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Half of the long-termed disabled stroke survivors experience increased hyper-resistance of the wrist. Dis-
crimination between the two components of joint hyper-resistance, i.e. the neural reflexive and intrinsic
tissue component, is important since the components require a different treatment method. To discriminate
between the two components, objective methods are developed that make use of bio-mechanical modeling.
This research aimed to address the agreement between a clinically easy applicable modeling method, the
NeuroFlexor method, and a more comprehensive optimization method, which both objectively obtain the
neural and intrinsic components of joint hyper-resistance. Furthermore, this research study addressed the
agreement between the neural and intrinsic components obtained with the NeuroFlexor and optimization
method, and the external validation of the two components with clinical rating scales.

Method NeuroFlexor based assessments and instrumented positional wrist perturbations were applied to
chronic stroke survivors (n = 49) and healthy volunteers (n = 11). The neural and intrinsic components were
estimated using the NeuroFlexor method, whose method is a force-relationship method, and a nonlinear
electromyography driven wrist optimization model. The Modified Ashworth scale (MAS) was rated to all
stroke survivors as clinical scale. Correlation analysis was conducted to find the agreement between the
components of both methods, and to find the agreement between the MAS and the components. To analyze
how well the neural and intrinsic components of both methods were able to predict the MAS, multiple
regression analysis with a backward selection procedure was used for both methods separately and both
methods together. On the healthy subjects, the optimization model was applied on the NeuroFlexor data to
check differences in model structure.

Results The neural components of both the NeuroFlexor method and optimization method had a strong
correlation (r = 0.656), as well as the intrinsic components (r = 0.648). For both methods, the neural and
intrinsic components were significant estimators of the MAS, and the NeuroFlexor method and the opti-
mization method were approximately equivalently able to predict the MAS (r2 =0.466 and r? = 0.519,
respectively). For the multiple regression analysis with the intrinsic and neural component of both methods
together, the neural component of the optimization method together with the intrinsic component of the
NeuroFlexor method were more able to describe the MAS (r2 = 0.605) than the two components of the
methods separately. For healthy patients, the optimization model was not able to reliably estimate the two
components from the NeuroFlexor data.

Conclusion This study found evidence to support the use of the NeuroFlexor device for quantification of the
neural and intrinsic components of wrist hyper-resistance post-stroke. Further research is needed to establish
the validity of the neural component of the NeuroFlexor and the intrinsic component of the optimization
method.

Keywords: hyper-resistance, spasticity, stroke, bio-mechanical modeling, system identification
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1. Introduction

When someone suddenly has difficulties communicating, numb-
ness of the face, arm or leg, loss of vision, a severe headache
and/or trouble with keeping their balance, do not hesitate to
contact the doctor, since these are symptoms of a stroke [1].
Each year, 15 million people suffer a stroke worldwide [2]. A
cerebrovascular accident (CVA), more commonly called stroke,
is a loss of brain function and can be either an ischaemic stroke,
caused by blockage of a blood vessel by a clot, or a hemorrhagic
stroke, caused by a burst blood vessel 3. Both cause a blood flow
disruption which results in a lack of oxygen and nutrients supply
to the brain, resulting in damaged brain tissue. The effects are
dependent on the severity and may lead to a neurological move-
ment disorder or even death. About 5 million people who suffer
from a stroke remain long-term disabled [2].

About half of the long-term disabled stroke patients experi-
ence loss of arm function including increased hyper-resistance
of the wrist, wrist contracture and a reduction of the range
of motion [4]-[6]. The term hyper-resistance is defined as the
impaired neuromuscular response, i.e. increased resistance, to
passive stretch. Assessment of joint hyper-resistance can con-
tribute to the recovery in post-stroke rehabilitation [7]. The
components causing joint hyper-resistance post-stroke are of neu-
ral or non-neural, i.e. intrinsic (tissue), origin [8]. These two
components together, i.e. the neural and intrinsic component,
are called the neuromechanical parameters.

The neural component of joint hyper-resistance is stretch
hyper-reflexia, or more commonly called spasticity, together with
an increased baseline activity [9], i.e. involuntary background
activation, and synergistic contraction patterns. Lance defined
spasticity as [10]:

“A motor disorder characterized by a velocity-dependent
increase in tonic stretch reflexes, i.e. muscle tone, with
exaggerated tendon jerks, resulting from hyper-excitability
of the stretch reflex, as a component of the upper motor
neuron syndrome.”

It is important to discriminate between these components since
the neural and intrinsic components require a different treat-
ment method, where therapy is focused on the most dominant
contributor (7], [11].

The neural component of joint hyper-resistance is treated with
botulinum toxin type-A (BoNT-A) and baclofen to block neu-
romuscular transmissions [12], [13|. The intrinsic component of
joint hyper-resistance are the passive muscle properties, i.e. the
stiffness (elasticity) and viscosity of the muscle and connective
tissue. When the intrinsic component of muscle hyper-resistance
dominates over the neural component, treatment is aimed at
stretching of visco-elastic tissue by casting, splinting or surgery
[14].

Currently, assessment of wrist hyper-resistance post-stroke is
mostly based on subjective clinical measurements of a specialist
[15], [16], since they appear to be the easiest applicable [17] and
do not require sophisticated measurement devices. Examples of
clinical scales are the Modified Ashworth Scale (MAS) and the
Tardieu scale (TS). The disadvantage of these clinical scales is
that they are subjective, not standardized, have a low validity

and a low inter-rater and intra-rater reliability [18], [19], espe-
cially when they have been related to objective methods to obtain
joint hyper-resistance [15|—[17], [20]. Above that, these clinical
scales do not distinguish between the different properties con-
tributing to the movement disorder [17]. Notwithstanding these
criticisms, these clinical methods are still used clinically due to
the high cost/benefit ratio of bio-mechanical approaches.

At present, existing bio-mechanical methods that identify the
neuromechanical parameters, are validated by comparing the
outcome parameters with clinical scales [4], [20]-[25]. However,
since clinical scales lack validity and reliability, validation of the
bio-mechanical methods with clinical scales could lead to con-
flicting results. Unfortunately, there is no appropriate golden
standard yet, forcing to validate the neuromechanical parameters
with clinical scales.

Nowadays, existing bio-mechanical methods to obtain the bio-
mechanical parameters are either based on system identification
and parameter estimation (SIPE) techniques [4], [22], [24], [26],
[27], or on signal analysis [20], [21], [25], the latter are classified as
force-relationship methods. The SIPE methods assume a specific
model structure that resembles the mechanics of the wrist joint.
Parameters are estimated by simulating the measured impedance
to the applied perturbation signal with a specific model struc-
ture that resembles the mechanics of the joint. The disadvantage
of most system identification and parameter estimation based
assessments of the neuromechanical parameters is that they are
complicated to use clinically. Therefore, it could be advantageous
to use force-relationship models that are based on simple signal
analysis and which do not require complex off-line data analysis.

The NeuroFlexor model, i.e. a unidirectional wrist model of
Lindberg et al. [21], makes use of a force-relationship technique
to determine the neuromechanical parameters and is therefore
clinically appealing. The NeuroFlexor model makes much gen-
eral assumptions about muscular structure and is based on three
points on the force response curve [21]. To check validity of the
NeuroFlexor method, this study compares the neuromechanical
parmeters of the NeuroFlexor method with the neuromechanical
parameters obtained with a bidirectional nonlinear electromyo-
graphy driven SIPE model, i.e. the optimization model. The
optimization model is more comprehensive than the NeuroFlexor
model, and simulates the active and passive mechanics of the
wrist joint.

The aim of the present study is to validate the NeuroFlexor
method in a cohort of stroke patients, by looking at the
agreement between NeuroFlexor based assessments of the neu-
romechanical parameters and the neuromechanical parameters
obtained with the optimization method. First, the test-retest
reliability of the NeuroFlexor will be discussed. Next, validity
measures of the optimization method will be discussed, together
with the robustness of the model. Thereafter, the correlation
between the neuromechanical parameters of both methods will be
discussed. Depending on the discrepancy between the neurome-
chanical parameters obtained from both methods we will discuss
whether the differences are caused by measurement conditions or
the underlying modeling techniques. Therefore, the optimization
model will be applied on the NeuroFlexor data to check differ-
ences in model structure. Since the MAS does not distinguish
between the two components of joint hyper-resistance [17], [2§],
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a stepwise multiple linear regression analysis will be conducted
on the neuromechanical parameters of both the NeuroFlexor
method and optimization method separately, to see which param-
eters are able to describe the MAS. To check which neural or
intrinsic component is most able to predict the MAS, a stepwise
multiple linear regression analysis was conducted based on the
neuromechanical parameters of the NeuroFlexor and optimiza-
tion method together. Next to that, it will be discussed whether
the neuromechanical parameters are able to distinguish between
patients with a different MAS.

Our hypothesis is that the optimization method will give a
more valid estimation of the neuromechanical parameters than
the NeuroFlexor method since the optimization method uses a
more comprehensive model based on muscle physiology. There-
fore, we assume that there is no strong correlation between the
neuromechanical parameters of the NeuroFlexor method and
optimization method, i.e. the correlation is less than 0.6 [29], and
that the discrepancy will be too large to validate the neurome-
chanical parameters of the NeuroFlexor method. Furthermore,
we hypothesize that the neuromechanical parameters of the opti-
mization method are able to predict the MAS and distinguish
between patients with a different MAS more accurately than the
neuromechanical parameters of the NeuroFlexor method.

2. Materials and Methods
2.1 Subjects

In total 49 chronic stroke patients and 11 healthy controls partic-
ipated in this study. Cross-sectional measurements were obtained
from 35 chronic patients (at least 6 months post-stroke) with a
motor and/or somatosensory upper-limb impairment post stroke
as part of the NeuroFlexor study. Next to patients from the cross-
sectional study, longitudinal measurements were obtained from
14 acute patients with a motor and/or somatosensory upper-
limb impairment post stroke. Four repeated measurements with
the NeuroFlexor and Wristalyzer (MOOG, Nieuw Vennep, The
Netherlands) were performed in the first six months post-stroke
i.e. within 3 weeks, at 5 weeks, 12 weeks, and 26 weeks post
stroke. For this study, only data obtained during the 26th week
was used.

Clinical tests, i.e. the MAS and the passive range of motion,
were assessed once at the impaired wrist of patients by a trained
researcher. In total, three observers rated the clinical test during
the study. The passive range of motion of the wrist was measured
with a goniometer (pPROMy), while the goniometer was fixated
to the lowerarm and hand. During determination of the pROMgq
the fingers were stretched. The total pROM, was determined
by adding the average maximum flexion angle and the average
maximum extension angle out of three measurements. In total
four MAS scores were rated at the wrist, i.e. both wrist flex-
ion and extension with their fingers stretched and bent. Finally,
the highest rated MAS score was used. Appendix [A] shows the
descriptions of the MAS grading. Patient characteristics are
summarized in Table [l

To apply the optimization model on the NeuroFlexor data,
NeuroFlexor data was obtained from 11 healthy subjects. For
the healthy subjects, only the instrumented measurements were
performed. Table [[]| shows the healthy subject characteristics.

2.1.1 Inclusion and exclusion criteria

For the cross-sectional study, we identified patients who sur-
vived a first-ever hemorrhagic or ischaemic stroke in an area
supplied by the anterior, medial, and/or posterior cerebral arter-
ies. For the longitudinal study, patients were identified which had
a first-ever unilateral ischaemic stroke in the past three weeks,
in an area supplied by the anterior, medial, and/or posterior
cerebral arteries. For both the cross-sectional and longitudinal
study other inclusion criteria were: patients had to have an upper
limb deficit according to the National Institutes of Health Stroke
Scale (NIHSS) 5 a/b score > 0 at the time of inclusion, to be
over 18 years and a have mini-mental state examination (MMSE)
score larger than 20. Furthermore, the patients had to be able
to sit without support for 30 seconds. Exclusion criteria for both
the cross-sectional study and longitudinal study were previous
existing neurological conditions, previous existing orthopaedic
limitations of the impaired upper limb, and not being able to
comply with the protocol. Furthermore, the subject should not
have used any medication that could influence the upper extrem-
ity in the past three months, e.g. botulin-toxin injections. For
healthy subjects, the exclusion criteria were neurological defi-
ciencies, orthopedic problems with their wrist and inability to
comply with the protocol.

All patients gave their written informed consent to the exper-
iment, which was approved by the Medical Ethical Committee
of the VU Medical Centre. Healthy subjects gave their written
informed consent to the experiment, which was approved by the
Ethical Committee of the Delft University of Technology.

2.2 Instrumentation

2.2.1 NeuroFlexor

The NeuroFlexor is a one degree of freedom (DOF) haptic manip-
ulator, which exerts a positional perturbation in the extension
direction of the wrist. It measures the force resistance of the
wrist and finger-muscles during passive extension of the wrist
[21]. The wrist is moved by moving the hand plate with a step
motor. During the movement, the resistance force is measured
by a force sensor mounted underneath the hand plate (Figure|[1)).
During the measurements with healthy patients, also elec-
tromyography (EMG) signals were collected (see Subsection
2.2.3). EMG data was obtained with a Mobi system (TMSi
B.V., The Netherlands). A trigger signal was extracted from the
NeuroFlexor device, such that the data obtained with the Neu-
roFlexor and the Mobi could be off-line aligned. Matlab R2017b
(The MathWorks Inc. Natick, MA) was used to record the EMG
signals and the trigger signal, and for off-line data analysis.

2.2.2 Optimization method

The Wristalyzer (MOOG, Nieuw Vennep, The Netherlands) was
used to collect the data for the optimization model and was
located in a van. The van was driven to the patients and the
measurement were carried out in the van. The Wristalyzer is a
one-DOF haptic manipulator, which allows flexion and exten-
sion of the wrist. It measures the mechanical response to an
imposed perturbation on the handle (Meester techniek B.V.,
The Netherlands), with a torque limit of 5.2 Nm. The handle
is moved by a vertically positioned servo motor (Parker SMH100

13
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Table I. Patient demographics

Overall Classified
MAS o MAS ¢ MAS 14+ MAS 2 MAS 3

(n = 49) (n=9) (n=11) (n=12) (n="7) (n =10)
Age [years| (mean + SD) 59.69 £ 10.01 65.56 £ 6.62 60.36 £ 9.23 60.92 £ 6.95 56.86 £ 11.77  54.20 &+ 13.16
Time after stroke [years] (mean £+ SD) 5.28 £+ 6.35 3.21 4+ 3.91 3.57 £ 5.07 7.72 £ 9.68 6.53 £+ 5.44 5.19 + 4.67
Stroke type [ischaemic] (%) 85.71 % 88.89 % 100.00 % 91.67 % 71.43 % 70.00 %
Sex [men] (%) 69.39 % 55.56 % 72.73 % 83.33 % 71.43 % 60.00 %
Weight [kg] (mean £+ SD) 80.45 £ 15.72 75.78 £ 22.75 87.73 £ 14.79 80.75 £ 12.45 83.43 £ 9.69 74.20 £ 15.03
pROM,, [deg] (mean + SD) 118.74 £ 20.09 131.28 £ 12.56 124.32 4+ 20.29 118.00 £ 16.65 117.82 £ 23.76 99.65 £ 17.57
pROM, [deg] (mean + SD) 172.48 £+ 19.28 183.43 £ 15.83 169.45 + 27.97 173.83 £ 15.41 169.71 4+ 12.96 166.71 + 17.30
Affected body side [right] (%) 40.82 % 55.56 % 54.55 % 33.33 % 57.14 % 10.00 %
Affected hand dominant [yes] (%) 42.86 % 55.56 % 72.72 % 33.33 % 42.86 % 10.00 %

Table II. Healthy subject demographics

(n=11)
Age [years| (mean £+ SD) 30.27 £+ 10.50
Sex [men] (%) 27.27%
Dominant hand measured [yes] (%) 63.63%
Weight [kg] (mean £+ SD) 75.27 £ 9.88

Force sensor

Figure 1. Schematic side view of the NeuroFlexor. Where a force
sensor under the handplate measures the resisting force, and the
wrist is fastened to the handplate with straps.

series), with a maximum range of -80° to 80°. Furthermore,
the motor is equipped with a SinCos encoder to measure the
angle (Stegmann SRS50) and the reaction torque was measured
with a torque sensor in the handle. The Wristalyzer was force-
controlled to determine the passive range of motion (pROM),
and position controlled during the determination the neurome-
chanical measurements. The manipulator is controlled by an
inertia-spring-damper system, with a stiffness of 85 Nm/rad.
Further information about the Wristalyzer setup is described in
Appendix[B] Wrist torque, angle and EMG signals were recorded

simultaneously at 2048 Hz using a Refa TMSi amplifier (TMSi
B.V., The Netherlands). ASA Lab (ASA Lab 4.9.2, ANT Soft-
ware BV, the Netherlands) was used for recording of the EMG
and Wristalyzer signals, while Matlab R2017b (The MathWorks
Inc. Natick, MA) was used for control of the Wristalyzer and for
off-line data analysis.

2.2.8 Signal processing

For the optimization measurements and NeuroFlexor measure-
ments of healthy subjects, muscle activation of the flexor carpi
radialis (FCR) and extensor carpi radialis (ECR) of the measure-
ment side was obtained by an EMG with standard disposable
surface electrodes from Ambu® (Ambu A/S, Denmark), at a
sample frequency of 2048 Hz. The ground electrode was placed
on the mastoid process of the subject to keep patient potential
and amplifier potential at about the same level.

To reduce background noise and to remove baseline activity,
EMG signals were band-pass filtered at [20 - 450] Hz (3th-order
Butterworth). Thereafter the EMG signals were full wave recti-
fied and subsequently low-pass filtered (3rd order Butter-worth
(20 Hz)), to obtain the linear envelope. Finally, the minimal
EMG, defined as the minimal EMG value determined with steps
of 8 ms during the whole measurement 7 was subtracted
from EMG, to reduce the influence of noise and offset muscle
activation.

Angle and force signals were low-pass filtered at 20 Hz (3th-
order Butterworth), to avoid noise enlargement while calculating
the angular velocity and acceleration. To avoid long computa-
tional times of the optimization method, all data obtained with
the optimization method was down-sampled to 128 Hz. In case
of the healthy subject data on the NeuroFlexor data, EMG data
was re-sampled to the sample frequency of the NeuroFlexor.

2.8 NeuroFlexor method

2.8.1 Measurement protocol

To asess test-retest reliability, measurements were performed
twice on the same day with the NeuroFlexor. Measurements
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were performed on the impaired hand of the stroke patients
and on the right hand of the healthy subjects, while the sub-
jects were instructed to "relax and do nothing”. The subjects
were seated with their arm resting on the device such that their
elbow was approximately 90° flexed. The forearm was strapped
to the device making minimal displacements possible, the hand
was strapped to the handplate and the distal edges of the malle-
oli of the wrist are placed in line with the rotation axis (Figure
2]). The wrist was moved over a range of 50°, i.e. from 20° flexion
to 30° extension. First, five slow ramp, hold and release move-
ments in extension direction (5°/s) were executed and thereafter
ten fast movements in extension direction (236°/s). The soft-
ware program NeuroFlexor Scientific v0.06 (AggeroMedTech AB,
2014, Solna, Sweden) was used to control the measurements and
to perform the analysis of the obtained data. The first out of five
slow movements and the first out of ten fast movements were
excluded from the analysis, in order to avoid bias from startle
reflexes and mechanical hysteresis .

2.8.2 Modeling

An underlying model determines the neuromechanical parame-
ters by calculation steps based on data points on the force curve
recorded during the slow and fast sweeps. Appendix [D] shows
the model structure. The passive joint resistance is separated
into three components: a neural (NC), an elastic (EC) and a
viscous component (VC). Where the NC and EC are called the
neuromechanical parameters of the NeuroFlexor method.

2.4 Optimization method
2.4.1 Measurement protocol

Before the measurements, the van was stabilized and the inner
temperature was set such that it was comfortable for the sub-
jects. Subjects were seated such that their shoulder was relaxed
and their elbow was approximately 90°of flexion. Before the sub-
jects arm was placed in the Wristalyzer, it was checked whether
the subject could comfortably rotate their wrist by manually
rotating the wrist. The forearm was fixated to a lower arm cuff
(Kramer Orthopedie B.V., The Netherlands) and hand was fix-
ated to the handle. EMG electrodes were placed on the bulk of
the FCR and the bulk of the ECR. First, the resting position
of the subject was set by recording the angle in rest. There-
after, the passive range of motion (pPROM,,) was determined
by gradually increasing the torque in both flexion and extension
direction, until a torque of 2 Nm was reached. While obtaining
the pPROMy,, subjects were asked to remain maximally relaxed
and it was online checked whether no voluntary muscle activation
was present in the EMG signal.

After determination of pROMy,, the neuromechanical param-
eters were assessed under passive conditions with positional
perturbations. Passive sweep trials were executed over pROMy,
minus one degree from the extremities of both the flexion and
extension angle, to secure the safety of the subject. During the
sweep trial, the subjects were instructed to “relax and not inter-
vene” and the wrist was rotated over pROM,, at four different
velocities in both flexion and extension direction. These include
a slow sweep at 5 °/s, an Ashworth sweep pROMy, /s, a fast
sweep 236 °/s, and a preparatory movement to reach the limits
of pROMy,. The resting time after the preparatory movement

and before the flexion movement was 3 seconds, and the rest-
ing time between the flexion and extension sweep was 5 seconds.
The angle was defined as positive during flexion position and
negative during extension. Unlike the movements over the full
range of motion, preparatory sweeps are applied over half of the
pROM,, to move the robot to flexion or extension extremity of

Figure 2. Measurement setup of the optimization method with
the Wristalyzer (MOOG, Nieuw Vennep, The Netherlands),
where the arm was strapped to a lower arm cuff (Kramer Ortho-
pedie B.V., The Netherlands), the hand was strapped to the
handplate and the distal edges of the malleoli of the wrist are
placed in line with the rotation axis. EMG surface electrodes
are placed on the flexor carpi radialis and extensor carpi radialis
(Ambu A/S, Denmark).

2.4.2 Modeling

The optimization model of de Vlugt et al. was extended by
de Gooijer - van de Groep et al. to a bidirectional wrist model .
The model simulates the physiological mechanisms, which con-
sists of the active and intrinsic muscle contributions. The active
contribution is EMG dependent and is based on a Hill-type mus-
cle model , i.e. it contains a force-length and force-velocity
relationship. Optimal muscle lengths are estimated and the active
contribution is based on second order dynamics with a cut-off fre-
quency to mimic activation dynamics. The intrinsic contribution
consists of visco-elastic properties of the ECR and FCR mus-
cles, which are represented by a spring system that describes the
resistance of the connective tissue as a result of stretching the
muscles beyond their slack lengths. Also, relaxation dynamics,
i.e. the tension decay of muscles following stress , was mod-
eled, where its elastic force will decrease over time. Appendix@
shows the full model description.

The input signals for the model are the measured angle 0, the
measured torque and the EMG signals of the ECR and FCR. The
wrist model simulates the measured wrist torque, by adjusting
its model parameters (called the parameter estimation part, a
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schematic representation is visible in Appendix [C]). In total 12
physiological parameters were estimated by the model, which can
be separated into passive parameters, i.e. the mass of the hand
and handplate (m), the stiffness coeflicients of the muscles (kecr
and kj), the relaxation time constant (7,.;), the relaxation
factor (kye;), tendon slack lengths (Isjgck,cer and lgigek, for), and
into active parameters, i.e. the EMG weighting coefficients (gecr)
and (gyer), the optimal muscle lengths (lo,ecr) and (I, fer), and
the activation cut-off frequency (fp). Initial parameter values,
together with their lower and upper bounds are presented in
Table [T

The parameters of the model were estimated by minimiz-
ing the error function, i.e. the difference between the estimated
torque and measured torque, by using a nonlinear least squares
algorithm. Thus, as cost function (E) the sum of the difference
between the modeled and measured torque was minimized over
all time samples:

E= €0,i) (1)

i=1

€(0,i) = T(0,i) — T(3) 2)

where 0 is the parameter vector, N the number of time samples,
i the index of the time sample, € the error between the modeled
torque T and the measured torque T'.

To test for possible sub-optimal solutions (local minima),
a sensitivity analysis was performed in 4 randomly selected
patients. Therefore a grid search algorithm was performed on
the initial parameters, such that the optimization procedure was
started with the most optimal initial parameters obtained by
the grid search algorithm. Thereafter, it was checked whether
the outcome parameters of the optimization method with the
grid search algorithm differed from the parameters obtained
with the normal optimization procedure, i.e. without grid search
algorithm.

After parameter optimization, i.e. when the final parameters
were obtained, stiffness at joint level (Kjy,¢) and active torque
were calculated. The joint stiffness was taken at an angle that
was the same for all subjects, i.e. at angle 0 °. Finally, root
mean square (RMS) values of the modeled active torque were
calculated as a measure of the neural component . RMS val-
ues were taken over the standardized parts visible in Figure [3]
resulting in RMS values for respectively the slow part of the mod-
eled active toque (Tyet,m,siow), the Ashworth part (Toet,m, Ash)
and the fast part (Tyct.m,fast) (Where m stands for either the
ECR or the FCR). 0.5 seconds before and after the sweep were
taken such that it should be enough to catch the stretch reflex
, . (Tact,m, fast) was used as the neural outcome parameter
(Tact,m) from the optimization method. So, Kjoint, Tact,ecr and
Tact, fer are the main outcome measures of interest and defined
as the neuromechanical parameters of the optimization method.

2.4.8 Quality measures

The validity of the model was assessed with the variance
accounted for (VAF), which compares the measured torque
with the estimated torque and which gives an indication of the
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Figure 3. Example of the measured angle of the optimization
method, where the angle was defined as positive during flexion
and negative during extension. Model parameters are estimated
over the time samples of the whole movement. While during
the time samples of the light blue curves Tjct fer siow i cal-
culated, during the brown curve Tgct eer siow, during the purple
curve Tyt fer, Ash, during the green curve Tt cer, Ash, during
the orange curve Tgct fer fast; and finally, during the yellow
curve Tact,ecr,fast

goodness of fit of the model.

VAF =1-— SN (T@) —T(0,i)?
SN L(T())?

-100%, (3)

with 6 the optimized parameter vector, N the total number
of time samples, ¢ the index of the time sample, T' the measured
torque, T the estimated torque. A high VAF shows a good perfor-
mance of the model, while a low VAF shows a bad performance.
Estimates with a lower VAF value than 90% were neglected .

Next to the VAF, the root mean square error (RMSE) was
calculated, as a measure of the difference between the estimated
torque and measured torque. The RMSE is calculated by

N ; ~0A .
RMSE = \/Zi_l(T(lz)V— 1(6,1)2 | "

with 0 the optimized parameter vector, N the total number
of time samples, ¢ the index of the time sample, T' the measured
torque, 1" the estimated torque. A low RMSE shows a good per-
formance of the model, where an RMSE of 0 shows excellent
agreement.

Reliability of the parameters was assessed with the normal-
ized standard error of the mean (nSEM), which is based on
the sensitivity of each parameter to the error function , 7
. Generally it holds that a parameter with a low normalized

16



Identification of wrist hyper-resistance

Table

II1. Parameters optimized by the wrist optimization model

Parameter Description [unit]

Initial value Lower bound Upper bound

Intrinsic parameters

m Mass of the hand + handplate [kg] 0.6 0.5 5

kecr Stiffness coefficient ECR [1/m] 240 10 800
Efer Stiffness coefficient FCR [1/m] 230 10 800

Trel Relaxation time constant [s] 0.9 0 10

kel Relaxation factor [-] 1 0 50
lstacky., Connective tissue ECR slack length [m] 0.06 -0.1 0.1
Ustack f1eq Connective tissue FCR slack length [m] 0.04 -0.1 0.1
Neural parameters

Gecr EMG weighting factor ECR [1/V] 1x 10% 1 1 x 1011
Ger EMG weighting factor FCR. [1/V] 1x 10 1 1x 10!
fo Activation cutoff frequency [Hz] 3 1 10

lower Optimal muscle length ECR [m] 0.070 0.04 0.11
loger Optimal muscle length FCR [m] 0.063 0.04 0.11

standard error of the mean (nSEM) value has a substantial con-
tribution to the error function. SEM values were calculated using
the covariance matrix P:

P:\/%(JT-J)—leeT (5)

with N the number of parameters, J the Jacobian matrix (partial
derivatives of the prediction error for each parameter), and € the
error function. SEM values are calculated by taking the square
root of the diagonal terms of P. Thereafter, SEM-values were
normalized to their corresponding parameter value.

2.5 Statistical analysis

For statistical analysis, a disease gradation was defined, ranging
from patients with a MAS of zero to patients rated by a MAS
of 4. Four groups were discerned, i.e. patients with a MAS equal
to zero (MASp), a MAS equal to one (MAS;), a MAS of 1+
(MAS;+), a MAS equal to 2 (MAS2) and a MAS equal to 3
(MAS3). None of the patients was rated with a MAS of four. For
statistical analysis, patients with a MAS of 14+ were rated with
a MAS of 1.5 to maintain equal intervals [19], [28].

For test-retest reliability of the NeuroFlexor, the intra-class
correlation coefficients (ICC) were calculated based on absolute-
agreement. The ICC was based on a single measure and a 2-way
random-effects model was used. Next to that, limits of agreement
(LoA) in conjunction with Bland-Altman plots and the minimal
detectable change (MDC) were presented. The MDC percent-
age (MDC%) was thereafter calculated by dividing the MDC by
the maximal score of the measure. ICC values above 0.75 where
classified as excellent, between 0.75 and 0.4 as fair to good, and

below 0.4 as poor [36]. The average out of the two measurements
was taken for further analysis.

Correlation between the neuromechanical parameters of the
NeuroFlexor and optimization method was assessed using the
Pearson correlation coefficient (r). While correlation between the
neuromechanical parameters of two methods and the MAS was
assessed using the Spearman correlation coefficient (r). Further-
more, correlation between pROMy and both EC and Kjjyin¢ was
assessed using the Pearson correlation coefficient (r). Absolute
r-values below 0.2 were classified as very weak, between 0.20 and
0.4 as weak, between 0.40 and 0.60 as moderate, between 0.60
and 0.80 as strong, and above 0.80 as very strong [29].

Also, validation of the neuromechanical parameters of both
methods with respect to the MAS is done by using a stepwise
linear regression analysis with a backward selection procedure
at an alpha of 0.10 [37], to check which parameters are able
to describe the MAS. For the stepwise linear regression anal-
ysis, the MAS was treated as a continuous variable. To check
for multicollinearity, the correlation matrix of the neuromechan-
ical parameters was calculated together with the eigenvalues of
the matrix. Moreover, condition numbers K; were calculated to
check for multicollinearity. Condition numbers are defined by [38]

)\maw (6)

Ki=\ 75

where j is the index of the parameter number, ); the j-th
eigenvalue of the correlation matrix, and Amaez is the largest
eigenvalue. If the condition number is larger then 30, than
multicollinearity may be present [39).

A Kruskal-Wallis test with independent samples was per-
formed to compare results of the neuromechanical parameters
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between patients with a different MAS. A dependent-samples
t-test was conducted to compare the differences in pROMy and
pROM,, and the differences in active torque values with velocity.

Except for the multiple linear regression analysis, all tests
of significance were performed at an alpha of 0.05. Statistical
analysis was performed with IBM SPSS Statistics, version 24.0
(IBM Corp., Armonk, NY, USA).

3. Results
8.1 Measured data

From the 49 included patients, four patients could not comply
with the Wristalyzer protocol due to a limited range of the wrist.
Furthermore, one patient was excluded from analysis, due to fal-
tering of the NeuroFlexor during the measurements. In total,
data from 44 stroke patients (n = 44) was analyzed for compari-
son of the optimization method and for the NeuroFlexor method.
Out of the resulting 44 patients, the range of the NeuroFlexor
perturbation was adjusted for two patients, since they were not
able to move their wrist from 20° flexion to 30° extension. Next
to the excluded subject due to faltering of the NeuroFlexor,
another subject was excluded from the test-retest reliability anal-
ysis because the second NeuroFlexor measurement could not be
performed due to a limitation of time. So that the test-retest
reliability was performed with data from 47 stroke patients.

During the Wristalyzer measurements, the measured torque
of ten patients exceeded the maximum torque of 5.12 Nm, caus-
ing clipping to occur. Since clipping occurred only at the end
of the extension movement, with a maximum period of 0.7 sec,
parameters were estimated without taking the part were clipping
occurred into account. The error vector was in these cases modi-
fied such that is was zero at the points where the torque limit was
exceeded. A sensitivity analysis was done to see whether the clip-
ping patients did not have any influence on the final outcomes,
which was not the case.

One healthy subject could not comply with the protocol for
healthy subjects, due to a recently fractured wrist joint. The
measurement of this subject was performed on the left wrist.

Table

8.2 NeuroFlexor method

Outcome parameters of the measurements with the NeuroFlexor
are shown in Table [[V] For the healthy subjects, the outcomes
of the single measurement was reported. Where for patients, the
mean values out of the two measurements, i.e. the mean value of
NC, EC, and VC, was reported.

The ICC for test-retest reliability for NC was 0.944
(F(46,46) = 17.646, p < 0.001), indicating excellent reliability.
The test-retest of EC was excellent, with an ICC of 0.917
(F(46,46) = 11.971, p < 0.001). The ICC for VC was 0.797
(F(46,46) = 4.853, p < 0.001), indicating excellent reliability.
Bland-Altman plots are presented in Appendix [ET5 and show
a distribution scattered around a mean difference line of approx-
imately 0. Next to that, nearly all values lie between the limits
of agreement. Minimal detectable change (MDC) values were
15.282, 3.841, 0.799 for the NC, EC and VC, respectively. Con-
sequently, the MDC% were 31%, 22 % and 59% for the NC, EC
and VC, respectively.

8.8 Optimization method

The neuromechanical parameters of the optimization method are
shown in Table[[V] Furthermore, the 12 parameters estimated by
the optimization model are shown in Table m

Figure [4 shows an example of the modeled data, including
the filtered EMG response of the ECR and FCR (top left), the
imposed angular position (top right), the normalized force-length
and force-velocity curves of the ECR (middle left) and FCR (mid-
dle right), including the perturbed range indicated by the red and
green curve, and the modelled intrinsic and neural forces from
the ECR (bottom left) and FCR (bottom right) muscles.

Data was modeled, such that the error between the modeled
torque and measured torque was minimal. Figure [5) shows the
corresponding torque fit and Figure [f] shows the development of
the passive joint stiffness over angular rotation, both of the same
subject as in Figure E[

The sensitivity analysis of the initial parameters was per-
formed in five randomly selected patients. In all five patients,

IV. Neuromechanical parameters of the NeuroFlexor model and optimization model of healthy subjects (n = 11) and patients

(n = 44). Where the reported values of the NeuroFlexor method are the mean values out of two measurements for the stroke patients.

Parameter Value (mean + SD)
Healthy MAS o MAS MAS 1+ MAS 2 MAS 3
(n=11) (n=T) (n=11) (n=12) (n=1) (n=1)
NC [N] 1.219 + 1.380 6.064 + 6.935 10.235 £ 7.429 13.572 £+ 10.317 18.710 £ 14.608 32.591 + 10.223
EC [N] 2.441 £ 0.721 2.848 £0.965 4.374 + 2.065 6.435 £+ 3.817 5.756 £ 1.714 11.913 £ 9.605
VC [N] 0.155 £+ 0.313 0.189 4+ 0.430 0.227 £ 0.484 0.553 £ 0.456 0.433 £+ 0.300 0.214 4+ 0.482
Toct, fer [Nm] - 0.247 £ 0.203 0.363 £ 0.308  0.541 £ 0.646 0.945 £ 0.880 1.874 £+ 0.610
Tact,ecr [Nm] - 0.072 £ 0.104 0.041 + 0.069  0.029 + 0.040 0.062 £+ 0.073 0.096 £+ 0.138
Kjoint [Nm/rad] - 0.734 £ 0.339 1.118 £ 0.868 1.386 £ 0.729 1.830 £ 1.212 2.402 £ 2.268
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Figure 4. Example of the measured and modeled data for the optimization method for a subject with MAS of 3. EMG response of
the ECR and FCR (top left), the imposed angular position (top right), the normalized force-length and force-velocity curves of the
ECR (middle left) and FCR (middle right), including the perturbed range indicated by the red and green curve, and the modelled
intrinsic and neural forces from the ECR (bottom left) and FCR (bottom right) muscles.

Table V. Parameter results of the optimization method (n = 44).
Parameter Value (mean + SD)
MAS MAS 1 MAS 14 MAS MAS 3
(n=7) (n=11) (n=12) (n=1) (n=7)
Intrinsic
m [kg] 0.599 + 0.211 0.624 + 0.169 0.705 + 0.159 0.512 + 0.021 0.610 + 0.119
kecr [1/m] 296.006 + 210.838  345.510 & 233.405  172.387 £ 76.881  340.484 + 264.289  266.755 + 259.940
kfer [1/m] 180.415 + 54.594  210.367 + 34.837  210.997 + 71.484  173.103 4+ 53.687  185.455 + 83.325
Trel [5] 3.138 4+ 1.615 2.237 + 1.144 2.824 + 1.884 2.394 + 1.156 3.896 + 3.003
krer [-] 0.734 + 0.387 0.904 + 0.441 1.003 £ 0.508 1.374 4+ 1.100 3.083 + 2.952
lstack,,, [m] 0.065 + 0.019 0.070 + 0.011 0.068 + 0.012 0.064 + 0.019 0.041 + 0.063
lstack o, [m)] 0.044 £ 0.010 0.048 + 0.006 0.054 + 0.009 0.038 & 0.016 0.036 & 0.017
Neural
Geer [1/V] (179 £ 2.61) x 10° (1.05 £ 3.22) x 107 (3.55 £ 5.10) x 10° (1.40 £ 1.99) x 105 (3.28 + 3.78) x 10°
Gper [1/V] (105 £1.27) x 107 (5.31 £ 3.83) x 10° (2.28 £ 1.63) x 10° (4.34 £ 2.07) x 10° (3.15 + 1.86) x 10°
fo [Hz] 1.249 + 0.442 1.584 + 0.620 3.198 + 2.617 1.860 + 0.622 2.006 + 0.612
lo,., [m] 0.086 + 0.031 0.053 + 0.021 0.071 + 0.033 0.078 + 0.033 0.056 + 0.025
log., [m] 0.058 4 0.025 0.063 + 0.024 0.069 + 0.021 0.058 4 0.013 0.071 £ 0.014
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no noticeable differences were found between the estimated
parameters with the elaborate grid search algorithm and the
normal optimization procedure, suggesting that the optimization
method is not sensitive to local minima.

True torque
Estimated torque

Torque (Nm)

L L L L L L L L
0 50 100 150 200 250 300 350 400 450
Time (s)

Figure 5. Example of model fit (red) on top of measured torque
data (blue) of the optimization method, for a subject with MAS
of 3. The VAF for this subject was equal to 96,62%
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Figure 6. Example of the development of the passive muscle stiff-
ness over angular position of the FCR (red) and ECR (blue)
modeled with the optimization model, for a subject with MAS
of 3.

3.3.1 Model validity

The Variance Accounted For (VAF) was above 90% in all cases,
meaning that the measured wrist torque could be well described
by the model. The VAF values of all patients had a mean of
97.528% (SD = 1.524%). Next to that, RMSE values had a mean
of 0.095 Nm (SD = 0.033 Nm).

Normalized SEM values for the parameters obtained with the
non-linear parametric method are presented in Figure[7] Median
nSEM values were less than 1%, except for Geer and lo, ., (Figure

.
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Figure 7. Box plot showing the normalized SEM (nSEM) values
for the 12 parameters of the optimization method of the stroke
patients (n = 44). In each box (blue), the central mark indicates
the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers (black)
extend to the most extreme data points not considered outliers,
and the outliers are plotted individually using the ‘+’ symbol
(red).

3.8.2 Influence of velocity

Since the minimal pROM,, was 83°, the Ashworth sweep
(ROM/s) was in none of the cases slower than the slow sweep
at 5°/s. Likewise, the maximal pROM,, was 154° for patients.
So, the Ashworth sweep does not exceed the velocity of the fast
sweep. Active torque of the FCR, increased significantly with
speed between the slow (M = 0.114 Nm, SD = 0.133 Nm) and
Ashworth sweeps (M = 0.516 Nm, SD = 0.575 Nm), t(43) = -
5.541 and p < 0.001. Also, the active torque of the FCR increased
significantly with speed between the Ashworth (M = 0.516 Nm,
SD = 0.575 Nm) and fast sweeps (M = 0.726 Nm, SD = 0.773
Nm), t(43) = -5.581 and p < 0.001. Finally, the active torque of
the FCR increased significantly with speed between the slow (M
= 0.114 Nm, SD = 0.133 Nm) and fast sweeps (M = 0.726 Nm,
SD = 0.773 Nm), £(43) = -5.905 and p < 0.001.

For the ECR, the active torque between the slow sweep (M
= 0.026, SD = 0.045 Nm) and Ashworth sweep (M = 0.041 Nm,
SD = 0.063 Nm) increased significantly, t(43) = -2.271 and p =
0.028. Likewise, the active torque of the ECR increased signifi-
cantly with speed between the Ashworth (M = 0.041 Nm, SD =
0.063 Nm) and fast sweeps (M = 0.055 Nm, SD = 0.084 Nm),
t(43) = -2.739 and p = 0.009. Finally, the active torque of the
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ECR also increased significantly with speed between the slow
(M = 0.026 Nm, SD = 0.045 Nm) and fast sweeps (M = 0.055
Nm, SD = 0.084 Nm), t(43) = -2.956 and p = 0.005. Box-plots
of the active torque values of the FCR and the ECR separated
with movement velocity are presented in Figure [8a] respectively
Figure [Bb]

3.4 Agreement between methods

Pearson correlation between the neural component of the FCR,
Tact, fer and the neural component of the NeuroFlexor, NC, was
strong: r = 0.656 (p < 0.001, Figure [9). While the correlation
between the neural component of the ECR, Tuct,ecr and the
neural component of the NeuroFlexor, NC, was very weak: r =
-0.021 (p = 0.8937, Figure@. Whereas no correlation is expected
between NC and Tgct,ecr, since the NeuroFlexor determines its
neuromechanical parameters during an extension movement. The
correlation between the elastic component of the optimization
method, Kj,int and the elastic component of the NeuroFlexor
EC, showed strong correlation: r = 0.648 (p < 0.001, Figure E[)

3.5 Agreement with clinical scales

3.5.1 Agreement with MAS

First, outcome parameters of both methods were compared to the
MAS individually. The Spearman correlation between the neural
contribution of the FCR, Ty, fcr, and the MAS, was moderate (p
= 0.548, p < 0.001). Whereas the correlation between the neural
contribution of the ECR, Tyct,ecr, and the MAS, was very weak
(p = -0.010, p = 0.948). Wrist joint stiffness, K,i,¢ correlated
moderately with the MAS (p = 0.406, p = 0.006).
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The neural component NC and MAS were moderately cor-
related (p = 0.600, p < 0.001). Also, the correlation between
elastic component EC and the MAS was moderate (p = 0.581,
p < 0.001). Whereas correlation between the viscous component
(VC) and the MAS was very weak (p = 0.168, p = 0.267). All
plots can be seen in Figure [I0]

Stepwise linear regression analysis was calculated to predict
the MAS based on NC, EC, and VC. A significant regression
equation was found (P(2,41) = 17.882, p < 0.001) with a R?
of 0.466. NC (8 = 0.490, p < 0.001) and EC (8 = 0.307, p =
0.020) were significant estimators of the MAS, while VC was
not a significant estimator (Table . From the standardized
coefficients, we see that NC contributes more to the MAS than
EC.

Stepwise linear regression analysis was conducted to predict
the MAS based on Kjoint, Tuct, fer, and Tact,ecr- A significant
regression equation was found (P(2,41) = 22,161 p < 0.001) with
a R? of 0.519. Kjoint (8 = 0.310, p = 0.008) and Tyt fer (B =
0.594, p < 0.001) were significant estimators of the MAS, while
Tuct,ecr Was not a significant estimator (Table . From the
standardized coefficients, we see that Ty, ¢ contributes about
twice as much as Kjoint-

To see whether the neural component of the NeuroFlexor
method or the neural components of the optimization method
were more able to predict the MAS, a stepwise linear regres-
sion analysis was conducted to predict the MAS based on NC,
EC, VC, Kjoint, Tact,fer» and Tact,ecr- A significant regression
equation was found (P(2,41) = 31.417, p < 0.001) with a R? of
0.605. EC (8 = 0.428, p < 0.001) and Tget, rer (8 = 0.584, p <
0.001) were significant estimators of the MAS, while Tyct ecr wWas
not a significant estimator (Table . From the standardized
coefficients, we see that Tg.y, for contributes more than the EC .
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Figure 8. Box plot showing the root mean square values (RMS) of the active torque of the FCR (a) and the ECR (b) during the
slow, Ashworth and fast part of the optimization method. In each box (blue), the central mark indicates the median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers (black) extend to the most extreme data
points not considered outliers, and the outliers are plotted individually using the ‘+’ symbol (red).
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Figure 10. Linear relationship between the MAS and (a) Toct, fors (0) Tact,ecr, (€) Kjoint, (d) NC, (e) EC, and (f) VC. Where p is
the Spearman correlation coefficient.

To check for multicollinearity, the correlation matrix of the (Appendix. Since the condition numbers are all below 30,

neuromechanical parameters is presented in Table (Appendix  we can conclude that no multicollinearity was present.
F), and the eigenvalues with their condition numbers in Table Finally, to evaluate whether parameter outcomes of the opti-
mization model could improve the prediction of the MAS,
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Table
unstandardized coefficient and 3 the standardized coefficient.

VI. Backward prediction model of the multiple linear regression analysis for the NeuroFlexor method. Where B is the

Variables Model 1 Model 2
B B8 p-value B 8 p-value

(Constant)  0.482 0.031 0.459 0.032
NC 0.036 0.507  0.031 0.035  0.490 0.000
EC 0.081 0.305  0.001 0.081  0.307 0.020
vC -0.110 -0.053 0.664 - - -
R? 0.468 0.466

2
R2,, 0.429 0.440

Table
unstandardized coefficient and 3 the standardized coefficient.

VII. Backward prediction model of the multiple regression analysis for the optimization method. Where B is the

Variables Model 1 Model 2

B B p-value B 153 p-value
(Constant)  0.641 0.001 0.641 0.001
Tact, for 0.725 0.614  0.000 0.702  0.594 0.000
joint 0.219 0.296  0.015 0.296  0.310 0.008
Tact,ecr -0.538 -0.049 0.689 - -
R?2 0.521 0.519
2
Radj 0.486 0.496

stepwise linear regression analysis was conducted to predict the
MAS based on the neuromechanical parameters of the Neu-
roFlexor and optimization method, together with the parameters
outcomes of the optimization model. A significant regression
equation was found (P(3,40) = 27.634, p < 0.001) with a R>
of 0.675. NC (8 = 0.395, p < 0.001) , Tyt fer (B = 0.574, p <
0.001) and Gy, (8 = -0.266, p = 0.006) were significant esti-
mators of the MAS. From the standardized coefficients, we can
conclude that T,¢;, fcr contributed more than NC and Gg,.. The
model summary is presented in Table in Appendix |E

From the Kruskal-Wallis analysis it followed that the patients
with a different MAS significantly differed for NC (H(4) = 16.753,
p = 0.002) and EC (H(4) = 16.233, p = 0.003). The viscous
component did not significantly differ for patients (H(4) = 3.900,
p = 0.420). For the optimization method, Tt fer significantly
differed with disease grade (H(4) = 16.730, p = 0.002), while
Tact,ecr (H(4) = 1.229, p = 0.873) and Kjoin (H(4) = 7.252, p
= 0.123) did not significantly differ.

3.5.2 Relation with pROM

Since the pROM was dependent on the measurement tech-
nique, i.e. measured with the goniometer or measured with the
Wristalyzer, it was checked which measurement technique had
a higher correlation with the elastic components of the Neu-
roFlexor method and the optimization method. In 34 patients,
the pPROM, measurement was limited during flexion of the wrist
by the hardware stops of the Wristalyzer, resulting in a lower
pROM,, than the actual passive range of motion.

pROMy correlated very weak with EC (r =-0.148, p = 0.338),
and weak with Kjoin¢ (r = -0.328, p = 0.030). While pROM,,
correlated strong with EC (r = -0.606, p < 0.001) and strong
with kjoine (r =-0.742, p < 0.001). Scatter plots with the linear
regression line are depicted in Appendix [[18

Furthermore, the agreement between the passive range of
motion measured subjectively with the goniometer and the pas-
sive range of motion measured with the Wristalyzer was checked.
The mean value of pROMy (M = 172.477°, SD = 19.284°)
was significantly larger than pROM, (M = 118.744°, SD =
20.091°), t(43) = -18.2568, p < 0.001. This is confirmed by the
Bland-Altman plot presented in Appendix [G] where a bias of
approximately 53° is visible. Besides significant difference in the
means, the linear correlation between pROMy and pPROM,, was
moderate: (r = 0.5090, p < 0.001, Figure .
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3.6 Healthy subject data

Model outcomes of one healthy subject are summarized in
Appendix [H] which shows the model outcomes of one healthy
subject. VAF values of the slow measurements were above 90%
(M = 96.811%, SD = 0.684%), meaning that the measured
wrist torque could be described the model. However, VAF val-
ues from the fast measurement were very low (M = 4.896 %, SD
= 3.650%), implicating that the model structure was not able to
describe the measured force by the assumed dynamics of the wrist
joint. Next to that, normalized SEM values were high (Table
. During the slow stretch, 7.¢;, ke, G fer and lo;.,. had high
nSEM values. While during the fast stretch, 7.¢;, krel, lsiacko,,s
lstack ren» Gecry, Gery f05 loger, and Lo, had high nSEM values,
meaning that neither the intrinsic nor neural component could
be less reliably estimated.

Table VIII. Backward prediction model of the linear regression analysis for the neuromechanical parameters of the NeuroFlexor method and optimization

method. Where B is the unstandardized coefficient and § the standardized coefficient.

Model 5

Model 4

Model 3

Model 2

Model 1

Variables

p-value
0.092

B

p-value

B

p-value
0.094
0.000
0.002

B

p-value

B

p-value
0.173

0.003

B

0.314

0.102
0.000
0.001

0.306
0.691

0.328
0.607
0.102
0.008
-0.100

0.169
0.003

0.302

0.303
0.592

(Constant)

0.000
0.000

0.584
0.428

0.691
0.113

0.514
0.388

0.103
0.008

0.513
0.386

0.494
0.393  0.002

0.585
0.104
0.010
-0.093

0.501
0.100 0.377  0.010

0.009
-0.101

Tact,fcr
EC

0.429

0.117

0.387
0.650

0.133
-0.048

0.372
0.678
0.678

0.142
-0.045
0.032

0.460

0.128
-0.049
0.032

NC

0.660
0.791

VvC

0.352

.350
0.024

Tact,ecr

0.605
0.586

0.611
0.582

0.613
0.574

0.614
0.563

0.033  0.828

0.615
0.552

Kjoint
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4. Discussion

The study addressed the agreement between the neural and
intrinsic components obtained with the NeuroFlexor and opti-
mization method, to validate the NeuroFlexor method. Contra-
dicting our hypothesis, we found a strong correlation between
the neural component of the NeuroFlexor method and neural
component of the optimization method, as well as for the intrin-
sic component of the optimization method and NeuroFlexor
method. As a secondary objective, the study addressed at the
external validation of the neuromechanical parameters with the
MAS. Where the present study showed that the neuromechan-
ical parameters of the two methods together were better able
to describe the MAS than the neuromechanical parameters of
both methods separately. From the healthy subject data, we were
not able to obtain reliable neuromechanical parameters with the
optimization model on the NeuroFlexor data.

4.1 Reliability NeuroFlezor

Our study showed that the NeuroFlexor is a reliable instrument
for measuring the components of wrist hyper-resistance since the
NC, EC, and VC from the NeuroFlexor method showed excel-
lent test-retest reliability. This agrees what is published earlier,
although they found slightly lower test-retest reliability for EC
(ICC 0.79-0.88) and slightly higher results for VC (ICC 0.88-
0.90) [30]. So we can conclude that the NeuroFlexor method is a
reliable method to obtain the neuromechanical parameters.

4.2 Validity and model fit optimization model

For the patient group, VAF values were above 90% for the opti-
mization model, indicating that the measured wrist torque could
be well described by the model. High VAF values are in line
with previous publications of the optimization model [4], [8]. Low
nSEM values (Figure@, indicate the absence of redundancy and
that the estimation was sufficiently accurate. However, nSEM
values of the EMG weighting factor of the ECR (gecr) and the
optimal muscle length of the ECR (loecr) were high compared to
the nSEM values of the other parameters, indicating that gecr
and loeer had little to no contribution to the total modeled out-
put torque and the active torque of the ECR is less reliably
estimated. Therefore, the active torque of the FCR (Tget,for)
has to be used as a measure for the neural component of the
optimization method rather than the active torque of the ECR,
(Tact,ecr)~

Although our study included patients with a more severe MAS
than the study of de Gooijer - van de Groep et al., they found
higher values of the joint stiffness (Kjoint) with the optimiza-
tion model at an angle of zero, e.g. values for joint stiffness of
approximately 0 - 17 Nm/rad [4]. Next to that, prior measure-
ments of passive wrist stiffness were reported in the range of
<0.15 - 3 Nm/rad [40]—[44]. Whereas Klomp et al. found a stiff-
ness for a paretic stroke patient at the rest angle of 2.8 Nm/rad
[11). No further information about the passive wrist stiffness in
stroke patients is yet available. However, the passive joint stiff-
ness (Kjoint) found this study falls in the range of measurements
from most prior studies [11], [40]-[44].

Difference in modelled joint stiffness with earlier reported
joint stiffness of the model can be caused by the fact that we
applied the optimization procedure over a comprehensive move-
ment, i.e. with multiple flexion and extension sweeps at multiple
velocities, while earlier publications applied the optimization pro-
cedure over extension and flexion angles separately, while fast
and slow stretch velocities were separated for the optimization
procedure [4], [§], [26].

Since spasticity is highly dependent on velocity, inclusion of
multiple velocities gives a better estimate of the neural com-
ponent, e.g. parameters as the optimum muscle length and the
activation cutoff frequency can be better estimated. Our study
showed that the modeled active component was velocity depen-
dent, i.e. the active torque of both the flexor and extensor muscles
increased with speed. For the NeuroFlexor method, Lindberg et
al. reported that the neural component was also velocity depen-
dent in patients [21]. So, the fact that the neural components
of both methods increase with velocity, indicates that Tt fers
Tact,ecr, and NC are a measure of spasticity, as defined by Lance
[10].

We found a higher active torque for the FCR (T, fer) for
patients rated with a MAS of 3 than earlier reported with the
optimization method [4], which can be attributed to the fact that
our study included more severely affected patients. Whereas we
found lower values for the active torque of the ECR Tguct,cer,
which can be due to the high nSEM values of gecr and loecr -

Since estimated parameters represent the physiology of the
subjects, other publications also used the parameters estimated
by the model (Table to discriminate between healthy sub-
jects and stroke patients, e.g. the slack length of the connective
tissue and optimal muscle length [4], or to compare results pre-
and post-treatment [45]. However, we found evidence that the
neuromechanical parameters of both methods were better able
to separate patients with disease severity than the slack length
or optimal muscle length (Appendix. Since the EMG weight-
ing factor of the FCR improved the prediction of the MAS, it
would be better to use the EMG weighting factor of the FCR as
a measure for the neural component rather than the slack length
of the connective tissue.

4.8 Agreement of the two methods

Since the neuromechanical parameters of the NeuroFlexor are
expressed in Newton [21], while the joint stiffness of the optimiza-
tion method is expressed in Nm/rad, and the neural components
in Nm, no absolute agreement of the parameters is expected.
According to Bland and Altman, the use of correlation is mislead-
ing for assessing the agreement between two methods of clinical
measurement [46]. However, we are interested in the strength
of the relation (i.e. association) between the neural components
or the elastic components of both methods instead of absolute
agreement, so correlation analysis is best applicable to determine
the agreement between the neuromechanical parameters of both
methods.

The fact that Pearson correlation between NC and Tgt, fer
was strong, while the correlation of the NC with Tyct ecr Was very
weak, was in line with our expectations since the NeuroFlexor
device only applies a movement in flexion direction and thus will
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be incapable of measuring the active component of the ECR.
Next to that, Tuct,ecr Was assumed to be the least valid due to
the low nSEM values of gecr and loecr.

Since the Pearson correlation between the elastic component
of the NeuroFlexor and Kj,i,¢ was strong, the NeuroFlexor
method is able to determine the elastic component when only
perturbing the wrist in the extension direction.

Unfortunately, any modeling or device defects that limit the
validity of one method will affect the validity analysis of the
other. Due to a lack of a gold standard, we discussed the content
validity, i.e. the degree to which the instrument logically appears
to measure the neuromechanical parameters, to conclude which
method causes the discrepancies and in which method a bias
might be present.

To calculate the neural component, Lindberg et al. [21] take
the second force peak (P2, Figure and subtract the inertia,
viscosity and elastic force from the total force. Therefore, any
errors in the preceding force components will lead to an error
in the neural component (NC), leading to a less reliable neural
component.

The force peak used to calculate the neural component (P2)
is taken 211 ms after the initial stretch. However, an average
stretch reflex latency of the wrist of stroke survivors of 41 ms
was reported [25], while others report a long latency time of 55
— 100 ms after the onset of the displacement |47], [48]. Although
the stretch reflex might have an influence on the oscillation of
the device, this will not have a direct relationship with the force
peak P2. Moreover, the inertia of the device was calculated with
a constant acceleration of 21 m/s? for each patient [21], which
may also differ for each patient and thus has an influence on
the neural component (Equations — , So we can conclude
that the NeuroFlexor model makes general assumptions about
muscle physiology for estimating the neural component and thus,
the neural component lacks content validity.

In contradiction, the optimization method takes into account
the EMG activity, together with the torque response to predict
whether there is active torque present. Therefore, we assume
that the discrepancy between the neural components, i.e. NC
and Tyt fer, can be attributed to the lack of content validity of
the NeuroFlexor method.

Since the amount of force at the end of the slow movement is
equal to EC, the elastic component of the NeuroFlexor method
is just an instrumented way of measuring the passive resistance
to motion. Although there is not made a distinction between
the neural and intrinsic component during the quantification of
EC, the neural component is thought to contribute little dur-
ing the slow stretch [25], [49]. The the optimization method
tries to declare the intrinsic component by modelling the pas-
sive stiffness of the muscles while taking into account the muscle
mechanics and the force response. So neither the intrinsic com-
ponent (EC) of the NeuroFlexor, or the intrinsic component of
the optimization method (Kjgin¢) lacks content validity.

Next to our content validity analysis, we are not able to
conclude which method is more able to estimate valid neurome-
chanical parameters due to the absence of a golden standard. So,
regarding the validity of both methods, none of them would be
preferred with our current knowledge.

4.4 Agreement with clinical measures

Since the MAS has a low validity and reliability [15]-[20], one
should be careful when interpreting the results of the multiple
linear regression analysis for describing the MAS. Unfortunately,
we were forced to validate the neuromechanical parameters by
comparing them to the MAS since no appropriate golden stan-
dard is yet present. The main purpose was to compare the MAS
ratings with the components of wrist hyper-resistance.

In this study, we found that the neural component (NC) and
the elastic component (EC) of the NeuroFlexor method increased
with the MAS, where they were moderately correlated. This
agrees with an earlier validation study with the MAS, whereas
the correlation between NC and the MAS found during this study
was slightly less strong then found earlier (r > 0.6) [21]. In this
study, we also found increased values for Koint and Tyt for With
elevated MAS, which are comparable with results found earlier
[4], [26]. Our results showed a more detailed distinction with dis-
ease severity, which provides more insight into the development
of wrist hyper-resistance with increasing disease severity.

From the stepwise linear regression analysis we found that
both NC and EC were significant estimators of the MAS for
the NeuroFlexor method. Likewise, we found that Tye e and
Kjoint were significant estimators for the optimization method.
This agrees with the fact that the MAS does not distinguish
between the two components [17], [28] and thus the MAS is
spread out over the elastic component and the neural compo-
nent. Both methods were able to describe the MAS by their
neural and elastic component at a similar degree ((7"2 = 0.466
of the NeuroFlexor method vs. a 72 = 0.519 of the optimization
method). The fact that the neuromechanical parameters of the
optimization method are slightly more able to declare the vari-
ance of the MAS than the NeuroFlexor method, which was as
we hypothesized, can be attributed to the fact that the neural
component of the optimization method contributes more to the
MAS than the neural component of the NeuroFlexor method
(B =0.594 vs. 8 = 0.490, respectively), while the intrinsic com-
ponents contributed about the same (8 = 0.310 vs S = 0.307,
respectively). However when the methods are used separately,
none of the methods would be advantageous in terms of valid-
ity with the MAS since both methods were able to describe the
declared variance of the MAS at an approximately similar degree.

When we look at how well the neuromechanical parameters of
the two methods simultaneously are able to describe the MAS,
we found that EC and T4, e, together are more able to predict
the MAS than the neuromechanical parameters of the methods
separately. This indicates that EC is more able to describe the
MAS than Kjin¢- Likewise, Tjct, o is more able to describe the
MAS than NC. However, EC is just an instrumented way of mea-
suring the MAS, and thus it is expected that the EC describes
the MAS more than Kj,in¢. The fact that T, fc, contributes
the most when predicting the MAS (Table Table and
Table , implies that the neural component obtained with the
optimization method is the best estimate of the neural compo-
nent of joint hyper-resistance. Though the Spearman correlation
coefficients of the NC and EC where higher than the coefficient
of Tyet,fer, we conclude from the multiple regression analysis
that most information is given by Tj,c¢, fcr. Therefore, the neural
component of the optimization method is expected to be more
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valid than the neural component of the NeuroFlexor method,
which agrees with our conclusion about the construct validity
of the NeuroFlexor. We can conclude that the neural component
can be estimated more accurately with the optimization method,
and thus addition of EMG signals would contribute to a valid
estimation of the neural component.

From the Kruskal-Wallis analysis we can conclude that both
methods are able to discriminate between the neural compo-
nent of joint hyper-resistance with disease grade. Whereas the
NeuroFlexor method is more able to discriminate between the
intrinsic component with different MAS than the optimization
method. So questions arise about the validity of Kjoin¢. An ear-
lier study reported significant difference between K;,;,¢ with the
MAS grade [4]. However, they only made distinction between a
MAS of zero and MAS greater or equal to 1 [4].

In this study, a clear example was provided of why biomechan-
ical measurement methods are preferred over subjective clinical
scales. Namely, since we expect that the pROM decreases with
increasing stiffness, the poor correlation of pROMy with EC
and Kjoint, and the strong correlation of pROM, with EC
and Kj,in¢ indicate that pROMy lacks validity. The lack of
agreement between pPROMg and pROM,, can be caused by incon-
sistent forces used in assessing the pROM, the positioning of
the goniometer or due to the lack of reliability between different
raters [50].

4.5 Healthy subject data

To discuss whether the model structure of the NeuroFlexor
method is able to quantify valid neuromechanical parameters,
the neuromechanical parameters were estimated by applying the
optimization model on the data obtained from 11 healthy sub-
jects with the NeuroFlexor device. The low VAF values for the
fast stretch are caused by the fact that the remaining force
response (Figure shows an oscillation and thus does not rep-
resent the expected force response to passive stretch, which was
modeled as an exponentially increasing function with increasing
angle in the optimization method. Since the angle is not oscil-
lating and thus represents the applied angle, the optimization
model is not able to model the inertia of the device. From this,
we can conclude that position of the NeuroFlexor device is not
controlled properly and that the estimated parameters are based
on the oscillation amplitude of the NeuroFlexor. Although the
joint stiffness could be determined from the slow stretch, a fast
stretch is minimally needed to determine the neural component
[51]. So, we were not able to determine the neural component of
wrist hyper-resistance from the NeuroFlexor data with the opti-
mization method. Yet, joint stiffness of the healthy subject was
lower than the joint stiffness of stroke survivors.

Our findings do not agree with an earlier published article of
Wang et al. [52], were they also applied a neuromusculoskeletal
model (optimization model) on data obtained with the Neu-
roFlexor. Contradicting to our low VAF wvalues for the fast
stretch, they found high VAF values for both the slow stretch and
fast stretch [52]. However, the optimization was only performed
for a selected part of the force curve from the fast movement
(from the second force peak, P2, to the third force peak, P3), i.e.
during which the angular velocity remained stable. From this,

we conclude that the method of Wang et al. for determining
the neuromechanical parameters during the fast stretch is too
generalized, and our low VAF values are correct.

4.6 Strengths and limitations

Since no appropriate golden standard is available that discrim-
inates between the neural and intrinsic components of joint
hyper-resistance, the validation with the MAS should be treated
with caution and we are not able to conclude which neurome-
chanical parameters are valid regarding the current knowledge.
Despite, our results showed a more detailed distinction of the
neuromechanical parameters with disease severity.

During our study, the entire clinically meaningful measure-
ment range was not completely covered, since a MAS score of 4 is
lacking. However with a MAS score of 4, one is probably not able
to participate with the NeuroFlexor and Wristalyzer measure-
ment due to the limited range of motion, since a MAS score of 4 is
equivalent with a rigid joint. In case of the NeuroFlexor measure-
ments, a minimum wrist range of 50° is necessary, while during
the optimization method the extension angle of the pROM,, had
to be larger than 0° to perform the sweep protocol. So for both
measurement techniques, patients with a severe contracted wrist
are thus excluded.

Although the MAS was rated by experienced physicians,
we were not able to grade the MAS by the same physician
and in total three different persons rated the MAS. So intra-
rater differences could be present between the MAS of different
patients.

The forearm was pronated during the NeuroFlexor measure-
ment, while the forearm was in neutral position during the
measurement of the optimization method with the Wristalyzer.
Since Kane et al. showed that there is no statistically significant
difference in the position of the forearm and the passive ROM of
the wrist [53] and since the sarcomere length of the ECR does not
vary with forearm position [54], we assumed that the position of
the forearm did not influence the neuromechanical parameters.

For the assessment of the contribution of the neuromechani-
cal parameters to the MAS, we used a multiple linear regression
model. This model assumes that the dependent variable is a con-
tinuous variable, which is not the case for MAS. Although the
MAS has been treated as a continuous scale in earlier publica-
tions [18], [55], [56], Pandyan et al. stated that the MAS should
be used as ordinal scale |28|. Therefore also an ordinal logis-
tic regression analysis with a backward prediction model was
conducted. This analysis is presented in Appendix [J] From this
analysis, we see that that for both methods separately, the neu-
ral and intrinsic component are significant estimators, which we
also found in the multiple linear regression analysis. Also, we
found that EC and Ty o Were significant estimators of the
MAS, where the active torque of FCR (Tct, for of the optimiza-
tion method was the strongest predictor and contributed most
to the odds of having a higher MAS value. Furthermore, the
strength of association between the MAS and independent vari-
ables was about the same for the linear regression model and
the ordinal logistic model for the NeuroFlexor method (R%; of
0.483 vs. a R? of 0.440), the optimization method (R?\, of 0.503
vs. a R? of 0.496), and for the NeuroFlexor and optimization
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method together (R%; of 0.597 vs. a R? of 0.586). Although we
did not found a reliable model with the ordinal logistic regres-
sion analysis when the additional parameters of the optimization
method where added, we can conclude that the multiple linear
regression method and ordinal logistic regression method give the
same results when comparing the neuromechanical parameters of
both methods. This implies that our results of the multiple linear
regression analysis are justified.

Sensitivity analysis of the optimization method to local min-
ima was only performed at five randomly selected patients.
However, since modeled parameters did not differ from the
parameters obtained with the original procedure, we concluded
that the model is not sensitive to the initial parameter values.

4.6.1 EMG signals

The EMG signal is assumed to consist out of varying muscle acti-
vation, offset muscle activation and measurement noise (Figure
. Varying muscle activation consists of reflexive responses to
the imposed positional perturbation and voluntary activation.
Whereas the offset activation is the constant neural firing of
muscles, defining the minimum muscle contraction.

Voluntary/reflexive
muscle activation

ofiset muscle
activation

EMG [V]

noise

R —
Time [s]

Figure 11. Composition of the EMG signal; offset muscle acti-
vation, voluntary / reflexive muscle activation and measurement
noise.

The model has to take offset muscle activity into account to
estimate active forces caused by offset muscle activity. When
all offset muscle activity would be removed, the active torque
may be underestimated. Unfortunately, measurement noise and
background muscle activity are difficult to distinguish from each
other. Therefore, not all background noise will be eliminated that
may be present in the EMG signals. Despite that, the active
components still increase with increasing velocity, meaning that
the active torque mainly describes the reflexive torque. There-
fore, we assumed that the influences of the measurement noise
are small and had a negligible influence on the neuromechanical
parameters of the optimization method.

Although, EMG signals are highly variable and may be
influenced by placement of the EMG electrodes, tissue char-
acteristics, e.g. skin differences, activity of other neighboring
muscles, and background/environment noise , our results

demonstrated that measurement of EMG activity contributes
to the quantification of the neural component of joint hyper
resistance.

4.6.2 Determination of the pROMy,

In the optimization method, the ramp-and-hold movements were
performed over the whole pROM,,. However, in some patients,
the pROM,, was larger than could be measured due to the
hardware stops of the Wristalyzer. Next to that, stretch-induced
muscle activity might have affected the pROM,, measurement.
Since the EMG signal increased at 2 Nm extension compared to
the EMG signal at zero torque. However, EMG increments dur-
ing the pROM,, measurements were small compared to EMG
increments during the RaH measurements. Thus, the increased
EMG signal during the pROM,, measurement is considered to
have a negligible effect on the reported pROM,, values.

4.7 Clinical implications

The NeuroFlexor method and optimization method used in this
study, with separation of the neuromuscular components con-
tributing to the joint hyper-resistance, improve the diagnosis of
impaired wrist functioning following stroke. By separation of the
intrinsic and neural components, the clinician would have a bet-
ter indication for the optimal treatment. Since the MAS does not
discriminate between the two components contributing to joint
hyper-resistance, our results show that the bio-mechanical mod-
elling devices provide a better alternative then the MAS. Next
to that, biomechanical measurement methods are more reliable
than clinical measurements.

The NeuroFlexor method and optimization method showed
strong correlation. This is highly beneficial for clinical purpose,
since the NeuroFlexor device is easy applicable, e.g. the mea-
surement takes little time and the device is more portable.
Furthermore, no EMG-recording is required. Next to that, the
optimization method needs time consuming off-line data analy-
sis, while the neuromechanical parameters from the NeuroFlexor
measurement can be directly calculated after the measurements.
With direct results of the NeuroFlexor a clinician should be
directly able to start the treatment.

4.8 Implications for future work

For future research, a method that can distinguish between offset
muscle activation and reflexive muscle activation would be desir-
able such that only the reflexive muscle activation is a measure
of the neural component. Since during this study, baseline activ-
ity also contributed to the neural component of the optimization
model.

During this study, the sensitivity of the outcome parameters
to variability and uncertainty in model structure of the opti-
mization method is not explored systematically. To quantify the
sensitivity of the outcome parameters of the optimization method
to variability Monte Carlo approaches could be used, as has been
done before in other biomechanical modeling studies 7.
Next to that, the optimization model could be expanded by tak-
ing into account the thixotropic properties of a muscle. Therefore
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a history-dependent model should be built, since 15 s of rest fol-
lowing a stirring manoeuvre is needed to restore most of the
initial short-range stiffness [42].

To check whether the model structure of the NeuroFlexor
method is comprehensive enough, neuromechanical parameters
could be determined from the NeuroFlexor data with the opti-
mization model. Therefore, the optimization model should be
expanded by a mass-spring-damper system such that the oscilla-
tion and damping of the device are separately modeled. Hereby
you would be able to compare the neuromechanical parame-
ters when no measurement or device differences are present.
Although addition of EMG signals makes the device less clini-
cally appealing, this would lead to better validation of the neural
component and tell us whether EMG provides more information
when determining the neural component.

Although our study contributed to the validation of biome-
chanical modeling methods and is a step in the right direction,
still no appropriate golden standard is available that discrim-
inates between the neural and intrinsic components of joint
hyper-resistance. Further research needs to be done on valida-
tion of the two components of wrist hyper-resistance and on
optimization of the methods. Since the active component of
the flexor carpi radialis, modelled with the optimization model,
and the elastic component of the NeuroFlexor method are more
able to describe the MAS than the neuromechanical parame-
ters of the two methods separately, questions arise whether the
neural component of the optimization model and the elastic
component of the NeuroFlexor are more valid. Therefore, more
research is necessary for the validation of the neural component
of the NeuroFlexor and the elastic component of the optimization
method.

To check the responsiveness of both methods, i.e. to check
whether the methods are sensitive to changes, the neuromechan-
ical parameters could be estimated over a longitudinal data set
and it could be checked whether the neuromechanical parameters
of both methods are sensitive to treatment.

4.9 Recommendations

The use of biomechanical techniques for quantifying the neu-
romechanical parameters makes it possible to separate the neural
and mechanical components. Furthermore, we found that the
NeuroFlexor is a reliable method to obtain the neuromechanical
parameters of wrist hyper-resistance. Since the neuromechanical
parameters of both methods were strongly correlated, the Neu-
roFlexor method is easier applicable, we advocate the use of the
NeuroFlexor device for clinical purposes.

5. Conclusion

The NeuroFlexor method and optimization method enabled us
to estimate the neural and intrinsic component of wrist hyper-
resistance. Conclusions are summarized as follows:

e The NeuroFlexor method reliably estimates the neuromechan-
ical parameters of wrist hyper-resistance.

e Both the neural components and the intrinsic components
of the Neuroflexor and optimization method were strongly
correlated.

e For both methods separately, both the neural and intrinsic
component were significant predictors of the MAS.

e The neural component of the optimization method together
with the intrinsic component of the NeuroFlexor method were
more able to predict the MAS than the methods separately.

e The active component of the optimization method contributed
the most out of all parameters in predicting the MAS, so addi-
tion of muscle EMG contributes to a valid estimation of the
neural component.

e Patients with an elevated MAS differed through an increased
neural and intrinsic component of the NeuroFlexor, and
though an increased neural component of the optimization
method.

e Further research is needed to establish the validity of the neu-
ral component of the NeuroFlexor method and the intrinsic
component of the optimization method.
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A Modified Ashworth Scale

Table Al. The MAS grades muscle hyper-resistance according
to six ordinal levels.

Grade Description

0 no increase in muscle tone
slight increase in muscle tone, manifested by a catch and

1 release or by minimal resistance at the end of the range
of motion when the affected part(s) is moved in flexion or
extension
slight increase in muscle tone, manifested by a catch,

1+ followed by minimal resistance throughout the remainder
(less than half) of the ROM

9 more marked increase in muscle tone through most of the
ROM, but affected part(s) easily moved

3 considerable increase in muscle tone, passive movement
difficult

4 affected part(s) rigid in flexion or extension

B Data Acquisition with the Wristalyzer

Information about the Wristalyzer setup for acquisition of the
EMG, torque, and angular signals is depicted in Figure [BI2}
Furthermore, additional parameters of the Wristalyzer control
settings are described in Table [B2

Table B2. Wristalyzer settings
Parameter Value
Stiffness [Nm/rad] 85

Damping factor [ Nm - s/rad] 1
Max damping [ Nm - s /rad] 0.5
Counter-force factor [N] 0.99

EMG electrodes

[
S |

‘ AD }—b{ Computer

B

Force Sensor

Angle [rad

SinCos Encoder

Tl

Wiristalyzer

Figure B12. Data Acquisition during Wristalyzer measurement.
EMG signals were recorded by making use of surface electrodes,
which was thereafter amplified by an instrumented amplifier
(IA). The exerted force on the Wristalyzer was measured by a
force sensor and the angle was recorded by the SinCos encoder.
The EMG signals, the force signal and the angle of the Wrist-
alyzer were sent to an A/D converter and thereafter sent to the
computer.

C System identification and parameter opti-
mization procedure
The non-linear parametrical method estimates the model param-

eters by minimizing the error function between the measured
torque and estimated torque. The error function is defined as
e=T-T, (C1)

of which e is the error vector, T the true outcome signal and

T the modeled outcome parameter. Reducing the error function
goes as follows;

First guess of initial parameters for the model.

II. Give upper bound and lower bound for the parameters.
III. Minimize the error function e between the true output signal

and estimated output.

IV. If the total error is less than the default value, then quit and

the parameters are optimal. Else, repeat step III until the total
error is reduced.

This system identification and parameter optimization method
is visualized in Figure

nput signal

Output signal

| Unknown
system

Error
function

Model >

Estimated output

h 4

Figure C13. Schematic view of the system identification and
parameter estimation method.
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D Model descriptions
D. 1 Neuroflexor model

In the model of Lindberg et al. the total resisting force F' is the
summation of passive elastic force Fp, viscous force Fy, inertial
forces of the limb and device Fj, and reflexive force Fgct

F(0) = Fp(0) + Fo(0) + Fact (0) + Fin(0), (D2)
where 6 denotes the angle of the device .

Firstly, the elastic component (EC) was recorded at the end of
the slow movement, such that the length-dependent elasticity is
estimated while minimizing the contribution of the stretch reflex.
The EC corresponds to P3, i.e. the fully stretched position during
the slow movement (Figure .

The inertia component (IC) corresponds to the force resisting
to the acceleration of the hand and was calculated in the model
as

IC =m X a, (D3)
where IC is the inertia, m the mass of the platform and hand,
and a the angular acceleration of the device, equal to 21 m/s>
. The mass of the hand was estimated as 0.6% of the total
body weight.

The viscosity is produced by the friction from tissues, and
increases with increasing velocity. Lindberg et al. assumed that
the viscosity component (VC) is highest during the initial acceler-
ation and continues at a lower level during further stretching. P1
is defined as the maximum of the first force peak during the initial
acceleration (Figure . To calculate the viscosity component,
first, the early viscosity component (VCp1) was calculated

VCp1 = Totalforcepy — IC, (D4)
where Total forcep; is the maximum force at P1 (Figure ,
and IC the inertial component calculated as above . Since
there is a comparatively stable relationship between the early and
late viscosity, where Lindberg et al. assumed the late viscosity is
approximately 20% of the early viscosity ,

VC =VCp; x0.2. (D5)

Finally, P2 is defined as the late force peak during the stretch
(Figure [D14) and consists of the neural, viscous and elastic
component together. Thus, the neural component (NC) was
estimated by

NC = Totalforcepy — (EC + V). (D6)

Force during the slow measurement
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(b) Fast measurement

Figure D14. Neuroflexor measurement: (a) Graph of total force
over time during a slow (5°/s) movement (upper graph) and a
graph of the angle of the device during a slow measurement (lower
graph). (b) Graph of total force over time during a fast (236°/s)
movement (upper graph) and a graph of the angle of the device
during a fast measurement (lower graph). Where P1 stands for
the first force peak of the fast movement, P2 for the late peak
during stretch, and P3 at the fully stretched position during the
slow movement.
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D.11

The model used in this study is based on the ankle model of de
Vlugt et al. [26], which is later on extended by de Gooijer et al.
to a bidirectional wrist model [4]. The torque generated during
passive RaH movements of the wrist was modeled by

Optimization model

T(t) = Ie(t) + Te:vt(t) - Tflew(t)v (D7)

with t the time in seconds [s], 7' the modeled wrist torque [Nm], I
the inertia of the wrist and handle [kg - m2], 0 the angular accel-
eration [rad/s?], Teqs the torque generated by the extensor carpi
radialis [Nm] and T't1ex the torque generated by the flexor carpi
radialis [Nm]. Muscle torques were divided in torques generated

by the elastic force of the connective tissues (Fe) and the active
muscle forces (Fgct):

Tewt(ea t) = (Fe,ecr(lecr) + Fact,ecr(vecr7 lecr, Oéecr))"'ecr(e)
Tfler(ev t) = (Fe,fcr(lfcr) + Fact,fcr(vfcra lfcr: afcr))chr(a)y
(DS

with Tezt and T'yje, the modeled torque [Nm], Fe,eer and Fe e
the elastic (passive) force [N], vecr and vy, the lengthening
velocity [m/s], leer and lfcr the muscle length [m], aeer and
afcr the active state [—], 7ecr and 7., the moment arm of the
tendon [m], of the ECR resp. the FCR, and 6 the angular position
of the Wristalyzer [rad).

Passive properties The elastic force, i.e. Feyecr and Fgg fer
of the muscles were modeled as follows

kecr(leer (8) —lstack,cer
Feo,ecr(t) =€ ( ©) tack.cer)

FEO,fCT(t) — ek'fcr(lfcr(e)7lsla<:k,fcr)7 (Dg)
where kecer and kecr are the stiffness coefficients of the ECR
resp. the FCR [1/m], lgjack,ecr and lgqck, for the estimated slack
lengths of the connective tissue of the ECR resp the FCR [m],
and ZTeer and T for the muscle length of the ECR resp. the FCR
[m]. Increased tissue stiffness can be described by Equation
as a steeper (or shifted) force-length relationship.

The relaxation dynamics were modeled by a first order filter,
resulting in elastic forces modeled by

TrelS + 1
F He__TrelST> g
e,ecr( ) —— 1+ krel eo,ecr(s)
TrelS + 1
F, )= "4 ~ .F D10
e,fcr( ) ool + 1+ ko eo,fcr(5)7 ( )
with k.. the estimated relaxation factor [—] of the tissue, s the

Laplace operator, and 7,.; the estimated tissue relaxation time
[s]. Finally, elastic forces in negative direction were set to zero,
as the tissue can only exert pulling forces.

The muscle length of the extensor carpi radialis (ECR) and
flexor carpi radialis (FCR) were determined by

(D11)
(D12)

lecr = lO*,ecr + Tecr(o)a
chr(o)oa

with lecr and ¢, the length of the ECR respectively FCR. [m],
lox,ecr and lgy gor the muscle lengths of the ECR respectively
FCR at zero degrees wrist angle position (handle in line with
the forearm). The zero muscle lengths are 6.3 cm for the FCR
and 7.0 cm for the ECR (average of ECR longus and brevis,
optimal fiber lengths from [4], [62], [63]. Positive values for 6 [rad]
denote flexion direction, and thus positive values for # denote

lfc’r‘ = lO*,fcr -

lengthening of the extensor carpi radialis and shortening of the
flexor carpi radialis.

The moment arms of the extensor carpi radialis (recr) and
the flexor carpi radials (7 f.,.) were assumed to scale linearly with
joint angle, and defined using the equations of Ramsay et al. |4],
(64].

Tecr,brevis = (13.4337 — 2.14110) - 1073 for 6 < 10° (D13)
Teerlongus = (11.7166 — 2.28500) - 1073 for 0 > 10° (D14)
Tecr = (Tecr,brevis + Tecr,longus)/2 (D15)
Tfer = (13.2040 4 1.59956) - 1073 for 6 > —10°,
(D16)

Active properties To compute the active force generated by
the extensor carpi radialis (Fiyct,ecr) and flexor carpi radialis
(Fact, fer), @ Hill-type muscle model was used

(D17)
(D18)

Fact,ecr = fv,ec7'(Uec7')fl7ecr (lec7'7 lo,ecr)aecr
Fact,fcr = fv,fcr(vfcr)fl,fcr(lfcrv lo,fcr)afcr:

where fy.ecr and f, e are the force-velocity relationships, fi ccr
and f, ¢cr the force-length relationships, lo,ecr and I, fcr the esti-
mated optimal muscle lengths [m] and aecr and « fer the active
state of the muscle [—] , of the ECR resp. the FCR [4]. The
force-length relationship was dependent on whether the muscle
lengthened v > 0 or shortened v < 0 [65]:

1+m 1 hl)'(f 71)-’!} .
1 _ ( VS vsh ecc ecr lf v >
f (v ) _ +mvsh'mvshl"U'rnam,ecr"l'vecr ecr 20
v,ecr ecr) — Veer T . ~p .
' T r— if veer < 0
m_vma,m,ecr
(D19)
1— (1+mvsh'm'USiLl)'(fecc_l)"[)fcr if 'Ufcr >0
Moysh Muyshl “Vmaz, fertVfer =

fv,fcr(vfcr) =

Vfertv f .
o tmen.ror if vfer < 0

m “Ymaz,fer
Mysh f

(D20)

with Mmaz,ecr the maximum shortening velocity, which was 8
times the optimal muscle length 4], [65], the maximum eccentric
force fece was 1.5 times the isometric force and the isometric
force was normalized to 1 because the force had been scaled by
the weighting factors EMG weighing factors gecr and gg.,. Fur-
thermore, m, s, and myp; are shaping factors with values 0.25
and 0.5 respectively.

The optimal muscle lengths were used to estimate the force-
length relationship.

(leer—lo,ecr)?/Weer

fl,ecr(lech lO@CT) =e (D21)
_ _ 2
fl,fcr(lfcralo,fcr) =e€ (Ler—lo,fer) /wfcr, (D22)
with weer and wy, the shape factors, defined as:
Weer = Cf - lg,ecr (D23)
Wger = cf - lz,fcr (D24)

with cf the shape parameter of the force-length relationship
with value 0.1 to resemble the force-generating range of the FCR,
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and ECR. The active state of the muscle was obtained by filtering
the weighted EMG signals by a linear second order filter

2
_ “o
2eerll) = T By pag e e (D)
2
w
afcr(t) = : ngcrEMchr(5)7 (D26)

52 + 2Buwps + w
(D27)

where wg = 27 fg, with fo the estimated cut off frequency of the
activation filter, gecr and gy, are the estimated EMG weights
of the ECR resp. the FCR, and EM Gecer and EMGfCT are the
filtered EMG signals of the ECR resp. the FCR [v].

Finally, the inertial component I was modeled as follows

I =mi2, (D28)

with m the estimated mass of the handle and hand [kg] and [,
the distance from the rotation axis [m].

After parameter optimization, i.e. when the final parame-
ters were obtained, stiffness at joint level (Kjqin¢) and reflexive
torque were calculated. The joint stiffness was taken at an angle
that was the same for all subjects (%), i.e. at angle 0 °.

dTem  dFemr(6%)

K:oi = = D29

joint,m 4o dCL‘/T(@*) ( )
Kjoint,fle;c — kaTekch(lflem (0 )7lslack,fc7~),r2(0*) (D30)
Kjoint7ext — kecrekecr(lemt(9*)*lslack,ec7‘),r2(9*) (D31)
Kjoint = Kjoint,flew + Kjoint7ewt (D32)

with Kjoint, flee the contribution of the FCR to the stiffness at
joint level, Kjint,ext the contribution of the ECR to the stiff-
ness at joint level and I, (0) and lez¢(6) the muscle lengths
corresponding (6*), m either the ECR or the FCR.

Finally, root mean square (RMS) values of parts of the mod-
eled reflex torque (Tyct) were calculated as a measure of the
neural component

1
Tact,ecr = \/N / (Fact,echeCT)Q (D33)

1
Tact,fcr = \/N / (Fact,fcrrfcr)Qv (D34)

where N are the number of data points.
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E Test-retest reliability NeuroFlexor method

To analyse the agreement between two different measurements
of NC, EC and VC, Bland-Altman plots are presented in Figure
Minimal detectable change (MDC) values were 15.282,
3.841, 0.799 for the NC, EC and VC, respectively. Consequently,
the MDC% were 31%, 22 % and 59% for the NC, EC and VC,
respectively.

Bland-Altman plot NC Bland-Altman plot EC

e e e e e e e =
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=30 |
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Mean chC1 and NC2 Mean n':fEC1 and E02

(a) Neural component (b) Elastic component

Bland-Altman plot VC
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Figure E15. Bland-Altman plots of the NeuroFlexor outcome parameters. With (a) the NC, (b) the EC and (c) the VC.
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F Multiple linear regression model

To check for multicollinearity, the correlation matrix of the neu-
romechanical parameters was calculated. The correlation matrix
is presented in Figure The eigenvalues of the correlation
matrix, together with their condition number K are presented
in Table 4 The low condition numbers indicate the absence of
multicollinearity.

Table F3. Correlation matrix of the neuromechanical parame-
ters of the NeuroFlexor and optimization method (n=44).

NC EC VC Tactecr  Tact,fer  Kjoint

NC 1.000* 0.532* 0.338* -0.021  0.656* 0.549*
EC 0.532* 1.000* 0.162 -0.258 0.161  0.648*
VC 0.338* 0.162 1.000% -0.094 0.194 0.261

Tuct for | -0.021 0258 -0.094 1.000%  0.352% -0.204
Tuct,ecr | 0.656% 0.161  0.194  0.352*  1.000*  0.193
Kjoint | 0.549% 0.648% 0.261  -0.204 0.193  1.000%*
*Qutcomes are statistical significant (p < 0.05).

Table F4. Eigenvalues \; of the correlation matrix, together
with their condition number Kj.

J Aj K;

1 0.197 3.605
2 0.339 2.750
3 0549 2.162
4 0879 1.709
5 1470 1.321
6  2.566 1.000

In Table the backward prediction model of the multiple
regression analysis for the neuromechanical parameters of the
NeuroFlexor method and optimization method, together with
the parameter outcomes of the optimization method is presented.
Where B is the unstandardized coefficient and 8 the standardized
coefficient. To save space, only the coefficients for the final model,
i.e. model 16, are presented. In the previous models, a ‘x’ denotes
that the parameter is a predictor for the model.
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G Bland-Altman plot pROM

To check the agreement between the passive range of motion
measured subjectively with the goniometer and the passive range
of motion measured with the Wristalyzer, the Bland-Altman plot
was made. The Bland-Altman plot is depicted in Figure [GI6]
where a bias of approximately 53° is visible.

Bland-Altman plot pROM
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and pROM

W

-40
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-80

Difference between pROM
p

=90 ¢

110 120 130 140 150 160 170 180
Mean of pROIVIW and pROIVIg

Figure G16. Bland-Altman plots of the pROM measured with

the Wristalyzer (pROMy,) and goniometer (pROMyg).

H Optimization model on NeuroFlexor data

Table
ment

H6. Neuromechanical parameters of the slow measure-

Value (mean + SD)

Kjoint 0,264 + 0,037
Tact,ecr 0,007 £ 0,004
Tuct, fer (2,242 £ 2,495) x 1077

F ining torque slow measurement
T " .

0.5 T T

Torque [Nm]

0.1 3

L I
4000 8000

] 2000 6000 10000 12000 14000
Time [ms]
1
g 05t SR ]
5 -
z 0
'D 5 _ i i i I I I
] 2000 4000 6000 8000 10000 12000 14000
Time [ms]
(a) Slow measurements
4 Remaining torque fast measurement
: T T : : T
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3
g
g i
iy
P . . . . . . .
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1
g 05 - A
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(b) Fast measurements

Figure H17. Graphs of input signals for the optimization model
of the Neuroflexor data (a) Upper graph: the four remaining
torque signals, i.e. the torques measured with hand minus the
torque signal of the device without hand, during the slow (5°/s)
stretch. Bottom graph: the angle of the device during a slow mea-
surement. (b) Upper graph: the 9 remaining torque signals, i.e.
the torques measured with hand minus the torque signal of the
device without hand, during the fast (236 °/s) stretch. Bottom
graph: the angles of the device during the 9 fast measurement.
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Table

H7. Results of the wrist optimization model on the NeuroFlexor data of one healthy subject (n=1).

Parameters slow (mean + SD)

Parameters fast (mean £+ SD)

Intrinsic
m

kecr
kter

Trel

krel
lslackezt

lslackﬂEﬂc

Neural
Gecr
Grer
Jo
loce,

loger

value

0.500 £ 0.000
159.604 + 15.347
20.893 + 0.982
10.000 £ 0.000
0.132 £ 0.179
0.059 £ 0.002
-0.100 £ 0.000

(2.182 + 1.310) x 107
2.422 + 2.608
7.750 + 4.500
0.040 + 0.000
0.058 + 0.035

nSEM

0.028 + 0.001
0.113 + 0.009
0.178 + 0.027
(1.544 + 2.847) x  10°
(1.583 + 2.926) x 10°
1.114 + 0.256
-4.888 + 0.633

0.537 + 0.571
(1.417 + 7.975) x  10°
23.786 + 23.488
0.029 + 0.031
(1.793 + 1.973) x 10°

value

0.500 £ 0.000
797.085 £ 8.744
21.327 £ 0.637

6.633 £+ 4.296

0.000 £ 0.000

0.067 £ 0.000
-0.100 £ 0.000

(4.014 + 1.204) x 107
(6.508 + 1.952) x 10°
10.000 £ 0.000
0.102 + 0.023
0.048 + 0.023

nSEM

0.056 + 0.022

1.750 + 0.923

1.550 £ 0.801
(1.053 + 3.160) x
(1.453 + 2.892) x
(1.386 + 4.158) x
(-3.551 + 1.065) x

(1.679 + 1.036) x
(2.147 + 1.348) x
(9.220 + 7.565) x
(3.497 + 2.143) x
(1.258 + 6.456) x

1022
1013
10°
10°

108
108
108
107
10°
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I Agreement pROM with elastic components
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Figure 118. Linear relationship between the elastic component of the optimization method and the passive range of motions. Where
(a) depicts the relation between Kot and pROM,, (b) the relation between EC and pROMy, (c) the relation between Kjoint
and pROMy, and (d) the relation between EC and pROMy,.
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J Ordinal logistic regression model

Despite we made use of a multiple linear regression model to
identify the effect of the values of the neuromechanical param-
eters on the MAS, we also could have made use of an ordinal
logistic regression model with a backwards selection procedure.
The ordinal logistic regression model, is an extension of the logis-
tic model to ordinal categorical data and takes into account the
ordering of the outcome variable [66].

In an ordinal logistic regression model, the cumulative odds
ratio ( OR), is the only directly estimated measure of association.
The OR is the ratio of cumulative odds for different predictor
values. The odds for an event reflect the likelihood that the event
will take place, and is calculated by the ratio of the probability
that the event will occur over the probability that the same event
will not occur, i.e. the cumulative odds 6; are expressed by [67]

P(Y <j)

%=1 PY <))

(J35)
with Y the ordered dependent variable, j € {1,...J — 1}, and J
the number of levels of Y.

Since our MAS scales are approximately evenly distributed,
we use of the logit function, which is a transformation of the
cumulative probabilities that allows estimation of the model. The
cumulative logits are defined by [67]

P(Y <j|Xi,...,Xn)

1= P(Y <jIX1,-., Xn)
(J36)

logit(P(Y < j|X1,...,Xn)) =In

where Y is the dependent variable, j € {1,...,J — 1}, with J
the number of scales for the dependent variable, X, the n-th
independent variable, with n € {1,..., N}, with N the number
of independent variables. The ordinal logistic regression model is
stated as follows

logit(P(Y < j|X1,..., Xn)) =a; = Y _ BnXn
where Y is the dependent variable, j € {1,...,J — 1}, with J
the number of scales for the dependent variable, X, the n-th
independent variable, with n € {1,..., N}, with N the number of
independent variables, a; represent baseline logits of conditional
response probabilities, and B, are the log odds ratios relating
components of Xy, to the ordered response Y.

The ordinal logistic regression model assumes that the effect of
the independent variable is the same for different logit functions.
That means that the results are a set of parallel planes. To check
whether the final model meets this assumption, a likelihood ratio
test of parallel planes was performed.

Since ordinal logistic regression does not have an equivalent to
the R-squared as in linear regression, we used the pseudo R? of
Nagelkerke (R%) [68] to describe the strength of the association
between the MAS and the independent variables.

Stepwise ordinal logistic regression analysis was conducted to
investigate whether the NC, EC and VC predict the MAS. Table
[78] shows the backward selection procedure. The final predictors
accounted for a significant amount of variance in the outcome,
likelihood ratio X2(2) = 27.296, p < 0.001. NC (8 = 0.095, SE =
0.029, OR = 1.100, p = 0.001) and EC (8 = 0.279, SE = 0.107,
OR = 1.321, p = 0.009) were final predictors. Each unit increase
of the NC was associated with about 10% increase in the odds
of the MAS having a higher value. Overall the model accounted
for approximately 48% of the variance in the outcome, R?V =
0.483. The assumption of parallel planes does appear justified as

(J37)

the score statistic for parallel planes is small (x? (6) = 1.771,
p = 0.940). From the odds ratios (ORs) we can conclude that
EC contributed slightly more to the odds of the MAS having a
higher value than NC.

Table J8. Backward prediction model of the ordinal logistic
regression analysis for predicting the MAS with the neurome-
chanical parameters of the NeuroFlexor method.

Variables Model 1 Model 2
8 p-value B p-value

(Const.) MASg 0.575 0.390 0.598 0.365

MAS; 2.333 0.001 2.362 0.001

MAS;+  3.978 0.000 4.010 0.000

MAS, 5.439 0.000 5.463 0.000
NC 0.096 0.001 0.095 0.001
EC 0.277 0.010 0.279 0.009
VvC -0.103 0.878 - -
R% 0.483 0.483

Likewise, stepwise ordinal logistic regression analysis was con-
ducted to investigate whether Kjoint, Tuct, fer, and Tact,ecr could
predict the MAS. Table [J9 shows the backward selection proce-
dure. The final predictors accounted for a significant amount of
variance in the outcome, likelihood ratio X2(2) = 28.896, p <
0.001. Tget, fer (B = 1.850, SE = 0.475, OR = 6.360, p < 0.001)
and Kjgint (8 = 0.725, SE = 0.305, OR = 2.065, p = 0.018) pre-
dicted the frequency of the MAS. Overall the model accounted
for approximately 50% of the variance in the outcome, R?v =
0.503. The assumption of parallel planes does appear justified as
the score statistic for parallel planes is small (X2 (7) =4.223,p =
0.647). From the ORs we can conclude that T, fcr contributed
more to the odds of the MAS having a higher value than K.

Table J9. Backward prediction model of the ordinal logistic
regression analysis for predicting the MAS with the neurome-
chanical parameters of the optimization method.

Variables Model 1 Model 2
B p-value B8 p-value

(Const.) MASy -0.082 0.890 -0.027 0.002

MAS; 1.549 0.011 1.599 0.005

MAS; 4+ 3.281 0.000 3.334 0.000

MAS, 4.923 0.000 4.974 0.000
Kjoint 0.704 0.025 0.725 0.018
Toct, for 1.908  0.000 1.850  0.000
Tact,ecr -1.288 0.735 - -
R3 0.504 0.503

Thereafter, a stepwise ordinal logistic regression analysis was
conducted to investigate whether NC, EC, VC, Kjoint, Tact, for
and Tyct,ecr could predict the MAS. Table [JI0| shows the back-
ward selection procedure. The final predictors accounted for a
significant amount of variance in the outcome, likelihood ratio
x2(2) = 37.253, p < 0.001. Only EC (8 = 0.374, SE = 0.108, OR
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= 1.454, p = 0.001) and Tyt por (8 = 2.160, SE = 0.519, OR =
8.671, p < 0.001) were significant estimators. Overall the model
accounted for approximately 60% of the variance in the outcome,
R?\, = 0.597. The assumption of parallel planes does appear jus-

tified as the score statistic for parallel planes is small (x? (6) =
4.861, p = 0.562). From the ORs we can conclude that Tge; fer
contributed more to the odds of the MAS having a higher value
than EC.

Thereafter, a stepwise ordinal logistic regression analysis was
conducted to investigate whether the neuromechanical parame-
ters of the NeuroFlexor and optimization model together with the
additional parameters could predict the MAS. Table shows
the backward selection procedure. The final predictors accounted
for a significant amount of variance in the outcome, likelihood
ratio X2(7) =48.247, p < 0.001. Tyet,ecr (B =11.439, SE = 4.304,
OR = 92874.092, p = 0.008), Kjsint (8 =1.420, SE = 0.501, OR
= 4.137, p = 0.005), NC (8 = 0.132, SE = 0.035 , OR = 1.141,
p < 0.001), m (8 =-7.401, SE = 2.451, OR = 0.000, p = 0.003),
lsiack,ecr (B = -50.736, SE = 23.346 , OR = 0.000 , p =0.030),
Gfer (B =-2.429¢-7 , SE = 1.021e-7 OR = 1.000, p = 0.017) and
lo,ecr (B =-31.613, SE = 12.444, OR = 0.000, p =0.011) were
significant estimators. Overall the model accounted for approxi-
mately 70% of the variance in the outcome, R%, = 0.696. Since
the assumption of parallel planes does not appear justified, as
the score statistic for parallel planes is large (X2 (6) = 48.247, p
< 0.001), the log odds ratios 3; are not equal for each value of
the dependent variable. From this we concluded that the ordinal
logistic regression does not give valid results when the additional
parameters are added as estimator.
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Table J10. Backward prediction model of the ordinal logistic regression analysis for predicting the MAS with the neuromechanical
parameters of the NeuroFlexor and optimization method.

Model 1 Model 2 Model 3 Model 4 Model 5

Variables 8 p-value B8 p-value 15} p-value 8 p-value 153 p-value
(Const.) MASy 1.125 0.152 1.023 0.160 0.937 0.185 0.996 0.153 0.934 0.175

MAS, 3.004 0.000 2.902 0.000 2.805 0.000 2.889 0.000 2.799 0.000

MAS;+  4.943 0.000 4.833 0.000 4.734 0.000 4.817 0.000 4.721 0.000

MAS, 6.965 0.000 6.848 0.000 6.742 0.000 6.729 0.000 6.576 0.000
Tact, fer 1.891 0.006 1.989 0.001 1.929 0.002 1.859 0.002 2.160 0.000
EC 0.328 0.009 0.319 0.009 0.342 0.003 0.343 0.003 0.364 0.001
NC 0.032 0.408 0.029 0.443 0.038 0.291 0.0032 0.361 - -
VC -0.605 0.404 -0.631 0.381 -0.524 0.448 - - - -
Kjoint 0.274 0.505 0.270 0.509 - - - - - -
Tact,ecr 1.530 0.708 - - - - - - - -
R?V 0.615 0.614 0.610 0.605 0.597

Table J11. Backward prediction model of the multiple regression analysis for the neuromechanical parameters of the NeuroFlexor
method and optimization method, together with the parameter outcomes of the optimization method. ‘x’ denotes that the parameter
is a predictor for the model.

Model 1 2 3 4 5 6 7 8 9 10 11 12
Variables 154 p-value
(Const.) MASy X X x X x X X X X X X X -9.777 0.000
MAS; X X X X X X X X X X X X -7.407 0.004
MAS; 4+ X X X X X X X X X X X X -5.156 0.035
MASs X X X X X X X X be X X X -3.161 0.191
Tact,ecr X X X X X X X X X X X X 11.439 0.008
Kjoint X X X X X X X X X X X X 1.420 0.005
NC X X X X X X X X X X X X 0.132 0.000
m X X X X X b'e X X X X X X -7.401 0.003
lstack,ecr X X b X X X X X X X X X -50.736 0.030
Ifer X X X X X X X X X X X X -2.429E-7  0.017
lo,ecr X X X X X X X X X X X X -31.613 0.011
Trel X X X X X X X X X X X
fo X X X X be b X b X X
lo, fer X X X X X X X X X
\4e; X X X X X X X X
Toct, fer X X X X X X X
ecr X X X X X X
EC X X X X X
lslack,fcr RS X X X
kger X X X
el X X
Yecr X
R?\, 0.813 0.812 0.806 0.800 0.794 0.788 0.776 0.758 0.743 0.730 0.717 0.696
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Dear Henri Boessenkool,
It is a pleasure to inform you that your application mentioned above has been approved.
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Sincerely,

Prof. Dr. Sabine Roeser
Chair Human Research Ethics Committee TU Delft
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PARTICIPANT CONSENT FORM

Study Title

Identification of the neural and intrinsic component of wrist hyper-
resistance.

Participant Name:

Date:

Researcher Name:

Larissa Scholte

This section to be completed by the participant:

Please tick the box at the end of each statement if you agree with it.

Signed:

Name in capitals:

Date:

1. I confirm that | have read and understood the Information Sheet for the above study.

2. | have had the opportunity to consider the information, ask questions and have had
these answered satisfactorily.

3. lunderstand that my participation is voluntary and that | am free to withdraw from
the study, without giving any reason.

4. | agree to the storage and use of personal information for the purposes of this study.

5. | agree to take part in the above study.

OO0 oo

This section to be completed by the researcher

Signed:

Date:

| certify that this participant has read, properly completed and signed the screening and consent
forms, witnessed by myself:

Please note: All data arising from this study will be held and used in accordance with the Data
Protection Act. The results of the study will not be made available in a way that could reveal the

identity of individuals.
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PARTICIPANT INFORMATION SHEET

For a study investigating the neural and intrinsic component of wrist hyper-resistance, using two
haptic perturbators, electromyography (EMG) and advanced data analysis methods

Date 24-11-2017, Version 1.0
Dear Madam/Sir,

You have been asked to participate in a study which examines the neural and intrinsic component of
wrist hyper-resistance, using two haptic manipulators, electromyography (EMG) and advanced data
analysis methods. This information sheet provides some detailed information about the study. Any
questions, please get in touch with any of the researchers mentioned at the end of this information sheet,

Study background
Increased hyper-resistance of a joint, is major source of disability in UMNS that arises after a CVA. The

different components causing joint hyper-resistance post stroke are of neural or mechanical, i.e. intrinsic,
origin. Current clinical assessment of joint hyper-resistance is restricted to observer-perceived ordinal
rating scales, such as the (Modified) Ashworth Scale (MAS). However, these measures are insensitive
and unreliable (Fleuren et al. 2010) and intrinsically incapable of discriminating between the neural and
tissue related sources of increased joint hyper-resistance. A measurement technique, which can be used
in daily clinical management for the quantification of joint stiffness in the wrist, named ‘NeuroFlexor’,
has been developed and reported to be reliable and valid (Lindberg 2011, Gaverth 2013).

Study goal
The study you are asked to participate in aims to validate the NeuroFlexor, by comparing outcome values

obtained by the Wristalyzer device and biomechanical modelling.

What does participating involve?

To separate both components contributing to joint hyper-resistance, biomechanical methods are
necessary. To determine the both components of wrist hyper-resistance, the wrist muscles need to
stretched at two velocities by moving the hand from flexion to extension direction. The study will be
performed with the Wristalyzer device and the Neuroflexor device, which are both commercially on the
market. You will be asked to relax your wrist while the devices passively move the wrist from 20 degree
flexion to 30 degree extension. Muscle activity will be measured using surface electrodes stuck on
different muscles of the arm. You won’t notice the recording of muscle activity. You can request a short
pause anytime throughout the experiment. The two experiments together will take about 1h.

The study takes place in the measurement van of the VU medical centre within the department of
rehabilitation medicine.
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PARTICIPANT INFORMATION SHEET

For a study investigating the neural and intrinsic component of wrist hyper-resistance, using two
haptic perturbators, electromyography (EMG) and advanced data analysis methods

Date 24-11-2017, Version 1.0
Dear Madam/Sir,

You have been asked to participate in a study which examines the neural and intrinsic component of
wrist hyper-resistance, using two haptic manipulators, electromyography (EMG) and advanced data
analysis methods. This information sheet provides some detailed information about the study. Any
questions, please get in touch with any of the researchers mentioned at the end of this information sheet,

Study background
Increased hyper-resistance of a joint, is major source of disability in UMNS that arises after a CVA. The

different components causing joint hyper-resistance post stroke are of neural or mechanical, i.e. intrinsic,
origin. Current clinical assessment of joint hyper-resistance is restricted to observer-perceived ordinal
rating scales, such as the (Modified) Ashworth Scale (MAS). However, these measures are insensitive
and unreliable (Fleuren et al. 2010) and intrinsically incapable of discriminating between the neural and
tissue related sources of increased joint hyper-resistance. A measurement technique, which can be used
in daily clinical management for the quantification of joint stiffness in the wrist, named ‘NeuroFlexor’,
has been developed and reported to be reliable and valid (Lindberg 2011, Géverth 2013).

Study goal
The study you are asked to participate in aims to validate the NeuroFlexor, by comparing outcome values

obtained by the Wristalyzer device and biomechanical modelling.

What does participating involve?

To separate both components contributing to joint hyper-resistance, biomechanical methods are
necessary. To determine the both components of wrist hyper-resistance, the wrist muscles need to
stretched at two velocities by moving the hand from flexion to extension direction. The study will be
performed with the Wristalyzer device and the Neuroflexor device, which are both commercially on the
market. You will be asked to relax your wrist while the devices passively move the wrist from 20 degree
flexion to 30 degree extension. Muscle activity will be measured using surface electrodes stuck on
different muscles of the arm. You won’t notice the recording of muscle activity. You can request a short
pause anytime throughout the experiment. The two experiments together will take about 1h.

The study takes place in the measurement van of the VU medical centre within the department of
rehabilitation medicine.
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You have been asked to participate in a study which examines the neural and intrinsic component of
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Increased hyper-resistance of a joint, is major source of disability in UMNS that arises after a CVA. The

different components causing joint hyper-resistance post stroke are of neural or mechanical, i.e. intrinsic,
origin. Current clinical assessment of joint hyper-resistance is restricted to observer-perceived ordinal
rating scales, such as the (Modified) Ashworth Scale (MAS). However, these measures are insensitive
and unreliable (Fleuren et al. 2010) and intrinsically incapable of discriminating between the neural and
tissue related sources of increased joint hyper-resistance. A measurement technique, which can be used
in daily clinical management for the quantification of joint stiffness in the wrist, named ‘NeuroFlexor’,
has been developed and reported to be reliable and valid (Lindberg 2011, Géverth 2013).

Study goal
The study you are asked to participate in aims to validate the NeuroFlexor, by comparing outcome values

obtained by the Wristalyzer device and biomechanical modelling.

What does participating involve?

To separate both components contributing to joint hyper-resistance, biomechanical methods are
necessary. To determine the both components of wrist hyper-resistance, the wrist muscles need to
stretched at two velocities by moving the hand from flexion to extension direction. The study will be
performed with the Wristalyzer device and the Neuroflexor device, which are both commercially on the
market. You will be asked to relax your wrist while the devices passively move the wrist from 20 degree
flexion to 30 degree extension. Muscle activity will be measured using surface electrodes stuck on
different muscles of the arm. You won’t notice the recording of muscle activity. You can request a short
pause anytime throughout the experiment. The two experiments together will take about 1h.

The study takes place in the measurement van of the VU medical centre within the department of
rehabilitation medicine.
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