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Mass spectrometry imaging (MSI) is a powerful tool for detecting lipids in tissue

sections, with matrix-assisted laser desorption/ionization (MALDI) and desorption

electrospray ionization (DESI) as its key ionization techniques. In this study, we

examine how MALDI compares with state-of-the-art DESI ionization in identifying

lipids in heterogeneous samples, specifically atherosclerotic plaques. Carotid plaques

(n = 4) from patients undergoing endarterectomy were snap-frozen, stored at

�80�C, and then sectioned for MSI analysis and H&E staining. Measurements were

conducted using a SYNAPT XS mass spectrometer in positive ion mode, employing

MALDI with a 2,5-dihydroxybenzoic acid (DHB) matrix and DESI with a methanol:

water (98:2) (v/v) solvent. Our comparison covered spectral profiles, sensitivity, and

image quality generated by these two techniques. We found that both MALDI and

DESI are highly suitable techniques for detecting a wide range of lipids in

atherosclerotic plaque sections. DESI-MSI exhibited higher ion counts for most lipid

classes than MALDI-MSI and provided sharper images. MALDI detected larger

amounts of ceramide and hexosylceramide species, possibly due to its efficient

generation of dehydrated ions. In contrast, DESI showed greater peak intensities of

cholesteryl ester and triacylglyceride species than MALDI, consistent with reduced

fragmentation. These findings establish the relative merits of DESI and MALDI and

demonstrate their complementarity as techniques for lipid research in MSI.

1 | INTRODUCTION

Lipidomics is a technique widely used for lipid analysis in a variety of

biomedical research scenarios and increasingly in clinical settings.1,2

While this methodology is suitable for liquid samples or homogeneous

tissue extracts, it does not capture the heterogeneous lipid

distribution in tissues. A highly suitable technique for the detection of

lipids while preserving their distribution is mass spectrometry imaging

(MSI). MSI is a molecular imaging technique that can detect a wide

range of lipids in situ in a label-free manner. The surface of the sample

is probed with a stream of particles, which can be photons, primary

ions, or charged microdroplets depending on the ionization technique

used.3 During acquisition, molecules are desorbed from the sample

surface, ionized, and measured based on their mass-to-charge ratio

(m/z). A mass spectrum per sampling position (pixel) is generated,

preserving the location of each ion across the sampled area, which

makes it possible to reconstruct images of the spatial distribution of

each detected molecule.

The most commonly used ionization technique in MSI is matrix-

assisted laser desorption/ionization (MALDI).4–6 MALDI-MSI has been

used extensively for the detection of lipids in different tissue types.6

MALDI involves the deposition of a thin organic matrix layer on the

sample, which crystallizes analytes in tissue sections and aids in their

ionization when exposed to laser irradiation. The selection of the

matrix and the details of its application can be optimized toward

the detection of compounds of interest, albeit at the cost of
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sensitivity to other species. MALDI has been realized both under high

vacuum and atmospheric pressure. High vacuum conditions yield a

greater number of m/z features but could cause the loss of volatile

compounds from the sample.7 Matrix-related ions can increase

spectral complexity, as these additional compounds contribute

unrelated signals that can complicate data interpretation.8

Desorption electrospray ionization (DESI) was one of the first

ambient ionization techniques introduced in 2004,9 relying on a fine

spray of charged microdroplets for desorption and ionization of the

molecules. Despite its growing popularity since then,10–12 DESI has

not reached the same level of widespread use as MALDI-MSI.

Nonetheless, there are several features that merit consideration as a

routine MSI technique in addition to MALDI: DESI requires no sample

preparation and is a “softer” ionization technique, due to the low-

impact ionization probe, which limits in-source fragmentation of

molecules.13 However, its sensitivity and spatial resolution have

lagged those of MALDI, and optimization of the spray required

significant user experience. Recent technological improvements in

DESI-MSI are bridging this gap, significantly enhancing both its

sensitivity and spatial resolution.14,15

Atherosclerosis is a lipid- and inflammation-driven disease of the

arteries.16 Lipids accumulate in the vessel wall leading to the formation

of so-called plaques. When these plaques rupture, a thrombus is

formed, which can partly, or completely, block the blood flow leading

to a transient ischemic attack, ischemic stroke, or myocardial infarction

depending on the location of the plaque. The risk of a plaque rupturing

depends on its biomechanical tissue composition, which may be highly

influenced by the type of lipid present. Because lipids play a pivotal role

in plaque progression, characterizing these lipids in plaques can aid in

the understanding of the disease.

Both MALDI17–21 and DESI22–24 have been applied to studying

lipid distributions in atherosclerotic plaques. In this study, we compare

the suitability of the “gold standard” MALDI versus DESI ionization in

detecting lipids within heterogeneous samples, such as atherosclerotic

plaques. Employing the same mass spectrometer, equipped with

a MALDI and DESI source, we analyzed an identical set of

atherosclerotic plaque sections (n = 4). Our comparison covers

spectral profiles, sensitivity, and image quality generated by these two

techniques.

2 | METHODS

2.1 | Sample collection and preparation

Carotid plaques (n = 4) were collected from patients undergoing

carotid endarterectomy. Plaques were immediately snap-frozen upon

collection and stored at �80�C until further processing. Subsequently,

plaques were cut into 3 mm cross-sections, which were embedded in

10% porcine type A gelatin. The cross-sectional block with the highest

plaque burden was selected for MSI measurements and cryosectioned

in 10 μm thick sections. Two sections were used for DESI- and

MALDI-MSI, and consecutive sections were used for histology.

2.2 | DESI AND MALDI-MSI

MALDI-MSI measurements were performed on a SYNAPT XS mass

spectrometer with a MALDI source in positive ionization mode. An

organic matrix of 2,5-dihydroxybenzoic acid (DHB) was spray-coated

using a Sunchrom SunCollect sprayer. Briefly, DHB >99.0% (Sigma

Aldrich) 10 mg/mL in 70% Acetonitrile (aq) was sprayed at 20 μL per

min. Twenty-five layers were applied with a line spacing of 1.5 mm,

and a nebulizing gas (nitrogen) was used at 1.7 bar. For MALDI

analysis the small spot mode was used (approximately 45 μm on

sample burn width), and the laser attenuation was adjusted to

maximize signal while limiting in-source fragmentation. The laser was

operated at 1 kHz with 500 shots per position, and the total

acquisition time per pixel was 0.5 s.

DESI-MSI measurements were performed on a SYNAPT XS mass

spectrometer with a DESI XS source (Waters, Wilmslow, UK) in

positive ionization mode. DESI spray solvent was methanol: water

98:2 (%v/v) (Honeywell, Germany), which was delivered with a

solvent flow rate of 2 μL/min. The capillary voltage was optimized

between 0.6 and 0.8 kV, and the nitrogen gas pressure was

69–103 kPa (10–15 psi). A heated transfer line was used at 370�C

to improve ionization and transmission of the molecules into the

mass spectrometer. The DESI data were acquired at two pixels per

second giving a total scan time of 0.486 s per pixel (0.5 s cycle time—

interscan delay).

Both MALDI and DESI measurements were performed in

sensitivity mode with a pixel size of 100 � 100 μm2. For MALDI, the

data were acquired using discrete positional sampling, whereas for

DESI, a continuous method of movement was used.

In both cases, the data were acquired with a degree of under-

sampling. For the MALDI analysis, the Synapt XS MALDI source was

fine-tuned to achieve a burn diameter of approximately 45 μm by using

the small spot position and precisely adjusting the laser attenuation.

This burn diameter of 45 μm has been previously established for this

source based on a circular desorption area.25 This corresponds to a

sampling area of 1,590 μm2 per pixel, which covers 15.9% of the

defined 100 � 100 μm pixel area. For DESI, precisely determining the

desorption area is challenging. Using a high-performance sprayer,14

the solvent plume diameter has been estimated to range between

20 and 25 μm, based on previous studies with optimized gas settings

and a solvent flow rate of 2 μL/min.26,27 Assuming this results in a

circular desorption area of 20–25 μm on the tissue, the sampling area

would be approximately 314.16 to 490.87 μm2. Unlike MALDI, where

each pixel corresponds to a set of laser shots on a discrete position,

DESI acquires data using a continuous raster across the pixel. This

results in a total sampled area per pixel of approximately 2314.16 to

2990.87 μm2, or 23.14% to 29.9% of the defined pixel area. A

visualization of these area calculations is provided in Figure S1.

For DESI, the overall signal is expected to be higher than for

MALDI due to the continuous extraction and desorption process. In

contrast, MALDI relies on analyte extraction at the point of matrix

application, which limits the extraction efficiency based on the

matrix application method. In this case, due to the low resolution of
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the imaging experiments, for MALDI, a wet matrix application method

was employed increasing matrix drying time and maximizing analyte

extraction.

The mass range was m/z 100–1200, and the scan acquisition rate

was two scans per second. Data were acquired using MassLynx v4.2

software. Continuous lock mass correction was performed on the raw

data using a prominent and known lipid species, namely, SM(34:1)

[M + Na]+ (m/z 725.5). HDI v1.7 software was used to export the

data in imzML format (Waters, Wilmslow, UK). An in-house data

processing pipeline28 in MATLAB™ 2017a (The Mathworks, Inc.,

Natick, Massachusetts, USA) was used in combination with mMass

software29 to select lipid m/z features and remove isotopes. In

mMass, an S/N threshold of 10.0 and a peak-picking height of 80%

was applied. This was performed on the base peak spectrum because

of the heterogeneous nature of the atherosclerotic plaques. For

further data analysis, a subset of lipid m/z features was selected that

were present in at least two out of four samples.

2.3 | Histology

Adjacent tissue sections to those analyzed by DESI and MALDI-MSI

were stained by hematoxylin & eosin (HE) (VWR, The Netherlands).

Whole slides were digitized with a Nanozoomer 2.0 HT slide scanner

(Hamamatsu Photonics, Hamamatsu, Japan) at 20X magnification with

a pixel size of 0.455 μm.

2.4 | Lipid annotation

A list of lipid species in plaque homogenates was generated using the

Lipidyzer platform, which separates lipid classes via differential mobility

spectrometry, followed by multiple reaction monitoring. Quantification

is performed using 54 deuterated internal standards and an automated

informatics approach.30 The data includes m/z values for [M-H + H2O]

+, [M + H]+, [M + Na]+, and [M + K] + adducts. In the MALDI and

DESI data, lipid-related m/z features were annotated based on matches

with this list. In addition, known m/z features for lipids that are not in

the Lipidyzer standard set but were annotated in previous experiments

by matching to high-mass-resolution MALDI-FTICR-MSI17 (e.g.,

cholesterol and its derivatives; long-chain phosphatidylcholines,

oxidized cholesteryl esters, saturated sphingomyelins, and ceramides)

were tentatively assigned based on exact mass, matched to the Lipid

Maps database. Annotations with parts per million (ppm) mass error

below 15 were retained.

3 | RESULTS

3.1 | Number of detected lipids with MALDI/DESI

We detected 351 lipid-related m/z features with MALDI-MSI and

357 lipid-related m/z features with DESI-MSI. Of these m/z features,

185 and 194 m/z in total could be annotated for MALDI and DESI,

respectively; see Table S1. For the two techniques, 114 (62%) and

131 (68%) features were annotated based on the plaque lipidomics

data set (highlighted in Table S1). Annotations include all ionization

states (e.g., [M + H]+, [M + Na]+, [M + K]+), which means some

identical annotations can occur in different forms. When considering

the unique annotations exclusively, there are 138 and 150 unique

annotations for MALDI and DESI, respectively. Among these unique

lipid annotations, 85 lipids were detected by both MALDI and DESI,

whereas 53 annotations were exclusive to MALDI, and 65 were

uniquely detected by DESI; see Figure 1.

Lipids belonged to eight different lipid classes, namely, sterols

(ST), ceramides (Cer), hexosylceramides (HexCer), lactosylceramides

(Hex2Cer), sphingomyelins (SM), phosphatidylcholines (PC),

lysophosphatidylcholines (LPC), cholesteryl esters (CE), diacylglycerides

(DG), and triacylglycerides (TG). When considering the total number of

lipid annotations, MALDI-MSI detected relatively more SM, Cer, and

HexCer species—25, 12, and 10, respectively—compared to DESI-MSI,

which detected 18 SM, 8 Cer, and 2 HexCer species. While with DESI,

we detected relatively more CE, DG, and TG species, namely, 19, 27,

and 63, compared to 13 CE, 22 DG, and 25 TG species with MALDI.

However, when distinguishing between total and unique lipid species—

the latter counting each lipid molecule only once regardless of its

ionization state (e.g., [M + H] + vs. [M + Na]+)—the perspective

changes for some lipid classes. Specifically, the difference in unique SM

species between the techniques narrows significantly to 14 for MALDI

versus 12 for DESI, largely because several SM species were detected

in both the protonated form and the sodiated form with MALDI.

Similarly, while the initial count suggested a higher detection of DG

species by DESI, the number of unique DG species is equal between

DESI and MALDI since the observed differences in the total counts

were influenced by DESI detecting many DG species as distinct ions.

The unique number of PC species is slightly higher for MALDI

compared to DESI, namely, 33 versus 28, respectively. For sterols and

F IGURE 1 Number of overlapping and unique lipid species in
desorption electrospray ionization (DESI) and matrix-assisted laser
desorption/ionization (MALDI). m/z with the same lipid annotation
but different ion forms were only counted once. [Color figure can be
viewed at wileyonlinelibrary.com]
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LPC classes, no notable differences were observed in the counts of

unique species between MALDI and DESI. Specifically, both methods

identified four unique sterol species each, while the numbers for LPCs

were similar, namely, 13 for MALDI versus 14 for DESI. Figure 2

provides an overview of both the total and unique numbers of species

per lipid class identified by MALDI and DESI.

3.2 | Sensitivity and image quality

The comparative analysis of DESI and MALDI MSI techniques revealed

notable differences in sensitivity and image quality, as illustrated by the

data presented in Figures 3 through 5. Figure 3 depicts the mass

spectra for a representative plaque sample, with several lipid species

indicated. Notably, the absolute intensity of the peaks detected by

DESI was markedly higher, with intensities reaching up to 350 000,

compared to a maximum of 80 000 observed in MALDI spectra.

Further quantitative assessment of the intensity differences across

all four samples is detailed in Figure 4, where boxplots illustrate the

distribution of absolute intensities for key lipid species. In line with the

observations in individual spectra, DESI consistently yielded higher

signal intensities for the majority of lipids. An exception to this pattern

was LPC(16:0), where MALDI displayed greater signal intensity.

The assessment of image quality is presented in Figure 5, which

presents DESI and MALDI images side-by-side for various lipid classes.

To ensure an even comparison of image detail between MALDI and

DESI, the images presented are scaled individually to their respective

maximum intensities. This approach highlights the potential of each

technique for optimal image clarity, while acknowledging that absolute

intensity values, as previously demonstrated in mass spectra and

boxplot analyses, are inherently higher for DESI than for MALDI.

The images acquired via DESI generally provided better contrast and

more detailed lipid distributions within the tissue sections. This was

contrasted with the MALDI images, which, while informative, appeared

less detailed under the same analytical conditions (Figure 5C). In order

to substantiate the observation of sharper images obtained with DESI,

we computed the two-dimensional autocorrelation function for both

DESI and MALDI images. For all masses we investigated, the DESI

spatial autocorrelation peak was narrower by a factor 1.5–2, indicating

improved feature definition with DESI (Figure S2).

4 | DISCUSSION

In this study, we evaluated the performance of the two prominent

ionization techniques for MSI, DESI and MALDI, in detecting lipids

within atherosclerotic plaque sections. Atherosclerotic plaques are

interesting targets for lipid imaging because their lipid distributions

are highly heterogeneous and more variable than those seen in, for

instance, rodent brains. The relative abundances of different lipid

species and lipid classes in plaque also differ markedly from brain

tissue.

Despite lower overall ion count rates, MALDI-MSI facilitated the

annotation of a greater number of Cer and HexCer/Hex2Cer species

in comparison to DESI-MSI. A possible explanation for this distinction

F IGURE 2 Histogram displaying the number of annotated lipids
per lipid class for desorption electrospray ionization (DESI) and
matrix-assisted laser desorption/ionization (MALDI). The white
dashed lines within the bars indicate the total number of unique lipids,
signifying annotations counted once regardless of presence in
different ion forms. HexCer bars encompass Hex2Cer species. [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Example mass spectra of the same CEA measured by
desorption electrospray ionization (DESI) (top) and matrix-assisted
laser desorption/ionization (MALDI) (bottom) mass spectrometry
imaging (MSI). Several representative lipid species are indicated with
arrows. (a.i., absolute intensity; m/z, mass-to-charge ratio) [Color
figure can be viewed at wileyonlinelibrary.com]
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lies in the ionization preference, while DESI predominantly detects

Cer as [M + Na] + ions, MALDI excels in generating [M + H-H2O]

+ ions for Cer species.6 This preference might originate from the

energy absorbed and transferred by the laser desorption/ionization

process in MALDI, which likely promotes the formation of these

dehydrated ions. Consequently, the dehydrated form of Cer is more

readily ionized and stabilized in MALDI, enhancing their detection

rates and providing a distinct advantage over DESI in identifying these

F IGURE 4 Dot plots illustrating the absolute intensities of specific lipids across all four samples, as measured by desorption electrospray
ionization (DESI) versus matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI). Each dot represents an individual
sample's absolute intensity (a.i.), and the horizontal line indicates the mean intensity for each group.
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species. In addition to the differences in Cer detection, MALDI-MSI

also revealed a greater detection of HexCer and Hex2Cer species

compared to DESI-MSI. One hypothesis for the reduced detection of

these species in DESI could be ion suppression, particularly since

HexCer and Hex2Cer ions fall within the same mass range as SM and

CE species (for HexCer) and TAG species (for Hex2Cer), which exhibit

very high ion count rates in DESI. This high abundance could

potentially suppress the ionization of HexCer and Hex2Cer species,

leading to their underrepresentation in the detected lipid profile.

Conversely, DESI-MSI was more effective in detecting CE and TG

species than MALDI-MSI. A possible cause for the enhanced detection

of TG and CE species using DESI-MSI over MALDI-MSI could be

F IGURE 5 Comparative lipid images of carotid plaque sections measured by desorption electrospray ionization (DESI) and matrix-assisted
laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI). (A) Side-by-side comparisons of carotid plaque sections analyzed by DESI
(left column of each pair) and MALDI (right column of each pair) MSI techniques. A representative m/z feature for each lipid class is depicted,
including ST, Cer, SM, PC, LPC, CE, DG, and TG. (B) H&E staining of depicted plaque sections. (C) Zoomed images of regions 1–4 in Figure 4A.
Images are scaled to their maximum intensity for optimal image clarity. Scale bars = 1 mm. [Color figure can be viewed at wileyonlinelibrary.com]
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attributed to the differential susceptibility of these lipid classes to

fragmentation within the MALDI source.31 The MALDI process utilizes

laser energy for the ionization of analytes, which can induce in-source

fragmentation of molecules. Especially larger lipid molecules, such as

TGs and CEs, may naturally fragment more readily under the conditions

used in MALDI. This fragmentation could potentially compromise the

integrity and detectability of TG and CE species in MALDI-MSI. In

contrast, the low-energy ionization process of DESI-MSI, which

involves directing a charged solvent spray at the sample in an ambient

environment, may lead to better preservation of complex lipids, such as

TG and CE species.8,13 Furthermore, the higher signal intensities

observed in DESI can be attributed to the larger desorption area and

the continuous analyte extraction process from the spray. In contrast,

MALDI has a desorption area approximately half the size and analyte

extraction occurs during the application of the organic matrix.

Our findings indicate that both ionization techniques are effective

in detecting lipids across all major classes present in atherosclerotic

plaque. Interestingly, despite previous concerns regarding its

sensitivity,32 DESI-MSI exhibited significantly enhanced overall

sensitivity relative to MALDI-MSI. This increased sensitivity in DESI-

MSI can be attributed to greater ion suppression in MALDI due to

matrix ions, as well as recent technological advancements in the DESI

source. These include the adoption of a new focused high-performance

sprayer and the implementation of a heated transfer line.14 These

advancements have notably improved the efficiency of ion transfer

into the mass spectrometer, thereby elevating the sensitivity of DESI-

MSI.14,15 This enhanced sensitivity has also enabled imaging studies at

a markedly higher resolution of 20 � 20 μm pixel size with adequate

count rate by DESI imaging of lipids in atherosclerotic plaque.24

For most images, DESI-MSI produced more detailed lipid

distributions than MALDI-MSI. This improvement can be attributed to

DESI's direct tissue surface sampling, which eliminates the need

for matrix application. The application of a matrix by spraying in

MALDI-MSI has the potential to cause analytes to delocalize. This

matrix-induced delocalization can result in less defined images, as the

molecules “float” and spread out from their original locations.33

However, matrix sublimation offers a potential remedy for this issue,

presenting a method that minimizes the risk of lipid delocalization by

providing a more controlled application of the matrix.34

The primary focus of this study was to assess the comparative

performance of DESI and MALDI ionization techniques for lipid

detection in atherosclerotic plaques. However, it is important to

recognize the established biological significance of lipid mapping in

atherosclerosis. Lipids play pivotal roles in the development and

progression of atherosclerosis,35–38 and their precise localization can

provide insights into the mechanisms driving plaque formation,

progression, and potential instability. Previous research has shown

that using MSI to study lipids within atherosclerotic plaque has

profound implications for understanding the pathophysiology of the

disease.17–24

In conclusion, our study found that both MALDI and DESI are

highly suitable techniques for detecting a wide range of lipids in

atherosclerotic plaque sections. Furthermore, we observed that

DESI-MSI exhibited higher sensitivity for most lipid classes than

MALDI-MSI and provided images with improved feature definition

compared to MALDI in these tissues. For some lipid classes of

interest, such as Cer and HexCer, MALDI-MSI allowed annotation of a

greater number of species. These results highlight the suitability of

DESI for lipidomic imaging in heterogeneous samples and confirm its

complementarity to MALDI as a valuable method for MSI.
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