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Automatic keypoint detecting of wireframe gates

Abstract

This work applies keypoint detection method to solve
gate recognition problem. Unlike regular object detection
task, gate recognition problem is made difficult by the fact
that gate is empty wireframe which means that the object
surrounded by gate-edge is not relevant and should not be
taken into consideration when detecting. However, regular
object detection algorithms will process on whole pixels of
specific region and give the results as bounding box with ob-
ject class. The architecture used in this project consists of
two branches which are corner detector and edge detector
respectively. Detected corners and edges are highlighted in
heatmaps. We first verify the correctness of our model in the
toy dataset and upgrade the model to work on more complex
dataset. The experimental evidence shows the performance
and functionality of our network intuitively.

1. Introduction

Project background. Gate recognition is a popular task
for drone race in the UAV (unmanned aerial vehicle) field.
In this kind of race, the properties of drone system, such as
control system, power system as well as perception system,
would be evaluated in real world. Visual system is an im-
portant part of perception system, the images captured by
the cameras on the drone would be processed by embed-
ded visual system. The control unit of UAV makes decision
based on the information extracted by the visual system.

Deep neural network has shown its abilities for solving
complex visual tasks. More and more traditional computer
vision algorithms in various fields are being replaced or im-
proved by deep neural networks. Before deep learning, gate
recognition could be seen as corner detection or line detec-
tion and relevant algorithms are Harris corner detector [7],
Canny edge detector [1] and Hough line transform [3].

Challenges. Since the popularity of deep learning,
some deep learning architectures for object detection have
been published and achieved state-of-the-art performance
over non-learning-based algorithms on public dataset(e.g.
COCO dataset and ImageNet dataset) [29][18]. Generic
bounding-box-based object detectors make decision based
on whole pixels and localize objects by bounding box.

Figure 1: Overview of the thesis work. Visual System is the
deep learning model we built. It processes the input image
which simulates the real-world image captured by camera
and detects corners and edges of gate simultaneously. The
dotted-line polygon Post stands for the grouping algorithm
which can assemble gates based on detected corners and
edges when the input image contains multiple gates. This
part is not finished in this work but some discussions for
future work are documented

However, for this specific task, generic bounding-box-based
object detectors such as Faster R-CNN [26] and YOLO [22]
are not suitable and could be error-prone [4]. The main rea-
sons are: i) There is only one class – gate, so classification
is not needed. ii) Unlike regular objects, gate is a kind of
empty wireframe. So when we want to determine if the
object is a gate or not, only edges and corners should be
considered and the specific background objects surround by
edges are not relevant. But for regular bounding-box-based
object detection algorithms, every pixel in proposed region
would be considered when the network makes decision.

The better suited approach could be to locate the key-
points (i.e. corners) and edges of wireframe gate. Fig-
ure 1 illustrates the system. The keypoints method is
inspired on human pose estimation [2] where keypoints
of human body (i.e. joints) are detected and grouped per
individual.

The major contributions of this thesis work are: 1)
Link human pose estimation task to the wireframe gate
detection task. 2) Build toy model based on the state-
of-the-art methods [2][19] and verify on toy dataset. 3)
Upgrade the toy model and test on more complicated
dataset, modify the network when failure occurs. 4)
Conduct some experiments to demonstrate the proper-
ties of our neural network. 5) Propose some recommen-
dations for future work.
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2. Related work
2.1. YOLO-based neural networks for wireframe

gate detection

P. Duernay [4] trained a simplified YOLO [24] to solve
the wireframe gate problem. Training a deep learning model
needs a lot of labeled images and the labeled images cap-
tured from real world is limited. So [4] created a labelled
simulated dataset by using a video game engine(i.e. Unreal
Engine1). The simulated images are labelled automatically
by the game engine thus the intensive labour could be saved.
We call the simulated dataset as Unreal dataset. Therefore,
in this project, we use Unreal dataset instead of creating real
dataset manually.

The results of an experiment in [4] show that YOLO-like
model would get confused when the objects inside wire-
frame gate are not included in the train dataset. Figure
2 shows the corresponding results. We can see that the
YOLO-like model gets confused and the accuracy will drop
dramatically. Although those images(i.e. sign in gate and
cat in gate) are unlikely to happen in real world, the experi-
ments illustrate the drawback of using YOLO-like model to
detect wireframe gate.

Figure 2: Results from[4]

Figure 3: Example of gate, sign and cat

In our project, the keypoint-based method is expected to
not get confused in the cases above.

2.2. Traditional computer vision algorithms

Harris Corner Detector . Harris Corner Detector [7] is
a traditional computer vision algorithm to extract the cor-
ners of the input image. Figure 4 shows an example of
Harris Corner Detector result. We can see that the Harris
detector can not distinguish different corners. Specifically,

1https://www.unrealengine.com/

what we want is corners of gate but the the Harris detector
annotates all possible corners including corners of window
and corners of light.

Figure 4: Harris Corner Detector result, red points are de-
tected corners

Canny edge detector. Canny edge detector [1] is a
multi-step algorithm that can detect edges with noise sup-
pressed at the same time. Figure 5 shows the result of Canny
edge detector. The result shows the same problem in Har-
ris Corner Detector that edges of window and wall are also
annotated.

Figure 5: Canny Edge Detector result, white lines are de-
tected edges

The traditional computer vision algorithms(i.e. Harris
and Canny) can not handle background objects effectively.
Non-deep-learning-based computer vision algorithms usu-
ally work in very low dimension so they are not able to clas-
sify different objects which have similar shape(i.e. corners
or lines of different objects).

2.3. Deep learning algorithms

2.3.1 Generic object detector

Deep-learning-based generic object detectors can be di-
vided into two types – Two-stage object detectors and
One-stage object detectors. R-CNN families – R-CNN [6]
, Fast R-CNN [5] and Faster R-CNN [26] are good exam-
ples of two stage object detectors. Two-stage detectors first
generate a set of regions of interest (RoIs) and then classify



each of them [15]. For instance, in faster R-CNN, the first
step is finished by Region proposal network which gener-
ates region proposals from a set of candidate boxes. These
proposed boxes are then forwarded to the second stage -
classification sub-network. So, in two-stage algorithms, de-
tection is explicitly divided into two stages – i) Localiz-
ing possible regions(RoIs). ii) Classifying objects of pro-
posed regions. On the other hand, one-stage object detec-
tors remove RoIs proposal part and detect objects directly
on the complete image. YOLO [22] is a popular one-stage
detector. YOLO predicts coordinates of bounding box di-
rectly from the input image. After a series of improvements,
YOLO is now in the third version [24]. Generally, one-stage
object detectors are more efficient and faster than two-stage
detectors, while two-stage detectors can achieve higher ac-
curacy [29]. So, for embedded applications, one-stage ob-
ject detectors like YOLO are better suited than two-stage
object detectors.

2.3.2 Human skeleton pose keypoint detection

The method of this project is inspired by Human skele-
ton pose keypoint detection which is designed to detect the
joints of human body and group the detected joints per in-
dividual correctly. Just like generic object detectors, Hu-
man skeleton pose keypoint detectors can be divided into
two classes as well – bottom-up approach and top-down ap-
proach [20][18].

This thesis work is built on bottom-up approach which
usually consists of two sub-networks. The first sub-network
is designed to detect the joints of human body. This task is
normally achieved by means of highlighting the positions
of joints and producing the corresponding heatmaps2. The
coordinates of local maxima are the coordinates of detected
joints. The second sub-network is responsible for predict-
ing clues with which the detected joints can be grouped
correctly. Associative Embedding [19] uses embedding to
achieve grouping assignments, they use vector embedding
as identity tags in the context of joint detection and group-
ing [19]. Tag values of joints which belong to a same person
would be close , otherwise the difference would be large.
Associative Embedding has no ground truth, it uses two
well-designed loss functions – pull loss and push loss, to
cluster joint tags of same person together and separate joint
tags from different person. Part Affinity Fields(PAFs) [2]
is a 2D vector field for each limb between two joints, for
each pixel in the area belonging to a particular limb, a 2D
vector encodes the direction that points from one part of the
limb to the other [2]. Unlike Associative Embedding, PAFs
encode ground truth(2D vectors) as heatmap, and Mean
squared error is used as loss function to measure the dif-
ference between ground truth PAFs and predicted PAFs.

2https://en.wikipedia.org/wiki/Heat_map

In this thesis assignment, both Associative Embedding
and Part Affinity Fields(PAFs) have been investigated.
Associative Embedding fails on toy dataset3, so the final
model of this work is based on the network architecture of
Part Affinity Fields(PAFs).

2.4. Backbone Network

In complex neural network architectures, backbone net-
work(i.e. the feature extractor) plays a role in process-
ing raw input images and generating high-dimensional fea-
ture maps. The generated feature maps are fed into fol-
lowing components like classification part, region proposal
part in object detection networks or keypoint detection part.
Choosing which backbone depends on the specific use case
[10]. ResNet [8] innovates a new block – residual block, as
illustrated in Figure 6. This new block is designed to solve
vanishing gradient problem caused by deep convolutional
layers. Residual block makes deep networks easier to train
and achieve higher accuracy by increasing the depth of net-
works. ResNet and its variants are widely used [26] [10]
as backbone network in deep neural networks which are de-
signed to work on complex dataset. SqueezeNet [12] is
a network architecture targeted for embedded applications
where memory and computing resources are limited. Figure
7 shows the building block of SqueezeNet. The main idea
behind SqueezeNet is that by replacing 3x3 filters with 1x1
filters which have 9 times fewer parameters and decreasing
the number of 3x3 filters to achieve a reasonable accuracy
with significantly smaller model size (i.e. less parameters).
In [12], they state that SqueezeNet achieves AlexNet-level
[14] accuracy on ImageNet with 50x fewer parameters. In
this thesis work, both of these two architectures are in-
vestigated as backbone network.

Figure 6: Residual block [8]. This innovative block allows
us to build much deeper neural networks and will not suffer
vanishing gradient problem

3. Simplified model on toy dataset
3.1. Toy dataset

Figure 8 shows concepts of toy dataset generated by
myself. Each image (64*64) has two polygons to simu-

3failure case can be found in background part
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Figure 7: Fire Module, Micro-architecture of SqueezeNet
[12]. This blocks help to reduce the number of parameters
of standard convolutional blocks without losing too much
accuracy

late gates, and the coordinates of corners for each gate are
ground-true annotations.

Figure 8: Toy dataset: the white polygons simulate gates

3.2. Model

Figure 9 shows the general overview of our model archi-
tecture. The model consists of three components:

Figure 9: Overview of network architecture. The pipeline
starts with the input image which is processed by backbone
network F . The generated feature maps are fed into two
branches simultaneously. Branch-corner is responsible for
detecting gate corners and branch-edge is responsible for
detecting gate edges

i) Backbone network(i.e. feature extractor) F . F con-
sists of several convolutional filters which are responsi-
ble for extracting high-dimensional features from the low-
dimensional input image. Figure 10 shows the feature ex-
tractor in this toy network. The generated feature maps are
then fed into following sub-networks for further tasks.

ii) After backbone network, the generated high-
dimensional feature maps should be processed further be-

Figure 10: Feature extractor in toy network. Basic block
consists of one 3x3 convolutional filter, one batch normal-
ization layer[13] and one ReLu activation layer.

fore we can get the desired outputs (i.e. corners and edges
of gate). Thus, two branches following backbone network
are built for multi-task joint learning as shown in Figure
9. The upper branch is responsible for predicting corner
heatmap where detected corners are highlighted. And the
lower branch is for the edge heatmap where detected gate
edges are with high confidence values. Figure 12 illustrates
an output example.

Each branch consists of several repeated stages [2], this
iterative model can refine the intermediate output and give
us more precise heatmaps for both corner and edge. Fig-
ure 11 illustrates the details of two branches where Cn
(En) is nth output (i.e. intermediate heatmap) of Branch-
Corner (Branch-Edge). Figure 20 illustrates how intermedi-
ate heatmaps are refined. LCn (LEn) is intermediate Cor-
ner loss (Edge loss) of nth stage.

LCn =
1

N

N∑
i=1

(Cni − Ci)
2 (1)

Where N means there are N pixels in the heatmap (i.e.
64*64 in this toy dataset case), Cni is the i pixel of nth
predicted heatmap and Ci is the ith pixel of ground truth
heatmap[2]. LEn shares the same formula with LCn.

Figure 11: Details of two branches. F stands for backbone
network (i.e. feature extractor). Cn (En) stands for nth
block in corner-branch (edge-branch), their outputs (i.e. in-
termediate feature maps) are stacked with the output of F.
LCn (LEn) stands for nth intermediate loss.

In the toy network, we use three stages (i.e.



n = 3) where each stage consists one 3x3 ba-
sic block (3x3Conv+BN+ReLu) and 1x1 basic block
(1x1Conv+BN+ReLu).

The collective training loss is

L =

n∑
k=1

(a ∗ LCk + b ∗ LEk) (2)

Where a and b are the weights of LC and LE respectively.
The corner detection branch is expected to produce four

heatmaps to detect four types of corner (i.e. top-left(tl),
top-right(tr), bottom-right(br), bottom-left(bl)) separately.
And the edge detection branch is expected to output four
heatmaps as well which are tl-tr, tr-br, br-bl and bl-tl. Fig-
ure 12 illustrates an example.

Figure 12: outputs of two branches. The upper four
heatmaps are corner-heatmap, tl means the top-left cor-
ners of two polygons in the input image. The lower four
heatmaps are edge-heatmap, tl-tr means the edge which
links top-left corner and top-right corner.

iii) The post processing part is responsible for combin-
ing detected corners and edges. This part is also called
grouping method. In toy model we follows the method
used in[2].

3.3. Experiments

To verify the correctness of our model, we conduct some
experiments on toy dataset. We randomly generate 500 im-
ages as the train dataset and 200 images as test dataset.

We evaluate corner detection by means of recall and pre-
cision. Recall is the fraction of true corners that are detected
and precision is the fraction of corners that are indeed true
positive[11]. Let G denote the set of ground truth corners
and D denote the set of detected corners.

Precision =
G ∩D

D
,Recall =

G ∩D

G
(3)

Given a detected corner p, if there is a ground truth
corner g within t pixel(s) (i.e. |p(x) − g(x)| ≤ t and
|p(y) − g(y)| ≤ t ), then we set p as a true positive (i.e. it

is in the set G ∩ D ), otherwise it is set as a false detection.
To take both precision and recall into consideration when
evaluating the overall performance of corner detection, F1
score[28] is used in this project.

F1 = (
R−1 + P−1

2
)−1 = 2 ∗ ( P ∗R

P +R
) (4)

Where R−1 (P−1) stands for the inverse of Recall (Preci-
sion).

For this simple toy dataset, we find that both recall and
precision reach 1.04 when we set t = 1 (i.e. the threshold
is only 1 pixel). By checking the whole test dataset (200
images), we find that the detected corners are grouped cor-
rectly as well.

3.4. Discussion

This perfect experimental results on toy dataset indicate
that our model is suitable for this task and the correctness
has been validated successfully. The model is able to clas-
sify the four types of corner and highlight the detected
corners in four heatmaps correctly. Thus the grouping
method used in [2] can be used on the toy dataset directly.
Although results on toy dataset can not give us more con-
vincing insights because the toy dataset is too easy. Build-
ing and testing a model on toy dataset is necessary for train-
ing a model on the new dataset which the model has never
worked on before.

4. Upgraded model on final dataset
After verifying the correctness of the model on toy

dataset, we have to upgrade the model before applying it
to Unreal dataset.

4.1. Unreal dataset

Unreal dataset is generated automatically by Unreal En-
gine by [4]. The biggest advantage of using Game Engine
to generate dataset is that the labelled dataset is unlimited
and free. However, automatic generating will cause a lot of
noisy samples. For instance, some invisible objects are still
labelled by the program.

The Unreal dataset can be categorized into three courses
(Daylight, IROS, Basement) as shown in figure 13. Back-
ground , illumination and viewpoint vary per course . There
are also a lot of noisy images in the dataset. Figure 14 illus-
trates some cases of noise data.

4.2. Upgraded model

As Unreal dataset is much more difficult than toy dataset,
upgrading toy model is necessary for solving more com-
plex image. We improve the model capacity by means of
more powerful feature extractors (i.e. backbone) and more

4results can be re-produced by using my codes



Figure 13: Some examples from three different courses

Figure 14: Some examples of noisy images

stacked stages in both corner detection branch and edge de-
tection branch.

4.2.1 More powerful feature extractors

There are various feature extractors [27][8][12][9] that are
widely used in different computer vision tasks including
image classification, object detection, semantic segmen-
tation as well as keypoint detections. In this work we
will investigate two popular feature extractors, ResNet and
SqueezeNet, with necessary adjustment to fit this project.

Figure 16 and 17 show the architecture of two feature ex-
tractors in details. SqueezeNet [12] is optimized for embed-
ded platform and this architecture has relatively less param-
eters and computing costs. ResNet[8] is a popular backbone
network, many complex networks use ResNet or its variants
as their feature extractors, the capacity of ResNet depends
on how many convolutional layers used. In this project, we
use a relatively small model for considering that the model
should be able to ported into an embedded platform.

4.2.2 More stacked stages

An important idea behind the model is that it uses multi-
stage branches to refine the heatmaps. Adding more stages
could give better output but it could also result more pa-
rameters. In this project, we investigate different number
of stacked stages and how the number could influence the
results.

4.2.3 Failure case

We train our upgraded model on Daylight train dataset
and test on Daylight test dataset. However, after exten-
sive experiments with different training setting and hyper-
parameters5, we conclude that the model is not able to
classify the corners into four classes6 . Although we have
already verified the model on toy dataset and it is able to
give us desired outputs as shown in Figure 12. The first rea-
son why the model fails could be that for Unreal dataset,
it is too difficult for neural network to recognize the differ-
ence between the four type of courses. Although there is an
obvious feature – rotation for different types of corner and
it can be recognized easily by human eyes, the model still
fails to learn this feature. Too much noise (6.3) in Unreal
dataset could be another reason because mislabelled gates
could misguide the network during training phase. Figure
18 illustrates an example.

Then we modify the two branches of our model
and use single heatmap to detect all corners and single
heatmap to detect all edges. So, unlike the toy mode, in
the upgraded model, the final outputs are two heatmaps in
total. The corner-heatmap highlights all detected corners in
a single heatmap and edge-heatmap highlights all detected
edges in a single heatmap as well.

4.2.4 Exp 1: Compare two feature extractors

Bar charts in Figure 15 show the test accuracy of cor-
ner detection part on three different datasets. The only
different component of the first two models (ResNet-5
and SqueezeNet-5) is the backbone. Both of them have
five stages in two branches and are trained on Daylight-
train dataset. Although ResNet is more ’powerful’ than
SqueezeNet and has more parameters, it does not give a bet-
ter test accuracy on corner detection.

One possible reason is that SqueezeNet has better gen-
eralization ability on this network architecture when work-
ing as the feature extractor because both SqueezeNet[12]
and ResNet[8] are originally designed for image classifica-
tion and object detection instead of this keypoint detection
problem.

4.2.5 Exp 2: Iterative Model

In this experiment, we investigate the iterative model
of two branches. The last two models (SqueezeNet-
5 and SqueezeNet-1) in Figure 15 have same backbone
(SqueezeNet) but different amount of stages. SqueezeNet-
5 has five stages and SqueezeNet-1 has only one stage for

5we spent more than 6 weeks on tuning model, the log can be found in
my Github repository

6failure examples can be found in background part



(a) Test results on Daylight-test dataset (b) Test results on IROS dataset (c) Test results on Basement dataset

Figure 15: Test results on different datasets

Figure 16: Model Feature extractor - SqueezeNet. Figure
stands for the basic block of SqueezeNet as shown in Figure
7

Figure 17: Model Feature extractor - ResNet

each branch. We can see that for three different test datasets,
SqueezeNet-5 outperforms SqueezeNet-1 in F1 score.

Figure 19 and 20 visualize the outputs of each stage.

Figure 18: Example of failure. The upper four images are
ground-true heatmaps and the second-row four images are
corresponding predicted heatmaps. We can see that the net-
work gets confused and is not able to make correct predic-
tions

SqueezeNet-1 gives high confidence values on three circle
lights on the ceiling in both corner detection part and edge
detection part. SqueezeNet-5 is able to recognize the dif-
ference between lights and gates and give high confidence
values on correct corners and edges.

Figure 20 also shows that the later stage has better con-
fidence maps over previous one.

Figure 19: Model with single stage. The heatmaps are not
precise enough

4.2.6 Exp 3: Cat in Gate test

Figure 21 demonstrates an advantage of using keypoint de-
tection to localize gates. This model is able to recognize
the gate even we add some never-seen noise (i.e. cat), but



Figure 20: Model with five stages. We can see that the inter-
mediate heatmaps are refined especially the edge heatmap.

YOLO [23] or other similar object detection algorithms will
get confused in this case[4].

Figure 21: Cat in Gate. We can see that even we add a cat
picture inside the wireframe gate. Our model is still able
to detect the corners and edges correctly and does not get
confused by the Cat.

4.2.7 Exp 4: Compare performance to traditional
computer vision algorithms

We compare our model to traditional algorithms – Harris
corner detector and Canny edge detector. Figure 22 and
23 show the output of traditional algorithms and our model
respectively. We can see that our model shows stronger
performance on detection. The corners and edges of back-
ground object are filtered out by our model.

4.2.8 Exp 5: Compare FLOPS to standard YOLOv3

Although currently our model could not group the detected
corners and edges because of lacking effective grouping al-
gorithm. Figure 24 shows FLOPS of the three models we
have tested and YOLOv3-416. We can see that our mod-
els require significantly less floating-point calculations than
original YOLOv3-416[24], although here we do not include
post processing cost. If YOLOv3 is a baseline of real-time
object detector for embedded platform, then there are still
a lot of computing resources can be used for developing an
effective grouping algorithm for our model.

Figure 22: Example output of Harris and Canny. Corners
and edges from background object are also detected which
should have been filtered out.

Figure 23: Example result of our model (M). Compar-
ing with traditional computer vision algorithms, our model
shows stronger and clear detection performance. Note that
this input image is not included in the train dataset

Figure 24: FLOPS of three investigated models and
YOLOv3-416[21]

5. Discussions

We first verify the correctness of the method on toy
dataset. The perfect result on the toy dataset motivate us
to upgrade the model and conduct experiments on a much
more difficult dataset – Unreal dataset which is generated by
Unreal game engine. However, the model on Unreal dataset
fails to give us desired results (i.e. grouping the detected
corners per gate). It is not able to classify the corners into



four classes (i.e. top-left, top-right, bottom-right and bot-
tom left).

The experiments on Unreal dataset also show some nice
properties of our model. Experiment 4.2.6 demonstrates
that our model can still work well even we add an object
inside the gate which is not included in the training set. By
comparison, YOLO-like model will get confused[4]. Ex-
periment 4.2.7 compares our model with two traditional
computer vision algorithms (i.e. Harris and Canny). Our
model is much stronger because it filters out corners and
edges of background or irrelevant objects. Furthermore,
our model can do corner detection and edge detection si-
multaneously. Experiment 4.2.6 evaluates the computing
workload of our model. By comparing with YOLOv3, our
model needs significant less computing resources to reach
real-time property.

6. Future work
This thesis work demonstrates the possibility of using

keypoint detection to localize wireframe. There are still a
lot of things should be investigated. And the model has to
be improved further before implementing it on real drone.
The major future work is to develop an effective grouping
algorithm. There are recommendations for the possible fu-
ture work.

6.1. Expanding the network

The main idea of this approach is that we can expand our
current network by adding a sub-network following edge-
heatmap and corner-heatmap. We can group those two
heatmaps together and feed into the sub-network.

Figure 25 illustrates the enhanced architecture. The new
network will be trained in a completely different way, the
ground-truth will become the coordinates of each bounding
box (gate) instead of heatmaps and the loss function will
be based on the difference between predicted bounding-
box and ground-truth bounding-box. If the two branches
can generate corner heatmaps and edge heatmaps correctly
under the completely new training setting, then the sub-
network is expected to be able to extract the bounding
box from the feature maps(i.e. edge heatmap and corner
heatmap). Because there is no mathematical explanation to
support this idea just like most of deep learning algorithms,
so we are not sure if this idea will work or not before really
implementing the idea.

6.2. Combining Junctions and Lines for Wireframe

There are some algorithms and approaches from Line
segment detection research topic could be used in this task.
[11] proposes a learning-based approach to detecting wire-
frame for images of cluttered man-made objects such as ta-
bles and doors. In their work, they trained two separate net-
work for junction detection and line detection respectively

Figure 25: Add sub-network. The sub-network is added
directly behind the two branches. It takes two heatmaps (i.e.
corner heatmap and edge heatmap) as input and expected to
produce the coordinate of bounding-box keypoints (i.e. top-
left corner and bottom-right corner)

by producing two heatmaps which is similar to ours. To
combine detected junctions and lines together, he proposed
an algorithm which could give a decent results. However,
we find that this algorithm is too complicated and the time-
complexity could be very high. They also state in their pa-
per that there should be more advanced ways to merge de-
tected junction and line heatmaps.

6.3. Clean Unreal dataset

The Unreal dataset we used has a lot of noise so that the
quality of this dataset is worse than standard COCO key-
point detection dataset. Because the images and labels are
automatically generated by Unreal Engine, there are three
types of noise.

• Invisible gates. Invisible but labeled gates occur in
many images. Figure 26 illustrates this noise which
could be caused by occlusion or low illumination in-
tensity.

• No gate. There are also a lot of images which contain
no gate at all but included in the dataset. Figure 27
illustrates this noise.

• Incomplete gates. Incomplete gates are also very often
in the dataset as shown in Figure 28.

Figure 26: Invisible but labeled gates



Figure 27: No gate

Figure 28: Incomplete gates

We think the one possible reason why our upgraded
model fails on classifying four types of corner is that there
are so many noisy data and mislabelled data which could
misguide the neural network during training phase[25].
However, cleaning the whole dataset manually is time con-
suming

6.4. Keypoint-based object detection

Keypoint-based methods are a relatively new direction
in object detection [17] of one-stage framework. During
my thesis work, there are some related works have been
published [16][17][30]. The very first one is CornerNet[16]
published in ECCV2018 which achieves state-of-the-art ac-
curacy among one-stage detectors. The main idea behind
CornerNet is to detect and group top-left and bottom-right
corners of bounding box. However, CornerNet achieves the
accuracy at high processing cost. It achieves an average pre-
cision of 42.2% on COCO at inference cost of 1.147s per
image [17]. By comparison, YOLOv3[24] achieves 33.0
% with only 39ms on the same testing platform (Nvidia
1080Ti GPU and Intel Core i7-7700k CPU). To improve in-
ference efficiency of CornerNet, CornerNet-Lite[17] is pro-
posed and it achieves 34.4% at 34m which is faster and
more accurate than YOLOv3.

Another keypoint-based detection algorithm is
CenterNet[30] published on 25 April 2019. The name
indicates this algorithm models object as single point – the
center point of its bounding box. CenterNet detects objects

by finding object centers and then regressing to their
size[30]. The authors stage in the paper that CenterNet can
be applied to various visual tasks including pose estimation
and 3D detection. However, this novel architecture is not
suitable for wireframe objects because the attentions of
wireframe object are edges and corners (vertices) instead
of the center point.
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2
INTRODUCTION

2.1. PROJECT BACKGROUND
In fact, the project – deep learning for gate recognition has already been done by a former master student[1]
who was a member in drone lab of Aerospace Engineering . He used Unreal Engine 1 to create some images as
project dataset. Figure 2.1 and 2.2 show some examples of our project dataset. The advantage of using a game
engine to make data is that objects(i.e. gate in our case) can be labeled automatically by the software and it will
save a lot of manually labeling time. However, there are also a lot of noisy images generated simultaneously.

In his thesis work, he investigated YOLO[2] and made some modifications on it. He finally ported his model
on drone and tested it in real world by modifying YOLO official C implementation [3] . If you want to know more
about the real project background of this topic – Deep Learning for Gate Recognition , I would suggest you read
corresponding chapters in his thesis[1].

This project will find a non-generic-object-detection algorithm for localizing gates. The initial motivation of
this project is to create a brand-new neural network architecture by inserting Hough Transfrom(HT)[4] in reg-
ular neural network. The new model is expected to be more data-efficient because HT could work as a kind of
pre-knowledge in the whole neural network and it could somehow guide the neural network to learn the feature
of line by using less training samples2.

However, after spending around 10 weeks on verifying the theory, the results indicated that the idea could be
wrong. After several weeks literature survey, I linked human-pose-estimation[5] solutions to this task because :

• Gate consists of vertices and edges. Human-pose-estimation problem also consists of two parts: key-
points(joint) detection and grouping(link detected joints). The published algorithms for human-pose-
estimation can be used in this problem by some modifications.

• Gate is a kind of empty wireframe, so the important parts are edges and corners of gate, the objects inside
the wireframe are not important. Figure 2.4 illustrates the situation, YOLO-like algorithms are likely to fail
in this cat in gate example If the object(e.g. cat and sign) inside gate is not included in training set[1]. By
contrast, model built with keypoint-detection should work correctly on the two images in Figure 2.4 even
the model has never seen the left one during training phase.

In [1], an interesting experiment are conducted and the results show that the YOLO detector gets confused when
the object inside gate is not included in the training set. Figure 2.3 shows the results. We can see that the test
accuracy decreases dramatically when testing on a different dataset where object in gate is different.

1https://www.unrealengine.com/
2Because Yancong Lin is still working on developing his HT theory and this work has not been published. So I can not explain more details

about this theory for keeping confidentiality. If you are interested in his theory, I suggest you contact him(https://www.tudelft.nl/ewi/over-
de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics/computer-vision-lab/people/yancong-lin/)
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Figure 2.1: Images generated by Unreal Engine

Figure 2.2: Examples of ’difficult’ noisy images

2.2. RESEARCH OBJECTIVES
The research objectives of this thesis can be divided into two phases. The first phase is about HT-based CNN.

• Verify if HT-based CNN can be used to this gate localization problem.

• Compare the brand-new model with YOLO[2]

After realizing the HT-based model is not suitable for this project. The Research objectives are changed to:

• Investigate published human-pose-estimation algorithms and find a suitable one.
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Figure 2.3: Results from

Figure 2.4: Cat in Gate

• Adapt one suitable published algorithm to this gate localization problem .

• Validate my hypothesis that the model can work well under the situation in Figure 2.4.
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3
GENERAL BACKGROUND ON DEEP LEARNING

In this chapter some general background knowledge about deep learning will be given. If you have basic knowl-
edge about deep learning and neural network, you can skip this chapter.

3.1. DEEP LEARNING
Deep learning is part of a broader family of machine learning methods based on artificial neural networks.
Learning can be classified into supervised, semi-supervised or unsupervised method. In computer vision field,
supervised learning is the most used one. Figure 3.1 [1] illustrates the relation between Artificial Intelligence(AI),
Machine Learning(ML) and Deep Learning(DL).

Figure 3.1: How deep learning is a subset of machine learning and how machine learning is a subset of artificial intelligence (AI).

3.2. ARTIFICIAL NEURAL NETWORKS (ANNS)
Neural networks are modeled as collections of neurons that are connected in an acyclic graph. Figure 3.2 illus-
trates the the mathematical model of neuron which is the unit of Artificial neural networks (ANNs). The weights
wi are trainable and control the strength of influence and its direction of one neuron on an activation function.
Figure 3.3 shows a regular three-layer Neural Network. Each layer consists several neurons in Figure 3.2.

Mathematically, each neuron applies an affine transformation of the input X = [x1, x2, ..., xn].

u =
n∑

i=1
wi ∗xi +b (3.1)
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Figure 3.2: Mathematical model of neuron

Figure 3.3: A regular 3-layer Neural Network

Figure 3.4: How learning rate influence the training process

Where wi is i th trainable weight for xi and b is the bias term. A non-linear activation function f will be
applied to u to give the non-linear transform ability of the neural networks. A collection of neurons can be used
to approximate continuous functions which is a theoretical interpretation of deep neural networks.

3.3. TRAINING NEURAL NETWORK
Neural networks are usually initialized with small random weights, and these parameters are updated during
training by minimizing a loss function L. Loss function is the evaluation function to tell neural networks the
error between ground truth and its predictions. The learning process is achieved by gradient descent parameter
update method with gradients calculated by backpropagation[2].
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A bunch of techniques used to accomplish this training process has been developed such as Stochastic Gra-
dient Descent(SGD)[3], Adagrad[4], Adam[5] and etc.

Tuning hyperparameters is one of the most important skills related to deep learning. Hyperparameters are
the variables which determines the network structure(E.g. number of hidden units and number of channels
each layer ) and the variables which determine how the network is trained(e.g.: learning rate, batch size, num-
ber of epoch). Hyperparameters are set before training the neural network. Learning Rate is one of the most
important hyperparameters. Figure 3.4 illustrates how learning rate influences the training phase. Low learn-
ing rate slows down the learning process but converges smoothly. Larger learning rate speeds up the learning
but may not converge. Other parameters related to the network size and structure are also very important.
Tuning hyperparameters manually is time-consuming and boring and will usually result in sub-optimal results.
Some techniques have been proposed to automate the process of tuning hyperparameters such as AutoML and
NAS(Network architecture search).

3.4. MODEL SIZE AND FLOPS
In practical applications, model size and it FLOPS are two important evaluation metrics. Model size is used to
evaluate how large the model is and how many memory resources it requires. Flops(floating point operations)
is used to evaluate neural network computation workload. Because of weight sharing, number of weights on
convolutional layers does not depend on input size. It depends on current layer depth, kernel size, and depth
of previous layer. Increasing image input size would not cause a much larger model size, but it will bring more
floating point operations.
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4
DEEP LEARNING FOR OBJECT DETECTION

Object detection is the identification of objects in an image along with the classification and localization. A soft-
ware/hardware system which is designed to solve object detection task is called object detector. The first object
detector was introduced in 2011 [1] by using traditional computer vision algorithms like handcrafted features
and shallow trainable architectures. Before deep learning, the progress is slow in this field and small gains are
obtained by building ensemble systems with handcrafted feature extraction and employing minor variants of
successful methods. Deep neural networks has significantly accelerated this field, and modern successful object
detectors are based on deep neural network system.

Generic Object detection algorithms can be categorized into two types i) Region proposal based framework
(R-CNN[2], Fast R-CNN[3] and Faster R-CNN [4]) . ii) Regression/Classification based framework (YOLO[5]
, SSD[6]). Region proposal based framework and Regression/Classification based framework are also usually
called two-stage and one-stage object detectors respectively. In this chapter we introduce two popular algo-
rithms – Faster R-CNN[4] and YOLO[5].

4.1. FASTER R-CNN
Faster R-CNN is the third version of R-CNN family. It introduces a Region Proposal Network to solve the ineffi-
ciency of region proposal computation in its previous versions.

Figure 4.1 shows the model pipeline of Faster R-CNN. Region Proposal Network(RPN) is a sub-network which
is responsible for creating most-likely region of interest(RoI). The proposed regions are fed into the next sub-
network – classifier. RPN and classifier shares same feature maps generated by the backbone(conv layers). Shar-
ing feature maps between classifier part and RoI projection part is a significant improvement over Fast R-CNN[3].

Figure 4.2 shows the architecture of Fast R-CNN. RoI projection and deep ConvNet(feature extractor) are
conducted separately. Fast R-CNN uses selective search to generate RoIs, which is a slow and time-consuming
process affecting the performance of the network.

4.2. YOLO
R-CNN based object detection algorithms use regions to localize the object within the image. For example, Faster
R-CNN does not look at the complete image. Instead, it only check parts of the image with high possibilities
containing an object.

You Only Look Once(YOLO) is an object detection algorithm much different from region proposal based
algorithm. In YOLO, a single network predicts the bounding boxes and class possibilities. So it is categorized as
regression/classification based algorithm or one-stage object detector.

One-stage frameworks like YOLO are based on global regression/classification which directly maps from
image pixels to bounding box coordinates and class probabilities. It can reduce time expense on finding possible
candidate regions(region proposal in two-stage algorithms).

21
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Figure 4.1: Faster R-CNN architecture[4]

Figure 4.2: Fast R-CNN architecture[3]

Figure 4.3 illustrates main idea behind YOLO. The input image is split into S*S grid and each cell is responsible
for predicting the object centered in that grid cell[7].YOLOv2[8] and YOLOv3[9] introduce further improvements
for YOLO. YOLOv2 adopts several general strategies for improving neural network like Batch Normalization, an-
chor boxes and multi-scale training. YOLOv3 makes use of residual network to build more powerful feature
extractor.

Figure 4.3: Main YOLO idea[5]

Usually, one-stage object detectors are faster and more efficient than two-stage object detectors. YOLO is
a popular model in mobile application where memory and computing resources are strictly limited. On the
other side, region proposal based algorithms are more likely to achieve higher accuracy over one-stage object
detectors.
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5
DEEP LEARNING FOR MULTIPLE HUMAN POSE

ESTIMATION

Human pose estimation is a problem of localizing body parts of individuals. The input images contain unknown
number of people with unknown positions and scales. The algorithms are expected to infer the pose of people in
the input images and give us the coordinates of each detected individual and associate detected joints correctly.
Related algorithms can be categorized into two types i) top-down approaches and ii) bottom-up approaches.
The following sections will give a brief introductions to both of two types.

5.1. TOP-DOWN APPROACHES
Top-down approaches employ a person detector and then perform single-person pose estimation. A person de-
tector is responsible for finding individuals in the input image. A single-person pose estimation model then per-
forms pose estimation on each of detected person. This pipeline is similar to two-stage or region-proposal-based
object detector. However, this kind of simple top-down approach relies heavily on the accuracy and efficiency
of the person detector. Figure 5.1 shows an example of how top-down approach works. Typically, top-down
approach is easier to implement than bottom-up approach.

Figure 5.1: Typical Top-Down approach[1]

5.2. BOTTOM-UP APPROACHES
Unlike top-down approaches, bottom-up approaches globally detect keypoints of human body and then group
the detected joints per individual. Figure 5.2 shows how bottom-up approaches work. In this thesis project, our
model is built on a popular bottom-up approach called OpenPose[2]1. Figure 5.3 shows the network architecture
of OpenPose. It uses VGG19 as the feature extractor to process the raw input image and . The generated feature
maps are fed into two parallel branches, the upper one is responsible for joint detection and the lower one is
responsible for grouping detected joints per individual. The successive stages in the two-branch sub-network
are used to refine the heatmaps and it can solve gradient vanishing problem during training phase[2].

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 5.2: Typical Bottom-up approach[1]

Figure 5.3: Flowchart of the OpenPose architecture[1]
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6
FAILURE CASES

Failures are unfortunately one of the most important parts of my thesis work. In this chapter, two of them are
presented to give insights.

6.1. FAILURE CASES: HOUGH-TRANSFORM-BASED CNNS
The initial motivation of this project is to applied Hough transform layer theory to this specific task - gate recog-
nition. The main idea behind Hough-Transform-based CNNs is that by adding Hough Line Transform in tradi-
tional CNNs, the network is expected to perform better on line-detection related task such as this gate recog-
nition task. We tried several possible architectures but all of them failed. In this section, we will introduce the
failed architectures and provide some analysis.1

6.1.1. HYPOTHESIS
Hough Line Transform(HLT)[1][2] is a widely used and popular non-learning-based computer vision algorithm
to detect lines. Generally, HLT is associated with Canny edge detector[3][4]. Figure 6.1 shows the pipeline of
traditional line detector where θ is the angle of the line and r is the distance from the origin to the line[1]. If we
insert HLT into traditional CNNs, it could guide the network to learn the feature of lines effectively and efficiently
with less training samples and smaller network architecture. HLT is a kind of prior knowledge and by using this
knowledge properly, the new network architecture is expected to give us a better results theoretically .

Figure 6.1: Pipeline Canny Edge detector + Hough Line Transform

Hough Line Transform Layer Yancong Lin developed a Hough Line Transform layer compatible with Pythorch2

framework. The main idea is that by implementing the backpropagation of Hough Transform mathematically,
the layer can be inserted in the normal CNNs can trained end-to-end by backpropagation. Because the theory
is still underdevelopment by Yancong Lin as his P.h.D thesis work, so details are not presented in this report.

6.1.2. MODEL AND WHY IT FAILS
With Hough Transform Layer, we tried some models. Unfortunately, those models are not able to work at all, and
they can not give us meaningful results to guide us to improve the model neither. Figure 6.2 shows one failed
model which at least could give us some insights. .

1Our failure cases are based on the experiments at that moment.Currently, Yancong Lin has improved his theory and model but the new
version has not been investigated in this work

2https://pytorch.org/
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Figure 6.2: CNNs + HT

We expect that HT layer can guide the CNNs to learn the feature of line efficiently. The fully connected-
layer can then extract the line information from the feature map generated by HT layer and give us θ and r just
like 6.1. In another word, we expect the CNNs can perform similar task as what Canny detector does in 6.1 and
should be better and robust than Canny detector. For instance, canny detector could not classify edges of various
object(e.g. edges of window, edges of door and edges of gate) but the CNNs should be able to extract the edges
we want (i.e. edges of gate) and remove the edges of other objects. And the loss function of this model is

L = ||((θ′,r ′)− (θ,r ))||2 (6.1)

where (θ’, r ’) is prediction and (θ, r ) is ground truth.
However, after extensive experiments3, the results show that this model could not even work on the toy

dataset. It is very difficult to mathematically explain why it fails which is a common limitation of deep learn-
ing algorithms. Here we give some intuitive explanations.

The HT layer is just a Pytorch implementation of Hough Transform. In general, a line can be usually repre-
sented as y = mx + b or parametric form as r = xsinθ + ycosθ. HT transforms a line from (m,b) space to (r,θ) space
and generates a HT matrix as feature map. The lines in original space (i.e. (m,b)) can be located by performing
a ArgMax operation on HT matrix and the coordinates(i.e.(r,θ)) of the highest values are the (r,θ) of lines. Figure
6.3 demonstrates how HT works. The input image contains two edges(i.e. lines), and after Hough Transform
there are two brighter points. Their coordinates are r(i.e. Distance from center) and θ(i.e. Angle) respectively. A
comprehensive explanation can be found in [1].

Figure 6.3: example of how HT works[5]

Therefore, whether the first model could work depends on

• whether the CNNs can generate feature maps which contain really lines. Because HT is designed for line
detector, it will only make sense when the input images or feature maps contain really lines

• The fully connected layers can extract correct (r,θ) from HT matrix. Because loss function is the L2 norm
or Euclidean distance between prediction and ground truth.

We are not sure if the CNNs can generate desired feature maps in more complicated dataset, but during our
experiments on toy dataset, the feature map indeed contains line as shown in Figure 6.4. Thus, we can conclude
that for toy dataset, the CNNs is able to generate feature maps which contain really lines.

3Codes can be found in my github
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Figure 6.4: Feature map example

However, the fully-connect layer is not able to work properly. The loss stops at very early stage during training
phase and the test accuracy4 is extremely low. Figure 6.5 shows the training loss of model (1).

Figure 6.5: Training loss of model (1)

So, why it fails? I personally think the Hough Transform can not be used in such a brute-force way. It has to
be modified to fit the general neural network architecture. The HT Layer is not trainable and it transforms the
input feature map to a strange space where the values of each element is not important but the coordinates(r,θ)
of the values matter. And the backpropagation of HT layer should be checked further. The idea behind Hough
Transform is indeed very brilliant(i.e. Hough voting), but there should be more smarter way to use it instead just
inserting the Hough Transform in the neural network5.

Overall, combing Hough Transform with CNNs is a brave attempt but it unfortunately fails.

• Hough Transform - Something to find line.

• CNNs - Convolutional Neural Network.

• Hought Transform(HT) – something we know why but it does not work very well.

• CNNs – something works very well but we do not know why(how to explain Deep Neural networks?).

• We expected : CNNs + HT = something works very well and we know why.

• But we got : CNNs + HT = something does not work and we do not know why.

4We simply set a threshold t, if ||(θ’, r ’) - (θ, r )|| ≤ t. The prediction is correct, otherwise it is wrong
5At very late phase of my thesis work, a brilliant way to use the key idea behind HT to improve deep learning was published[6]
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6.2. FAILURE CASE: ASSOCIATIVE EMBEDDING
Associative Embedding[7] is proposed to solve the task of how to group detected joints per individual correctly.
Figure 6.6 illustrates the overview of Associative Embedding used in multi-person pose estimation task. This
approach is also used in CornerNet[8] to group detected top-left corners and bottom-right corners as paired
keypoints of bounding box. The main idea behind associative embedding is to predict an 1D embedding(i.e.
tag) for each detected candidates(i.e. joints). The predicted tags indicate how detected joints are grouped. The
distance of every two tags of detected joint is expected to be small if they indeed belong to the same person.
Otherwise the distance should be large. To achieve this, a collective loss function is developed which consists of
Pull Loss and Push Loss.

Figure 6.6: Overview of Associative Embedding used in multi-person pose estimation[7]

6.2.1. LOSS FUNCTION FOR ASSOCIATIVE EMBEDDING
The reference embedding for the nth gate in the image would be

hn = 1

4
∗ [htr (xn−tr )+ht l (xn−t l )+hbl (xn−bl )+hbr (xn−br )] (6.2)

where h(x) is a tag value at pixel location x, xn−tr is the ground truth pixel location of top-right corner of n-th
gate.
The Associative Embedding loss is defined as L AE

L AE (h,T ) =αLpul l +βLpush (6.3)

where

Lpul l =
1

N

n∑
K=1

[(hn −htr (xn−tr ))2 + (hn −ht l (xn−t l ))2 + (hn −hbl (xn−bl ))2 + (hn −hbr (xn−br ))2] (6.4)

Lpush = 1

N 2

N∑
k=1

N∑
j=1, j !=k

max(0,∆−|hk −h j |) (6.5)

α and β are hyper-parameters and should be tuned during experiments. Tuning the weights of these two losses
(i.e. Push loss and Pull loss) is very important and time-consuming. Considering the limited time of a thesis
work, I set a maximum threshold as four week.

6.2.2. TRAIN ON TOY DATASET
We first build our toy model following the architecture of Associative Embedding paper[7]. Figure 6.7 shows
the architecture of our toy model, where CNNs stands for five 3*3 convolutional layers as feature extractor. The
generated feature maps are fed to corner detection branch and Associative Embedding branch respectively. The
corner detection branch will output four heatmaps (top-left,top-right,bot-right,bot-left) and Associative Embed-
ding branch will output four corresponding tag-heatmaps. For corner detection branch we use MSE loss and for
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Figure 6.7: Overview of toy model architecture

Associative Embedding branch we use AE loss 6.2.1. We trained our model on toy dataset and spent around four
weeks on tuning the parameters. However, the model still does not work. Based on our experiments, the corner
detection part works and can detect the corners of polygons even they are not rectangle as shown in Figure 6.9.
The loss for corner detection part converges smoothly as shown in Figure 6.8.

Figure 6.8: MSE loss Figure 6.9: Detection

By contrast,associative embedding branch fails and it is not able to give us any meaningful results on the toy
dataset. Figure 6.10 shows the training pull loss, we can see that it does not converge at all. For push loss, after
a lot of efforts on tuning the parameters, it can decrease which is better than pull loss, but it stops converging at
very early stage.

One possible reason why the AE does not work is that this approach does not have ground-truth. It makes
training more difficult than supervised training. An other possible reason could be that our hyper parameters
are still not optimal, and there could be some hyper parameters which could make the network perform bet-
ter. However, without mathematical analysis and guidance, putting more efforts on hyper-parameter searching
is not suitable for a master thesis project. So we decided to switch PAF[9] architecture which finally gives us
something function.
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Figure 6.10: Pull loss Figure 6.11: Push loss
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