensive review for
high entropy alloys and compositionally complex alloys,” Mater. Charact. 147,
464–511 (2019).
14Z. H. Aitken, V. Sorkin, and Y.-W. Zhang, “Atomistic modeling of nanoscale
plasticity in high-entropy alloys,” J. Mater. Res. 34, 1509–1532 (2019).
15J. Rickman, H. Chan, M. Harmer, J. Smeltzer, C. Marvel, A. Roy, and
G. Balasubramanian, “Materials informatics for the screening of multi-principal
elements and high-entropy alloys,” Nat. Commun. 10, 1–10 (2019).
16Y. Li and W. Guo, “Machine-learning model for predicting phase formations
of high-entropy alloys,” Phys. Rev. Mater. 3, 095005 (2019).
17N. Qu, Y. Chen, Z. Lai, Y. Liu, and J. Zhu, “The phase selection via machine
learning in high entropy alloys,” Procedia Manuf. 37, 299–305 (2019).
18A. Agarwal and A. P. Rao, “Artificial intelligence predicts body-centered-cubic
and face-centered-cubic phases in high-entropy alloys,” JOM 71, 3424–3432 (2019).
19Y. Zhang, C. Wen, C. Wang, S. Antonov, D. Xue, Y. Bai, and Y. Su, “Phase
prediction in high entropy alloys with a rational selection of materials descriptors
and machine learning models,” Acta Mater. 185, 528–539 (2020).
20Z. Pei, J. Yin, J. A. Hawk, D. E. Alman, and M. C. Gao, “Machine-learning
informed prediction of high-entropy solid solution formation: Beyond the
Hume-Rothery rules,” NPJ Comput. Mater. 6, 1–8 (2020).
21K. C. Pitike, K. C. Santosh, M. Eisenbach, C. A. Bridges, and V. R. Cooper,
“Predicting the phase stability of multi-component high entropy compounds,”
Chem. Mater. 32, 7507–7515 (2020).
22C. Oses, C. Toher, and S. Curtarolo, “High-entropy ceramics,” Nat. Rev.
Mater. 5, 295–309 (2020).
23S. Manzhos and T. Carrington, Jr., “A random-sampling high dimensional
model representation neural network for building potential energy surfaces,”
J. Chem. Phys. 125, 084109 (2006).
24J. Behler and M. Parrinello, “Generalized neural-network representation of
high-dimensional potential-energy surfaces,” Phys. Rev. Lett. 98, 146401
(2007).
25A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian approxima-
tion potentials: The accuracy of quantum mechanics, without the electrons,”
Phys. Rev. Lett. 104, 136403 (2010).
26M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld, “Fast and
accurate modeling of molecular atomization energies with machine learning,”
Phys. Rev. Lett. 108, 058301 (2012).
27Z. Li, J. R. Kermode, and A. De Vita, “Molecular dynamics with on-the-fly
machine learning of quantum-mechanical forces,” Phys. Rev. Lett. 114, 096405
(2015).
28A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker,
“Spectral neighbor analysis method for automated generation of quantum-
accurate interatomic potentials,” J. Comput. Phys. 285, 316–330 (2015).
29A. V. Shapeev, “Moment tensor potentials: A class of systematically improv-
able interatomic potentials,” Multiscale Model. Simul. 14, 1153–1173 (2016).
30N. Artrith, A. Urban, and G. Ceder, “Efficient and accurate machine-learning
interpolation of atomic energies in compositions with many species,” Phys. Rev. B
96, 014112 (2017).
31R. Drautz, “Atomic cluster expansion for accurate and transferable interatomic
potentials,” Phys. Rev. B 99, 014104 (2019).

32S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek, R. V. Chepulskii,
R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy et al., “AFLOW: An automatic
framework for high-throughput materials discovery,” Comput. Mater. Sci. 58,
218–226 (2012).
33R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld, “Quantum
chemistry structures and properties of 134 kilo molecules,” Sci. Data 1, 1–7
(2014).
34S. P. Ong, S. Cholia, A. Jain, M. Brafman, D. Gunter, G. Ceder, and
K. A. Persson, “The materials application programming interface (API): A
simple, flexible and efficient API for materials data based on REpresentational
state transfer (REST) principles,” Comput. Mater. Sci. 97, 209–215 (2015).
35C. Draxl and M. Scheffler, “The NOMAD laboratory: From data sharing to
artificial intelligence,” J. Phys. Mater. 2, 036001 (2019).
36N. Artrith and J. Behler, “High-dimensional neural network potentials for
metal surfaces: A prototype study for copper,” Phys. Rev. B 85, 045439 (2012).
37J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E. Roitberg, “Less is
more: Sampling chemical space with active learning,” J. Chem. Phys. 148,
241733 (2018).
38R. Jinnouchi, F. Karsai, and G. Kresse, “On-the-fly machine learning force
field generation: Application to melting points,” Phys. Rev. B 100, 014105
(2019).
39E. Uteva, R. S. Graham, R. D. Wilkinson, and R. J. Wheatley, “Active learning
in Gaussian process interpolation of potential energy surfaces,” J. Chem. Phys.
149, 174114 (2018).
40J. Vandermause, S. B. Torrisi, S. Batzner, Y. Xie, L. Sun, A. M. Kolpak, and
B. Kozinsky, “On-the-fly active learning of interpretable Bayesian force fields for
atomistic rare events,” NPJ Comput. Mater. 6, 1–11 (2020).
41A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical environ-
ments,” Phys. Rev. B 87, 184115 (2013).
42E. V. Podryabinkin and A. V. Shapeev, “Active learning of linearly parame-
trized interatomic potentials,” Comput. Mater. Sci. 140, 171–180 (2017).
43A. Glensk, B. Grabowski, and T. H. annd J. Neugebauer, “Understanding
anharmonicity in fcc materials: From its origin to ab initio strategies beyond the
quasiharmonic approximation,” Phys. Rev. Lett. 114, 195901 (2015).
44X. Zhang, B. Grabowski, F. Körmann, A. V. Ruban, Y. Gong, R. C. Reed,
T. Hickel, and J. Neugebauer, “Temperature dependence of the stacking-fault
gibbs energy for Al, Cu and Ni,” Phys. Rev. B 98, 224106 (2018).
45B. Grabowski, Y. Ikeda, P. Srinivasan, F. Körmann, C. Freysoldt, A. I. Duff,
A. Shapeev, and J. Neugebauer, “Ab initio vibrational free energies
including anharmonicity for multicomponent alloys,” NPJ Comput. Mater. 5,
1–6 (2019).
46A. I. Duff, T. Davey, D. Korbmacher, A. Glensk, B. Grabowski, J. Neugebauer,
and M. W. Finnis, “Improved method of calculating ab initio high-temperature
thermodynamic properties with application to ZrC,” Phys. Rev. B 91, 214311
(2015).
47M. S. Daw and M. I. Baskes, “Semiempirical, quantum mechanical calculation
of hydrogen embrittlement in metals,” Phys. Rev. Lett. 50, 1285 (1983).
48M. W. Finnis and J. E. Sinclair, “A simple empirical n-body potential for tran-
sition metals,” Philos. Mag. A 50, 45–55 (1984).
49A. Shapeev, “Accurate representation of formation energies of crystalline alloys
with many components,” Comput. Mater. Sci. 139, 26–30 (2017).
50T. Kostiuchenko, F. Körmann, J. Neugebauer, and A. Shapeev, “Impact of
lattice relaxations on phase transitions in a high-entropy alloy studied by
machine-learning potentials,” NPJ Comput. Mater. 5, 1–7 (2019).
51E. Meshkov, I. Novoselov, A. Shapeev, and A. Yanilkin, “Sublattice formation
in CoCrFeNi high-entropy alloy,” Intermetallics 112, 106542 (2019).
52I. Balyakin, A. Yuryev, B. Gelchinski, and A. Rempel, “Ab initio molecular
dynamics and high-dimensional neural network potential study of VZrNbHfTa
melt,” J. Phys. Condens. Matter 32, 214006 (2020).
53M. Jafary-Zadeh, K. H. Khoo, R. Laskowski, P. S. Branicio, and A. V. Shapeev,
“Applying a machine learning interatomic potential to unravel the effects of
local lattice distortion on the elastic properties of multi-principal element
alloys,” J. Alloys Compd. 803, 1054–1062 (2019).

Journal of
Applied Physics PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 128, 150901 (2020); doi: 10.1063/5.0025310 128, 150901-10

Published under license by AIP Publishing.

https://doi.org/10.1007/s11837-015-1589-z
https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1038/s41467-018-07160-7
https://doi.org/10.1016/j.actamat.2016.04.005
https://doi.org/10.1016/j.actamat.2016.04.005
https://doi.org/10.1016/j.matchar.2018.06.019
https://doi.org/10.1557/jmr.2019.50
https://doi.org/10.1038/s41467-019-10533-1
https://doi.org/10.1103/PhysRevMaterials.3.095005
https://doi.org/10.1016/j.promfg.2019.12.051
https://doi.org/10.1007/s11837-019-03712-4
https://doi.org/10.1016/j.actamat.2019.11.067
https://doi.org/10.1038/s41524-019-0267-z
https://doi.org/10.1021/acs.chemmater.0c02702
https://doi.org/10.1038/s41578-019-0170-8
https://doi.org/10.1038/s41578-019-0170-8
https://doi.org/10.1063/1.2336223
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1137/15M1054183
https://doi.org/10.1103/PhysRevB.96.014112
https://doi.org/10.1103/PhysRevB.99.014104
https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1016/j.commatsci.2014.10.037
https://doi.org/10.1088/2515-7639/ab13bb
https://doi.org/10.1103/PhysRevB.85.045439
https://doi.org/10.1063/1.5023802
https://doi.org/10.1103/PhysRevB.100.014105
https://doi.org/10.1063/1.5051772
https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1103/PhysRevLett.114.195901
https://doi.org/10.1103/PhysRevB.98.224106
https://doi.org/10.1038/s41524-019-0218-8
https://doi.org/10.1103/PhysRevB.91.214311
https://doi.org/10.1103/PhysRevLett.50.1285
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1016/j.commatsci.2017.07.010
https://doi.org/10.1038/s41524-019-0195-y
https://doi.org/10.1016/j.intermet.2019.106542
https://doi.org/10.1088/1361-648X/ab6f87
https://doi.org/10.1016/j.jallcom.2019.06.318
https://aip.scitation.org/journal/jap


54P. Soven, “Coherent-potential model of substitutional disordered alloys,” Phys.
Rev. 156, 809 (1967).
55B. Gyorffy, “Coherent-potential approximation for a nonoverlapping-muffin-
tin-potential model of random substitutional alloys,” Phys. Rev. B 5, 2382
(1972).
56A. Zunger, S.-H. Wei, L. Ferreira, and J. E. Bernard, “Special quasirandom
structures,” Phys. Rev. Lett. 65, 353 (1990).
57S.-H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, “Electronic
properties of random alloys: Special quasirandom structures,” Phys. Rev. B 42,
9622 (1990).
58C. Jiang and B. P. Uberuaga, “Efficient ab initio modeling of random multi-
component alloys,” Phys. Rev. Lett. 116, 105501 (2016).
59P. Yu, J.-P. Chou, Y.-C. Lo, and A. Hu, “An optimized random structures gen-
erator governed by chemical short-range order for multi-component solid solu-
tions,” Model. Simul. Mater. Sci. Eng. 27, 085007 (2019).
60J. Cowley, “An approximate theory of order in alloys,” Phys. Rev. 77, 669
(1950).
61N. Norman and B. E. Warren, “X-ray measurement of short range order in
Ag-Au,” J. Appl. Phys. 22, 483–486 (1951).
62J. Zhang, X. Liu, S. Bi, J. Yin, G. Zhang, and M. Eisenbach, “Robust data-
driven approach for predicting the configurational energy of high entropy
alloys,” Mater. Des. 185, 108247 (2020).
63J. M. Sanchez, F. Ducastelle, and D. Gratias, “Generalized cluster description
of multicomponent systems,” Physica A 128, 334–350 (1984).
64F. Ducastelle and F. Gautier, “Generalized perturbation theory in disordered
transitional alloys: Applications to the calculation of ordering energies,” J. Phys.
F Met. Phys. 6, 2039 (1976).
65B. Schönfeld, C. R. Sax, J. Zemp, M. Engelke, P. Boesecke, T. Kresse, T. Boll,
T. Al-Kassab, O. E. Peil, and A. V. Ruban, “Local order in Cr-Fe-Co-Ni:
Experiment and electronic structure calculations,” Phys. Rev. B 99, 014206
(2019).
66P. Singh, A. V. Smirnov, and D. D. Johnson, “Atomic short-range order and
incipient long-range order in high-entropy alloys,” Phys. Rev. B 91, 224204
(2015).
67M. Widom, W. P. Huhn, S. Maiti, and W. Steurer, “Hybrid Monte Carlo/
molecular dynamics simulation of a refractory metal high entropy alloy,” Metall.
Mater. Trans. A 45, 196–200 (2014).
68F. Körmann, A. V. Ruban, and M. H. Sluiter, “Long-ranged interactions in bcc
NbMoTaW high-entropy alloys,” Mater. Res. Lett. 5, 35–40 (2017).
69W. Schweika and H.-G. Haubold, “Neutron-scattering and Monte Carlo study
of short-range order and atomic interaction in Ni0:89Cr0:11,” Phys. Rev. B 37,
9240 (1988).
70B. Schönfeld, L. Reinhard, G. Kostorz, and W. Bührer, “Short-range order and
atomic displacements in Ni-20 at.% Cr single crystals,” Phys. Status Solidi B 148,
457–471 (1988).
71T. P. C. Klaver, R. Drautz, and M. W. Finnis, “Magnetism and thermodynam-
ics of defect-free Fe-Cr alloys,” Phys. Rev. B 74, 094435 (2006).
72A. Caro, M. Caro, P. Klaver, B. Sadigh, E. Lopasso, and S. Srinivasan, “The
computational modeling of alloys at the atomic scale: From ab initio and ther-
modynamics to radiation-induced heterogeneous precipitation,” JOM 59, 52–57
(2007).
73A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks, and A. Caro, “Atomic-scale
properties of Ni-based fcc ternary, and quaternary alloys,” Acta Mater. 99,
307–312 (2015).
74C. Niu, A. Zaddach, A. Oni, X. Sang, J. Hurt III, J. LeBeau, C. Koch, and
D. Irving, “Spin-driven ordering of Cr in the equiatomic high entropy alloy
NiFeCrCo,” Appl. Phys. Lett. 106, 161906 (2015).
75C. Niu, C. R. LaRosa, J. Miao, M. J. Mills, and M. Ghazisaeidi,
“Magnetically-driven phase transformation strengthening in high entropy
alloys,” Nat. Commun. 9, 1–9 (2018).
76R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R. O. Ritchie,
and A. M. Minor, “Short-range order and its impact on the CrCoNi medium-
entropy alloy,” Nature 581, 283–287 (2020).

77F. Walsh, R. O. Ritchie, and M. Asta, “Interdependence of magnetic and
chemical short-range order in the CrCoNi multi-principal element alloy,”
arXiv:2004.09086 (2020).
78T. Fukushima, H. Katayama-Yoshida, K. Sato, M. Ogura, R. Zeller, and
P. H. Dederichs, “Local energies and energy fluctuations—Applied to the high
entropy alloy CrFeCoNi,” J. Phys. Soc. Jpn. 86, 114704 (2017).
79S. Mu, J. Yin, G. D. Samolyuk, S. Wimmer, Z. Pei, M. Eisenbach,
S. Mankovsky, H. Ebert, and G. M. Stocks, “Hidden Mn magnetic-moment dis-
order and its influence on the physical properties of medium-entropy NiCoMn
solid solution alloys,” Phys. Rev. Mater. 3, 014411 (2019).
80Z. Rao, B. Dutta, F. Körmann, D. Ponge, L. Li, J. He, L. Stephenson,
L. Schäfer, K. Skokov, O. Gutfleisch, D. Raabe, and Z. Li, “Unveiling the
mechanism of abnormal magnetic behavior of fenicomncu high-entropy alloys
through a joint experimental-theoretical study,” Phys. Rev. Mater. 4, 014402
(2020).
81Y. H. Zhang, Y. Zhuang, A. Hu, J.-J. Kai, and C. T. Liu, “The origin of negative
stacking fault energies and nano-twin formation in face-centered cubic high
entropy alloys,” Scr. Mater. 130, 96–99 (2017).
82Y. Ikeda, F. Körmann, I. Tanaka, and J. Neugebauer, “Impact of chemical fluc-
tuations on stacking fault energies of CrCoNi and CrMnFeCoNi high entropy
alloys from first principles,” Entropy 20, 655 (2018).
83S. Zhao, Y. Osetsky, G. M. Stocks, and Y. Zhang, “Local-environment depen-
dence of stacking fault energies in concentrated solid-solution alloys,” NPJ
Comput. Mater. 5, 1–7 (2019).
84X. Wu, Z. Li, Z. Rao, Y. Ikeda, B. Dutta, F. Körmann, J. Neugebauer, and
D. Raabe, “Role of magnetic ordering for the design of quinary twip-trip high
entropy alloys,” Phys. Rev. Mater. 4, 033601 (2020).
85Q.-J. Li, H. Sheng, and E. Ma, “Strengthening in multi-principal element
alloys with local-chemical-order roughened dislocation pathways,” Nat.
Commun. 10, 1–11 (2019).
86E. Antillon, C. Woodward, S. I. Rao, B. Akdim, and T. Parthasarathy,
“Chemical short range order strengthening in a model fcc high entropy alloy,”
Acta Mater. 190, 29–42 (2020).
87B. Gludovatz, A. Hohenwarter, K. V. Thurston, H. Bei, Z. Wu, E. P. George,
and R. O. Ritchie, “Exceptional damage-tolerance of a medium-entropy alloy
CrCoNi at cryogenic temperatures,” Nat. Commun. 7, 1–8 (2016).
88J. Ding, Q. Yu, M. Asta, and R. O. Ritchie, “Tunable stacking fault energies by
tailoring local chemical order in CrCoNi medium-entropy alloys,” PNAS 115,
8919–8924 (2018).
89B. Yin, S. Yoshida, N. Tsuji, and W. A. Curtin, “Yield strength and misfit
volumes of NiCoCr and implications for short-range-order,” Nat. Commun. 11,
1–7 (2020).
90S. Yin, J. Ding, M. Asta, and R. O. Ritchie, “Ab initio modeling of the
role of local chemical short-range order on the Peierls potential of screw disloca-
tions in body-centered cubic high-entropy alloys,” NPJ Comput. Mater. 6, 1–11
(2020).
91K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–
Ni high-entropy alloys,” Acta Mater. 61, 4887–4897 (2013).
92Z. Wu, C. Parish, and H. Bei, “Nano-twin mediated plasticity in carbon-containing
FeNiCoCrMn high entropy alloys,” J. Alloys Compd. 647, 815–822 (2015).
93Z. Wang, I. Baker, Z. Cai, S. Chen, J. D. Poplawsky, and W. Guo, “The effect
of interstitial carbon on the mechanical properties and dislocation substructure
evolution in Fe40:4Ni11:3Mn34:8Al7:5Cr6 high entropy alloys,” Acta Mater. 120,
228–239 (2016).
94Z. Wang and I. Baker, “Interstitial strengthening of a f.c.c. FeNiMnAlCr high
entropy alloy,” Mater. Lett. 180, 153–156 (2016).
95Z. Li, C. C. Tasan, H. Springer, B. Gault, and D. Raabe, “Interstitial atoms
enable joint twinning and transformation induced plasticity in strong and
ductile high-entropy alloys,” Sci. Rep. 7, 40704 (2017).
96Z. Wang, I. Baker, W. Guo, and J. D. Poplawsky, “The effect of carbon on the
microstructures, mechanical properties, and deformation mechanisms of
thermo-mechanically treated Fe40:4Ni11:3Mn34:8Al7:5Cr6 high entropy alloys,”
Acta Mater. 126, 346–360 (2017).

Journal of
Applied Physics PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 128, 150901 (2020); doi: 10.1063/5.0025310 128, 150901-11

Published under license by AIP Publishing.

https://doi.org/10.1103/PhysRev.156.809
https://doi.org/10.1103/PhysRev.156.809
https://doi.org/10.1103/PhysRevB.5.2382
https://doi.org/10.1103/PhysRevLett.65.353
https://doi.org/10.1103/PhysRevB.42.9622
https://doi.org/10.1103/PhysRevLett.116.105501
https://doi.org/10.1088/1361-651X/ab435c
https://doi.org/10.1103/PhysRev.77.669
https://doi.org/10.1063/1.1699988
https://doi.org/10.1016/j.matdes.2019.108247
https://doi.org/10.1016/0378-4371(84)90096-7
https://doi.org/10.1088/0305-4608/6/11/005
https://doi.org/10.1088/0305-4608/6/11/005
https://doi.org/10.1103/PhysRevB.99.014206
https://doi.org/10.1103/PhysRevB.91.224204
https://doi.org/10.1007/s11661-013-2000-8
https://doi.org/10.1007/s11661-013-2000-8
https://doi.org/10.1080/21663831.2016.1198837
https://doi.org/10.1103/PhysRevB.37.9240
https://doi.org/10.1002/pssb.2221480203
https://doi.org/10.1103/PhysRevB.74.094435
https://doi.org/10.1007/s11837-007-0055-y
https://doi.org/10.1016/j.actamat.2015.08.015
https://doi.org/10.1063/1.4918996
https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1038/s41586-020-2275-z
http://arxiv.org/abs/arXiv:2004.09086
https://doi.org/10.7566/JPSJ.86.114704
https://doi.org/10.1103/PhysRevMaterials.3.014411
https://doi.org/10.1103/PhysRevMaterials.4.014402
https://doi.org/10.1016/j.scriptamat.2016.11.014
https://doi.org/10.3390/e20090655
https://doi.org/10.1038/s41524-018-0138-z
https://doi.org/10.1038/s41524-018-0138-z
https://doi.org/10.1103/PhysRevMaterials.4.033601
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1016/j.actamat.2020.02.041
https://doi.org/10.1038/ncomms10602
https://doi.org/10.1073/pnas.1808660115
https://doi.org/10.1038/s41467-020-16083-1
https://doi.org/10.1038/s41524-019-0267-z
https://doi.org/10.1016/j.actamat.2013.04.058
https://doi.org/10.1016/j.jallcom.2015.05.224
https://doi.org/10.1016/j.actamat.2016.08.072
https://doi.org/10.1016/j.matlet.2016.05.122
https://doi.org/10.1038/srep40704
https://doi.org/10.1016/j.actamat.2016.12.074
https://aip.scitation.org/journal/jap


97H. Luo, Z. Li, W. Lu, D. Ponge, and D. Raabe, “Hydrogen embrittlement of an
interstitial equimolar high-entropy alloy,” Corros. Sci. 136, 403–408 (2018).
98J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, and X. Fan, “Effect of C
content on microstructure and tensile properties of as-cast CoCrFeMnNi high
entropy alloy,” Mater. Chem. Phys. 210, 136–145 (2018).
99L. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, and J. Sun, “Heavy carbon
alloyed fcc-structured high entropy alloy with excellent combination of strength
and ductility,” Mater. Sci. Eng. A 716, 150–156 (2018).
100Z. Li, “Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon
content, microstructure, and compositional homogeneity effects on deformation
behavior,” Acta Mater. 164, 400–412 (2019).
101Y. Shang, Y. Wu, J. He, X. Zhu, S. Liu, H. Huang, K. An, Y. Chen, S. Jiang,
H. Wang, X. Liu, and Z. Lu, “Solving the strength-ductility tradeoff in the
medium-entropy NiCoCr alloy via interstitial strengthening of carbon,”
Intermetallics 106, 77–87 (2019).
102M. Wu, Z. Li, B. Gault, P. Munroe, and I. Baker, “The effects of carbon on
the phase stability and mechanical properties of heat-treated FeNiMnCrAl high
entropy alloys,” Mater. Sci. Eng. A 748, 59–73 (2019).
103Y. Ikeda, I. Tanaka, J. Neugebauer, and F. Körmann, “Impact of interstitial C
on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy
alloy,” Phys. Rev. Mater. 3, 113603 (2019).
104F. Kies, Y. Ikeda, S. Ewald, J. H. Schleifenbaum, B. Hallstedt, F. Körmann,
and C. Haase, “Combined Al and C alloying enables mechanism-oriented design
of multi-principal element alloys: Ab initio calculations and experiments,” Scr.
Mater. 178, 366–371 (2020).
105Y.-F. Kao, S.-K. Chen, J.-H. Sheu, J.-T. Lin, W.-E. Lin, J.-W. Yeh, S.-J. Lin,
T.-H. Liou, and C.-W. Wang, “Hydrogen storage properties of multi-principal-
component CoFeMnTixVyZrz alloys,” Int. J. Hydrogen Energy 35, 9046–9059 (2010).
106I. Kunce, M. Polanski, and J. Bystrzycki, “Structure and hydrogen storage
properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser engi-
neered net shaping (LENS),” Int. J. Hydrogen Energy 38, 12180–12189 (2013).
107M. Sahlberg, D. Karlsson, C. Zlotea, and U. Jansson, “Superior hydrogen
storage in high entropy alloys,” Sci. Rep. 6, 36770 (2016).
108D. Karlsson, G. Ek, J. Cedervall, C. Zlotea, K. T. Møller, T. C. Hansen,
J. Bednarčík, M. Paskevicius, M. H. Sørby, T. R. Jensen, U. Jansson, and
M. Sahlberg, “Structure and hydrogenation properties of a HfNbTiVZr high-
entropy alloy,” Inorg. Chem. 57, 2103–2110 (2018).
109M. M. Nygård, G. Ek, D. Karlsson, M. H. Sørby, M. Sahlberg, and
B. C. Hauback, “Counting electrons - a new approach to tailor the hydrogen
sorption properties of high-entropy alloys,” Acta Mater. 175, 121–129 (2019).
110H. Shen, J. Zhang, J. Hu, J. Zhang, Y. Mao, H. Xiao, X. Zhou, and X. Zu, “A
novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage,”
Nanomaterials 9, 248 (2019).
111C. Zhang, Y. Wu, L. You, X. Cao, Z. Lu, and X. Song, “Investigation on the
activation mechanism of hydrogen absorption in TiZrNbTa high entropy alloy,”
J. Alloys Compd. 781, 613–620 (2019).

112P. Edalati, R. Floriano, A. Mohammadi, Y. Li, G. Zepon, H.-W. Li, and
K. Edalati, “Reversible room temperature hydrogen storage in high-entropy alloy
TiZrCrMnFeNi,” Scr. Mater. 178, 387–390 (2020).
113J. Montero, G. Ek, L. Laversenne, V. Nassif, G. Zepon, M. Sahlberg, and
C. Zlotea, “Hydrogen storage properties of the refractory Ti-V-Zr-Nb-Ta multi-
principal element alloy,” J. Alloys Compd. 835, 155376 (2020).
114C. Zhang, A. Song, Y. Yuan, Y. Wu, P. Zhang, Z. Lu, and X. Song, “Study on
the hydrogen storage properties of a TiZrNbTa high entropy alloy,” Int.
J. Hydrogen Energy 45, 5367–5374 (2020).
115J. Hu, H. Shen, M. Jiang, H. Gong, H. Xiao, Z. Liu, G. Sun, and X. Zu, “A
DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo,”
Nanomaterials 9, 461 (2019).
116J. Hu, J. Zhang, H. Xiao, L. Xie, H. Shen, P. Li, J. Zhang, H. Gong, and X. Zu,
“A density functional theory study of the hydrogen absorption in high entropy
alloy TiZrHfMoNb,” Inorg. Chem. 59, 9774–9782 (2020).
117A. Ferrari and F. Körmann, “Surface segregation in Cr-Mn-Fe-Co-Ni high
entropy alloys,” Appl. Surf. Sci. 533, 147471 (2020).
118M. F. Ashby and D. R. H. Jones, Engineering Materials 1: An Introduction to
Properties, Applications and Design (Elsevier, 2012), Vol. 1.
119B. J. K. N. Hammer and J. K. Nørskov, “Electronic factors determining the
reactivity of metal surfaces,” Surf. Sci. 343, 211–220 (1995).
120E. Osei-Agyemang and G. Balasubramanian, “Surface oxidation mechanism
of a refractory high-entropy alloy,” NPJ Mater. Degrad. 3, 1–8 (2019).
121P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang,
R. Shahbazian-Yassar, L. Hu, and C. Wang, “Highly efficient decomposition
of ammonia using high-entropy alloy catalysts,” Nat. Commun. 10, 1–12
(2019).
122Y. Yao, Z. Liu, P. Xie, Z. Huang, T. Li, D. Morris, Z. Finfrock, J. Zhou,
M. Jiao, J. Gao et al., “Computationally aided, entropy-driven synthesis of
highly efficient and durable multi-elemental alloy catalysts,” Sci. Adv. 6, 1–10
(2020).
123P. Wynblatt and D. Chatain, “Modeling grain boundary and surface
segregation in multicomponent high-entropy alloys,” Phys. Rev. Mater. 3,
054004 (2019).
124T. A. Batchelor, J. K. Pedersen, S. H. Winther, I. E. Castelli, K. W. Jacobsen,
and J. Rossmeisl, “High-entropy alloys as a discovery platform for electrocataly-
sis,” Joule 3, 834–845 (2019).
125J. K. Pedersen, T. A. Batchelor, A. Bagger, and J. Rossmeisl, “High-entropy
alloys as catalysts for the CO2 and CO reduction reactions,” ACS Catal. 10,
2169–2176 (2020).
126T. Löffler, A. Savan, A. Garzón-Manjón, M. Meischein, C. Scheu,
A. Ludwig, and W. Schuhmann, “Toward a paradigm shift in electrocatalysis using
complex solid solution nanoparticles,” ACS Energy Lett. 4, 1206–1214 (2019).
127G. M. Tomboc, T. Kwon, J. Joo, and K. Lee, “High entropy alloy electrocata-
lysts: A critical assessment of fabrication and performance,” J. Mater. Chem. A
8, 14844–14862 (2020).

Journal of
Applied Physics PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 128, 150901 (2020); doi: 10.1063/5.0025310 128, 150901-12

Published under license by AIP Publishing.

https://doi.org/10.1016/j.corsci.2018.03.040
https://doi.org/10.1016/j.matchemphys.2017.08.011
https://doi.org/10.1016/j.msea.2018.01.045
https://doi.org/10.1016/j.actamat.2018.10.050
https://doi.org/10.1016/j.intermet.2018.12.009
https://doi.org/10.1016/j.msea.2019.01.083
https://doi.org/10.1103/PhysRevMaterials.3.113603
https://doi.org/10.1016/j.scriptamat.2019.12.004
https://doi.org/10.1016/j.scriptamat.2019.12.004
https://doi.org/10.1016/j.ijhydene.2010.06.012
https://doi.org/10.1016/j.ijhydene.2013.05.071
https://doi.org/10.1038/srep36770
https://doi.org/10.1021/acs.inorgchem.7b03004
https://doi.org/10.1016/j.actamat.2019.06.002
https://doi.org/10.3390/nano9020248
https://doi.org/10.1016/j.jallcom.2018.12.120
https://doi.org/10.1016/j.scriptamat.2019.12.009
https://doi.org/10.1016/j.jallcom.2020.155376
https://doi.org/10.1016/j.ijhydene.2019.05.214
https://doi.org/10.1016/j.ijhydene.2019.05.214
https://doi.org/10.3390/nano9030461
https://doi.org/10.1021/acs.inorgchem.0c00989
https://doi.org/10.1016/j.apsusc.2020.147471
https://doi.org/10.1016/0039-6028(96)80007-0
https://doi.org/10.1038/s41529-019-0082-5
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1126/sciadv.aaz0510
https://doi.org/10.1103/PhysRevMaterials.3.054004
https://doi.org/10.1016/j.joule.2018.12.015
https://doi.org/10.1021/acscatal.9b04343
https://doi.org/10.1021/acsenergylett.9b00531
https://doi.org/10.1039/D0TA05176D
https://aip.scitation.org/journal/jap

	Frontiers in atomistic simulations of high entropy alloys
	I. INTRODUCTION
	II. ACCURATE THERMODYNAMICS: THE MACHINE LEARNING REVOLUTION
	A. Machine-learning potentials for HEAs and active learning
	B. Application to thermodynamics

	III. SHORT RANGE ORDER IMPACTS THE PROPERTIES OF HEAs
	A. SRO and magnetism
	B. SRO and mechanical properties

	IV. NEW DEFECTS IN HEAs: INTERSTITIALS AND SURFACES
	A. Interstitials
	B. Surfaces

	V. CONCLUSIONS AND OUTLOOK
	DATA AVAILABILITY
	References


