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ABSTRACT
Training classifiers that are robust against adversarially modified

examples is becoming increasingly important in practice. In the

field of malware detection, adversaries modify malicious binary

files to seem benign while preserving their malicious behavior. We

report on the results of a recently held robust malware detection

challenge. There were two tracks in which teams could participate:

the attack track asked for adversarially modified malware samples

and the defend track asked for trained neural network classifiers

that are robust to such modifications. The teams were unaware

of the attacks/defenses they had to detect/evade. Although only 9

teams participated, this unique setting allowed us to make several

interesting observations.

We also present the challenge winner: GRAMS, a family of novel

techniques to train adversarially robust networks that preserve the

intended (malicious) functionality and yield high-quality adversar-

ial samples. These samples are used to iteratively train a robust

classifier. We show that our techniques, based on discrete opti-

mization techniques, beat purely gradient-based methods. GRAMS

obtained first place in both the attack and defend tracks of the

competition.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation; • Com-
puting methodologies → Adversarial learning; Neural net-
works; Discrete space search; Randomized search.

KEYWORDS
Adversarial Learning; Neural Networks; Robust Malware Detection;

Adversarial malware; Discrete optimization; Saddle-point optimiza-

tion
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1 INTRODUCTION
The field of cyber security is an arms race between defenders and

attackers. Machine learning, and in particular deep learning, has

become an indispensable weapon on the defenders’ side, for tasks

ranging from spam and phishing detection, anti-virus software,

to intrusion detection systems. While adding to the security, the

machine-learning systems themselves offer a new attack surface

for smart attackers: by carefully modifying their files, adversaries

can craft so-called adversarial examples, i.e., variants of their files

that evade detection [12, 28].

While adversarial examples have been discussed in literature,

most of the attention in the context of neural networks has been

paid to classifiers in the continuous domain, such as images and

videos [16]. Any small perturbation of a given sample in the con-

tinuous space yields a valid data point, and numerous methods of

finding minimal changes that fool classifiers have been proposed

[9]. It is shown in [1] that these methods can be used to train a

robust malware classifier, i.e., a malware detector that is hard to

evade. In most cyber security applications, however, and in particu-

lar in malware classification, the feature space frequently contains

discrete features. Crafting adversarial examples in a discrete do-

main is more challenging than in a continuous one: many of the

possible perturbations can be invalid and although gradients can

be computed on a relaxed problem, the information they provide

can be incorrect. Moreover, an additional difficulty in the case of

malware is that the perturbed examples must not only fool the

classifier, but the perturbations must keep their functionality, i.e.,

not modify or destroy the malicious payload.

Recent work has shown how adversaries can craft adversarial

perturbations tomalicious code in order to evademalware detectors,

e.g. [12, 28]. Yet, the techniques available to obtain these samples

are taken from the continuous domain and do not perform very

well in the discrete case. In a recently held robust malware detection

challenge, the goal was to overcome this limitation and stimulate the
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development of methods that can find good discrete perturbations.

The competition was organized in two tracks: the attack track

where the task was to obtain high-quality adversarial examples that

fool classifiers, and the defend track where the task was to train

a robust neural network that achieves good classification results

in the presence of such examples. In this paper, which is the result

of a collaboration between the organizers and the winners of this

challenge, we describe the challenge as it was designed by one set of

authors (Al-Dujaili and O’Reilly), and the main contribution of the

other set of authors (Verwer, Nadeem, Hammerschmidt, and Bliek):

greedy random accelerated multi-bit search (GRAMS), a method

that finds good quality adversarial examples for neural networks

in discrete domains.

GRAMS is a simple but effective greedy search procedure that

uses gradient information as a heuristic to find discrete adversarial

examples. Using a standard adversarial training procedure, it can be

used to train robust neural networks. In the challenge, it obtained

first place in both the attack and defend tracks (tied in the latter).

We describe the GRAMS algorithm and the way in which we choose

the examples and neural network to submit to the challenge.

The challenge was unique in its setup in the sense that the at-

tack submissions were evaluated using the defend submissions and

vice versa. The targets were unknown and the goal was to submit

perturbed data and a model that works well against any possible

adversary. Only 9 teams participated in the challenge, perhaps due

to the difficulty of not knowing the target. Still, the unique chal-

lenge setup allows us to make several interesting observations. In

particular, although attacks are known to transfer to different clas-

sifiers [7], they seem not to transfer to different defenses. Moreover,

even when using a known defense, not knowing the exact target

model has a significant negative effect on evasion performance.

2 BACKGROUND AND RELATEDWORK
Malware detection is moving away from hand-crafted rule-based

approaches and towards machine learning techniques [25]. In this

section we focus on malware detection with neural networks (Sec-

tion 2.1), adversarial machine learning (Section 2.2) and adversarial

malware samples (Section 2.3).

2.1 Malware Detection using Neural Networks
Neural network methods are increasingly being used for malware

detection. For features, one study combines DNN’s with random

projections [5] and another with two dimensional binary Portable

Executable (PE) program features [24]. Research has also been done

on a variety of file types, such as Android and PE files [2, 11, 22,

30]. While the specifics can vary greatly, all machine learning ap-

proaches to malware detection share the same central vulnerability

to Adversarial Examples (AEs).

2.2 Adversarial Machine Learning
Finding effective techniques that robustly handle AEs is one focus

of adversarial machine learning [3, 14]. An adversarial example

is created by making a small change to a data sample x to create

xadv = x + δ . If the detector misclassifies xadv despite having

correctly classified x , then xadv is a successful adversarial example.

Adversarial learning, also in the context of malware, goes back

decades [27]. In [20], the authors formalize adversarial frameworks

and provide a review of existing literature within the framework.

The framework defines of a comprehensive set of constraints on

available transformations, preserved semantics, robustness to pre-

processing, and plausibility. The it provides a good starting point for

an overview of different directions taken in research on adversarial

learning. There are a variety of techniques that generate AEs for

neural networks [9, 26]. One efficient and widely used technique

is the fast gradient sign method (FGSM) [9]. This method finds

the directions that move the outputs of the neural network the

greatest degree andmoves the inputs along these directions by small

amounts, or perturbations. Because the technique references the

detector’s parameters, it is known as a white-box attack model [4, 9,

19]. There have been multiple studies focused on advancing model

performance against AEs, e.g. [17, 31]. One obvious approach is

retraining with the AEs incorporated into the training set. We

are attracted to the approach of [16]. It casts model learning as a

robust optimization problemwith a saddle-point formulation where

the outer minimization of detector (defensive) loss is tied to the

inner maximization of detector loss (via AEs) [16]. The approach

successfully demonstrates robustness against adversarial images

by incorporating, while training, AEs generated using projected

gradient descent.

2.3 Adversarial Malware
Security researchers have generated malware AEs using an array

of machine learning approaches such as reinforcement learning,

genetic algorithms and supervised learning including neural net-

works, decision trees and SVMs [2, 6, 10, 12, 22, 24, 28, 29]. These

approaches, with the exception of [10] are black box. They assume

no knowledge of the detector, though it can be queried for detection

decisions. Multiple studies use binary features, typically where each

index acts as an indicator to express the presence or absence of an

API call, e.g. [23]. One study also includes byte/entropy histogram

features [24]. Studies to date have only retrained with AEs.

In [1], methods are introduced that are capable of generating

functionally preserved adversarial malware examples in the binary

domain. Using the saddle-point formulation, they incorporate the

adversarial examples into the training of models that are robust

to them. They use 4 different inner maximization methods: Two

take a continuous approach, using FGSM with either deterministic

or randomized rounding; and the other two take multiple bitwise

discrete steps, ascending with gradient information or coordinate-

wise.

In this paper, we present an approach that generates functional

white-box AEs for binary features while incorporating them into

the training of a malware classifier that is robust to AEs.

2.4 Related competitions
The Madry group at MIT posed adversarial robustness challenges

for MNIST and CIFAR
1
, inviting attacks on robust networks they

had designed. To the best of our knowledge, the malware detection

challenge described in this paper is the first competition of its

design, where challenges on each end of the spectrum (attack and

defense) are motivated to do their best and then face each out.

1
https://github.com/MadryLab/mnist_challenge
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3 CONTEXT
3.1 Notation and Saddle-Point Formulation
We follow the notation in [1]. The data distribution D contains

tuples of binary representations of executable files and their corre-

sponding labels. The label is in binary format with classes benign
and malicious. The datapoints are drawn from the distribution de-

noted by X and the associated label space by Y. Each datapoint

x = [x1, . . . ,xn ] ∈ X consists of static features extracted from

the executable files, where x j is a binary indicator showing the

presence of the jth feature, and n is the length of the feature vector,

therefore X = {0, 1}n . We represent the elements of the label space

y ∈ Y by {0, 1}. We denote the parameters of the classifier over

D by θ ∈ Rp . The goal is to find the optimal model parameters θ∗

such that for a given scalar loss function L(θ ,x ,y) the empirical

risk E(x,y) D [L(θ ,x ,y)] is minimized:

θ∗ ∈ arg min

θ ∈Rp
E(x,y) D [L(θ ,x ,y)]. (1)

The trained model obtained via (1) can be exploited by an ad-

versary with crafted samples intended to be misclassified. Such a

crafted example xadv , can be obtained by modifying an existing

sample x such that xadv maximizes the loss L of the classifier. The

modifications must preserve the intended functionality of the sam-

ple x . Let S(x) denote the set of samples around x that preserve the

functionality. Then the setS∗(x) ⊆ S(x) of samples that maximizes

the classifier loss is described as:

xadv ∈ S∗(x) = arg max

x̄ ∈S (X )
L(θ , x̄ ,y). (2)

As outlined in [1], following [16], the samples obtained via (2)

need to be incorporated into the training process, given by (1), to

harden the model. The resulting problem becomes:

θ∗ ∈ arg minθ ∈RE(x,y) D
[ adversarial loss︷                   ︸︸                   ︷
maxx̄ ∈S(x )L(θ , x̄ ,y)

]︸                                                    ︷︷                                                    ︸
adversarial learning

. (3)

3.2 The Challenge Setup
The bulk of adversarial machine learning research has been focused

on crafting attacks and defenses for image classification. This chal-

lenge puts adversarial machine learning in the context of robust

malware detection. In the era of modern cyber warfare, cyber ad-

versaries craft adversarial malicious code that can evade malware

detectors [28]. The problem of crafting adversarial examples in the

malware classification domain is more challenging compared to im-

age classification: malware adversarial examples must not only fool

the classifier, they must also ensure that their adversarial perturba-

tions do not alter the malicious payload. The gist for this challenge

is to defend against adversarial attacks by building robust detectors

and/or attack robust malware detectors based on binary indicators

of imported functions used by the malware. The challenge has two

tracks:

(1) Defend Track: Build high-accuracy deep models that are ro-

bust to adversarial attacks: Participants in this track are re-

quired to construct robust models given the defend dataset.

(2) Attack Track: Craft adversarial malicious PEs that evade

detection on adversarially trained models.

For evaluation, the model’s performance on a test set of benign

and malicious (and adversarial versions of them) PEs will be as-

sessed. Participants’ solutions will be evaluated based on their F1

score against their strongest adversaries.

The competition was organized by some of the authors (Al-

Dujaili and O’Reilly) The organizers had the following goals:

(1) Promote the visibility of discrete and constrained versions

of adversarial machine learning.

(2) Increase knowledge of the robust malware detection prob-

lem where identifying adversarial attacks and developing

more robust detectors in the face of adversarial examples are

crucial.

(3) Encourage novel and improved algorithms by presenting a

readily available dataset and providing a novel setup where

adversaries independently tune their approaches then face

each other without knowing the other side’s approach.

Only neural network solutions were assumed given their pop-

ular use in adversarial ML. The competition assumes no access

to the underlying source code that generated the binaries. With

these assumptions, it is impossible to unset a bit and ascertain if it

damages the malware (or functionality of any code in which it is

embedded). Therefore only bit setting perturbations were allowed.

3.2.1 Dataset. The dataset contains 34,200 files in the Portable

Executable (PE) format of Windows executables. 30,400 are used to

train a robust model in the competition and the remaining 3800 files

are used as a starting point to generate adversarial samples. Each

file is represented by a binary vector indicating whether the file

includes a specific Windows API call. For each of these files, a large

binary vector x ∈ X = {0, 1}22761
is constructed using the LIEF

binary analysis tool
2
. Overall, there are 22,761 API calls present in

the dataset. A detailed description of the data can be found in the

repository
3
.

The challenge aims to mimic a realistic situation where an at-

tacker modifies the input provided to a learned classifier that aims

to detect it. The classifier is learned from 30,400 PEs containing

15,200 malicious PEs and 15,200 benign PEs. The assumption is

that malware and goodware use different kinds of system calls to

perform their tasks. As shown in Figure 1, this assumption seems

to be true. There are several system calls that are present more

frequently in malicious PEs than in benign PEs, and vice versa.

When learning a classifier, such as a neural network, from this data,

we indeed see an accuracy of 90% or even greater on a hold out test

set.

3.2.2 Threat Model. The challenge considers a threat model where

an attacker is able to modify an additional set of 3800 malicious PEs

by adding additional system calls, i.e., by changing 0s into 1s in the

large binary vectors. In contrast to removing system calls (changing

1s into 0s), this should not modify the working of a piece of malware.

When allowing adversarial modifications that change 0s into 1s in

malicious data points, the percentage of correctly detected malware

2
https://lief.quarkslab.com

3
https://github.com/ALFA-group/malware_challenge/blob/master/docs/challenge.pdf
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Figure 1: The occurrence frequencies of various system calls
in the binary feature vectors ofmalicious (mal - red/left) and
benign (ben - blue/right) PEs. Sorted w.r.t malicious PEs.

samples drops to single figures. The goal of the challenge is two-

fold. Firstly, to design an attack algorithm that modifies a provided

sample of malicious files such that it avoids detection. Secondly, to

design a learning algorithm that detects malicious data points, even

when modified using an attack algorithm. What made these tasks

particularly challenging is that the attack solutions are evaluated

using the defend submissions and vice versa. We thus have to make

an attacker without knowing the defender, and a defender without

knowing the attacker.

4 GRAMS
For the challenge, we developed GRAMS (Greedy Random Acceler-

ated Multi-bit Search) as an attacker and constructed a defense in

a standard adversarial training setting. The challenge provided a

framework for performing this type of training using neural net-

works within the PyTorch framework. For the defense, we used this

approach without modification. For the attack, the key ingredient

is a method for the so-called inner maximizer. This method is called

for every batch of data rows and repeated for every epoch during

adversarial training. This method should thus be able to quickly

find high quality modifications, resulting in a large loss for the

neural network.

During the robust malware detection competition, we tried out

several variants of this algorithm and picked two to submit as

solutions, one for attack, one for defense. Here we explain the ideas

and inner working of these methods. In the next section, we show

how the submission decision was made.

4.1 Multi-bit Gradient Descent
The core component in GRAMS is the manner in which it performs

a greedy search over the large (22,761 bit) binary search space.

Starting from a malicious data pointm, the goal of this search is

to find a modified pointm∗ ∈ A(m), where A() returns the set of
allowed modifications, such that the loss L(M,m∗) given the current
detection modelM is maximized.

Two traditional approaches, also implemented in the challenge

framework, is to perform a standard gradient descent (such as a

Fast Gradient Sign Method (FGSM) [9]) or the multi-step Bitwise

Coordinate Ascent [10] over a continuous relaxation of the binary

Algorithm 1 GRAMS - topk variant

Require: a batch b and a neural network modelM
1: best_x := b, oriд_x := data_values(b)
2: k := 8

3: while k > 1

2
do

4: loss := loss(M,x)
5: дrad := autograd(loss,x)
6: siдn := signs(дrad)
7: дrad := absolute(дrad − oriд_x ∗ дrad)
8: x ′ := x + topk(дrad,k) ∗ siдn
9: loss := loss(M,x ′)
10: loss ′ := loss(M,best_x)
11: if a row r in x with loss[r ] > loss ′[r ] exists then
12: for all such rows r do
13: best_x[r ] = x ′[r ]
14: end for
15: x := x ′

16: k := 2k
17: else
18: k := 1

2
k

19: end if
20: end while
21: return best_x

search space. For the former, the found relaxed solution can then

be transformed back into a binary data point using some form of

(randomized) rounding. The main problem of this approach is that

the loss of the relaxed solution may be a bad approximation of the

loss of the discrete data point. We overcome this by searching only

discrete (binary) data points. The latter only flips a single bit at

each step, corresponding to the coordinate with the largest partial

derivative of the loss. While this has shown to work for Android

malware [10], it only improves slowly in high-dimensional feature

spaces.

A naive translation of gradient descent to binary space would

be to iteratively try all possible bit flips (the local neighborhood),

compute the loss, and utilize the onewith the greatest loss. However,

this method is too slow. There are many possible single bit flips

(potentially 22,761), and finding a local optimum sometimes requires

hundreds of bit flips (i.e., many iterations of this algorithm). To

avoid this problem, we flip k bits at once. Once again, it is clearly

infeasible to try all possible multi-bit flips of size k (there are approx.

22,761
k
possibilities). The key idea exploited by GRAMS is to use the

gradient from the relaxed problem (which can be computed efficiently)
as a heuristic indicating which bits to flip.

As outlined in Algorithm 1 (lines 4-9), in every iteration, GRAMS

flips the k bits that have the largest absolute gradient, computed

using a traditional forward-backward pass through the neural net-

work. This functionality is efficiently implemented in PyTorch’s

loss, autograd, signs, signs abs, and topk functions. This gradi-

ent information does not take the problem constraints into account,

and hence can flip 1s into 0s. We opted to solve this problem by

restricting the flips to valid ones that satisfy the problem constraint.

To be more precise, given a computed gradient д for all bits, we sub-

tract д ∗ x from д (line 7), where x contains the original 1s present
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in the malicious data point (oriд_x in Algorithm 1). We thus always

perform k valid bit flips. This process can flip bits back and forth

and run in circles, which we solve by deciding on the number k in

a way that accelerates the search process.

4.2 Search acceleration
Howmany bits to flip in every iteration? This is a complex question.

The information in the gradient contains some information that

can be used to make smart decisions (e.g., only flip bits with large

gradients). Inspired by accelerated gradient descent [18, 21] and

other adaptive schemes, like step decay for the learning rate [8]

and successive halving for other hyperparameters [13], we decided

on the approach outlined below.

GRAMS starts with an initial value for k = k0 (the default value

is 8, line 2) and updates it according to the following equation (line

15-18):

kt+1 =

{
2kt if L(mnew) > L(m

old
)

1

2
kt otherwise

where ki is the ith value for k ,mnew/mold
is the new/old value of

the modified malicious data point, and L(m) is the loss for data point
m. Thus, GRAMS exponentially increases/decreases the value of k
depending on whether it finds better/worse solutions. Similarly, it

updates the malicious data point depending on:

mnew =

{
mnew if L(mnew) > L(m

old
)

m
old

otherwise

Thus, GRAMS only accepts modifications that improve the objective

function (increase the loss). A consequence of the above two update

equations is that GRAMS frequently finds large values of k for

which the solution is worse than the old one. By halving k , it aims

to find the largest value of k that still improves the objective. Instead

of searching for the optimal value of k , which would make every

iteration take slightly longer, we simply perform an improvement

the moment it is found. When this process reaches a local minimum,

i.e., when the top 1 bit flip does not result in an improved objective,

the search process is ended. Because of the doubling of k , this point
is typically reached quickly. There is no need to limit the amount of

iterations of the algorithm to a predefined constant, as is the case for

the existing approaches implemented in the challenge framework.

4.3 Learning from batches
The above two algorithmic techniques are applicable in any domain

where one aims to perform gradient descent in a discrete search

space. In GRAMS, we included one additional trick that has to do

with the challenge framework and its implementation in PyTorch.

Because the method for learning the neural network operates in

batches (in the challenge, size is set to 8), the inner maximization

problem that GRAMS solves also receives a batch of malicious data

rows.

All the provided inner maximizer algorithms perform some form

of gradient descent on this entire batch at once. This is effective

because the functions used from PyTorch operate efficiently on

tensors. Hence, the size of the batch matters but it is much more

expensive to process batches than to process individual data rows.

At the same time, wewouldwant to process individual rows because

the gradients for the individual rows are all independent from each

Algorithm 2 GRAMS - topk+ variant

1: given a batch b, a neural network modelM
2: x := GRAMS(b,M)
3: best_x := x
4: no_improve := 0

5: while no_improve < 10 do
6: get gradient дrad fromM and x , see as Algorithm 1

7: дrad := random(size(дrad)) ∗ дrad
8: x ′ := x + topk(дrad, random() ∗ 20 + 1) ∗ siдn
9: loss := loss(M,x ′), loss ′ := loss(M,best_x ′)
10: if a row r exists in x with loss[r ] > loss ′[r ] then
11: no_improve := 0

12: else
13: no_improve := no_improve + 1

14: end if
15: update rows of best_x using x ′, see Algorithm 1

16: end while
17: return GRAMS(bestx ,M)

other. In GRAMS, we opted again for a pragmatic solution where we

retain the efficiency of PyTorch’s tensor-based functions (including

topk), while still trying to optimize every individual row.

The solution is a simple trick (lines 11-14). GRAMS stores the

best objective (largest loss) found for every row in a batch, along

with the individual modifications achieving this objective. At the

end, GRAMS returns the composition of these best modifications,

which it may never have encountered during the search. In our

experience, this gives the highest quality solutions in the limited

run-time available for processing a single batch. There are, however,

some effects of this solution that would require further study. For

instance, in every iteration, the value of k is the same for all rows

in a batch. Moreover, we increase k when any of the rows in a

batch improves, and modify only the ones that do. Consequently,

we increase k even for the rows that did not improve.

4.4 GRAMS Variants
We build 3 variants that build on the above algorithmic techniques

that differ in the way they decide on starting points for the search

process and what to do upon reaching a local minimum.

4.4.1 Plain GRAMS - topk. The first method we evaluated is a plain

implementation of GRAMS as outlined above (denoted topk in the

results). See Algorithm 1. The search is not randomized in any way.

The only reason why we obtain different adversarial examples in

different learning epochs is due to the change in the neural network

modelM that we are trying to evade.

4.4.2 Random jumps from local minima - topk+. The secondmethod

(denoted topk+ in the results) build on the plain GRAMS method

by adding randomized jumps to escape from local minima, see Al-

gorithm 2. For initialization, (Algorithm 2, line 2) it calls the plain

GRAMS method until it converges. It is now likely stuck in a lo-

cal minimum. To escape, it runs a heavily randomized variant of

GRAMS where it adds one line of code (line 7) that randomizes the

gradient information by multiplying every number with a random

value. It then flips the top k bits with the largest gradient, where k
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Algorithm 3 GRAMS - topkr variant

1: given a batchb, a neural networkmodelM , a number of repeats

n
2: x := GRAMS(b,M)
3: best_x := x
4: for i in 1 to N do
5: x := random_start(b)
6: x ′ := GRAMS(x ,M)
7: update rows of best_x using x ′, see Algorithm 1

8: end for
9: return bestx

is a random value between 1 and 20 (line 8). It continuously per-

forms such random jumps but keeps track of the number of times

no improvement has been found for any row in the current batch

(lines 15-19). When this number is greater than 10 (line 5), the solu-

tion is thought to be sufficiently far from the local minimum and

GRAMS is called one more time to converge to a new, hopefully

better, minimum.

In our submission we ran this randomized jump process only

once. It is of course possible to keep running until best_x stops im-

proving for some time. In our experience in the challenge, running

it once is beneficial, but running it multiple time adds too much

overhead for the obtained loss increase. In Algorithm 2 there are

some parameters that determine the amount of changes to make

and improvements to try. For the challenge, we fixed these to rea-

sonable values (i.e. the algorithm did not run for too long, but did

find improvements).

4.4.3 Benign randomization - topkr. Our final method described

in Algorithm 3, changes the initial point from which to run the

GRAMS optimizer. This point can be chosen at random, keeping

the 1s in the original malicious data point intact, but we found that

this gave poor results. Instead, we used the existing benign data

points to estimate the parameters of a simple multivariate Bernoulli

distribution. This gives a random variable where each bit k is 1 or 0

with probability pk and 1 − pk respectively. Here, pk is the average

value of bit k over all benign training samples. We then sample from

the obtained distribution and keep the samples that are classified as

benign by already trained models. We generated 20000 samples this

way and then kept the samples that were classified as benign by at

least three out of five adversarially trained models (using the above

GRAMS variants), giving 3800 samples in total. These were used

to generate random restarts. This filtering step was necessary to

remove data points that were already being considered as malicious.

See Figure 2. As can be seen in Algorithm 3, we perform restarts

from these samples a fixed number of times (we used 10 in the

challenge submission), and return the best solution found.

5 IMPLEMENTATION AND EVALUATION
We implemented our approach in the framework

4
provided by the

competition organizers. To compare the three GRAMS variants,

we performed local experiments using the provided samples and

4
Available at https://github.com/ALFA-group/malware_challenge

implementations of randomized (rFGSM) [9] and a bit-wise gradi-

ent ascend (BGA) [1]. In the end, we had to make a selection of

which method to submit to the attack track, and which to submit

to the defend track. The two selected methods (one model and one

attack data set) were evaluated against all other participants in the

competition.

5.1 Local evaluations
Our first evaluation of the different attack methods uses the Self

Organizing Map (SOM) provided by the challenge framework. We

adversarially trained a classifier using topk and visualized the mali-

cious, benign, and adversarially perturbed data points in 2 dimen-

sions (see Figure 3). Although it is hard to draw solid conclusions

from a SOM visualization, we make some observations. Firstly, the

perturbed data points seem to be all over the map. All GRAMS

methods perform attacks everywhere and it seems that topkr is

the best at finding points deep in benign space (darker background

color). Secondly, it shows that the trained model is quite good at

correctly classifying the malicious and perturbed data points. A

very limited number of data points fall into space with high benign

belief probability.

To further study the performance of the three attack variants,

we compute the evasion rate and accuracy for several adversarially

trained models, see Table 1. We ran the experiments on a 16 core

Intel(R) Xeon(R) CPU at 2.40GHz without a graphics card. The best

values are highlighted in the table. We ran all adversarial training

methods for 50 epochs, except for topkr, which only completed 30

epochs. In terms of attacking performance, topkr outperforms all

other methods, resulting in higher evasion rates and lower F1 scores.

All of the GRAMS variants find better attacks than rFGSM and

BGA. In terms of defense it is not so clear. The unmodified GRAMS

method (topk) seems to perform well against many adversaries.

The one that avoids local minima (topk+) performs better against

our best adversary (topkr). They all outperform the models trained

using rFGSM and BGA. In the end, we selected topk+ for the defense

submission and topkr for the attack submission.

5.2 Challenge Scores
The scores from the challenge are available online on the challenge

website
5
. In total, there were 4 submitted attack (adversarially mod-

ified) data sets and 5 submitted defense models. Although no code

or extensive details of the submitted methods was made available,

we briefly describe the other submissions of both the attack and

defense methods. Besides GRAMS, one of the attackers used an

Elastic-Net Attack (ENA), which is a variant of the elastic net at-

tack by Pytorch. The main difference with the Pytorch version is

that a generator is trained with an Adam optimizer to produce the

perturbations for a batch of data. Another method called Additive

GAN Attack (AGA) used a generative adverserial network training

structure to train a discriminator which differentiates benign and

malicious data, and a generator which transforms benign data to

malicious data while enforcing only additive changes. Finally, the

GAN with Tips (GwT) method also used a generative adversarial

network with some adaptations not specified by the submitting

team. GRAMS with topkr obtained the highest evasion rates, also

5
https://sites.google.com/view/advml/Home/advml-2019/advml19-challenge
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Figure 2: Benign randomization. These samples were generated from a probability distribution which is estimated from the
benign training samples and classified as benign by multiple classifiers. Light is 1, dark is 0.

Figure 3: Adversarial samples generated by various variants of GRAMS, visualized in two dimensions using a Self Organizing
Map.

Table 1: Evasion rates (left) and F1 scores (right) of the three GRAMS variants, rFGSM, and natural (unmodified) data as attacks
(columns) against adversarially trained models using these methods and bga. The rFGSM and BGA implementations were run
as given in the challenge framework, running for 50 iterations. The bold face values are best values over all GRAMS rows
(defend). The italic face values are best values over all GRAMS columns (attack).

nat. rFGSM topk topk+ topkr nat. rFGSM topk topk+ topkr

rFGSM 7.2 8.0 42.4 63.6 61.7 0.922 0.917 0.693 0.502 0.521

BGA 6.3 19.9 53.8 62.9 90.8 0.911 0.834 0.584 0.498 0.152
topk 5.3 6.7 6.4 9.2 22.2 0.919 0.912 0.913 0.898 0.823
topk+ 8.1 8.5 9.2 9.8 16.0 0.907 0.905 0.902 0.898 0.863
topkr 16.3 16.4 17.4 17.5 18.2 0.890 0.889 0.883 0.883 0.878

against unknown defenders. The submitted defense methods in-

cluded GRAMS, but also a random choice between the different

GRAMS variants described in this work and the baseline meth-

ods (rFGSM and BGA). Another submitted defense method was

AME-AT, which uses an attentive mixture of experts. The two re-

maining defense methods made use of non-negative weights in

neural networks: NNWC and NNNN. In both methods, a neural

network was trained in such a way that all weights were strictly

non-negative. This made sure that any addition to a feature vector
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Table 2: Evasion rates for the baselinemethods (left columns and top rows), the submitted attacks (right columns), and submit-
ted defenses (bottom rows). The baseline methods are white-box attacks on the submitted models, the models are unknown
to the submitted attacks. Best attack values for both settings are in bold face.

Nat. rFGSM BGA Grosse GRAMS AGA GwT ENA

Natural 6.9 99.9 99.9 99.8 93.9 94.2 100.0 84.7

rFGSM 5.8 5.8 5.8 6.3 44.3 0.0 0.0 27.6

AME-AT 5.8 5.8 5.8 6.3 44.3 0.0 0.0 29.6

GRAMS 8.0 9.0 8.1 9.7 4.7 0.0 0.0 2.6

NNWC 10.8 10.8 10.8 10.8 3.7 0.0 0.0 2.8

NNNN 5.4 5.4 5.4 5.4 2.0 0.0 0.0 1.6

RC 6.8 7.6 7.0 8.5 27.2 0.0 0.0 6.2

Table 3: F1-scores for the baseline methods (left columns and top rows), the submitted attacks (right columns), and submitted
defenses (bottom rows). The baseline methods are white-box attacks on the submitted models, the models are unknown to the
submitted attacks. Best defense values for both settings are in bold face.

Nat. rFGSM BGA Grosse GRAMS AGA GwT ENA

Natural 0.913 0.001 0.001 0.004 0.104 0.099 0.000 0.243

rFGSM 0.921 0.918 0.892 0.604 0.519 0.948 0.948 0.790

AME-AT 0.919 0.919 0.919 0.917 0.670 0.949 0.949 0.778

GRAMS 0.905 0.899 0.904 0.895 0.922 0.946 0.946 0.933
NNWC 0.880 0.880 0.880 0.880 0.917 0.936 0.936 0.922

NNNN 0.883 0.883 0.883 0.883 0.901 0.910 0.910 0.903

RC 0.918 0.914 0.917 0.909 0.797 0.953 0.953 0.921

increased the malicious score. In addition to rFGSM and BGA, we

include the score of the Grosse baseline, which is a state-of-the-art

method for creating AEs for malware detection [10]. Details about

the individual methods are also available on the challenge website.

For the defense submission, GRAMS obtains the highest F1 scores

overall, but tied with NNNN due to their attack resilience. In addi-

tion to showing the strengths of GRAMS, we make several interest-

ing observations by comparing the competition results to our own

local GRAMS evaluation.

Observation 1 - Attack: The evasion rates (Table 2) show how

difficult it is to attack an unknown defender. Although AGA and

GwT successfully evade the Natural model (trained without de-

fense), they fail against any of the models trained with defense.

This does not show that using GANs is unsuccessful, but that when
attacking an unknown defender one has to target a model with de-
fense. Otherwise, many examples end up at anomalous points of

the input space, such as a feature vector containing only 1’s. These

might be classified as benign by a natural model, but any defense

method will quickly exclude it from benign space.

An interesting observation from the attack track table is that the

adversarially modified test data frequently obtains lower evasion

scores than the natural (unmodified) data. For defense methods

based on non-negative neural nets (NNNN and NNWC), this makes

a lot of sense. Since these networks only have positive weights,

any adversarial modification that changes a feature from 0 to 1

will result in a greater maliciousness score. Against these types

of defenses it is detrimental to perform any attack. Although there
is evidence that attacks transfer between different classifiers [7], this

seems not the case when different defenses are applied. Interestingly,
one of the better attack methods (against unknown defense) would

simply have been to submit the training data as is (the baseline

natural column in Tables 2 and 3).

In fact, under the performance criterion of the challenge, submit-

ting the training data as is, which has the largest smallest evasion

rate, would have won without even evading the baseline models.

This shows how difficult it is to find a good evaluation metric for

adversarial machine learning challenges. From all submitted at-

tacks, GRAMS achieves the largest smallest evasion rate (2.0 against
NNNN), but also shows larger evasion rates for the other models.

Observation 2 - Defense: Although using non-negative neural

nets (NNNN and NNWC) is certainly a good defense method, it

seems to cost too much in terms of F1 score, see Table 3. The

more traditional adversarial training method employed by GRAMS

classifies less examples as malicious, allowing for greater evasion

rates, but improved F1 scores. It seems that too many regions in the

adversarial example space are forced to be classified as malicious by

NNNN and NNWC, and too few by AME-AT and RC. Interestingly,

only GRAMS and ENA exploit this weakness. Based on the baseline

methods, AME-AT seems to be a good model, but on the submitted
attacks GRAMS is clearly superior with 0.922 being the smallest F1
score. Due to its resilience to evasion, NNNN was also declared a

winner of the defend track.

The difference in evasion rates between NNNN and NNWC

is also interesting. Both used the idea of non-negative weights

but NNNN learned a much larger model (approx. 200 times) than

NNWC. This seemingly allowed NNNN to fine-tune the decision
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boundary and exclude a larger part of malicious space. There is
clearly a trade-off between evasion rate and F1 score (or accuracy)
that deserves much more study.

Observation 3 - Unknown targets: In our own validation (Ta-

ble 1), topkr obtains above 15% evasion rates against topk+. In the

competition results, this drops to just below 5%. This difference

is essentially due to the fact that the target (in this case GRAMS)

was unknown, and that we spent more computation time training

the actual defense submission. On the left-hand sides of Tables 2

and 3, the results of the baseline attacks are obtained when knowing

the defense model (white-box), i.e., making it possible to compute

information from the model, such as gradients. This explains why

the results of the baseline attacks seem to be more effective against

the submitted defenses. It is actually surprising that GRAMS (not
knowing the target) outperforms the baseline methods (knowing the
target) on AME-AT and RC.

Discussion GRAMS performs very well on both problems, i.e.

crafting AEs and detecting them. However, if someone were to use

a system to detect malware in the wild, the preference might be

given to NNNN due to its evasion resilience. In particular, if one

knows the kinds of modifications an attacker might make, defenses

such as NNNN can give the guarantee that any possible attack will

always benefit the defense. Methods used in adversarial training,

such as GRAMS, do not provide such a guarantee, even if it defends

well against all currently known defenses (such as AME-AT). There

is however a trade-off in classification performance.

6 CONCLUSION
We present the winning results from a recent adversarial machine

learning competition focused on malware detection. Although few

teams participated in the challenge, it has been a success in the

sense that it delivered novel methods for both generating and de-

tecting adversarial examples, including several interesting insights.

The core of GRAMS is an inner maximization algorithm based on a

bit-wise greedy algorithm with restarts. This clearly outperforms

the gradient-based methods that operate in the continuous (relaxed)

domain. Intuitively, the problem GRAMS solves is a black-box op-

timization problem with the gradient as a search heuristic. The

field of (guided) black-box optimization is vast (see, e.g., [15]). The

competition results, and the integration of the GRAMS code in

the competition framework , opens up the road for a multitude of

new black-box optimization approaches for adversarial training in

discrete spaces.

The unique competition setup, in which the defense does not

know the attack and vice versa, allowed to draw some interest-

ing conclusions. Most importantly, from an attacker perspective,

it seems very difficult to adversarially modify malware in order to

avoid detection. The results indicate that attacks do not transfer to

different defense methods and sometimes even impact evasion neg-

atively. This seems good news for machine-learning based malware

detection, at least with an existing defense against adversarial mod-

ification, but further study is required to draw solid conclusions. In

particular, it would be interesting to also allow some system calls

to be removed or replaced by others.

We make our code available publicly
6
.

6
https://github.com/tudelft-cda-lab/GRAMS
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