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Abstract

To this date, simulating the dynamics of a fluid remain extremely expensive for most practical design prob-
lems. The large range of length and time scales to be resolved makes it especially computationally heavy. In
engineering applications, the standard is still the RANS approach for CFD modelling. Most commonly the so-
called two-equation models are used. The use of CFD in the aerospace design process is still severely limited
by the inability to accurately and reliably predict turbulent flows with significant regions of separation. More
accurate modelling approaches including LES are often not practical to use in engineering applications.

In the recent work of Deltares, such problems also arise. Research has been performed on water flow be-
hind an underflow gate. The flow phenomenon that occurs closely resembles that of a wall-bounded jet. The
reason such research has been performed is to better predict the turbulent behaviour of the jet downstream
to predict possible damage to sediment. Seven weirs on the Meuse are planned to be renovated or replaced.
Currently, bed protection is designed using physical scale models. Ultimately numerical models are to be the
new standard for designing bed protection behind an underflow weir.

In their work experiments have been performed to acquire PIV data of the velocity field. This has been
compared to their results of multiple CFD simulations which have been performed with different levels of
fidelity. Several gate openings, changing the effective Reynolds number, have been used to compare the
experimental results with the simulations. They concluded that although the velocity field solution of the
simulations is good enough for engineering practices, all simulations show a mismatch in the area of the
shear layer between the jet and the main flow.

In recent years more and more research has been done in the applications of machine learning. The
capabilities of ML have increased rapidly and are now also used in closure modelling. Alongside this are the
continuously improving experimental capabilities which allow for much higher resolution information. The
combination can be used for data-driven techniques to improve upon current RANS models.

In recent work, the paradigm of field inversion has been proposed. Here instead of calibrating the mod-
elling coefficients, a corrective field is used to effectively address the modelling deficiency. The correction
field has been applied to the production term of the specific turbulent dissipation rate transport equation. To
infer the values of the highest probability for the corrective field inverse methods are proposed. The method
proposed uses Bayesian inversion, which includes an optimisation process. As the problem consists of a
large number of variables normal optimisation processes are too expensive. Therefore, the adjoint method is
proposed to compute gradients efficiently.

In this work, the goal is to extend upon the recent work on field inversion. The paradigm will be applied to
the underflow weir case of Deltares. The experimental data will be used to infer a spatially varying corrective
field used to correct the simulations to improve their predictive capabilities. As the density of data points is
often far smaller than the density of simulation cells, and often data sets do not cover the whole simulation
domain the paradigm is extended to accept imperfect data.

It was found that with these extensions a correction field could be found that can lower the cost function
by a factor of two. The prediction of flow features behind the weir were predicted more accurately using the
newly found corrected model.
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1
Problem Description

To this date, simulating the dynamics of a fluid remain extremely expensive for most practical design prob-
lems. The large range of length and time scales to be resolved makes it especially computationally heavy.
Therefore different ways of filtering are being used to reduce the computational time of such simulations,
which introduce additional assumptions limiting their accuracy. An example is the Reynolds averaged Navier
Stokes approach where time-averaged variables are solved and the influences of fluctuations are modelled.
While using filtered approaches some modelling has to be done to close the system. And this is where some
inaccuracies are introduced.

In engineering applications, the standard is still the RANS approach for CFD modelling. Most commonly
the so-called two-equation models are used. Very common RANS two-equation models are k-epsilon and
k-omega models, which were introduced in 1972 [10] and 1941 [? ] respectively. Numerous adaptations have
been proposed to improve these models such as [15] and [38]. As can be seen, these models are fairly old but
are still used today.

The use of CFD in the aerospace design process is severely limited by the inability to accurately and re-
liably predict turbulent flows with significant regions of separation [29]. More complex RANS models have
been proposed such as the Reynolds Stress Transport method, where the Reynolds stresses are modelled di-
rectly. However, currently, RST models are not commonly used as they lack robustness and are occasionally
less accurate [29].

More accurate modelling approaches include LES and combinations of LES and RANS. However, these
models involve significantly higher computational times and are often not practical to use in engineering
applications.

Managing the vast amounts of data generated by current and future large-scale simulations will continue
to be problematic and will become increasingly complex due to changing HPC hardware. Therefore it seems
that CFD for engineering applications has reached its plateau [29].

However, in recent years more and more research has been done in the applications of machine learning.
The capabilities of ML have increased rapidly and are now also used in closure modelling. Alongside, this are
the continuously improving experimental capabilities that allow for much higher resolution information.

The combination can be used for data-driven techniques to improve upon current RANS models. The
models used in CFD modelling always have been data-driven in a sense. Where models are derived from
theory and a set of model coefficients are used to tune the response of the model with available experimental
data.

Calibration methods for model coefficients have been proposed over the last decade. Methods include
least squares optimisation and Bayesian procedures to infer values for the model coefficients [17] [3][6][7][14][22].
However errors due to assumptions made in the model still remain.

Also in the recent work of Deltares [1] such problems arise. Research has been performed on water flow
behind an underflow gate. The flow phenomenon that occurs closely resembles that of a wall-bounded jet.
The reason such research has been performed is to better predict the turbulent behaviour of the jet down-
stream to predict possible damage to sediment. Seven underflow weirs on the Meuse are planned to be ren-
ovated or replaced. Currently, bed protection is designed using physical scale models. Ultimately numerical
models are to be the new standard for designing bed protection behind an underflow weir.

3



4 1. Problem Description

Figure 1.1: Profiles of streamwise mean velocity: PIV measurements (top) vs CFD calculations employing different turbulence models
(bottom) [1].

In their work experiments have been performed to acquire PIV data of the velocity field. This has been
compared to their results of multiple CFD simulations which have been performed with different levels of
fidelity. Several gate openings, changing the effective Reynolds number, have been used to compare the
experimental results of PIV and CFD. They concluded that although the velocity field solution of CFD is good
enough for engineering practices, all CFD simulations show a mismatch in the area of the shear layer between
the jet and the main flow, as can be seen in figure 1.1. Also, the correlation of turbulent kinetic energy from
the CFD results is fairly poor, as can be seen in figure 1.2.
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Figure 1.2: Contours of turbulent kinetic energy: PIV measurements (top) vs the realisable k-epsilon model (bottom) [1].





2
Previous Work

In the work of Parish and Duraisamy [18] the paradigm of field inversion is proposed. Here instead of cali-
brating the modelling coefficients, a corrective field is used to effectively address the modelling deficiency. A
functional relationship for the corrective field and the solution is sought to be found using ML techniques.
The ML model is ultimately used to be able to predict the corrective field for a problem outside of the data set.
This paradigm thus consists of two steps, first field inversion using the Bayesian framework is used to infer
corrective fields for a sufficiently large number of problems. After that ML is used to generate a predictive
model based on the flow features of the solution.

A model of a physical system, such as in fluid dynamics, can be described as:

R(Q , M(Q)) = 0 (2.1)

Where the operator R contains the governing equation of the system, often in the form of PDE’s, Q con-
tains the model variables, and M contains the model equations.

In the work of Parish and Duraisamy [18] the model will be replaced by a stochastic system:

R(Q , M(Q ,β(ω))) = 0 (2.2)

Where β : Ω "ω is a random function resulting from the machine learning process. Realisations of β are
spatial varying field variables, used for correcting the modelling equations. The spatial varying field β is a
result from the functional relationship β(η) where η(Q) are the input features available from the results of the
closure model, which are generally an extension of the model variables.

In order to infer the values of highest probability for the corrective field β inverse methods are proposed.
The method proposed uses Bayesian inversion, which includes an optimisation process. As the problem con-
sists of a large number of variables normal optimisation processes are too expensive. Therefore, the adjoint
method is proposed to compute gradients.

In later work of van Korlaar [31] this paradigm further extended to principal flow cases such as periodic
hills. Also, the continuous adjoint is proposed in order to work seamlessly with the common CFD solver
OpenFoam. It was found that the corrective term could accurately be predicted for unseen higher Reynolds
number cases.

In figure 2.1 the results from field inversion are shown for a periodic hills case. As can be seen, the correc-
tive field term is almost equal to one in the bigger portion of the domain. Only near the downward slope of
the hill, the corrective term becomes lower than one, meaning it is correcting the model equations.

7
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Figure 2.1: Inferred corrective function for periodic hills (Re = 5,600). [31]



3
Research Objective and Questions

For this research, it is proposed to extend upon the work done by Parish and Duraisamy [18] and van Korlaar
[31]. The paradigm of field inversion is going to be applied on the wall-bounded jet, occurring behind the
underflow weir, as researched by Deltares [1].

Therefore the research objective is going to be:
"To improve the RANS closure modelling for predicting wall-bounded jet flows behind a weir extending

on the paradigm of field inversion using experimental PIV data as reference data."
From this objective, several research questions can be formulated. The questions sought to be answered

in this research are:

1. Can the paradigm of field inversion be applied on more complex problems like wall-bounded jet flows
behind weirs?

(a) Is a corrective term capable of improving a complex k-omega simulation with respect to a PIV
baseline? And to what extent?

(b) Can the continuous adjoint formulation be used on more complex and unstructured grids?

2. Can experimentally obtained data from PIV be used for the field inversion paradigm?

(a) Is it possible to apply field inversion with courser reference data?

(b) Is it possible to apply field inversion with limited reference data?
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4
Weirs and Turbulent Wall Jets

In this chapter, some background is given on the problem of this literature review.
In the Netherlands, water management is a key aspect of society. The name ’The Netherlands’ can be

roughly translated to ’the low lands’. This is true as almost one-third of the land lies below sea level. This
makes the land susceptible to flooding. Almost two-thirds of the land is in danger of floods. The danger of
flooding does not only come from the sea, the rivers flowing through the Netherlands form a great threat as
well.

Three major European rivers end in the Netherlands, namely the Rhine, Meuse, and Scheldt. Throughout
the centuries there are many stories of river floods that caused much loss of life. The first large construction
on these rivers was performed by the Romans, building a dam in the Rhine. As water defences improve, the
severity of floods and dike bursts also increased as more people relied on river defence.

The continuous battle against the water has resulted in incredible structures such as the Dutch Delta
Works. Across the Netherlands, various structures can be found which protect against disasters in multiple
ways.

But the management of water for transport is equally as important for the Dutch. Having multiple connec-
tions between the major rivers and smaller rivers makes an elaborate network of these so-called waterways.
Dams, weirs, and locks are built to control the water levels of the rivers and to allow for large freight ships to
move along the waterways.

4.1. What is a Weir
One structure used to control the flow of waters through rivers is a weir. A weir is a barrier across the width of
a river or stream. It differs from a dam in that they control the flow rate of the river, as opposed to containing
the water. This is commonly done by an overflow, where water can freely flow over the top of the weir. But an
underflow weir can be used too, where an opening is present at the bottom of the weir. Weirs are commonly
used to control the water levels of the river upstream, to make them more navigable for ships and for flood
prevention.

During periods of high discharge, for example in spring, weirs are very effective in controlling the flow
rate of the water. Sluice gates can be used to either increase or decrease the volume of water flowing down-
stream. For this reason, such structures, are often placed upstream of towns or cities. The change of floods is
effectively mitigated in these cases.

Also, weirs can be used to manipulate the characteristics of the river. A weir can be very effective in calm-
ing a river. Ships can then more easily navigate the river as it is not affected by strong currents or turbulent
regions. Locks are commonly combined with weirs on large rivers, for ships to be able to cross the water level
jump.

4.2. Problem with Underflow Weirs
A proper design is thus of utmost importance as weirs are of great importance for the water infrastructure.
One problem that occurs with underflow weirs is damage to the sediment behind the structure. As one can
imagine, depending on the height difference, water is pushed underneath the weirs with high pressure. A
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strong jet-like flow is created under and behind the weir. Protection must be applied to the river bed to
prevent damage.

If proper protection is not present, over time large underwater cavities and trenches can start to exist,
strengthening this effect even more. Concrete can be used to protect the riverbed directly behind the under-
flow weirs. However, construction of this type of bed protection can be rather expensive, so should therefore
be limited.

Because of this problem, further investigation is needed in the flow structures behind underflow weirs.
Designing a weir that limits damage to the riverbed can save a lot of money. But as well, being able to predict
the flow behaviour better can help predict when maintenance might be needed.

4.3. Turbulent Wall Jets
Due to the pressure difference over a weir, water is pushed through a slot into a volume of stagnant or slowly
moving fluid. This creates a jet-like flow structure behind the weir. High-velocity water enters a volume of
water of low average velocity. The high-velocity jet stream is on the bottom bounded by the riverbed. The
flume of the jet can thus only expand laterally and upward. These flow types have been studied extensively
as they are present in many applications. Some examples are fuel injection in an engine, the exhaust from a
rocket engine, and the jet stream in the atmosphere. An added complexity, in this case, is the free surface be-
tween the water and the air. This makes the turbulent wall-bounded jet not only dependent on the Reynolds
number but on the Froude number as well. Due to the nature of the flow field, complex turbulent interactions
are present with large-scale differences.

In this research, the focus is limited to the flow behind an idealised weir with a flat bottom river bed
behind it, the underflow gate. Therefore flow is going to be simplified as a plane wall-bounded turbulent jet.
The most key features of a turbulent wall jet will be discussed. However, the research on this was limited as
the complete theory behind wall jets is not as relevant for achieving the goal of the research.

4.4. Idealised Plane Wall Bounded Jet Flows
In this section, the literature around an idealised turbulent plane wall-bounded jet is discussed. In this case,
this means a slit of infinite width, a smooth wall, and no free surface.

A wall jet can be defined as a shear flow parallel to a wall where, because of the initially supplied mo-
mentum, at any station, the stream-wise velocity over some region within the shear flow exceeds that of the
external flow [13]. Turbulent jets are created by a pressure drop over a small opening. In the case of a wall jet,
the turbulent flow is travelling parallel to a wall. The wall causes asymmetry of the jet, as a turbulent bound-
ary layer forms on the wall. The jet is assumed symmetric along the lateral dimension, making it a plane wall
jet, as the slit is of infinite width in the idealised case. A schematic sketch of a plane turbulent wall jet is shown
in figure 4.1.

Figure 4.1: Sketch of a plane turbulent wall jet [25].
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4.4.1. Flow Regimes
The flow field of a turbulent wall jet is of great interest in the field of turbulence as it presents a two-scale
character. The developed jet can be divided into a lower region and an upper region. Here the lower region
is similar to a turbulent boundary layer while the upper region resembles a free jet. The interaction of the
scale difference of turbulence in the two regions creates a complex flow field and has a big influence on the
development of the turbulent wall jet.

In figure 4.1 several length scales are used to define the regions. At the slit, b0 denotes the height of the
opening and U0 is the uniform flow velocity through the opening, known as the core of the jet. As the core of
the jet travels downstream it interacts with the wall and stagnant fluid around it. A boundary layer starts to
form at the wall, growing in size the farther away it is from the opening. Also, a mixing layer starts to form as
the jet shears and mixes with the surrounding fluid. This layer grows in size as well the farther away it is from
the slit. At a certain distance, the mixing layer and boundary layer have grown enough to meet each other, as
the momentum of the core of the jet has been transferred away. The wedge-like shape these flow structures
form is called the potential core. The length between the slit and the point in which the two layers meet, the
potential core length, is given by the distance x0. In the potential core, the mean velocity is equal to U0 [25].
Also, the length of the potential core is empirically found to be 6.1 to 6.7 times the slit opening b0 [21].

Behind the potential core starts the fully developed region. This region shows a complex turbulent two-
scale character. The lower portion resembles a turbulent boundary layer, while the upper region is similar to
a free jet. The difference in turbulent length scales makes for a complex interaction, defining the geometry of
the jet [8].

In this region, the transverse velocity profile of the stream-wise velocity does keep its geometrical shape.
This means that, although this region grows with size, the shape of the velocity profile stays constant. The
maximum velocity, denoted by Um , is at its maximum at the end of the potential core and decreases to the
zero or the free stream velocity at some distance behind the slit. As the streamwise momentum is transferred
laterally the maximum velocity drops and the height of the jet increases.

The height of the maximum velocity Um from the wall is given byδ and represents the height of the bound-
ary layer. The height of the jet, b is defined as the distance from the wall to the point where the velocity has
dropped below half of the maximum velocity Um . Obviously, there still is some positive streamwise velocity
present above the definition of the jet height, however, this is analogous to the scaling used for free jets. The
plane wall jet follows a Gaussian velocity profile in the direction of the free shear layer, equal to the free jet.

As the fluid exits the slot it interacts with the surrounding stagnant fluid. Due to viscosity and turbulent
mixing the stagnant flow gets drawn into the developing wall jet, which is known as entrainment [13]. The
initial momentum of the jet is transferred towards the entrained fluid, causing the jet to grow. This forms a
recirculating flow region above the wall jet due to the entrainment of a finite stagnant fluid [8]. This effect
could possibly alter the shape and magnitude of the jet’s velocity profile.

4.5. Experimental Results
Plane wall jets have been researched to quite an extent. In this section, the most important results and find-
ings, relevant to this literature review, will be discussed.

4.5.1. Inlet and Potential Core
As flow is pushed through a slit, the flow is accelerated to the maximum velocity Um . Because of this a bound-
ary layer already forms in front of the slit. The flow going through the slit is thus not completely uniform. This
has been clearly shown in the experimental studies performed by Eriksson [8]. In figure 4.2 the velocity and
turbulence intensity are plotted over the slot height, measured using Laser-Doppler techniques. In this ex-
periment, the laminar boundary layer height showed to be almost 40% of the total height of 3.6mm. The
turbulence intensity was rather low, only 1%, however, inside the boundary layer, it doubled.

4.5.2. Developed Region
For mean velocities in the developed region, the most data is available. As discussed before, the shape of the
transverse velocity profile does not change in shape when moving downstream. Data from experiments as
shown by Rajaratnam[21] is shown in figure 4.3. As shown, the maximum velocity drops moving away from
the slit as the height of the jet increases.

The shape of the transverse velocity profile can be made self-similar. The velocity is scaled with the max-
imum velocity Um and the y-axis is scaled with the jet height b as shown in figure 4.4. Here the normalized
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Figure 4.2: Mean velocity and turbulence intensity profiles at inlet [8]

Figure 4.3: Velocity profiles in a plane wall jet [21].

height is given as η. The velocity profile can be represented by equation 4.1 [32].
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Figure 4.4: Similarity of velocity profiles in plane wall jets [32].

u
Um

= 1.48η
1
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(
1−er f (0.68η)

)
(4.1)

The maximum velocity of the jet decreases when moving downstream. This is already shown in figure 4.3.
In figure 4.5 it is shown from several experiments how the maximum streamwise velocity Um is decreasing
and the jets half-width is increasing when moving downstream. The half-width of the jet is shown to vary
linearly with x. The Um however seems to decrease with the square root of x. Also, close to the slit, Um does
not seem to decrease. An empirical equation can be found for the decay of Um and is given in equation 4.2
[1]. From this equation, it can be shown that for x < 12.5b0 the streamwise velocity does not decrease at all.

Um

U0
= 3.5

√
x

b0

(4.2)

Figure 4.5: Variation in maximum streamwise velocity and half width moving downstream [13].
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4.5.3. Turbulence Properties
Limited research has been done on the Reynold stress components. However some experimental data is avail-
able [13] and is presented in figure 4.6. Here the Reynold stresses are compared between different studies. It
shows that the measurements are all in the same ballpark however still present some differences.

Figure 4.6: Reynolds stresses and turbulent kinetic energy profiles across the turbulent wall jet in stagnant surroundings [13].



5
Computational Fluid Dynamics

Computational fluid dynamics is field of fluid mechanics where the partial differential equations involved in
fluids are solved numerically using computers. Generally, the Navier Stokes equations are solved in a numer-
ical way. The domain of interest is discretised, forming a grid of cells. The Navier Stokes equations are solved
in their numerical form on this grid normally using finite volume methods.

This chapter will first give a broad overview of CFD simulations. After that literature around RANS CFD
models is explored. The focus will mainly be on the simpler and more commonly used linear models as
these will be used during the research. Especially the terms in the equations are explored and their relative
interaction.

The knowledge gained here is then used as a solid background for the next step; data-driven methods for
improving turbulence modelling, as discussed in chapter 6.

5.1. Navier Stokes Equations
In physics, and especially in fluid mechanics, the Navier Stokes equations are used to describe a flow field.
The equations resemble the conservation of mass, momentum, and energy. In equation 5.1 and 5.2 the mass
and momentum equations are shown respectively.

∂ρ

∂t
+∇ ·ρu = 0 (5.1)

ρ
Du
Dt

+∇p −∇ ·τ−ρg = 0 (5.2)

Where u is the flow velocity vector, ρ the density of the fluid, p is the pressure, g represents the body ac-
celerations acting on the continuum, and τ the deviatoric stress tensor.

The problem with solving these equations numerically is the large range of length and time scales in a
fluid. Because of this, the grid where the equations are solved should be fine enough to capture the smallest
length scales, but also large enough to capture the largest length scales. Also, the time step should be small
enough to capture the smallest time scales, but large enough as well to make sure the largest time scales are
captured.

The ratio between the smallest and largest length scales can be derived following Kolmogorov’s hypothe-
ses. It states that kinetic energy enters turbulent flow at the largest scales of motion. This then breaks down
to smaller scales all the way to the smaller scales. It can then be derived that the ratio between the smallest
and largest length scales is given by equation 5.3 [19].
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τη
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∼ Re−

1
2 (5.3)

As shown the ratio between the smallest and largest length scales is directly linked to the Reynolds num-
ber. For small Reynolds numbers, the ratio is thus small enough that a direct numerical approach is possible
for solving the Navier Stokes equations. Although for engineering applications the Reynolds numbers can be
of order 108. For these applications, it becomes unfeasible to solve the equations directly.

19



20 5. Computational Fluid Dynamics

5.2. Turbulence Modelling
As discussed in the previous section solving the Navier Stokes equations numerically for larger Reynolds num-
bers becomes computationally too expensive. Normally for engineering purposes, we are interested in the
largest length scales. However, the effect of the smaller length scales can not be neglected. Having a fine grid
and small-time step to numerically solve them directly is not feasible. Therefore mathematical models are
constructed to predict the effect of those smaller time scales. Multiple methods have been found ranging in
accuracy and computational cost.

5.2.1. Large Eddy Simulations
An example of a method to reduce the computational cost is large-eddy simulations. In this approach, the
Navier Stokes equations are solved numerically up to a determined length scale. Further below this scale the
effects on the larger scales are modelled with the help of a mathematical model. LES thus spatially filters the
direct numerical approach.

This approach can greatly reduce the computation time compared to direct numerical simulations. Also,
the nature of the simulation is still unsteady as only the smallest time scales are filtered out.

5.2.2. Reynolds Averaged Navier Stokes
Another example of approaching this problem is the Reynolds averaged Navier Stokes approach. In this ap-
proach, the assumption is made that, especially for engineering practices, only the time-averaged flow vari-
ables are of interest. One can imagine that when designing a road car only the average drag over time is of
importance. Assuming the drag does not oscillate severely, the fluctuation will not matter that much. What is
more interesting is how it impacts fuel consumption over time.

The smaller fluctuations in the flow variables do have an impact though on the time-averaged solution,
and therefore a mathematical model is constructed to model these effects.

The flow variables are thus divided into two parts, a time averaged part and a fluctuating part. The
Reynolds averaged Navier Stokes equations can be derived from the original Navier Stokes equations and
are shown in equation 5.5. The RANS equation shown here is in its in-compressible form and is written using
the Einstein notation.

∂ūi

∂x j
= 0 (5.4)

ρū j
∂ūi

∂x j
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∂
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[
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(∂ūi
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+
∂ū j

∂xi

)
−ρu′

i u′
j

]
(5.5)

Here the averaged values are given with a bar over the variable and the fluctuating terms with an apos-
trophe. As can be seen from the equation all the terms concerning time are dropped out as we are only
interested in the time-averaged values. An extra term emerged though which represents the effects of the
fluctuating part of the velocity field. Because of this term, additional modelling is needed to close the RANS
equations. This term is often called the Reynolds stress term.

For modelling of the Reynolds stress term, several approaches are constructed. The relevant approaches
to this research will be discussed.

5.3. RANS models
As discussed in the previous section, when using the RANS approach an additional model has to be con-
structed for the Reynolds stress term. Several methods have been proposed throughout the years. The mod-
els range in their accuracy and robustness. The common factor is modelling the Reynolds stress term in one
way or another. By doing so the assumption that the flow is steady is already made as the governing equations
determine the time-averaged values.

5.3.1. Linear Eddy Viscosity Models
The most straightforward approach is the linear eddy viscosity model. In these models, the Reynolds stress
term is separated into an isotropic and a deviatoric part, as shown in equation 5.6.

Ri j =−u′
i u′

j = 2νt Si j −
2
3
δi j k (5.6)
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Where k = 1
2 u′

i u′
i is the turbulent kinetic energy, νt the eddy viscosity and Si j is the mean strain rate tensor.

The observation is made that turbulence leads to momentum exchange between fluid elements. The
deviatoric part of the Reynolds stress tensor is assumed to be proportional with eddy viscosity to the mean
shear rate. This assumption is known as the Boussinesq assumption.

The eddy viscosity can be calculated in different ways. It can be calculated directly from known values in
the mean flow or one or more equations can be used to calculate the field. An example is the k−ε model [13].
This is a two-equation model, meaning it uses two equations to calculate the eddy viscosity, see equation 5.7.

νt =CD
k2

ε
(5.7)

Where CD is a model constant and k, the turbulent kinetic energy, and ε, the turbulent dissipation rate,
two extra variables which are to be solved for with two extra transport equations.

These models are quite efficient as only four equations in total have to be solved, the mass, momentum,
and two transport equations. The problem here is that eddy viscosity models assume the Reynolds stress is
proportional to the mean shear rate. This leads to the problem that they can not distinguish the effects of the
individual components of the Reynolds stress tensor. So an-isotropic influences are failed to be predicted,
such as streamline curvature and directional forces.

Another example is the k −ω model where the specific turbulent dissipation rate is solved for and used
to calculate the eddy viscosity [37]. The different models have several advantages and disadvantages with
respect to each other. Also improvements and adaptations have been made such as the improved k−ω model
[38] and the blending of the k −ω and k −ε models [15].

5.3.2. Reynolds Stress Models
Another approach of modelling the Reynolds stress term is by directly solving the model’s transport equa-
tions. Several models have been constructed, modelling the terms more accurately than the other. By design,
these models give a far improved result over the linear eddy viscosity model. They do not have the Boussi-
nesq assumption which means they are much stronger in predicting flows with strong curvature or swirl,
anisotropic turbulence.

The big problem with RSM models is that they are much more computational expensive because of the
extra transport equations to be solved for. Also because of these extra equations, the convergence of an RSM
model can be very slow or even unstable.





6
Data Driven Methods

As discussed in chapter 5 several methods have been developed for solving the problem of the large range
of length scales present in turbulent flows. Every method has is its own assumptions and generally its a
question of how much time to spend on achieving better accuracy. In general engineering applications, it is
often not possible to use the higher fidelity models as resources are limited. In recent times methods have
been developed to improve the lower fidelity models. This only has been kick-started recently due to rapid
development in machine learning and the availability of larger data sets. In the last decades, as computers
have become more powerful, DNS simulations are more and more feasible for the low Reynolds number
problems. The data generated is invaluable to gather modelling insights [4]. There has been a shift in focus
from constructing new models towards improving models using machine learning techniques.

Several methods have been developed in improving turbulence modelling and are discussed in the sec-
tions below.

6.1. Model Coefficients
Calibrating or tuning the coefficients of an existing model focuses on incorporating evidence from experi-
mental or DNS data [4]. It is assumed the model coefficients are the dominant source of uncertainty in the
model. This process has led to a sharp increase in model variants. A definite drawback is the difficulty of
assessing its predictive capabilities in general [4]. Tuning the coefficients can be done directly, by getting the
variable of interest as close to experimental or DNS data as possible. Another, more used method is statistical
inference, where the uncertainty of the data is also accounted for. Potential discrepancies between the model
prediction and the data can also be included [4]. The statistical inference is based on the Bayes theorem.

This approach is still fairly recent. In 2011 the first articles appeared [17] [3] aiming to generate a proba-
bility function for model coefficients. They used DNS data for plane channel flows to determine the posterior
probability distributions for model parameters. They did this for several turbulence models and found that
not for every model an improvement could be found. This means that the model is more limited by the as-
sumptions than by wrongly calibrated coefficients. Later studies [6][7][14][22] continued with this approach.
Several flow cases were used to infer a probability function for the model coefficients of interest. It has been
tried to combine the probability functions of the flow cases to be able to predict an unseen case. Most of
the studies used a Markov chain Monte Carlo method to construct the probability density function. More
recently, experimental data have been used for this purpose [23].

Although improvements have been found in every study the problem remains that the model errors are
still significant, as shown in figure 6.1. Also, a bigger problem is that the calibrated coefficients hardly gener-
alise across a large range of problems. As a result, no improved models are found for engineering applications.
However, these methods can be used to improve the predictions for specific engineering problems.

6.2. Model Form Error
Earlier efforts were made to quantify the model form error of RANS turbulence models[16]. A Reynolds stress
discrepancy tensor was constructed to account for the uncertainties. This, in contrast to calibrating model
coefficients, only suffers from the assumptions made deriving the Reynolds averaged Navier Stokes equations

23



24 6. Data Driven Methods

Figure 6.1: Streamwise velocity plots of a jet in cross flow at three locations downstream of the jet. Two models are compared with
experimental data. A calibrated model using the experimental data is also shown in the plot. [23]
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and not from the assumptions made in the model. They described the discrepancy tensor by stochastic dif-
ferential equations which are simpler than the RST equations. This was the starting point for this approach
and many following studies.

6.2.1. Inference Based
Two avenues have been discovered in the past twenty years. The first and earliest method uses the differ-
ence in a variable of interest, such as the velocity field, to infer the discrepancy in a turbulence field. Studies
have been performed on determining the discrepancy in the Reynolds stress tensor [16], its magnitude and
anisotropy [5][26], or on the turbulent viscosity field [34]. The main idea is to compare a variable of interest,
for example, the velocity field, from model to high fidelity data. The high fidelity data is used to statistically
infer a discrepancy field needed to correct the model to better fit the high fidelity data. This approach in-
volves a large-scale statistical inference, where an optimum, or maximum a priori is sought to be found in
the discrepancy field. This has been done using adjoint-based methods [9] to efficiently determine the gradi-
ents for the optimisation progress. Also, gradient-free methods have been reviewed, using Ensemble Kalman
methods [11].

In recent studies [18][31][27] a correction factor has been used to account for the uncertainty. In these
studies, the correction factor is applied to the production term of the ω equation in k −ω turbulence model.
Using the described paradigm of field inversion, from the differences in the velocity field, they infer the cor-
rection field used to correct the model form error. This approach shows clearly where the model is lacking in
its physics, as the correction factor is applied to the model transport equations. In contrast, the discrepancy
fields in earlier discussed studies will only give info about the error made in the output of the model.

Figure 6.2: Streamwise velocity profiles along various spanwise locations in a square duct. A standard k-ω turbulence is compared against
DNS data and the results of the standard model corrected by an infered correction field.

It is in some cases a better alternative than optimising the model coefficients, looking only at the accuracy,
as model form errors are also accounted for. A drawback is that these methods are computationally heavy.
The adjoint methodology used for determining the gradients to infer the discrepancy field introduces more
transport equations to be solved.

Also, the capabilities of being able to correct the model form errors depend strongly on where the discrep-
ancy field, or correction factor in the case of figure 6.2. When the location of this field is still within the model,
some assumptions will remain in effect.
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In some of these studies, several machine learning algorithms have been used to train a model which uses
easily extract-able features from the low fidelity model to predict the discrepancy field needed to correct the
model form errors.

6.2.2. Direct Machine Learning
The second approach uses machine learning to construct a function for the discrepancies somewhere in the
model. This approach was first presented as reconstructing discrepancies in the anisotropy tensor of the
Reynolds stress tensor [30] and was a start for much more research. Full-field high fidelity data is needed as
the discrepancy is directly calculated, taking the difference with the model. A feature set is selected, consisting
of functions of readily available model variables, such as velocity gradients and turbulent quantities. The
machine learning model is trained to map the chosen discrepancy field from selected features.

While training a model for the Reynolds stress tensor it is important that the physics are considered. For
the Reynolds stress term, rotational invariance must be ensured [4]. A strategy used in later research is based
on this and tries to formulate a generalised expansion of the Reynolds stress tensor. The assumption is made
that the stress tensor is only dependent on the mean velocity gradient [19]. The stress tensor can then be built
up as a sum of known functions of the symmetric and anti-symmetric part of the velocity gradient tensor, as
shown in equation 6.1. Here T represents functions of the symmetric and anti-symmetric part of the velocity
gradient tensor. Machine learning algorithms are then used to learn the coefficients c in order to be able to
predict the stress tensor.

τ=
N∑

n=1
c(n)T (n) (6.1)

In the initial study perturbations in the eigenvalues of the Reynolds stress tensor were used to correct the
turbulence model. Later more studies were performed with a more understandable perturbation strategy.
Instead of the eigenvalues, which may be difficult to comprehend afterward, the magnitude, anisotropy, and
orientation of the Reynolds stress tensor were used [33][39].

In figure 6.3 and 6.4 the potential of the approach is shown, where it becomes clear the baseline RANS
model can significantly be improved.

Figure 6.3: Barycentric map of the predicted Reynolds stress anisotropy for the rest flow ( Re = 3500), learned from the training flows (Re
= 2200, 2600 and 2900) The prediction results on two streamwise locations at y/H = 0.25 and 0.75 are compared with the corresponding
baseline RANS model and DNS results in panels (a) and (b), respectively. [33]

In recent studies, a slightly different approach is taken. Instead of trying to correct all the model form er-
rors like in earlier studies a RANS model is selected to be improved upon. The k-ω turbulence model is used
where only the omega-transport equation is solved. Then by comparing to high fidelity data, the residual of
the k-transport equation is computed, which would be needed to get the correct eddy viscosity stress ten-
sor. Using the known variables in the simulation a library of candidate functions is built. Sparse regression
machine learning models are used to learn coefficients to map the determined residual from the candidate
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Figure 6.4: The stream-wise velocity by stabilised RSM at x/H = 1, 2, ..., 8. The test flow is the flow over periodic hill at Re = 5600. The
training flow is at the same Reynolds number but has a steeper hill profile [39]

functions. This results in a correction model which is used to improve the standard RANS solution. This
method is named SpaRTA [24].

The advantage of these approaches over the paradigm of field inversion is that discrepancy functions can
be constructed that can be employed within a class of flows sharing similar features [4]. This makes it much
more generalisable as in essence new turbulence models are created, instead of correcting existing ones.
Also, as there is no need to infer the desired discrepancy field as all the turbulence variables are present, this
approach is much more computationally efficient. A big drawback however is that full-field high fidelity data
is needed, whereas with field inversion limited data can be used. This makes it more desirable for the research
community and less for the engineering community.

6.2.3. Combining Field Inversion and Machine Learning
The two techniques for improving upon the standard simulations can also be combined. In this approach,
the paradigm of field inversion is used to infer a discrepancy field or correction factor using high fidelity data.
After this first step machine learning is then used to formulate a functional model in order to predict the
discrepancy field or correction factor for unseen cases.

When machine learning is directly applied to high-fidelity data, inconsistencies may arise. The turbulence
variables in a RANS model may have a different meaning and usage compared to high fidelity DNS data.
Turbulence models are formulated to represent first and second moments so turbulence values may assume
a more operational role rather than the actual physical meaning [4]. This causes problems with the direct
machine learning approach which can be alleviated by statistical inference.

After the first step of statistical inference, machine learning is used to construct a model that is capable
of mapping the discrepancy from mean flow values and turbulence variables. The first reviews of this ap-
proach were quite promising with convincing improvements over the base models [5][18]. A schematic of
this approach is shown in figure 6.5.

A big advantage of this method is that it can work with just limited data [5][26]. It has been shown im-
provements can be found with just using surface pressures or skin friction [28], figure 6.6. This is data that is
much easier to extract from experiments and thus for engineering practices these methods can be a powerful
tool. In section 7 this approach will be further studied.
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Figure 6.5: Schematic of field inversion and machine-learning framework [27]

Figure 6.6: Field inversion and machine learning applied to turbulent flows over airfoils. (a) Pressure plot for the airfoil at different angles
of attack (Green: baseline model, Red: Improved model by field inversion and machine learning, Blue: Experimental data. (b) Flow field
predicted by the baseline model. (c) Flow field predicted by the improved model. [28]
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7
Field Inversion

For this research, the goal is to get the flow field of a low order simulation to better match high fidelity data,
in this case, PIV measurement data. Often the lower order simulations do not give a satisfactory result for
engineering or research purposes, while higher fidelity solutions are too computational heavy. Although pre-
dicting the general flow behaviour, the lower fidelity simulations often are still lacking in the secondary flow
features. Therefore in this research, we would like to know-how, and how well, we can change the simulation
in order to better match PIV data.

As discussed in chapter 6 several approaches to this problem have been taken in the last decade. A dis-
crepancy field can be determined using a chosen field variable used somewhere in the model in order to
correct the baseline model. This discrepancy field is often determined with the Reynolds stresses or a vari-
able related to it. The discrepancy of the model is sought to be found in the variables it models. The problem
in this case, however, is that only the velocity field is available as experimental PIV data will be used. Therefore
the paradigm of field inversion is to be used to determine a discrepancy field in a less direct approach.

A normal simulation code is called a forward model. Knowledge about the problem and model constants
are used as inputs and velocities, or other flow variables, are obtained as output. However in this case the
inverse of this process is needed. From a velocity field we would like to know what model parameters we
need to use, or what discrepancy there is in a certain field that needs to be corrected.

An example of this is the airfoil design of trans-sonic aircraft. In this example, it is important that the
velocity of air over the airfoil does not exceed the speed of sound as the drag will go up drastically. With
simulation codes, we can easily compute the Mach number of the flow around the airfoil when we know
the airfoil and the flying conditions. However, if this problem could be inverted, setting a maximum Mach
number as input and outputting the shape of the airfoil and flying conditions needed to achieve this would
make this optimisation process much easier. The problem here is that multiple airfoil shapes and flying
conditions can achieve this Mach number constraint. The forward problem often only has one solution, but
the inverse problem has multiple, or an infinite amount of, solutions.

Therefore the inverse problem is often tackled from a probability point of view. Instead of knowing the
exact input variables, we assume our prior information has a probability distribution. After this information is
put through the simulation we will get a posterior distribution. Using the analogy of the trans-sonic aircraft,
instead of using exact inputs of for example velocity, angle of attack, and Reynolds number, a probability
distribution will be used. Using the simulation code the output variables with their posterior probability
distributions, such as the lift and drag coefficient can be computed, as shown in black in figure 7.1 .

When the lift coefficient is measured the simulation code can be inverted to get increased knowledge of
the flight conditions. For this Bayesian inference can be used and this is the core of the field inversion process.
The probability of the flight conditions, the hypothesis, is called the prior probability and can be written as
P (H). The probability of the measured lift coefficient, the evidence, given the values of the flight condition is
called the likelihood and can be written as P (E |H). Using the knowledge gained by means of the measured
lift coefficient, given the flight conditions, we can update the prior probability to get the posterior probability,
using equation 7.1.

P (H |E) = P (E |H) ·P (H)
P (E)

(7.1)
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Figure 7.1: Schematic drawing of the airfoil design problem in a probability framework.

The posterior probability, P (H |E), is the probability of the flight conditions given the knowledge of the lift
coefficient. The P (E) is termed the marginal likelihood, which is the same factor for all hypotheses consid-
ered. Therefore as this is only a scaling factor it is often left out.

Using this method one can see in figure 7.1 that this extra knowledge can increase the knowledge of the
prior conditions which in turn can improve the predictions on for example the drag coefficient.

Also in this research, the problem will be approached from a probabilistic standpoint. Bayes’s theorem is
going to be used to infer a discrepancy field in order to better match the PIV data. The discrepancy field is
analogous to the flight conditions in the above example and the PIV data to the measured lift coefficient. The
goal is to better predict the flow field and its secondary features which are analogous to the drag coefficient
in this example.

In this chapter, the paradigm of field inversion is going to be discussed. The decisions behind the chosen
path will be illustrated with the relevant literature as background.

7.1. Problem Formulation
In this section, the problem formulation, illustrated in the introduction, will be mathematically laid out.

A physical system which can be described using a set of non-linear equations or partial differential equa-
tions, such as the flows simulated using CFD, can be written down as:

RT (QT (x , t )) = 0 (7.2)

Here the mathematical operator RT contains the governing equations of the physical system. Such a
truth model will be based around model variables, denoted by Q . The truth model is dependent on the
spatial coordinates and time.

Often it is not possible or very hard to determine such a truth model. Either not all factors at play are
known or it is just too computationally expensive to implement all elements. Therefore physical systems are
often modelled. A model of the system is created, taking into account only the relevant physical phenomena.

Such a model can be written down as:

Rm(Qm(x , t ),M ) = 0 (7.3)

In this case, the mathematical operator Rm contains the model governing equation where Rm &=RT . The
model equations differ from the physical system set of non-linear partial differential equations. Either due to
a lack of understanding of the underlying physics or from simplifying the problem the model equations built
to best represent the physical system. The model variables Qm are therefore also different to QT . Sometimes
from the modelling of the physical system, unclosed functions M arise. Exact values for these functions can
result in accurate solutions however these are often difficult to obtain.

Therefore often a second set of model variables Q s (x , t ) are introduced. These variables can be deter-
mined by a second set of model equations Rs (Qm ,Q s ) = 0 which themselves also introduce assumptions
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which are not exact. The objective is to approximate for M ≈ M(Qm ,Q s ). A model for a physical system is
thus often modelled as:

R(Q , M(Q)) = 0 (7.4)

Where R and M are a combination of the model equations and variables and their second set of model
equations and variables to close the system.

As discussed in chapter 5, DNS is an example of a truth model RT while RANS is an example of a model
which only approximates the truth. The Reynolds averaged Navier Stokes equations are an example of the
primary model equations Rm . The extra equations used in the different models for closing the system are
an example of the secondary model equations Rs . The formulation for the eddy viscosity is in this case the
model M .

For many RANS CFD models generalisability is still an issue as discussed in chapter 5. In order to get a
valid result, the empirical constants in the model have to be adapted for the specific case. This leads to either
a solution deviating from the actual physics or a difficult task in tweaking the model constants to match the
solution to experimentally obtained data.

In the paradigm of field inversion, a spatially varying corrective field function is proposed to correct the
model to better represent the true physical system.

The new system looks like this:

R(Q , M(Q ,β(ω))) = 0 (7.5)

Where β(ω) is the spatially varying corrective field term. The goal is to use β to correct the model equa-
tions to get a solution close to the high fidelity or experimental data. This replaces the need to empirically
define the model constants.

This process can be repeated for a wide class of problems that are representative of the physical phe-
nomena. The correction fields found can then be used as an input for machine learning algorithms to find a
functional relationship between β and the input features η.

A functional relationship β(η) can then be found, where η(Q) are the input features which are available
in the model. The values for β can then be mapped on the grid using the input flow field features outputted
from the model for a case outside the training set. Unfortunately, this last step falls outside the scope of this
research. The focus will be on finding the correction field for the complex case of an underflow weir with
experimental PIV data as reference data.

7.2. Correction factor
The location of where the correction is going to be applied in the model has been varied in the literature.
Earlier studies applied the correction on the eddy viscosity or the Reynolds stresses in order to maximise the
model form error correction [30][33][39][12]. Later, studies were also performed on correcting fields deeper
in the model itself. Studies have been done on correcting the production term in the k-equation [18][24] or
in the ω-equation [27][31].

As discussed in chapter 6 the location of the correction influences the capabilities of the inferred model.
Van Korlaar [31] compared two formulations of the correction factor. First, a correction was applied on the
production term of theω-equation and secondly applied on the eigendecomposition of the anisotropy tensor.
The first correction is thus applied very deep in the model, while the second correction is applied outside
of the model. He showed that the second formulation was much more capable of improving the model to
represent the data. Especially in the case of square duct flow, the first representation was not capable of
correcting the model. In that case, the main problem is the assumption made in the model itself. Therefore
the second formulation was superior as it is capable of correcting these. The disadvantage however is that in
the second phase of the paradigm a function is tried to be defined using machine learning that is capable of
predicting the correction. It was shown that with the first formulation the machine learning model is much
more capable of generalising over a wide range of cases. However, in cases where the predictions of the basic
model were already quite good, the two formulations were equal in their capabilities of correcting, as can be
seen in figure 7.2. Finally, it has been shown that a specific value of a term in the transport equations is in
itself not as important as the values of terms relative to each other [20]. Therefore, when correcting a term
deep in the model, the argument can be made that it is less important which term is chosen to be corrected.
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In this research, the first formulation is going to be used. The basis k −ω model used predicts the flow
quite well, so no real difference is to be expected between the two formulations. However, in the future, the
goal is as well to create a new model that generalises well across a range of cases.

Figure 7.2: Comparison of the capabilities to correct k between the two correction formulations for the case of a periodic hill[31]

Figure 7.2 shows that the second approach, correcting the eigendecomposition of the anisotropy tensor,
is, although marginally, in fact, better in some regions. But there is still a big gap in the reference DNS data. It
can not be expected that a RANS CFD model, while corrected, can achieve the performance of a DNS simula-
tion. There has definitely been a good step in the right direction but the new turbulence model will still suffer
from its limitations.

7.3. Statistical Inference
The goal for field inversion is to find a corrective field term that corrects the model to give a solution closest to
the experimental data. This can be mathematically written as: h(βtr ue ) = d tr ue where β is a spatially varying
correction to the model. h(β) is the forward model, in this research the k−ω RANS model. In this section, the
procedure for field inversion is elaborated upon.

Following Bayes’s theorem the posterior distribution is given by:

p(β|d ) = p(d |β)p(β)
p(d )

(7.6)

Where p(β) is the prior distribution, p(d ) is the evidence and p(d |β) the likelihood distribution. The
goal is to find the highest probability of the posterior distribution p(β|d ). As this is a multivariate problem
the posterior distribution can not be simply computed. One can compute single points of the multivariate
probability distribution but not its complete space. Therefore the field inversion paradigm becomes an opti-
misation process of finding the highest probability in the multivariate posterior probability distribution, the
maximum a posteriori estimate (MAP).

When Gaussian distributions are assumed for the distributions, equation 7.6 can be rewritten as:

βmap = argmin
β

1
2

[(
d −h(β)

)T Cm
−1(d −h(β)

)
+

(
β−βpr i or

)T Cβ
−1(β−βpr i or

)]
(7.7)

Where Cm and Cβ are the observational and prior covariance and βmap is the maximum a-posteriori
estimate for β. Finding this value and thus minimising the equation is the goal of the field inversion phase.
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Therefore equation 7.7 is going to be the cost function in the optimisation process.
One advantage of using the Bayesian approach is that the confidence in the data and prior corrective

terms can be expressed and used in determining the values for the corrective field. As well the posterior
covariance matrix of the MAP solution can be calculated which is the inverse of the Hessian of the objective
function at the MAP point. This estimate of the uncertainty of the MAP solution is an important variable as
it expresses the confidence in the correction field. But it can be used in the training of a predictive model of
β(η) in the machine learning process, as well. The process described above is almost identical to a normal
least squares method with an added Tikhonov regularisation term.

The observational covariance matrix can be built from the data. In this research, the data points are
assumed to be independent of each other. Therefore only terms on the diagonal are to be expected. Multiple
snapshots of the flow field are taken using the PIV technique. The mean of the flow is used as reference data
which is determined by the average of the snapshots. This variance of the multiple snapshots is used for the
observational matrix and is calculated as shown in equation 7.8. The variance is thus the mean of the velocity
fluctuations in the PIV flow field.

Cm = E
[
(di −E[di ])2] (7.8)

The prior covariance can be estimated per case. An initial guess for the variance is used to sample multiple
correction fields using a Gaussian distribution. These samples of the correction field are then propagated
through the simulation. From these results, an indication can be formed of the effect of the variance on
the probability distribution of the resulting flow field. The reference data should lay within the ±2σ limits
resulting from the propagated corrective term samples. When this is not the case or the variance is too large,
the prior co-variance should be adjusted.

7.4. Optimisation Approach
The key obstacle, as might already be apparent, is that the optimisation problem is highly dimensional. The β
is a correction field with the same dimensions as the other flow field variables. For higher Reynolds numbers
the number of cells can go well into the millions.

Ordinary gradient based optimisation algorithms are most commonly used. In equation 7.9 the most
simple gradient descent is shown. Here a step is taken every iteration in the direction of a negative slope. The
variable α, the step size, can be determined every step to optimise this process, called a line search.

βk+1
i =βk

i +αk δJ k

δβi
(7.9)

The problem with these methods is that they are based on knowing the gradient. Applying simple finite
difference methods is simply too computationally demanding for this application.

The most used approach in literature is the adjoint approach, based on Lagrange multipliers [31][18][27][5].
This methodology is used to determine gradients of the cost function with respect to β. This can then be used
in any gradient-based optimisation algorithm. The adjoint methodology is a fairly computationally efficient
method to determine gradients. It uses an equal amount of equations as there are already in the model.
Solving for the gradients is thus in the same order as solving for the flow variables, time-wise.

A problem with a gradient descent algorithm is that it will find a local optimum. There is no guarantee the
best solution is found. Therefore the initial guess becomes important.

A different other approach is the usage of genetic algorithms. This is an analogue to natural selection. This
approach has been used in literature [36][35]. With the use of this approach, the chance of finding a global
optimum is much higher. Also, there is no necessity of determining a gradient. However, the convergence
is as a result much slower compared to gradient-based methods. Therefore it is regarded as not the best
approach for this problem.

Another approach taken in literature is ensemble Kalman filters [11]. With this method, no gradient has
to be derived which makes it applicable for high dimensional problems. The problem is approached in a
statistical sense. But again for high dimensional problem, a large number of simulations is needed which
makes it less suitable than the adjoint methodology.

In this research the work of van Korlaar [31] on the adjoint implementation in OpenFoam will be contin-
ued. The adjoint methodology will be discussed in chapter 8. This method of determining the gradients will
be used in combination with a simple gradient descent method as shown in equation 7.9.
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A line search algorithm is used to find a suitable step size per iteration. The line search implementation
from Scipy in Python is used in this research. In this implementation, an inexact line search is performed
which uses the Wolfe conditions to find an acceptable step size that reduces the objective function suffi-
ciently.

A schematic overview of the field inversion process is shown in figure 7.3. The loop in teal shows the
gradient-based optimisation process. In orange, the line search algorithm is shown. The blocks in cyan are
performed using OpenFoam. After a line search, the cost function and its gradient do not have to be calcu-
lated again as these will be equal to the last iteration of the line search. With every optimisation iteration,
the absolute sum of the gradient field is calculated. When this value is sufficiently low it is assumed a local
optimum is found. The initial guess is thus very important to find an optimum which is the global optimum
or close to it. However, due to possible stability issues, it is more important to stay close to the initial model.
Therefore the initial guess will be a corrective field that does not influence the model, in this case, a uniform
field of one.



7.4. Optimisation Approach 37

Initial guess for β

Converge
primal field

J

Converge
adjoint field

δJ/δβ

Start op-
timisation

Start line search

Calculate test
corrective field

βtest =β j +α δJ
δβ

Converge
primal field

J

Converge
adjoint field

δJ/δβ

Wolfe
condi-
tions

satisfied?

Update cor-
rective field

β j+1 = βnew

Gradient
suffi-

ciently
low?

Corrective field

Estimate for α

Update
guess for α

n

y

n

y

Figure 7.3: Schematic overview of the field inversion process including the gradient based optimisation and line search.
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As discussed in chapter 7 the adjoint methodology, as discussed in literature [5][31][18][27], is the preferred
approach. In this chapter, the steps in the derivation are shown and explained. First, the derivation is roughly
shown for the discrete adjoint and the several steps needed to take are explained. After the continuous adjoint
will be derived in detail, following van Korlaar [31]. The continuous adjoint is ultimately derived to be used
in Open Foam, which makes the implementation a lot more trivial.

8.1. Discrete adjoint
In chapter 7 the cost function has been defined. This has been rewritten in equation 8.1, although in a simpler
form. The goal is to find the gradient of the cost function J with respect to β, to be used in the gradient-based
optimisation.

J (β) = log p(β|d) (8.1)

The first approach would be taking the derivative of the cost function to β directly. The cost function J is
basically a mapping of the parameter input space to a scalar value; J (β) : RM → R. The optimisation can be
written down as finding the values for β which give the minimum value for J :

βM AP = argmin
β

J (β) (8.2)

The problem here is that the cost function becomes a very expensive and complex equation where the
simulation code has to be run in order to find the minimum value. With a large number of variables in CFD
simulations, this approach is practically unfeasible.

A second approach would be to set the solution, U , of the PDE’s as a constraint. The optimisation problem
then becomes a constraint optimisation problem.

J (U (β),β) = log p(β|d) (8.3)

Here the function J becomes a mapping of the degrees of freedom of β times the degrees of freedom of U ;
J : RQ ×Rm →R.

The optimisation problem then becomes:

βM AP = argmin
β

J (U ,β) (8.4)

R(U ,β) = 0 (8.5)

This constraints the solution to satisfy the governing equations of the system. The cost function can now
become much simpler as it does not have to include the governing equations to calculate the velocity field
anymore. An example of the cost function is a simple least-squares formulation.
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When using this system of equations to determine the gradient of the cost function with respect to β we
get:

d J
dβ

∣∣∣
β0

= ∂J
∂U

∣∣∣
β0

∂U
∂β

∣∣∣
β0

+ ∂J
∂β

∣∣∣
β0

(8.6)

dR

dβ

∣∣∣
β0

= ∂R

∂U

∣∣∣
β0

∂U
∂β

∣∣∣
β0

+ ∂R

∂β

∣∣∣
β0

= 0 (8.7)

In these equations, the partial derivatives with respect to β can be solved by hand, except for the gradient
of the model variables with respect to β. Because the constraint is used the cost function has become very
simple, deriving it with respect to β becomes trivial. The correction factor β is simply used as a multiplier to
one of the terms in the governing equation. Therefore the gradient of the governing equation with respect to
β is also fairly trivial. The derivatives with respect to the model variables, although tedious, can be worked out
by hand. Again, the derivative of the cost function is rather trivial. The derivative of the governing equations
with respect to the model variables will form a new set of governing equations.

This means we get a linear system of equations for ∂U
∂β

∣∣∣
β0

from the constraint formulation.

Although the partial derivatives can be solved by hand, computing them is still rather costly, as can be
seen from the dimensional analysis shown below.

∂R

∂U

∣∣∣
β0

∈RQ×Q (8.8)

∂R

∂β

∣∣∣
β0

∈RQ×M (8.9)

∂U
∂β

∣∣∣
β0

∈RQ×M (8.10)

As can be seen, the problem has to be solved M , the size of the β field, times to solve the system. The size
of β can be very large in this optimisation problem so this can be very expensive.

To get around this problem the adjoint methodology can be used. Here Lagrange multipliers are used to
rewrite the problem as:

L(U ;β) := J (U ;β)+ψR(U ;β) (8.11)

Here the constraint is multiplied by the Lagrange multiplier and added to the objective function to form
the Lagrange equation. It still has to be true that R(U ;β) = 0 for all β’s so therefore taking the derivative of
this term will also have to be zero. But if we keep this term and divide it into partial differentials we get:

dL
dβ

= d J
dβ

+ψ
dR

dβ
(8.12)

dL
dβ

= d J
dβ

+0 (8.13)

d J
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∂β

+ ∂J
∂U

∂U
∂β

+ψ
(∂R

∂β
+ ∂R

∂U
∂U
∂β

)
(8.14)

Now as discussed earlier, the term ∂u
∂β is difficult to determine. It is actually almost analogous to finding

the gradient of the cost function, which is what we are trying to do here. Therefore the terms including this
term are grouped together:

dL
dβ

= ∂J
∂β

+ψ
∂R

∂β
+

( ∂J
∂U

+ψ
∂R

∂U

)∂U
∂β

(8.15)

Now as the derivative ∂U
∂β is hard to determine, a value for ψ, the Lagrange variable, can be found so that(

∂J
∂U +ψ∂R

∂U

)
= 0. This means that this part of the equation drops out and ∂U

∂β does not have to be solved
anymore.

We are thus then left with this system of equations:

∂R

∂U

T

ψ=− ∂J
∂U

(8.16)
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dβ

= ∂J
∂β

+ψ
∂R

∂β
(8.17)
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All the derivatives that can be written out by hand are simply computed. Following the adjoint method,
the only additional cost of determining the gradients with respect to β is solving for the adjoint variable. This
computation is very similar to a normal iteration in the CFD code as it the equations have similar terms as
the starting governing equations. This however is a great improvement in terms of computational cost with
respect to other methods of calculating the gradient.

The Lagrange variables ψ here is called the adjoint variables and will be further referred to as such.

8.2. Continuous Adjoint
In the previous section, the adjoint methodology has been shown and explained. A set of equations is formed
from the derivation which needs to be solved to compute the adjoint variables, analogous to finding La-
grangian multipliers. To determine the gradient of the cost function with respect to the variable of interest
then becomes easy and can simply be computed. However, the derivation is approached in a discrete sense.
As the set of equations used to determine the adjoint variables are based on a RANS turbulence model, the
resulting equations can be solved in a similar fashion. Therefore OpenFoam will be used as a platform for the
implementation. OpenFoam works by defining the governing equation in continuous form. The equations
will be discretised by the software in order to solve them numerically. Therefore the governing equations for
the adjoint variables also have to be written in continuous form. The detailed derivation will be given in this
section.

The methodology is equal to the discrete case, only now we define a fixed domain Ω in which we solve the
equations. The equation becomes:
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= d J
dβ

+
∫
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dR
dβ

dΩ (8.18)

Where ψ and R are linear combinations of the adjoint variables with the corresponding basic governing
equations.
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After applying the same trick as before with discrete adjoint, setting the terms in front of the model vari-
able derivative with respect to β to zero, we get the following system of equations:
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+
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∂R
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dΩ (8.20)

0 = ∂J
∂U

+
∫

Ω
ψ
∂R
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dΩ (8.21)

In this research, the k−ω RANS turbulence model will be used, in the equations given as R. Equation 8.21
will form the new governing equations, from now on referred to as the adjoint solver. As R denotes the k −ω
RANS turbulence model, it now becomes clear that the terms in the adjoint solver will be very similar. The
equations will form a linear combination of the adjoint variables multiplied by the derivative of the RANS
turbulence model equations with respect to the flow variables U ; in this research consisting of u, p, k and ω.
The detailed derivation of these equations is shown in appendix A.

The resulting equation for the gradient is shown in equation 8.22. Here it becomes clear that the gradient
of the cost function is dependent on the production term. Therefore, in order to get sufficiently smooth
gradients, a smooth mesh is necessary, as at mesh refinement transitions the velocity gradients can be quite
high. When sharp refinement jumps are present in the mesh, discontinuities can form in the resulting cost
function gradients.

dL
dβ

= 1

σ2
β

(
β−β0)−

∫

Ω
ωaγPdΩ (8.22)

In equation 8.23 till 8.26 the governing equations of the adjoint solver are shown. As they are derived from
the RANS k-omega model equations they have a similar form. Note that only the cost function derivative, the
first term of equation 8.21, is present in the adjoint momentum equation. This is the case because the cost
function only has a velocity term in it, and lacks the other flow variables.
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Something interesting that can be noted is that when comparing the adjoint equation to the original tur-
bulence model equations some of the terms appear to have switched signs. To be more precise; the term with
an odd order spatial derivative have switched signs while the terms of an even order spatial derivative kept
the same sign. Later it will be shown that this causes the adjoint variables to flow upstream with respect to
the primal variables.
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8.3. Data Mapping in the Cost Function
As discussed in the previous section the continuous adjoint formulation is used during this research. In this
section, the cost function will be defined. A problem that arises is that the reference data is a discrete data set.
As well, the discrete data points will most probably not coincide with the grid of the simulations. Next to that,
the experimental data does not cover the full CFD domain. How the different data is handled in OpenFoam
will be discussed in this section.

8.3.1. New Cost Function
The cost function in its continuous form, as defined in 7.3, can be written as:
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∫
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dΩ+

∫

Ω

1
2Cβ

(
β−β0

)2
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Where h(β) is the simulation code corrected by β which outputs the velocity field. d denotes the experi-
mental velocity field data. The squared difference between the velocity field from the simulation and the
reference data is integrated over the domain. The second term is the regularisation term, originating from
Bayes theorem. Here Cm is the observational co-variance matrix and Cβ the prior co-variance matrix.

The experimental data, measured by means of PIV, consists of a 2D mesh with a certain velocity known
value per square. The mesh, however, is very different compared to the mesh used in the simulations. To be
able to compare the two flow fields the values at the cell centres are used. While in OpenFoam the equations
are written in their continuous form, the solver still uses a numerical approach to discretise the equations.
As OpenFoam is a finite volume method solver, the values at the cell centres will always be available. There-
fore the terms involving the cost function J are the only terms written in their discrete form. This forms no
problem as no numerical approaches are necessary for these terms.

As the data points are only known in discrete places the cost function is rewritten as:
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Which can naturally be written in its discrete form as:
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The Dirac delta is used in the continuous form in order to only use the data on the specific location while
integrating. When transitioning to the discrete form the Dirac delta drops out and no dependency on the
mesh volume appears.

As discussed, in this case, the reference data d and the simulation results h can not be subtracted that
easily as they live on different grids. In this research it is chosen to map the CFD field h j to the grid of the
PIV data by means of a transformation matrix Hi , j . In this direction, the true experimental data field is main-
tained because no interpolation of the data is needed.

The cost function should thus be written as:
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(8.30)

Where the transformation matrix Hi , j is a mapping from the CFD grid to the PIV grid. Note that the second
term in the equation only lives on the CFD grid as it only a regularisation term.

In the adjoint equations the cost function is used in a differential with respect to the flow variables. These
can be now simply written as:
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Where the sum sign naturally disappears due to the extra transformation matrix which appears due to differ-
entiation. But an other reason for the sum to disappear is that the all the terms are zero except when j = k
and m = n.

In OpenFoam a finite volume method is used. This means that the PDE’s are written and solved in their
integral form. The same has been done for the cost function terms. To include the cost function in this
volume integral we can simply divide by the cell volume, as the terms are not volume dependent. Therefore
in OpenFoam, the cost function derivative is included in the volume integral:
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Equation 8.36 is thus the term appearing in the adjoint momentum equation where it acts as a source
term. For this reason, this term will from on be further referenced as the source term in the adjoint mo-
mentum equation. Something interesting that can be deduced from equation 8.36 is that this source term is
completely linear. Therefore the effect of the source term from all the data points combined is a linear com-
bination of the source terms of single points of data. Furthermore, as all the equations in the solver are linear,
the computed gradient of the cost function with respect to the corrective field, is also a linear combination
of all the single reference data points. In other words, when determining this sensitivity for all the reference
data points separately and adding them together afterward will give the same result as using the complete
reference data set and calculating the sensitivity in one go.
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8.3.2. Data Mapping
What might be odd is that the transformation matrix is applied to the velocity field of the simulation. By doing
this the source term ∂J/∂uk in the adjoint momentum equation becomes more complex. When the transfor-
mation is simply applied to the experimental velocity field the equation remains much simpler. However, the
experimental data is regarded as the ground truth. The goal is to improve the simulation to get the simulation
velocity field closer to the experimental data. For this reason, it makes sense to transform the simulation data
to the grid used by the experiments. This way the experimental data remains unaltered.

An added benefit of this method is that when there is no reference data available in a certain portion of
the domain, the contribution to the cost function becomes zero. The transformation matrix interpolates the
simulation grid to the grid of the experimental data. However when no data points are present in the vicinity
of a cell the values for the transformation remain zero. The transformation matrix thus makes sure only the
section where reference data is available is used for the cost function.

To get the transformation matrix, an implementation of an interpolation algorithm is used in OpenFoam.
This algorithm uses both the values at the cell centres and the values at the cell vertices. Therefore, the cell
centre values have to be interpolated by OpenFoam to get the cell vertex values as well.

First, the algorithm searches for the cell in the simulation mesh where the experimental data point is
located in. This cell is divided into prisms using the cell centre point and the vertices of the cell. The prisms
all have one of their vertices at the cell centre point. A hexahedron will thus be divided into twelve prisms.
Then the prism which encapsulates the experimental data point is chosen. The barycentric weights of the
prism vertices to the PIV data point are calculated for the interpolation. The weights times their value at the
respective prism vertex will be summed together to get the interpolated simulation value at the experimental
data point.

Because the OpenFoam implementation uses the values at mesh vertices as well, equation 8.32 will be
split in a cell centre and a cell vertex variant. Afterward, when the source terms are calculated, the cell vertex
variant will be interpolated to cell centres and added to the cell centres source terms.

8.4. Boundary Conditions
From the derivation of the adjoint solver, next to volume integrals, also boundary integrals followed. These
have to be set to zero while solving for the adjoint variables. Because of this new boundary conditions should
be formed of which the derivation is shown in appendix A.3.

For the inlet and on walls, where Dirichlet boundary conditions are applied on the primal velocity and
turbulence variables, zero Dirichlet boundary conditions have to be applied to their adjoint counterparts.
Where zero Neumann boundary conditions are applied to the primal pressure, also zero Neumann boundary
conditions have to be applied to the adjoint pressure.

However for the outlet and the slip wall the boundary conditions become a lot more complex. The equa-
tions which have to be satisfied at the outlet are shown below:
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At the slip wall the boundary conditions for the adjoint velocity is zero Dirichlet and for adjoint turbu-
lence values zero Neumann. The boundary condition for the adjoint pressure is equal to the outlet boundary
condition.

In practice equation 8.37 to 8.40 are all zero at the outlet. The variables are only driven by the source term
as the adjoint fields will be initialised as zero fields. Also at the boundaries, there are no driving conditions
as all are zero Dirichlet or Neumann. Also, as earlier noted, all the odd order spatial derivatives in the adjoint
equations have switched signs, causing a reversed flow direction. If the outlet is thus sufficiently far away
from the source terms, or in practice, far enough downstream from the reference data, the effect will be zero
thus the internal field at the outlet has no direct driver.
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If we look at equation 8.38 we see that there is a dependency on the adjoint velocity gradient and on the
adjoint turbulence values. The boundary conditions at the wall for the adjoint velocity are zero Dirichlet. So
only if the adjoint turbulence values take a non-zero value this equation will be non-zero. However, if the
adjoint turbulence values remain zero, equation 8.38 could be simply reduced to a zero Dirichlet boundary
condition.

Equations 8.39 and 8.40 are very similar and when looking at them a dependency on the adjoint velocity
can be seen. The other term is a dependency on its own gradient. Therefore, if the adjoint velocity does not
take on a value at the boundary, the adjoint turbulence variables will also be just zero at the outlet boundary.

Again we can note that the field is initialised as zero fields and the boundary conditions on the neighbour-
ing boundaries are zero Dirichlet or Neumann. Therefore it can be reasoned that the boundary conditions
for the adjoint velocity and the adjoint turbulence values at the outlet could be replaced by a zero Dirichlet
boundary condition.

When looking at equation 8.37 it simply follows this could also be a zero Dirichlet boundary condition.
Again, only with the assumption, the reference data is sufficiently away from the outlet boundary.





9
PIV Experiment and Data

In this chapter, the experiments performed by Deltares are described. The test setup used will be explained
and also the possible problems of the test setup will be discussed. Next, the data acquisition will be described
and finally, the processing of this data will be discussed.

9.1. Experimental Set Up
As mentioned before, particle image velocimetry data will be used as reference data. For this research, De-
latares has performed a PIV experiment in their experimental facilities. A scale model was used to recreate
the flow features needed. In figure 9.1 a schematic layout of the experiment set up is shown.

Figure 9.1: Schematic layout of the experimental set up. a) Flow straightening device. b) Underflow gate. c) Pump. d) Flow meter. e)
Level staff. f ) Wires. g) Wave gauge. [1]

The water, which is being pumped around in a closed system, enters the channel vertically to reduce its
effect. Right after it passes through a flow straightening device. The channel after is fairly long in order to get
a uniform stream. At 6.5 m downstream of the flow straightening device the flow hits a ramp that raises the
floor level. After the slope the gate is positioned, 1.32 m downstream. The gate was adjustable in height so
that multiple gate openings could be tested. The tip of the gate has a rounded shape so that the circle is flush
with the upstream side and intersects the downstream side at an angle of 70 degrees. A level staff, located at
around 1.18 m upstream, is used to set the water level at 0.4 m. The water flows downstream at around 12 m
into a basin from where it is pumped to the front. A flow meter is placed behind the pump to measure the
discharge. The sides of the channel are all made of acryllic glass. A closeup photo of the experimental setup
is shown in figure 9.2.
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Figure 9.2: Close up photo of the underflow gate in the channel. [1]

9.2. Caveats of the Experiment

As with every experiment, it is important to understand the differences with the actual problem you are trying
to replicate. This is especially important for this research as the data is going to be used as reference data with
the goal of improving a turbulence model.

The standard problem is that the geometry is not exactly the same. It is very difficult to get the exact same
geometry in the simulation as in the experiment. The weir is replicated as exact as possible but there will
always be some production errors in reality. Also, due to simulation constraints, not the whole experimental
setup is replicated in CFD. This would simply be very inefficient. The differences however are estimated small,
and it is probable other aspects have a far bigger impact. Another difference between the current simulation
setup and the experimental setup is the 3D effects. In the scope of this research, only a semi 2D simulation
has been used. As discussed in chapter 4.3 3D effects will have an effect on the actual shape of the jet. In
the experiment, obviously, a free surface was present between the water and the air. As discussed in chapter
10.2, to simplify the problem only the water will be simulated in the CFD simulations. One of the biggest
problems however was the water pump. Its discharge was not constant during the experiment as it showed
an oscillatory behaviour. This adds extra turbulence to the flow as well as causes some extra oscillations to
the jet. Next to this, the turbulence values could not be accurately measured at the inlet. Therefore setting
the turbulence intensity for the CFD simulations has been a guess.

There are quite a few unknowns which make it difficult to properly compare the experimental setup to
the simulation setup. However, the effects are deemed small enough to still get a use full and meaning full
correction field in the end. The jet is insensitive enough to the minor differences in geometry. Also, the
3D effects are small, and in possible future research will be taken into account. The discharge oscillation is
a problem, however, this is a part of a bigger problem of comparing experimental data to a CFD simulation
that uses a RANS model, which will be discussed later. The problem of not accurately knowing the turbulence
values of the flow upstream of the weir can possibly be corrected by the field inversion paradigm itself.
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9.3. Data Acquisition
To get a proper detailed flow field, four capturing frames are setup. One frame is set up in front of the weir
and three behind the weir. A fifth, smaller, plane is placed just after the gate opening to capture the flow in
detail. A schematic sketch of the five planes is shown in figure 9.3.

Figure 9.3: Sketch of the five different PIV field of view planes. [1]

As lasers are being used to light up the particles in the flow, reflections are a problem. Therefore close to
walls the data from a PIV experiment is generally unreliable. Boundary layer data is thus not available. While
this is unfortunate, the interesting area is the shear layer of the jet which will be fully visible.

In a PIV experiment, the flow field is captured multiple times during a set amount of time. Afterward,
these snapshots of the flow field are time-averaged to get an image of the mean flow field. In the research
of Deltares, unsteady simulations, URANS and LES, have been used. As comparing two instantaneous flow
fields with each other is of no interest, the time-averaged flow fields are used for comparison.

A problem however is that during this research a RANS model has been used. This model simulates the
mean flow and is thus inherently steady. There is a difference between a time-averaged unsteady flow field
and a simulated mean flow. This is the problem with the RANS approach. This is no problem, though, as this
difference is sought to be overcome.

As the time average is taken from the experimental data, also the variance can be calculated. This can
be used in the field inversion process as discussed in chapter 7.3. The mean and variance are calculated
using equations 9.1 and 7.8. The variance is analogous to the Reynolds stresses in the flow field. However
the variance can also be influenced by measurement induced errors and represents thus not only the velocity
fluctuations due to a turbulent flow.

µ= 1
n

n∑

i=1
xi (9.1)

σ2 = 1
n

n∑

i=1
(xi −µ)2 (9.2)

The variance of the data will be used in the adjoint solver as to how well the data point is trusted. For
experimental data this can be quite important. Due to measurement errors, sharp jumps can occur in the
resulting velocity field. These discontinuities can form problems with the stability of the adjoint solver. The
adjoint solver tries to find a direction the corrective field should be changed in to match the experimental
velocity field. When the experimental velocity field is not physical this will cause problems. Therefore damp-
ening the effect of these erroneous data points increases the stability and performance of the paradigm.





10
Flow Cases

During the thesis, several flow cases were used to test and improve upon the paradigm and adjoint solver.
In previous work, [18][31] principal aerodynamic flow cases were used with readily available high fidelity
simulation data. These flow cases are suitable for testing as they generally are off low Reynolds number and
simplistic in terms of boundary conditions. Also, these flow cases are well understood and the setups and
meshes are carefully crafted and tested.

Therefore in order to further extend the paradigm these flow cases have been used as a test platform.
After the development phase, the actual test flow case was set up. The simulations by Deltares [1] have been
performed in Star CCM+. This paradigm is however developed in OpenFoam. Also, the flow case had to
be simplified, as, for example, the implementation of field inversion in OpenFoam can not handle complex
boundary conditions yet.

In this chapter, the flow cases used for developing and testing the paradigm will be discussed. First, the
principal aerodynamic flow cases will be discussed and at last, the underflow weir case in OpenFoam will be
explained.

10.1. Principal Aerodynamic Flow Cases
In order to order to develop the paradigm in an efficient manner, principal aerodynamic flow cases will be
used. These flow cases have been well studied so high fidelity data is readily available for the inversion pro-
cess. However, the main advantage of these cases over the underflow weir case is that they are simple and fast
to solve. The choice has been made to select one of the flow cases also used in previous research [31] so to be
able to compare and verify the results. The same settings and case setup will be used. These cases generally
have a low Reynolds number and a relatively low cell count for RANS simulation setups, resulting in it being
computationally light. Also, the boundary conditions used are principal and simple.

The chosen flow case is the periodic hill. This is one of the principal aerodynamic flow problems as it
is simple and includes some key phenomena in aerodynamics. First flow separation occurs just after the
crest of the hill on a curved surface. After the flow re-attaches on the flat section between the hills. These
flow features have been well studied as they are often relevant in practical flow cases in engineering. For the
inversion phase, high fidelity data is used from the research from Breuer et al. [2]. In their research, they
performed a direct numerical simulation (DNS) for multiple Reynolds numbers. For this research, the case
with a Reynolds number of 5600 is chosen.

The reason why this flow case has been chosen as the first testbed is because of the simple boundary
conditions. The upper and lower walls are treated as physical walls. Because of the relatively fine mesh and
low Reynolds number the y+ values are small enough so that extra wall functions are not necessary. Cyclic
boundary conditions are imposed on the inlet and outlet. A momentum source at the inlet is used to drive
the flow. A careful mesh convergence study has been performed in earlier research [31]. The mesh settings
have been copied in order to be able to properly compare the results.

10.2. Underflow Weir
The previously described cases have been used to test the paradigm and built on its capability step by step.
However, the actual important test case is going to be the underflow weir. Deltares has performed PIV experi-
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Figure 10.1: Periodic Hill flow field with a Reynolds number of 5600, computed by using a RANS k-ω model.

ments and CFD simulations of different levels of fidelity [1]. They also tested for different weir gate openings,
namely an opening of 2cm, 6cm, and 15cm. Therefore a lot of data is available. This case is thus ideal to test
if the paradigm is capable of correcting the turbulence model and consequently improving the output flow
field.

For this research, the gate openings of 2cm and 6cm are going to be used to test the paradigm. For the
6cm gate opening case the most reference data was present while for the case with the 2cm gate opening the
steady simulations were most stable.

PIV data will be used as reference data to improve the standard k-omega model to better present the
reality. For this reason, the simulations should represent the experiment as close as possible. The choices
made in the simulation setup will be discussed below. First, the domain and the boundary conditions will be
discussed. After that, the mesh will be explained. Finally, the turbulence values, inlet, and initial conditions
will be discussed.

10.2.1. Domain and Boundary Conditions
The case resembles a river that encounters an underflow weir. Weirs are generally used to maintain the water
levels upstream, so there will be a water level difference between upstream and downstream of the weir. In
order to simulate physics as close to the truth as possible, Deltares used a multi-flow simulation, simulating
the air and the water at the same time separated by a free surface. In figure 10.2 a schematic overview of
the boundary conditions used is shown. The water is pushed through the weir because of the difference in
hydrostatic pressure caused by the water level difference between upstream and downstream of the weir.

The problem, however, with these chosen boundary conditions and using the multi-phase flow is that the
case becomes rather complex. Extending the adjoint solver and the paradigm of field inversion to be capable
of handling such a case might be the next step but is out of the scope of this research. Therefore the case
had to be simplified to work within the capabilities. Another problem was that the case was set up in the
CFD solver Star CCM+. This CFD solver, being a commercial tool, does not yet allow the features needed to
implement a new solver. Therefore the CFD solver OpenFoam was chosen and thus the case had to be set up
in that environment.

The domain is chosen such that only the water is simulated. Therefore the height of the domain is chosen
to be the height of the water level. Close to the gate the water level is changing slightly however this is not
included in the OpenFoam case setup. The domain height is kept constant upstream and constant down-
stream of the weir, where upstream the domain has a greater height than downstream. When checking the
actual height difference in the experiments and in the simulation performed by Deltares [1] this shows to be
a reasonable assumption as the Froude number and thus the height difference is low.

The length of the upstream and downstream section was chosen to be equal to the simulations of Deltares
[1] in order to be able to use their simulation as reference and baseline.

To further reduce the complexity of the simulation case setup the decision has been made to go for a semi
2D setup. The width of the domain is set to the base cell size so that the number of cells in this direction
equals one. In zones where a refinement is used the number of cells will be increased.

As in the OpenFoam setup, only the water is simulated and the air is left out, the choice of boundary
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Figure 10.2: Schematic representation of the domain boundary conditions used by Deltares [1].

conditions on the top boundaries will be different compared to the one used by Deltares. In this research,
the top boundaries have a slip boundary condition. It is reasonable to assume this as in reality the water will
not feel any wall resistance from the free surface. One problem is the pressure in this case. However from
the simulations performed by Deltares [1] the Froude number is concluded to be very small and thus few
surface disturbances will be present. Therefore no real problems are to be expected using the slip boundary
condition because the flow field should be calm in this region.

The bottom and the weir boundaries have a normal no-slip wall condition set to them. In order to make
the case semi 2D the front and back boundary have a symmetry boundary condition.

Another difference in the water-only simulation is that hydrostatic pressure can not be used to drive the
flow. For this reason, a velocity inlet is chosen at the start of the domain. The outlet is set to a pressure
outlet. A problem that occurs with using a constant velocity inlet is that for the cell at the corner of the inlet
and bottom boundary impossible boundary conditions are imposed. At the inlet, a boundary of the cell a
constant velocity is imposed. However, at the bottom boundary, the velocity should be zero due to the no-
slip boundary condition. A normal CFD simulation will be capable of handling this though and normally
no problems will occur, although better solutions are available. The problem is that still, some artifacts will
be visible in the flow solution due to these unnatural boundary conditions. High-velocity gradients will be
present at the corner in order to cope with the set constraints. As the resulting flow field of the base simulation
will be used by the adjoint solver, the high-velocity gradients present at the corner will cause instabilities, and
using a simple constant velocity inlet is thus not possible.

To get around this problem a non-constant velocity field is used as a constraint at the inlet which includes
a boundary layer. To get this velocity field at the inlet the domain is extended forward. The start of the domain
will have a slip boundary condition on the bottom. After that, the no-slip boundary condition is applied to
form a boundary layer. This way the flow has some time to form to both constraints. The domain is extended
enough to form an established boundary layer at the initial inlet. A mapping of the flow field at this plane is
used as an inlet boundary condition for the rest of the simulations.

A schematic overview of the domain with a 6cm gate opening is shown in figure 10.3. For the case with
the 2cm gate opening the hydraulic jump is slightly higher. Therefore the downstream domain height is de-
creased from 0.32m to 0.25m, which is in agreement with the PIV experiments and the multi-flow simulation
performed by Deltares [1].

10.2.2. Mesh
A few considerations had to be made for the mesh. First of all, again to simplify the simulation, no wall
conditions can be applied to the no-slip boundaries. The main reason this simplification is needed is that the
adjoint solver is not capable of using complex wall models. Research has been done in implementing wall
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Figure 10.3: Schematic representation of the underflow weir domain in OpenFoam.

functions for the standard RANS turbulence models [40], however, this is out of the scope of this research.
A second consideration is that the mesh needs to be as smooth as possible. A not smooth mesh or jumps

in refinement over a small number of cells will cause high gradients in velocity. This is not directly a problem
for a normal CFD solver however it can be for the adjoint solver as with high gradients it can become unstable.

The mesh has been created using OpenFoam. Initially, the blockMesh utility has been used. With this
mesher, a smooth background mesh has been created. The base cell size is 0.01m. Towards the bottom wall
and the location of the weir, the mesh is refined in a smooth manner. Around the tip of the weir, the cell
size is 0.002m. After this, the snappyHexMesh utility from OpenFoam has been used to place the weir gate
and adapt the mesh accordingly. Also, the prism layers around the weir have been created using this utility.
Because of the weir gate, there are some jumps in the mesh cell size, however, these are still small. In figure
10.4 the cell volumes are shown in the simulation domain. Here the smooth grading towards the refined areas
can be seen. In figure 10.5 the cell volumes around the weir gate opening are shown. Due to the added weir
geometry, the mesh is not perfectly smooth around it.

Figure 10.4: Cell volume in the domain.

Figure 10.5: Cell volumes around the weir gate opening.

In figure 10.6 the mesh is shown in the area of the gate opening. The prism layers around the weir and at
the bottom wall are clearly visible. Also, some refinement is visible around the weirs tip. Instead of a smooth
transition, the cells are divided into eight. At the very tip, another refinement is applied. While the whole
mesh has only one cell in the span-wise direction, due to these refinements there are locally two or four cells
in the span-wise direction.

To test the capabilities of the adjoint solver a different mesh is generated. While for the first mesh the
focus was on making it as smooth as possible, this is not always possible in more complex cases. Therefore,
instead of a smooth transition in refinement, refinement zones are used. Around the weir gate opening sev-
eral refinement zones have been applied, each going down just one step in refinement. In figure 10.7 the cell
volumes are shown for the mesh. As shown there are jumps in the cell volume, each of a factor of eight. This
type of mesh is more commonly used for more complex geometries.

10.2.3. Turbulence Parameters and Inlet Conditions
The turbulence parameters are derived from the simulation setup by Deltares [1]. The dynamic viscosity and
density of water at the temperature of the water during the experiments are used to calculate the kinematic



10.2. Underflow Weir 55

Figure 10.6: Snap shot of the mesh around the weir gate opening.

Figure 10.7: Cell volumes for the non uniform mesh with refinement zones.

viscosity needed by OpenFoam.
Furthermore, the inlet turbulence values are also derived from the simulations of Deltares. Star uses a

different set of input variables to OpenFoam so they have to be calculated. The turbulence intensity, I, is set
to 1% and the turbulent viscosity ratio, µt /µ to 10. In OpenFoam a freestream velocity, U, of 0.1572 m/s is
used for the case with the 6cm gate opening and 0.0698 m/s is used for the 2cm gate opening. For setting the
velocities at the inlet in the simulations the mass flow is measured just after the pump is used. This is then
validated by comparing the flow velocities upstream of the gate. Using the velocity at the gate opening for
comparison should be avoided as this can be heavily influenced by the physics around the weir’s walls and
the flow field downstream.

OpenFoam needs a turbulent kinetic energy, k, and specific turbulent dissipation rate, ω, as input. To
calculate these variables the following equations are used:

k = 3
2

(U I )2 (10.1)

µt = ρCµ
k2

ε
(10.2)

ν= µ

ρ
(10.3)

ε=
Cµk2

ν
µt
µ

(10.4)

ω= ε

Cµk
(10.5)
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Where the constant, Cµ, is a model constant used in the RANS turbulence models and has a value of 0.09.
The resulting values are shown in table 10.1.

Variable Value 6cm Value 2cm Unit
ν 8.9088E-7 8.9088E-7 m/s2

k 3.7068E-6 1.8283E-5 m2/s2

ω 0.41608 2.0523 1/s

Table 10.1: Turbulence parameters used for the two underflow weir cases in OpenFoam.

10.2.4. Stability of cases
As mentioned before, the gate opening of 2cm was chosen because it displayed less unsteadiness in the exper-
iments and simulations performed by Deltares. Deltares used several models of different fidelity, however, all
of them were transient. In this research, a steady model is used which could cause issues if the flow is too un-
steady. RANS is inherently steady and thus solves for the mean flow field. If the actual flow field is completely
transient a RANS turbulence model will not be capable of finding a solution.

This problem was observed with the 6cm gate opening case. With the chosen kinematic viscosity, which
influences the Reynolds number, the RANS turbulence model could not find a well-converged solution. Be-
hind the weir opening the flow field was fluctuating and showed a clear transient behaviour. This resulted in
the residuals staying rather high and showing an oscillating behaviour, as shown in figure 10.8.

Figure 10.8: The residuals of the solver plotted over the iterations for the 6cm gate opening case.

These residuals are still too high for using the solution as an input for the adjoint solver. The adjoint solver
is less stable and therefore a higher chance of divergence will be present.

To still be able to use the 6cm case a sensitivity analysis was performed on the several input variables.
The kinematic viscosity was found to have a high sensitivity to the resulting flow field and stability of the
case. Initially, a value was chosen that matches the value used by Deltares [1]. However after increasing the
value by about 20% to 1.1385E-6 m/s2, which resembles a temperature decrease of 10◦C, from 25◦C to 15◦C, a
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steady solution was found. Increasing the kinematic viscosity has a stabilising effect on the flow as there will
be more mixing and higher shear stresses.

The newly found kinematic viscosity will be used for this case in the rest of the Research. However, the
stability of the case might still be a problem due to high sensitivity to this value. The turbulence model is
sought to be corrected by changing the production of ω. This will directly have an effect on the turbulent
viscosity, which can influence the stability negatively.

The case with the 2cm gate opening showed a steady flow field with the initially chosen values so these
will stay unaltered.

The newly found turbulence values are shown in table 10.2.

Variable Value 6cm Value 2cm Unit
ν 1.1385E-6 8.9088E-7 m/s2

k 9.2669E-5 1.8283E-5 m2/s2

ω 8.1396 2.0523 1/s

Table 10.2: Changed turbulence parameters used for the two underflow weir cases in OpenFoam.

10.2.5. Initial Flow Field
It is important to understand the results from using the baseline turbulence model. In this section, the initial
flow field will be analysed and the differences with the reference data will be visualised and discussed. Both
flow cases with the different gate openings show a fairly familiar flow field although some differences are
present.

2cm Gate Opening The 2cm gate opening case has been the most stable case and did not show the same
transient behaviour as found with the 6cm case. In figure 10.9 different field variables are presented. The
turbulence features form a small plume originating from the tip of the weir, centred around the high gradients
in velocity, as shown in figure 10.9c and 10.9d. This indicates not a lot of turbulence is present in the flow and
it is quickly dissipated. The jet formed by the weir is clearly visible in figure 10.9a. Due to the small gate
opening the water is accelerated to relatively high values of 1.7m/s compared to the upstream velocity of just
0.07m/s. Above the jet a re-circulation zone is present. Centred on this re-circulation zone above the jet the
turbulent viscosity is highest, as shown in figure 10.9b.

In figure 10.10 the results from the CFD simulation using the baseline model are compared with the ex-
perimental data. Here the width of on-grid block equals 0.5m/s as the velocities are scaled by a factor of 0.1.
It can be clearly seen that at the gate the experimental data suggest the flow velocity is lower than predicted in
the simulations. However moving downstream the opposite is clearly visible, where the velocities are under
predicted in the simulations. Following the discussion, in section 10.2.3 the velocity profiles at the inlet are
heavily influenced by the flow downstream and how the walls are modelled.

Next to the difference in velocity in the jet itself, a large discrepancy is visible in the shear layer between the
jet and the free stream. In the simulation, the jet is much wider compared to the experimental data, which
may be the reason why the maximum velocity in the jet is lower. Also, the height where the re-circulation
starts is higher in the simulations. Also, the amount of re-circulation is under-predicted in the simulations.
Downstream the velocity magnitudes are lower in the simulation, indicating that probably too much viscosity
is present in the flow. As a result, the approach for correcting the turbulence model suggested in this research
might be capable of improving the simulation results.

6cm Gate Opening In figure 10.11 several field variables are shown for the 6cm case. In figure 10.11a it is
shown how the flow field behind the weir forms a wall-bounded jet. Velocities up to 1.4m/s are observed while
the velocity upstream of the weir only has the magnitude of 0.15m/s. The core of the jet spans almost a length
of 0.5m behind the weir, much longer than in the 2cm case. Above the jet a re-circulation zone is visible. At
the location of high-velocity gradient, just behind the weir, the turbulent kinetic energy is sharply increasing
and forms a sort of plume downstream centred around the shear layer between the jet and the free stream,
as shown in figure 10.11c. Also in this region, it can be seen that the specific turbulent dissipation rate goes
up, as can be seen in figure 10.11d, which is to be expected. As a result, turbulent viscosity has a maximum
just behind the re-circulation zone, where due to the introduced turbulence in the flow the viscosity is also
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(a) Velocity in the x-direction

(b) Turbulent viscosity

(c) Turbulent kinetic energy

(d) Specific turbulent dissipation rate

Figure 10.9: Velocity and turbulent field variables plotted for the underflow weir case with a 2cm gate opening.

Figure 10.10: Comparison of the x-velocity field between the experimental data and the simulation results for the 2cm gate opening. The
velocity profiles are scaled by a factor of 0.1, which means that the width of one minor grid block resembles a velocity of 0.5m/s.

increased. The plume of the turbulent kinetic energy is much more extended and diffused downstream.
Where for the 2cm case the plume was of a larger magnitude it dissipated much quicker.

When the results from the baseline simulation results are compared with the experimental data, some
clear differences are visible. In figure 10.12 the velocity profiles behind the weir are shown. In the core of
the jet, it can be seen that the velocities seen in the experimental data are slightly higher. But the biggest
difference can be seen in the shear layer of the jet with the free stream. The jet predicted by the baseline
simulation is slightly wider initially. However, after 0.6m downstream the jet as seen in the experiment is
slightly larger. Also, something worth noting is that the entrainment is of a higher magnitude. In the re-
circulation zone, the negative velocities are in general higher in the experiment than seen in the simulations.

The biggest difference can thus be seen in the shear layer between the jet and the free stream above. In
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(a) Velocity in the x-direction

(b) Turbulent viscosity

(c) Turbulent kinetic energy

(d) Specific turbulent dissipation rate

Figure 10.11: Velocity and turbulent field variables plotted for the underflow weir case with a 6cm gate opening.

this region also a high turbulent kinetic energy and specific turbulent dissipation rate are seen. Therefore, as
the production of the latter is going to be corrected, this shows to be an effective approach for this problem.
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Figure 10.12: Comparison of the x-velocity field between the experimental data and the simulation results for the 6cm gate opening. The
velocity profiles are scaled by a factor of 0.1, which means that the width of one minor grid block resembles a velocity of 0.5m/s.
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11
Results Adjoint

In this chapter, the results of the new adjoint solver will be discussed. Compared to previous work the solver
has been improved upon in several ways. Some minor bugs were present in the solver which was used as a
reference. Also, the cost function has been rewritten to be able to cope with reference data living on a different
grid than the simulations. These changes were verified on the principal cases and the results will be presented
here. After that, the power of the new cost function will be shown by comparing different results. Finally, the
results of the adjoint solver applied on the underflow weir case will be discussed. As mentioned earlier some
interesting features of the adjoint will be shown and explained.

11.1. Verfication of the Adjoint Solver
As several changes were made to the adjoint solver, verification is necessary to test the validity of the results.
The adjoint solver ultimately determines the sensitivity of the cost function to the corrective field. This can
also be done in a different way than using an adjoint method. Instead, a simple finite difference method
can be used to compute the gradient of the cost function with respect to the corrective field. The reason the
adjoint methodology is chosen over a simple finite difference method is that it is superior in computational
time. However, due to the simplicity of the finite difference method, this can be used to verify the gradients
computed by the adjoint solver.

A simple finite difference method calculates the gradient with equation 11.1. As may be already apparent
from the equation, the finite difference method determines a single gradient value. This means that the sensi-
tivity of the cost function is determined with respect to a single change in the corrective field. In contrast, the
adjoint solver computes the complete gradient field in one go. For the finite difference method to compute
this field, it has to be run as many times as there are cells in the domain. Every simulation run, a single value
of the corrective field is changed to determine the sensitivity to that single term. With simulations of close to
a million cells, it is easy to conclude the method becomes unfeasible.

δJ
δβi

= h(βi +∆β)−h(βi )
∆β

(11.1)

In this case, we use the finite difference method to compute the sensitivity along a line in the domain.
Although still very computationally expensive, this is an easy and robust method to check for sensitivities.
The problem however is the accuracy of the simulations. For every point on the line, a single value in the
complete corrective field is changed. This has a small effect on the solution. However, when only a small
window of reference data is used the cost function gets a very small value. This causes the sensitivity to be
very low as well. To get to this accuracy the simulation residuals have to be very low as well, to the point, it
is not feasible anymore. For this reason, when the amount of reference data points becomes a lot smaller
than the number of cells in the simulation domain, the finite difference method will not give correct results
anymore.

11.1.1. Periodic Hill
For the periodic hill case, two verification tests have been performed. First, the adjoint solver is tested with
full-field reference data. Then just a small window of reference data is used around the crest of the hill, as
around this region the simulation has the most problems.

63
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So first the adjoint solver is run with full-field reference data. In figure 11.1 the source term ∂J/∂u is
shown. The source term is the driver for the adjoint solver as all the boundary and initial conditions are zero.
It clearly shows how the differences between the simulation results and the reference data are seen by the
adjoint method.

Figure 11.1: The source term of the adjoint momentum equation shown for the periodic hill case with full field reference data.

This source term results in a gradient field which shows the sensitivity of the cost function to a local
change in the corrective field. In figure 11.2 this gradient field is shown for this case. A clear plume is visible
originating from the crest of the hill, suggesting the model should be corrected in this area. Also in this figure,
the line is shown along which the finite difference method is applied.

Figure 11.2: The gradient field as predicted by the adjoint solver using full field reference data.

The comparison between the output of the finite difference method and the adjoint solver is shown in
figure 11.3. Here it can be seen that the adjoint solver predicts the location of the sensitivity correct. Also, the
direction, which is most important is correctly predicted. However, the magnitude is not predicted correctly.

To also verify the solver working with just limited reference data, the same methodology is applied again,
however now with just a window of reference data. As well the reference data is thinned out, meaning that
next to giving the adjoint solver just a window, also the reference data mesh is much coarser. The resulting
source term, driving the solver, is shown in figure 11.4. It can be clearly seen that the magnitude of the field
is lower due to the coarser reference data. It can even be noted that in the higher refined areas zero lines are
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Figure 11.3: Comparison of the adjoint solver with the finite difference method using full field reference data.

visible. At these points, there is no reference data so there will be no source term as a result. The same is the
case for the cells outside the window with data, where the source term also becomes zero.

Figure 11.4: The source term of the adjoint momentum equation shown for the periodic hill case with limited reference data.

The computed gradient field for the case with limited data is shown in figure 11.5. As can be seen, is
the field very comparable to when full-field reference data was used. This makes sense as the section of
the domain with the highest contribution to the source term has been used. The magnitude has dropped
significantly though. However, this can be easily explained with the limited amount of reference data. The
cost functions value is simply a lot smaller.

The finite difference method predicts also in this case a lower gradient than the adjoint solver computes,
as shown in figure 11.6. Also, the shape is slightly different, where the finite difference method predicts a
wider plume. The location however is again predicted correctly.

Also, practically the results from the adjoint solver make sense. In figure 11.2 it can be seen that the adjoint
solver predicts a plume originating from the crest of the hill. It thus suggests that in order to lower the cost
function the corrective field has to be decreased in this area. The corrective field corrects the production
term in the ω-equation of the turbulence model. A lower value in the corrective field will thus result in less
production of the specific turbulent dissipation rate. Due to less production, ω will be lower in the suggested
area which spreads downstream. This results in less dissipation of the turbulent kinetic energy which will
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Figure 11.5: The gradient field as predicted by the adjoint solver using limited reference data.

Figure 11.6: Comparison of the adjoint solver with the finite difference method using limited reference data.

thus be higher downstream. With the specific dissipation rate decreasing and the turbulent kinetic energy
increasing the adjoint solver thus suggests that in the area of the plume and downstream of it, the turbulent
viscosity should be higher than currently predicted by the standard model.

To visualise what this means for the simulation the velocity and turbulent field variables are shown in
figure 11.7. It shows that where the adjoint solver suggests reducing the production of ω, already a plume is
visible in ω. It thus suggests this plume is wrong in the baseline model and it should be reduced. If we look at
figure 11.7b it is clear this plume in ω causes an area of low turbulent viscosity. When looking at the velocity
field this is an area of high shear as the velocity gradients are high. The adjoint solver is thus suggesting that
the viscosity in this high shear region should be increased. This result is what is to be expected as the k −ω
model is known to under predict the eddy viscosity in shear layers. As a result the separation bubble is over
predicted in size and the reattachment point is to far aft.

11.1.2. Underflow Weir
Now it is shown the adjoint solver computes correct gradients on the principal cases, it is also good to check
how it performs on the more complex underflow weir case. The mesh is more complex than the principal
cases and the data is of less quality. Also, the underflow weir cases are far larger and have a higher Reynolds
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(a) Velocity in the x-direction

(b) Turbulent viscosity

(c) Turbulent kinetic energy

(d) Specific turbulent dissipation rate

Figure 11.7: Velocity and turbulent field variables plotted for the periodic hill case.



68 11. Results Adjoint

number.
Again to verify the computed gradients a finite difference method is applied. However now, with using

a finite difference method in this case, a few problems arise that influence the result. First, as the mesh is
very fine at the places of interest, changing β in just one cell to check the local sensitivity will not work. The
problem is that the change will not affect the cost function enough. Either the simulation has to be converged
to unfeasible low residuals or the change has to be made bigger.

A solution for this is to apply a change in β not only in one cell but in a small group of cells centred around
the point of interest. The found gradient however is then not exactly equal to the gradient found by the adjoint
solver. This effect is especially visible in figure 11.8 where due to the large area of change in β the gradient
looks to be more smeared out. In figure 11.9 even the last section of the gradient was not captured at around
0.05m in height. This just shows how difficult it is to generate a cost function gradient with respect to the
corrective field with a standard finite difference method. However, as the finite difference method is rather
trivial, the results are to be trusted, keeping the caveats in mind.

For the 2cm gate opening case the location of the finite difference line is chosen at 0.05m behind the weir.
The gradient is plotted over a vertical line going from the bottom of the domain to the top, see figure 11.8.
The location is predicted very well by the adjoint solver. Only the magnitude is different although for both the
adjoint and the finite-difference the value is in the same order of magnitude. Also, the gradient found by the
finite difference is wider in the vertical direction. Although this can be caused by the way the finite difference
method is made to work, as discussed earlier.

For the 6cm case, a different location is chosen to extend the verification. In figure 11.9 the gradients are
computed using finite difference and the adjoint solver is shown. The location chosen here is 0.5m down-
stream of the weir gate. Here the gradients are a lot smaller and some positive sensitivity can be seen as well.
The finite difference and adjoint solver agree with each other all most everywhere on the vertical line. Espe-
cially in the section with the positive gradient, both methods are in agreement. The negative peak higher up
is predicted a bit higher by the finite difference method.

Figure 11.8: Verification of the adjoint solver on the 2cm gate opening underflow weir case at x=0.05m.

11.2. Adjoint Flow Field
In this section, the resulting flow field from the adjoint solver will be discussed. In chapter 8 some references
were made to this section. Some interesting features of the adjoint solver were highlighted and in this chapter,
they will be shown in practice. Some interesting findings can be made from looking at the different variable
fields which give insight into how the solver operates.

To show and discuss the adjoint flow field for the underflow weir the 2cm gate opening case will be used.
First, the results of the smooth mesh will be discussed. Afterward, the mesh with refinement zones is going
to be discussed and compared to the smooth mesh.
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Figure 11.9: Verification of the adjoint solver on the 6cm gate opening underflow weir case at x=0.5m.

11.2.1. Smooth Mesh
In figure 11.10 the source term in the adjoint momentum equation is visualised. This shows how the experi-
mental data drives the adjoint solver. A few interesting observations can be made. The first one can note that
this source term field resembles the delta between the simulation data and the experimental data.

Another thing that can be noted is the bands around 0.4m and 0.8m. At these points, the PIV windows
were overlapping. In this region twice the amount of data points is present. Therefore either the value of the
source term in the cells is doubled or the density of cells with a source term is increased. When the difference
between reference data and the simulation is large this effect is also large. However in the field inversion
process the corrective field is changed such that the simulation results come closer to the reference data.
This effect will as a result be less pronounced. It also makes sense that there seems to be a higher source term
in this region as there is simply more data present.

Figure 11.10: Source term, ∂J/∂u, in the adjoint momentum equation visualised for the underflow weir case with a 2cm gate opening.

In figure 11.11 the adjoint variables are shown. Immediately one can see the flow field looks to be reversed.
There is no need of showing the end of the domain as the flow field variables are zero there. From the section
where the source term in the adjoint momentum equation is introduced the adjoint fields start to be non-
zero. The effect of the source thus does not propagate downstream but upstream. Mathematically this also
makes sense as the convective term in the adjoint equations, which uses the primal velocity and not the
adjoint velocity, is a negative term.

As a result the argument made in section 8.4 is also proven. It was argued that the complex boundary
conditions at the outlet could be replaced by simple zero Dirichlet boundary conditions as all the terms in
the boundary condition equation were practically zero in this case.
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Another thing that can be noted is the high magnitude. This is solely dependent on the source terms and
thus on the cost function. When a lot of data is available, as is the case in this research, the adjoint variables
will take on high magnitudes. There is also a dependency on the mesh volume, as the inverse is present in
the source term in the adjoint momentum equation. When a fine grid is used for the simulations the source
term becomes very large.

At the inlet, different boundary conditions have been applied than should be according to the derivation.
For the adjoint velocity and turbulence values, the boundary condition should be zero Dirichlet however zero
Neumann has been used. Looking at the flow field this change makes sense as the fields are non-zero at the
inlet boundary. Mathematically this is not correct though. As a result, the boundary integral, resulting from
the derivation of the adjoint equations, along the domain is not zero anymore. If the correct boundary con-
ditions are to be used the location of the inlet should have been moved further upstream. With the current
domain, the inlet boundary is too close to the features of importance. When a zero Dirichlet boundary con-
dition is applied the flow field will be affected too much as it will practically hit a wall. To resolve this issue
the inlet should thus be moved further upstream. However, when looking closely at the flow field the adjoint
variables seem to be dissipating naturally. If zero Neumann boundary conditions are used the flow field is not
affected too much. The assumption is then made the adjoint variables will go to zero past the inlet boundary,
and thus the boundary integral will be zero when the extended domain is taken into account. The effect of
this assumption is very minimal. It can be argued that the adjoint flow field around the weir will not be much
different between the extended domain with the correct boundary condition and the current domain with a
zero Neumann condition. Because of this, practically this approach is still correct. A big motivator for this
approach is reducing the mesh count and thus computational time. The value of interest, the sensitivity of
the cost function with respect to the corrective field, is a function of the adjoint omega field and the produc-
tion field. Around the inlet, the production in the flow will be practically zero. If the adjoint omega field is
predicted somewhat wrong due to the used boundary conditions it will have no effect on the cost function
sensitivity. The production field will normally have a value around the areas of interest, where the domain is
centred around.

These fields are computed to be able to calculate the adjoint gradient field. The sensitivity of the cost
function with respect to the corrective field. For the underflow weir case with a 2cm gate opening and using
the baseline k −ω model, this gradient is shown in figure 11.12. This shows where the adjoint solver deter-
mined the production of the turbulent specific dissipation rate should be changed.

Around the tip of the weir gate, some sensitivity can be seen. Especially downstream a plume-like shape
can be seen. Increasing the corrective term in this region and thus increasing the turbulent specific dissipa-
tion rate production should bring the simulation output closer to the experimental data.

By increasing the turbulent specific dissipation rate the eddy viscosity is decreased. This ties in with what
we see in the difference between the data and simulations. In the data, the jet is much more pronounced
while in the simulations the jet is more washed out. Decreasing the viscosity here locally will reduce the
shear stresses in the flow. This could lead to a stronger jet which dissipates less.

11.2.2. Mesh Refinements
In figure 11.13a the source term in the adjoint momentum equation is visualised for the mesh with refine-
ment zones. Clearly, the effect of the mesh refinement can be seen. In the zones of highest refinement, the
magnitude is higher than in sections of the domain with a coarser mesh. The reason behind this is that the
source term in OpenFoam is normalised by the cell volume. In the areas where the cell volume is smallest the
source term will be highest.

This mesh dependency seems an unwanted feature of the solver. However, when looking at figure 11.13b
it becomes clear why this mesh dependency is actually not present. The experimental data lives on a grid
differently than the simulation grid. When the reference data lives on a coarser grid than the local simulation
grid only a few cells in the simulation will have a source term, as can be seen in figure 11.13b. All equations
are linear and thus the solution is a linear combination of the sources. When a coarser grid had been used
for the simulation data the cell values would be lower while fewer zero source cells will be present. The linear
combination will be the same in both cases.

The same argument can be made when the reference data lives on a finer grid. In that case, the effect of
the multiple data points living in one simulation grid cell will be added together to get the final source term
value.

A final comment that can be made is that the reference data is 2D. Around the weirs tip refinement zones
have been applied which increase the number of cells in the span-wise direction as well. The simulation
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(a) Adjoint velocity in the x-direction

(b) Adjoint pressure.

(c) Adjoint turbulent kinetic energy

(d) Adjoint specific turbulent dissipation rate

Figure 11.11: Adjoint velocity, pressure and turbulent field variables plotted for the underflow weir with a 2cm gate opening.

in this region is thus also not strictly 2D. The data mapping finds a grid cell of the simulation in which the
reference data point is located. The same effect we see in figure 11.13b, where the source term is very local,
will be present in the span-wise direction.

The resulting adjoint field variables are not that different between the different meshes. Therefore they
are not shown for this mesh for the sake of brevity. The resulting adjoint gradient, however, is very different.
This field is shown in figure 11.14. A few interesting things can be observed here regarding the adjoint solver.

First of all, a clear mesh dependence is visible. When the mesh goes to a step coarser a jump in the gradi-
ent can be seen. This effect is especially visible upstream of the weir. The adjoint solver is thus suggesting to
correct the model more in coarse regions of the mesh than in finer regions of the mesh.

The reason for this strong mesh dependency becomes clear when looking at equation 11.2 where the
calculation of the adjoint gradient is shown. The volume integral in the second term gives the method a
strong mesh dependency. The flow fields resulting from the adjoint solver are all reasonably smooth.
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Figure 11.12: Cost function gradient with respect to the corrective field for the under flow weir with a 2cm gate opening.

(a) Source term, ∂J/∂u, in the adjoint momentum equation visualised for the underflow weir case with a 2cm gate opening.

(b) Source term, ∂J/∂u, in the adjoint momentum equation visualised for the underflow weir case with a 2cm gate opening, zoomed in.
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11.3. Computational Cost
As the adjoint equations are very similar to the governing equations used for the simulations the same ap-
proach is used to solve them. In this section, the computational cost of the adjoint solver is discussed and
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Figure 11.14: Cost function gradient with respect to the corrective field for the under flow weir with a 2cm gate opening.

compared to the cost of a normal CFD simulation.
The computational cost obviously depends on many parameters. From the chosen numerical scheme

to the chosen relaxation factors, there is a lot of variables that determine the time it takes for a simulation
to converge. Therefore the numbers mentioned here are all based on the underflow weir with a 2cm gate
opening case using the smooth mesh. The chosen settings were all based on stability and computational
time. This should thus be a good example of the performance in practice.

For this example, the simulations were run in parallel. A normal simulation, converging the primal flow
fields, took 2419 iterations which took 418 seconds to converge. When compared to the adjoint solver this
took up to 10000 iterations and 2021 seconds to converge. That is almost 5 times slower. Also, the solver
was stopped when all the adjoint variables had a residual of 1e−5 or lower while the normal simulations were
stopped when all the variables reached a residual of 1e−6 or lower. It thus takes a significantly greater time for
the adjoint solver to converge. One caveat to this is that the relaxation factor was set to less than half for the
adjoint variables compared to the primal variables.





12
Results Field Inversion

In this chapter, the field inversion results from the underflow weir cases will be discussed. First, the 2cm case
will be discussed which was a success. Afterwards the 6cm case will be discussed which had less success due
to model limitations.

12.1. 2cm Gate Opening
The results from applying the paradigm of field inversion on the first underflow weir case with a gate opening
of 2cm will be discussed here. First, looking at the cost function sensitivity computed with the baseline tur-
bulence model the direction of the optimisation process can already be reviewed. A negative sensitivity can
be spotted around the weir gate tip, see figure 12.1. This sensitivity propagates upstream and downstream.
Especially around the weir, the sensitivity is fairly high. This suggests the production of the turbulent specific
dissipation rate should be higher around the weir. An increase in the specific dissipation rate will lower the
turbulent kinetic energy in the flow. This combination will in turn lower the eddy viscosity.

The adjoint solver thus suggests that in the region around the tip of the weir too much eddy viscosity
is present. Lowering the eddy viscosity at the front face of the tip weir will maybe increase the velocity of
the water at the gate opening as fewer shear stresses are present in the high shear flow. In section 10.2 the
simulation flow field has been compared to the experimental data. Here a discrepancy in the velocity at the
gate opening was found for this case.

Behind the weir, the jet was too much washed out in the simulations. In the experimental data, the jet was
much more pronounced and a sharper velocity decrease was found at the edge of the jet. Reducing the eddy
viscosity in this region will reduce the shear stresses locally. This in turn might cause less diffusion of the jet.

The gradient-based optimisation process, using a line search algorithm to find the appropriate step size,
was able to reduce the cost function value by a factor of two. In figure 12.2 this value is plotted over the
iterations. Also in this figure the step size, alpha, is shown. Both are initially sharply decreasing. After two
steps just minor improvements were found. Also at this point, the step size became very low. At this point the
improvements in the cost function were also minimal and within the error range of the simulations.

The algorithm stopped because after five iterations the cost function sensitivity was found too low. In
figure 12.3 the adjoint gradient is shown. The sensitivity around the weir is completely gone, only a small
plume is visible originating from the tip of the weir. This shows that, within the capabilities of the paradigm,
the optimal corrective field, the MAP solution, is almost found.

The resulting corrective field is shown in figure 12.4. Around the front face of the tip of the weir, the
production term of the turbulent specific dissipation rate has been increased by a factor of 1.5. Behind the
weir, two distinct traces can be seen. The bottom one is following the core of the jet, while the top trace is
located around the shear layer between the jet and the free stream. Apparently, in both locations, an increase
in turbulent specific dissipation rate production was needed. Also what can be noted is that the corrections
are very localised around the weir. The paradigm did not come up with a correction far upstream of the weir.

In figure 12.5 it is shown how the turbulent fields are corrected by the paradigm. As already expected a
reduction in the eddy viscosity and turbulent kinetic energy can be seen, while the turbulent specific dissipa-
tion rate is increased around the shear layer between the jet and the free stream.
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Figure 12.1: The adjoint gradient, δJ/δβ, using the baseline k −ω model for the 2cm gate opening case.

Figure 12.2: The values of the cost function and the step size, alpha, over the gradient descent iterations.

The turbulent kinetic energy has been changed quite a bit, see figure 12.5a. Initially, the magnitude has
been reduced by a factor of 0.6. Also, it is far more localised around the shear layer of the jet with the free
stream. Especially above the jet, the turbulent kinetic energy has been reduced greatly. Something else that
can be noticed is that the field diffuses less downstream. Far downstream the turbulent kinetic energy is
actually increased after correcting the model. This might indicate the jet velocity has been increased.

In the turbulent specific dissipation rate field, there are not many surprises. The magnitude has been
increased almost by a factor of two in the shear layer of the jet. This dissipates going downstream where far
downstream the values are almost equal.

The eddy viscosity field is shown in figure 12.5c. This field is a result of the two turbulence fields discussed
earlier so it is thus no surprise that a reduction is seen. Especially close to the gate a reduction can be seen
around the jet close to the bottom. Far downstream the magnitude is actually higher than in the baseline
model.

The changes in these turbulence fields had as a goal to get the velocity field closer to the data. In figure
12.6 the baseline and corrected model are compared with the experimental PIV data and the results from the
high fidelity, DES, simulation. Here a clear improvement can be seen in the velocity field prediction when
using the correction. The velocities in the jet core have been increased. Close to the gate, the velocities in



12.1. 2cm Gate Opening 77

Figure 12.3: The adjoint gradient, δJ/δβ, using the corrected k −ω model for the 2cm gate opening case.

Figure 12.4: The corrective field found after the gradient descent optimisation process, reducing the cost function by a factor of 2 for the
2cm gate opening case.

the core match the data quite well. However, due to the correction, a slight overshoot can be seen further
downstream. Also, the jet is less diffused going downstream. Reducing the eddy viscosity in this area had
the desired effect of getting higher velocity gradients in the shear layer. Around 0.2m the corrected model
comes very close to the experimental data, and a huge improvement with respect to the baseline model is
seen. Further downstream the improvement is less, however here the baseline model has been already quite
good. The solution from using the high fidelity DES model is still better than the corrected model. Although
the jet core velocities look to be over predicted across the whole length of the jet. It is however not strange
that the high fidelity model gives a better prediction. The simulation is in 3D and the model is unsteady. This
will obviously have a big effect on the performance. A steady solver in a 2D domain will not be able to be
corrected to fully match a 3D unsteady problem.

In figure 12.7 the delta between the simulations and the reference data is shown. Overall the delta has
been decreased. Here it becomes clear that the velocities in the core of the jet have been slightly overshot so
that they are higher than in the reference data. In the shear layer, a clear improvement can be seen. In the
free stream above the recirculating flow has been reduced, however also here it has been overshot slightly.
The prediction in the jet core is way better than compared to the results from the DES simulation. However,
in the shear layer, the DES simulation is still superior.
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(a) Turbulent kinetic energy field comparison between the baseline and corrected turbulence model.

(b) Turbulent specific dissipation rate field comparison between the baseline and corrected turbulence model. The field is scaled so that 0.2m equals to a ω
of 200 1/s.

(c) Turbulent viscosity field comparison between the baseline and corrected turbulence model. The field is scaled so that 0.2m equals to a νt of 0.006m2/s.

Figure 12.5: Comparison between the baseline and the corrected model for the turbulence fields in the 2cm gate opening case.
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Figure 12.6: Comparison of the stream wise velocity between the baseline model, the corrected model and experimental data. The field
is scaled so that 0.2m equals to a ux of 2m/s.

Figure 12.7: Difference in stream wise velocity between the baseline, and corrected simulation and the experimental data. The field is
scaled so that 0.2m equals to a ∆ux of 0.4m/s.

12.2. 6cm Gate Opening
In section 10.2 the stability of the 6cm gate opening cased has been discussed. It was found that with the
originally chosen value for the kinematic viscosity, the simulation showed transient behaviour and the solver
could not find a solution. The value has been increased to stabilise the solution. From this point, the field
inversion process has been started.

In figure 12.8 the cost function sensitivity to the corrective field is shown when the baseline turbulence
model is used. This shows the first direction in the gradient-based optimisation phase. Around the tip of the
weir, the adjoint solver found some sensitivity to changing the corrective field. The sensitivity is spread out
in a plume-like fashion behind the tip of the weir.

The adjoint solver thus suggests increasing the corrective term in this region to increase the turbulent
specific dissipation rate. Increasing this variable, however, will, in turn, decrease the turbulent viscosity and
thus increase the effective Reynolds number. The problem with this is that while setting up the baseline case
unsteady behaviour was found in this region as well. This was solved by increasing the kinematic viscosity
and thus stabilising the flow.

Figure 12.8: The adjoint gradient, δJ/δβ, using the baseline k −ω model for the 6cm gate opening case.
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For this reason, the problem of an unsteady flow behind the weir came back in the optimisation process.
Two iterations of the gradient descent optimisation were performed. After this second iteration, the residuals
of the simulation were not converging to a low enough value anymore. As a result, the adjoint solver was not
able to converge to a solution as it needs a well converged primal solution.

The field inversion process was able to reduce the cost function by 10% after two iterations. The result-
ing corrective field is shown in figure 12.9. It shows that the production of turbulent specific dissipation rate
is increased around and downstream of the tip of the weir. In practice this makes sense as too much mix-
ing was found in this region. The jet was much more washed out in the simulations than compared to the
experimental data. Lowering the viscosity due to turbulence in this region would solve this problem.

Figure 12.9: The corrective field found after two steps of the gradient descent optimisation process, reducing the cost function by 10%
for the 6cm gate opening case.

The found corrective field has the predicted effect of increasing the turbulent specific dissipation rate by
increasing the production locally, as can be seen in figure 12.10b. As a result, the turbulent kinetic energy
decreases in the shear layer of the jet and the free stream, figure 12.10a. In figure 12.10c the eddy viscosity is
shown to be decreased in basically the whole flow field above the jet. This decrease in eddy viscosity could be
the reason for the case to go towards instability again.

The effect of changing the eddy viscosity is shown in figure 12.11. Here the stream-wise velocity predicted
by the baseline model and the corrected model is compared to the experimental data. The corrected simula-
tions do show a better prediction of the velocity field, although slight. In figure 12.12 the discrepancy between
the simulation and the experimental data for both the baseline and corrected model is shown to get a better
image of what is happening. Here it immediately becomes clear that the difference between simulation and
experimental data is reduced.

The velocity in the core of the jet is slightly increased with respect to the baseline. Although the baseline
model predicted the magnitude of the velocities in this region quite well. Above the jet the velocities have
been reduced, resulting in a sharper transition from the jet to the free stream.

12.3. Computational Cost
The goal of this paradigm is to improve low fidelity CFD simulations by correcting the turbulence model. A
big question is thus how this compares to simply running a higher fidelity simulation.

In the previous section, the resulting flow fields have been compared, so in this section, the computational
cost will be discussed.

It has already been shown that the adjoint solver takes almost five times longer to converge compared
to the normal CFD solver. During the inversion process however, the simulations are all initialised from a
converged solution, which makes for considerably lower convergence times.

The field inversion process for the underflow weir with a 2cm gate opening took a little over twelve hours
using eight cores. Obviously, this is just for the 2D case. It only took ten minutes to get a solution with a low
fidelity model. It is thus a significant increase in terms of computational time. However, compared to the
high fidelity simulations it is still faster.

Also, the process of field inversion only has to be applied a few times for a set of different cases. The next
step is to learn from the results and to train a model that is capable of further predicting the needed correction
for unseen cases. As with most machine learning approaches, the training time is the most time-consuming.
When the model is trained the prediction is very fast. The time needed for the corrected solution will be of
the same order as for a solution from the baseline model.
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(a) Turbulent kinetic energy field comparison between the baseline and corrected turbulence model.

(b) Turbulent specific dissipation rate field comparison between the baseline and corrected turbulence model. The field is scaled so that 0.2m equals to a ω
of 200 1/s.

(c) Turbulent viscosity field comparison between the baseline and corrected turbulence model. The field is scaled so that 0.2m equals to a νt of 0.006m2/s.

Figure 12.10: Comparison between the baseline and the corrected model for the turbulence fields in the 6cm gate opening case.
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Figure 12.11: Comparison of the stream wise velocity between the baseline model, the corrected model and experimental data. The field
is scaled so that 0.2m equals to a ux of 2m/s.

Figure 12.12: Difference in stream wise velocity between the baseline, and corrected simulation and the experimental data. The field is
scaled so that 0.2m equals to a ∆ux of 0.4m/s.



V
Conclusion

83





13
Conclusion

In this section, the research questions are reviewed again and sought to be answered. This will be done by
first reflecting upon the results achieved in this research. Afterwards the research questions are answered
using the conclusions from the results. Then the significance of this contribution will be discussed. And at
last further recommendations will be shared.

A few conclusions can be made specific to the underflow case. First, a localised correction around the
gate opening and the weir tip was found. Initially, there was some fear around the sensitivity of the inlet
conditions. It was hypothesised that they had a significant effect on the results. This effect was definitely vis-
ible when using the baseline solver, showing some significantly different behaviour for the 6cm gate opening
case. However, the corrective field showed that only the regions around the weir were sensitive to these small
changes.

It is a good thing the adjoint solver finds a sensitivity around the areas of interest, the weir gate in this
case. Finding a correction far away, upstream, of the weir could have been a real scenario. The location of
the found correction is however a direct result of the decision on where the corrective term is applied in the
model equation. The correction is applied to the production term of the turbulent specific dissipation rate
transport equation. This means that the effect of this correction will only be significant when production in
the flow is high. In a well designed simulation domain, the velocity gradients are often only present near the
areas of interest.

A strong dependence on these kinds of flow features will also help in the next step. Ultimately machine
learning would be used to train a model which uses flow features to predict the correction needed. When the
correction is located around the prominent flow features, a correlation is more likely to be found.

1. Can the paradigm of field inversion be applied to more complex problems like wall-bounded jet
flows behind weirs? In this research, the paradigm of field inversion has been applied to the underflow weir
case. Two cases with a different gate opening have been used to test the method. For both cases a corrective
field was found which improved the resulting flow field with respect to the reference data. For one case the
cost function has been reduced by a factor of two.

The complexity of these cases has been increased compared to cases in earlier results. However, com-
pared to a CFD simulation used in engineering the test cases have been on the simple side. First of all, the
simulations have been mainly two-dimensional. While some three-dimensionality was present in the mesh,
no real 3D effects were present in the flow field. Next to this, the positive results were all achieved on a fairly
smooth mesh, while in practice this is often not feasible.

The main drawback is the stability concerns. The adjoint solver needs a well-converged flow field as an
input. When the residuals from the normal simulations are above 1e−5 the adjoint solver has been seen to
show convergence problems. For more complex problems it becomes more and more difficult to achieve low
residuals and thus in parallel, it becomes more difficult to apply this paradigm.

Having said that, this approach has shown its capabilities. The paradigm was able to find a corrective field
to improve the velocity flow field predictions, with respect to the reference data. No stability problems were
found when correcting the model’s equations. Only when the flow field itself became unsteady problems
were found.

1.1 Is a corrective term capable of improving a complex k-omega simulation with respect to a PIV base-
line? And to what extent? It has been shown that the first part of this question is true. The velocity fields, after
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correcting the model, resemble the experimental data much closer. The chosen corrective term thus is capa-
ble of changing the model such that the predictions are improved. While the velocity field has been improved
and better resembles the experimental data, it still is not perfect. While the initial conditions could have
been improved still a perfect fit on the experimental data will not be achieved. Using this formulation of the
corrective term is arguably the same as locally tuning the model coefficients. The same model assumptions
remain and will be limiting. One model limitation has been shown with the 6cm gate opening case. Here,
after correcting the case, it did not converge enough anymore. When testing different initial conditions the
case became unsteady with some values. The k−ω turbulence model is a steady solver. This will be a cause of
errors when this model is used for unsteady cases, something that can not be corrected by this formulation.
Another significant model limitation is the Boussinesq hypothesis used to model the Reynolds stress term.
Here the eddy viscosity is introduced to relate the turbulence stresses to the mean flow. This introduces the
assumption that turbulence is isotropic, while this is not the case. The proposed correction also does not
correct this assumption.

It has been shown that with a different implementation of the corrective term in a different location in the
model better results can be achieved. The limitations of the implementation presented in this research are
completely dependent on the flow. If the model assumptions do not influence the flow too much the current
implementation will be very much capable of correcting the simulation. The benefit of this method is the
adaptability of the equations. The complete adjoint solver is almost independent of the corrective term. To
change the correction to apply to a different term is rather trivial. Therefore it becomes easy to investigate the
effectiveness of the different terms in the models. This can give valuable insight into how the models work
and how they can be improved.

1.2 Can the continuous adjoint formulation be used on more complex and unstructured grids? A clear
mesh dependency was found when running the adjoint solver on a mesh with refinement zones. The found
cost function sensitivity was found to be very different from the one using a smooth mesh. It does make sense
that the sensitivity in larger cells is higher than in smaller cells. However, this does change the steps taken in
the optimisation process, and will maybe give a different corrective field. The regularisation term will limit
the values in the bigger cells to some extent, however. Some problems might occur with the stability of the
case as large regions are corrected and the correction is not smooth. So while the continuous adjoint can be
applied on an unstructured grid, a smooth mesh around the region of interest works best. When the mesh is
smooth in the region where sensitivity is found, finding the optimal corrective field will be easier.

2. Can experimentally obtained data from PIV be used for the field inversion paradigm? In previous
research, high fidelity simulations have been used as a source of reference data. In this research, the paradigm
has been extended to take velocity field data from any source. It has been shown that experimental data could
be used for field inversion. A few limitations were found, however, mainly due to the limitations of the model
itself. The baseline model should be capable to predict a flow field that resembles the data close enough.
When the model is not able to predict certain physics, this paradigm will not be able to help that. However,
when the physics of the model does resemble the physics of the flow field real experimental data can be used.
It has been shown that using the experimental data gathered by Deltares the underflow weir case could be
improved so that the defined cost function has been reduced by a factor of two.

Due to the adjustability of the adjoint solver, the cost function can be changed easily. The paradigm can
easily be adapted to accept all types of data. Therefore, this methodology can become very valuable due to its
adaptability. When for example only pressure data is known from pressure sensors, changing the equations
accordingly is easy.

2.1 Is it possible to apply field inversion with courser reference data? An interpolation step is introduced
in this research to map the velocity field to the data grid of the experiments. The density of data points from
an experiment is often much smaller than the density of cells used in simulations. Using this implementation
it is possible to apply the paradigm of field inversion using coarse reference data.

Even using a single point of data will work in this paradigm and can be used to determine a corrective
field. Applications of this could be for example pressure data on airfoil surfaces.

Using coarser data has more effect on the accuracy of the end result. One can imagine that when high
gradients in the flow are present, enough data points should be present to capture this.

2.2 Is it possible to apply field inversion with limited reference data? Often, when using experimental
data, not only will the data grid be different, but the amount of data will be limited as well. Not everywhere in
the domain there will be data available. When using PIV measurements this is true for flow close to walls. Due
to reflections, it is very difficult to capture the flow field velocities close to surfaces. Also, not the complete
domain used in CFD will be captured in the experiments. Often only the areas of interest will be captured.
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Several experiments have been done with different windows of data, testing the capabilities of the field in-
version process. The resulting cost function sensitivity, computed by the adjoint solver, gave slightly different
results. This makes sense as different windows of data are available.

From the equations, it has become clear that the resulting adjoint gradient is a linear combination of
the adjoint gradients when using only single points of data. The cost function is a simple sum of the squared
difference between the simulation output and the given data. The adjoint gradient is thus a sum of the adjoint
gradients when due to every single data point. Knowing this it makes sense that a different set of data points
will give a different result.

When using a limited set of data points it is important to have data in the area of interest, often the place
where the largest discrepancies are present. It does not make sense to use data to find a correction where the
model is already predicting the flow field accurately.

The objective for this research has been to improve the RANS closure modelling for predicting wall-bounded
jet flows behind a weir extending on the paradigm of field inversion using experimental PIV data as reference
data. This goal can be considered achieved. In this research, the field inversion paradigm has been extended
to be able to be applied to bigger and more complex problems. It has been shown that more complex grids
do not have to form a problem when around the area of interest a somewhat smooth mesh is present. Exper-
imental data has been used in order to find a correction factor for a regularly used turbulence model. When
the baseline model is capable of modelling the physics, the paradigm will be able to find a correction that
improves the predictive capabilities.

When compared to a very high fidelity model the performance is still somewhat worse. However, the
computational cost has been shown to be lower. Also, this is the first step of the paradigm. After field inver-
sion has been applied to several cases in which experimental data is available, the next step is to learn from
the results. A correlation can be found using machine learning techniques to be able to further predict the
corrective field for unseen problems. The predictive phase of the machine learning phase will be very fast.
Therefore the computational cost of simulating an unseen case using the machine learning model to predict
the necessary correction will be in the same order as using the baseline model.

Next training a machine learning model with the data, this paradigm can also be used to learn from ex-
perimental data. The final result showed a clear deficit in the baseline model. Too much artificial viscosity
was modelled which lead to too much diffusion of velocity. By decreasing the eddy viscosity the model was
able to better predict the velocities present in the domain. Now the correction has been applied to the pro-
duction term of the turbulent specific dissipation rate equation. Clearly in regions behind the weir too much
production occurred. However in the boundary layer with the bottom also high production occurred which
did not need correcting. No data on the boundary layer was available so it is difficult to make a conclusion.
This knowledge could be used to better understand how the model can be improved in the future. As well, dif-
ferent correction terms can be applied to get a wider picture of the model problems. This can be an efficient
method to identify the problems with a model in several flow cases.





14
Recommendations

With the knowledge gained during this research, some recommendations will be made in this chapter.
Firstly, in this research, the simulations and experiments have been 2D only. No real problems are to be

expected when extending the paradigm to 3D. However, the reference data used in this research has also been
2D. The data used was taken in the middle of the experimental setup. When extending this methodology to
3D it is recommended to use more planes of experimental data. The adjoint solver finds the locations of high
sensitivity of the cost function with respect to the corrective field. One can imagine that when the model
has corrected laterally far away from the data points, the effect will be less than when close to the plane with
data. Probably the highest sensitivities will be found in a region around the highest discrepancies between
the simulations and the data. In regions far away from the data, the simulation can still incorrectly predict the
flow field while no correction will be found. This ties in with the discussion answering the research question
about limited amounts of data. The paradigm will find a correction to lower the cost function as much as
possible. For an improved simulation, reference data needs to be present in all the problematic areas.

Secondly, problems were found applying the paradigm of field inversion to meshes that are not smooth
enough. In more complex simulations, it is therefore advised to have a smooth mesh around the places of
interest. For example, it will not be possible to have a completely smooth mesh when simulating the aero-
dynamics around a race car. Refinement zones will have to be applied to get the accuracy in the important
places and reduce the mesh count in less important sections of the domain. However, locally in a certain
section of the domain, the mesh could be made smooth without too many problems. This paradigm could
be used to locally correct the used model. When data is available from pressure sensors or from PIV mea-
surements these could be used to find the necessary correction in a localised section of the mesh. If the mesh
in the region where data is available is sufficiently smooth a usable cost function sensitivity could be found
using the adjoint solver. The adjoint solver could even be run on a small part of the domain. This in turn can
be used to find a local correction field to improve the accuracy of the simulations. In essence, this is already
done in practices, where locally in the domain the model parameters are set to different values. With this
approach, this can be done with experimental evidence.
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A
Continuous adjoint of the k −ω model

In this appendix the full detailed adjoint derivation is shown.

A.1. Base model
The basis model for the derivation is the k −ω RANS model [38]. The governing equations of the model are
shown below, including the applied correction term β.

For clarity in the derivation below, the velocity is given as v and the adjoint velocity as u instead of u and
ua .
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∂x j

(
(σωνt +ν)

∂ω

∂x j

)
−γβP + 2

3
γ
∂v j

∂x j
ω+αω2 = 0 (A.4)

Here the production term is defined as:

P =
(∂vi

∂x j
+
∂v j

∂xi

)∂vi

∂x j
(A.5)

The standard model coefficients are used in this research.

A.2. System of equations
The system of equations for the continuous adjoint, as discussed in 8, are shown below.

δJ
δβ

= ∂J
∂β

+
∫

Ω
ψ
∂R
∂β

dΩ (A.6)

0 = ∂J
∂u

+
∫

Ω
ψ
∂R
∂u

dΩ (A.7)

The objective function J is given as

J =
N∑

i=0

1

2σ2
m,i

(
Hi , j vCFD, j − vPIV,i

)2 +
M∑

m=0

1

2σ2
β,m

(
βm −β0,m

)2 (A.8)

Where Hi , j is a transformation function, mapping the velocity field from the CFD space to the PIV space.
The system of equations will be derived in more detail in order in the following sub sections.
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A.2.1. Partial derivatives with respect to β
First equation A.6 will be written out in detail

δJ
δβ

= ∂J
∂β

+
∫

Ω
ψ
∂R
∂β

dΩ (A.9)

δJ
δβ

= ∂JΩ
∂β

+
∫

Ω
u
∂Rv

∂β
dΩ+

∫

Ω
q
∂Rp

∂β
dΩ+

∫

Ω
ka

∂Rk

∂β
dΩ+

∫

Ω
ωa

∂Rω

∂β
dΩ (A.10)

The terms will be worked out in detail in order. However, the only terms that include β are the cost func-
tion and the ω-equation.

Cost function derivative
First we start with the derivative of the cost function:

J =
N∑

i=0

1

2σ2
m,i

(
Hi , j vCFD, j − vPIV,i

)2 +
M∑

m=0

1

2σ2
β,m

(
βm −β0,m

)2 (A.11)

∂JΩ
∂β

= 1

σ2
β

(
β−β0) (A.12)

ω-equation derivative
The governing equation is given below

Rω =
∂(v jω)

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ω

∂x j

)
−γβP + 2

3
γ
∂v j

∂x j
ω+αω2 = 0 (A.13)

This can easily be derived to get

∫

Ω
ωa

∂Rω

∂β
dΩ=−

∫

Ω
ωaγPdΩ (A.14)

Resulting equation
The resulting equation is thus:

δJ
δβ

= 1

σ2
β

(
β−β0)−

∫

Ω
ωaγPdΩ (A.15)

A.2.2. Partial derivatives with respect to"u
Now equation A.7 will be worked out in detail, again in order. Four new governing equations will be formed,
called the adjoint governing equations. The four equations are formed as shown below:

0 = ∂J
∂v

+
∫

Ω
Ψi

∂Ri

∂v
dΩ (A.16)

0 = ∂J
∂p

+
∫

Ω
Ψi

∂Ri

∂p
dΩ (A.17)

0 = ∂J
∂k

+
∫

Ω
Ψi

∂Ri

∂k
)dΩ (A.18)

0 = ∂J
∂ω

+
∫

Ω
Ψi

∂Ri

∂ω
dΩ (A.19)
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Cost function derivative
First we start again with the cost function. Only the derivative with respect to the velocity field is needed, as
the cost function only includes this variable.

J =
N∑

i=0

1

2σ2
m,i

(
Hi , j vCFD, j − vPIV,i

)2 +
M∑

m=0

1

2σ2
β,m

(
βm −β0,m

)2 (A.20)

∫

Ω

∂JΩ
∂v

dΩ= 1
VΩ

∫

Ω

1

σ2
m

H T (
H vCFD − vPIV

)
dΩ (A.21)

Adjoint momentum equation

The momentum equation is given by:

Rv
i =

∂(vi v j )

∂x j
+ ∂p
∂xi

− ∂

∂x j

(
(ν+νt )

(∂vi

∂x j
+
∂v j

∂xi

))
= 0 (A.22)

∫

Ω
ui

∂Rvi

∂v
dΩ=

∫

Ω
ui

∂vi

∂x j
+ui v j

∂

∂x j︸ ︷︷ ︸
I

+
!
!
!"

div(v) = 0

ui
∂v j

∂x j
+ui vi

∂

∂x j︸ ︷︷ ︸
II

−ui
∂

∂x j

(
(ν+νt )

( ∂

∂x j
+ ∂

∂xi

))

︸ ︷︷ ︸
III

dΩ (A.23)

I =
∫

Ω
ui v j

∂

∂x j
dΩ

=
∫

Γ
ui v j n j dΓ−

∫

Ω

∂(ui v j )

∂x j
dΩ

(A.24)

II =
∫

Ω
ui vi

∂

∂x j
dΩ

=
∫

Γ
ui vi n j dΓ−

∫

Ω

∂(ui vi )
∂x j

dΩ

(A.25)

III =−
∫

Ω
ui

∂

∂x j

(
(ν+νt )

( ∂

∂x j
+ ∂

∂xi

))
dΩ

=−
∫

Γ
ui n j (ν+νt )

( ∂

∂x j
+ ∂

∂xi

)
dΓ+

∫

Ω

∂ui

∂x j
(ν+νt )

( ∂

∂x j
+ ∂

∂xi

)
dΩ

=−
∫

Γ
ui n j (ν+νt )

( ∂

∂x j
+ ∂

∂xi

)
dΓ+

∫

Γ

∂ui

∂x j
(ν+νt )(n j +ni )dΓ−

∫

Ω

∂

∂x j

(
(ν+νt )

(
∂ui

∂x j
+
∂u j

∂xi

))
dΩ

(A.26)

So we get:

∫

Ω
ui

∂Rvi

∂v
dΩ=

∫

Ω

[
−
∂(ui v j )

∂x j
− ∂ui

∂x j
vi −

∂

∂x j

(
(ν+νt )

(
∂ui

∂x j
+
∂u j

∂xi

))]
dΩ

+
∫

Γ

[
ui v j n j +ui vi n j −ui n j (ν+νt )

( ∂

∂x j
+ ∂

∂xi

)
+ ∂ui

∂x j
(ν+νt )(n j +ni )

]
dΓ (A.27)

Now the continuity equation:

Rp =−
∂v j

∂x j
= 0 (A.28)

∫

Ω
q
∂Rp

∂vi
dΩ=−

∫

Ω
q

∂

∂x j
dΩ (A.29)

∫

Ω
q
∂Rp

∂vi
dΩ=

∫

Ω

∂q
∂x j

dΩ−
∫

Γ
qn j dΓ (A.30)
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The k-equation:

Rk =
∂(v j k)

∂x j
− ∂

∂x j

(
(σkνt +ν)

∂k
∂x j

)
−νt P + 2

3

∂v j

∂x j
k +Cµωk = 0 (A.31)

∫

Ω
ka

∂Rk

∂vi
dΩ=

∫

Ω

[
ka

∂k
∂x j

+kak
∂

∂x j︸ ︷︷ ︸
I

−2kaνt

(
∂vi

∂x j
+
∂v j

∂xi

)
∂

∂x j︸ ︷︷ ︸
II

+ 2
3

kak
∂

∂x j︸ ︷︷ ︸
III

]
dΩ (A.32)

Using:

P =
(
∂vi

∂x j
+
∂v j

∂xi

)
∂vi

∂x j
(A.33)

∂P
∂vi

= 2
(
∂vi

∂x j
+
∂v j

∂xi

)
∂

∂x j
(A.34)

Working out the terms:

I =
∫

Ω
kak

∂

∂x j
dΩ

=−
∫

Ω

∂(kak)
∂x j

dΩ+
∫

Γ
kakn j dΓ

(A.35)

II =−
∫

Ω
2kaνt

(
∂vi

∂x j
+
∂v j

∂xi

)
∂

∂x j
dΩ

=+
∫

Ω

∂

∂x j

(
2kaνt

(
∂vi

∂x j
+
∂v j

∂xi

))
dΩ−

∫

Γ
2kaνt

(
∂vi

∂x j
+
∂v j

∂xi

)
n j dΓ

(A.36)

III =
∫

Ω

2
3

kak
∂

∂x j
dΩ

=−
∫

Ω

2
3
∂(kak)
∂x j

dΩ+
∫

Γ

2
3

kakn j dΓ

(A.37)

So we get:

∫

Ω
ka

∂Rk

∂vi
dΩ=

∫

Ω

[
−k

∂ka

∂x j
− 2

3
∂(kak)
∂x j

+ ∂

∂x j

(
2kaνt

(
∂vi

∂x j
+
∂v j

∂xi

))]
dΩ

+
∫

Γ

[
5
3

kakn j −2kaνt

(
∂vi

∂x j
+
∂v j

∂xi

)
n j

]
dΓ (A.38)
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The ω-equation
Again using equation A.34.

Rω =
∂(v jω)

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ω

∂x j

)
−γβP + 2

3
γ
∂v j

∂x j
ω+αω2 = 0 (A.39)

∫

Ω
ωa

∂Rω

∂v
dΩ=

∫

Ω

[
ωa

∂ω

∂x j
+ωaω

∂

∂x j︸ ︷︷ ︸
I

−ωa2γβ
(
∂vi

∂x j
+
∂v j

∂xi

)
∂

∂x j︸ ︷︷ ︸
II

+ωa
2
3
γω

∂

∂x j︸ ︷︷ ︸
III

]
dΩ (A.40)

Working out the terms:

I =
∫

Ω
ωaω

∂

∂x j
dΩ

=−
∫

Ω

∂(ωaω)
∂x j

dΩ+
∫

Γ
ωaωn j dΓ

(A.41)

II =−
∫

Ω
ωa2γβ

(
∂vi

∂x j
+
∂v j

∂xi

)
∂

∂x j
dΩ

=
∫

Ω

∂

∂x j

(
2ωaγβ

(
∂vi

∂x j
+
∂v j

∂xi

))
dΩ−

∫

Γ
2ωaγβ

(
∂vi

∂x j
+
∂v j

∂xi

)
n j dΓ

(A.42)

III =
∫

Ω
ωa

2
3
γω

∂

∂x j
dΩ

=−
∫

Ω

2
3
γ
∂(ωaω)
∂x j

dΩ+
∫

Γ

2
3
γωaωn j dΓ

(A.43)

So we get:

∫

Ω
ωa

∂Rω

∂vi
dΩ=

∫

Ω

[
−ω

∂ωa

∂x j
− 2

3
γ
∂(ωaω)
∂x j

+ ∂

∂x j

(
2ωaγβ

(
∂vi

∂x j
+
∂v j

∂xi

))]
dΩ

+
∫

Γ

[(
1+ 2

3
γ

)
ωaωn j −2ωaγβ

(
∂vi

∂x j
+
∂v j

∂xi

)
n j −ui n j (ν+νt )

( ∂

∂x j
+ ∂

∂xi

)]
dΓ (A.44)

Now we can combine all the volume integral terms to get Ru
i and all the boundary integral terms to get

Du
i and P u

i which make up the final governing and boundary condition equations of the adjoint momentum
equation.

Ru
i = ∂J

∂vi
−
∂(ui v j )

∂x j
− ∂ui

∂x j
vi −

∂

∂x j

(
(ν+νt )

(
∂ui

∂x j
+
∂u j

∂xi

))
+ ∂q
∂x j

−k
∂ka

∂x j
−ω

∂ωa

∂x j

− 2
3
∂(kak)
∂x j

− 2
3
γ
∂(ωaω)
∂x j

+2
∂

∂x j

(
(kaνt +ωaγβ)

(
∂vi

∂x j
+
∂v j

∂xi

))
(A.45)

Du
i = ui v j n j +ui vi n j + (ν+νt )n j

(
∂ui

∂x j
+
∂u j

∂xi

)
−qn j +

5
3

kakn j +
(
1+ 2

3
γ

)
ωaωn j

−2kaνt n j

(
∂vi

∂x j
+
∂v j

∂xi

)
−2ωaγβn j

(
∂vi

∂x j
+
∂v j

∂xi

)
(A.46)

P u
i =−(ν+νt )ui n j − (ν+νt )u j ni (A.47)
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Adjoint continuity equation

The momentum equation is given as:

Rv
i =

∂(vi v j )

∂x j
+ ∂p
∂xi

− ∂

∂x j

(
(ν+νt )

(∂vi

∂x j
+
∂v j

∂xi

))
= 0 (A.48)

∫

Ω
ui

∂Rv
i

∂p
dΩ=

∫

Ω
ui

∂

∂xi
dΩ (A.49)

∫

Ω
ui

∂Rv
i

∂p
dΩ=−

∫

Ω

∂ui

∂xi
dΩ+

∫

Γ
ui ni dΓ (A.50)

The continuity equation is given as:

Rp =−
∂v j

∂x j
= 0 (A.51)

∫

Ω
q
∂Rp

∂p
dΩ= 0 (A.52)

The k-equation is given as:

Rk =
∂(v j k)

∂x j
− ∂

∂x j

(
(σkνt +ν)

∂k
∂x j

)
−νt P + 2

3

∂v j

∂x j
k +Cµωk = 0 (A.53)

∫

Ω
ka

∂Rk

∂p
dΩ= 0 (A.54)

And finally, the ω-equation is given as:

Rω =
∂(v jω)

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ω

∂x j

)
−γβP + 2

3
γ
∂v j

∂x j
ω+αω2 = 0 (A.55)

∫

Ω
ωa

∂Rω

∂p
dΩ= 0 (A.56)

Gathering all the terms in the volume and boundary integrals to for Rq and Dq we get:

Rq =−∂ui

∂xi
= 0 (A.57)

Dq = ui ni = 0 (A.58)
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Adjoint k-equation

The derivation from the momentum equation goes as follows, using νt = k
ω :

Rv
i =

∂(vi v j )

∂x j
+ ∂p
∂xi

− ∂

∂x j

(
(ν+νt )

(∂vi

∂x j
+
∂v j

∂xi

))
= 0 (A.59)

∫

Ω
ui

∂Rv
i

∂k
dΩ=−

∫

Ω
ui

∂

∂x j

(
1
ω

(∂vi

∂x j
+
∂v j

∂xi

))
dΩ (A.60)

∫

Ω
ui

∂Rv
i

∂k
dΩ=

∫

Ω

∂ui

∂x j

1
ω

(
∂vi

∂x j
+
∂v j

∂xi

)
dΩ−

∫

Γ
ui n j

1
ω

(
∂vi

∂x j
+
∂v j

∂xi

)
dΓ (A.61)

The derivation from the continuity equation goes as follows:

Rp =−
∂v j

∂x j
= 0 (A.62)

∫

Ω
q
∂Rp

∂k
dΩ= 0 (A.63)

The derivation from the k-equation goes as follows:

Rk =
∂(v j k)

∂x j
− ∂

∂x j

(
(σkνt +ν)

∂k
∂x j

)
−νt P + 2

3

∂v j

∂x j
k +Cµωk = 0 (A.64)

∫

Ω
ka

∂Rk

∂k
dΩ=

∫

Ω

[
ka v j

∂

∂x j︸ ︷︷ ︸
I

+ka
∂v j

∂x j
−ka

∂

∂x j

(
(σkνt +ν)

∂

∂x j

)

︸ ︷︷ ︸
II

−ka
∂

∂x j

(
σk

ω

∂k
∂x j

)

︸ ︷︷ ︸
III

− ka

ω
P +ka

2
3

∂v j

∂x j
+kaCµω

]
dΩ (A.65)

Working out the terms:

I =
∫

Ω
ka v j

∂

∂x j
dΩ

=−
∫

Ω

∂(ka v j )

∂x j
dΩ+

∫

Γ
ka v j n j dΓ

(A.66)

II =−
∫

Ω
ka

∂

∂x j

(
(σkνt +ν)

∂

∂x j

)
dΩ

=
∫

Ω

∂ka

∂x j
(σkνt +ν)

∂

∂x j
dΩ−

∫

Γ
kan j (σkνt +ν)

∂

∂x j
dΓ

=−
∫

Ω

∂

∂x j

(
(σkνt +ν)

∂ka

∂x j

)
dΩ+

∫

Γ

∂ka

∂x j
(σkνt +ν)n j dΓ−

∫

Γ
kan j (σkνt +ν)

∂

∂x j
dΓ

(A.67)

III =−
∫

Ω
ka

∂

∂x j

(
σk

ω

∂k
∂x j

)
dΩ

=
∫

Ω

∂ka

∂x j

σk

ω

∂k
∂x j

dΩ−
∫

Γ
kan j

σk

ω

∂k
∂x j

dΓ

(A.68)

So we get:

∫

Ω
ka

∂Rk

∂k
dΩ=

∫

Ω

[
−
∂(ka v j )

∂x j
+ka

5
3

∂v j

∂x j
− ∂

∂x j

(
(σkνt +ν)

∂ka

∂x j

)
+ ∂ka

∂x j

σk

ω

∂k
∂x j

− ka

ω
P +kaCµω

]
dΩ

+
∫

Γ

[
ka v j n j +

∂ka

∂x j
(σkνt +ν)n j −kan j (σkνt +ν)

∂

∂x j
−kan j

σk

ω

∂k
∂x j

]
dΓ (A.69)
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The derivation from the ω-equation goes as follows:

Rω =
∂(v jω)

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ω

∂x j

)
−γβP + 2

3
γ
∂v j

∂x j
ω+αω2 = 0 (A.70)

∫

Ω
ωa

∂Rω

∂k
dΩ=−

∫

Ω
ωa

∂

∂x j

(
σω

ω

∂ω

∂x j

)
dΩ (A.71)

∫

Ω
ωa

∂Rω

∂k
dΩ=

∫

Ω

∂ωa

∂x j

(
σω

ω

∂ω

∂x j

)
dΩ−

∫

Γ
ωan j

(
σω

ω

∂ω

∂x j

)
dΓ (A.72)

Gathering all the terms in the volume and boundary integrals to for Rka , Dka and P ka we get:

Rka =−
∂(ka v j )

∂x j
− ∂

∂x j

(
(σkνt +ν)

∂ka

∂x j

)
+ ∂ka

∂x j

σk

ω

∂k
∂x j

+ ∂ωa

∂x j

σω

ω

∂ω

∂x j

+ 1
ω

∂ui

∂x j

(
∂vi

∂x j
+
∂v j

∂xi

)
+ka

5
3

∂v j

∂x j
− ka

ω
P +kaCµω= 0 (A.73)

Dka =−ui n j
1
ω

(
∂vi

∂x j
+
∂v j

∂xi

)
+ka v j n j +

∂ka

∂x j
(σkνt +ν)n j −kan j

σk

ω

∂k
∂x j

−ωan j

(
σω

ω

∂ω

∂x j

)
(A.74)

P ka =−kan j (σkνt +ν) (A.75)
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Adjoint ω-equation

The derivation from the momentum equation goes as follows, using νt = k
ω :

Rv
i =

∂(vi v j )

∂x j
+ ∂p
∂xi

− ∂

∂x j

(
(ν+νt )

(∂vi

∂x j
+
∂v j

∂xi

))
= 0 (A.76)

∫

Ω
ui

∂Rv
i

∂ω
dΩ=

∫

Ω
ui

∂

∂x j

(
k
ω2

(∂vi

∂x j
+
∂v j

∂xi

))
dΩ (A.77)

∫

Ω
ui

∂Rv
i

∂ω
dΩ=−

∫

Ω

∂ui

∂x j

k
ω2

(
∂vi

∂x j
+
∂v j

∂xi

)
dΩ+

∫

Γ
ui n j

k
ω2

(
∂vi

∂x j
+
∂v j

∂xi

)
dΓ (A.78)

The derivation from the continuity equation goes as follows:

Rp =−
∂v j

∂x j
= 0 (A.79)

∫

Ω
q
∂Rp

∂ω
dΩ= 0 (A.80)

The derivation from the k-equation goes as follows:

Rk =
∂(v j k)

∂x j
− ∂

∂x j

(
(σkνt +ν)

∂k
∂x j

)
−νt P + 2

3

∂v j

∂x j
k +Cµωk = 0 (A.81)

∫

Ω
ka

∂Rk

∂ω
dΩ=

∫

Ω

[
ka

∂

∂x j

(
σk

k
ω2

∂k
∂x j

)
+ka

k
ω2 P +Cµkak

]
dΩ (A.82)

∫

Ω
ka

∂Rk

∂ω
dΩ=

∫

Ω

[
− ∂ka

∂x j
σk

k
ω2

∂k
∂x j

+ka
k
ω2 P +Cµkak

]
dΩ+

∫

Γ
kan jσk

k
ω2

∂k
∂x j

dΓ (A.83)

The derivation from the ω-equation goes as follows:

Rω =
∂(v jω)

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ω

∂x j

)
−γβP + 2

3
γ
∂v j

∂x j
ω+αω2 = 0 (A.84)

∫

Ω
ωa

∂Rω

∂ω
dΩ=

∫

Ω

[
ωa v j

∂

∂x j︸ ︷︷ ︸
I

+ωa
∂v j

∂x j
−ωa

∂

∂x j

(
(σωνt +ν)

∂

∂x j

)

︸ ︷︷ ︸
II

+ωa
∂

∂x j

(
σω

k
ω2

∂ω

∂x j

)

︸ ︷︷ ︸
III

+ωa
2
3
γ
∂v j

∂x j
+2ωaαω

]
dΩ (A.85)
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Working out the terms:

I =
∫

Ω
ωa v j

∂

∂x j
dΩ

=−
∫

Ω

∂(ωa v j )

∂x j
dΩ+

∫

Γ
ωa v j n j dΓ

(A.86)

II =−
∫

Ω
ωa

∂

∂x j

(
(σωνt +ν)

∂

∂x j

)
dΩ

=
∫

Ω

∂ωa

∂x j
(σωνt +ν)

∂

∂x j
dΩ−

∫

Γ
ωan j (σωνt +ν)

∂

∂x j
dΓ

=−
∫

Ω

∂

∂x j

(
(σωνt +ν)

∂ωa

∂x j

)
dΩ+

∫

Γ

∂ωa

∂x j
(σωνt +ν)n j dΓ−

∫

Γ
ωan j (σωνt +ν)

∂

∂x j
dΓ

(A.87)

III =
∫

Ω
ωa

∂

∂x j

(
σωk
ω2

∂ω

∂x j

)
dΩ

=−
∫

Ω

∂ωa

∂x j
σω

k
ω2

∂ω

∂x j
dΩ+

∫

Γ
ωan jσω

k
ω2

∂ω
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dΓ

(A.88)

So we get:

∫

Ω
ωa

∂Rω

∂k
dΩ=

∫

Ω

[
−
∂(ωa v j )

∂x j
+

(
1+γ

2
3

)
ωa

∂v j

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ωa

∂x j

)
− ∂ωa

∂x j
σω

k
ω2

∂ω

∂x j
+2ωaαω

]
dΩ

+
∫

Γ

[
ωa v j n j +

∂ωa

∂x j
(σωνt +ν)n j −ωan j (σωνt +ν)

∂

∂x j
+ωan jσω

k
ω2

∂ω

∂x j

]
dΓ (A.89)

Gathering all the terms in the volume and boundary integrals to for Rωa , Dωa and Pωa we get:

Rωa =−
∂(ωa v j )

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ωa

∂x j

)
− ∂ωa

∂x j
σω

k
ω2

∂ω

∂x j
− ∂ka

∂x j
σk

k
ω2

∂k
∂x j

+ka
k
ω2 P

− ∂ui

∂x j

k
ω2

(
∂vi

∂x j
+
∂v j

∂xi

)
+

(
1+γ

2
3

)
ωa

∂v j

∂x j
+2ωaαω+Cµkak = 0 (A.90)

Dωa =ωa v j n j +
∂ωa

∂x j
(σωνt +ν)n j +ωan jσω

k
ω2

∂ω

∂x j
+ui n j

k
ω2

(
∂vi

∂x j
+
∂v j

∂xi

)
+kan jσk

k
ω2

∂k
∂x j

(A.91)

Pωa =−ωan j (σωνt +ν) (A.92)
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Summary

So to summarise all the equations are shown below:

Ru
i = ∂J

∂vi
−
∂(ui v j )

∂x j
− ∂ui

∂x j
vi −

∂

∂x j

(
(ν+νt )

(
∂ui

∂x j
+
∂u j

∂xi

))
+ ∂q
∂x j

−k
∂ka

∂x j
−ω

∂ωa

∂x j

− 2
3
∂(kak)
∂x j

− 2
3
γ
∂(ωaω)
∂x j

+2
∂

∂x j

(
(kaνt +ωaγβ)

(
∂vi

∂x j
+
∂v j

∂xi

))
(A.93)

Rq =−∂ui

∂xi
= 0 (A.94)

Rka =−
∂(ka v j )

∂x j
− ∂

∂x j

(
(σkνt +ν)

∂ka

∂x j

)
+ ∂ka

∂x j

σk

ω

∂k
∂x j

+ ∂ωa

∂x j

σω

ω

∂ω

∂x j

+ 1
ω

∂ui

∂x j

(
∂vi

∂x j
+
∂v j

∂xi

)
− ka

ω
P +ka

5
3

∂v j

∂x j
+kaCµω= 0 (A.95)

Rωa =−
∂(ωa v j )

∂x j
− ∂

∂x j

(
(σωνt +ν)

∂ωa

∂x j

)
− ∂ωa

∂x j
σω

k
ω2

∂ω

∂x j
− ∂ka

∂x j
σk

k
ω2

∂k
∂x j

− k
ω2

∂ui

∂x j

(
∂vi

∂x j
+
∂v j

∂xi

)
+ka

k
ω2 P +

(
1+γ

2
3

)
ωa

∂v j

∂x j
+2ωaαω+Cµkak = 0 (A.96)

Du
j = ui v j n j +ui vi n j + (ν+νt )n j

(
∂ui

∂x j
+
∂u j

∂xi

)
−qn j +

5
3

kakn j +
(
1+ 2

3
γ

)
ωaωn j

−2kaνt n j

(
∂vi

∂x j
+
∂v j

∂xi

)
−2ωaγβn j

(
∂vi

∂x j
+
∂v j

∂xi

)
(A.97)

Dq = ui ni (A.98)

Dka =−ui n j
1
ω

(
∂vi

∂x j
+
∂v j

∂xi

)
+ka v j n j +

∂ka

∂x j
(σkνt +ν)n j −kan j

σk

ω

∂k
∂x j

−ωan j

(
σω

ω

∂ω

∂x j

)
(A.99)

Dωa =ωa v j n j +
∂ωa

∂x j
(σωνt +ν)n j +ωan jσω

k
ω2

∂ω

∂x j
+ui n j

k
ω2

(
∂vi

∂x j
+
∂v j

∂xi

)
+kan jσk

k
ω2

∂k
∂x j

(A.100)

P u
i =−(ν+νt )ui n j − (ν+νt )u j ni (A.101)

P ka =−kan j (σkνt +ν) (A.102)

Pωa =−ωan j (σωνt +ν) (A.103)
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A.3. Boundary Conditions
In this section a detailed overview is given of the derivation for the boundary conditions.

In deriving the adjoint methodology all the terms multiplied with the derivative of the primal variables
with respect to β were gathered and set to zero. The reason being as this derivative is difficult to compute.
However in some cases at the boundaries this derivative is set to zero. This can be used to derive the boundary
conditions for the adjoint variables. The respective boundary integral doesn’t have to be zero anymore for the
complete term to drop out.

A.3.1. Inlet and no-slip walls
On the inlet and no-slip walls Dirichlet boundary conditions are used for the primal variables, except for the
pressure, for which a Neumann boundary condition is used. This means:

vi = fv (z) (A.104)

k = fk (z) (A.105)

ω= fω(z) (A.106)

∂p
∂x j

= 0 (A.107)

With the functions f for the values at the inlet boundary. This means that with a change in β the boundary
primal values and pressure derivative should not change. So we can say:

∂vi

∂β
= 0 (A.108)

∂k
∂β

= 0 (A.109)

∂ω

∂β
= 0 (A.110)

∂

∂x j

∂p
∂β

= 0 (A.111)

This means that Dv
i , Dk , Dω can be left out from this derivation.

So we have:

Dq
i = 0, P u

i j = 0, P k
j = 0 and Pω

j = 0 (A.112)

From this follows:

Dq
i = 0 = ui ni = un (A.113)

P u
i j = 0 =−(ν+νt )ui n j − (ν+νt )u j ni

0 =−ui n j −u j ni

0 =−un
n j

ni
−u j ni

0 = u j ni

0 = u j

(A.114)

P ka = 0 =−kan j (σkνt +ν)

0 = ka
(A.115)

Pωa = 0 =−ωan j (σωνt +ν)

0 =ωa
(A.116)
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A.3.2. Outlet
At the outlet Neumann boundary conditions are applied on all the primal velocity in turbulence variables. A
Dirichlet boundary condition is applied on the primal pressure.

∂

∂x j

∂(vi )
∂β

= 0,
∂p
∂β

= 0,
∂

∂x j

∂k
∂β

= 0, and
∂

∂x j

∂ω

∂β
= 0 (A.117)

Which means that we have to set the remaining equations to zero:

Du
j = 0, Dka

j = 0, and Dωa
j = 0 (A.118)

First we solve Du
i j for the adjoint pressure q . If we take the normal component:

Du
i ni = 0 = ui v j n j ni +u j v j ni ni + (ν+νt )n j ni

(
∂ui

∂x j
+
∂u j

∂xi

)
−qni ni +

5
3

kakni ni +
(
1+ 2

3
γ

)
ωaωni ni

−2kaνt n j ni

(
∂v j

∂xi

)
−2ωaγβn j ni

(
∂v j

∂xi

)
(A.119)

q = un vn +u j v j +2(ν+νt )n j
∂un

∂x j
+ 5

3
kak +

(
1+ 2

3
γ

)
ωaω (A.120)

Now we solve Du
i j for the adjoint velocity u. We do this by taking the tangential component:

Du
i ti = 0 = ui v j n j ti +u j v j ni ti + (ν+νt )n j ti

(
∂ui

∂x j
+
∂u j

∂xi

)
−qni ti +

5
3

kakni ti +
(
1+ 2

3
γ

)
ωaωni ti

−2kaνt n j ti

(
∂v j

∂xi

)
−2ωaγβn j ti

(
∂v j

∂xi

)
(A.121)

0 = ut vn + (ν+νt )
(
n j

∂ut

∂x j
+ ti

∂un

∂xi

)
−2(kaνt +2ωaγβ)ti

(
∂vn

∂xi

)
(A.122)

ut =− 1
vn

[
(ν+νt )

(
n j

∂ut

∂x j
+ ti

∂un

∂xi

)
−2(kaνt +2ωaγβ)ti

(
∂vn

∂xi

)]
(A.123)

Finally the boundary conditions for the adjoint turbulence variables:

Dka = 0 =−ui n j
1
ω

(

#
#
#$

0
∂vi

∂x j
+
∂v j

∂xi

)
+ka v j n j +

∂ka

∂x j
(σkνt +ν)n j −

%%%%%%&
0

kan j
σk

ω

∂k
∂x j

−
%%%%%%&0

ωan j
σω

ω

∂ω

∂x j
(A.124)

ka = 1
vn

[
ui

1
ω

∂vn

∂xi
− ∂ka

∂x j
(σkνt +ν)n j

]
(A.125)

Dωa = 0 =ωa v j n j +
∂ωa

∂x j
(σωνt +ν)n j +''''''''(0

ωan jσω
k
ω2

∂ω

∂x j
+ui n j

k
ω2

(

#
#
#$

0
∂vi

∂x j
+
∂v j

∂xi

)
+
'''''''(0
kan jσk

k
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(A.126)

ωa =− 1
vn

[
∂ωa

∂x j
(σωνt +ν)n j +ui

k
ω2

∂vn

∂xi

]
(A.127)

A.3.3. Slip wall
For the slip wall there is no Dirichlet boundary condition on the tangential velocity. Also, the rest of the primal
variables have Neumann boundary conditions applied to them. Therefore we have:

∂(n j v j )

∂β
= 0,

∂

∂x j

∂p
∂β

= 0,
∂

∂x j

∂k
∂β

= 0, and
∂

∂x j

∂ω

∂β
= 0 (A.128)
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From this follows:

Du
i = 0, Dq

j = 0, Dka
j = 0, Dωa

j = 0 and P u
i j = 0 (A.129)

Many of these we already have seen. First off, Dq = 0 and P u = 0 suggest that the adjoint velocity must me
zero along the slip wall, following the derivation for the inlet and no slip walls.

Now with this knowledge the other boundary conditions can be derived.
For q we have:

Du
j = 0 = ui v j n j +ui vi n j + (ν+νt )n j

(
∂ui

∂x j
+
∂u j

∂xi

)
−qni +

5
3

kakni +
(
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3
γ

)
ωaωni

−2(kaνt +ωaγβ)n j

(
∂vi

∂x j
+
∂v j

∂xi

)
(A.130)

q = un vn +ui vi +2(ν+νt )n j ni
∂ui

∂x j
+ 5

3
kak +

(
1+ 2

3
γ

)
ωaω−4(kaνt +ωaγβ)n j ni

∂vi

∂x j
(A.131)

A lot of these terms will drop out because of the boundary conditions on the slip wall for other variables.
However no division by zero will be present so the outlet condition can be used here.

For ka we have:

Dka = 0 =
''''''''''(0
−ui n j

1
ω

(
∂vi
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+
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∂xi

)
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0

kan j
σk

ω

∂k
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−
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(A.132)

0 = n j
∂ka

∂x j
(A.133)

and for ωa we have:

Dωa = 0 =''''(0ωa v j n j +
∂ωa

∂x j
(σωνt +ν)n j +''''''''(0

ωan jσω
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(A.134)

0 = n j
∂ωa

∂x j
(A.135)
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