
 
 

Delft University of Technology

A new mixed mode I/II failure criterion for laminated composites considering fracture
process zone

Daneshjoo, Z.; Shokrieh, M. M.; Fakoor, M.; Alderliesten, R. C.

DOI
10.1016/j.tafmec.2018.09.004
Publication date
2018
Document Version
Final published version
Published in
Theoretical and Applied Fracture Mechanics

Citation (APA)
Daneshjoo, Z., Shokrieh, M. M., Fakoor, M., & Alderliesten, R. C. (2018). A new mixed mode I/II failure
criterion for laminated composites considering fracture process zone. Theoretical and Applied Fracture
Mechanics, 98, 48-58. https://doi.org/10.1016/j.tafmec.2018.09.004

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.tafmec.2018.09.004
https://doi.org/10.1016/j.tafmec.2018.09.004


Green Open Access added to TU Delft Institutional Repository 

‘You share, we take care!’ – Taverne project 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care


Contents lists available at ScienceDirect

Theoretical and Applied Fracture Mechanics

journal homepage: www.elsevier.com/locate/tafmec

A new mixed mode I/II failure criterion for laminated composites
considering fracture process zone

Z. Daneshjooa, M.M. Shokrieha,⁎, M. Fakoorb, R.C. Alderliestenc

a Composites Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and
Technology, Tehran 16846-13114, Iran
b Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
c Structural Integrity & Composites Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629HS Delft, the Netherlands

A R T I C L E I N F O

Keywords:
Failure criterion
Delamination
Laminated composite
Fracture process zone
Mixed mode I/II loading

A B S T R A C T

In this paper, by considering the absorbed energy in the fracture process zone and extension of the minimum
strain energy density theory for orthotropic materials, a new mixed mode I/II failure criterion was proposed. The
applicability of the new criterion, to predict the crack growth in both laminated composites and wood species,
was investigated. By defining a suitable damage factor and using the mixed mode I/II micromechanical bridging
model, the absorbed energy in the fracture process zone was considered. It caused the new criterion to be more
compatible with the nature of the failure phenomena in orthotropic materials, unlike available ones that were
conservative. A good agreement was obtained between the fracture limit curves extracted by the present cri-
terion and the available experimental data. The theoretical results were also compared with those of the
minimum strain energy density criterion to show the superiority of the newly proposed criterion.

1. Introduction

Delamination is one of the most important failure modes in lami-
nated composites and commonly happens under mixed mode I/II
loading. The quasi-brittle delamination failure of orthotropic composite
materials is generally associated with the creation of a fracture process
zone (FPZ) around the delamination tip. This zone contains toughening
mechanisms such as fiber bridging and micro-cracking that delay the
fracture phenomenon by the energy absorption [1–4]. Therefore, a
failure criterion, capable of considering the fracture process zone ef-
fects, presents a more accurate estimation of the failure in orthotropic
composite materials. Various failure criteria [5–9] are available for
predicting delamination growth in laminated composites under the
mixed mode I/II loading. The delamination behavior of laminated
composites is a complex phenomenon due to the formation of FPZ at the
crack tip, especially in the mixed mode I/II loading. Due to these
complications, the first criteria presented in this field were based on
curve fitting of experimental data [10–14]. Most of these empirical
criteria are old, and there is some material constant in these criteria
that must be obtained by experiments for each crack configuration.

Another approach has been used by some researchers to present a
suitable orthotropic mixed mode I/II failure criterion by extending the
well-known isotropic fracture theories to orthotropic materials.

Jernkvist in 2001 [15] extended several available isotropic fracture
theories, namely maximum strain energy release rate (SER) [16],
minimum strain energy density (SED) and maximum tangential stress
(MTS) theories [17], to develop mixed mode I/II failure criteria for
prediction of the mixed mode I/II fracture of wood specimens as or-
thotropic materials. The introduced criteria by Jernkvist were so con-
servative and the extracted results were not consistent with experi-
mental data [18]. This incompatibility is attributed to linear
assumptions during the fracture analysis and ignoring the absorbed
energy by toughening mechanisms such as micro-cracks formation in
FPZ. In 2013, Fakoor et al. [19] extended the maximum shear stress
(MSS) criterion, which resulted in the well-known ‘Wu’ criterion pre-
sented for mixed-mode fracture prediction in orthotropic materials.

The FPZ effects have not been sufficiently considered in the avail-
able mixed-mode I/II failure criteria. Some other research has con-
sidered the effects of FPZ through a damage factor. Romanowicz et al.
in 2008 [20] correctly understood that the FPZ has an important role in
failure process of orthotropic materials. They proposed a mixed mode I/
II failure criterion employing a non-local stress fracture criterion to
orthotropic materials based on the damage model of an elastic solid
containing growing micro-cracks. By defining a damage factor in their
model, the effect of FPZ was considered. But, because of the depen-
dence of this factor on complicated parameters such as the micro-crack
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density and the actual micro-crack size, they could not calculate the
proposed damage factor appropriately. In 2010, Anaraki et al. [21]
proposed a general mixed mode I/II failure criterion applicable to or-
thotropic materials considering a damage factor for FPZ based on cal-
culated damage properties for an elastic solid containing randomly
distributed micro-cracks. Also, they calculated the introduced damage
factor using strength properties of orthotropic materials along and
perpendicular to fibers with a combination of micro- and macro-ap-
proaches in another research [22]. Their approach in calculating the
damage parameter was completely theoretical and was not supported
by any experimental evidence. Recently, Fakoor et al. [23] extended the
concept of the damage factor employing a micromechanical approach
together with experimental tests.

As it can be found out from the above literature review, an efficient
mixed mode I/II failure criterion that can properly consider the effects
of FPZ and related toughening mechanisms has not been developed yet.
Nearly all research conducted so far has focused on the effects of the
micro-cracks formation in the FPZ by defining a damage factor based on
the properties of this zone. Despite the fiber bridging as a toughening
mechanism plays a significant role in delamination failure of laminated
composites, but till now in the proposed criteria, the fiber bridging
effects have not been taken into account.

The main objective of the present study is to propose a mixed mode
I/II failure criterion to consider effects of energy absorbed in the FPZ
due to the formation of toughening mechanisms, such as fiber bridging
and micro-cracking. In the present work, the minimum strain energy

density theory available for isotropic materials [13,24] was extended to
orthotropic materials and modified in two steps. First, the crack in-
itiation angles under mode I and mode II loading were calculated dif-
ferent from zero. The second modification was done by adding a term of
the strain energy density of FPZ to the equations for considering the
effects of this zone. According to this approach, a new mixed mode I/II
failure criterion expressed in terms of the mixed mode stress intensity
factors for orthotropic materials is proposed. This new criterion takes
into account the effects of absorbed energy in the FPZ by defining a
suitable damage factor. Implementation of the proposed criterion for
prediction of mixed mode I/II crack growth is straightforwardly pos-
sible by considering the mode I fracture toughness, elastic properties of
the material and the energy absorbed by the FPZ. This absorbed energy
is obtained from the mixed mode I/II micromechanical bridging model
based on the breakdown of the failure micro-mechanisms involved in
the fiber bridging phenomenon. Some verifications have been done
with several available experimental data for both laminated composites
and wood species.

2. Theoretical background

In order to derive a mixed mode I/II failure criterion for orthotropic
materials we first briefly review the minimum strain energy density
theory of this kind of materials. Sih [17] has proposed a fracture theory
based on the local strain energy density at the crack tip. Consider a
structure with a through-crack that extends on the x1–x3 plane in a

Nomenclature

FPZ fracture process zone
SED strain energy density
MTS maximum tangential stress
SER strain energy release
MSS maximum shear stress
SIF stress intensity factor
DCB double cantilever beam
MMB mixed mode bending
ENF end notched flexure
w strain energy density function
wc critical strain energy density
wFPZ strain energy density of fracture process zone
wFPZI , wFPZII strain energy density of FPZ under pure mode I and

pure mode II
W strain energy
σij stress field around the crack tip
εij strain field around the crack tip
KI , KII mode I and mode II stress intensity factor
KIc, KIIc mode I and mode II fracture toughness
KFPZI , KFPZII stress intensity factor of FPZ under pure mode I and

pure mode II
r distance from the crack tip
θ angle from the crack tip
θ0 crack initiation angle
θ0I , θ0II crack initiation angle under mode I and mode II loading
Cij components of compliance matrix for the plane stress

conditions
′Cij components of compliance matrix for the plane strain

conditions
S strain energy density factor
Scr critical strain energy density factor
ρ damage factor

′ρ modified damage factor
′′ρ toughening damage factor

ρFPZ FPZ damage factor

=α i, 1, 2, 3i inverse of defined damage factors
G strain energy release rate
GFPZ energy absorbed by the fracture process zone
GFPZI , GFPZII absorbed energy of FPZ under pure mode I and pure

mode II
GPe energy absorbed by the fiber peel-off
GDebonding energy absorbed by the fiber-matrix debonding
Gn, Gt normal and tangential components of energy contribution

of bridging fiber analyzed as a beam
′EI , ′EII generalized elastic moduli

LPe fiber peel-off length
d fiber diameter
Ef Young's modulus of the fiber
LPu fiber pull-out length
Ld length of debonding zone
σbf fiber tensile strength
δn, δt normal and tangential crack opening displacement
Tn, Tt normal and tangential traction of the bridging zone
fn, ft force per fiber in normal and tangential directions
n0 initial number of bridging fibers per unit area
n number of bridging fibers per unit area
a dimensionless coefficient
l0 initial bridging length
τi interface frictional shear resistance
Af cross-sectional area of the bridging fiber
φ angle between the bridging fiber and crack surface
σref Weibull reference strength
lref Weibull reference length
m Weibull modulus of the fiber
cb dimensionless correction factor
σ stress in the bridging fiber
Gic interfacial debonding energy

=
=E i

i L R T, 1, 2, 3
, ,i Young’s moduli in the i direction

L, R, T wood longitudinal, radial, tangential direction
Gij shear modulus
νij Poisson’s ratio
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linear-elastic orthotropic material. In this case, the strain energy stored
in a volume element dV is defined as the strain energy density, w,
around the crack tip:

= =w dW
dV

σ ε1
2 ij ij (1)

The stress field around the crack tip of an orthotropic cracked body
is given by [25]:

= + =σ
πr

K f θ K g θ i j1
2

( ( ) ( )), ( , 1, 2)ij I ij II ij (2)

where the polar components r and θ are defined in Fig. 1, and the
angular functions f θ( )ij and g θ( )ij are introduced in [25,26] as follows:

= ⎡⎣ ⎤⎦
= ⎡

⎣
⎤
⎦

= ⎡⎣ ⎤⎦
= ⎡⎣ ⎤⎦

= ⎡⎣ ⎤⎦
= ⎡⎣ ⎤⎦

−
−

−
−

−
−

−
−

−
−

−
−

f θ g θ

f θ g θ

f θ g θ

( ) Re , ( ) Re

( ) Re , ( ) Re

( ) Re , ( ) Re

x x x F x F
x x

x F x F
x x

x F x F
x x

F F
x x

x x F F
x x

x F x F
x x

11
( )

11

22 22

12
( )

12

1 2 2 2 1 1
1 2

2
2 2 1

2 1

1 2

1 2 2 1
1 2

2 1
1 2

1 2 1 2
1 2

1 1 2 2
1 2 (3)

where
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2 (4)

x1 and x2 are the conjugate pair of roots of the following characteristic
equation.

− + + − + =C x C x C C x C x C2 (2 ) 2 011
4

16
3

12 66
2

26 22 (5)

where the coefficients Cij are derived from the following material
constitutive relation =ε C σ( )i ij j :
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Only five quantities of Cij (C C C C, , ,11 22 12 21 and C66) are relevant to
the x1–x2 plane stress conditions. For the conditions of plane strain, four
of the in-plane compliances need to be replaced by ′Cij that can be re-
lated to Cij as follows:

′ = − =C C
C C

C
i j, ( , 1, 2)ij ij

i j3 3

33 (7)

Under plane strain conditions, substituting Eq. (6) into Eq. (1) yields
the following form for the strain energy density:

=
′

+
′

+ ′ +
′

w C σ C σ C σ σ C σ
2 2 2

11
11
2 22

22
2

12 11 22
66

12
2

(8)

By substitution of the crack tip singular stress state from Eq. (2) into
Eq. (8):

= + +w K A θ K A θ K K A θ( ) ( ) 2 ( )I II I II
2

1
2

2 3 (9)

where the coefficients Ai, for i = 1, 2 and 3, are complicated functions
of the orthotropic material constants and depend on the angle θ and
defined by:
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Hence, the amplitude or the intensity of the strain energy density
field, namely strain energy density factor, S, is given by:

= = → = + +w dW
dV

S
r

S K D θ K D θ K K D θ( ) ( ) 2 ( )I II I II
2

1
2

2 3 (11)

where coefficients =D θ rA θ( ) ( )i i . The minimum strain energy density
theory states that:

(1) Crack initiation occurs in a direction determined by the minimum
strain energy density factor:

∂
∂

= ∂
∂

> =S
θ

and S
θ

at θ θ0 0
2

2 0 (12)

(2) Crack growth occurs when the minimum strain energy density
factor reaches its critical value:

= =S S at θ θcrmin 0 (13)

3. Derivation of failure criterion

The mixed mode I/II failure criterion proposed by Jernkvist [15]
was based on a general simplifying assumption that the crack propa-
gation direction in wood components is along the fibers ( =θ 00 ). In his
analysis, it was also assumed that the critical strain energy density, wc,
can be used as an intrinsic material parameter whose value is in-
dependent of the degree of mode mixity. So, all differences between the
toughening mechanisms of FPZ under mode I and mode II are ignored.
By extending the minimum strain energy density theory to wooden
structures as orthotropic materials together with these simplifying as-
sumptions, he derived a mixed mode I/II failure criterion in terms of the
stress intensity factors as follows [15]:

+ =K ρK KI II Ic
2 2 2 (14)

in which, ρ is a damage factor and for =θ 00 given by:

= = ⎡

⎣
⎢

′
′ + ′ + ′

⎤

⎦
⎥ρ

α
C g

C f C f C f f
1 (0)

(0) (0) 2 (0) (0)1

66 12
2

11 11
2

22 22
2

12 11 22 (15)

The critical strain energy density approach can be used in order to
investigate the delamination failure in orthotropic laminated compo-
sites. Unlike isotropic materials, in composite materials the crack in-
itiation angle θ0 is different from zero [27]. So, in order to propose a
mixed mode I/II failure criterion for prediction of the delamination
growth in laminated composites, the criterion in Eqs. (14) and (15) has
been modified in the following. Some example of the initial crack in-
itiation angle in delamination of a glass/epoxy laminated composite
under pure mode I, mixed mode I/II and pure mode II are shown in
Figs. 2 and 3. The photographs in Fig. 2 and digital micrographs in
Fig. 3 were obtained from the double cantilever beam (DCB), the mixed
mode bending (MMB) and the end notched flexure (ENF) tests per-
formed by the present authors.

Consider a failure criterion as follows:

Fig. 1. Stress components around the crack tip of a cracked body.
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= + + =w K A θ K A θ K K A θ w( ) ( ) 2 ( )I II I II c
2

1 0
2

2 0 3 0 (16)

For the cases of the pure mode I and pure mode II, Eq. (16) is in the
following simple forms:

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ = =

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ = =

w A θ K w

w A θ K w

( )

( )

Pure Mode I
I Ic c

Pure Mode II
II IIc c

1 0
2

2 0
2

I

II (17)

where θ0I and θ0II are the crack initiation angle under mode I and mode
II loading. In this analysis, the critical strain energy density is still
considered as a material parameter, independent of the loading mode.
Since the criterion in Eq. (16) should be applicable for both pure mode I
and pure mode II loading, we have:

= =
K
K

A θ
A θ

α
( )
( )

IIc

Ic

2

2
1 0

2 0
2

I

II (18)

Using this relation in Eq. (16), a mixed mode failure criterion in
terms of stress intensity factors can be expressed as:

+ ′ =K ρ K KI II Ic
2 2 2 (19)

where ′ρ as a “modified damage factor” is defined by:

′ = =
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(20)

It can be seen that Eq. (20), in the case of = = =θ θ θ 00 0 0I II , re-
duces to Eq. (15) which has been proposed by Jernkvist [15]. For de-
termination of ′ρ , we need to calculate the values of the crack initiation
angles under pure mode I and pure mode II, θ0I and θ0II . To this end,
consider the delamination under pure mode I and pure mode II loading
in a linear-elastic orthotropic composite laminate. Using Eq. (11), the
strain energy density factors for the pure mode I and II are given by:

Fig. 2. Crack initiation angle in delamination of a glass/epoxy laminated composite under (a) Pure mode I, (b) Mixed mode I/II (25% GII/G), (c) Mixed mode I/II
(50% GII/G), (d) Mixed mode I/II (75% GII/G) and (e) Pure mode II. The tests were performed by the present authors.
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Applying conditions expressed in Eq. (12) to Eq. (21), we have:
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where

Fig. 3. Digital microscopic view of the edge of (a) DCB, (b) MMB (25% GII/G) and (c) ENF glass/epoxy specimens at magnification of (a), (b) 300x and (c) 200x. The
tests were performed by the present authors.

Fig. 4. (a) Schematic of fracture process zone in laminated composites; (b) Photograph of fiber bridging behind the crack tip and (c) Optical micrograph of the micro-
cracks formation around the crack tip at magnification of 300×. The test was performed by the present authors.
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Since above equations are non-linear and complex, it is too difficult
to obtain θ0I and θ0IItheoretically. This is one of the reasons that
Jernkvist assumed the crack propagation direction is followed by the
fiber direction [15]. In the present research, solving the resulting
equations (Eqs. (22)–(24)) numerically for the given material proper-
ties, it is found that the angle in which the function D1 reaches its
minimum is the angle predicted for the first crack propagation under
pure mode I delamination (θ0I). Similarly, the angle in which the
function D2 achieves its minimum value is the angle predicted for the
first crack propagation under pure mode II delamination (θ0II).

The delamination failure phenomenon in laminated composites is
accompanied by the formation of the FPZ at the crack tip. There are
several toughening mechanisms in this zone that delay the fracture by
absorbing energy. The activation of these mechanisms and the extent of
their effects depend on the loading mode. For example, fiber bridging
which is often activated by the presence of mode I loading is more ef-
fective in predominantly mode I than the micro-cracking which is often
due to the presence of mode II loading and therefore more effective in
predominantly mode II [28]. As the mode II component increases, the
micro-cracks develop into shear cusps [29]. Photographs and schematic

of the fracture process zone with related toughening mechanisms in
delamination of laminated composites are presented in Fig. 4. Also,
some of these mechanisms can be seen in the micrographs in Fig. 5. The
photographs in Fig. 4 and digital micrographs in Fig. 5 were obtained
from a mixed mode bending (MMB) test performed by the present au-
thors.

Fig. 5. Micrographs of (a) fully developed fiber bridging zone and (b) formation of shear cusps from micro-racks coalescence in mixed mode I/II delamination of
laminated composites at magnification of (a) 300× and (b) 700×. The test was performed by the present authors.

Fig. 6. R-curve for mode I delamination failure in a laminated composite.

Table 1
Elastic properties of E-glass/EPON 826 [43].

Laminated
composite
material

E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) ν12 ν13 ν23

E-glass/
EPON826

35.25 10.82 10.82 4.28 0.27 0.27 0.51

Table 2
Parameters for extracting coefficients of failure criteria for E-glass/EPON 826.

Laminated
composite material

KIc
a (MPa

m0.5)
−θ I0

b

(deg)
−θ II0

b

(deg)

GFPZI
a

(kJ/m2)
GFPZII

a (kJ/
m2)

E-glass/EPON826 1.65 31.76 81.27 0.205 2.40

a Obtained from Refs. [39,42].
b Calculated in the current study.

Table 3
Dimensionless coefficients in Eqs. (14), (19) and (31) for E-glass/EPON 826.

Laminated composite material ρ ′ρ ′′ρ

E-glass/EPON826 2.326 0.691 0.0517
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As previously stated, assuming the critical strain energy density, wc,
as a material property and independent of the loading mode, all dif-
ferences between the effects of FPZ under mode I and mode II are ne-
glected. So, to consider FPZ effects and consequently a more precise
prediction of delamination failure in laminated composites, the failure
criterion in Eq. (16) is modified by adding the term of the strain energy
density of FPZ, wFPZ , as follows:

= + + = +w K A θ K A θ K K A θ w w( ) ( ) 2 ( )I II I II c FPZ
2

1 0
2

2 0 3 0 (25)

For the cases of pure mode I and pure mode II loading, we have:

Fig. 7. Fracture limit curves related to failure criteria in comparison with ex-
perimental data [42] for E-glass/EPON 826.

Table 4
Elastic properties of laminated composite materials used in the analysis [12].

Laminated
composite
materials

E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) ν12 ν13 ν23

AS4/3501-6 132 9.7 9.7 5.9 0.28 0.28 0.52
AS4/PEEK 129 10.1 10.1 5.5 0.315 0.315 0.47
IM7/977-2 143 9.2 9.2 4.8 0.3 0.3 0.5

Table 5
Parameters for extracting coefficients of failure criteria for laminated composite
materials used in the analysis.

Laminated
composite
materials

KIc
a (MPa

m0.5)
−θ I0

b

(deg)
−θ II0

b

(deg)

GFPZI
a

(kJ/m2)
GFPZII

a (kJ/
m2)

AS4/3501-6 1.20 41.81 80.02 0.0561 0.602
AS4/PEEK 3.55 39.70 80.44 0.655 1.09
IM7/977-2 2.04 36.92 80.45 0.324 1.45

a Obtained from Refs. [12,44–48].
b Calculated in the current study.

Table 6
Dimensionless coefficients in Eqs. (14), (19) and (31) for different laminated
composite materials used in the analysis.

Laminated composite materials ρ ′ρ ′′ρ

AS4/3501-6 1.303 0.306 0.0424
AS4/PEEK 1.382 0.313 0.203
IM7/977-2 1.472 0.305 0.0608

Fig. 8. Fracture limit curves of the failure criteria in comparison with experi-
mental data [12] for AS4/3501-6.

Fig. 9. Fracture limit curves of the failure criteria in comparison with experi-
mental data [12] for AS4/PEEK.

Fig. 10. Fracture limit curves of the failure criteria in comparison with ex-
perimental data [12] for IM7/977-2.
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where wFPZI and wFPZII are the strain energy density of FPZ under pure
mode I and pure mode II loading, respectively and defined by:

=

=
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where KFPZI and KFPZII are introduced as mode I and II stress in-
tensity factors (SIFs) of FPZ, respectively. The energy of FPZ, which was
defined as the absorbed energy by the toughening mechanisms (fiber
bridging and micro-cracking), is released through the crack growth.
Using the relation between SIFs and the strain energy release rate (G)
for orthotropic materials under plane strain condition [25], we have:
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where ′EI and ′EII are generalized elastic moduli [25] and defined as:
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It should be noted that coefficients A1 and A2 in Eq. (27) and ′EI and
′EII in Eq. (28) should be expressed in terms of the effective elastic

properties of the FPZ as a damaged zone [23,30,31]. However, in the
present study, we considered them equal to properties of the intact
material, as a simplifying assumption. This part of the theory/criterion
can be improved in the future works.

Substituting Eq. (27) into Eq. (26) and considering that the criterion
in Eq. (25) should be applicable to the pure mode I and pure mode II
loading, we find:
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Applying this relation in Eq. (25) yields a new mixed mode I/II
failure criterion expressed in the form of common mixed-mode failure
criterion as follows:

+ ′ =′K ρ K KI II Ic
2 2 2 (31)

where ′′ρ is introduced as a “toughening damage factor” as follows:

′ = →
′

=
′

+′
′ρ

α ρ ρ ρ
1 1 1 1

FPZ3 (32)

The proposed toughening damage factor, ′′ρ , includes both the or-
thotropic damage factor, ′ρ , given in Eq. (20) and the FPZ damage
factor, ρFPZ , defined as:

=
⎛
⎝

− + ⎞
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Eq. (31) shows a simple mixed mode I/II failure criterion in terms of
stress intensity factors KI and KII with two material parameters (KIc and

′′ρ ). The first parameter, namely the mode I fracture toughness, can be
simply extracted from the available experimental data [11,12,18]. The
second one is a toughening damage factor, demonstrating the tough-
ening effects of the FPZ in the delamination tip vicinity due to the fiber
bridging and micro-cracks formation. Damage factor ′′ρ depends on KIc,
θ0I , θ0II , A1, A2, KFPZI and KFPZII parameters. Wherein the crack initiation
angles under pure mode I and pure mode II (θ0I and θ0II) are calculated
by Eqs. (22)–(24). The coefficients A1 and A2 are obtained using Eq.
(10) having material properties and crack initiation angles. According
to Eq. (28), in order to calculate the mode I and II stress intensity

Fig. 11. Fracture limit curves related to failure criteria in comparison with
experimental data [15,18] for Norway spruce.

Fig. 12. Fracture limit curves related to failure criteria in comparison with
experimental data [15,18] for Scots pine.

Fig. 13. Fracture limit curves related to failure criteria in comparison with
experimental data [15,18] for Red spruce.
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factors of FPZ (KFPZI and KFPZII), the absorbed energy of FPZ under pure
mode I and pure mode II loading is needed. This approach is briefly
discussed in the following section.

4. Calculation of the absorbed energy by the FPZ (GFPZ)

In delamination of unidirectional laminated composites, fiber
bridging is known as the most important toughening mechanism ab-
sorbing the highest amount of energy in the FPZ. The absorbed energy
by the fiber bridging toughening mechanism in FPZ is often calculated
by bridging relations [32,33]. The bridging relations are defined as a
relationship between bridging tractions and crack separations. Bridging
relations can be extracted from experiments or micromechanical
models.

It is well-known that the “crack growth resistance curve” or R-curve,
shown in Fig. 6, is an appropriate method for quantifying the FPZ ef-
fects. The bridging relation can be experimentally determined by
measuring the end-opening displacement of the bridging zone together
with the R-curve [34,35].

Furthermore, there is a number of micromechanical models [36,37]
developed to investigate the delamination by considering fiber bridging
effects. Sørensen et al. [38] proposed a micromechanical model for
prediction of the mixed mode I/II bridging laws based on the observed
bridging mechanism during crack growth in a unidirectional carbon/
epoxy composite. In their model, it was assumed that the number of
bridging fibers per unit crack area is constant. While the number of
fiber failures is negligible until bending stress at the fiber roots does not
exceed the mean fiber strength. The bridging fibers start to fail by in-
creasing the bending stress at fiber roots, which means that the number
of bridging fibers decreases due to the fiber failure [37]. Daneshjoo
et al. [39] developed a mixed mode I/II micromechanical bridging
model based on the breakdown of the failure micro-mechanisms in-
volved during the fiber bridging phenomenon such as the fiber peel-off,
matrix spalling, fiber-matrix debonding, fiber pull-out and fiber frac-
ture. In their model, the bridging fiber was analyzed as a beam under

different loading conditions and the energy absorption of the fiber
bridging in FPZ was obtained as [39]:

∫ ∫
= + = + + +

= + + +( ) ( )
G G G G G G G

T δ dδ G T δ dδ G

( ) ( )

( ) ( )

FPZ FPZ FPZ n Pe t debonding

δ
n n Pe

δ
t t debonding0 0

I II

n tmax max

(34)

in which GPe was defined as the energy absorption of the fiber peel-
off and given by [39,40]:

=G n
πd σ

E
L

12Pe
bf

f
Pe0

2 2

(35)

where n0 is the initial number of bridging fibers per unit crack area, d is
the fiber diameter, σbf is the fiber tensile strength, Ef is Young's modulus
of the fiber and LPe is the fiber peel-off length. For calculation of the
energy contribution of bridging fibers, Gn and Gt , the normal and tan-
gential tractions of the bridging fiber (T δ δ( , )n n t and T δ δ( , )t n t are de-
pendent on the force per fiber in the normal and tangential directions
( f δ δ( , )n n t and f δ δ( , )t n t ) and the number of bridging fibers per unit
crack area (n δ δ( , )n t ) as follows [39]:
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= >
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where δn and δt are the normal and tangential crack opening dis-
placements, a is a dimensionless coefficient, demonstrating only 1/a
number of bridging fibers are involved in the tangential load transfer.
Considering the stress in the bridging fiber and the stress reduction due
to fiber slip, the normal and tangential components of the force carried
by each of bridging fiber were obtained as [39]:
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where Af , φ, l0, τi and c are the cross-sectional area of the bridging fiber,
the bridging fiber angle with the crack surface, the initial bridging
length, interface frictional shear resistance and the asymptotic distance
between the fiber and its axial axis, respectively.

The number of survived bridging fibers was estimated by the
Weibull statistical equation [41] as [39]:
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⎥n δ δ n c l δ δ

l
σ δ δ

σ
( , ) ·exp ( , ) ( , )

n t b
n t

ref

n t
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0
(38)

where lref and σref are the Weibull reference length and the strength,
respectively. Moreover, m is the Weibull modulus and cb is a di-
mensionless correction factor comparing the bending and tensile
stresses, and is smaller than 1. Also, σ δ δ( , )n t is the stress in the bridging
fiber. The energy contribution of bridging fibers was obtained by sub-
stitution of Eqs. (37) and (38) into Eq. (34) and performing an in-
tegration [39].

The last term of the energy in Eq. (34) was defined as the energy
required for separation of the fiber-matrix interface called the de-
bonding energy (GDebonding) and obtained as follows [39]:

Table 7
Material properties of wood species used in the analysis [15,18].

Wood species =E EL1 (GPa) =E ER2 (GPa) =E ET3 (GPa) =G GRL12 (GPa) =ν νLR12 =ν νLT13 =ν νTR23

Norway spruce 11.84 0.81 0.64 0.63 0.38 0.56 0.34
Scots pine 16.3 1.10 0.57 1.74 0.47 0.45 0.31
Red spruce 12.7 0.98 0.63 0.80 0.37 0.42 0.30

Table 8
Parameters to extract coefficients of failure criteria for wood species used in the
analysis.

Wood species KIc
a (MPa

m0.5)
−θ I0

b

(deg)
−θ II0

b

(deg)

GFPZI
a (kJ/

m2)
GFPZII

a (kJ/
m2)

Norway
spruce

0.58 34.25 79.19 0.117 0.277

Scots pine 0.49 44.77 76.70 0.153 0.278
Red spruce 0.42 37.85 78.36 0.125 0.698

a Obtained from Refs. [15,18,50–53].
b Calculated in the current study.

Table 9
Dimensionless coefficients in Eqs. (14), (19) and (31) for wood species used in
the analysis.

Wood species ρ ′ρ ′′ρ

Norway spruce 0.829 0.235 0.159
Scots pine 0.389 0.200 0.146
Red spruce 0.747 0.239 0.0498
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=G n πdL GDebonding d ic0 (39)

where Gic is the interfacial debonding energy and Ld is the length of the
debonding zone. Finally, the absorbed energy by fiber bridging in the
FPZ was calculated using Eq. (34). More details of mixed mode I/II
micromechanical bridging model are available in [39].

5. Results and discussion

5.1. Laminated composite materials

In order to evaluate the validity and the accuracy of the newly
proposed criteria of Eqs. (19) and (31) in the present study in com-
parison with the classical criterion of Eq. (14), the experimental mixed
mode I/II delamination data available in [42] for unidirectional E-
glass/EPON 826 laminated composites have been utilized. Tables 1 and
2 summarize the elastic properties of E-glass/EPON 826 and the ne-
cessary parameters for extracting coefficients of the failure criteria,
respectively. The coefficients are given in Table 3. The values of θ0I and
θ0II in Table 2 are calculated by solving Eqs. (22)–(24). The values of
GFPZ for pure mode I and pure mode II expressed in Table 2 for this kind
of material are calculated using the mixed mode I/II micromechanical
bridging model briefly described in Section 4. This calculation process
is presented in detail in [39].

Fig. 7 shows the mixed mode I/II delamination failure responses
predicted by the failure criteria proposed in Section 3. A comparison of
the experimental data of E-glass/EPON 826 with the predictions reveals
that the newly proposed criterion in Eq. (31) is more compatible with
the nature of delamination phenomena in this kind of laminated com-
posite. This compatibility is attributed to the fact that this criterion
takes into account the contribution of absorbed energy by fiber bridging
in FPZ.

As can be seen in Fig. 7, the amount of experimental data of E-glass/
Epon 826 especially in the case of dominant mode II is not sufficient.
So, in the following, the response of the newly proposed criteria in the
prediction of the delamination growth of three other laminated com-
posite materials, whose experimental mixed mode I/II delamination
data is available in [12], is also examined. The elastic properties of
these laminated composites are listed in Table 4. The parameters re-
quired for extracting the coefficients of the failure criteria and resulting
coefficients are given in Tables 5 and 6, respectively. The values of θ0I
and θ0II in Table 5 are calculated by solving Eqs. (22)–(24). In this case,
the values ofGFPZ for pure mode I and pure mode II expressed in Table 5
are extracted from the experimental R-curves available in [44–48].

The fracture limit curves extracted by different failure criteria ex-
plained in Section 3 as the mixed mode I/II delamination failure re-
sponse, are plotted in Figs. 8–10 and compared with the available ex-
perimental data of different laminated composite materials.

A comparison of results in these figures clearly indicates that the
strain energy density criterion in Eq. (14) is too conservative for all
laminated composites, especially when mode II loading is dominant.
The first newly proposed failure criterion in Eq. (19), extracted by
modifying the crack initiation angle, somewhat improves the results,
but still shows a conservative prediction. The main reason is that ab-
sorbing energy mechanisms around the delamination tip are ignored in
Eq. (19). The simplifying assumption in the extraction of damage fac-
tors (ρ and ′ρ ), which considers the critical strain energy density as an
intrinsic material parameter, implies that all energy absorbed by the
specimen is consumed for the delamination growth. That is contra-
dictory to the fact that part of the absorbed energy is dissipated through
FPZ formation. Hence, as shown in Figs. 8–10, results obtained with the
second newly proposed failure criterion in Eq. (31), including the FPZ
effects are in good agreement with experimental data. This reveals that
this new criterion (unlike previous ones) due to the consideration of the
FPZ effects is more compatible with the nature of delamination phe-
nomena in laminated composite materials.

According to Figs. 7–10, the magnitude of the mode II fracture
toughness (KIIc) is greater than that the mode I fracture toughness (KIc).
This can be attributed to the formation of hackles in the interlaminar
zone, which is mainly created in the presence of mode II and perpen-
dicular to the maximum stress direction [28]. This explains why a
larger FPZ is created in mode II loading compared to the mode I loading
[49]. It can be also concluded that adding mode II loading to the mode I
makes the magnitude of KI component more than the magnitude of
mode I fracture toughness (KIc) at low mixed-mode ratios. Such increase
in the amount of KI is due to the reinforcing fiber effects. In delami-
nation of unidirectional laminated composites under pure mode I, the
fibers do not participate much in the load bearing. As the mode II
component is introduced to pure mode I loading, the load-bearing fibers
increase, which further enhance the toughness. The value of KI reaches
its maximum value at a critical mode mixity. Then, it reduces gradually
when mode II becomes more dominant. Due to the common form (el-
liptical shape) defined for failure criteria, this behavior of the laminated
composite materials is not predictable by the newly proposed criterion,
and there is a little difference between the results in the low mode
mixity ratios.

5.2. Wood material

Since failure criteria in the present study have been extracted to
predict the crack growth in orthotropic materials, the capability of
these criteria to investigate the fracture of wood as a natural ortho-
tropic material with principal axes of orthotropy (R, T, L) given by the
radial, tangential and longitudinal directions is also evaluated.

To this end, the fracture limit curves obtained by failure criteria in
Section 3 (Eqs. (14), (19) and (31)) in comparison with the available
experimental data for three wood species, namely Norway spruce, Scots
pine and Red spruce with a crack along the wood fibers are shown in
Figs. 11–13. Material properties related to these species are summarized
in Table 7. The required parameters and the resulting coefficients of
failure criteria are listed in Table 8 and Table 9, respectively.

As can be seen from Figs. 11–13, considering the absorbed energy
by micro-cracks formation and growth in FPZ reduces the difference
between the criterion and the experimental data. So, the newly pro-
posed criterion (Eq. (31)) also has a good correlation with experimental
data for wood specimens, whereas two other criteria (Eqs. (14) and
(19)) are conservative.

6. Conclusion

In the present study, a mixed mode I/II failure criterion, based on
the strain energy density concept, was presented for prediction of the
crack growth in orthotropic materials. First, by eliminating the sim-
plifying assumptions, the minimum strain energy density theory was
extended to orthotropic materials. Then, effects of the strain energy
density absorbed in the fracture process zone were considered.
According to this approach, the newly proposed criterion considers the
effects of absorbed energy in the FPZ by defining a suitable damage
factor. The mode I fracture toughness, elastic properties of the material
and energy absorbed by FPZ are the only input data required for the
criterion. The validity of the present criterion was assessed by com-
paring the fracture limit curves obtained for various laminated com-
posite materials with the available experimental data. The results are in
good agreement with experimental data and show that this criterion is
able to estimate the mixed mode I/II delamination failure of laminated
composites accurately. The verification of fracture limit curves ex-
tracted from the present criterion with the available experimental data
of wood species also shows the accuracy of the present criterion.
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