Two-Level Preconditioned Conjugate
Gradient Methods with Applications to
Bubbly Flow Problems

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op
maandag 8 september 2008 om 15:00 uur

door

Jok Man TANG

wiskundig ingenieur

geboren te Utrecht.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. C. Vuik

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr.ir. C. Vuik, Technische Universiteit Delft, promotor
Prof.dr.ir. H. Bijl, Technische Universiteit Delft

Prof.dr.ir. B.J. Boersma, Technische Universiteit Delft

Prof.dr. R. Nabben, Technische Universitat Berlin, Duitsland
Prof.dr.ir. C.W. Qosterlee, Technische Universiteit Delft

Prof.dr.ir. S. Vandewalle, Katholieke Universiteit Leuven, Belgié
Prof.dr.ir. P. Wesseling, Technische Universiteit Delft

Keywords: conjugate gradient method, two-level preconditioners, deflation, domain
decomposition, multigrid, bubbly flows, Poisson equation with a discontinuous coeffi-
cient, singular symmetric positive semi-definite matrices.

]
TUDelft

The work described in this dissertation was carried out in the section of Numerical
Analysis at the Department of Applied Mathematics, Delft Institute of Applied Math-
ematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, The Netherlands.

Part of the research described in this dissertation has been funded by the Dutch
BSIK/BRICKS project.

Two-Level Preconditioned Conjugate Gradient Methods with Applications to Bubbly
Flow Problems.

Dissertation at Delft University of Technology.

Copyright (© 2008 by J.M. Tang

ISBN 978-90-8559-398-0

To my parents,
my mother Lisa Tang-Lam,
and my father Wing-Cheung Tang

Summary

Two-Level Preconditioned Conjugate Gradient Methods
with Applications to Bubbly Flow Problems

Jok M. Tang

The Preconditioned Conjugate Gradient (PCG) method is one of the most popular
iterative methods for solving large linear systems with a symmetric and positive semi-
definite coefficient matrix. However, if the preconditioned coefficient matrix is ill-
conditioned, the convergence of the PCG method typically deteriorates. Instead, a
two-level PCG method can be used. The corresponding two-level preconditioner usually
treats unfavorable eigenvalues of the coefficient matrix effectively, so that the two-level
PCG method is expected to converge faster than the original PCG method. Many
two-level preconditioners are known in the fields of deflation, multigrid and domain
decomposition methods. Several of them are discussed in this thesis, where the main
focus is on the deflation method.

We show some theoretical properties of the deflation method, which give insights
into the effectiveness of this method. A crucial component of the deflation precon-
ditioner is the choice of projection vectors. Several choices are discussed and exam-
ined. We advocate that subdomain projection vectors, which are based on disjoint and
piecewise-constant vectors, are among the best choices for a class of problems.

Subsequently, we examine the application of the deflation method to linear systems
with singular coefficient matrices. Several mathematically equivalent variants of the
original deflation method are proposed to deal with the possible singularity of this
coefficient matrix. In addition, two approaches are discussed in order to handle coarse
linear systems with a Galerkin matrix, which are involved in each iteration of the
deflation method. After the discussion of the implementation and efficiency issues of
the deflation method, it is demonstrated that this method is usually faster than the
original PCG method.

Moreover, we present a comparison between the deflation method and other well-
known two-level PCG methods, among them the balancing-Neumann-Neumann, addi-
tive coarse-grid correction, and multigrid methods based on symmetric and nonsym-

Vi

metric V-cycles. As the parameters of the corresponding two-level preconditioners are
abstract, we show that these methods are strongly connected to each other. The
comparison is also done where the different two-level PCG methods adopt their typical
and optimized set of parameters. Numerical experiments show that some multigrid
methods are attractive in addition to the deflation method.

The major application of this thesis is the Poisson equation with a discontinuous
coefficient, which is derived from 2-D and 3-D bubbly flow problems. Most of the
performed numerical experiments in this thesis are based on this equation. Both sta-
tionary and time-dependent experiments are carried out to emphasize the theoretical
results. We show that two-level PCG methods are significantly faster than the original
PCG method in almost all experiments. Hence, computations involved in bubbly flows
can be performed very efficiently using these PCG methods.

Samenvatting

Tweelaags Gepreconditioneerde Geconjugeerde Gradiénten Methoden
met Toepassingen in Stromingsproblemen met Bellen

Jok M. Tang

De gepreconditioneerde geconjugeerde gradiénten (PCG) methode is één van de meest
populaire iteratieve methoden voor het oplossen van grootschalige lineaire systemen,
waarbij de coéfficientenmatrix symmetrisch en positief semi-definiet is. Echter, als
de gepreconditioneerde coéfficientenmatrix slecht geconditioneerd is, dan vertoont de
PCG methode langzame convergentie. In plaats hiervan kan de tweelaagse PCG meth-
ode gebruikt worden die gebaseerd is op een tweelaagse preconditioner. Deze pre-
conditioner elimineert de effecten van de kleine en grote eigenwaarden van de coéffi-
ciéntenmatrix, waardoor de tweelaagse PCG methode sneller convergeert dan de oor-
spronkelijke methode. Vele tweelaagse preconditioners zijn bekend in de vakgebieden
van deflatie, multirooster en domein decompositie methoden. In dit proefschrift on-
derzoeken we deze preconditioners nader, waar we ons voornamelijk concentreren op
de deflatie methode.

We laten theoretische eigenschappen van de deflatie methode zien, die inzicht geven
in de effectiviteit van deze methode. Een cruciale component van de deflatie precon-
ditioner is de keuze van de projectievectoren. Diverse keuzes worden beargumenteerd
en onderzocht. We laten zien dat subdomein projectievectoren, die gebaseerd zijn op
disjuncte en stuksgewijs constante vectoren, een van de beste keuzes zijn voor een
specificieke klasse van problemen.

Vervolgens onderzoeken we de toepassing van de deflatie methode op lineaire sys-
temen waarbij de coéfficiéntenmatrix singulier is. Verscheidene wiskundig equivalente
varianten afgeleid van de originele deflatie methode worden behandeld. Deze varianten
zijn bestand tegen de mogelijke singulariteit van de coéfficiéntenmatrix. Verder worden
twee varianten bekeken die geschikt zijn om kleinere lineaire systemen binnen de de-
flatie methode op te lossen waarbij de Galerkin matrix betrokken is. Na het behandelen
van de implementatie en de efficiéntie van de deflatie methode, laten we zien dat deze
methode in de meeste gevallen sneller convergeert dan de originele PCG methode.

Vii

viii

Verder presenteren we een vergelijking tussen de deflatie methode en andere be-
kende tweelaagse PCG methoden, waaronder de gebalanceerde Neumann-Neumann,
additief grof-rooster correctie en multirooster methoden gebaseerd op symmetrische
en niet-symmetrische V-cycli. Indien de parameters in de te beschouwen tweelaagse
preconditioners gelijk zijn, kunnen we aantonen dat de verschillende methoden sterk aan
elkaar gerelateerd zijn. De vergelijking is verder ook uitgevoerd, waarbij de tweelaagse
PCG methoden hun karakteristieke en geoptimaliseerde verzameling van parameters
aannemen. Numerieke experimenten laten zien dat sommige multirooster methoden
attractief zijn naast de deflatie methode.

De belangrijkste toepassing in dit proefschrift is de Poisson vergelijking met een dis-
continue coéfficiént, hetgeen afgeleid is van 2-D en 3-D twee-fase stromingsproblemen
met bellen. De meeste van de uitgevoerde numerieke experimenten zijn gebaseerd op
deze vergelijking. Zowel stationaire als tijdsafhankelijke experimenten zijn uitgevoerd
om de theoretische resultaten te onderbouwen. We laten zien dat in bijna alle experi-
menten de tweelaagse PCG methoden significant sneller convergeren dan de originele
PCG methode, waardoor de berekeningen voor twee-fase stromingen met bellen effi-
ciénter uitgevoerd kunnen worden.

Acknowledgements

After four years of intensive scientific research, this doctoral thesis is the absolute
crowning glory. These words of thanks are, in my opinion, a crucial part of the thesis,
as this is the only way to let people who have contributed directly and indirectly come
to the front and to thank them in a deserving way. Only with the help and support of
these very talented people has my PhD research succeeded and become the finished
product that lies in front of you now.

This PhD research is partially sponsored by the BSIK/BRICKS project, which is a
six-year scientific research program that is an initiative of the Dutch government. | am
thankful to all of the people behind this project for their financial support. In addition,
| would like to thank Delft University of Technology for sponsoring a large part of the
thesis printing cost.

The bulk of my gratitude goes out to my advisor, Prof. Kees Vuik. During my
Applied Mathematics studies, Kees played a prominent role by acting as a motivating
and enthusiastic supervisor for various subjects and the MSc project. | am very grateful
to him for consequently offering me a position of PhD student. | enjoyed the past four
years, in which he functioned as a terrific supervisor, colleague and companion. | have
learned a considerable amount from his knowledge, his constructive criticism, and the
numerous discussions we had. | am grateful to Kees for the fact that he gave me space
and freedom to do my doctoral research, to attend courses, to start cooperations at
home and abroad, and to travel the world. It has been a privilege to attend several
conferences together. In spite of his busy schedule, he has always been there, as well
as given his full 100 per cent interest in my success. | owe Kees for the fact that he has
always taken the time and trouble read through my paperwork, exchange mathematical
ideas, help get bugs out of program codes, answer my many questions and more. His
enthusiasm, patience and obliging manner led to various publications and a higher
standard for this thesis. Furthermore, he has inspired and motivated me in both the
easy and difficult times, which ensured that | became a much more complete scientist.

| have had a tremendous time with the renowned and prominent numerical analysis
group under the guidance of Prof. Piet Wesseling, and subsequently Prof. Kees Vuik.
| feel honored to have been part of this group of talented colleagues, namely Fons
Daalderop, Duncan van der Heul, Martin van Gijzen, Jos van Kan, Domenico Lahaye,

Prof. Kees Oosterlee, Jennifer Ryan, Guus Segal, Peter Sonneveld, Fred Vermolen,
and the many MSc, PhD and postgraduate students of whom the list is too long to
recount. | thank you all for the pleasant atmosphere in the department, the many
valuable conversations, the hilarious coffee breaks, and, above all, the various amusing
outings and dinners outside working hours. | wish our numerical analysis department
the very best in the future.

| would like to name Diana Droog, our secretary of the numerical analysis group,
separately. She is a true professional and extraordinarily good at her job. These past
few years, she has constantly helped me, and assisted me in various ancillary matters,
which ensured that | could focus fully on my research instead of on these matters of
lesser importance. In addition, she is a fantastic woman who has always brightened up
our department. | want to take this opportunity to thank her for all her work, support,
and cheerful conversations.

During the whole of my studies and PhD work, | have had the fortune and the
privilege to always be able to count on two buddies, namely Sander van Veldhuizen and
Jelle Hijmissen. In the past nine years, | have had much fun with and support from
them, both on an academic and a social level. Therefore, it is more than self-evident
to me to ask them to act as my paranymphs. | want to thank them up front for their
assistance and support at the time | will be upholding my doctoral degree.

| affectionately thank the members of the doctoral examination committee for read-
ing through this doctoral thesis as well as providing valuable suggestions and remarks.
| realize full well it is not easy to read this bulky work in such a short period of time.
Therefore, my utmost respect goes out to them. Moreover, | would like to thank Scott
MaclLachlan for providing various parts of the thesis with critical comments. Further-
more, | have received useful tips and valuable help concerning these acknowledgements
and the propositions belonging to this dissertation from many people, especially from
Merel Keijzer, Jennifer Ryan and Fred Vermolen. | am indebted to Kar Fee, who has
electronically developed a sketch of the cover of this thesis and who is prepared to act
as photographer during the PhD ceremony. Finally, | thank Olof Borgwit for designing
the final version of the cover of the dissertation.

In the past four years, | have had the privilege to spend two working visits at
TU Berlin in Prof. Reinhard Nabben's group. | am especially indebted to Reinhard
for offering me these opportunities. He is a very special and enthusiastic scientist |
have learned much from and with whom | have had the honor of working on several
papers together. | thank him for the many pleasant conversations and for all the
time he invested in me. In addition, Reinhard was a fantastic host during my two
visits to Berlin. He made sure that | felt at home in both this metropolis and his
department, where his group became a real family to me. For this, | have Veronica
Twilling (secretary), Yogi Erlangga, Christian Mense, Elisabeth Ludwig and Sadegh
Jokar to thank as well. They have shown me that conducting research is also for a
great part connected to friendship and having fun.

| tremendously enjoyed collaborating with Scott MacLachlan. Our numerous dis-
cussions and e-mail correspondence have been very useful and productive, resulting in

Xi

several publications. Thanks to Scott, | have learned about the field of multigrid as
well as the glitches in the mathematical theory in this area. In addition, he has helped
me substantially with various papers by providing me with critical commentary on both
the contents and the use of English. Moreover, he has contributed significantly to
Chapters 7, 9 and 10 of this dissertation, for which | express my sincere gratitude to
him.

My former roommate and colleague Sander van der Pijl was of great value and a
tower of strength to me in the starting phase of my PhD research. He familiarized me
with the world of bubbly flows and the current methods with supplementary program
codes. Thanks to Sander, | had a solid base to advance my work in the specific research
| was doing. Above all, he was a very social and amicable roommate with a dry wit
and a fine technique in slime-volley.

During the last years, | had the pleasure of sharing my office with the many MSc
and PhD students. Apart from Sander van der Pijl, Fang Fang was the one with whom
| delighted in spending most of the time with in the office. | render my thanks for every
nice conversation, her helpfulness and patience over the past three years.

It has been a great virtue to work together with several other professionals | will
name shortly. | would like to thank Prof. Bendiks Jan Boersma and Emil Coyajee for
their useful help and our interesting discussions. Furthermore, | thank them for their
clarifications and for making available their parallel program code, the Tecplot software
package, as well as for using their computer cluster for calculations. Moreover, | ren-
der my thanks to Tijmen Collignon, Peter Lucas, Allan Gersborg-Hansen (DTU, Den-
mark), Christophe Vandekerckhove (KU Leuven, Belgium) and Auke Ditzel (MARIN,
Wageningen) for the short but effective collaborations in regard to the employment of
two-level PCG methods on various applications relevant to them.

| have had the privilege to work with terrific people on various publications. For this,
| not only take the opportunity to thank Prof. Kees Vuik, Prof. Reinhard Nabben, and
Scott Maclachlan, but | also thank Yogi Erlangga and Elisabeth Ludwig. Additionally,
| thank Prof. Piet Wesseling for his many good suggestions and corrections in regard to
a number of these papers. | also enjoyed the various pleasant talks Piet and | had during
both the time of my graduation and PhD. Lastly, | thank the editors and anonymous
referees who, with their suggestions and keen observations, have considerably boosted
the standard of the papers, and consequently of this dissertation.

| owe much gratitude to system administrators Eef Hartman and particularly Kees
Lemmens. They have always been there for me when computer or network issues
arose and when | had pressing questions concerning computers and program codes. In
addition, they have taught me the fundamentals of Linux and many software packages.

In the time of my PhD, | had the opportunity to visit several conferences in The
Netherlands (of which the Woudschoten conferences were the most splendid) and
abroad (such as in China, Greece, Italy, Poland and USA). | have had the privilege to
meet many inspiring people during these trips. | specifically want to mention and thank
the jury of Burgersdag 2008 (Delft) and the IMACS 2008 conference (Lille, France)
for appreciating my work and awarding the best poster and best student paper prize

il

respectively. Namely, | give my thanks to Prof. Robert Beauwens, who handed me the
best student paper prize. In doing so, he motivated me to continue my PhD research
with much enthusiasm and passion.

The very best foreign adventure has without a doubt been my memorable visit
to the group of Prof. Nick Trefethen in Oxford. This was on the invitation of Prof.
Gene Golub, who offered me the opportunity to broaden my horizons in the world of
numerical mathematics. Gene was a brilliant and perfect numerical mathematician,
and, perhaps, the greatest of the past decades. Therefore, he has been my great idol
during the time of my doctoral research. It was a privilege to spend a week with him
in Oxford, during which time | discovered that Gene is wonderful as a person as well.
Despite his boundless fame and renown, he is one of the most self-effacing, humorous,
involved and congenial people | have had the privilege to meet during the last few years.
The way Gene associated with me was the same as he did with prominent scientists.
He was genuinely interested in me, as a scientist but certainly also as a person. The
way he motivated and stimulated people is truly brilliant. Furthermore, Gene was an
excellent host, who created opportunities for fun activities both within and outside of
working hours. He also showed me that the world of numerical mathematics is wider
than simple mathematics, as demonstrated by our visits to musicals and to his friends
in London. Gene's sudden death at the end of 2007 has not surprisingly been a heavy
blow and difficult to grasp. The very greatest numerical mathematician, and above
all an amazing person, has evidently left us. Gene, you have occupied a special place
in my heart and shown me the beauty of numerical mathematics and life. Despite
not always having spoken as much about the research, your energy and enthusiasm
have, to a great extent, led to the realization of this thesis. In memory of Gene,
we organized the Gene Golub DCSE symposium in Delft within the framework of the
worldwide 'Gene-around-the-world" project. With this, | also thank fellow organizers
Diana Droog, Martin van Gijzen, Kees Vuik, and Marielba Rojas, who made sure this
symposium became a great success.

As my research allowed me to lose myself in it, so did the education | was allowed to
provide to students and the courses | could attend in order to broaden my experience.
For the various educational tasks, | give thanks to the expertise and help of Henric
Corstens, Fons Daalderop, Martin van Gijzen, Kees Vuik and Peter Wilders. For the
courses, | specifically thank Merel Keijzer and Evelyn van de Veen for their efforts and
extraordinary classes, which have brought my English to a significantly higher level.

The daily lunch break, which was mostly in the aula, was always a cheerful affair
and the moment we could settle down every day at the office. For this, | not only
openly thank my colleagues from the numerical analysis group, but also the ones from
the fifth floor, in particular Jelle Hijmissen and Mirjam ter Brake. Furthermore, | thank
the various colleagues of other departments for their conversations outside of the lunch
breaks. Pertaining to this, | primarily think of the enjoyable annual DIAM outings, at
which colleagues of the entire mathematics department could get to know each other
better in an informal way.

In the time of my doctoral research, | delighted in participating at the PhDays,

xiii

the annual weekend event where PhD students in numerical mathematics from The
Netherlands and Flanders assemble to change thoughts and have a lot of fun. After
my participation at the successful PhDays 2006 in Bérismenil (Belgium), | had the
pleasure to organize both PhDays 2007 in Baarschot and PhDays 2008 in De Haan
(Belgium). For this, | humbly thank Arthur van Dam, Yves Frederix, Liesbeth Vanherpe
and Sander van Veldhuizen for co-organizing PhDays 2007, and Tijmen Collignon,
Katrijn Frederix, Ricardo da Silva, Maria Ugryumova, Joris Vanbiervliet and once more
Liesbeth Vanherpe for co-organizing PhDays 2008. It was an honor and very delightful
to organize these latest two successful editions.

In conclusion, | would like to thank my dearest friends, acquaintances and family
for their support and friendship over the past few years. | would like to specifically
thank my parents Lisa and Cheung, who have believed in me unconditionally and have
invested in me from my childhood on. Their inexhaustible love and support have given
me the energy and strength to complete my PhD after years of effort. | am very
proud of them, which makes it unsurprising that | dedicate this thesis to my parents.
Additionally, | thank my sister Lora for her support and faith during my entire life.

Last but not least, | owe many thanks to my beloved Siu Mei, who has been my
greatest support and anchor over the years. She has constantly encouraged me to
continue my doctoral research. Siu Mei has always been there for me and has stood by
me the entire time. | have only been able to write this dissertation with her patience,
cheerfulness and love. | sincerely thank Siu Mei for this. She is definitely the best thing
that has ever happened to me.

Jok Tang
Delft, July 2008

Xiv

Contents

Summary
Samenvatting
Acknowledgements

1 Introduction

1.1 Background

1.2 Two-level Preconditioned Conjugate Gradient Methods

1.3 Bubbly Flow Problems
1.4 Scope of the Thesis
1.5 Outline of the Thesis
1.6 Notation

2 lterative Methods

2.1 Introduction
2.2 Basic lterative Methods
2.3 Conjugate Gradient Method
2.4 Preconditioned Conjugate Gradient Method
2.5 Further Considerations

2.5.1 Preconditioningo

2.5.2 Starting Vectors and Termination Criteria
2.6 Application to Bubbly Flows
2.7 Concluding Remarks

3 Deflation Method

3.1 Introduction
3.2 Preliminaries
3.3 Deflated CG Method
3.4 Deflated PCG Method
3.5 Properties of the Deflation Method

3.5.1 Results for an Eigenvector Deflation Subspace

XV

vii

O O O W W = -

11

11
13
15
19
19
21
22
23

XVi Contents
3.5.2 Results for an Arbitrary Deflation Subspace 35
3.5.3 Termination Criteria 38

3.6 Application to Bubbly Flow Problems 39
3.6.1 Results of Numerical Experiments 40
3.7 Concluding Remarks 41
4 Selection of Deflation Vectors 43
4.1 Introduction 43
4.2 Choices of Deflation Vectors 44
4.2.1 Approximated Eigenvector Deflation 44
4.2.2 Recycling Deflation 45
423 Subdomain Deflation 46
424 Multigrid and Multilevel Deflation Vectors 48
425 Discussion of Different Approaches 48
4.3 Application to Bubbly Flows 49
4.3.1 Preliminaries 49
4.3.2 Inexact Eigenvector Deflation 51
4.3.3 Level-Set Deflation Vectors 55
434 Subdomain Deflation 56
435 Level-Set-Subdomain Deflation 58
4.3.6 Numerical Experiments 61
4.3.7 Analysis of Small Eigenvalues 64
4.4 Concluding Remarks 67
5 Subdomain Deflation applied to Singular Matrices 69
5.1 Introduction 69
5.2 Preliminaries 71
5.3 Deflation Variants 74
5.4 Theoretical Comparison of Deflation Variants 75
5.4.1 On the Connection of the Singular and Invertible Matrix . . . 76
5.4.2 Comparison of the Deflated Singular and Invertible Matrix . . 77
5.4.3 Comparison of the Preconditioned Deflated Singular and In-
vertible Matrixo 80
5.4.4 Comparison of the Preconditioned Deflated Singular Matrices 82
5.5 Application to Bubbly Flows 33
55.1 Results of ICCG and DICCG with Variant 52 33
55.2 Results of the Comparison between Variants 5.1 and 5.2 . . . 84
56 Concluding Remarks 86
6 Comparison of Two-Level PCG Methods — Part | 87
6.1 Introduction 87
6.2 Two-Level PCG Methods 90
6.2.1 Background of the Matrices in Domain Decomposition, Multi-
grid and Deflation 91

Contents XVii

6.2.2 General Linear Systems 91
6.2.3 Definition of the Two-Level PCG Methods 92
6.2.4 Aspects of Two-Level PCG Methods 96

6.3 Theoretical Comparison 99
6.3.1 Spectral Analysis of the Methods 99
6.3.2 Equivalences between the Methods 103

6.4 Numerical Comparison 105
6.4.1 Setup of the Experiments 105
6.4.2 Experiment using Standard Parameters 106
6.4.3 Experiment using Inaccurate Galerkin Solves 106
6.4.4 Experiment using Severe Termination Tolerances 108
6.4.5 Experiment using Perturbed Starting Vectors 112
6.4.6 Further Discussion 114

6.5 Concluding Remarks 115
7 Comparison of Two-Level PCG Methods — Part Il 117
7.1 Introduction 117
7.2 Two-Level PCG Methods 118
7.3 Spectral Properties of MG L 120
7.3.1 Unit Eigenvalues of the MG-Preconditioned Matrix 120
7.3.2 Positive Definiteness of the MG preconditioner 122

7.4 Comparison of a Special Case of MG and DEF 125
7.5 Effect of Relaxation Parameters 126
7.5.1 Analysis of Scaling Relaxation 127
75.2 Optimal Choiceof ¢ 128

7.6 Symmetrizing the Smoother 130
7.7 Numerical Experiments 132
7.7.1 1-D Poisson-like Problem 132
7.7.2 2-D Bubbly Flow Problem, 134

7.8 Concluding Remarks 135
8 Efficiency and Implementation of the Deflation Method 137
8.1 Introduction 137
8.2 Computations with the Deflation Matrix 139
8.2.1 Constructionof AZ 139
8.2.2 Constructionof E 139
8.2.3 Calculationof Py and PTy 140

8.3 Efficient Solution of Galerkin Systems 140
8.3.1 Galerkin Systems within DICCG1 141
8.3.2 Galerkin Systems within DICCG2 141
8.3.3 Comparison of Galerkin Matrices 144
8.3.4 Deflation Properties for a Singular Galerkin Matrix 144

8.4 Stabilization of the Deflation Method 145

8.5 Numerical Experiments 147

Xviil Contents
8.5.1 Results for the Deflation Method with Efficient Implementation 147

8.5.2 Comparison of DICCG1 and DICCG2 150

8.5.3 Comparison of DICCG2 and ADICCG2 151

8.6 Concluding Remarks 154

9 Comparison of Deflation and Multigrid with Typical Parameters 157
9.1 Introduction 157
9.2 Numerical Methods 159
9.2.1 Deflation Approach 159

9.2.2 Multigrid Approaches 160

9.3 Implementation and Computational Cost 166
9.3.1 Cost of Deflation 166

9.3.2 Cost of Multigrid 167

9.3.3 Singularity of Coefficient Matrix 169

9.3.4 Parallelization 169

9.3.5 Implementation 169

9.4 Numerical Experiments 170
9.4.1 Varying Density Contrasts 170

9.4.2 Varying Bubbly Radii 171

9.4.3 Varying Number of Bubbles 172

9.4.4 Varying Number of Grid Points 173

9.4.5 Difficult Test Problem 174

9.5 Concluding Remarks 175

10 Bubbly Flow Simulations 177
10.1 Introduction 177
10.2 Mathematical Model of the Bubbly Flow 177
10.3 Bubbly Flow Simulations 179
10.3.1 Rising Air Bubble in Water 180

10.3.2 Falling Water Droplet in Air 182

10.3.3 Two Rising and Merging Air Bubbles in Water 183

10.4 Concluding Remarks 185

11 Conclusions 187
11.1 Conclusions 187
11.2 Future Research 189

A Basic Theoretical Results 191
B Determination of Bubbles from the Level-Set Function 199
C More Insights into Deflation applied to Singular Coefficient Matrices 203
C.1 Theoretical Results 203
C.2 Proof of Theorem 5.5 205

Contents XiX
D Efficient Implementation of Deflation Operations 209
D.1 Efficient Construction of Sp> and Sg in2-D 209
D.1.1 Number of Nonzero Entriesin AZ 210

D.1.2 Treatment of the Different Cases 211

D.1.3 Constructionof Saz L. 212

D.1.4 Constructionof Sg L. 212

D.2 Efficient Construction of Sp» and Sgin3-D 213
D.2.1 Number of Nonzero Entriesin AZ 213

D.2.2 Matrix Su7 for Eight Blocks 214

D.2.3 Matrix Sp> for 27 Blocks 214

D.2.4 Matrix Sp> with Variable Number of Blocks 216

D.25 Constructionof Sg L 216

E Flop Counts for the Deflation Method 217
E.1 Deflation Operations 218
E2 ICCG, DICCGL and DICCG2 220

F Parallel Version of the Deflation Method 223
F.1 Traditional Parallel Preconditioners 224
F.2 Parallel Deflation 224

G Two-Level PCG Methods applied to Porous-Media Flows 227
G.1 Problem Setting 227
G.2 Experiment using Standard Parameters 228
G.3 Experiment using Inaccurate Coarse Solves 230
G.4 Experiment using Severe Termination Tolerances 231
G.5 Experiment using Perturbed Starting Vectors 234

H DICCG Variants applied to Bubbly Flow Simulations 237
H.1 Simulation 1: Rising Air Bubble in Water 237
H.2 Simulation 2: Falling Water Droplet in Air 238

I Comparison of Deflation and Multigrid for a Special Case 243
Bibliography 245
List of Publications 261

Curriculum Vitae

265

XX

Contents

List of Figures

1.1
1.2

1.3

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

51

6.1

6.2

A droplet splash: an example of a two-phase bubbly flow problem. . . 4
Geometry of some stationary bubbly flows considered in this thesis

(m = number of bubbles, s = radius of the bubbles). 4
A two-phase bubbly flow with the phases air and water. 5

Deflation subdomains with k = 3, which are chosen independently of
the density geometry of the bubbly flow. 40
Norm of the relative residuals during the iterations of ICCG and DICCG—k. 42

Representation of the 2-D subdomains with k = 3 in a square domain,

Q, consisting of n = 642 grid points. 47
A 2-D example of a bubbly flow problem with m =5 and two different
situations for the perturbations, {6;}. 54
A 2-D bubbly flow problem with m = 5, which illustrates the level-set,
subdomain and level-set-subdomain deflation technique. 60
Eigenvalues of M1 A and M~ PRy, A for S-DICCG, applied to the Pois-

son problem with e =1land n=162.. 62
Eigenvalues of both M1 A and MflPWLA corresponding to L-DICCG—4,

for the Poisson problem with ¢ = 10% and n =162, 65
Eigenvalues of M~*A and M~1Py A corresponding to S-DICCG, for

the Poisson problem with e = 10% and n=16°. 66
Eigenvalues of both M~ A and MRy, . A corresponding to LS-DICCG,

for the Poisson problem with ¢ = 10° and n=16%. 67

Residuals of ICCG, DICCG—23 and DICCG—33 with Variant 5.2, for
the test case with n =323 and o =1073. 85

Relative errors during the iterative process, for the bubbly flow problem
with n = 642, and ‘standard’ parameters. 107
Relative errors during the iterative process, for the bubbly flow problem
with parameters n = 642 and k = 82, and a perturbed Galerkin matrix
inverse, E-L. . . 109

XXI

XXii

List of Figures

6.3

6.4

7.1

7.2

8.1
8.2

8.3
8.4

8.5

8.6

8.7

10.1

10.2

10.3
10.4

10.5
10.6

B.1

Relative errors during the iterative process for the bubbly flow problem
with parameters n = 642, k = 82, and various termination criterion.

Relative errors during the iterative process for the bubbly flow problem
with n = 642, k = 82, and perturbed starting vectors.

Regions where k6 < Kper (Regions Ay and AQ) and kper < Kpmg
(Regions By and B,), for arbitrary M~ = M~! when Z consists of
eigenvectors of M~1A. The two condition numbers are equal along the
dotted and dotted-dashed lines.
Eigenvalues associated with DEF and MG for the test cases with k =
20 as presented in Table 7.3.

Visualization of the results for the test problem with m = 27.

Results for the test problem with m = 27 for varying grid sizes. ICCG
and DICCG1 with both ¥ =5 and ¥ = 10 are presented.
Results for the test problem with m = 27 for varying density contrast,
CPU time of DICCG1 and DICCG?2 for the test problem with m = 27
and various grid sizes.o
Convergence of the residuals during an inner solve at one iteration of
ADICCG2-25% (Test Problem 2). The plots are similar for the other
outer iterations of the same test case, since one applies the inaccurate
solves to the Galerkin matrix, E.
Convergence of the residuals of the outer iterations from DICCG2 253
and ADICCG2-25% (Test Problem 2).
Residual plots of the outer iterations from ADICCG2—252 (Test Prob-

Evolution of a rising bubble in water. Parameters / and t denote the
time step and actual time, respectively.
Results for ICCG, DICCG—202 and BoxMG-CG for the pressure solves
during the real-life simulation with a rising air bubble in water.

Evolution of a falling droplet inair.
Results for ICCG, DICCG—203 and BoxMG-CG for the pressure solves
during the real-life simulation of a falling water droplet in air.
Evolution of two rising air bubbles in water.
Results for DICCG—25% and BoxMG-CG for the pressure solve during
the real-life simulation with two rising air bubbles in water. ICCG is
omitted in these results, because it is not competitive with the other
two methods.

A 2-D bubbly flow problem with m = 3 showing the application of
Algorithm 9. The numbers given in the plots are the corresponding
nonzero entries of vector

111

113

127

134

149

149
€.150

151

153

154

155

181

181
182

183
184

184

List of Figures xxiil
D.1 Domain €2 divided into nine subdomains (k = 9), so that each subdo-
main corresponds to exactly one group. 210
D.2 Cases of grid points involved in the groups of Sa>. 210
D.3 Cases of grid points involved in E := ZT AZ, denoted by E1, E2 and
E3, whose values in AZ contribute to ej, e; and ez, respectively. . . . 213
D.4 Treatment of Block 1. 214
G.1 Geometry of the projection vectors and piecewise-constant coefficient
in the porous-media flow. 228
G.2 Relative errors during the iterative process, for the porous-media prob-
lem with n = 552, k = 7, and ‘standard’ parameters. 230
G.3 Relative errors during the iterative process for the porous-media prob-
lem with n = 552 k = 7 and E~1, where a perturbation ¥ = 108 is
taken. ..o 232
G.4 Relative errors during the iterative process for the porous-media prob-
lem with n = 552, k = 7, and termination tolerance § = 1076, 233
G.5 Relative errors in the A—norm during the iterative process for the
porous-media problem with n = 55 k = 72, and perturbed starting
vectors with vy = 107°. The plot of the relative errors in the 2—norm
is omitted, since the two plots are approximately the same. 235
H.1 Evolution of the rising bubble in water in the first 250 time steps. 238
H.2 Results for ICCG, DICCG1 103 and DICCG2-—202 for the simulation
with a rising air bubble in water. 239
H.3 Evolution of the falling droplet in air in the first 250 time steps. 240
H.4 Results for ICCG, DICCG1 103 and DICCG2-202 for the simulation
with a falling water droplet inair. 241
.1 Function X\;j(2 —X;) for \; €10,2]. 244

XXIV List of Figures

List of Tables

1.1

2.1

2.2

3.1

4.1

4.2

4.3

4.4

51
5.2

5.3

5.4

Notation for standard matrices and vectors where o, 3,y € N.

Results for ICCG applied to 2-D bubbly flow problems. ‘# It" means
the number of required iterations, and '‘CPU" is the corresponding com-
putational time in seconds.

Results for ICCG applied to 3-D bubbly flow problems.

Number of iterations for ICCG and DICCG—k for various number of
bubbles, m, and deflation vectors, k.

Results for the Poisson problem with € = 1 and n = 162. '# It' means
the number of required iterations for convergence.
Results for the Poisson problem with m =5, € = 10°, and varying grid
sizes, n. ‘# It" means the number of required iterations, and '‘CPU’ is
the corresponding computational time in seconds.
Results for the Poisson problem with m = 5, n = 642, and varying
density contrast, e.

Results for the Poisson problem with € = 10° n = 642, and varying
number of bubbles, m.

Corresponding matrices of the proposed deflation variants.

Number of iterations for ICCG and DICCG (Variant 5.2) to solve the
linear system Ax = b with invertible A, for the test case with m = 23,
€e=10% ands=0.05.

Number of iterations for ICCG and DICCG (Variant 5.2) to solve Ax =
b, for the test case with m =33, ¢ =10% and s=0.05.

Number of iterations for DICCG (both Variant 5.1 and Variant 5.2) to
solve Ax = b (with a singular A) and Ax = b (with an invertible A) for
m=23

XXV

22
23

41

61

62

63

64

75

84

85

85

XXVI

List of Tables

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1
7.2
7.3

7.4

List of methods that are compared in this chapter. The operator of
each method can be interpreted as the preconditioner P, given in (6.1)
with A = A. Where possible, references to the methods and their
implementations are presented in the last column.

Choices of parameters for each method, used in the generalized two-
level PCG method as given in Algorithm 7.

Extra computational cost per iteration of the two-level PCG methods
compared to PREC. IP = inner products, MVM = matrix-vector mul-
tiplications, VU = vector updates and GSS = Galerkin system solves.
Note that IP holds for sparse Z and MVM holds for dense Z.

Number of required iterations for convergence and the 2—norm of the
relative errors of all methods, for the bubbly flow problem with n = 642,
and ‘standard’ parameters. ‘NC' means no convergence within 250
iterations.

Computational cost within the iterations in terms of number of inner
products (‘IP"), vector updates (‘'VU"), Galerkin system solves (‘GSS"),
and preconditioning step with M~! (‘PR"), for the bubbly flow problem
with n = 642, k = 82, and 'standard’ parameters.

Number of required iterations for convergence and the 2—norm of the
relative errors of all methods for the bubbly flow problem with parame-
ters n = 642 and k = 82, and a perturbed Galerkin matrix inverse, £~ 1,
is used with varying perturbation 9. '‘NC' means no convergence within
250 iterations.

Number of required iterations for convergence and the 2—norm of the
relative errors of all methods, for the bubbly flow problem with pa-
rameters n = 642 and k = 82. Various termination tolerances, §, are
tested.

Number of required iterations for convergence and the 2—norm of the
relative errors of some methods, for the bubbly flow problem with n =
642, k = 82, and perturbed starting vectors. An asterisk (*) means
that an extra uniqueness step is applied in that test case.

List of two-level PCG methods that are compared in this chapter.

96

97

99

106

108

110

110

120

Test cases corresponding to different regions as presented in Figure 7.1.132

Results of the experiment with test cases as presented for the Poisson-
like problem in Table 7.2. The results are presented in terms of number
of iterations, # It., and condition number, k.

Number of required iterations for convergence and the 2—norm of the
relative errors of 2L-PCG methods, for the bubbly flow problem with
n =642 and M~! = M~1. PREC requires 137 iterations and leads to
arelative error of 4.6 x 1077,

List of Tables

XXVil

7.5

8.1
8.2

8.3

9.1

9.2

9.3

9.4

9.5

D.1
D.2
D.3

E.l

G.1

Number of required iterations for convergence and the 2—norm of the
relative errors of 2L-PCG methods, for the bubbly flow problem with
n=642and Mt =M1+ M T - M TAM~'. PREC requires 137
iterations and leads to a relative error of 4.6 x 10=7.

Corresponding matrices of the proposed deflation variants in Chapter 5. 140

Convergence results for ICCG and DICCG1 for all test problems with
n=100% and e = 103. ‘# It’ means the number of required iterations
for convergence, and 'CPU’ means the total computational time in
seconds.

Results for DICCG2 and ADICCG2 to solve Ax = b with n = 1003,
corresponding to Test Problem 1. ICCG requires 390 iterations and
37.0 seconds for Test Problem 1 and 543 iterations and 177.6 seconds
for Test Problem 2. '# It" = number of iterations of the outer process,
'CPU" = the required computing time (in seconds) including the setup
time of the methods, ‘NC' = no convergence within 250 iterations.

Convergence results for the experiment with n = 643, m = 23 s =
0.05, and varying the contrast, . ‘CPU’, '# It.” and ‘RES’ denote the
total computing time, number of iterations or cycles, and the accuracy
of the solution measured as the relative norm of the exact residuals,
respectively.

Convergence results for the experiment with n = 643, m = 23, ¢ = 103,
and varying the radius of the bubbles, s.

Convergence results for the experiment with n = 643, s = 0.05, € =
103, and varying the number of bubbles, m.

Convergence results for the experiment with m = 23, s = 0.05, € =
103, and varying the total number of degrees of freedom, n.

Convergence results for the difficult test problem. The following pa-
rameters are kept constant: n = 1283, m = 33, s = 0.025, € = 10°,
and 6 =108

Explanation of the variables.
Cases involved in the blocks for eight subdomainsin 3-D.

Cases involved in Blocks 1-9 for k = 27 in the 3-D case.
Results of flop counts for standard operations.

Number of required iterations for convergence of all proposed methods,
for the porous-media problem with ‘standard’ parameters. The 2—norm
of the relative error is approximately the same for all methods in each
test case, and, hence, they are omitted in the table.

152

XXVili

List of Tables

G.2

G.3

G.4

G.5

Total computational cost within the iterations in terms of number of
inner products ('IP"), vector updates (‘VU"), Galerkin system solves
(‘GSS"), preconditioning step with M~! (‘PR"), for the porous-media
problem with n = 552, k = 7, and ‘standard’ parameters.
Number of required iterations for convergence and the 2—norm of the
relative errors of all methods, for the porous-media problem with pa-
rameters n = 552 and k = 7. A perturbed Galerkin matrix inverse, Efl,
is used with a varying perturbation,
Number of required iterations for convergence and the 2—norm of the
relative errors of all methods, for the porous-media problem with pa-
rameters n = 552 and k = 7. Various termination tolerances, §, are
tested.
Number of required iterations for convergence and the 2—norm of the
relative errors of some methods, for the porous-media problem with
parameters n = 552, k = 7, and perturbed starting vectors. An asterisk
(*) means that an extra uniqueness step is applied in that test case. .

229

231

234

234

List of Algorithms

O 0 N O 1 & W N =

Conjugate Gradient (CG) solving Ax=»b 14
Preconditioned CG (PCG) solving Ax = b (Original Variant) 17
Preconditioned CG (PCG) solving Ax = b (Practical Variant) 17
Deflated Conjugate Gradient (DCG) solving Ax=»b 30
Deflated PCG (DPCG) solving Ax = b (Original Variant) 31
Deflated PCG (DPCG) solving Ax = b (Practical Variant) 32
Generalized Two-Level PCG Method for solving Ax=b. 96
Computation of Py 138
Determination of bubbles from the level-set function in 2-D 200

XXIX

XXX List of Algorithms

Chapter

Introduction

1.1 Background

The focus of this thesis is on the numerical solution of the linear partial differential
equations (PDEs) resulting from the mathematical modeling of physical systems and,
in particular, bubbly flows. We assume that these PDEs have already been discretized
in a sensible manner through the use of finite differences, finite volumes or finite
elements. Our primary focus is on efficient solution of linear systems, of the form

Ax=b, AeR™" neN, (1.1)

that arise from such discretizations, where n is the number of degrees of freedom and
is called the dimension of A. In Eq. (1.1), the coefficient matrix, A, is assumed to be
real, symmetric, and positive semi-definite (SPSD), i.e.,

A=A"T yTAy>0VyeR"

and has d zero eigenvalues with corresponding linearly independent eigenvectors. If
d > 0, then A is singular. To guarantee that Eq. (1.1) is consistent, the right-hand
side, b, is presumed to be in the range of A, i.e., b € R(A) where R(A) .= {y e R":
y = Aw for w € R™}. Thus, the next assumption holds throughout this thesis.

Assumption 1.1. The coefficient matrix, A, is SPSD and has d zero eigenvalues.
Moreover, the linear system (1.1) is consistent.

The null space of A is defined as N'(A) := {w € R": Aw = 0,}, where 0, is the all-
zero vector with n entries. Then, N(A) is the orthogonal complement of the column
space of A, i.e., N(A) = R(A)L. As a consequence, the linear system (1.1) is only
consistent if b” w = 0 is satisfied for all w € N'(A).

Linear system (1.1) is typically large, sparse, and ill-conditioned. That means that
current problems of interest involve millions of degrees of freedom, a fixed number
of nonzero entries per row and column of A, and condition number of A, denoted
as k(A), approaching infinity as problem size or coefficient ratio in the original PDEs

1

2 Chapter 1. Introduction

increases, respectively. In this thesis, we denote by X;(B) (or, shortly, X;) the i-th
eigenvalue of an arbitrary symmetric matrix, B € R"*" where the set {\;} is always
ordered increasingly (unless otherwise stated), i.e., A1 < Ay < ... < X\,. This set,
{A;}, is called the spectrum of B and is denoted as o(B). If B is SPSD, then its
(spectral) condition number is defined as the ratio of the largest and the smallest
nonzero eigenvalues, i.e.,

An

k(B) = aer

The linear system (1.1) can be solved using direct methods. Most of these solvers
generally involve explicit factorization of (permutations of) A into a product of a
lower and an upper triangular matrix. Important advantages of direct solvers are their
robustness and general applicability. However, the bottleneck of direct solvers is that
the matrix factor is often significantly denser than A. On the one hand, this might
lead to an excessive amount of computations and, on the other hand, it might lead
to insufficient memory to form and store matrix factors. Therefore, direct methods
are typically prohibitively expensive and in some cases impossible, even with the best
available computing power.

Instead of direct solvers, iterative methods are more attractive to use to find the
solution of (1.1). In this case, both memory requirements and computing time can be
reduced, especially if A is large and sparse. Moreover, these methods are mandatory
for some numerical discretization methods, where A is not explicitly available. The
term ‘iterative method’ refers to a wide range of techniques that use iterates, or suc-
cessive approximations, to obtain more accurate solutions to a linear system at each
iteration step. Krylov subspace iterative methods, especially the Conjugate Gradient
(CG) method of Hestenes and Stiefel, are prominent iterative methods to solve (1.1).
In these methods, the closest approximation to the solution of (1.1) is found in a sub-
space whose size is iteratively increased. The convergence of these methods depends
highly on k(A), which again typically grows as the problem size increases. To avoid
the increase in iterations, it is common practice to modify the Krylov subspace method
in the hopes of reducing the difficulties in solving the given system. If this is applied to
CG, then the resulting method is called the preconditioned Conjugate Gradient (PCG)
method. In this case, (1.1) is multiplied by a preconditioner, M~1, chosen to reduce
the condition number of the iteration matrix from «(A) to K(I\/I’%A/\/I’%), which is
equivalent to k(M~1A). The resulting preconditioned system that should be solved
reads

M~tAx = M~ 1b, (1.2)

where M is assumed to be symmetric and positive definite (SPD), i.e.,
M=M" —y"My>0Vy#0,.

PCG is more effective than original CG for many problems of interest. When M~1y
is easily computed for a given vector, y, the additional cost of the preconditioning in
the Krylov iteration can certainly pay off, if it results in a more amenable spectrum of

1.2. Two-level Preconditioned Conjugate Gradient Methods 3

M~=YA. Thatis, if k(M~LA) is significantly less than k(A), or if the spectrum is more
clustered than that of the original matrix, we can expect significantly fewer iterations to
be needed. However, even with sophisticated preconditioners, such as preconditioners
based on incomplete factorizations, k(M~!A) might still become larger as the problem
size or coefficient ratio in the original PDEs increases. In this case, PCG may suffer
from slow convergence due to the presence of unfavorable eigenvalues in o(M~tA).

1.2 Two-level Preconditioned Conjugate Gradient Methods

In addition to a traditional preconditioner, M~ a second kind of preconditioner can be
incorporated to improve the conditioning of the coefficient matrix even further, so that
the resulting approach effectively treats the effect of all unfavorable eigenvalues. This
combined preconditioning is known as ‘two-level preconditioning’, and the resulting
iterative method is called a ‘two-level PCG (2L-PCG) method’. In this case, CG,
in combination with a preconditioner based on a multigrid (MG) method or domain
decomposition method (DDM), can be regarded as a 2L-PCG method, since most of
these methods rely on preconditioning on two levels. These preconditioners have been
known for a long time, dating back at least to the 1930s.

The main focus of this thesis is on the 2L-PCG method whose two-level precon-
ditioner is based on a deflation technique. The resulting method is often called the
deflation method and was introduced independently by Nicolaides and Dostal in the
1990s.

1.3 Bubbly Flow Problems

The main application of this thesis is two-phase bubbly flows, as in Figure 1.1. Com-
putation of these flows is a very active research topic in computational fluid dynamics
(CFD). Understanding the dynamics and interaction of bubbles and droplets in a large
variety of processes in nature, engineering, and industry are crucial for economically and
ecologically optimized design. Bubbly flows occur, for example, in chemical reactors,
boiling, fuel injectors, coating, and volcanic eruptions.

Two-phase flows are complicated to simulate, because the geometry of the problem
typically varies with time, and the fluids involved have very different material properties.
A simple example is that of air bubbles in water, where the densities vary by a factor
of about 800. In this thesis, we consider both stationary and time-dependent bubbly
flows, where the computational domain is always a unit square or unit cube filled with
a fluid to a certain height. The bubbles and droplets in the domain are always chosen
such that they are located in a structured way and have equal radius, s, at the starting
time. Typical 3-D test problems, considered in this thesis, are depicted in Figure 1.2.
2-D test problems are always based on sections of these 3-D domains. Throughout
this thesis, lengths are typically given in centimeters (cm).

Mathematically, bubbly flows are modelled using the Navier-Stokes equations in-
cluding boundary and interface conditions, which can be approximated numerically

4 Chapter 1. Introduction

O

(@) m=1and s=0.1. (b) m=8and s =0.05. (c) m=27 and s = 0.025.

Figure 1.2: Geometry of some stationary bubbly flows considered in this thesis (m = number of
bubbles, s = radius of the bubbles).

using operator-splitting techniques. In these schemes, equations for the velocity and
pressure are solved sequentially at each time step. In many popular operator-splitting
methods, the pressure correction is formulated implicitly, requiring the solution of a
linear system (1.1) at each time step. This system takes the form of a Poisson equa-
tion with discontinuous coefficients (also called the ‘pressure(-correction) equation’)
and Neumann boundary conditions, i.e.,

{_v.<$Vp(x)> = f(x), xeQ, (1.3)

%p(x) = g(x), x€09Q,

where Q, p, p,x, and n denote the computational domain, pressure, density, spatial
coordinates, and the unit normal vector to the boundary, 02, respectively. Right-hand
sides f and g follow explicitly from the operator-splitting method, where g is such that
mass is conserved, leading to a singular but compatible linear system (1.1) !,

We define ny, n, and n, as the number of degrees of freedom in each spatial
direction, so that n = nynyn,. In this thesis, we perform the computations on a
uniform Cartesian grid with n, = n, = n,. Furthermore, we consider two-phase bubbly

'For stationary bubbly flow problems, we take f(x) = 0, so that the right-hand side of the linear
system, b, only contains components from the boundary conditions. In addition, we take g(x) to be

1.3. Bubbly Flow Problems 5

flows with, for example, air and water.
In this case, p is piecewise constant with a relatively large contrast:

po=1 xE€ANg;
= 14
p { P1L =€, XEN. (1.4)

For flows with water and air, the density contrast, defined as e := % =¢e 1 isex 103,

see Figure 1.3. In this case, Ag is water, the main fluid of the flow around the m air
bubbles, and Ay is the region inside the bubbles.

Composition Density

air Q 103 airQ 102
water airQ 102 1d
airQ 1072 airQ 107

Figure 1.3: A two-phase bubbly flow with the phases air and water.

Solving linear system (1.1), that is a discretization of (1.3), within an operator-
splitting approach has long been recognized as a computational bottleneck in fluid-flow
simulation, since it typically consumes the bulk of the computing time. Whether finite-
difference, finite-element, or finite-volume techniques are used to discretize (1.3), the
resulting matrix is sparse, but with a bandwidth of nyny,, in lexicographical ordering.
For a discretization on a cube with 100 degrees of freedom in each direction, this means
that A is of dimension n = 10°, with bandwidth ncn, = 10*. It is well-known that
direct solution techniques without reordering require a number of operations that scale
as n% for a banded Cholesky decomposition, (9(1014) operations in the example above.
Thus, here, we consider the solution of (1.1) using iterative techniques. Standard PCG
methods are not suitable, since they exhibit a strong sensitivity to the density contrast
and grid size. There is a real need for two-level preconditioning in order to accelerate
the convergence of the iterative process of PCG. Hence, we apply 2L-PCG methods
to solve (1.1).

Next, define 1, as the all-one vector with p entries. Then, the following assumption
holds in our bubbly flow problem, which follows implicitly from the above problem

constant at each boundary; we use the following boundary conditions in the 3-D case:

2p(X)x=0 = —Zp(X)=1 = L
Zp()y=0 = —ZpX)y= = L
Lol =~ = L

In a similar way, such boundary conditions are chosen in 2-D stationary problems.

6 Chapter 1. Introduction

setting.

Assumption 1.2. /n bubbly flow problems, we assume that A is a singular M-matrix,
and the equations Al, =0, and b"1, = 0 are satisfied.

A symmetric M-matrix is a square SPSD matrix whose off-diagonal entries are
less than or equal to zero. According to [15], d = 1 holds for a singular M-matrix,
A. In other words, we have rank A = n — 1 and dim N(A) = 1, where rank B and
dim B denote the rank of matrix B and the dimension of subspace B, respectively.
Note that Assumption 1.1 follows immediately from Assumption 1.2, since (1.1) is
always consistent. For b = 0, this is trivial, and, for b # 0,, b L N(A) = span{1,}
resulting in the fact that b € R(A). Therefore, although A is singular, (1.1) is always
consistent and an infinite number of solutions exists. Due to the Neumann boundary
conditions, the solution, x, of (1.1) is fixed up to a constant, i.e., if x; is a solution
then x; + c1, is also a solution of (1.1), where ¢ € R is any constant. This situation
presents no real difficulty, since pressure is a relative variable, not an absolute one in
the operator-splitting methods.

1.4 Scope of the Thesis

This thesis deals with acceleration of PCG using two-level preconditioning in order to
solve linear systems with an SPSD coefficient matrix. The main 2L-PCG method is
the deflation method. In the literature, much is known about applying the deflation
method to linear systems with invertible coefficient matrices and to problems with
fixed and known density fields. In this thesis, we generalize it to linear systems with
singular coefficient matrices and to problems where the density field varies or cannot
be described explicitly. Moreover, we investigate the efficient implementation of the
deflation method and the further improvements of the method. We also compare
the deflation method with other well-known 2L-PCG methods by considering both the
abstract variants and their optimal variants with their typical parameters. Numerical
experiments with bubbly flows are performed to illustrate the theoretical results.

Remark 1.1. Many theoretical results presented in this thesis are generally applicable
and are not restricted to applications of bubbly flows, although these bubbly flows are
the main application of this thesis. Therefore, Assumption 1.2 is not demanded in the
general discussion, but is only required when the general theoretical results are applied
to bubbly flows. In addition, all results that require Assumption 1.2 can also be applied
to other fields where this assumption is fulfilled.

1.5 Qutline of the Thesis

The outline of this thesis is as follows.

1.5. Outline of the Thesis 7

Chapter 2: Iterative Methods. This chapter is devoted to the introduction of itera-
tive methods, especially the CG and PCG methods. In most introductory books, CG
and PCG are derived and analyzed where A is assumed to be invertible, but we give the
methods and their concise derivations for general SPSD coefficient matrices. More-
over, some properties of these methods are presented, which are not fully clear in the
literature. Finally, the drawbacks of PCG are illustrated using numerical experiments
with bubbly flows.

Chapter 3: Deflation Method. In order to improve the convergence of the stan-
dard PCG method, the deflation method and its preconditioned variant are introduced
in Chapter 3. We give their derivation in detail and present some new theoretical
properties. We show, both theoretically and numerically, that the deflation method is
expected to be more effective than the original PCG method.

Chapter 4: Selection of Deflation Vectors. The success of the deflation method
highly depends on the choice of the so-called ‘deflation vectors'. Good approximations
of eigenvectors associated with unfavorable eigenvalues are often chosen, which are
usually dense and not straightforward to obtain. In addition, the density field is often
not known explicitly in our bubbly flow application, which might lead to difficulties for
approximating eigenvectors. \We analyze this issue in more detail in Chapter 4 and
provide some strategies to determine the best deflation vectors for bubbly flow prob-
lems. We come up with several suitable choices, whose utility is illustrated in numerical
experiments.

Chapter 5: Subdomain Deflation applied to Singular Matrices. Theoretical re-
sults for the deflation method are well-known if it is applied to nonsingular coefficient
matrices. The application of this method to singular coefficient matrices is more com-
plicated and has not been widely considered in the literature. This issue is further
investigated in Chapter 5. We show equivalences between deflation methods applied
to singular and invertible coefficient matrices. We come up with several mathemati-
cally equivalent variants of the two-level preconditioner corresponding to the deflation
method. Numerical experiments are used to show that these variants can be easily
applied in practice.

Chapter 6: Comparison of Two-level PCG Methods — Part |I. The main focus of
this thesis is on the deflation method, whereas other attractive 2L-PCG methods are
known in the literature. In Chapter 6, we compare the deflation method with some
prominent 2L-PCG methods coming from the fields of deflation, DDM and MG. Both
a theoretical and numerical comparison are performed using the abstract forms of these
methods. We investigate their spectral properties, equivalences, effectiveness and ro-
bustness, and end up with a 2L-PCG method of our choice.

8 Chapter 1. Introduction

Chapter 7: Comparison of Two-Level PCG Methods — Part Il. In Chapter 6, the
2L-PCG method based on the standard multigrid V(1,1)-cycle method is excluded in
the comparison, since it has different spectral properties and requires a special theo-
retical treatment. Chapter 7 examines this method in more detail. We compare the
2L-PCG methods as discussed in Chapter 6, and show that it depends on the chosen
parameters which 2L-PCG method is the most effective one.

Chapter 8: Efficiency and Implementation Issues of the Deflation Method. In the
previous chapters, we have shown that the deflation method is expected to converge
faster than PCG in terms of iteration counts. However, the deflation method needs to
be implemented efficiently in order to obtain a fast method with respect to computing
time as well. This issue is examined in Chapter 8, where we show how each step of the
deflation algorithm can be best implemented for a class of problems. At each iteration
of the deflation method, coarse linear systems should be solved, which is usually done
by a direct method. If the number of deflation vectors is relatively large, we show
that it is more attractive to use an iterative method, so that the resulting method is
based on an inner-outer iteration process. This is further detailed and illustrated with
numerical experiments in Chapter 8.

Chapter 9: Comparison of Deflation and Multigrid with Typical Parameters. In
Chapter 6 and 7, the 2L-PCG methods have been compared in their abstract forms. In
this case, the different parameters within these methods can be arbitrary, but are equal
for each method, which allows us to perform a general comparison. The comparison
can also be carried out with typical parameters in the methods. Each 2L-PCG method
then takes its optimized set of parameters that is typical in the field where the method
comes from. Chapter 9 is devoted to this comparison. The aim of this chapter is
to show which optimized 2L-PCG method is currently the best one to apply for 3-D
bubbly flow applications.

Chapter 10: Bubbly Flow Simulations. In the previous chapters, we have shown
that 2L-PCG methods are beneficial to use for stationary bubbly flow problems. In
Chapter 10, the exact mathematical model for the bubbly flows is formulated, so
that real-life time-dependent experiments can be performed. We show that 2L-PCG
methods reduce significantly the computations of bubbly flow simulations and are less
sensitive to the density field compared with standard PCG methods.

Chapter 11: Conclusions. The main conclusions of the thesis and ideas for future
research are presented in Chapter 11.

This thesis is based on the technical reports [87,132,134,136,137, 140, 141, 144],
the proceeding papers [138,139,142,147,172], and, especially, the journal papers [85,
88,133,135,143,145,146, 148]. It is written in such a way that the thesis itself and
every chapter are self-contained as much as possible.

1.6. Notation

1.6 Notation

Throughout this thesis, we use the notation as given in Table 1.1.

Notation | Meaning |

/ identity matrix with an appropriate dimension
eg) v-th column of / with dimension «

e((;% a x B matrix with 8 identical columns &)
1.5 a x B matrix whose entries are ones

1, column of 1,

0. p a X 3 matrix whose entries are zeros

0. column of 04 g

Table 1.1: Notation for standard matrices and vectors where o, 3,y € N.

10

Chapter 1.

Introduction

Chapter

lterative Methods

2.1 Introduction

Recall that the main focus of this thesis is on solving the linear system (see Eq. (1.1))
Ax=b, A= [a,j] e R™", (2-1)

where A is a sparse and SPSD coefficient matrix. We aim at solving (2.1) using Krylov
iterative methods, which are examined in this chapter.

We start this chapter by reviewing basic iterative methods. This is followed by pre-
senting the Conjugate Gradient (CG) method, which is a well-known iterative method
to solve (2.1). The rate at which CG and general iterative methods converge depends
greatly on the spectrum of the coefficient matrix, A. Hence, these methods usually in-
volve a second matrix that transforms A into one with a more favorable spectrum. The
resulting method is then called the preconditioned Conjugate Gradient (PCG) method,
and is described in Section 2.4. Some further considerations regarding precondition-
ing, starting vectors and termination criteria of the iterative procedure are discussed
in Section 2.5. We conclude this chapter with the application of the solvers to bubbly
flow problems in order to illustrate the performance of the PCG methods.

2.2 Basic lterative Methods

Iterative methods generate a sequence of iterates, {x;}, that approximate the exact
solution, x. These methods essentially involve matrix A only in the context of matrix-
vector multiplications. The starting point of these methods is considering a splitting
of A of the form

A=M-N M NecR™" (2.2)

where M is assumed to be invertible. If the splitting (2.2) is substituted into Eq. (2.1),
we obtain
Mx = b+ Nx. (2.3)

11

12 Chapter 2. Iterative Methods

From Eq. (2.3), a basic iterative method can be constructed as follows:

where the iterate, xji1, in the (j + 1)-th step can be determined from the previous
iterate, x;. Eq. (2.4) can be rewritten as

X1 =X+ Mtr, (2.5)
where the residual after the j-th iteration is defined as
ri = b — Ax;,

that is a measure of the difference of the iterative and the exact solution of (2.1). For
the iteration (2.5) to be practical, it must be relatively easy to solve a linear system
with M as the coefficient matrix. For example, M = diag(A) is used in Jacobi iter-
ations, M consists of the lower-triangular part of A in Gauss-Seidel iterations, and a
more complicated M is used in (symmetric) successive over-relaxation ((S)SOR) itera-
tions, that can be derived from Gauss-Seidel iterations by introducing an extrapolation
parameter. It has been recognized that these basic iterative methods are impractical,
because they converge slowly, need good tuning of some parameters, or require strict
conditions for convergence. More basic iteration methods and their analysis can be
found in [8,63,70,120,167].

When the first iterations of (2.5) are developed, one obtains

(X0,
X1 = Xg+ Mfll’o;
X2 = Xo+2M g - MTTAM 1ry;
X3 = Xo+3M g —3MTAM g + (MTLA) M rg,

This yields
Xi+1 € xo + span{M 'r, MTTAM '), ..., (M~TAY Y (M)}
Subspaces of the form
Ki(A, rg) := span {rO,ArO,A2r0 Ajflro}

are called Krylov subspaces with dimension J, belonging to A and ry. Hence, the
following holds for basic iterative methods:

Xjt1 €X0+ICJ(M71A,M71F()). (26)

These methods are also called Krylov(-subspace) methods. From Eq. (2.6), it follows
that Krylov methods rely on finding M1 (that is often called a ‘preconditioner') and a

2.3. Conjugate Gradient Method 13

basis for K;, such that the iterative method converges fast with a reasonable accuracy
and efficiency with respect to memory storage and computational time.

Krylov methods can be divided into stationary and nonstationary variants. Methods
such as Jacobi, Gauss-Seidel, (S)SOR iterations are stationary methods, since the
same operations on the current iteration vectors are performed in each iteration. They
are easy to understand and implement, but they are often not effective. On the
other hand, nonstationary methods, that have iteration-dependent coefficients, are
a relatively recent development. Their analysis is commonly harder to understand,
but they can be highly efficient. They rely on forming an orthogonal basis of the
Krylov sequence {ro, Arg, A’rg, ..., A~1rg}. The iterates are then constructed by
minimizing the residual over the subspace formed. The prototypical method in this
class is the (preconditioned) Conjugate Gradient ((P)CG) method, which is described
in Section 2.3 and 2.4. This is a popular and effective nonstationary Krylov solver for
linear systems with an SPSD coefficient matrix, as the storage for only a limited number
of vectors is required. For non-SPSD matrices, the Krylov solvers GMRES [121] and
Bi-CGSTAB [160] are popular methods in use, see [120, 160].

2.3 Conjugate Gradient Method

The Conjugate Gradient (CG) method is probably the most prominent iterative method
for solving the SPSD linear system (2.1). It is discovered independently by Hestenes
and Stiefel, and they jointly published the method in [72], which has become the
classical reference on CG. We refer to [8,61,63,86,117,120, 161] for more details
about this method.

The purpose of CG is to construct a sequence, {x;}, that satisfies (2.6), with
M = I and the property that

min Xi — X 2.7
XJ_GKJ_(AJO)HJ A (2.7)

holds, where ||w|a := \/(w, Aw) is used for any w € R". In other words, the error is
minimized in the A-semi-norm (that is often abbreviated as the A-norm, if there is no
ambiguity) at each iteration. This minimum is guaranteed to exist in general, only if

A'is SPSD. Moreover, CG requires that search direction vectors, {p,}, are conjugate
with respect to A, i.e.,

(Api.p) =0, i#], (2.8)

hence the name ‘Conjugate Gradient method’. It can be shown that (2.8) is equivalent
to the fact that the residuals, {r;}, form an orthogonal set, i.e.,

(ri,rj) =0, i#]}. (2.9)

Now, the CG method proceeds as follows. The (j+ 1)-th iterate is updated via the
search direction:
Xj+1 = Xj + &pj, (2.10)

14 Chapter 2. Iterative Methods

where a; € R. This yields

41 = 15— AD;. (2.11)
[t can be shown that ()
U

=1 L7 2.12

1 (Apj. pj) (2.12)

minimizes ||x; — x||4 over all possible choices of a; and ensures that Eq. (2.9) is
satisfied. The search directions are updated using the residuals:

Pi+1 = fj+1 + Bjp;. (2.13)

where B; € R equal to
(rj+1. rig1)
B = Lt (2.14)
T ()

ensures that Eq. (2.8) is satisfied. In fact, it can be shown that Eqgs. (2.12) and (2.14)
make pjy1 conjugate to all previous search directions, {p; : i = 1,..., J} and ripq
orthogonal to all previous residuals, {r; :i=1,..., Jj}

The above derivation leads to Algorithm 1, see below. This is essentially the form
of the CG algorithm that appeared in [72].

Algorithm 1 Conjugate Gradient (CG) solving Ax = b
1: Select xg. Compute rg := b — Axg and set pg 1= rg.
2. forj =0,1,..., until convergence do
3: w; = Ap;

(rj.r3)

4: Otj = (Wj,pj)

51 X1 =X oyp
61 1= — oW

) L (’j+1:rj+1)
b=

8 pit1 = 41 +Bip
9: end for

100 X 1= Xj+1

Remark 2.1.

e The iterative solution of Ax = b is denoted by x, in Algorithm 1 to distinguish
it from the exact solution, x.

e |t is straightforward to derive CG from the Lanczos algorithm for solving sym-
metric eigensystems and vice versa. The relationship can be exploited to obtain
relevant information about the eigensystem of A. We refer to [8, 63, 120] for
more details.

e [t can be proven that the CG algorithm indeed minimizes the error in the solution
vector over the Krylov subspace in the A-norm, as presented in (2.7).

2.4. Preconditioned Conjugate Gradient Method 15

e The equality (r;, r;) = 0 only happens if the solution, x, is already found. More-
over, since b € R(A) and Axjy1 € R(A), the residual, rjy+1, is also in the
range of A, i.e., riy1 € R(A). Because pjy1 is a linear combination of the
residuals, {ry, ..., ri}, it is in the range of A as well, so that Apjy1 # 0, if
pj+1 # 0,. Therefore, (Apj. pj) = 0 never happens, since A is SPSD and r; # 0,
(see [63, Lemma 10.2.1]). Hence, breakdown of CG (even for a singular coeffi-
cient matrix) only occurs if it is already converged.

Due to the SPSD property of A, the algorithm can be formulated such that the
memory space is needed for only four vectors and one matrix. Each iteration requires
the computations of two inner products, one matrix-vector multiplication and four
vector updates. Note that a basis for the Krylov subspace does not need to be stored,
and the algorithm only uses short recurrences.

Because the residuals, {r;}, are orthogonal to each other, it follows that CG cer-
tainly converges within niterations in exact arithmetic. Moreover, the convergence rate
is bounded as a function of the condition number of matrix A, k(A), see Lemma 2.1.

Lemma 2.1. Let A and x be the coefficient matrix and the solution vector as in
Eq. (2.1), respectively. Let {x;} be the sequence of CG-generated iterates. After j+ 1
iterations of CG, the error is bounded by

NCOEAS 015
VEK(A)+1 ' '

Proof. The proof is almost identical to the proof of [105, Thm. 3.3]. O

lx = xj+1lla < 2[Ix — xola (

Remark 2.2.

e From Inequality (2.15), it follows that the convergence of CG does not depend
on zero eigenvalues, see also [77].

e The accuracy of {x;} is often much better than that (2.15) predicts, due to a
good clustering of the eigenvalues of A or a favorable choice of starting vectors,
see [159].

From Lemma 2.1, a heuristic rule can be formulated: a faster convergence of CG is
expected for a smaller k. In the ideal case, we should have k(A) ~ 1. In the next
section, we show that the linear system (2.1) can be converted into a related linear

system such that the new coefficient matrix, A, is closer to the identity, i.e., k(A)
approaches 1.

2.4 Preconditioned Conjugate Gradient Method

The previous section has been concluded by observing that CG is effective if the coef-
ficient matrix is well-conditioned or has a favorable clustering of eigenvalues. Both the
efficiency and robustness of CG can be improved by using so-called ‘preconditioning’.

16 Chapter 2. Iterative Methods

Preconditioning is simply a means of transforming the original linear system (2.1) into
one which has the same solution, but which is likely to be easier to solve with CG. In
other words, instead of solving (2.1), we solve the transformed preconditioned linear
system,

A% = b, (2.16)

where
~ 1 1 1 ~ 1
A=M2AM 2, Xx:=M2x, b:=M 2b. (2.17)

Matrix M1 is called the preconditioner, as in basic iterative methods. It is required that
M is SPD, so that M~ exists and (M~2)T = M~> holds. Subsequently, Lemma 2.2
shows that (2.16) satisfies Assumption 1.1.

Lemma 2.2. Let the linear system (2.16) with coefficient matrix A be given. Then,
Eq. (2.16) satisfies Assumption 1.1, i.e.,

o Ais SPSD;
e A has d zero eigenvalues;
e Eq. (2.16) is consistent.

Proof. The fact that A is SPSD follows immediately from Lemma A.2 by substituting
B:=Aand C=M 3.
Moreover, note that

Av,=0, < M Ay, =0, i=1 .., d,

where vq, ..., vg are the eigenvectors associated with the d zero eigenvalues of A.
Combining this fact with the equality o(A) = o(M~1A) (Lemma A.1), it follows that
both A and A have d zero eigenvalues.

In order to prove that Eq. (2.16) is consistent, it suffices to show that b ¢ A/(A)
for b # 0,,. Define § := M2y for any y € N'(A). Then,

Aj=M3Ay = M0, =0,,

and, for b # 0,,,
~ 1 1
by =(M2b) M2y =b"y =0,

since b ¢ N(A) by hypothesis. O

Remark 2.3. If y € N'(A), then j := M3y € N(A).

Algorithm 1 can now be applied to the linear system (2.16). This results in the
preconditioned Conjugate Gradient (PCG) method, see Algorithm 2. The iterate, X1,
can be regarded as an approximation of the solution, X, and 7j;1 = b-— A~>"<j+1 can be
interpreted as the preconditioned residual.

2.4. Preconditioned Conjugate Gradient Method 17

Algorithm 2 Preconditioned CG (PCG) solving Ax = b (Original Variant)

1: Select X,. Compute 7y := b — Z)?O and set pg 1= 1.

2. forj =0,1,..., until convergence do
3: I/T/J = Aﬁj
I 7))
S A)
50 Xjy1 =X+ oyp;
6. fj41 =T — oW
o (F1.Fitr)
[R ()
8 Pit1 = Ty + B
9: end for

_1.
100 X = M7 2X 11

Subsequently, Algorithm 2 can be simplified using the following substitutions:

- 1
Xjiy1 = Mzxjpq;
- 1
fimy = M7 2riq;
Pi+1 = M2pjqq;
N 1
Wit1 = M2wjqq.

This yields Algorithm 3, see below.

Algorithm 3 Preconditioned CG (PCQG) solving Ax = b (Practical Variant)
1: Select xg. Compute rg := b — Axg,
solve My = rg, and set pg := ¥o.
2. for j:=0,1,..., until convergence do

i1 = I — oW
Solve Myj 1 = riq1
_ (y1.yit1)
R 7
9 Pjt1 = Yjrr T Bip
10: end for
110 X 1= Xjp1

Remark 2.4.

e from Algorithm 3, it follows that it is not required to determine M2 or its inverse
explicitly.

e Compared to Algorithm 1, an additional linear system, My;,1 = riy1, has to be
solved at each iteration. Moreover, an extra matrix, M, and an extra vector, y;,
should be stored in memory.

18 Chapter 2. Iterative Methods

e In Algorithm 3, (p;, Ap;) and (r;, y;) do not vanish, since M is SPD and both
(bj. Apj) and (F;, ;) are nonzero if the (preconditioned) solution is not yet found
(cf. Remark 2.1).

Because Algorithm 2 can be rewritten as Algorithm 3, the preconditioned linear
system (2.16) is often denoted by

M 'Ax =M 1bh, M=[my]=R"" (2.19)

Moreover, the next lemmas show some properties of PCG.

Lemma 2.3. Let A and M~ be given as in (2.19). Let {r;} and {p;} be sequences of
residuals and search directions satisfying Eq. (2.18), respectively. Then, the following
equality holds for PCG:

(M~ Yr,r) = (Api.p;) =0, i#] (2.20)

Proof. Note first that
Y - _1 _1 _
(F.F)=(M 2r, M 21;)) = (M 'r,rj),
and
~ 1 11 1 1 1
(Api, pj) = (M2 AM ™2 M?2p;, M2 p;) = (M~ 2 Ap;, M2 p;) = (Api, p)),

using Eq. (2.18). Since (i, ;) = (Zﬁ,—,ﬁj) = 0 holds for i # j (see Egs. (2.8)
and (2.9)), the lemma now follows immediately. O

Lemma 2.4. Let A and M1 be given as in (2.19). Let {x;} be a sequence of PCG-
generated iterates. Then, xj,1 satisfies the following inequality:

eI - 1) (2.21)
VE(MTA) +1 ' '

lIx = xj+1lla < 2[Ix — xo|a (

Proof. We have (see Eq. (2.15))

Jj+1

K (Z) -1
1% = Zjpallz <2005 = Rol 5 | T——=—| (2.22)
K (A) +1

2.5. Further Considerations 19

The lemma follows from (2.22), Lemma A.1 and the fact that
%%z = (- %) A%~ %)
1 S N I N 1
= (Mix—Mix) M EAMTE (Mix - mix)
= (x—x)" MM~ 2 AM ™2 M3 (x — x;)
= (x-— X/)TA(X = Xj)

= |Ix = xilla,
with i =20,1, ..., J+ 1. [l

According to Lemma 2.3, both CG and PCG minimize the error in the solution vector
over the Krylov subspace in the A-norm, rather than in the A-norm, see also [8,
Sect. 11.2]. Furthermore, it can be noticed from Lemma 2.4 that a fast convergence
of PCG relies on the choice of M~ In the ideal case, we should have K(ﬂ) =
k(M 1A) ~ 1.

2.5 Further Considerations

For the PCG method, there are still a few issues left that need further discussion, such
as the choice of the preconditioner, starting vector, and termination criterion of the
iterative process. These issues are considered in this section.

2.5.1 Preconditioning

Algorithm 3 is only efficient if the preconditioner, M~1, satisfies the following require-
ments:

(i) M is easy to construct;
(i) the linear system My;;1 = rj+1 should be solvable at low cost;
(i) the eigenvalues of A should be clustered (around 1).

In other words, a good preconditioner improves the convergence of the iterative method,
sufficiently to overcome the extra cost of both constructing and applying the precon-
ditioner. The most standard preconditioner is the Jacobi preconditioner, defined as
M = diag(A). In [158], it is shown that this choice minimizes k(M 1A), if the precon-
ditioner is restricted to a diagonal matrix. Block versions of the Jacobi preconditioner
can be derived by a partitioning of the variables. If the index set, S = {1,2,..., n},is
partitioned as S = U,S, with disjoint sets, {S;}, then

ajj, ifiandj are in the same index subset;
mjj = .
Y 0, otherwise.

20 Chapter 2. Iterative Methods

The resulting preconditioner is now a block-diagonal matrix, known as the block-Jacobi
preconditioner.

Another simple way of defining a preconditioner is to perform an incomplete factor-
ization of A. For example, the incomplete Cholesky decomposition without fill-in [97],
known as IC(0), is commonly used. The resulting PCG method is often called ICCG.
In this approach, we have M = LLT, where L = [li] € R™"is a lower-triangular ma-
trix having the same sparsity pattern as A, and is close to the lower-triangular matrix
associated with the exact Cholesky decomposition. More specifically, the entries of the
incomplete Cholesky factor, L, should satisfy the following conditions:

/,'J'ZO, if a,'_/'ZO;
(LLT),'J'ZB,'J', if a,-j7é0.

If Ais an SPSD matrix with a;; < 0 for all i # j, such an L always exists, see [77].
Accordingly, 1C(0) can always be constructed for our bubbly flows problem, as A is an
SPSD M-matrix, see Assumption 1.2.

Remark 2.5.

e The general algorithm for constructing L can be found in [63,97]. This algorithm
can be reduced by accounting for the exact nonzero pattern of A.

e [n practice, matrices A and L are stored in an appropriate data structure to save
memory storage and obtain an efficient method.

There are various variants of ICCG known in the literature, such as MICCG [9],
RICCG [67] and ILUM [119]. More general matrix-based preconditioners can be found
in, e.g., [120]. Another type of preconditioners is operator-based, that exploits prop-
erties of the physical problems from which the linear system arises. For example, if we
aim at solving the linear system derived from Eq. (1.3), then the preconditioner can be
based on the same equation but with a constant p (that is the Poisson equation with a
constant coefficient), or techniques as described in [32]. The difficulty of finding effec-
tive preconditioners is well-recognized, and the development of such preconditioners is
a major issue in the current active research.

Remark 2.6.

e [/t might happen that My;,1 = rj11 cannot be solved accurately. In this case,
this solve can be regarded as yj;1 = M(rj11), where M is a nonlinear mapping
from R™ to R™. In order to preserve the optimal convergence property of PCG,
one can perform a full orthogonalization of the search direction vectors, which
might be extended by truncation and restart strategies. This leads to meth-
ods based on GMRES, such as the Flexible PCG method [109]. However, it is
possible to use the original PCG method with inexact preconditioning, since the
convergence rate of the outer PCG process can be maintained up to a certain
accuracy for the inner solve, yj11 = M(rjy1), see, e.g., [62, 64].

2.5. Further Considerations 21

e CG is usually straightforward to parallelize, while PCG might have difficulties
due to the choice of the preconditioner, see [4,44,161]. For example, the IC(0)
preconditioner is cumbersome to parallelize, in contrast to the (block-)Jacobi
preconditioner. Hence, extra attention should be paid to the preconditioner,
M~=1, in a parallel environment.

2.56.2 Starting Vectors and Termination Criteria

In general, there is no restriction for choosing the starting vector, xg, in the (P)CG
method. The convergence rate of the iterative process hardly depends on it, unless
X — Xg is already conjugate to some of the eigenvectors of M~'A. Common choices
for xo are the zero vector, the random vector, and a rough estimate of x.

In Algorithm 1, 2 and 3, 'until convergence’ means that the iterative process should
be terminated if the error, ||x — xk||a, is sufficiently small. Because this error term is
not available, it is customary to terminate if the (preconditioned) residual falls below
a specified value. This leads to the following widely used termination criteria:

r.
H J+1\‘2 <6 (223)
|[rol]2
and !) |
yjtllo M™"rjq)l2
= <4, 2.24
lvollz — NIM roll, (2.24)

where rj 1 and yj.q represent the original and preconditioned residuals at iteration
J + 1, respectively. The tolerance, § > 0, determines the accuracy of the solution and
is a user-supplied parameter.

Remark 2.7.

e Termination criterion (2.23) does not depend on the preconditioner. Therefore,
this criterion is suitable if PCG methods with different M have to be compared.

o IfFM *A= I, then

Y1l _ M~ (b — Axj11)]l2 _ M~ A(x — Ax;11)] ~ |Ix = xj1ll2
yoll2 [|[M~1(b — Axp)l|2 [IM~7TA(x — x0)ll2 [x — xqll2

so that termination criterion (2.24) relies on ‘real’ relative errors.

e Both criteria (2.23) and (2.24) have the drawback that they strongly depend on
the starting vector, xg. A relatively large and inaccurate xq leads to an inaccurate
solution, while xq close to the solution might result in a too stringent termination
criterion. More details on various termination criteria used in practice can be
found in, e.g., [10].

22 Chapter 2. Iterative Methods

2.6 Application to Bubbly Flows

In this section, we present the performance of PCG in our main application of bubbly
flow problems. The computations are performed on a serial Pentium 4 (2.80 GHz)
computer with a memory capacity of 1GB. Moreover, the code is compiled with FOR-
TRAN g77 on LINUX.

Both 2-D and 3-D variants of the problem setting, as given in Figure 1.2 of Sec-
tion 1.3, are considered, where the radius of the bubbles is s = 0.1. The number of
bubbles, m, the grid size, n, and the density contrast, 6, are varied in the experiments.
We adopt ICCG (that is, PCG with the IC(0) preconditioner) to solve the resulting lin-
ear system. PCG with Jacobi and Block-Jacobi preconditioners is considered in [137],
and is less efficient compared to ICCG. We choose for a random starting vector, and
the termination criterion is based on (2.24) with tolerance § = 108,

The results of the experiment are given in terms of the total computing time and
the number of required iterations for convergence of ICCG, see Table 2.1 and 2.2. The
accuracy of the solutions is also checked. They are omitted in the results, since they
are of the same order.

(a) n = 100%, § = 10° and (b) m=09, § =10° and vari-
various number of bubbles, m. ous grid sizes, n.
[m] #1Mk. CPU [n] #1It. CPU
0 109 0.1 1002 247 0.3
1 128 0.1 2502 | 466 3.6
9 247 0.3 5002 | 1027 34.4

(c) m=9, n=100% and var-
ious density contrasts, 6.

|6 | #It. CPU|
10° 247 0.3

106 352 0.3
108 381 0.4

Table 2.1: Results for ICCG applied to 2-D bubbly flow problems. ‘# It’ means the number of required
iterations, and ‘CPU" is the corresponding computational time in seconds.

From Table 2.1 and 2.2, it can be readily observed that 3-D problems take more
iterations and computing time to solve compared to 2-D problems, because the de-
grees of freedom are larger in the 3-D case. We see that the convergence of ICCG
deteriorates when M~1A becomes more ill-conditioned; this is the case when

e the domain consists of more bubbles;
e the degrees of freedom are increased;
e the density contrast grows.

Hence, ICCG is not a scalable and robust method.

2.7. Concluding Remarks 23

(a) n = 100% 6 = 10° and (b) m =27, 6 = 10* and var-
various number of bubbles, m. ious grid sizes, n.
[m [#n1r CPU] [n | #It. CPU]
0 170 25.2 503 199 3.6
1 211 31.1 100° 310 46.0
8 291 43.0 1203 363 90.5
27 310 46.0

(c) m = 27, n = 100° and
various density contrasts, 6.
| 0 | # It. CPU |
103 310 46.0

106 503 71.8
108 532 77.5

Table 2.2: Results for ICCG applied to 3-D bubbly flow problems.

2.7 Concluding Remarks

In this chapter, we review basic and Krylov iterative methods. The (P)CG is a popular
Krylov iterative method, which is discussed in more detail. Some theoretical properties
that are not fully clear in the literature are derived and explained.

Numerical experiments show that ICCG (that is PCG with the IC(0) preconditioner)
is not effective to deal with sophisticated bubbly flows. Consequently, there is a need
for an alternative of PCG, so that the convergence of its iterative process is more
robust and scalable with respect to the number of bubbles, the grid size, and the
density contrast. We deal with this issue in the remainder of this thesis.

24

Chapter 2.

Iterative Methods

Chapter

Deflation Method

3.1 Introduction

The linear system of our primary interest is (see Eq. (2.1))
Ax=b, AecR™" (3.1)

where the SPSD coefficient matrix, A, has d zero eigenvalues, and b € R(A) holds.
As discussed in Chapter 2, PCG is a popular method to solve (3.1), and the resulting
preconditioned linear system to be considered is (see Eq. (2.19))

M~1Ax = M~ 1b, (3.2)

where M~ is an SPD preconditioner. The spectrum of M~1A, o (M~1A), often con-
sists of unfavorable eigenvalues that deteriorate the convergence of PCG and makes
PCG less robust, see also [175]. In this chapter, we describe the so-called deflation
method that effectively treats these eigenvalues, so that the convergence can be sig-
nificantly improved, and a more robust and scalable method can be obtained.

The deflation method applied to CG is independently proposed by Nicolaides [108]
and Dostal [40]. It is further exploited in several papers, among them are [56, 58, 82,
93,94,99, 103, 104, 122,173]. Below, we first describe the deflation method and its
preconditioned variant following [173], where we account for the possible singularity
of the coefficient matrix, A. We derive and discuss these methods including their
theoretical properties. Moreover, the effectiveness of the deflation method is illustrated
in bubbly flow applications.

3.2 Preliminaries

This section presents some preliminaries that are required to describe the deflation
method. We start with Definition 3.1.

25

26 Chapter 3. Deflation Method

Definition 3.1. Let A be an SPSD coefficient matrix as given in (3.1). Suppose
that Z € R™ with full rank and k < n— d, is given. Then, we define the invertible
Galerkin matrix, E € R¥*k the correction matrix, @ € R™ " and the deflation matrix,
P e R™" as follows:

P=1-AQ Q:=2E'7T E=7TAZ (3.3)
Remark 3.1.

e The Galerkin matrix, E, is also known as the coarse matrix. In addition, linear
system Ey, = y; is often called the Galerkin or coarse system.

e The matrices as defined in Definition 3.1 can be easily generalized for a non-
SPSD coefficient matrix, A. We refer to [47,48, 171] for more details.

In Eq. (3.3), Z is the so-called ‘deflation-subspace matrix" whose k columns are called
the ‘deflation vectors’ or ‘projection vectors'. These vectors remain unspecified for the
moment, but they are chosen in such a way that E is nonsingular. In other words, the
following assumption is always fulfilled in this chapter (and in most of the upcoming
chapters).

Assumption 3.1. Z is chosen such that N'(A) € R(Z), so that E is nonsingular.
The fact that E is nonsingular if N'(A) € R(Z) follows from the next lemma.

Lemma 3.1. Let A, Z and E be as given in Definition 3.1, where Z satisfies Assump-
tion 3.1. If N(A) € R(Z), then E is nonsingular.

Proof. Note first that N'(A) € R(Z) yields
Zy ¢ N(A) Vy € R" (3.4)
Since A is SPSD, we have
yTAy >0,y ¢ N(A).

In particular, we can take y = Zy and substitute this into the latter expression, giving
us

(Zy)"A(Zy) =y"ZTAZy =y Ey >0, Zy ¢ N(A) Vy € R". (3.5)
Combining (3.4) and (3.5) leads to the fact that £ is nonsingular. O

If N(A) C R(Z), then E would be singular. In this case, the Moore-Penrose
generalized inverse (also known as the pseudo-inverse) should be used rather than the
real inverse. This is further considered in Chapter 8.

From Eq. (3.3), some results can be readily obtained, see Lemma 3.2.

3.2. Preliminaries 27

Lemma 3.2. Let A, Z, E, Q and P be as given in Definition 3.1, where Z satisfies
Assumption 3.1. Let x and b be the solution and right-hand side of (3.1), respectively.
Then, the following equalities hold:

(a) ET = E;

(b) QT = Q = QAQ;

(c) QAZ = Z;
(d) PAQ =0,,,
(e) P?=P;

(f) APT = PA;

(9) (I — PT)x =Qb.
Proof.
(a) ET =(ZTAZ)T = ZTAZ = E;

(b) QT =(ZE1Z"YT = ZE~1ZT = Q using (a), and
QAQ=ZE 1ZTAZE 1ZT = ZE'EE1ZT = ZE"1ZT = Q;

(c) QAZ =ZE~1ZTAZ = ZE~'E = Z;
(d) PAQ = (I — AQ)AQ = AR — AQAQ = AQ — AQ =0, , using (b);

(e) P2= (1 — AQ)2 =1 — 2AQ + AQAQ = | — 2AQ + AQ = | — AQ = P, using
again (b);

(F) APT = A(l —QA) = A — AQA = (I — AQ)A = PA:

(g) (I - PT)x = QAx = Qb, using Eq. (3.1).

Remark 3.2.

e In contrast to P, matrices E and Q are symmetric (Lemma 3.2(a) and (b)).

e P is a projector (Lemma 3.2(¢e)).

e Although x is unknown, (I—P")x can be computed beforehand using Lemma 3.2(g).
The next lemmas are frequently used in this thesis.

Lemma 3.3. Let P, A and Z be as given in Definition 3.1, where Z satisfies Assump-
tion 3.1. Then, the following equalities hold:

(a) PAZ = On,k,'

28 Chapter 3. Deflation Method

(b) PTZ =0,

Proof. Using Lemma 3.2(c), we obtain
(a) PAZ = (I — AQ)AZ = AZ — AQAZ = AZ — AZ =0,
(b) PTZ=(1 -QA)Z=7Z QAZ=7 - Z=0,.

Remark 3.3.

e PA has k+d zero eigenvalues (Lemma 3.3(a)), since N(PA) = R(Z) & N(A)
and N(A)NR(Z) =0 (Assumption 3.1).

e The deflation matrix, P, has only zero and unit eigenvalues, so that P is positive
semi-definite. This follows from the facts that PAZ = 0, (Lemma 3.3(a))
and P2Y = PY for full rank Y € R"™("—k=9) satisfying R(Y) = R(AZ)*
(Lemma 3.2(¢e)).

Lemma 3.4. Suppose that A and P are given as in Definition 3.1, where Z satisfies
Assumption 3.1. Then, PA is SPSD.

Proof. Note first that
PA = P2A=PAPT,

using Lemma 3.2(e) and (f). Then, the lemma follows immediately via Lemma A.2 by
substituting B := A and C := P,]

3.3 Deflated CG Method

In this section, the Deflated CG (DCG) method is introduced.
The original linear system (3.1) can be solved by employing the splitting

x=(-Px+PTx. (3.6)

In Eq. (3.6), (I — PT)x can be computed immediately from Lemma 3.2(g). Hence,
only P x should be computed in (3.6) in order to find x. We can write

x=-Px+P'x & x=Qb+P'x
< Ax = AQb+ AP x
< b= AQb+ PAx
< Pb= PAx,

(3.7)

where we have used Lemma 3.2(f). Note that x at the end of Expression (3.7) is
not necessarily a solution of the original linear system (3.1), since it might consist of
components of the null space of PA, N(PA). Therefore, this ‘deflated’ solution is
denoted as X rather than x. We now can solve the deflated system,

PA% = Pb, (3.8)

3.3. Deflated CG Method 29

using CG. Solutions X and x are related to each other by Lemma 3.5.

Lemma 3.5. Let P be as given in Definition 3.1, where Z satisfies Assumption 3.1.
Suppose that x and X are solutions of (3.1) and (3.8), respectively. Then, PTx = PTx
holds.

Proof. Decompose X as
X=x+Yy,

where y € R(Z) C N(PA) (Lemma 3.3(a)). This yields
PTx=PTx+PTy=PTx,
since PTy = 0, due to Lemma 3.3(b). O

From Lemma 3.5, solution x can be easily obtained from X. This is summarized in the
next corollary.

Corollary 3.1. Let P and Q be as given in Definition 3.1, where Z satisfies Assump-
tion 3.1. Suppose that b is the right-hand side of (3.1). Then, solution x of (3.1) can
be expressed as

x=Qb+P'%, (3.9)

where X is a solution of (3.8).
Proof. This follows immediately from Egs. (3.6), (3.7), (3.8) and Lemma 3.5. O
Remark 3.4.

e Since PA is SPSD (Lemma 3.4), this can be interpreted as the new coefficient
matrix of the linear system.

e The deflated linear system (3.8) is obviously singular. It can only be solved as
long as it is consistent, i.e., as long as Pb = PAXx for some X, see also [77].
Since b € R(A) holds, we also have Pb € R(PA). Hence (3.8) is a consistent
system.

The resulting DCG algorithm is presented in Algorithm 4. It can be observed that
it is almost equal to the original CG method (cf. Algorithm 1).

Remark 3.5.
e [f P =1, Algorithm 1 is readily obtained from Algorithm 4.

o {7;} is the set of deflated residuals satisfying f; = Prj = P(b — AX;). The
hats on riy 1, w; and xj1 emphasize that they are deflated versions of the same
parameters in Algorithm 1. Implicitly, the other parameters are also deflated
versions, but the hats are neglected here for convenience.

30 Chapter 3. Deflation Method

Algorithm 4 Deflated Conjugate Gradient (DCG) solving Ax = b
1: Select xg. Compute rg := (b — Axp), set iy := Prg and pg = Tp.
2: forj:=0,1,..., until convergence do
3: w; == PAp;

(7.7

4: o= %;.9)
5 X1 =X+ ap;
6. 41 :(fj - O‘)jo

. fi+1.0j4+1
[/ R
8 D41 = Tjp1 +Bip;
9: end for

10: X, := Qb+ PTf(H_l

e Note that pjy1 ¢ R(Z), since pj11 is a linear combination of the deflated resid-
vals, {fi} withi=0,..., J+ 1, and each T; satisfies

(Foy)=/y=Pr)Ty=rlPTy=rl0,=0VyeR(2),

using Lemma 3.3(b). Therefore, the inner products, (W;, pj) and (f;,), can
only vanish if the deflated solution, X, has already been found (cf. Remark 2.1).

3.4 Deflated PCG Method

The deflated system (3.8) can also be solved by using an SPD preconditioner, M~1.
In this case, we solve
PAX = Pb, (3.10)
with (cf. Eq. (2.17))
1 1 ~ 1 1
A=M2AM"2, Xx:=M2%x, b:=M 2b,

and
P=1-AQ, Q:=ZE'Z", E.=ZTAZ, (3.11)

where Z € R™k can be interpreted as a preconditioned deflation-subspace matrix.
The resulting method is called the Deflated PCG (DPCG) method. When Algorithm 4
is applied to (3.10), we end up with Algorithm 5 (cf. Algorithm 2) that describes the
DPCG method.

Remark 3.6. All properties and results given in Section 3.3 hold in particular for
Eq. (3.10) and Algorithm 5.

Next, Lemma 3.6 is required for the further analysis of DPCG.

Lemma 3.6. Let P and M~ be as given in Definition 3.1, where Z satisfies Assump-
tion 3.1. Suppose that P and Z are defined as in (3.11). Let fj41 and ?j+1 be residuals
from Algorithms 4 and 5, respectively. Then, the following equalities hold:

3.4. Deflated PCG Method 31
Algorithm 5 Deflated PCG (DPCG) solving Ax = b (Original Variant)
1: Select Xg. Compute iy := (E* AV)N((j), set ?0 = ﬁfo, and pg = :I:\().
2. forj =01, .., until convergence do
3. W = PAp;
()
4 AJ ’ (5//\"7/])
X1 =X+ 0P
6. T41 =T — oW
[ENCE (75.73)
Pi+1 = Fj+1 + Bjb
9 end for
100 Xip1 = Qb+ P X1
11 X, = Mféiﬂ_l
(a) P=M"2PM: withZ = M>Z;
2 _1.
(b) Tjit1 =M 2fj1.
Proof. The lemma follows immediately from
P o= 1 AZEZT
= =M 3AM 3Z(ZTM 3AM 32)"1ZT
= | - M 32AZ(ZTAZ) Y(M>2)T (3.12)
— Mz (- AZ(ZTAZ)1ZT) M2
— M IPMs3,
so that we also have
Fin = P(b—A%1)
= PM3(b— Axjs1)
= M:Prig,
= M
O

Analogously to the PCG method,

satisfying (cf. (2.18))

fi1
fi+1
Pj+1

Wj+1

DPCG can be rewritten by using new variables

1 .
G (3.13)
= szj+1;

= MQVT/H-L

where we have used Lemma 3.6. Substituting Expressions (3.13) into Algorithm 5

32 Chapter 3. Deflation Method

gives us Algorithm 6 (cf. Algorithm 3).

Algorithm 6 Deflated PCG (DPCG) solving Ax = b (Practical Variant)
1: Select xg. Compute rg := b — Axg and 7y = Pry,
solve Myy = ip and set pg = ypo.
2. for j =0, ..., until convergence do

fj+1 = Tj — oW
Solve M_)/_/'+1 = l,j'_|_1
B; = (Fig1.Yj+1)
J (7.;)
9 pjy1 =Y+ T Bip;
10: end for
11: X, := Qb+ PTXJ'_H

From Algorithm 6, it follows that it is not required to determine P or M3 explicitly.
As a result, linear system (3.10) is often denoted by

M~tPA% = M~ 1Pb. (3.14)
Remark 3.7.

e A deflation technique applied to a preconditioned system (i.e., Eq. (3.10)) is
equivalent to preconditioning of a deflated system (i.e., Eq. (3.14)).

e All known properties and results for PCG also hold for DPCG, where PA can be
interpreted as the coefficient matrix A in Eq. (2.19) and Algorithm 3. Moreover,
if P =1 Is taken, Algorithm 6 is reduced to Algorithm 3.

e DPCG could also be derived in a different way, so that the resulting linear system
is
PTM1Ax = PTM™1b, (3.15)

rather than Eq. (3.14), where the last step of Algorithm 6 (Line 11) is carried
out before the iteration process starts, see [82, 93, 94,108, 122]. More details
about this variant can be found in Chapter 6.

Similar results as Lemma 2.3 and 2.4 hold for DPCG, see below.

Lemma 3.7. Suppose that A, M~! and P are given as in Definition 3.1, where 7
satisfies Assumption 3.1. Let {f;} and {p;} be sequences of residuals and search
directions as generated by Algorithm 6, respectively. Then, the following equality
holds for DPCG:

(M7, 7) = (PAp;. pj) =0, i #] (3.16)

Proof. The proof is similar to the proof of Lemma 2.3.]

3.5. Properties of the Deflation Method 33

Lemma 3.8. Suppose that A, M~! and P are given as in Definition 3.1, where 7
satisfies Assumption 3.1. Let x be the solution of Eq. (3.1) and {X;} be the sequence
of solutions generated by Algorithm 6. Then, the (j + 1)-th iterate of DPCG, Xj41,
satisfies the next inequality:

(3.17)

VE (M~ TPA) + 1

+1
. o k(M TPA) 1Y
X = Xjt1lla < 2|[%X — Xol|a :

Proof. We have (see Eq. (2.21))

VEM 1PA) - 1 . (3.18)
VE(M-IPA) +1 ' '

Moreover, note that PA(P"y) = P?Ay = PAy by applying Lemma 3.2. Hence, y is
a solution of Eq. (3.8) if and only if PTy is also a solution of (3.8). Therefore,

1X = %jt1llpa < 2[[% — Xollpa (

1% = Ri31llpa = (X = %41)T PA(R = %i11)
= (X =%11)TPAPT(R = %141)
= (PTx=P'%:1) A(PT% = PT%;41)
= (& %11) AR — X41)

= 1% %lla.
Substituting ||X — Xj41]/pa = ||X — Xj+1/]a into (3.18) leads to (3.17). U

Lemma 3.7 implies that, for the DPCG method, the search directions, {p,}, are con-
jugate with respect to PA, while the deflated residuals, {7}, are orthogonal in the
M~*-norm. In addition, the convergence of DPCG highly depends on k (M !PA)
according to Lemma 3.8.

3.5 Properties of the Deflation Method

In this section, we derive some theoretical properties of the DPCG method, where Z is
first assumed to consist of eigenvectors, and, thereafter, Z is arbitrary. If we restrict
ourselves to linear systems with an invertible coefficient matrix, then more properties
of this method can be found in [56,82,103-105,122,173].

3.5.1 Results for an Eigenvector Deflation Subspace

Theorem 3.1 (cf. [103, Thm. 2.5]) shows that using eigenvectors as deflation vectors
can be effective in order to obtain a small k (M~ 1PA).

Theorem 3.1. Suppose that A, M~ and P are given as in Definition 3.1. Let M~1A
have eigenvalues {\;} with corresponding orthonormal eigenvectors {v;}. If Z =

34 Chapter 3. Deflation Method

[Va+1 Va2 *++ Vayk], then

o(MtPA)Y={0, ..., 0, Ndkls - - - Ant.

Proof. We first prove that

0 =1, d+k;

PAV; = ' 3.19
Vi {A,—,\"/,— i—d+k+1 .. .n (3.19)

where {¥;} is the set of orthonormal eigenvectors corresponding to the eigenvalues of
PA. Note that, according to Lemma A.1, M~'A and A have the same eigenvalues,
{Xi}, but corresponding to different eigenvectors (i.e, {V;} # {v;}). Define A =
diag(Agi1. Agik) and Z = [Vgi1 -+ Vgskl. giving us AZ = ZA. Since the
eigenvectors are orthonormal (i.e., \7,-T\7J- = §;;, where ¢;; denotes the Kronecker delta),
we have ZTZ = [. Then, we derive

E=Z7TAZ=27TZN=A,

yielding
P=|-AZTE ' Zl =1 - ZTA\N 12T =1 - 77T,

Moreover, we have

zZT\‘;_ Zes(l) — VI' I:d+1 d+k,
' 20, = 0, i=d+k+1,..., n.

This results in
PAV, = NPV = N\, = NZZT0i =4 Nvj—AN¥, = 0, i=d+1,. . .. d+k
Aivi —0 = \Nv;, Ii=d+k+1,..., n,

which proves Eq. (3.19).

Subsequently, Eq. (3.19) can be transformed into M~ 'PAv; = Av;, since
PAV, = A\vi < M 2PM> (M*%AM*%) U= AT
o M IPAM 17 = A\
& M 3PAv; = A\ M3y,
s M PAv; =)\,

where Z = M*%Z v = M*%V,- and Lemma 3.6(a) are used. Indeed,)A; is an

3.5. Properties of the Deflation Method 35

eigenvalue of both M~1PA and PA. Since

AV =\ & M IAM30, = A7
M~ AM~3 M2y,
=4 MilAV,' = \;Vj,

Nl= - N
N[

3

>\,‘/\/I Vi

we obtain that {v;} is the set of eigenvectors of M~1A, that can be scaled such that
they are orthonormal.]

Corollary 3.2. Suppose that we have the same setting as in Theorem 3.1. Then,
k(M 1PA) <k (M 'A).

71 J— >\I’I >\I7 J— 71
Proof. K,(M PA)—WSTH—K,(M A) [l
From Lemma 3.8 and Corollary 3.2, we obtain that DPCG with eigenvectors as de-

flation vectors is expected to converge faster than PCG. The resulting method is
sometimes called ‘eigenvector deflation’ or ‘spectral deflation’.

Remark 3.8. Eigenvectors corresponding to the smallest nonzero eigenvalues of A are
used as deflation vectors in Theorem 3.1, since M~ often treats the largest eigenvalues
of A effectively. In this case, the deflation method is fast in convergence if P acts as
a complementary part of the preconditioning by projecting the smallest eigenvalues to
zero. However, in general, eigenvectors associated with the largest eigenvalues of A,
or a combination of these two approaches, can also be used as deflation vectors in
order to reduce k (M~*PA), see, e.g., [82] where two-fold deflation techniques are
introduced based on this idea.

3.5.2 Results for an Arbitrary Deflation Subspace

Eigenvector deflation can be very effective, but, unfortunately, eigenvectors are usually
expensive to compute in practice. In addition, eigenvectors are often dense, leading to
a possibly expensive deflation matrix, P. Ideally, Z should consist of sparse and good
approximations of eigenvectors, which is further examined in Chapter 4. Moreover, it is
also common to choose algebraic vectors as columns in Z (see also Chapter 4). In this
case, it is not necessarily guaranteed that these vectors are good approximations of the
unfavorable eigenvectors. Hence, the properties as described in Section 3.5.1 are not
valid anymore. Instead, we show some properties of the DPCG method, where Z is
arbitrary. Note that these properties hold in particular for Z consisting of eigenvectors.

Comparison of Deflated Coefficient Matrices

Define

P=1-AQ: Qi :=ZzZE*z] E :=2zTAz, Z eR"™, (3.20)

36 Chapter 3. Deflation Method

for kk < n—dand i =12, ..., k, where each Z; satisfies Assumption 3.1. It is
convenient to adopt this notation with subscripts by comparing deflation matrices
with different deflation subspaces. We start with Theorem 3.2 and 3.3, which are
generalizations of [103, Lemma 2.9 and Theorem 2.12].

Theorem 3.2. Let Z; and P, be defined as in (3.20) with i = 1,2 and ky = ko = k. If
R(Z1) = R(Z>), then M—*PiA= M~1P,A, and, in particular, Q1 = Q>.

Proof. The proof is identical to the proof for the case that A is invertible, see [103,
Lemma 2.9]. 0

Theorem 3.3. Suppose that A and M~! are given as in Definition 3.1. Let Z; and P;
be defined as in (3.20) with i =1,2. If R(Z1) C R(Z2), then

K(M™IPLA) > k(MT1PA). (3.21)
Proof. In Section 3.4, it has been shown that M~1P.A = P.A for i = 1,2, with

A = M IAM3,
Po= |- AVOV,', 6,‘ = va,ErleVIT, E,' = ZVTAVZV,, Z; = Mi%fzv,'.

Moreover, if R(Z1) C R(Z5) (i.e., R(IM™3Z1) C R(M~325)), then also R(Z1) C
R(Z>), using Lemma A.13. Now, it suffices to prove that

An(ﬁZAv);

- - 3.22
Ar+d+1(P2A), ()

An(PLA) >
Ma+d+1(PLA) <
since this implies m(ﬁlﬁ) > K(I%Z) for R(fl) - R(fg); hence, the lemma follows.
Note first that (I51 - ﬁg)g is positive semi-definite, which can be easily proven by
applying the same procedure as in the proof of [103, Lemma 2.8]. By combining this
fact with [103, Lemma 2.2], the first inequality of (3.22) can be obtained. The proof of
the second inequality of (3.22) is exactly the same as for the case that Als invertible,
see the proof of [103, Thm. 2.10]. [

Corollary 3.3. Suppose that A and M~ are given as in Definition 3.1. Let P; be
defined as in (3.20). Define Z; == [zy zo --- z]| fori=1,2,..., k. Then,

Ao (M7IPLA) < Agys(MTIPA) < 0 < Agaugp1(MTIPA),

and
Aa(MIPLA) 2 Aa(MEPoA) 2 2 MM BA).

This yields
K(M7IPA) > k(M IPA) > ... > k(M 1PA) = k(M IPA).

Proof. Note that R(Z,—1) C R(Z;) holds for all i = 2,.. ., k. Then, the corollary
follows from Theorem 3.3. O

3.5. Properties of the Deflation Method 37

Theorem 3.2 implies that P is determined by the space spanned by the columns of
Z rather than the actual columns. This has direct consequences for constructing
the deflation vectors, see Chapter 4. Furthermore, Theorem 3.3 and Corollary 3.3
show that the condition number of M~1PA becomes more favorable by increasing
the number of (arbitrary) vectors in Z; hence, a better convergence of the iterative
process is expected, although more work is needed to solve the Galerkin system at
each iteration.

Comparison of Deflated and Original Coefficient Matrices

Here, we prove that the condition number of PA is always below that of A for all
choices of Z, see Theorem 3.4.

Theorem 3.4. Suppose that A and P are given as in Definition 3.1. For any full-rank
Z, the following inequality holds:

k(PA) < k(A). (3.23)
Proof. It suffices to show that
Aa+1(A) < Agrkr1(PA);
An(A) > Xa(PA),

for all Z with rank Z = k.
The proof of A,(PA) < X,(A) is as follows. Note that

A— PA = AQA,

which is symmetric, because of (AQA)" = AQA. Moreover,

(AQ)? = AQAQ = AQ,

can be derived from Lemma 3.2(b), so that AQ is a projector. Therefore, AQA is
SPSD, where we have also used Lemma A.3 by taking S := AQ and R .= A. Then,
Ai(A) > Xi(PA), foralli=1,..., n, follows from Lemma A.4. Thus, we particularly
have

An(A) > Xa(PA).

Next, we show that Agi1(A) < Agik+1(PA). Due to Corollary 3.3, it suffices to
prove Ag+1(A) < Agy2(P1A), where Z; consists of just one deflation vector, so that

PIA= (I - AZyE;'ZT) A= (I — yAzzT) A= A~ yAzZT A, (3.24)

with z .= Z; € R"and vy .= Efl € R. Theinequality Az # 0, is always satisfied, since
N(A) € R(Z) (otherwise Assumption 1.2 cannot be satisfied). Eq. (3.24) implies

PA=A-—R, R:=vAzz'A,

38 Chapter 3. Deflation Method

so that R is symmetric. From Lemma A.12, we have
rank R = rank ’)’AZZTA =rank Azz"TA=rank zz' =1, Az #0,.

Hence, the conditions of Lemma A.5 are satisfied. By taking B .= A and C := —R in
that lemma, X;(A) < A\j11(P1A) is obtained for i =1,2,.. ., n. In particular, we have

Ad+1(A) < Ag2(P1A),
which completes the proof. [

Subsequently, we prove that Theorem 3.4 can be generalized using an SPD pre-
conditioner, M1, see Theorem 3.5.

Theorem 3.5. Let P be given as in Definition 3.1. Then, the following inequality
holds:
k(M IPA) < k(M LA), (3.25)

for any A, M~ and Z as given in Definition 3.1.

Proof. In Section 3.4, it has been shown that M~ 1PA = 5/5 with

A = /\/I*%AM*%;
{ P = I-AQ, Q=ZE'ZT, E=2TAZ Z=M:Z
Combining Lemma A.1 and Theorem 3.4, we obtain
k(M 1PA) = k(PA) < k(A) = k(M A).
0
Theorem 3.5 shows that M~1PA is always better conditioned than M~1A. Therefore,

the convergence of DPCG is expected to be equal or faster than the original PCG
method for each full-rank matrix Z and SPD matrix M1,

3.5.3 Termination Criteria

In many numerical experiments performed in this thesis, PCG and DPCG are compared.
For a fair comparison, equivalent termination criteria of the methods are essential. For
this purpose, we need the following lemma.

Lemma 3.9. Let r; and 7 be residuals from Algorithms 3 and 6, respectively. Then,
fi =r holds for i =0,1,....

3.6. Application to Bubbly Flow Problems 39

Proof. Using Lemma 3.2 and Corollary 3.1, we derive

i = P(b—AX)
= Pb— APT%
= b—AQb+ PTx)
= b-— AX,'

r.

O

From Lemma 3.9, we obtain that the deflated residuals are identical to the original
residuals, although they might differ in practice due to round-off errors. Consequently,
equivalent termination criteria of PCG and DPCG can be derived, so that we obtain
(cf. Eq. (2.23))

|[ri+1l]2 < |[Fi1ll2

= <0, (3.26)
l|ro]l2 |7oll2
and (cf. Eq. (2.24))
(ML) [[M~ 171401
— 1T Ty & — T <), 3.27
M 1101l R (3.27)

for a specified termination tolerance, 6 > 0. Both criteria, (3.26) and (3.27), are used
throughout this thesis. A deeper discussion about the termination criterion of DPCG
can be found in [173, Sect. 4].

3.6 Application to Bubbly Flow Problems

The 2-D and 3-D variants of the bubbly flows, as given in Section 1.3 (see Figure 1.2),
are considered in this section. In Section 2.6, we have seen that M~1A is very ill-
conditioned for sophisticated bubbly flows, where M~1 is the IC(0) preconditioner. In
this case, ICCG shows slow convergence. In this section, the convergence is accelerated
using the deflation method. The resulting method is called DICCG, that is DPCG
with the 1C(0) preconditioner. We often denote DICCG with k deflation vectors as
DICCG—k.

The most simple choice for the deflation subspace is the subspace spanned by
structured and uniform subdomains, which are chosen independently of the bubbly
flow geometry, see Figure 3.1. Mathematically, this is defined as follows. Let the open
domain, €2, be divided into subdomains, Q;, j=1,2, ..., g+1, such that Q = U;’jllﬁj
and Q;N2; = 0 for all i # j. In addition, g is always chosen such that g+ 1 is a divisor
of n. The discretized domain and subdomains are denoted by 24 and th, respectively.
Then, for each th with j = 1,2, ..., g + 1, we introduce a deflation vector, z;, as

follows:
0, x € Qh \ th;
N 2

40 Chapter 3. Deflation Method

where x; is a grid point in the discretized domain, Q2. Then, for ¢ > 1, we define
Z :=[z1zo --- z4|, so that k = g. Hence, Z consists of disjunct orthogonal piecewise-
constant vectors and satisfies 1, = N'(A) € R(Z), which implies nonsingularity of E.
A deeper discussion on subdomain deflation is presented in Chapter 4.

Figure 3.1: Deflation subdomains with kK = 3, which are chosen independently of the density geometry
of the bubbly flow.

The efficiency of DICCG depends on the implementation of this method. We deal
with this issue in Chapter 8. For the time being, we report the results by considering
the number of iterations. In the numerical experiments, the number of bubbles, m,
is varied, whereas the grid sizes (n = 1002 in 2-D and n = 1003 in 3-D) and density
contrast (¢ = 103) are fixed. The stopping criterion is based on (3.27) with § = 10~8.

3.6.1 Results of Numerical Experiments

The results of both 2-D and 3-D experiments are presented in Table 3.1. The accuracy
of the solutions are of the same order (see [140]), and, therefore, they are not included
in the table.

Considering the results in Table 3.1, we see that DICCG—k always requires fewer
iterations compared to ICCG. This confirms Theorem 3.5. It can be observed that, for
larger k, DICCG—k requires fewer iterations than for smaller k, which is as expected
from Theorem 3.3. The gain factor of DICCG—k for large k can be more than 10,
but we note that each iteration becomes more expensive in this case, see Chapter 8
for details. Moreover, an increase of the number of bubbles often leads to a worse
performance of ICCG and DICCG—k becomes more superior to ICCG. Additionally,
DICCG—k is less sensitive to m for larger k.

Subsequently, the relative residuals of both ICCG and DICCG based on (3.27)
are depicted for two test cases in Figure 3.2. It can be noticed that the behavior
of the residuals of ICCG is irregular, due to possible unfavorable eigenvectors caused
by the presence of the bubbles. For DICCG—k, we can see that a larger k leads to a
smoother behavior of the residuals; hence, a faster convergence of the iterative process.
The success of the method is two-fold: a larger k leads to a deflation subspace that
approximates more eigenvectors corresponding to the unfavorable eigenvalues and each

3.7. Concluding Remarks 41

(a) 2-D experiments with n = 100% and 6 = 10°.

| Method [m=0]m=1]m=09
ICCG 109 128 247
DICCG—(52—1) | 49 51 70
DICCG—(102—1) | 32 34 44
DICCG—(20%—-1) | 21 22 27
DICCG—(25°—1) | 19 20 23
DICCG—(502—1) | 12 13 14

(b) 3-D experiments with n = 100% and 6 = 10°.

||\/|ethod |m:0|m:1 m=8| m=27
ICCG 170 211 291 310
DICCG—(23—1) | 109 206 160 275
DICCG—(5%—1) | 56 58 72 97
DICCG—(10%—1) | 35 36 36 60
DICCG—(20% — 1) | 22 25 22 31

Table 3.1: Number of iterations for ICCG and DICCG—k for various number of bubbles, m, and
deflation vectors, k.

of these approximations is more accurate.

3.7 Concluding Remarks

In this chapter, we describe a deflation method applied to linear systems with a singular
coefficient matrix. Thereafter, new theoretical properties are derived and the deflation
theory applied to invertible coefficient matrices is generalized. Numerical experiments
show that the deflation method with subdomain deflation vectors are very effective for
bubbly flow problems.

There are several open issues left, which are treated in the next chapters. We
explain the effectiveness of subdomain deflation vectors, and compare them with other
common choices. Moreover, we deal with the implementation of the deflation method
to obtain an efficient solver. The optimal choice of the number of deflation vectors is
investigated. In addition, the application of deflation to singular coefficient matrices is
examined. We also relate and compare the deflation method to other two-level PCG
methods in order to determine the optimal method.

Chapter 3. Deflation Method

—icce

— DICCG-(5%-1)
- - - DICCG-(10%-1
DICCG-(20%-1)|
‘‘‘‘‘ DICCG-(25°-1
—DICCG-(50%-1

S
S 10
i)
7]
()
@
10
10°F
L L
50 100 150 200
Iteration
(a) 2-D experiment with 9 bubbles.
10° :
{ ——ICCG
—DIccG-(2%-1)
i --- DICCG-(5%-1)
\
S DICCG-(10°-1
10 j‘ 3 4y
3! DICCG-(20%-1
B s
o :
5 1074k . B
(7]
()
v
10 : R
1078* | | | | | |
50 100 150 200 250 300
Iteration

(b) 3-D experiment with 27 bubbles.

Figure 3.2: Norm of the relative residuals during the iterations of ICCG and DICCG—k.

Chapter

Selection of Deflation Vectors

4.1 Introduction

The underlying idea of applying the deflation method is to effectively treat (extremely)
unfavorable eigenvalues that delay the convergence of the PCG method. Recall that
the deflation matrix is defined as (see Definition 3.1)

P=1-AQ, Q:=ZE'ZT, E=7TAZ (4.1)

with a full-rank deflation-subspace matrix, Z € R™X, consisting of deflation vectors
(also known as projection vectors). As mentioned in Chapter 3, the success of the
deflation method highly depends on the choice of Z. In the ideal case with respect to
convergence, Z should consist of eigenvectors associated with the most unfavorable
(often the smallest) eigenvalues of M~1A, see Theorem 3.1. These eigenvalues do not
play a role anymore in the convergence behavior, so that a faster convergence of the
iterative process can be expected. However, the computation of these eigenvectors can
be very expensive, and, in addition, these dense vectors might be inefficient in use, since
they require much memory and expensive computations with P. Therefore, we intend
to find sparse deflation vectors that approximate the unfavorable eigenspace, so that
Theorem 3.1 still holds to a certain extent. Additionally, with respect to implementa-
tion, it would be favorable to have deflation vectors such that the resulting deflation
method is easily parallelizable, and is straightforward to implement in an existing PCG
code. In summary, the deflation method should satisfy the next requirements in the
ideal case:

the deflation-subspace matrix, Z, is sparse;

the deflation vectors approximate the eigenspace corresponding to the unfavor-
able eigenvalues;

the cost of constructing deflation vectors is relatively low;

the method has favorable parallel properties;

43

44 Chapter 4. Selection of Deflation Vectors

e the approach can be easily implemented in an existing PCG code.

Remark 4.1. The best strategy to choose Z strongly depends on the application, the
wishes of the user and the available information about the solution or (the behavior
of) unfavorable eigenvectors. There is no optimal choice that always leads to the best
results for all applications. One of the main focuses in this chapter is constructing a
strategy to find optimal deflation vectors for bubbly flow problems, that might work
for various other applications as well.

This chapter is organized as follows. In Section 4.2, some strategies for choosing
deflation vectors known in the literature are reviewed and discussed. Subsequently,
Section 4.3 is devoted to finding and analyzing the optimal strategy to choose Z for
bubbly flow applications. Finally, the concluding remarks are presented in Section 4.4.

4.2 Choices of Deflation Vectors

In the literature of deflation, MG and DDM, several techniques are known to choose
deflation vectors. Each field has its typical strategy to find the optimal choice. Below,
we describe and discuss the approaches based on approximated eigenvector, recycling,
subdomain, and multigrid deflation vectors. Most of the other alternatives known in
the literature are related to these approaches.

4.2.1 Approximated Eigenvector Deflation

The deflation technique based on approximated eigenvectors is a popular approach,
see, e.g., [25,27,122,173].

In [173], an effective scheme is proposed based on physical deflation in which
the deflation vectors are derived from the solutions of the original PDEs on specific
subdomains. The resulting Z is sparse, whereas the corresponding vectors span the
unfavorable eigenspace.

A general framework based on Flexible GMRES (FGMRES) is described in [27].
This framework includes techniques that are used to enhance the robustness of Krylov
subspace methods, such as the deflated GMRES method, suggested in [80,99], that
aims at enhancing convergence by modifying the spectrum of the original matrix. The
approach uses Ritz values and relies on solving generalized eigenvalue problems with
much lower dimensions than A itself. If these dimensions become large, this approach
is only successful to efficiently solve SPD systems with multiple right-hand sides of the
form

AxD =p0) =12 .., (4.2)

see also [122, Sect. 5]. In addition, the deflation matrix, P, obtained by the proposed
deflation method is not sparse, resulting in possibly expensive computations with P, and
large memory requirements. In addition, formulating and solving generalized eigenvalue
problems are more straightforward for the classical GMRES algorithm than for CG,
making this approach somewhat less suitable for CG-like methods. Finally, the approach

4.2, Choices of Deflation Vectors 45

seems unlikely to be helpful in realistic situations, because, for very large linear systems,
removing a small number of eigenvalues out of many of them close to zero might have
a limited effect on the solver, see [27].

A deflation technique applied to basic iterative methods based on Eq. (2.4), such
as Gauss-Seidel or Jacobi iterations, is proposed in [25]. This deflation technique re-
lies on computing so-called orthogonalized difference vectors and determining Schur
vectors of a matrix with lower dimensions. It provides a distinct advantage for ill-
conditioned systems, where the underlying scheme would either diverge or converge
very slowly. Several numerical experiments in [25] demonstrate the efficiency of the
method. However, for linear systems where the basic iterative scheme is already con-
verging reasonably well, the accelerated convergence provided by deflation is not worth
by considering the required extra work, see [25, Sect. 6].

In general, it can be observed that deflation based on approximated eigenvectors
might be effective, but some additional efforts are needed to find these approximated
eigenvectors, and sufficient memory should be available to store them. For relatively
large problems, solving (generalized) eigenvalue problems may take a considerable time,
especially in PCG methods, since PCG is based on short-term recurrences. Addition-
ally, the number of approximated eigenvectors should be sufficiently small in order to
restrict the extra work considering P and to reduce memory requirements, since these
eigenvectors are usually dense. However, this is not always possible, since the spectrum
might consist of many unfavorable eigenvalues in realistic problems.

4.2.2 Recycling Deflation

Related to approximated eigenvector deflation is solution and recycling deflation, see,
e.g., [31,112].

Solution deflation, proposed in [31], applies a subspace-projection extrapolation
scheme for the starting vector generation of linear systems from implicit time integra-
tion schemes. The scheme yields optimal linear combinations from multiple available
starting vectors. Similarly to eigenvector deflation, spectral components of the exact
solution contained therein are optimally resolved which reduces the condition number.

Suppose {x(1) x(?) x(@=1)} is the set of solutions of the linear systems at time
steps I =1,2,..., g — 1. Then, the deflation-subspace matrix can be defined as
Z =[x x@ . xe) (4.3)

Although numerical experiments in [31] emphasize the improved convergence of CG
combined with solution deflation, we note that this approach has the drawback that
Z is dense in general, and, additionally, it is not guaranteed that R(Z) indeed consists
of any relevant spectral components.

Another approach is described in [112], where deflation vectors are based on re-
cycling information of (previous) Krylov iterations in GMRES-like methods with rela-
tively short-term recurrences. The resulting method is based on GMRES with deflated
restarting vectors (i.e., GMRES-DR [100]), and GCR with a so-called optimal trun-

46 Chapter 4. Selection of Deflation Vectors

cation (i.e., GCROT [35]). Recycling deflation is successful, if a sequence of linear
systems (4.2), or even a sequence of the form

A — p() =10 (4.4)

has to be solved. Note that we indeed have such a sequence (4.4) in bubbly flow
simulations, see also Chapter 10. Like most of the approximate deflation methods,
the recycling deflation approach requires a significant setup time to find the deflation
vectors, especially for large grid sizes. Additionally, those vectors are usually dense,
resulting in possible implementation and memory difficulties.

4.2.3 Subdomain Deflation

Another variant of deflation is subdomain deflation, where the deflation vectors are
chosen in an algebraic way, see [92,108,170,175] and Section 3.6. The computational
domain is divided into several subdomains, where each subdomain corresponds to one
or more deflation vectors. The resulting approach is often called ‘subdomain deflation’,
and it is strongly related to approaches known in DDM, see, e.g., [126].

In [175], subdomain deflation is applied to the diffusion equation as given in
Eq. (1.3). Assume that the computational domain, €, is divided into several sub-
domains, €2;, where each €; corresponds to one deflation vector, consisting of ones for
grid points in the interior of the discretized subdomain, €25, and zeros for other grid
points. Then, subdomain deflation is effective, if each subdomain, €2;, corresponds to
exactly one constant part of the coefficient, p. In this case, the subspace spanned by
the deflation vectors is proved to be almost equal to the eigenspace associated with
the smallest eigenvalues. In addition, this approach converges as fast as the physi-
cal deflation approach [173] that has been described in Section 4.2.1, but it is more
efficient due to a sparser structure of Z.

A detailed treatment of interface points of the subdomains, {€;}, can be found
in [170]. It is shown that the subdomain technique is most successful if there is no
overlap between subdomains. In this case, we have piecewise-constant, disjoint, and
orthogonal deflation vectors.

Example 4.1. Suppose that we have a 1-D computational domain, 2, consisting of the
grid points x1, . . ., Xe, that is divided into two subdomains such that Qp, = {x1, x2, X3}
and Qp, = {xa, x5, X6 }. Then, we obtain

7= (4.5)

-
111 000
0 00111

Each row of Z consists of exactly one nonzero, and the rows are clearly orthogonal,
disjoint, and piecewise-constant.

Example 4.2. A graphical representation of 2-D subdomains based on a grid size
n = 642 can be found in Figure 4.1. Similar to Example 4.1, the corresponding
deflation vectors can be obtained.

4.2, Choices of Deflation Vectors 47

1 1
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
20 40 60 ° 20 40 60 °
1 1
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
20 40 60 ° 20 40 60 °

Figure 4.1: Representation of the 2-D subdomains with k = 3 in a square domain, 2, consisting of
n = 642 grid points.

Remark 4.2. The underlying idea of choosing piecewise-constant deflation vectors is
to approximate eigenvectors belonging to the smallest eigenvalues. Since the eigen-
vectors often represent components of the solution that is not necessarily linear, these
piecewise-constant deflation vectors might only give a rough approximation. This
motivates several authors (e.g., [54,169]), to augment the deflation subspace with
piecewise-linear (or even higher-order) subdomain deflation vectors. Following Exam-
ple 4.1, we obtain (cf. Eq. (4.5))

(4.6)

O O = =
O O N
O O W =
= = O O
N — O O
w = O O

Hence, we have two deflation vectors per subdomain in 1-D. Generalization to 2-
D and 3-D is straightforward for piecewise-constant deflation vectors, in contrast to
piecewise-linear deflation vectors. In 2-D, one might take three vectors per subdomain:
one constant and two piecewise-linear vectors in each spatial direction. Likewise, one
can use four vectors per subdomain in 3-D. If the number of subdomains is large, then
this would lead to a relatively large number of piecewise-linear deflation vectors, making
the deflation technique more expensive than piecewise-constant subdomain deflation.
In addition, the implementation of piecewise-linear vectors can be performed less effi-
cient than piecewise-constant vectors, see Remark 4.3. Nevertheless, the employment
of piecewise-linear deflation vectors may accelerate significantly the convergence of
the iterative method, especially if the unfavorable eigenvectors have a linear form.

Remark 4.3.

e In Example 4.1 and 4.2 and Remark 4.2, we have assumed that N'(A) € R(Z),
otherwise Assumption 3.1 cannot be fulfilled. However, if, for instance, N (A) =
1,,, then Z should be adapted to obey N'(A) € R(Z). This can be easily done by

48 Chapter 4. Selection of Deflation Vectors

deleting one piecewise-constant deflation vector, while the resulting null space of
PA remains the same. More details can be found in Section 4.3 and Chapter 5.

e According to Theorem 3.2, each column of Z in Example 4.1 and 4.2 and Re-
mark 4.2 can be rescaled, while the resulting deflation matrices remain the same.

e The deflation method with piecewise-constant deflation vectors can be imple-
mented very efficiently if A has some favorable properties, see Chapter 8.

4.2.4 Multigrid and Multilevel Deflation Vectors

In the field of multigrid and multilevel methods, matrices Z and Z7 are known as the
prolongation and restriction matrix, respectively, whereas a computation with P can
be interpreted as a coarse-grid correction. A basic choice for Z (and corresponding
ZT) is a sparse matrix, given by

O NI
Nl—= N|—=
—_
N|—
o

(4.7)
%] 0 214

Many other prolongation and restriction matrices are known in the multigrid literature,
see [126,151,178]. The columns of Z should approximate the slow-varying eigenvec-
tors, often corresponding to small eigenvalues, in order to obtain an effective method.
As also observed in (4.7), the number of deflation vectors is generally large. In this
case, the resulting method requires a rather different approach to be efficient, com-
pared to the methods as discussed so far. We focus on this issue in Chapter 9, and,
in the meantime, this class of multigrid deflation vectors is not further considered.

4.2.5 Discussion of Different Approaches

Our approach of choice is subdomain deflation, because of the following facts.

e The resulting deflation-subspace matrix, Z, is sparse: each row consists of only
one nonzero.

e The number of deflation vectors is relatively small: kK < n.

e The deflation vectors appear to approximate the eigenspace associated with the
unfavorable eigenvalues, resulting in faster convergence of the iterative process:
this is explained for specific problem settings in [170, 175].

e The deflation vectors can be easily found: these vectors correspond to subdo-
mains, which are straightforward to obtain.

e The approach is well-parallelizable: the deflation vectors are disjoint, so that it
has excellent parallel properties (see Appendix F).

4.3, Application to Bubbly Flows 49

e The approach can easily be implemented in an existing PCG code: only a few
additional steps should be incorporated in the PCG code, see Chapter 8.

As discussed above, not all of these criteria are satisfied for approximate eigenvec-
tor, solution recycling, and multigrid deflation. These criteria seem to be fulfilled for
subdomain deflation, so that our main focus is on this approach.

There are still several difficulties left if one applies subdomain deflation vectors in,
for example, bubbly flow applications.

e Subdomain deflation is often applied to linear systems with a nonsingular coeffi-
cient matrix, while our coefficient matrix of interest is singular.

e Subdomain deflation is used for problems with a fixed coefficient matrix, where
the (density) coefficient in the original PDEs is often described explicitly. In our
bubbly flow applications, the density field is given implicitly and the coefficient
matrix varies in time.

In the next section, we examine whether subdomain deflation can still be applied taking
the above difficulties into account. In addition, subdomain deflation vectors are applied
successfully to several other problems, but a theoretical proof is still lacking. In [170], it
is shown that the unfavorable eigenspace and the eigenspace spanned by the subdomain
deflation vectors are almost the same, but the proof seems not to be fully correct and
the connection to the corresponding spectra is not completely obvious. Ultimately, we
have to show that the most unfavorable eigenvalues are effectively treated by using
subdomain deflation vectors. This is further analyzed in the next section, where the
main application is bubbly flows.

4.3 Application to Bubbly Flows

In this section, we adopt the problem setting as described in Section 1.3 and examine
the optimal strategy to choose the deflation vectors for bubbly flow problems. For the
sake of convenience, we restrict ourselves to ICCG and DICCG, so that the following
assumption holds throughout this section.

Assumption 4.1. M~ is the IC(0) preconditioner based on a SPSD coefficient ma-
trix, A.

4.3.1 Preliminaries

Recall that m € N denotes the number of bubbles in domain 2, where Ag and Ay
are the high- and low-density phases, respectively. In addition, Assumption 1.2 holds
throughout this whole section. If the m bubbles are numbered, then we define ®; C Q
as the domain corresponding to the j-th bubble, including its interface that may lie in
Mg, fori=1,2,..., m. Hence, we have

/\1 C U7;1¢i and ﬁ:—il o, = 0.

50 Chapter 4. Selection of Deflation Vectors

The discretized domain and the corresponding grid points are denoted by Q24 and {x;},
respectively. Moreover, Ay, Ap, and @, are the discretized variants of Ag, Ay and ®;,
respectively. For each i =1,.. ., m, we introduce the characteristic vector, ¢; € R",
associated with the i-th bubble, where each entry, (¢;);, is defined as follows:

(¢i)j:{ 1, if x € ®p:

0, elsewhere.

Notice that the set of vectors {¢,}i—1

For i > 2, the eigenvalues of M~1A, {\;}, appear to be of order 1, except for a
few eigenvalues that are of order €. The number of these O(g)—eigenvalues depends
on the number of bubbles, m, see Proposition 4.1.

m is linearly independent.

Proposition 4.1. Let A and M1 satisfy Assumptions 1.2 and 4.1, respectively. Sup-
pose that 1 < m < n. Then, the eigenvalues of M~ 1A, {\;}, satisfy

0, for 1 =1,
Ai=1 O(eg), for i=2,..., m;
O(1), for i=m+1,..., n.

Moreover, fori =2, ..., m, each eigenvector, v;, corresponding to \; is constant in Ay.

Hence, M 'A has exactly m — 1 eigenvalues of O(g), if there are m bubbles in Q.
Note that Proposition 4.1 still holds if bubbles touch the boundaries. Similar results
are proven in literature, see, e.g., [174, Thm. 2.2], where the coefficient matrix is
invertible and applications are given to steady porous-media flows.

Moreover, from Proposition 4.1, we obviously have that M~1A is ill-conditioned
when € < 1 and m > 1. This results in the fact that ICCG converges slowly. The
deflation method could be adopted in order to effectively treat the O(g)—eigenvalues,
resulting in a more effective method. We sometimes add the deflation-subspace matrix
as a subscript to P to stress the choice of this deflation-subspace. For example, we
have

Pz:=1-AQz, Qz:=ZE;'Z", Ez:=Z"AZ (4.8)

Recall that Theorem 3.5 ensures that M~ 1Pz A has a more favorable spectrum than
M~TA. Hence, the following corollary follows.

Corollary 4.1. Let A and M~ satisfy Assumptions 1.2 and 4.1, respectively. Suppose
that Pz is defined as in Eq. (4.8). Let 0 = A1 < Xy < ... < A, be the eigenvalues of
M=YA, and p1 < po < ... < u, be the eigenvalues of M~1PzA.

o If1, € R(Z), then

o(M1PzA) = {0, ..., 0, tktls- - Lo}, (4.9)

4.3, Application to Bubbly Flows 51

o If1, ¢ R(Z), then

oM 1PzA) = {0, ..., 0, Lhkto, - - Ln}, (4.10)
with Ay < u <A, fori=k+2,.. ., n.

Note that the deflation subspace is larger for 1, ¢ R(Z), than for 1, € R(Z). Of
course, it depends on the deflation-subspace matrix, Z, in which way the eigenvalues,
{w;}, are distributed exactly; therefore, the success of DICCG is related to the choice
of Z. Recall that Theorem 3.1 shows that the most straightforward choice for the
columns of Z is the set of eigenvectors corresponding to the O(e)—eigenvalues, so
that they are eliminated from the spectrum of M~1P,A. As a consequence, the next
corollary holds.

Corollary 4.2. Let A and M~ obey Assumptions 1.2 and 4.1, respectively. Suppose
that P, is the deflation matrix, where V' denotes its deflation-subspace matrix. If
V :=[v1 vo --- v] consists of eigenvectors corresponding to all O(e)—eigenvalues of
M~1A, then o(M~1PR,A) only consists of zeros and O(1)—eigenvalues.

Hence, the application of eigenvectors associated with O(g)—eigenvalues as deflation
vectors is a good strategy to improve the convergence of the iterative process. In this
case, it is sufficient to take k = m, when all O(g)—eigenvalues should be eliminated.
Moreover, due to Assumption 1.2, vy is the constant eigenvector corresponding to
the zero eigenvalue. As a consequence, v; may be omitted in V, so that k = m—1
deflation vectors would even be sufficient for the elimination of all O(e)—eigenvalues.
Although the resulting deflation method can be very effective, this method based on
a dense matrix V might be inefficient in use. In the next subsections, a perturbation
analysis is carried out, resulting in deflation methods with appropriate choices for Z.

4.3.2 Inexact Eigenvector Deflation

Here, we analyze the deflation technique whose deflation vectors are based on inexact
eigenvectors corresponding to the smallest eigenvalues of M~1A.

Define V := [y ¥ ---], where each ¥; is an approximation of the exact eigen-
vector of M~1A, v, ie.,

Vi = v+, 5,‘6&”, i=1,2,..., k, (4.11)

where kK < m. As mentioned earlier, it is desirable to construct a deflation method with
\/ as deflation-subspace matrix that has the same favorable features as the deflation
method based on V. At least, the resulting spectrum of M~1Py A with k = m should
not contain any eigenvalue of O(g) anymore. In this case, each §; has to be chosen in
such a way that the eigenvalues of the resulting matrix, MflP\f/A, satisfy

Oe) KX\ <A, fori=k+1,. . ., m, (4.12)

52 Chapter 4. Selection of Deflation Vectors

where }; is an eigenvalue of M~1P, A, and 1, € R(V) is assumed. However, as far as
we know, no explicit results are given in the literature concerning the way in which v;
can be perturbed such that (4.12) is satisfied. In the remainder of this subsection, we
give some propositions and theoretical results, which eventually result in heuristic rules
for choosing ;. These are partly based on numerical experiments described in [141].

Define v; € R™ as the vector with the entries of ¥;, that correspond to the bubbles
of phase A1 including the interfaces, and let the other entries be zero, i.e., for each i,
the entries of v; are defined by

) = (Vi)j. if xj € Ap, or x;j € ONp;
i 0 otherwise,
where OAp, denotes the interfaces corresponding to Ap,. Similarly to v;, we define
1, € R" as follows:

= 1, if xj € Ap, or x; € O\, ;
(ln)j = .
0, otherwise.

Moreover, we suppose that the perturbations, {§;}, satisfy Assumption 4.2.

Assumption 4.2. [et A satisty Assumption 1.2. Then, each perturbation, §; € R",
withi=1,2, ..., k, is chosen such that

1. ||Adillo = O(e) for each §;;
2. entries corresponding to at least one bubble in Ay are nonzero in v;;

3. the set {1,,v1,..., vk} is linearly independent.

The first condition of Assumption 4.2 means that the norm of the perturbation is
small, after premultiplication with A. The second condition says that it is not allowed
to choose a perturbation, §;, in such a way that all entries of v; corresponding to the
bubbles are zero. The final condition means that each §; should be chosen in such a
way that each vector of {i,,, Vi, ..., vk} does not correspond to the same bubbles.

Example 4.3. In our bubbly flow applications, a perturbation, §; € R", satisfies As-
sumption 4.2 in, for instance, the following two cases:

e choose arbitrary entries for §; that corresponds to the high-density phase, Ng;

e choose arbitrary but identical entries in §; that corresponds to a complete bubble
including its interface in the low-density phase, Ny, such that each §; corresponds
to a different bubble.

Next, let V. € R™k with k < m — 1 be defined as a matrix consisting of columns
being eigenvectors of M~ 1A corresponding to O(g)—eigenvalues. In addition, define
V. € R™k as a perturbation of V;, such that each §; obeys Assumption 4.2, i.e.,
each column of V, is the sum of the corresponding column of V, and §; satisfying
Assumption 4.2 (cf. Eq. (4.11)). Then, it appears that Assumption 4.3 is always
fulfilled in our experiments.

4.3, Application to Bubbly Flows 53

Assumption 4.3. Let A fulfill Assumption 1.2. Suppose that P, and B, are deflation
matrices, where V. and V.. denote their deflation-subspace matrix, respectively. Let R
be an n x n matrix. Then, Py, A= P, A+ R with ||Q[l2 = O(e).

Furthermore, we define

(7)) = { Lo if (vi); #0;

0, otherwise.

Then,n e {0,1,..., m} denotes the maximum number of independent characteristic
vectors, ¢p,, such that

d)hi € span {in,Dl D}

In other words, 7 is the number of bubbles which are effectively captured by {7;}. For
instance, n = k means that the number of deflation vectors is equal to the number of
vectors corresponding to separate bubbles that can be constructed from the deflation
subspace. Now, Theorem 4.1 follows easily.

Theorem 4.1. Let A, Py, and Py, satisfy Assumption 4.3. Suppose that m = k. Then,
forj=1,..., n, we have

(Aj(PgA) = (R A <y, v =0(e). (4.13)

Proof. Since P, A = P, A+ R with [[R|[> = O(e), the theorem follows immediately
from Lemma A.10(iii). O

As a consequence of Theorem 4.1, perturbations that meet Assumption 4.2 do not
significantly influence the spectrum of the deflated matrix, A, A. If, for instance, A, A
does not contain O(g)—eigenvalues, then neither does Py A.

Unfortunately, Theorem 4.1 cannot be generalized to preconditioned deflated ma-
trices, in contrast to what is claimed in the literature, see, e.g., [170]. In other
words, (4.13) does not hold in general, if M~1P;A and M~1P, A are substituted into
PyA and R/A, respectively. Counterexamples can be easily found using numerical ex-
periments. It turns out that the preconditioned variant of Theorem 4.1 only holds for
the smallest eigenvalues, see Proposition 4.2.

Proposition 4.2. Let A and M~ fulfill Assumptions 1.2 and 4.1, respectively. Let
Py, and Py, fulfill Assumption 4.3. Let k € {1,2,.. ., m — 1} be given. Choose each
0; € R" such that Assumption 4.2 is fulfilled. Suppose that m = k and 1, ¢ R(V;).
Then,
IN(MTTP,A) = M(MTTRLA) <y, vy = Oe),

forallj=1,..., m.

According to Proposition 4.2, O(eg)—eigenvalues of M~1P,A are not significantly
influenced by these perturbations, if each perturbation, §;, is chosen such that As-

sumption 4.2 is satisfied. However, Proposition 4.2 does not say anything about the
other eigenvalues of M~1P, A. Fortunately, it can be observed that the number of

54 Chapter 4. Selection of Deflation Vectors

O(e)—eigenvalues is equal for M~ 'R, A and M 1P, A, if n = k. In addition, a similar
result follows for n < k. These results are stated in Conjecture 4.1.

Conjecture 4.1. Let A, M1, Py, and Ry, be as given in Proposition 4.2. Let k €
{1,2,..., m — 1} be given and suppose that m = k holds. Choose each §; € R" such
that Assumption 4.2 is fulfilled. Then, the number of O(g)—eigenvalues of MflP\f/EA
is equal to

m—-n—1, if n<m-—1,
0, ifn>m-—1.

Moreover, if n > k, then the number of O(g)—eigenvalues of both M*IP\—/SA and
M~1R,A is the same.

As a special case of Conjecture 4.1, we have that both M*IP\—/EA and MR, A do not
contain any O(g)—eigenvalue, if k = m—1 and each §; has nonzero entries associated
with at least one bubble. Example 4.4 shows another application of the conjecture.

Example 4.4. Consider a 2-D bubbly flow problem with m = 5, see Figure 4.2. In
this case, the spectrum of M~ A contains four O(e)—eigenvalues. The corresponding
eigenvectors are taken as deflation vectors. Figure 4.2 presents two situations, where Q2
is divided into four (deflation) subdomains, Q;, each corresponding to one perturbation
vector, 0;, whose entries are constant in this subdomain and zero elsewhere. In the
case of Figure 4.2(a), none of the perturbations satisfy Assumption 4.2. Therefore,
all four O(e)—eigenvalues of M~*A remain in the spectrum of M~1P, A. However,
in the case of Figure 4.2(b), all perturbations meet Assumption 4.2, but obviously
n = 3. According to Conjecture 4.1, the spectrum of /\/I*IP\—/SA consists of exactly one
O(e)—eigenvalue.

o O oot O

(a) Wrong choice of subdomains: (b) Good choice of subdomains:
the middle bubble is not captured each bubble is in the interior of a
by one subdomain (n = 0). subdomain (n = 3).

Figure 4.2: A 2-D example of a bubbly flow problem with m = 5 and two different situations for the
perturbations, {4;}.

4.3, Application to Bubbly Flows 55

Remark 4.4.

e from Conjecture 4.1, we obtain the unexpected result that a good strategy for
choosing an appropriate deflation vector, V; = v; + 0;, is related to Ad;, rather
than to M—1A$;.

e We refer to [123] for related results concerning the choice of deflation vectors.
In that paper, two-level overlapping domain decomposition preconditioners with
coarse spaces are studied by smoothed aggregation in iterative solvers for finite
element discretizations of elliptic problems. Furthermore, similar observations as
presented in this section are proven using functional analysis. It is a topic of
future research to extend the theory given in [123] to the deflation strategies
here.

e Conjecture 4.1 might be proven using ideas given in recent papers [5,81]. In these
papers, theoretical bounds for eigenvalue approximations are presented, using
so-called principal angles between subspaces spanned by eigenvectors associated
with these (perturbed) eigenvalues. This is also left for future research.

4.3.3 Level-Set Deflation Vectors

In the previous subsection, we have seen that exact eigenvectors are not required
to eliminate the smallest nonzero eigenvalues from the spectrum of M~1P>A. Con-
jecture 4.1 can serve as a guideline for approximating eigenvectors corresponding to
O(e)—eigenvalues. This leads to strategies for choosing effective deflation vectors.
We start with the so-called level-set deflation method that is described below.

By combining the results obtained in Example 4.3 and Conjecture 4.1, it can be
concluded that eigenvectors, {v;}, associated with the O(e)—eigenvalues are still well-
approximated, if

e all entries of v; corresponding to a bubble of Ay including its interface 9A; are
scaled by a constant. Therefore, the value 1 can be chosen for the associated
entries of the perturbed eigenvector v;, as it follows from Assumption 4.1 that
all entries in a bubble are constant;

e the entries of v; corresponding to the high-density phase Ag can be perturbed
arbitrarily. To obtain sparse perturbed eigenvectors, {v;}, these entries of v;
should be perturbed such that they become zero. In other words, (v;); = 0, if
Xj € /\ho and Xj ¢ 8/\,,1.

Hence, each v; can be approximated well by a sparse v; such that only the entries
corresponding to bubbles are nonzero. From Conjecture 4.1, we also find that, if
n > m — 1, then all O(e)—eigenvalues of M 1A can be eliminated by choosing k =
m — 1. The requirement that » > m — 1 is automatically fulfilled if we associate
each v; with one unique bubble, so that only the entries corresponding to a single
bubble are nonzero. The resulting deflation-subspace matrix with {¥;} is denoted by

56 Chapter 4. Selection of Deflation Vectors

W, € R™k and the resulting deflation method is called L-DICCG—k, where k is
always chosen to be m — 1. We define WL e R™™ as W, € R"™(m=1) extended with
a column associated with the excluded bubble. Later on, WL is used to define the
level-set-subdomain deflation variant.

Remark 4.5.

e [f some bubbles in Q2 are very close to each other, then some grid points, {x;},
might belong to the same nonzero entries of several columns of W,. In this case,
row sums of W, can be larger than one, resulting in nondisjoint columns. This
might require a more sophisticated implementation of the method. On the other
hand, if disjoint vectors are imposed by choosing zero instead of one at some
entries associated with the bubble interface, then the corresponding eigenvectors
appear to be approximated badly. This results in slower convergence of the
iterative process, see also Section 4.3.7.

e [f the density field, p, is known explicitly, then L-DICCG—k can be simply applied
by locating the bubbles in A1, and choosing one for the corresponding entries of
the columns of W,. However, p is often given implicitly in many applications, so
that the method can only be used if an extra procedure exists that determines the
bubbles explicitly. For example, the level-set approach [102,110] is adopted to
describe p implicitly in our applications, see, e.g., [143,154,156]. In Appendix B,
this method is described concisely and an algorithm is presented for determining
the bubbles from this level-set function.

e The name ‘level-set deflation’ suggests that this approach is only applicable if the
density is described by the level-set function. This is however not the case. The
approach can always be applied, as long as the bubbles can be described either
implicitly or explicitly. More general names for the approach are ‘coefficient-
dependent deflation’ or 'density deflation’.

4.3.4 Subdomain Deflation

In bubbly flow problems where Q2 contains many bubbles or the density field, p, is
unknown or too complex, it is more appropriate to apply the deflation technique with
subdomain deflation vectors instead of level-set deflation vectors. These subdomain
vectors can be constructed without any knowledge of p and are described earlier in
Sections 3.6 and 4.2.3. We denote the deflation method with subdomain vectors
as S-DICCG—k, where k is the number of subdomains minus one. Moreover, Ws €
Rk denotes the corresponding deflation-subspace matrix, which is defined in a more
mathematical way below (cf. Section 3.6).

Let Q be divided into open (equal) subdomains Q;, i =1,2,..., g+ 1, such that

Q= Uf’jllQ,- and Q;N$; =0 for all i # j. The discretized subdomains are denoted by

4.3, Application to Bubbly Flows 57

Qp,. For each €, we introduce a deflation vector, z;, as follows:

. 0, XjEQh\ﬁhi;
(ZI)J T { 1, Xj c th.

Then, Ws is defined by
Ws :=[z1 20 -+ Zzg]. (4.14)

so that k = g. Hence, Ws consists of disjoint (and, hence, orthogonal) piecewise-
constant vectors, which is generally not the case for W,. Moreover, note that Ws is
usually less sparse and consists of more vectors than W, while the amount of work is
O(n) for the construction of both Ws and W, .

We could also extend Ws with an extra column, z541, yielding

Ws :=[z1 20 - zg Zg41).

which is used in Section 4.3.5. Note that each subdomain corresponds to one deflation
vector, and we have the identity

Welgir = 1,. (4.15)
Remark 4.6.

e Fq. (4.15) is a useful property with respect to implementation and some proofs
of theoretical results. However, recall that this might give rise to difficulties for
approximating eigenvalues associated with the bubbles, especially if bubbles are
very close to each other. In order to approximate the corresponding eigenvectors
appropriately, some row sums of Ws should be larger than one, whereas this is
not possible using the current definition of Ws.

e We show in Chapter 5 that the deflation matrix based on Ws and WS are identical.

Because of Conjecture 4.1, S-DICCG—k can only be efficient if each subdomain,
2, contains a part of at most one bubble. Otherwise, one or more O(e)—eigenvalues
would remain in the spectrum of MflPWSA. Hence, the efficiency of the deflation
method with a fixed setting of subdomains depends on the number and the location
of the bubbles in Q. In order to ensure the efficiency of the method, the number of
subdomains, k, should be taken relatively large, compared with the number of bubbles.

We find that subdomain deflation vectors also approximate other eigenvectors cor-
responding to small eigenvalues of O(1), since they appear to vanish from the spectrum
of MflPWSA, for sufficiently large k. In Section 4.3.6, we illustrate this in numerical
experiments, but we already state this observation in Proposition 4.3.

Proposition 4.3. Let A and M~ fulfill Assumptions 1.2 and 4.1, respectively. Let
W be as defined in (4.14). Then, for sufficiently large k, R(Ws) approximates the
eigenspace corresponding to all O(g)— and the smallest O(1)—eigenvalues of M~ 1A.

58 Chapter 4. Selection of Deflation Vectors

Hence, S-DICCG—k is able to eliminate both O(e)— and O(1)—eigenvalues from
M~YA. This means that, although S-DICCG—k is usually more expensive per itera-
tion than L-DICCG—k, the total computational cost can be much less due to faster
convergence.

4.3.5 Level-Set-Subdomain Deflation

For a density field having a complex geometry, S-DICCG—k with large k might en-
counter difficulties to treat all O(eg)—eigenvalues effectively, although the smallest
O(1)—eigenvalues could be eliminated. On the other hand, L-DICCG—k with k = m—1
easily deals with the O(e)—eigenvalues, while the O(1)—eigenvalues are usually un-
touched. Therefore, it might be beneficial to combine both approaches. This new
deflation variant is called LS-DICCG—k, and W,s € Rk denotes its corresponding
deflation-subspace matrix. The exact form of W, is defined below.

The most straightforward choice is to take WLS = [WL, Ws], so that the level-set-
subdomain deflation-subspace matrix, W,s, is equal to

° WLS: ifl,¢ R(WLS);
° WLS without its last column, if 1, € R(WLS).

In this case, W,s consists of at most g+ m— 1 columns. If both WL and WS are known
a priori, W, s can be constructed immediately. Although the resulting approach might
be effective, there are some obvious drawbacks:

e row sums of W larger than one are inevitable, which makes the method less
suitable for a parallel environment, and its implementation less efficient than the
implementations of level-set or subdomain deflation;

e it is not guaranteed that W,s has full rank.

Instead of this above straightforward choice of level-set-subdomain deflation, we
choose for an alternative approach. First, we define some simple operations on ma-
trices. The operation UY € R™*! acting on Y = [y;;] € R"™*5, means that a vector
is created whose entries are the maximum entries of each row of Y, i.e., we have
(UY); = max;y;; for each i, requiring O(r) flops. Moreover, for ¥Y; € R"™* and
Y, € R™*%2 the operation Y1 NY, € R means that a new matrix (or vector) is cre-
ated, whose columns are equal to all possible componentwise multiplications between
the columns of Y7 and Y5 that are nonzero. Note that s3 < 515, holds and the amount
of work for this operation is at most O(rs;s,). We now define

Wis = [Wh, Wa), (4.16)

with
Wy = Wsn (1, — UW), W, =W, N W (4.17)

Hence, W consists of all subdomain vectors of Ws where the entries corresponding
to Ay are zero. Moreover, W5 consists of columns whose entries correspond to the

4.3, Application to Bubbly Flows 59

bubbles divided by the subdomains of WS. Now, the level-set-subdomain deflation-
subspace matrix, W s, is equal to

o Wi, if1, ¢ R(Ws);
° WLS without its last column, if 1, € R(WLS).

As noted earlier, both W,s and WLS lead to the same deflation matrix. Example 4.5
illustrates their construction.

Example 4.5. Let

T T
—~ 11110000 —~ 01100000
Ws = W, =
S[00001111]'L[00000110]
be the deflation-subspace matrices corresponding to S-DICCG—1 and L-DICCG—1,
respectively. Then, this yields

UWL:[01100110},1n—uWL:[10011001],

resulting in

.
. . 10010000
Wl_WSm(l”_UWL)_[oooo1001]’
and
S 01 100000]
WQ:WLQWSZIO 001101
This implies
100100007
— 0000T1O0TU01
Wis = [Wa Wo] = 01100000
0000O0T1T10

Asl, € R(WLS), the level-set-subdomain deflation-subspace matrix W, s is equal to

10010000 !
Ws=1000010 01
01 1000O0O0TO

Remark 4.7.

e /f k is general, L-DICCG—k, S-DICCG—k and LS-DICCG—k are often denoted
by L-DICCG, S-DICCG and LS-DICCG, respectively.

o We have

R(Ws) C R(W.s);
RW,) C R(W.s),

60

Chapter 4. Selection of Deflation Vectors

ONNONNIONN®
ONNCINIORR®
(a) L.DICCG—4 (k=m —1). (b) S-DICCG—3 (k = g = 3).

(c) LS-DICCG—11 (k < m(q + 1)).

Figure 4.3: A 2-D bubbly flow problem with m = 5, which illustrates the level-set, subdomain and
level-set-subdomain deflation technique.

which means that the deflation subspace of LS-DICCG contains the deflation
subspaces of both L-DICCG and S-DICCG.

The construction of W,s requires at most O(nms) flops. In addition, compared
with L-DICCG and S-DICCG, LS-DICCG requires more deflation vectors, so an
iteration of this hybrid method is more expensive due to the more sophisticated
coarse solves. However, since the spectrum of MflPWLSA is more favorable,
convergence can be much faster, resulting in a possibly lower total computational
cost of LS-DICCG.

The row sum of W,s is at most one. If 1, ¢ R(WLS), then we even have
W,s1y =1, Consequently, LS-DICCG can be easily parallelized and the method
can be implemented very efficiently.

Level-set deflation might be combined with other (deflation) techniques to end
up with more effective hybrid methods. In fact, level-set deflation is used to
remove the effects of the bubbles, so that it could be combined with any effective
solver (such as standard multigrid or methods based on fast Fourier transforms)
to tackle Poisson problems with a constant coefficient, i.e., problems without
bubbles. This is left for future research.

4.3, Application to Bubbly Flows 61

We end this section with Example 4.6, that illustrates the deflation approaches
proposed in this section.

Example 4.6. Consider a 2-D bubbly flow problem with m = 5. The associated
deflation vectors in L-DICCG—4, S-DICCG—3 and the resulting LS-DICCG—11 are
depicted graphically in Figure 4.3.

4.3.6 Numerical Experiments

After presenting possible choices of deflation vectors applied to bubbly flows, we show
their efficiency in 2-D numerical experiments. We test the three deflation approaches
L-DICCG, S-DICCG and LS-DICCG, and compare them with ICCG. The computations
are performed on a Pentium 4 (2.80 GHz) computer with a memory capacity of 1GB
using MATLAB. Since it is easy to use the sparse implementation for matrices and
vectors in MATLAB, we are able to measure fairly the computing time that is required
for the whole iteration process of the compared methods .

First, we consider briefly the test problem without bubbles, that is the Poisson
problem with a constant coefficient, so that € = 1. Next, we treat the test problem
with bubbles, where we vary the grid size, n, the density contrast, ¢ = % and the
number of bubbles, m. The employed geometry of the density field based on m =5
can be found in Figure 1.3. The linear system, Ax = b, is solved, where the termination
criterion is based on (3.27) with § = 10~ 7.

Test Problem with a Constant Coefficient

For this specific test problem without bubbles in the domain, S-DICCG is the only
method that can be applied. The results for the problem with € = 1 and n = 162 are
presented in Table 4.1.

| Method | # 1t |

ICCG 23
S-DICCG-3 | 22
S-DICCG—15 | 15
S-DICCG—63 | 10

Table 4.1: Results for the Poisson problem with € = 1 and n = 16%. '# It’ means the number of
required iterations for convergence.

From Table 4.1, it can be noticed that S-DICCG reduces the number of iterations,
compared with ICCG. The corresponding eigenvalues of M~*A and M~1Py, A can be
found in Figure 4.4.

From both subplots of Figure 4.4, we observe that small O(1)—eigenvalues of
M~1A are eliminated from the spectrum of /\/I*IPWSA (cf. Proposition 4.3), whereas

"This is including the computation of AZ and E, but excluding the construction of Z, since it
cannot be done efficiently in MATLAB. However, the comparison is still fair, since the computational
cost to construct Z is negligible by considering the flop counts given in previous subsections.

62 Chapter 4. Selection of Deflation Vectors

the large eigenvalues remain in the spectrum. Increasing the number of deflation
vectors results in the elimination of more small eigenvalues. This can be explained
by the fact that the corresponding eigenvectors are relatively smooth, so that they
can be well-approximated by the subdomain deflation vectors. Other eigenvectors
corresponding to larger eigenvalues of M~'A do not have a smooth behavior, and,
therefore, these are more difficult to approximate by using these vectors, see [141, Sect.
10.1] for more details.

1.2+
1h
0.8f
-
&
060 & a
8§
LS 0.4}
8 8
1°] 1, | 1°] 1, |
0.21 ° eigenvalues M A 0.21 ° eigenvalues M A
p o eigenvalues MPA p o eigenvalues M PA
50 100 150 200 250 50 100 150 200 250
(a) S-DICCG—15 (15 iterations). (b) S-DICCG—63 (10 iterations).

Figure 4.4: Eigenvalues of M~"A and M~ ' Py A for S-DICCG, applied to the Poisson problem with
e=1and n= 162

Test Problem with Varying Grid Sizes

Next, we perform a numerical experiment for the Poisson problem with m = 5, € = 10°,
and varying grid sizes. The convergence results, including the computational cost, can
be found in Table 4.2.

| | | n =162 | n = 322 | n = 642 |
| Deflation Method [k [#1t. CPU [#1t. CPU | #1It. CPU |

ICCG 39 0.04 | 82 0.53 | 159 10.92
S-DICCG—k 3 37 0.12 | 80 0.67 | 194 14.01
15 | 36 0.07 | 97 0.80 | 193 13.82
63 | 19 0.11 | 16 0.20 | 26 2.14
L-DICCG—k 4 17 0.09 | 37 0.37 | 75 6.17
LS-DICCG—k 11 | 14 0.07 | 30 0.29 | 54 4.08
35| 10 0.08 | 21 0.32 | 40 3.05
83 | — -1 15 0.20 | 25 2.05

Table 4.2: Results for the Poisson problem with m = 5, ¢ = 10°, and varying grid sizes, n. ‘#
[t" means the number of required iterations, and '‘CPU" is the corresponding computational time in
seconds.

For all grid sizes, it can be observed that S-DICCG—63 is very efficient, compared
with ICCG. This is in contrast to S-DICCG—3 and S-DICCG—15, whose performance
is comparable to ICCG. The explanation is that Assumption 4.2 is fulfilled only for

4.3, Application to Bubbly Flows 63

k = 63, and, according to Conjecture 4.1, the spectrum associated with S-DICCG—63
does not contain O(g)—eigenvalues, see also Section 4.3.7. For the other two cases,
S-DICCG—3 and S-DICCG—15, some deflation subdomains consist of parts of several
bubbles, and, therefore, the corresponding deflation vectors do not satisfy Assump-
tion 4.2. Hence, the number of O(g)—eigenvalues remains the same after applying
subdomain deflation. Furthermore, note that ICCG requires significantly fewer itera-
tions than S-DICCG—3 and S-DICCG—15 in the case of n = 642. This s caused by the
fact that the corresponding residuals show erratic behavior with relatively large bumps,
so that a small round-off error during the iteration process can lead to significant
differences in convergence, see [141, Sect. 10.3] for more details.

From Table 4.2, we observe that L-DICCG reduces significantly the number of
iterations. It is an efficient method, since it requires only four deflation vectors. We
find that LS-DICCG performs very well in all cases, but S-DICCG and LS-DICCG
become comparable for sufficiently large k.

Remark 4.8. If there are some limitations with respect to the number of deflation
vectors due to memory capacity, then LS-DICCG would converge faster than S-DICCG.
Suppose that only k < 50 deflation vectors can be kept in memory, than the fastest
method is LS-DICCG—35 according to Table 4.2.

Test Problem with Varying Density Contrasts

We fix m = 5 and n = 642, whereas the density contrast, €, is varied in the next
numerical experiment. The results of this experiment are presented in Table 4.3.

| | | e=10° | e=10° |
| Deflation Method | k [#1t. CPU [#1t. CPU |

ICCG 118 8.12 | 159 10.92
S-DICCG—k 3 134 9.79 | 194 14.01
15 | 131 9.60 | 193 13.82
63 | 26 231 | 26 2.14
L-DICCG—k 4 74 598 | 75 6.17
LS-DICCG—k 11 | 54 4.05 | 54 4.08
35| 40 3.08 | 40 3.05
83 | 25 246 | 25 241

Table 4.3: Results for the Poisson problem with m = 5, n = 642, and varying density contrast, €.

From Table 4.3, we see that ICCG requires more iterations and CPU time for
larger €, due to the presence of O(g)—eigenvalues in the corresponding spectrum. This
observation does not hold for L-DICCG and LS-DICCG, which is a favorable feature of
these methods, and it confirms the theory given in the previous section. For sufficiently
large k, it can be noticed that S-DICCG is also insensitive to €. Furthermore, it can
again be observed that S-DICCG—3 and S-DICCG—15 converge more slowly than
ICCG, whereas S-DICCG—63 is faster in this experiment.

64 Chapter 4. Selection of Deflation Vectors

Test Problem with Varying Number of Bubbles

We consider the Poisson problem with € = 10° n = 642, and a varying number of
bubbles, m. The results of this experiment can be found in Table 4.4.

We observe that ICCG needs more iterations for larger m. This can be explained by
Proposition 4.1, which states that an increase of m leads to more O(g)—eigenvalues.
For L-DICCG, LS-DICCG, and S-DICCG with sufficiently large k, we see that their
performance depends less on m, which is a favorable feature of these deflation ap-
proaches.

Notice that L-DICCG—0 is undefined, so this method cannot be applied for m = 1.
Furthermore, L-DICCG converges in fewer iterations for increasing m > 1. Finally,
S-DICCG converges again slower than ICCG for k < 15.

| | m=1 | m=2 | m=5 |

[Deflation Method | k | #1t _CPU |k | #1t CPU |k | #1t CPU |
ICCG - 89 6.13 | — 104 7.20 | — 159 10.92
S-DICCG—k 3 96 7.39 | 3 69 513 | 3 194 14.01

15 | 52 3.97 | 15 | 64 4.79 | 15 | 193 13.82
63 | 26 2.14 | 63 | 27 2.16 | 63 | 26 2.14
L-DICCG—k 0 - - 1 79 579 | 4 75 6.17
LS-DICCG—k 7 67 530 | 6 65 511 | 11 | 54 4.08
19 | 41 3.14 | 24 | 42 3.22 | 35 | 40 3.05
67 | 26 250 | 72 | 26 2.11 | 83 | 25 2.05

Table 4.4: Results for the Poisson problem with e = 10°, n = 642, and varying number of bubbles, m.

In contrast to ICCG, all approaches of the deflation method (except for S-DICCG
with relatively small k) hardly depend on m. This implies that, for problems with an
increasing number of bubbles, the deflation method becomes more and more superior
to ICCG.

4.3.7 Analysis of Small Eigenvalues

In this subsection, we present some spectral information corresponding to the deflation
approaches. These are based on the numerical experiments described in Section 4.3.6.

Level-Set Deflation

In Section 4.3.6, we have noticed that L-DICCG—4 reduces significantly the number of
iterations, compared with ICCG. Figure 4.5 shows the corresponding spectra. Because
we concentrate on small eigenvalues, only the 80 smallest eigenvalues of each spectrum
are presented.

First, it can be noticed in Figure 4.5(a), that O(1)—eigenvalues are approximately
the same for ICCG and L-DICCG—4. In Figure 4.5(b), we see that all O(10°)—eigen-
values are removed from MflPWLA. However, eigenvalues in the vicinity of 0.2 appear,
see Figure 4.5(a).

4.3, Application to Bubbly Flows 65

As noticed in Sections 4.3.2 and 4.3.3, interfaces of bubbles should contribute
to the deflation vectors. If these interfaces are excluded in the level-set deflation
vectors, then the convergence of L-DICCG—4 is significantly slower. In this case, it
appears that O(107%)—eigenvalues are effectively eliminated, but with the drawback
that eigenvalues between € and 1 appear.

1 10 e
0.8 -5
10 [os?
06f wa
od -10
oF 10 .
0.4f
02 " 10 g
pan hl ()
@ ° eigenvalues M1A ° eigenvalues M1A
= eigenvalues M'PA 0 = eigenvalues M"'PA
0 y 10 y
0 20 40 60 80 0 20 40 60 80
(a) Normal scale: L-DICCG—4. (b) Logarithmic scale: L-DICCG—4.

Figure 4.5: Eigenvalues of both M~'A and M’IR/VLA corresponding to L-DICCG—4, for the Poisson
problem with e = 10° and n = 16°.

Subdomain Deflation

In Section 4.3.6, we have seen that S-DICCG—15 does not give any improvement of
the convergence, whereas S-DICCG—63 is very efficient, compared with ICCG. This
can be understood by considering their spectral plots, see Figure 4.6 where the 80
smallest eigenvalues of each spectrum are depicted.

It appears that values below 1078 can be interpreted as zero eigenvalues in Fig-
ure 4.6. Then, in the case of S-DICCG—15 (see Figure 4.6(b)), it can be observed
that none of the O(10 %)—eigenvalues of M 1A are eliminated after deflation, since
they remain in the spectrum of MflPWSA. Moreover, S-DICCG—63 converges very
fast, because the @(107°)—eigenvalues vanish from the spectrum, see Figure 4.6(d).
Apparently, only for sufficiently large k, each deflation subdomain consists of a part of
at most one bubble. Hence, the smallest eigenvalues can be eliminated, which confirms
Conjecture 4.1.

With respect to the small O(1)—eigenvalues, we observe in Figure 4.6(a) that they
are approximately the same for ICCG and S-DICCG—15. Moreover, for the case of
S-DICCG—63 (Figure 4.6(c)), it can be seen that the smallest O(1)—eigenvalues do
not appear in the spectrum of MflPWSA, which is similar to the case of L-DICCG—4
(cf. Figure 4.5(a)). However, some other small eigenvalues around 0.1 can be no-
ticed in Figure 4.6(c). Roughly speaking, the eliminated ©O(10 %)—eigenvalues give
rise to small eigenvalues of order 10~ 1. Apparently, the eigenvectors associated with
O(10 %)—eigenvalues are not approximated accurately enough by the subdomain defla-
tion vectors, even if we increase k. This might be caused by the fact that, by definition,

66 Chapter 4. Selection of Deflation Vectors

1 107 oo
0.8 -5
@® m 10 [R
Om a
0.6 ® m
@® m -10
- of 10 ¢
0.4f
0.2 107 et
' ° eigenvalues M1A ° ° eigenvalues M1A
0 o eigenvalues MipA 107 o eigenvalues MipA
0 20 40 60 80 0 20 40 60 80
(a) Normal scale: S-DICCG—15. (b) Logarithmic scale: S-DICCG—15.
1 10° [Ersvsseiseisie FEFEETrIY
oA
dx;m
08 ¥ o | 10°
@ - qé?
Omm
06/ L
a
o
0.4r
0.2} _ -] 5 —~
°© eigenvalues M A " © eigenvalues M "A
@ eigenvalues MPA o 0 o eigenvalues M PA
0 10 y
0 20 40 60 80 0 20 40 60 80
(c) Normal scale: S-DICCG—63. (d) Logarithmic scale: S-DICCG—63.

Figure 4.6: Eigenvalues of M~'A and M~' Py A corresponding to S-DICCG, for the Poisson problem
with € = 10° and n = 167,

the subdomain deflation vectors have the unfavorable property that they are disjoint.
This can be remedied by using LS-DICCG instead of S-DICCG, see Section 4.3.7.

Level-Set-Subdomain Deflation

As observed in Section 4.3.6, LS-DICCG performs very well for all k. The related
spectral plots can be found in Figure 4.7.

From Figure 4.7(a) and 4.7(b), we see that only O(107°)—eigenvalues disappear
and all O(1)—eigenvalues remain in the spectrum in the case of LS-DICCG—11. In
Figure 4.7(c) and 4.7(d), it can be observed that both O(107°)— and the smallest
O(1)—eigenvalues do not appear in the spectrum corresponding to LS-DICCG—35.
More importantly, in contrast to the cases of S-DICCG and L-DICCG, the elimination
of O(10~°)—eigenvalues by LS-DICCG does not give rise to new eigenvalues between
€ and 1. This is a favorable feature of level-set-subdomain deflation.

4.4, Concluding Remarks 67

1 107 o
0.8 _
10° + 5
0.6
10*107
0.4f
m
1070 g™
0.2f - 1 &l R -1
° eigenvalues M “A ° eigenvalues M “A
0 o eigenvalues MipA 107 o eigenvalues MipA
0 20 40 60 80 0 20 40 60 80
(a) Normal scale: LS-DICCG—11. (b) Logarithmic scale: LS-DICCG—11.
0
1 T 10 [Ersssiuiasisiey
08¢ & i | 10°
® o
Qoo
06w ‘PP#
@ -10 o
o 10 "¢ s
0.4t -
o
1071 o
0.2 ——1 o I
© eigenvalues M “A © eigenvalues M "A
= eigenvalues M"'PA 0 = eigenvalues M'PA
0 10 y
0 20 40 60 80 0 20 40 60 80
(c) Normal scale: LS-DICCG—35. (d) Logarithmic scale: LS-DICCG—35.

Figure 4.7: Eigenvalues of both M~'A and M~' Py, A corresponding to LS-DICCG, for the Poisson
problem with € = 10% and n = 162.

4.4 Concluding Remarks

Some strategies for choosing deflation vectors are reviewed in this chapter: approxi-
mate eigenvector, recycling, subdomain and multigrid deflation vectors. Each of them
has its own advantages and drawbacks. The most favorable choice strongly depends on
many aspects, such as the problem setting, specific application, a priori knowledge of
(spectral) information, linear systems to be solved, used Krylov solver, and maximum
number of allowed deflation vectors. Hence, there is no ultimate strategy that always
performs best for all cases, although we advocate that subdomain deflation is often
the most appropriate choice.

In the second part of this chapter, we present some spectral analysis to deflation
with inexact eigenvectors, which leads to strategies for choosing the best deflation
vectors in bubbly flow applications. The main result is that eigenvectors corresponding
to the smallest eigenvalues can be perturbed in such a way that they become sparse,
which motivates the use of subdomain deflation. Based on this result, two other
deflation approaches are introduced and discussed. The first approach is the level-set
deflation method, where the sparse deflation vectors are based on the geometry of the
density field. The second approach, which is the level-set-subdomain deflation method,

68 Chapter 4. Selection of Deflation Vectors

combines original subdomain and level-set deflation, and has the advantages of both
approaches.

In the numerical experiments, we compare the proposed deflation approaches for
bubbly flows. In most test cases, all of them perform very well compared with ICCG.
In addition, they are insensitive to large density contrasts and the number of bubbles.
Subdomain deflation is only efficient for a sufficiently large number of subdomains. In
this case, not only the smallest eigenvalues corresponding to the bubbles are eliminated,
but also other small eigenvalues. Moreover, level-set deflation eliminates the smallest
eigenvalues corresponding to bubbles at low cost, but leaves the other eigenvalues
more or less untouched. For both of these methods, the elimination of the smallest
eigenvalues may result in a spectrum that consists of eigenvalues which are obviously
smaller than those of the main cluster. It appears that level-set-subdomain deflation
does not have this drawback. Therefore, it is an efficient method, although the work
per iteration and the work to create the deflation vectors can be significantly larger
than for the other two approaches. However, we note that, if the number of deflation
vectors is sufficiently large, then the difference in performance between subdomain
and level-set-subdomain deflation is small. In addition, subdomain deflation has the
important advantages that it can be used as a blackbox method without any knowledge
of the density field, and can be implemented and parallelized in a straightforward way.
Hence, subdomain deflation is our method of choice and it is frequently used in the
remainder of this thesis.

Finally, a topic for future research is improving the proposed deflation approaches.
Since level-set deflation is used to treat the bubbles effectively, it might be possible to
combine it with any effective solver (such as standard multigrid or methods based on
fast Fourier transforms) for the standard Poisson problem with a constant coefficient
in order to obtain a powerful method, that could effectively deal with bubbly flow
problems.

Chapter

Subdomain Deflation applied to
Singular Matrices

5.1 Introduction

In Chapter 3, new theoretical results have been presented for the deflation method
applied to singular coefficient matrices. In this chapter, we deal with the issue of
deflation and singularity in more detail. Although many results presented here can be
generalized to deflation with a general Z, we restrict ourselves to subdomain deflation
for convenience, see Definition 5.1.

Definition 5.1. Let the open domain, €2, be divided into subdomains, 2;, j = 1,2, ..., g+
1, such that Q = UTHQ; and ;N Q; = 0 for all i # j. The discretized domain
and subdomains are denoted by Q2 and Qp,, respectively. Then, for each Q2 with

Jj=12 ..., q + 1, a deflation vector, z;, is defined as follows:
0, xj € Qh\th;
)i = 5.1
(z)i { 1 x€Q, (5.1)

where x; is a grid point in the discretized domain, Q. Then, for 1 < j < q, the
deflation-subspace matrices are defined as

{z, = [a - 7]

o~

ZJ' = [ijlx Zo],
where zog = 1,. In addition, we define Z1 := z; and 21 = 2.

By construction, subdomain deflation vectors are disjoint and sparse. Moreover, Prop-
erty 5.1 can be derived from Definition 5.1.

Property 5.1. Let Z;, Z- and z; be as given in Definition 5.1. Then, the following
statements hold:

69

70 Chapter 5. Subdomain Deflation applied to Singular Matrices

(1) Zklk =1,
(ii) Zi1lk—1 # Zidx # 1n;
(i) Z]_ e =0,_y;
(iv) 2] e =1,;
(v) Ziel) = zo;
(i) Zjel =z, 1<j<k 1<i<j
(i) Zjel =z, 1<j<k 1<i<j.

Subscripts corresponding to matrices will be omitted, if we deal with general matrices
without specified dimensions.

In all previous chapters, we have performed the analysis and computations based
on a singular coefficient matrix, A, from the linear system (see Eq. (1.1))

Ax=b AeR™" (5.2)

However, in many CFD packages, one imposes an invertible A, denoted by A, see also
[17,77,113]. This makes the solution, x, of (5.2) unique, which might be advantageous
in computations:

e direct solution methods, such as Gaussian elimination, might have some difficul-
ties to solve (5.2) with a singular A;

e linear system (5.2) might be inconsistent as a result of rounding errors, whereas
the linear system with A is always consistent;

e the deflation technique requires an invertible matrix £ = Z7 AZ. This is guar-
anteed for any full-rank Z = [z, --- z] if Ais used.

One common way to force invertibility of A is to replace its last entry, an n, by ann =
(1+0)an,, with o > 0. In fact, a Dirichlet boundary condition is imposed at one point
of the domain, Q. This modification results in an invertible linear system,

Ax=b, A=1[3;]e€R™" (5.3)

where A is SPD. In practice, it appears that the condition number, k, is relatively
large, especially if o is close to 0, see Lemma 5.1(ii). Hence, solving (5.3) with the CG
method typically shows slow convergence, see also [77, Sect. 4] and [113, Sect. 6.7].
Similarly, this fact holds for the ICCG method as well, see Section 5.5.1. In this
chapter, a comparative study is performed on the deflation methods based on (5.2)
and (5.3).

We have assumed in the previous chapters that Z does not consist of compo-
nents of the null space of A, N(A), in order to ensure that E is nonsingular (see

5.2. Preliminaries 71

Assumption 3.1). However, N'(A) is not always known a priori, and, additionally, it
is sometimes not practical to exclude some components from Z. In this chapter, we
investigate this issue in more detail. It is derived that there exists a strong connection
between deflation methods based on a singular and nonsingular matrix E.

The main questions that are answered in this chapter are:

e can the deflation method based on a singular E always be transformed into a
method with a nonsingular E, while A is still singular?

e is it possible to transform the deflation method based on a singular A into a
method where A is nonsingular?

We start with some notations, definitions and preliminary results in Section 5.2.
Section 5.3 is devoted to the introduction of the deflation variants that are compared in
this chapter. The theoretical comparison of these variants is performed in Section 5.4.
Some results of numerical experiments are presented in Section 5.5. We end this
chapter with some concluding remarks in Section 5.6.

Throughout this chapter, Assumption 1.2 holds. Recall that this assumption is
always fulfilled in bubbly flow applications, but it could also be applied to other fields.

5.2 Preliminaries

We start this section by presenting the definition of a nonsingular coefficient matrix,
A, based on A.

Definition 5.2. [et A satisfy Assumption 1.2. Suppose that o > Q is given. Then,
the coefficients of A = [a;j] are defined as

) fi—i—n
5,',]—{(+o0)ajj, ifi=j=n (5.4)

aj ;. otherwise.
The next two properties follow immediately, where we use Lemma A.9.
Property 5.2. Let A be as given in Definition 5.2. Then, A is invertible and SPD.

Property 5.3. Let A be as given in Definition 5.2. Then, it satisfies Al,, , = aa,,,,,ef,',’,),.
In particular, Al, = cra,,,,,eg,").

It can be easily shown that forcing invertibility of A automatically leads to a worse
condition number, see Lemma 5.1.

Lemma 5.1. Let A and A be as in Assumption 1.2 and Definition 5.2, respectively.
Then,

(i) k(A) > k(A), for all o > 0;

(ii) limg_g k(A) = cc.

72 Chapter 5. Subdomain Deflation applied to Singular Matrices

Proof. (i) Note that we can write
A=A+1cc”, c=¢€", T=0a,,

Lemma A.6 can now be applied by taking B := A and C := A. From Eq. (A.1), we
then obtain
Ai(A) < N(A) < ig(A), =12, n—1.

Therefore,
A1(A) < A1(A) < Ao (A), (5.5)

using Property 5.2. Furthermore, from Eq. (A.2), we derive
An(A) > Ap(A). (5.6)
By combining Egs. (5.5) and (5.6),

_ 2a(A) S (A

S = 3R 2 had T

follows.
(i) Taking B:= A and G := A — B in Lemma A.10(ii) leads to

G =ca, et <e£")>T,

yielding
AM(G)=...=X-1(G) =0, Xo(G) =0ann.

As a result of Lemma A.10(ii), we obtain
Xi(A) < N(A) < Xi(A) +oa,, =12 ..., n,
so, in particular,
0 < A1(A) < dann An(A) < Xn(A) < Ap(A) + 0ann.

This implies

_ (A (A
Iim,%(A):IimA(_)ZI A():
oc—0 oc—0 >\1(A) oc—0 0adpp

Remark 5.1. Lemma 5.1 seems to be generalizable for preconditioned coefficient ma-
trices, although a proof is lacking.

Let B € R™" be an arbitrary matrix. Then, BT € R™" denotes the pseudo-
inverse (also called Moore-Penrose generalized inverse) of B, if it satisfies all following

5.2. Preliminaries 73

conditions:
BB*B = B;
B*BBt = BT;
(BBY)" = BBT; (5.7)
(B*B)T = B*B.

Obviously, if B is nonsingular, then the pseudo-inverse and the inverse coincide, i.e.,
Bt = B~ In general, the pseudo-inverse always exists and is unique: for any B, there
is precisely one BT that satisfies (5.7). We refer to, e.g., [14, 73] for more details on
the pseudo-inverse.

Remark 5.2. The pseudo-inverse of a symmetric (and possibly singular) matrix, A,
can be computed explicitly by first writing

A=VAVT V=[vnw - v], A=diagri o, ..., An),

with diagonal matrix N\ consisting of the eigenvalues of A, and V' being an orthonormal
matrix that consists of the corresponding eigenvectors. Now, the pseudo-inverse of A
can be determined via

AT = VATV,

where AT is a diagonal matrix with the reciprocals of each nonzero entry on the
diagonal of N\, and leaving the zeros in place. For example, N = diag(0, 1,2, 3) gives
At = diag(0,1,%,1). This implies that a solution of the consistent linear system,
Ax = b, is given by

x=Atb=VATVTh.

Using pseudo-inverses, the next definition and corresponding corollaries can be
given.

Definition 5.3. Let A and A be as in Assumption 1.2 and Definition 5.2, respectively.
Let Z; and Z; be as given in Definition 5.1. Then, the deflation matrices are defined
as

P; I-AQ;,, Q = ZE'z], E = Z[AZ;
/5,' = /*AQ,’, Q,‘ = Z,ETIZ,T, Ei = Z,TAZI,
) I-AQ;, Qi = ZE 'zl E = ZIAz,

Both P; and FA’, are based on the invertible coefficient matrix, A, which only differ from
the deflation-subspace matrices. Hence, E; and E,- are both nonsingular, so that Ei’l
and I:c,-’1 exist. On the other hand, P; is based on the singular coefficient matrix, A.
Since the resulting Ej is singular due to Corollary 5.2, its pseudo-inverse has to be
used in P;.

Corollary 5.1. Let P, and P, be as given in Definition 5.3. Then, P, = Py holds.
Proof. This follows immediately from Theorem 3.2, since R(Zx) = R(fk). O

Corollary 5.2. Let E; be as given in Definition 5.3. Then,

74 Chapter 5. Subdomain Deflation applied to Singular Matrices

e Fy 1 is nonsingular;
e Ey is singular.

Proof. (i) Since N'(A) € R(Zk_1) is satisfied, Ex_1 is nonsingular, due to Lemma 3.1.
(i) Using Property 5.1(i), we have

Exly=Z[AZ 1, = 2] A1, =Z7]0, =0, (5.8)
so that Ey is singular. O

Remark 5.3. In Chapter 3, some properties of the deflation method have been derived
using deflation matrix Py, where Ey is assumed to be invertible. These properties hold
in particular for the deflation methods based on P, and Px.

5.3 Deflation Variants

In this section, we present three deflation variants based on Definitions 5.2 and 5.3.

Variant 5.1. Solve x from

M 1P 1AXx = M~ 1P_1b. (5.9)

Variant 5.2. Solve x from
M~ 1P AX = M 1Pb. (5.10)

Variant 5.3. Solve x from
M 1P Ax = M 1Pgb. (5.11)

Variant 5.1 is the common deflation method that has been used in prior chapters, with
the only difference that k — 1 instead of k deflation vectors are adopted. Variant 5.2
is based on the nonsingular coefficient matrix, A, so that this variant is always well-
defined. Finally, Variant 5.3 is basically identical to the original DPCG for invertible
coefficient matrices (see, e.g., [56,103]), since the original coefficient matrix and all k
deflation vectors are used in this variant. Hence, it is the most natural generalization
of DPCG for singular systems, although additional efforts are required to generalize all
known results for invertible coefficient matrices or singular coefficient matrices with a
nonsingular Galerkin matrix, E. However, this can be circumvented, because we show
in Section 5.4.4 that Variant 5.3 is (almost) identical to the other two variants.

Remark 5.4.

e For Variants 5.1 and 5.2, it is common to solve the Galerkin systems associated
with Ex_1 or Ey in a direct way, if k is relatively small. However, these Galerkin
systems could also be solved iteratively, which can be more efficient if k is rela-
tively large. On the other hand, although E;l does not exist, it may be possible

5.4. Theoretical Comparison of Deflation Variants 75

to apply a direct method for solving the corresponding Galerkin systems. Extra
care Is then needed by applying, e.g., Gaussian elimination or the band-Cholesky
decomposition, to handle the singularity of Ex and to generate a solution up
to N(Ex). However, in this thesis, we restrict ourselves to solve the Galerkin
systems in Variant 5.3 iteratively, so that the pseudo-inverse is not explicitly re-
quired. This does not cause any problems, as long as these Galerkin systems are
consistent, see Chapter 8.

e There are more deflation variants known in the literature, which deal with sin-
gular coefficient matrices. For example, a variant can be based on Variant 5.3,
where one entry of Zy is perturbed such that E, becomes nonsingular. Special
care should be taken to choose this perturbation appropriately, see [168]. An-
other variant, that is frequently applied in the multigrid field, is also related to
Variant 5.3. If we restrict ourselves to two-grid methods, then Ey is perturbed
such that it becomes nonsingular. In other words, the corresponding deflation
matrix is

P=1-AQ: Qi :=ZE 'z, E =Z'Az, E =~E,. (5.12)

E; could be obtained in the same way as A (cf. Definition 5.2). The associated
Galerkin systems can now be solved with a direct method, see also Chapter 9.
However, if an iterative method is used, then a slower convergence would be
expected, compared to the convergence for solving the Galerkin systems in Vari-
ant 5.3. This follows from the fact that I?i is more ill-conditioned than the
original E; (cf. Lemma 5.1(i)).

For the sake of convenience, the corresponding matrices of the three deflation
variants are summarized in Table 5.1. These variants are compared in the next section
in order to determine the most effective variant.

‘ ‘ Matrices ‘

| Variant | Coefficient Deflation-subspace Galerkin Correction Deflation |

5.1 A Zy_1 Ex Qi1 P
50 A 7 E Qu B,
53 A 7 E Qu P,

Table 5.1: Corresponding matrices of the proposed deflation variants.

5.4 Theoretical Comparison of Deflation Variants

In this section, we first show that the condition number of A is reduced to the condition
number of A by a simple deflation technique. Thereafter, we prove that even the
matrices M~ 1P A and M~1P,_; A corresponding to Variants 5.1 and 5.2, respectively,
are (almost) equal. Finally, it is also shown that M~1P,_1A from Variant 5.1 and

76 Chapter 5. Subdomain Deflation applied to Singular Matrices

M~1P A from Variant 5.3 are equal. As a consequence, Variants 5.1, 5.2 and 5.3 are
based on approximately identical preconditioned-deflated coefficient matrix, so that
they would theoretically lead to the same convergence results.

5.4.1 On the Connection of the Singular and Invertible Matrix

Recall that P; is the deflation matrix with one constant deflation vector based on A.
In this subsection, we show that the deflated matrix, P;A, is identical to the original
singular matrix, A. We start with Lemma 5.2, that shows that P is the identity matrix
except for the last row.

(n)
n,n

Lemma 5.2. Let P, be as given in Definition 5.3. Then, P, = | —e};.

Proof. For k = 1, we have

_ - _ = 1
P =1- AZOE*IZOT, E~ 1= (ZOTAZO) b

cann

using Property 5.3. Hence,

O

As a consequence, P; has the properties that the last column is 0,, and the matrix
consists of only the values 0, 1 and —1. Next, by applying Lemma 5.2, we obtain the
following theorem.

Theorem 5.1. Let A and A be as in Assumption 1.2 and Definition 5.2, respectively.
Let Py be as given in Definition 5.3. Then, P,A = A holds.

Proof. Due to Lemma 5.2, PLA = A holds for all rows except the last one. The
analysis of the last row of P; A, which is (ef,”) —~1,)T A, is as follows. Since 17A=0]
and (el” — 1,)7TA = (e!” — 1,)T A hold, this yields

_ T
(ef” ~1,)TA= () A
Hence, the last row of P;A and A is also equal, which proves the theorem. O

Theorem 5.1 implies that, after premultiplying with the deflation matrix with kK = 1,
the invertible coefficient matrix, A, becomes equal to the original singular coefficient
matrix, A. Apparently, only one eigenvalue of A depends on the value of o, which
corresponds to the constant eigenvector. This eigenvector is eliminated effectively by
P:, so that P;A and A are equal. Moreover, according to the proof of Theorem 5.1,
the results for this deflation technique are independent of the entries of the last row
of A.

5.4. Theoretical Comparison of Deflation Variants 7

5.4.2 Comparison of the Deflated Singular and Invertible Matrix

Theorem 5.2 is the main result of this subsection. In order to prove this theorem,
a set of lemmas is required, which are stated below. The most important lemmas
are Lemma 5.3 and Lemma 5.6, which show that deflation matrix Py is invariant by
right-multiplication by Py, and that deflated matrices P,A and P,_;A are identical.

Lemma 5.3. Let P; be as given in Definition 5.3. P,P, = Px holds.

1

Odan,n

Proof. Note first that the last column of E~! is equal to

1, by using

ZIAZ 1, = aa,,,,,ZkTeE,”) = cra,,,,,eg(k)
and Lemma A.11. Then, for all o, the last column of AQ, is exactly e'”, since we
have
(AZE1Z]) =3¢ (AZy) (E-1z])

1:n,n 1.n,p p.n

= 2N (AZ)1y = 52 Al, = L ca, e = el

Oadn,n Oadn,n Oadn,n

foralli=1,2, ..., n, where Definition 5.1 and Property 5.1 are used. Therefore, the
last column of P, = | — AQy is 0,. Using the latter fact combined with Property 5.3,
we obtain P,Al, = 0,. Hence, this implies

Pk'Dl == :E’k (I — OtA].n) == :E’k — Ot/':’kA].n = :E'k.
UJ

Lemma 5.4. Let 2k and A be as given in Definitions 5.1 and 5.2, respectively. Then,
there exists a matrix Y := [Zk41 Zkqo -+ 2n) € R(KXN sych that

o X = [\7, Z\k} is invertible;
o ZJAY =04, & holds.
Proof. It is always possible to find a full-rank matrix, Y, such that
R(X) = R(Y) ® R(Zy).

where R(Y) is the orthogonal complement of R(Zk), see Lemma A.15. Then, by
definition (see Definition A.2), X = [\7, Zk] is an invertible matrix. Furthermore, by
Definition A.2, we have (cf. Eq. (A.11))

R(V) = {y €R"| (w.y)z=0 VweR(Z)

——

In particular, for all w € R(Z,) and y € R(Y), we have (w,y)z = w’ Ay = 0, which
yields ZJ AY = 0y . O

78 Chapter 5. Subdomain Deflation applied to Singular Matrices

Lemma 5.5. Let A and A be as in Assumption 1.2 and Definition 5.2, respectively.
Suppose that zy is as given in Definitions 5.1. Let Px_1 and Py be as given in Defini-
tion 5.3. Then, the following equalities hold:

(i) (P~ Pe—el"z]) Az = 0,
(ii) (Pkfl - 'Bk> AZk-1 =0,k 1.
Proof. (i) Note first that
Z/Z;l’AZO = 0,,, Q\kAZO = Z\ké\[:l </Z\Z—AZO> = fkef(k) = 279, (513)
using Property 5.1. Combining Eq. (5.13) with Property 5.3 yields

(A_ék - AQkA) Azg = AQAzy — AZ 1 EM (Z] [Az)

= Az = oa,,,,,ef,"). (5.14)
Moreover, we derive
eE,")IZAzO = oa,,,,,eg,',’,),ef,") = oan,neg,”), (5.15)
using the facts that ef,")lz = ef,',’,), and eg,f’,),ef,") — e\™ Equalizing Egs. (5.14)
and (5.15) results in (Pk,l P eE,”)ZOT) Az =0,.
(ii) Note first that the following identities hold for i < k — 1:
o Qu1Az = Zx 1E Y (Z] |Az) = Zkfle(k’ll = z;;
o QuAz = ka;l <2ZAZ,’) = Z(eg(i) =z
o Az; = Az,
applying Property 5.1. As a consequence,
(Pkfl - /3k> Az = AQAzi — AQ 1Az = Az — Az =0,
fori=1,2 .. k—1. This yields (PH . ﬁk> AZi1 =0,k 1. 0

Lemma 5.6. Let A satisfy Assumption 1.2. Let P, and Px_1 be as given in Defini-
tion 5.3. Then, PcA = P,_1A holds.

Proof. It is sufficient to prove that (Pc—1 — P¢) A = 0,,. Since Al, = 0, (Assump-
tion 1.2) holds, this implies that we have to show that each row of P, ; — P, contains
the same entries. In other words, after defining

B:=[o1 0 ... 0n]"1]

5.4. Theoretical Comparison of Deflation Variants 79

it suffices to prove that there exist some parameters, o, € R, i =1,2,..., n, and an
invertible matrix, C € R"*" such that

Pc1—Pc—B)C=0,, (5.16)
()

is satisfied. Then, this would yield Px_1 — P, = B, since P, = Py holds (Corollary 5.1).
The proof is as follows. Take

c;:A[fk, \7] —A[Zi1, . Y],

where Y = [Zx41 Zk12 -+ Zn] has the properties that the set,

is linearly independent and
ZIAY =0] (5.17)

is satisfied. Using Lemma 5.4, such a matrix, Y, can always be constructed. Note
that, from Eq. (5.17), we particularly obtain

gAY =0 . Z] JAY =0, ;. (5.18)
Next, the following equalities hold:
. (Pk,l — 5,() AY =0, , . by combining Eqs. (5.17) and (5.18);
. (PH ~ Pi) AZk 1 =0y 1 (Lemma 5.5(ii):

o B[AZ_1, AY] = 0,,, since Eq. (5.18) holds and z] AZ,_1 = 0} _; follows
from Properties 5.1 and 5.3.

Combining these latter results gives us

(PH . B) [AZi1. AY] = 0,4 1, (5.19)

for all p;. Moreover,
(PH P B) Az =0, (5.20)
holds due to Lemma 5.5(i), by taking g1 ... = g¢,_1 = 0 and g, = 1. Hence, combining

Egs. (5.19) and (5.20) yields
(Pk,1 - B) C= (PH - B) [AZi_1. Azy, AY] =0,,.
with g1 ... = 0,1 = 0 and g, = 1, which completes the proof of the lemma. O

Finally, Theorem 5.2 shows that the deflated singular matrices based on A and A
are equal, which is a rather unexpected result. The consequence of the theorem is that
Variants 5.1 and 5.2 have the same expected convergence rate.

80 Chapter 5. Subdomain Deflation applied to Singular Matrices

Theorem 5.2. Let A and A be as in Assumption 1.2 and Definition 5.2, respectively.
Let Pc«_1 and Py be as given in Definition 5.3. Then, PcA = Pc_1A holds for allc > 0
and k > 1.

Proof. The following equalities hold:

e PLA= A (Theorem 5.1);
e PP =P, (Lemma 5.3);
e PLA= P,_1A (Lemma 5.6),
which are valid for all ¢ > 0 and k > 1. Hence,
P A= P PLA= P A= P 1A

O

5.4.3 Comparison of the Preconditioned Deflated Singular and Invertible
Matrix

In this subsection, we restrict ourselves to the standard incomplete Cholesky (1C(0))
preconditioners, see the next definition.

Assumption 5.1. Suppose that A satisfies Assumption 1.2 and let A be given as
Definition 5.2. Then, M~ and M1 are the IC(0) preconditioners based on A and A,
respectively.

From Theorem 5.2, the equality PcA = P,_1A holds. This implies that the pre-
conditioned variant of this equality also holds, see the next corollary.

Corollary 5.3. Let A and A be as in Assumption 1.2 and Definition 5.2, respectively.
Let P, and P,_; be as in Definition 5.3. Moreover, let M~ be as in Assumption 5.1.
Then, M~1P A= M"1P 1A

However, if A is not known explicitly, then M~ could be difficult to determine, whereas
M~ could be readily obtained from A. This might be inconvenient, because of the
fact that M—1PA # M~'P,_1A. However, we show in this subsection that

lim k(M 1PA) = k(M 1P _1A) (5.21)
o—0
holds. First, we deal with the comparison of the condition numbers of M~1A and
M~YA, and, thereafter, we generalize these results to M~ 1P,_1A and M~ 1P A.
An algorithm for computing the IC(0) preconditioner can be found in, e.g., [63,

Sect. 10.3.2]. Recall that the IC(0) preconditioner is formed by M = LLT, where L is
a lower-triangular matrix. Analogously, M = LL' can be computed from A. According

5.4. Theoretical Comparison of Deflation Variants 81

to the algorithm described in [63], the IC(0) preconditioners of A and A are the same
except the last entry, since only the last entry of L and L differs, i.e.,

_ T
M= M = el (eﬁ”)) . yeR. (5.22)

If we denote M = [m; ;] and M = [m, ;], then we have m,, , = ap,, and My, = dn.p by
definition. Consequently,

Y= Mpn— Mpp=ann— ann = Tann.

This implies
lim v = limoa,,=0. (5.23)
o—0

o—0

Now, we can prove that the condition numbers of M~'A and M~1A are the same
for 0 — 0, see Theorem 5.3.

Theorem 5.3. Suppose that A satisfies Assumption 1.2. Let M~' and M~ be as
given in Assumption 5.1. Then, the following identity holds:

lim k(M TA) = k(M LA).
oc—0

Proof. The eigenproblems of M~1A and M~'A are given by

M~ 1Ay = Av, /\7/71AW:/J,W, v.weR" ANueR. (5.24)
These eigenproblems can be rewritten as generalized eigenproblems,

(A-~XM)v =0, (A—uM)w=0.
Due to Eq. (5.22), we have M 4+ Ry, = M, with the symmetric perturbation matrix,
R, given by
-
Ry = cel” (eg,")) . EER.
This yields
[[Rmll2 = max{ A1 (Rm)| . [An(Rm)| } =&

We note that Ry satisfies ||Ru||3 < c(A, M), where c(A, M) denotes the Crawford
number (see Eq. (A.3)). This is due to the fact that there exists a parameter, g9 > 0,
such that €2 < c(A, M) is satisfied for all ¢ < ¢, since c(A, M) does obviously not
depend on o.

Lemma A.8 can now be applied, since the conditions of this lemma are satisfied.
Note that limy_o & = 0 follows from Eq. (5.23). This implies

A A My ahE =0

82 Chapter 5. Subdomain Deflation applied to Singular Matrices

so, in particular,

. 3
| — > | =0 2
lim arctan (c(A,) 0 (5.25)
Now, the eigenvalues of (5.24) are related by Eq. (A.4) of Lemma A8, i.e.,
|arctan (X;) — arctan (u;) | < arctan Rl : (5.26)
- c(A M)

By combining Egs. (5.25) and (5.26), we obtain
lim arctan (X;) = arctan (u;) .
o—0

resulting in limy—oA; = W, since the arctan-operator is bijective and continuous.
Hence, the theorem follows immediately.]

Next, we compare the condition numbers of M~1P,A and M~1P,A. Recall that
both A and P,_1A are SPSD matrices, so that we can substitute P,_1A into A in
Theorem 5.3. Since PcA = P,_1A follows from Theorem 5.2, this gives us the next
theorem.

Theorem 5.4. Suppose that A satisfies Assumption 1.2. Let Px_1 and P, be as given
in Definition 5.3. Moreover, let M~1 and M~ satisfy Assumption 5.1. Then,

lim k(M 1PA) = k(M 1P A).
o—0

Theorem 5.4 states that, although M~1P,A and M~1P,_;A differ, their condition
number are almost identical for a sufficiently small perturbation, o. As a result, Vari-
ants 5.1 and 5.2 are expected to have a similar convergence rate.

5.4.4 Comparison of the Preconditioned Deflated Singular Matrices

Here, we prove that the preconditioned deflated matrices, M~1P,_1A and M~1P.A,
corresponding to Variants 5.1 and 5.3 are equal. This main result is presented in
Theorem 5.5.

Theorem 5.5. Suppose that A satisfies Assumption 1.2. Let P; and M~! be as in
Definition 5.3 and Assumption 5.1, respectively. Then, the following identity holds:

M 1PA=M1P_,A. (5.27)

Proof. The proof can be found in Appendix C.
]

According to Theorem 5.5, the deflated-preconditioned matrices based on kK —1 and k
deflation vectors are the same, so that Variants 5.1 and 5.3 are mathematically equiv-
alent.

5.5. Application to Bubbly Flows 83

Remark 5.5.

e fFrom Theorem 5.5, it can be observed that it is possible to base computations
with deflation matrices on the real inverse rather than the pseudo-inverse of E.
This theorem can even be generalized to general singular coefficient matrices
and deflation vectors, see Appendix C for details. This research is still ongoing
during writing this thesis, see [85].

e By combining Theorems 5.3 and 5.5, we conclude that all proposed deflation
variants are equivalent for sufficiently small o, so the effectiveness of these vari-
ants is approximately the same. It depends on the efficiency of implementation
of the variants in order to decide which variant is the best one in practice, see
Chapter 8.

5.5 Application to Bubbly Flows

In this section, we illustrate the theoretical results, as presented in the previous section,
with bubbly flow experiments. The 3-D variants of the bubbly flows with € = 103,
m =23 and s = 0.05, as given in Figure 1.2 of Section 1.3, are considered. Both the
resulting linear systems, Ax = b and Ax = b, are ill-conditioned, due to the presence of
bubbles. These linear systems are solved using ICCG and DICCG—k (i.e., DPCG with
the 1C(0) preconditioner and k deflation vectors). The termination criterion is based
on (3.27) with § = 1078, and the deflation-subspace matrix, Z, consists of subdomain
deflation vectors as defined in Section 4.2.3. We vary the perturbation parameter, o,
and the number of deflation vectors, k, in our experiments.

Note that numerical experiments with Variant 5.1 have already been performed in
Chapters 3 and 4. In Section 5.5.1, we present the results for Variant 5.2. Thereafter,
Section 5.5.2 is devoted to the comparison of Variants 5.1 and 5.2. Variant 5.3 is
excluded in these experiments, since it requires special care for computations with E,'(".
This topic is further investigated in Chapter 8.

5.5.1 Results of ICCG and DICCG with Variant 5.2

The results of ICCG and DICCG with Variant 5.2 can be found in Table 5.2. Note
that both methods are based on Ax = b with an invertible coefficient matrix, A. In the
case of ICCG, the results of solving the original linear system, Ax = b, with a singular
matrix, A, are added for comparison.

From Table 5.2, it can be observed that the number of iterations for DICCG is
independent of o (as long as it is sufficiently small), as expected from Theorem 5.3.
Confirming Theorem 5.1, we see that the required number of iterations for ICCG is
equal to the number for DICCG—1, when the problem with arbitrary ¢ > 0 is solved.
Moreover, we notice that increasing the number of deflation vectors, k, leads to a
nonincreasing number of iterations for DICCG (cf. Theorem 3.3).

84 Chapter 5. Subdomain Deflation applied to Singular Matrices

(a) ICCG.
|n |o=0 o=10" o=10"°
323 | 100 138 147
643 | 118 195 195

(b) DICCG—k (Variant 5.2).

|] n =323 | n =64’
|k |o=10" 0=103]0=10"1 5=10"|
1 | 100 100 118 118
23 | 66 66 126 126
43 | 66 66 131 131
83 | 28 28 106 106

Table 5.2: Number of iterations for ICCG and DICCG (Variant 5.2) to solve the linear system Ax = b
with invertible A, for the test case with m =23, € = 10%, and s = 0.05.

In Figure 5.1(a), the residuals of ICCG and DICCG can be found for the test
case of n = 323 and ¢ = 10°3. From this figure, it can be observed that ICCG
shows an erratic convergence behavior, while DICCG converges almost monotonically.
Apparently, the space spanned by eigenvectors corresponding to the small eigenvalues
are well-approximated by the space spanned by the subdomain deflation vectors (cf.
the results in Chapter 4). Moreover, we observe that the residuals of DICCG—22 and
DICCG—43 almost coincide. This might be caused by the fact that some unfavorable
eigenvectors of M~ 1A are not treated effectively by both 23 and 43 subdomain deflation
vectors, and it is related to the geometry of the density field. When we take m = 33
bubbles, the results with k = 43 are much better than for k = 23, see Table 5.3. In
addition, in Figure 5.1(b), the residuals of ICCG and DICCG are presented for the test
case with n = 323 and ¢ = 10~3. Now, the residuals of DICCG—43 decrease almost
monotonically, whereas the residuals of both ICCG and DICCG—23 are still erratic. In
this case, eigenvectors associated with small eigenvalues are worse approximated by
the deflation vectors, compared to the case with m = 23 bubbles (cf. Figure 5.1(a)).
This is caused by the position of the bubbles with respect to the subdomains, and the
increased number of bubbles that is more complicated to treat with a relatively small
number of deflation vectors.

5.5.2 Results of the Comparison between Variants 5.1 and 5.2

This subsection deals with a numerical comparison of Variants 5.1 and 5.2. The same
setting as in the previous subsection is used. The results are presented in Table 5.4.
Recall that Variant 5.1 adopts the deflation method with k — 1 instead of k deflation
vectors, so that DICCG—1 is not defined in this case.

From Table 5.4, we observe immediately that the results for Variant 5.2 (Ta-
ble 5.4(a)) are the same as those for Variant 5.1 (Table 5.4(b)). Indeed, the two
different variants with a singular and invertible coefficient matrix seem to be mathe-
matically equivalent, which confirms Theorem 5.4.

5.5. Application to Bubbly Flows

85

Norm of Relative Residual
-
o

"—icco, bicco-1
—niccG-2°
- - - DIccG-4°
piccG-8®

10 20 30

40

50 60 70 80 90 100
Iteration

(a) m = 2° bubbles.

107

Norm of Relative Residual

=
o,

10°k

——ICCG, DICCG-1)|
—DbIccG-2°
- - - DiccG-4°

piccG-8°

20

40 60 80 100 120 140

Iteration

(b) m = 3% bubbles.

Figure 5.1: Residuals of ICCG, DICCG—2% and DICCG—3? with Variant 5.2, for the test case with
n=32>and o = 10°°.

(a) ICCG.
|n [o=0 o0=10"' o=10"
323 | 140 206 233
643 | 246 246 362
(b) DICCG—k (Variant 5.2).
|] n=32 | n =64
|k |[o=10" 0=103]0=10"" 0=10"|
1 | 140 140 246 246
2% | 137 137 197 197
43 | 76 76 131 131
83 | 42 42 59 59

Table 5.3: Number of iterations for ICCG and DICCG (Variant 5.2) to solve Ax = b, for the test case
with m = 3% e =10?, and s = 0.05.

(a) Variant 5.1 (based on A).

(b) Variant 5.2 (based on A).

|k [n=32° n=64] | | n =323 | n=64° |
2° | 66 126 |k J[o=10" 0=10°]0=10" og=10"
4% | 66 131 23 | 66 66 126 126
43 | 66 66 131 131

Table 5.4: Number of iterations for DICCG (both Variant 5.1 and Variant 5.2) to solve Ax = b (with
a singular A) and Ax = b (with an invertible A) for m = 2°.

86 Chapter 5. Subdomain Deflation applied to Singular Matrices

5.6 Concluding Remarks

In this chapter, we present three different deflation variants, which can deal with the
singularity of the coefficient matrix, A. In Variant 5.2, an invertible coefficient matrix,
A, is used instead of the singular matrix A, while the solution of the linear system
remains the same. Invertibility of the matrix gives several advantages for the iterative
solver. The drawback, however, is that the condition number of A becomes worse
compared to that of A. We show that this difficulty can be completely remedied by
applying the deflation technique with just one deflation vector. Moreover, Variants 5.1
and 5.3 are based on the original singular matrix, A. In Variant 5.1, the deflation-
subspace matrix is chosen such that the real inverse of the resulting Galerkin matrix
always exists. This variant is basically the deflation method as considered in prior
chapters. Moreover, the deflation matrix in Variant 5.3 relies on the natural choice of
deflation vectors and the pseudo-inverse of the Galerkin matrix. This variant is most
related to the general deflation method applied to invertible coefficient matrices.

The proposed deflation variants are analyzed and compared. We show that the
corresponding preconditioned-deflated coefficient matrices are the same, for certain
deflation vectors and small perturbations of A to construct A. Hence, the conver-
gence behavior of the deflation variants are expected to be comparable. It depends on
the implementation and practical wishes of the user which variant can be best used.
Results of numerical experiments confirm the theoretical results, and show the good
performance and equivalences of the deflation variants. Variant 5.3 is not considered
yet due to its implementation complexity. This variant is further analyzed in Chapter 8.

Chapter

Comparison of Two-Level PCG
Methods — Part |

6.1 Introduction

In the previous chapters, the deflation method has been analyzed extensively. This
method was originally used by Nicolaides [108] and Dostal [40] to accelerate the con-
vergence of PCG, and several contributions were made since then, including [45, 82,
122,173]. Following [108], the convergence of PCG can be improved if the components
of the residual associated with the smallest eigenvalues are no longer present during the
iteration process. The corresponding preconditioner of the deflation method consists
of a combination of a traditional single-level preconditioner, M1, and a second-level
preconditioner, P. In this case, the deflation preconditioner can be regarded as a two-
level preconditioner, and the resulting method can be interpreted as a two-level PCG
(2L-PCG) method, see also Section 1.2.

In addition to the traditional preconditioner, a second kind of preconditioner is
incorporated in each 2L-PCG method to improve the conditioning of the coefficient
matrix, so that the resulting approach effectively treats the effect of both small and
large eigenvalues. Besides the field of deflation, a PCG method in combination with a
preconditioner based on multigrid (MG) or domain decomposition method (DDM), can
be seen as a 2L-PCG method, since most of these methods rely on preconditioning
on two levels. Probably the simplest form of 2L-PCG is CG combined with a two-
grid method. In this case, together with the fine-grid linear system from which the
approximate solution of the original PDEs is computed, a coarse-grid system is built
based on a predefined coarse grid. From MG point of view, the (second-level) coarse-
grid system is used to reduce the slow-varying, low-frequency components of the error,
which could not be effectively reduced on the (first-level) fine grid. These low-frequency
components of the error are associated with the small eigenvalues of the coefficient
matrix. The high-frequency components are, however, effectively handled on the fine
grid. The latter is associated with the large eigenvalues of the coefficient matrix.

87

88 Chapter 6. Comparison of Two-Level PCG Methods — Part |

In order to attain a further reduction of the error, however, it is required that the
slow-varying components of the error on the fine grid are well approximated on the
coarse grid. While the two-grid method on its own is a good method for some class of
problems, a better convergence bound can be obtained if it is used as a preconditioner
for PCG.

The two-grid preconditioning has been known for a long time, dating back at least
to the 1930s. Its potential was first exploited by Fedorenko and Bakhalov in the 1960s,
and later by Brandt [21] and Hackbusch [69], which paved the way to the birth of MG
methods. We refer to [151, 178] and references therein for more details. In the two-
grid method, the second-level problem is derived from the systematic coarsening of the
underlying, predefined fine grid, and, henceforth, has a geometrical relationship with
the fine grid, see [126,150]. MG methods can be useful for solving problems with high
coefficient ratios, see, e.g., [164-166]. On the other hand, a more general two-level
method is obtained if the second-level problem is built by using only the coefficient
matrix. This generalization results in the so-called algebraic multigrid (AMG) method.
AMG can be very effective for elliptic problems on unstructured grids, even with high
coefficient ratios [30,118]. Similar observations can also be made for DDM. As in the
case of MG, DDM by its own is an effective method for some class of problems, and
the convergence can be further improved if it is combined with CG. Abstract balancing
Neumann-Neumann (BNN) methods [89—91] are well-known examples in this field.
Other examples of DDM, which are useful for solving problems with high-coefficient
ratios, can be found in [126, 150].

At first glance, 2L-PCG methods from deflation, DDM and MG seem to be differ-
ent. For example, in deflation, eigenvectors or eigenvector approximations associated
with the unfavorable eigenvalues are often used as projection vectors. In contrast,
MG or DDM use special projection vectors, which represent interpolations between
the fine-grid and coarse-grid subspace. Surprisingly, from algebraic/abstract point of
view, the 2L-PCG methods from the three fields are quite comparable or even equiv-
alent. For example, the deflation operator is the same as the multigrid operator if
no pre- and post-smoothing are performed, i.e., the deflation operator is the same as
the coarse-grid correction operator in MG. While deflation is quite successful within
Krylov methods, using only coarse-grid correction does not lead to a successful MG
method [150]. This motivates us to approach the 2L-PCG methods from an abstract
point of view. In this chapter, we introduce a generalized formulation for deflation,
MG and DDM, resulting in a unified theory.

In [103-105], theoretical comparisons are presented for the deflation, BNN and ad-
ditive coarse-grid correction (AD) methods. It is proven, using spectral analysis among
other techniques, that the deflation method is expected to yield faster convergence
compared to the other two methods. For certain starting vectors, deflation and BNN
even produce the same iterates. Although these methods seem to be comparable, de-
flation is not always robust, as observed in the limited numerical experiments provided
in [103—-105]. The residuals may stagnate or even diverge during the iteration process,
if the required accuracy is (too) high. The AD and BNN preconditioners are more ro-

6.1. Introduction 89

bust, but they also have drawbacks: BNN is more expensive to apply, and AD is slower
to converge. It is known in the literature, see [89, 150], that the implementation of
the robust BNN method can be made less expensive, so that the total amount of work
is comparable to deflation and AD. In this case, new 2L-PCG methods can be defined
and they can be interpreted as reduced variants of the original BNN method. However,
not much is known about the robustness of these reduced variants, as most theoretical
results apply to only the original method. One of the subjects of this chapter is to deal
with this issue in detail. More recent papers about the robustness of 2L-PCG methods
can be further found in, e.g., [16,59, 65].

In this chapter, the two-level PCG methods are compared theoretically by inves-
tigating the corresponding spectral properties, their numerical implementations, and
equivalences. Thereafter, the main focus is on numerical experiments, where the 2L-
PCG methods are tested for their convergence properties and robustness. The effect
of different implementations is analyzed, and the results are related to the theory. Note
that, in [103-105], the comparisons of deflation, BNN and AD are mainly based on
theoretical aspects, whereas only a limited numerical comparison is presented. This
chapter focuses equally on theoretical and numerical aspects of these of 2L-PCG meth-
ods. The following questions are answered in this chapter:

e what is the relation and equivalences between the two-level PCG methods?

e which two-level PCG methods can be applied, if one uses inaccurate coarse
solvers, severe termination criteria or perturbed starting vectors?

e is there a two-level preconditioner that is as robust as BNN and as cheap and
fast as deflation?

Similar to the 2L-PCG methods considered in this chapter, there are some other
variants known as augmented subspace CG [46], deflated Lanczos method [122],
and the Odir and Omin version of CG combined with extra vectors [6]. We refer
to [122,124] for a discussion and comparison of these methods. In the overview pa-
per [124], more details and references are also given about Krylov subspace methods
with respect to inexact computations and their equivalences. Another comparison of
2L-PCG methods is carried out in [59], where methods known as Init-CG, Def-CG,
Proj-CG and SLRU are compared. The aim of that paper is to obtain an optimal
solver, that exploits accurate spectral information about the coefficient matrix in an
efficient way. In contrast to that paper, our comparison of 2L-PCG methods is done
without any spectral information of the coefficient matrix, A. Recently, novel additive
and multiplicative two-level preconditioners applied to general linear systems are con-
sidered in [26]. These spectral preconditioners are based on multigrid ideas, and can
be well analyzed for special choices of the restriction and prolongation operators.

This chapter is organized as follows. In Section 6.2, we introduce and discuss
two-level PCG methods. Section 6.3 is devoted to the theoretical comparison of these
methods. Subsequently, the numerical comparison of the two-level PCG methods is
carried out in Section 6.4. Finally, some concluding remarks are given in Section 6.5.

90 Chapter 6. Comparison of Two-Level PCG Methods — Part |

Remark 6.1. In this chapter, we restrict ourselves to a nonsingular coefficient matrix,
A, for convenience. However, all main results are generalizable for A that is singular,
see [85].

6.2 Two-Level PCG Methods

In this section, two-level PCG methods are defined and motivated, but we start with
some terminology (cf. Definition 3.1), and a preliminary result (cf. Lemma 3.2).

Definition 6.1. Suppose that an SPD coefficient matrix, A € R"*" and a deflation
subspace matrix, Z € R™* with full rank and k < n are given. Then, we define
the invertible Galerkin matrix, E € R¥*K_the correction matrix, @ € R"", and the
deflation matrix, P € R"™", as follows:

P=1-AQ, Q:=ZE 7", E=7TAZ

Lemma 6.1. Let A€ R™" and Z € Rk be given. Suppose that Q and P are given
as in Definition 6.1. Then, the following equalities hold:

(a) P=P?%;
(b) PA= APT;
(c) PTZ=0pk, PTQ =04,
(d) PAZ =0, PAQ =0,,,
(e) QA=1—-PT QAZ=27 QAQ =Q;
(f) QT = Q.
Remark 6.2.
e £ is SPD for any full-rank Z, since A is SPD.

e [n this chapter, k < n does not necessarily hold. But if k < n does hold, then E
is a matrix with small dimensions, so that it can be easily computed and factored.

From an abstract point of view, all two-level preconditioners of the methods consist
of an arbitrary M~! combined with one or more matrices P and @. In the next
subsection, we give an explanation of the choices for these matrices in the different
fields. Nevertheless, from our point of view, matrices M~! and Z are arbitrary (but
fixed) for each 2L-PCG method. In this way, the abstract setting allows us to compare
the methods in terms of operators, although they have their roots in different fields.

6.2. Two-Level PCG Methods 91

6.2.1 Background of the Matrices in Domain Decomposition, Multigrid
and Deflation

In the 2L-PCG methods used in DDM, such as the BNN and (two-level) additive
Schwarz methods, the single-level preconditioner, M1, consists of local exact or in-
exact solves on subdomains. Moreover, Z describes a prolongation (or interpolation)
operator, while Z7 is a restriction operator based on the subdomains. In this case, E
is called the coarse-grid (or Galerkin) matrix. In order to speed up the convergence
of the additive Schwarz method, a coarse-grid correction matrix, @, can be added,
which is a so-called additive coarse-grid correction. Finally, P can be interpreted as a
subspace correction, in which each subdomain is agglomerated into a single cell. More
details can be found in [126, 150].

In the MG approach, Z and Z7 are also the prolongation and restriction opera-
tors, respectively, where typical MG grid-transfer operators allow interpolation between
neighboring subdomains. E and Q are again the coarse-grid (or Galerkin) and coarse-
grid correction matrices, respectively, corresponding to the Galerkin approach. Matrix
P can be interpreted as the algebraic form of the coarse-grid correction step in MG,
where linear systems with E are usually solved recursively. In the context of MG meth-
ods, M~ should work as a smoother (also known as relaxation method) that eliminates
the high-frequency errors in the residuals and often corresponds to Jacobi or Gauss-
Seidel iterations. Before or after the smoothing step(s), a coarse-grid correction, P,
is applied to remove the slow frequencies in the residuals. We refer to [69, 151, 178]
for more details.

As discussed in the previous chapter, M~1 is often a traditional preconditioner,
such as an Incomplete Cholesky factorization, in deflation methods. Furthermore, the
deflation-subspace matrix, Z, consists of so-called deflation vectors, which are used
in the deflation matrix, P. In this case, the column space of Z builds the deflation
subspace, i.e., the space to be projected out of the residuals. It often consists of
eigenvectors, approximations of eigenvectors, or piecewise-constant vectors, which are
strongly related to DDM. If one chooses eigenvectors, the corresponding eigenvalues
would be shifted to zero in the spectrum of the deflated matrix. This fact has motivated
the name ‘deflation method’. In the literature, the deflation two-level preconditioner
is also known as the spectral preconditioner, see, e.g., [59]. Usually, systems with £
are solved directly, using, e.g., a Cholesky decomposition.

6.2.2 General Linear Systems

The general linear system, which is the basis for two-level PCG methods, is
PAx=b, P, AeR™" (6.1)

In the standard (single-level) PCG method, x = x is the solution of the original linear
system, Ax = b, A = A is the SPD coefficient matrix, P = ML represents a
traditional SPD preconditioner, and b = ML b is the right-hand side, see also [63,97].

92 Chapter 6. Comparison of Two-Level PCG Methods — Part |

We denote this method by ‘Traditional PCG' (PREC).

Next, A may also be a combination of A and P, such that A is SP(S)D, while
P remains a traditional preconditioner. Note that this does not cause difficulties for
the CG process, since it is robust for SPSD matrices as long as the linear system
is consistent (cf. Chapter 1), see [77]. Furthermore, instead of choosing one tra-
ditional preconditioner for P, we can combine different single-level and second-level
preconditioners in an additive or multiplicative way, which is illustrated below.

The additive combination of two SPD preconditioners, C; and Cy, leads to P,,,
given by

Pay = C1+ Co, (6.2)

which is also SPD. Of course, the summation of the preconditioners can be done with
different weights for C; and C». Moreover, (6.2) can be easily generalized to P,, for
more SPD preconditioners, Cy,Cs, .. ., Ci.

The multiplicative combination of preconditioners can be explained by considering
the stationary iterative methods induced by the preconditioner. Assuming that C; and
C, are two SPD preconditioners, we can combine

Xt = x4+ C1(b — Ax');
: 1 1 (6.3)
Xt = Xty 4 Cg(b _ AX'+5),
to obtain x'*1 = x' + P, (b — Ax'), with
ng =C1+ Cy — CLAC,, (64)

which can be interpreted as the multiplicative operator consisting of two precondition-
ers. Subsequently, C; and C, could again be combined with another SPD precondi-
tioner, Cs, in a multiplicative way, yielding

ng =C1 4+ Cy+ C3— CrAC) — C3AC,; — C3ACT + C3ACLAC. (65)

This can also be generalized to Py, for C1,Co, ..., C;.

6.2.3 Definition of the Two-Level PCG Methods

The two-level PCG methods that are considered in this chapter are presented and
motivated below.

Additive Method

If one substitutes a traditional preconditioner, C; := M~1, and a coarse-grid correction
matrix, Co := @, into the additive combination given in (6.2), this yields

Pao =M1 +Q. (6.6)

Using the additive Schwarz preconditioner for M1, the abstract form (6.6) includes

6.2. Two-Level PCG Methods 93

the additive coarse-grid correction preconditioner [19]. The BPS preconditioner, intro-
duced by Bramble, Pasciak and Schatz in [19], can be written as (6.6). This is further
analyzed in, e.g., [41,42,111]. If the multiplicative Schwarz preconditioner is taken as
M~ we obtain the Hybrid-2 preconditioner [150, p. 47]. In the MG language, Pao
is sometimes called an additive multigrid preconditioner, see [11]. In this chapter, the
resulting method associated with P,y is called ‘Additive Coarse-Grid Correction’ (AD).

Deflation Methods

The deflation technique is exploited in several papers, amongst them are [56,58,82,93,
94,99,103,104,108,122,173]. Some differences in the formulations can be observed
in these papers, while they are basically mathematically equivalent. One of these
formulations of the deflation method is presented in Chapter 3. This method is called
‘Deflation Variant 1' (DEF1) in this chapter.

An alternative way to describe the deflation technique is to start with an arbitrary
vector, X, and choose xg := Qb + P’x. Then, the solution of Ax = b can be
constructed from the deflated system

APTy =15, 19:=b— Axp. (6.7)

The nonunique solution, y, is then used to obtain y := P"y. It can be shown that
X = Xg + ¥ is the unique solution of Ax = b. Similarly, deflated system (6.7) can also
be solved with a single-level preconditioner, M~!, leading to

M= PAPTy = M~ ry, ry:=b— Axp. (6.8)

Similar to the procedure for the unpreconditioned case, x can be found from the
nonuniquely determined solution, y, of (6.8). This leads to an algorithm that is based
on the projection operator PT M~ rather than M~1P as in DEF1, see [82,108,122].
Hence, we solve

PTM~1Ax = PTM~1b, (6.9)

where the iterates, {x;}, within the algorithm are uniquely determined as long as xp :=
Qb+ PTx is used. We treat this in more detail in Section 6.3.2. The resulting method
is denoted by ‘Deflation Variant 2" (DEF2). Observe that Eq. (6.9) cannot be written
in the form of (6.1) with an SPD operator P and an SPSD matrix A. Fortunately, in
Section 6.3.2, it is shown that (6.9) is equivalent to a linear system that is in the form
of (6.1).

Remark 6.3. The main difference between DEF1 and DEF?2 is their flipped operators.
In addition, if we define the ‘uniqueness'-operation as computing w = Qb + PTw,
for a given vector w, this operation is carried out at the end of the iteration process
in DEF1, so that an arbitrarily chosen starting vector, xg, can be used. On the other
hand, this operation is applied prior to the iteration process in DEF2, which can be
interpreted as adopting a special starting vector. As a consequence, they have different
robustness properties with respect to starting vectors, see Section 6.4.5.

94 Chapter 6. Comparison of Two-Level PCG Methods — Part |

Adapted Deflation Methods

If one applies C1 := Q and C, := M~ in a multiplicative combination as given in (6.4),
then this yields
Paoerr = MilP"i‘Q, (6.10)

see [134] for more details. In the MG language, this operator results from a nonsym-
metric multigrid V(1,0)-cycle iteration scheme, where one first applies a coarse-grid
correction, followed by a smoothing step. Note that, although @ and M1 are SPD
preconditioners, (6.10) is a nonsymmetric operator, and, even more, it is not symmet-
ric with respect to the inner product induced by A. In addition, Paper: Can also be
interpreted as an adapted deflation preconditioner, since M—!P from DEF1 is com-
bined in an additive way with a coarse-grid correction, Q. Hence, the resulting method
corresponding to Paper: iS denoted by the ‘Adapted Deflation Variant 1" (A-DEF1).

Subsequently, we can also reverse the order of Q@ and M~! (i.e., C; := M~! and
Cy :=Q) in (6.4), giving us

Paverr = PTM 1+ Q. (6.11)

Using an additive Schwarz preconditioner for M1, P, pee is the two-level Hybrid-II
Schwarz preconditioner [126, p. 48]. In MG methods, Paper, iS the nonsymmetric
multigrid V(0,1)-cycle preconditioner, where M~ is used as a smoother. Similar to
A-DEF1, P, ner» is nonsymmetric. Fortunately, we see in Section 6.3.2 that A-DEF2
is equivalent to a method based on a symmetric operator. As in the case of Paper.
the operator Pa per. Can also be regarded as an adapted deflation preconditioner, since
PT M~ from DEF2 is combined with @, in an additive way. Accordingly, the resulting
method is denoted by the ‘Adapted Deflation Variant 2" (A-DEF2) method.

Abstract Balancing Methods

The operators Paperr and Paper, Can be symmetrized by using the multiplicative com-
bination of three preconditioners. If one substitutes C; :== Q, C, .= M1 and C3 .= Q
into (6.5), we obtain

Pay = PTM 1P+ Q.

The operator Pgyy is a well-known operator in DDM. In combination with an addi-
tive Schwarz preconditioner for M~1, and after some scaling and special choices of
Z, the operator Pgyy is known as the Balancing-Neumann-Neumann preconditioner,
introduced in [89], and further analyzed in, e.g., [43,90,91,114,150]. In the abstract
form, Pguy is called the Hybrid-1 preconditioner [150, p. 34]. Here, we call it ‘Abstract
Balancing Neumann-Neumann' (BNN).

Of course, Pa per1 and Py pers could also be symmetrized by using twice M~ instead
of Q@ (ie., C; == M1, Co := Q and C3 := M~1') in Eq. (6.5). This results in the
well-known symmetric multigrid V(1,1)-cycle iteration scheme, where a pre-smoothing
step is followed by a coarse-grid correction and ended with a post-smoothing step. The

6.2. Two-Level PCG Methods 95

resulting preconditioner is then explicitly given by
P=M1P+P M 1+Q - M PAM ! (6.12)

Note that this operator also follows by combining the A-DEF1 and A-DEF2 operators
in a multiplicative way. In (6.12), a structural difference can be observed between
BNN and the multigrid V/(1, 1)-cycle iteration. As mentioned before, in MG, M1 is
the smoothing operator, and the coarse-grid system typically has half of the order of
the original system per direction. Hence, smoothing is cheap compared to solving the
coarse-grid system. In this case, symmetrizing with another smoothing step is natural.
In DDM, M~ contains all local solves of the subdomain systems, while the dimension
of the Galerkin system is typically much smaller than the dimension of the original
system. Hence, a symmetrization with a coarse-grid solve is inexpensive in DDM.
Except for special choices of the restriction and prolongation operator, see, e.g., [26],
it is generally difficult to analyze the spectra of the system preconditioned by (6.12)
in comparison with the other methods described in this chapter. Therefore, we do not
include this preconditioner in our comparison, but we focus on this issue in Chapter 7.

Moreover, we also consider two variants of BNN. In the first variant, we omit the
term Q from Pgun, giving us

PR—BNNI = PTM?IP,

which remains a symmetric operator. To our knowledge, Pregnn: 1S unknown in the
literature, and this is the first time that its properties are analyzed. The corresponding
method is called ‘Reduced BNN Variant 1' (R-BNN1). Next, in the second variant of
BNN, we omit both the P and Q terms from Pgyy, resulting in

Prenne = PTM?I, (6.13)

and this method is denoted by ‘Reduced BNN Variant 2' (R-BNN2). Notice that the
operators of both R-BNN2 and DEF2 are equal, i.e.,

PDEFQ = PR—BNNQ = PTM*I,

where only the implementation is different, see Section 6.2.4. In fact, the implementa-
tion of DEF2 is equivalent to the approach as applied in, e.g., [122], where the deflation
method is derived by combining a deflated Lanczos procedure and the standard CG
algorithm. On the other hand, R-BNN2 is the approach where deflation is incorporated
into the CG algorithm in a direct way [82], and it is also the approach where a hybrid
variant is employed in DDM [150]. Finally, as mentioned earlier, PT M1
metric preconditioner, but it is shown in Section 6.3.2 that both Pggyw: and Prsune
are equivalent to Py for certain starting vectors. Consequently, we classify these
methods as variants of the original BNN method, rather than as variants of deflation
methods.

iS @ nonsym-

96 Chapter 6. Comparison of Two-Level PCG Methods — Part |

6.2.4 Aspects of Two-Level PCG Methods

For the sake of completeness, the 2L-PCG methods that are considered in this chapter
are given in Table 6.1. More details about the methods can be found in the references,
given in the last column of this table. Subsequently, the implementation and the
computational cost of these methods are considered in this subsection.

‘ Name ‘ Method ‘ Operator ‘ References ‘
PREC Traditional PCG M1 [63,97]
AD Additive Coarse-Grid Correction | M~1 + Q@ [19,126, 150]
DEF1 Deflation Variant 1 M-1p [173]
DEF2 Deflation Variant 2 PTM~1 [82,108, 122]
A-DEF1 | Adapted Deflation Variant 1 MIP+Q [126,151,178]
A-DEF2 | Adapted Deflation Variant 2 PTM™1+Q | [126,151,178]
BNN Abstract Balancing PTM=IP +Q | [89]
R-BNN1 | Reduced Balancing Variant 1 PTM~1pP -
R-BNN2 | Reduced Balancing Variant 2 PT M1 [89, 150]

Table 6.1: List of methods that are compared in this chapter. The operator of each method can be
interpreted as the preconditioner P, given in (6.1) with A = A. Where possible, references to the
methods and their implementations are presented in the last column.

Implementation Issues

The implementation of the 2L-PCG methods given in Table 6.1 can be presented in
one algorithm, resulting in a generalized 2L-PCG method, see Algorithm 7. For each
method, the corresponding matrices, M, and vectors, V... and V..q, are presented in
Table 6.2. For more details, we refer to [134].

Algorithm 7 Generalized Two-Level PCG Method for solving Ax = b.

1: Select arbitrary X and V..., M1, M»>, M3, V..q from Table 6.2
2: Set xg = V.an, and compute rg := b — Axp, Vo := M1rg. po := Moy

3 forj =0,1,..., until convergence do
4w = M3Ap;
, N UD7)
504 I= o
6 Xj41 =X+ Qb
o T =G oW
8 Y1 = Marip
: R (/S 7E8))
o b= (17.%))
100 pjp1 = Moyjr1 + Bip;
11: end for
12: Xit = end

From Algorithm 7 and Table 6.2, it can be observed that one or more precondi-
tioning and projection operations are carried out in the steps where the matrices M;,

6.2. Two-Level PCG Methods 97

| Method [Vi M, Mo M3z Vew
PREC | x M-t / / Xj1
AD X M~1+Q / / Xj+1
DEF1 X M1 I P Qb+ PTxji1
DEF2 Qb+P'x M1 PT Xj+1
A-DEF1 | x M=1P +Q / / Xj 1
A-DEF2 | Qb+P'x PTM1+Q | / Xj+1
BNN X P'TM1P+Q | / Xjt1
R-BNNL1 | Qp+PTx PTMIP / / Xj+1
R-BNN2 | Qb+ PTx PTM ! / / Xj+1

Table 6.2: Choices of parameters for each method, used in the generalized two-level PCG method as
given in Algorithm 7.

with / = 1,2,3, are involved. For most 2L-PCG methods, these steps are com-
bined to obtain the preconditioned/projected residuals, {y;}. DEF2 is the only method
where a projection step is applied to the search directions, {p;}. Likewise, DEF1
is the only method where the projection is performed to create w;. In this case,
riy1 = P(b — Axj;1) should hold, while rj;z1 = b — Ax;y1 is satisfied for the other
methods. As discussed in Section 3.5.3, termination criterion (2.23) based on {r;} can
be used to compare the 2L-PCG methods in a fair way.

Remark 6.4.

e Note that Algorithms 3 (PCG) and 6 (DPCG) are particular choices of Algo-
rithm 7.

e Notice that we use the same arbitrary starting vector, X, in each method, but
the actual starting vector, V..., may differ for each method. Likewise, it can
also be noticed that the ending vector, V... IS the same for all methods, except
for DEF1.

e A 2L-PCG method is guaranteed to converge if P, as given in (6.1), is SPD
or can be transformed into an SPD matrix, see, e.g., [51] for more details.
This is obviously the case for PREC, AD, DEF1 and BNN. It can be shown that
DEF2, A-DEF2, R-BNN1 and R-BNN2 also rely on appropriate operators, where
V.t = Qb+ PTX plays an important role in this derivation, see Theorem 6.4.
A-DEF1 is the only method which does not have an SPD operator and cannot
be decomposed or transformed into an SPD operator, P. Therefore, it is not
guaranteed that A-DEF1 always works, but it performs rather satisfactorily for
most of the test cases considered in Section 6.4.

Computational Cost

The computational cost of each method depends not only on the choices of M~! and
Z, but also on the implementation and the storage of the matrices. It is easy to see

98 Chapter 6. Comparison of Two-Level PCG Methods — Part |

that, for each iteration, PREC requires 1 matrix-vector multiplication (MVM), 2 inner
products (IP), 3 vector updates (VU) and 1 preconditioning step.

Note that AZ and E should be computed and stored beforehand, so that only one
MVM with A is required in each iteration of the 2L-PCG methods. Moreover, we
distinguish between two cases considering Z and AZ:

e 7 is sufficiently sparse, so that Z and AZ can be stored in approximately two
vectors;

e / is dense, so that Z and AZ are full matrices.

The first case, which is the best case in terms of efficiency, occurs often in DDM,
where the columns of Z correspond to subdomains, while the second (and worst) case
occurs, for example, in approximated eigenvector deflation methods. Of course, there
are many relevant cases where Z and AZ cannot be stored within two vectors, while
dense storage of these matrices is not necessary; however, this is not considered in this
chapter for convenience. For each 2L-PCG method, we give the extra computational
cost per iteration above that of PREC, see Table 6.3. In the table, the number of
operations of the form Py and Qy, for a given vector, y, per iteration is also provided.
Note that, if both Py and Qy should be computed for the same vector, y, such as in
A-DEF1 and BNN, then Qy can be determined efficiently, since it only requires one IP
if Z is sparse, or one MVM if Z is dense.

From Table 6.3, it can be seen that AD is obviously the cheapest method per
iteration, while BNN and R-BNN1 are the most expensive 2L-PCG methods, since
two operations with P and P’ are involved. With respect to the implementation, this
implies that AD only needs two inner/matrix-vector products and one Galerkin system
solves extra compared to PREC, while both BNN and R-BNN1 require obviously more
inner/matrix-vector products, Galerkin system solves and additional vector updates.
Finally, we observe that using a 2L-PCG method is only efficient if Z is sparse, or if
the number of projection vectors is relatively small in the case of a dense matrix, Z.

Remark 6.5.

e The given computational cost in Table 6.3 is based on the resulting abstract
operators and implementation as presented in Algorithm 7. As mentioned in
Sections 6.2.2 and 6.2.3, the methods have different origins with their own spe-
cific and optimal implementation, so that the amount of work for each method
can be less as suggested in Table 6.3.

e We emphasize that the parameters of the 2L-PCG methods that are compared
can be arbitrary, so that the comparison between these methods is based on their
abstract versions. This means that the results of the comparison are valid for
any full-rank matrix Z and SPD matrices A and M~1.

e In Chapter 8, the efficiency and implementation of DEF1 and A-DEF2 for a
specific choice of Z are examined in more detail.

6.3. Theoretical Comparison 99

| | Theory | Implementation |
| Method | Py, PTy Qy [IP/MVM VU GSS |
AD 0 1 2 0 1
DEF1 1 0 2 1 1
DEF2 1 0 2 1 1
A-DEF1 1 1 3 1 1
A-DEF2 1 1 4 1 2
BNN 2 1 5 2 2
R-BNN1 2 0 4 2 2
R-BNN2 1 0 2 1 1

Table 6.3: Extra computational cost per iteration of the two-level PCG methods compared to PREC.
[P = inner products, MVM = matrix-vector multiplications, VU = vector updates and GSS = Galerkin
system solves. Note that IP holds for sparse Z and MVM holds for dense Z.

We note that efficiency and implementation issues have not been taken into con-
sideration so far in this thesis. The aim of this chapter is to deal with those issues in
more detail. We show that a good implementation of the deflation method is essential
in order to obtain a powerful and efficient method.

6.3 Theoretical Comparison

In this section, a comparison of eigenvalue distributions corresponding to the operators
of the 2L-PCG methods is carried out, and, thereafter, some equivalence relations
between the methods are derived. Although some parts of the results are closely
related to results known in the literature [103,104,150], we include them here in order
to make this chapter self-contained.

6.3.1 Spectral Analysis of the Methods

We start this subsection with a definition.

Definition 6.2. Suppose that arbitrary matrices C, D € R"*" have the following spec-
tra:

o(C) ={A1. X2, ..., An}, (D) = {u1 p2, .-, Ln},

respectively. Then, the addition of two sets, o(C) and (D), is defined as
o(C)+0o(D) :={ur + A1, u2+ Ao, ..., Wn+ An}.
In Section 3.5.2, we have shown that
k(MTPA) <k (M 'A),

for any SPD matrices A and M~1, and any full-rank Z. This means that the two-
level preconditioned matrix corresponding to DEF1 is better conditioned than that
of PREC. It follows from the analysis below that the two-level preconditioned matrix

100 Chapter 6. Comparison of Two-Level PCG Methods — Part |

corresponding to PREC is always worse conditioned compared to the other 2L-PCG
methods.

In [103,104], it is shown that the condition number of DEF1 is not worse than
that of both AD and BNN, i.e.,

{K(MIPA) 2 k(M 1A+ QA); (6.14)

k (M~1PA) k(PTM™IPA+QA),

for all full-rank Z and SPD matrices A and M1

Remark 6.6. Inequalities such as (6.14) cannot be derived between between AD and
BNN. One would expect the condition number associated with BNN to be below that
associated with AD, but this is not always the case, see [105] for a counterexample.

In addition to the comparisons of AD, DEF1 and BNN performed in [103-105],
more relations between the eigenvalue distribution of these and other 2L-PCG methods
are presented below. We first show in Theorem 6.1 that DEF1, DEF2, R-BNN1 and
R-BNN2 have identical spectra, and that the same is true for BNN, A-DEF1 and
A-DEF2.

Theorem 6.1. Suppose that A, M~1 € R™" are SPD. Let Q and P be as given in
Definition 6.1. Then, the following two statements hold:

e 0 (MtPA) =0 (PTM1A) =0 (PTM IPA),
o (PTM7IP+Q)A) = o (MT1P+ Q)A) = o (PTM™! + Q)A).
Proof. Using Lemma A.1 and Lemma 6.1, we obtain immediately

o (M71PA) =0 (AM™P) =0 (PTM1A),

and
o (M 1PA)

o (M 1P2A)
= o (M 'PAPT)
o (PTM™1PA),

which proves the first statement. Moreover, we also have that

o (PTM™PA+ QA) PTM™PA—PT +1)

E(M LPA—1)PT) + (1)
(M
(M

o
g
o (M 1P2A—PT) +0o(l)
o (M 1PA+ QA),

and, likewise,

o (PTM A+ QA) = o(PTM*A-PT)+0a(l)
o (AM71P — P) +o(l)

= o (PAM7'P —P)+0o(l)
a(PTM LAPT — PT) +o(1)
o (PTM™IPA+ QA),

6.3. Theoretical Comparison 101

which completes the proof of the second statement.]

As a consequence of Theorem 6.1, DEF1, DEF2, R-BNN1 and R-BNN2 can be
interpreted as one class of 2L-PCG methods having the same spectral properties,
whereas BNN, A-DEF1 and A-DEF?2 lead to another class of 2L-PCG methods. These
two classes can be related to each other by [104, Thm. 2.8], which states that if
o(M1PA)={0, ..., 0, thkstr- - un}isgiven, then o(PT M 1PA+QA) = {1, .., 1,
Bkgls oo n}t. We can show that the reverse statement also holds. These results are
given in Theorem 6.2.

Theorem 6.2. Suppose that A, M~t € R"" are SPD. Let Q and P be as in Defini-
tion 6.1. Let the spectra of DEF1 and BNN be given by
o(MIPA) = {\, ..., At o(PTMTIPA+QA) = {u1. ..., fn},

respectively. Then, the eigenvalues within these spectra can be ordered such that the
following statements hold:

)\,‘ZO,N,':l, fori=1,..., k;
Ai = Wi, fori=k+1,..., n.

Proof. Using Lemma 6.1, we have
(PTM P+ QAZ=2 M 'PAZ=0,,.

As a consequence, the columns of Z are the eigenvectors corresponding to the eigenval-
ues of BNN and DEF1 that are equal to 1 and 0, respectively. Due to [104, Thm. 2.8],
it suffices to show that if

o(PTM'PA+QA) ={1,..., INTPIR T Lot
holds, then this implies
o(M*PA)Y={0,.. ., 0, kst .- Ln}.

The proof is as follows.

Consider the eigenvalues, {u;}, and corresponding eigenvectors, {v;}, with i =
k+1,. .., nof BNN, i.e., (PTM 1P+ Q)Av; = u,v;, which implies

PT(PTM 1P+ Q)Av, = uiP" v, (6.15)
Applying Lemma 6.1, we have

(PTY?’MtPA+PTQA=P M 'PAPT.

102 Chapter 6. Comparison of Two-Level PCG Methods — Part |

Using the latter expression, Eq. (6.15) can be rewritten as
PTM™1PAw; = pjw;,

with w; :== PTv;. Note that PTy =0, if y € R(Z), due to Lemma 6.1. However,
w; # 0,, since v; ¢ R(Z) fori = k+1,..., n. Hence, p; is an eigenvalue of PT M~ 1PA
as well. Lemma 6.1 implies

o (M 'PA) =0 (PTM 'PA),
so that w; is also an eigenvalue of DEF1. [

Due to Theorem 6.2, both DEF1 and BNN provide almost the same spectra with the
same clustering. The zero eigenvalues of DEF1 are replaced by unit eigenvalues in the
case of BNN.

Remark 6.7. If 1 € [uky+1, n], then the condition numbers of BNN and DEFI are
identical. On the other hand, if 1 ¢ [uk+1.4n], then DEF1 has a more favorable
condition number compared to BNN, see also [104]. In this latter case, if j iterations
of CG achieve a suitable reduction in the error using DEF1, more than j iterations of
CG might be required to optimally eliminate all errors associated with eigenvalue 1.

Next, Theorem 6.3 relates all methods in terms of their spectra and provides a
strong connection between the two classes as given in Theorem 6.1.

Theorem 6.3. Let the spectrum of DEF1, DEF2, R-BNN1 or R-BNN2 be given by

satisfying Agy1 < Akyo < ... < A,. Let the spectrum of BNN, A-DEF1 or A-DEF2
be

Proof. The theorem follows immediately from Theorem 6.1 and 6.2.]

From Theorem 6.3, it can be concluded that all 2L-PCG methods have almost the
same clusters of eigenvalues. Therefore, we expect that the convergence of all methods
are similar, see Section 6.4.2 for some test cases. Moreover, the zeros in the spectrum
of the first class (consisting of DEF1, DEF2, R-BNN1 or R-BNN2) might become
nearly zero, due to round-off errors or the approximate solution of Galerkin systems in
the operator. This gives an unfavorable spectrum, resulting in slow convergence of the
method. This phenomenon does not appear in the case of BNN, A-DEF1 or A-DEF2.
Small perturbations in those 2L-PCG methods lead to small changes in their spectra
and condition numbers. Theoretically, this can be analyzed using Z consisting of
eigenvectors, see [103, Sect. 3], but, in general, it is difficult to examine for general Z.
This issue is further illustrated in Sections 6.4.3 and 6.4.4 using numerical experiments.

6.3. Theoretical Comparison 103

6.3.2 Equivalences between the Methods

In this subsection, we show that DEF2, A-DEF2, R-BNN1 and R-BNN2 produce iden-
tical iterates in exact arithmetic. More importantly, we prove that these 2L-PCG
methods are mathematically equivalent to the more expensive BNN method for certain
starting vectors. First, Lemma 6.2 shows that some steps in the BNN implementation
can be reduced, see also [89] and [150, Sect. 2.5.2].

Lemma 6.2. Let Q and P be as given in Definition 6.1. Suppose that V.. = Qb+P'Tx
instead of V.. = X Is used in BNN, where x € R" is an arbitrary vector. Then, this
implies that

e er+1 = On;
* Prit1 =41,
forallj =—1,0,1,..., in the BNN implementation of Algorithm 7.

Proof. Both statements can be proven by induction.

For the first statement, the proof is as follows. It can be verified that Qry = 0, and
QApg = 0,. By the inductive hypothesis, Qr; = 0, and QAp; = 0, hold. Then, for the
inductive step, we obtain Qrjiy; = 0, and QApj11 = 0,, since Qriy1 = Qrj—a;QAp; =
0, and

QApiy1 = QAy;1 + BiQAp;
= QAP"M Prii1+ QAQrjs1
= On,

where we have used Lemma 6.1.

Next, for the second statement, Prg = ry and PApg = Apg can be easily verified.
Assume that Pr; = r; and PAp; = Ap;. Then, both Prj;q = rj;1 and PApj 1 = Apj+1
hold, because

Priyn = Prj—a;jPAp;
= 1 — ajAp
= li+1,
and
PA/JJ-+1 = PAyH_l +BJPADJ'
= PAPTM 1Pri 1 + B;Ap;
APTM~1ri 1 + B;Ap;
APT M= Pri11 4 B;Ap
= AlWj+1+Bp))
= Apji1,

where we have applied the result of the first statement. O

Subsequently, we provide a more detailed comparison between BNN and DEF1
in terms of errors in the A—norm, see Lemma 6.3. In fact, it is a generalization
of [104, Thm. 3.4 and 3.5], where we now apply an arbitrary starting vector, X, instead
of the zero starting vector.

104 Chapter 6. Comparison of Two-Level PCG Methods — Part |

Lemma 6.3. Suppose that A € R"™" s SPD. Let Q and P be as given in Definition 6.1.
Let (Xj+1)per: and (xj+1)ewy denote iterate xjy1 of BNN and DEF1 as provided by
Algorithm 7, respectively. Then, these iterates satisfy

HX - (XJ'+1)DEF1HA < HX - (Xj+1)BNNHA, if(XO)DEFl = (XO)BNN;
(Xj+1)DEF1 = (Xj+1)BNNr if (XO)DEFJ =X and (XO)BNN =Qb+ PTx.

Proof. The proof is analogous to the proofs as given in [104, Thm. 3.4 and 3.5]. [

From Lemma 6.3, we conclude that the errors of the iterates built by DEF1 are never
larger than those of BNN in the A—norm. Additionally, DEF1 and BNN produce the
same iterates in exact arithmetic, if V.. = Qb+ P"x is used in BNN.

Next, Lemma 6.2 and 6.3 can now be combined to obtain the following important
result.

Theorem 6.4. Let Q and P be as given in Definition 6.1. Let x € R" be an arbitrary
vector. Then, the following methods produce exactly the same iterates, {xji1}, in
exact arithmetic:

e BNN with V..., = Qb+ PTx;
e DEF2, A-DEF2, R-BNNI1 and R-BNN2 (with V... = Qb+ PTX);
e DEF1 (with V.. = X) whose iterates are based on xj;1 = Qb+ PijH.

Proof. The theorem follows immediately from Lemma 6.2 and 6.3.]

As a result of Theorem 6.4, if V... = Qb+P ' xis used, then BNN is mathematically
equivalent to R-BNN1, R-BNN2, A-DEF2 and DEF2, since they produce identical
iterates. They even produce the same iterates as DEF1, if each iterate of DEF1, x;;4,
is transformed into Qb+ P’ x;;1. In Section 6.4.2, we show that the methods as given
in Theorem 6.4 indeed lead to almost identical results with respect to convergence
behavior.

Remark 6.8.

e Another consequence of Theorem 6.4 is that the corresponding operators for
DEF2, A-DEF2, R-BNN1 and R-BNN2 are all appropriate in a certain subspace,
although they are not symmetric. Hence, a CG process in combination with
these operators should, in theory, work properly.

e The results as presented in Theorem 6.4 might not be valid anymore in the
computations, if the round-off errors are too large. Therefore, although BNN,
DEF2, A-DEF2, R-BNN1 and R-BNN2 give exactly the same iterates, all involved
2L-PCG methods except for BNN may lead to inaccurate solutions and may
suffer from nonrobustness in numerical experiments, see also Section 6.4.5. In
this case, the omitted projection and correction steps of the BNN algorithm,
as suggested in Lemma 6.2, are important to maintain the robustness of the
method.

6.4. Numerical Comparison 105

6.4 Numerical Comparison

In this section, a numerical comparison of the 2L-PCG methods is performed using 2-D
bubbly flows with m = 5, € = 103 and s = 0.05 as described in Section 1.3. In order to
ensure that the obtaining results are no artifacts, the experiments are also carried out
using 2-D Poisson problems with a constant coefficient and 2-D porous-media flows,
see Appendix G and [134, Sect. 4].

The IC(0) preconditioner is chosen as M~1, but it seems that other traditional SPD
preconditioners could also be used instead, leading to similar results, see [137,173].
Moreover, k = g + 1 subdomain deflation vectors are taken as projection vectors (cf.
Section 3.6) based on Variant 5.2 (see Section 5.3). We remark that the projection
vectors are not restricted to choices that are common in DDM and deflation. Typical
MG projection vectors could also be taken, see [48] and Chapter 9.

6.4.1 Setup of the Experiments

We start with a numerical experiment using standard parameters, which means that an
appropriate termination criterion, exact computation of E~!, and exactly computed
starting vectors are used. Subsequently, numerical experiments are performed with in-
exact E~1, severe termination tolerances, and perturbed starting vectors, respectively.

The results for each method are presented in two ways. Firstly, the results are
summarized in a table, presenting the number of iterations and the standard norm of

the relative errors (i.e., % with the iterated solution, x,). Secondly, the results
are presented graphically by showing the relative errors in the A—norm (i.e., H’H;‘TAHA

with x; denoting the j—th iterate) during the iteration processes. We recall that each
2L-PCG method optimizes the error in the A—norm, rather than in the (two-level)
preconditioned A—norm (see Section 2.4), so that it is natural to report the errors
in the A—norm in the experiments. Moreover, the errors are also measured in the
2—norm, since it may be a more relevant and useful measure of the error, and it
appears that there are significant differences between these two measures. Finally, for
each test case, the iterative process of each method is terminated if the maximum
allowed number of iterations (chosen to be equal to 250) is reached, or if the norm
of the relative residual falls below a tolerance, § > 0, see (2.23). As mentioned in
Section 6.2.4, this termination criterion leads to a fair comparison of the 2L-PCG
methods.

Remark 6.9. As mentioned in Section 6.2.1, the choice of parameters, Z, M~ and
the direct solver for E~1, are the same for each 2L.-PCG method. This allows us to
compare these methods fairly. However, in practice, the 2L-PCG methods are derived
from different fields, where typical choices associated with these fields are made for
these parameters. In Chapter 9, we compare the 2L-PCG methods with their typical
parameters.

106 Chapter 6. Comparison of Two-Level PCG Methods — Part |

6.4.2 Experiment using Standard Parameters

In the first numerical experiment, standard parameters are used with stopping tolerance
5 = 10719 an exact Galerkin matrix inverse, E~1, and an unperturbed starting vector,
Vaae- 1he results of the experiment can be found in Table 6.4 and Figure 6.1.

| | k =22 | k =42 | k =82 |
[t —xT[2 Xt —xT[2 [Tt —x1[2
| Method | #1t. Tl [#l B (g S|
PREC 137 46x1077| 137 46x107 | 137 1.8x 1077
AD 161 1.1x1078 | 163 8.4 x107°2 | 60 1.1x 1078

DEF1 149 15x107% | 144 3.1x107% | 42 1.8x 1078
DEF2 149 15x107% | 144 3.1x107%8 | 42 1.8x 1078
A-DEF1 | 239 35x 10~ | NC 9.0 x 107° | 48 1.5 x 107°
A-DEF2 | 149 15x107% | 144 3.1x1078 | 42 1.1 x 1078
BNN 149 15x107% | 144 3.1x107% | 42 1.1 x 1078
R-BNN1 | 149 15x107% | 144 3.1x1078 | 42 1.1 x 1078
R-BNN2 | 149 15x 1078 | 144 3.1x107% | 42 1.1 x 1078

Table 6.4: Number of required iterations for convergence and the 2—norm of the relative errors of
all methods, for the bubbly flow problem with n = 642, and ‘standard’ parameters. ‘NC' means no
convergence within 250 iterations.

By considering Table 6.4 and Figure 6.1, we observe that all methods perform
the same, except for PREC, AD and A-DEF1. A-DEF1 has difficulties to converge,
especially for the cases with k = 22 and k = 42. This is not surprising, since it cannot
be shown that it is an appropriate preconditioner, see Section 6.2.4. In addition, the
number of projection vectors is apparently too low to approximate the eigenvectors
corresponding to the small eigenvalues, which is the result of the presence of the
bubbles. Therefore, we hardly see any improvements by comparing all 2L-PCG methods
to PREC in the case of k = 22 and k = 42. It is unexpected that PREC requires fewer
iterations in these cases, but we observe that the corresponding solution is somewhat
less accurate than the others. Moreover, we remark that AD performs obviously worse,
compared to the other 2L-PCG methods.

The total computational cost of the methods in this experiment is presented in
Table 6.5. We restrict ourselves to the test case with k = 82, since analogous results
are obtained for the other test cases. It depends on the exact implementation of the
methods to determine which 2L-PCG method requires the lowest computational cost.

6.4.3 Experiment using Inaccurate Galerkin Solves

For problems with a relatively large number of projection vectors, it might be expensive
to find an accurate solution of the Galerkin system, Ey, = y1, by a direct solver at
each iteration of the 2L-PCG methods. Instead, only an approximate solution, y»,
can be determined, using, for example, approximate solvers based on SSOR or ILUT
preconditioners, recursive MG methods or nested iterations, such as a standard (Krylov)
iterative solver with a low accuracy. In this case, y» can be interpreted as Eilyl, where
E is an inexact matrix based on E. This motivates our next experiment, using E-1

6.4. Numerical Comparison 107

—e—AD
-+ DEF1
—=—DEF2
-4 -A-DEF1
—— A-DEF2 ||
-e-BNN
R-BNN1
- *-R-BNN2

I = X1l / Il

Il Il Il Il Il Il Il Il Il
20 40 60 80 100 120 140 160 180 200 220
Iteration

(a) k =22

—e—AD
-+- DEF1
—a—DEF2
-4 -A-DEF1
——A-DEF2 |{
-e-BNN
R-BNN1
- *-R-BNN2

I = X1, /i,

—4

=
o
T

10

1 1
50 100 150 200 250
Iteration

(b) k =42

——AD
-+- DEF1
—=—DEF2
-6 -A-DEF1
10° —— A-DEF2 {
-6 -BNN
R-BNN1
-+ -R-BNN2

N
o
b
T

I = X1l / 1l

H
°
L
T

10 '~

Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50 55 60
Iteration

(c) k=82

Figure 6.1: Relative errors during the iterative process, for the bubbly flow problem with n = 642, and
‘standard’ parameters.

108 Chapter 6. Comparison of Two-Level PCG Methods — Part |

Method [IP VU GSS PR |

PREC 137 411 O 137
AD 180 180 42 42
DEF1 126 168 42 42
DEF2 126 168 42 42
A-DEF1 | 192 192 48 48
A-DEF2 | 210 168 84 42
BNN 252 210 &84 42
R-BNN1 | 210 210 84 42
R-BNN2 | 126 168 42 42

Table 6.5: Computational cost within the iterations in terms of number of inner products (‘IP"), vector
updates (‘VU'), Galerkin system solves (‘GSS’), and preconditioning step with M~! (‘PR’), for the
bubbly flow problem with n = 642, k = 8%, and ‘standard’ parameters.

defined as
E 1l =(+yRE NI +yR), >0, (6.16)

where R € R¥*¥is a symmetric random matrix with entries from the interval [-0.5, 0.5],
see also [103, Sect. 3] for more details. Note that theory, as derived in Section 6.3.2,
is not valid for any ¥ > 0, but we will see that some of those theoretical results are
still confirmed for relatively large 9. The sensitivity of the 2L-PCG methods to this
inaccurate solve with various values of 1 are investigated, and the results are related to
Theorem 6.16. Note that the results for PREC are not influenced by this adaptation
of E~!. They are only included for reference.

Remark 6.10. Eq. (6.16) does not reflect the way that inexact Galerkin solves typically
enter 2L-PCG methods, but it does provide us with good insights into approximate
Galerkin solves applied to these methods. Additionally, the approximation of E~1 can
be quantified explicitly using Eq. (6.16). Experiments with Galerkin solves that are
done iteratively (i.e., nested iterations) can be found in Chapter 8. In that chapter,
it is shown that it is reasonable to apply (6.16), since they give similar results as in
this subsection. Moreover, it turns out that the original PCG rather than a flexible
variant can still be used in these experiments, as long as the inner stopping tolerance
is sufficiently small. More details about inexact Krylov subspace methods can also be
found in [124].

The results of the experiment can be found in Table 6.6 and Figure 6.2. We
observe that the most robust 2L-PCG methods are AD, BNN, A-DEF1 and A-DEF2,
since they are largely sensitive to perturbations in E~1. On the other hand, DEF1,
DEF2, R-BNN1 and R-BNN2 are obviously the worst methods, as expected, since the
zero eigenvalues of the corresponding systems become small nearly-zero eigenvalues
due to the perturbation, 1 (cf. Section 6.3.1).

6.4.4 Experiment using Severe Termination Tolerances

In practice, two-level PCG methods are sometimes compared with a too strict termi-
nation criterion. Such a comparison can be unfair, as certain 2L-PCG methods are

6.4. Numerical Comparison

109

10 :
—e— AD
-+- DEF1
—=—DEF2
- -A-DEF1
10° | —— A-DEF2 ||
-e-BNN
R-BNN1
-+ -R-BNN2
<
= 107+ g
=
=
1
x
= 10 4] h
10°+ g
L L L L L L RN L L

I
5 10 15 20 25 30 35

Iteration
(a) ¥ =102

50 55 60

I = X1, /i,

—e— AD
-+ DEF1
—=—DEF2
-¢-A-DEF1
——A-DEF2
-e-BNN I
R-BNN1
- *-R-BNN2
"
i

Iteration

(b) ¥ =108

!
50 100 150

250

I = X1l / 1l

—e—AD H
-+ DEF1
—=—DEF2
-4 -A-DEF1
—— A-DEF2
-e-BNN
R-BNN1
- *-R-BNN2
\ ,’ \\ i
+

/

150

Iteration

(c) ¥ =10""

250

Figure 6.2: Relative errors during the iterative process, for the bubbly flow problem with parameters

n =642 and k = 82, and a perturbed Galerkin matrix inverse, E

110 Chapter 6. Comparison of Two-Level PCG Methods — Part |

| | y=10" | P=10° | Y=10" |

[vetnod [#it By Tan Byl Tyn Bl |
PREC 137 46x107 | 137 46x1077 | 137 4.6x 10"
AD 60 2.3x107% | 60 2.3x107% | 63 7.8 x 1079

DEF1 42 1.2 x 1078 | NC 8.3x107* | NC 9.2 x 1072
DEF2 42 1.2 x 1078 | NC 3.9 x 10%2 | NC 2.2 x 1012
A-DEF1 | 48 8.8x 107° | 48 8.8x 1079 | 48 8.5 x 1079
A-DEF2 | 42 1.1x10°8 | 42 1.1 x 1078 | 43 8.2 x 1079
BNN 42 1.1 x 1078 | 42 1.1 x 1078 | 42 1.1 x 1078
R-BNN1 | 42 1.1x 1078 | NC 41x10°7 | NC 1.7 x 1074
R-BNN2 | 42 1.2x 1078 | NC 3.7x107% | NC 1.5 x 107!

Table 6.6: Number of required iterations for convergence and the 2—norm of the relative errors of all
methods for the bubbly flow problem with parameters n = 642 and k = 82, and a perturbed Galerkin
matrix inverse, E~!, is used with varying perturbation 1. ‘NC’ means no convergence within 250
iterations.

sensitive to severe termination criteria, see, e.g., [65]. We investigate this by perform-
ing a numerical experiment with various values of the tolerance, §. Note that, for a
relatively small §, this may lead to a too severe termination criterion with respect to
machine precision. However, the aims of this experiment are to test the sensitivity
of the 2L-PCG methods to 4, and to investigate the maximum accuracy that can be
reached, rather than to perform realistic experiments.

| | 6=10"° | =10 1" | 6=101° |
Txi—xIT2 Txie—xIT2 i —x1T2
| Method | # It. P B B |
PREC 122 6.6 x107° | 162 1.8x 10710 [179 21x 10713
AD 45 1.4x 1076 | 75 1.1 x 10710 | 178 4.8x 10713

DEF1 32 9.4 x 1077 | B3 1.5 x 10710 | NC 5.7 x 107°
DEF2 32 9.4 x 1077 | B3 1.5 x 10710 | NC 6.3 x 1077
A-DEF1 | 34 9.7x 1077 | 61 82x 10711 [233 22x10713
A-DEF2 | 32 9.4 x 1077 | 53 1.5x 10710 | 133 83 x 10713
BNN 32 9.4 x 1077 | B3 1.5x 10710 | 133 59x 10713
R-BNN1 | 32 9.4 x 1077 | B3 1.5 x 10710 | NC 2.2 x 10712
R-BNN2 | 32 9.4 x 1077 | B3 1.5 x 10710 | NC 8.1x107°

Table 6.7: Number of required iterations for convergence and the 2—norm of the relative errors of
all methods, for the bubbly flow problem with parameters n = 642 and k = 82. Various termination
tolerances, 6, are tested.

The results of the experiment are presented in Table 6.7 and Figure 6.3. It can be
seen that all methods perform well, even in the case of a relatively strict termination
criterion (i.e., § = 107'?). PREC also converges in all cases, but not within 250
iterations. Note, moreover, that it does not give an accurate solution if § is chosen
too large. For § < 10 '?, DEF1, DEF2, R-BNN1 and R-BNN2 show difficulties,
since they do not converge appropriately and may even diverge. This is in contrast
to PREC, AD, BNN, A-DEF1 and A-DEF2, which give good convergence results for
5 = 10716, Therefore, these 2L-PCG methods can be characterized as robust methods

6.4. Numerical Comparison

111

10 T
—e—AD
-+~ DEF1
10t L —=—DEF2
-6 -A-DEF1
N\ —o— A-DEF2
0 -6 -BNN
10 R-BNN1
- * -R-BNN2
19t 4
= 10
<
X .2
< 1070 4
<
107 4
107 E
107 E
| | | | | S~ | |
5 10 15 20 25 30 35 40 45
Iteration
-8
(a) 6 =107°.
10° ‘
——AD
-+~ DEF1
—=—DEF2
10° - - ¢ - A-DEF1|]
—6— A-DEF2
-e-BNN
R-BNN1
107 L -+ -R-BNN2|]
_<
X
< .
< 10" 1
I
*
10° E
10°F g
L L L N b L
10 20 30 40 50 60 70
Iteration
—12
(b) § = 1072
10°
—e—AD
-+~ DEF1
o —=—DEF2 ||
10 -6 -A-DEF1
—o— A-DEF2
S -e-BNN
10°F R-BNN]|
- * -R-BNN2
< —
= 10 » g
f(/) Sk Vv
1100 / 24
X ’ ’
= ° 4
7/ AN /
10° - AN i e
; & s
/ N T N »
RS et
107 \#- o, g
B
N N Tl
1077 | | | Phe]
50 100 150 200 250
Iteration
—16
(c) 6=10"".

Figure 6.3: Relative errors during the iterative process for the bubbly flow problem with parameters
n = 642, k = 82, and various termination criterion.

112 Chapter 6. Comparison of Two-Level PCG Methods — Part |

with respect to termination criteria.

Some of the nonconverging methods might eventually give the solution after the
maximum number of iterations, but such a solution takes too much computing time;
hence, the result is useless. Moreover, the nonconverging behavior is caused by round-
off errors, resulting in, for example, a lack of orthogonality of the residuals with respect
to Z, see Section 6.4.6.

6.4.5 Experiment using Perturbed Starting Vectors

In Section 6.3.2, it is proven that BNN with V... = Qb+ PTX gives exactly the
same iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2, in exact arithmetic. In this
case, the resulting operators are well-defined and they should perform appropriately.
In our next experiment, we perturb V,,. in DEF2, A-DEF2, R-BNN1 and R-BNN2,
and examine whether this influences the convergence results. The motivation of this
experiment is the same as for the experiment carried out in Section 6.4.3; for relatively
large problems, it can be complicated to determine V.. accurately, due to, for example,
the inaccurate computation of Galerkin solves. It is important to note that if we use
approximate starting vectors, then there is no longer any equivalence between BNN
and its reduced methods, as provided in the results of Section 6.3.2. In this case, it is
interesting to see how these methods perform in practice.

The perturbed V..., denoted by W,..., is defined as a componentwise multiplication
of a random vector and V..., i.e., each entry of W, is defined as

Wea)i = (L +7(w0)i) Viean)in 1=1,2,..., n, (6.17)

where v > 0 gives control over the accuracy of the starting vector, and vy is a random
vector with entries from the interval [-0.5,0.5], taken to give each entry of V.. a
different perturbation. As in the experiment performed in Section 6.4.3, the choice of
W,... does not reflect the way in which starting vectors are perturbed in practice, but
it provides us with some valuable insights where the perturbation can be quantified in
an easy way. Furthermore, note that if DEF2, R-BNN1 or R-BNN2 converge using
Wit then we may obtain a nonunique solution, since the corresponding operator is
singular. Therefore, as in the case of DEF1, we should apply the ‘uniqueness’ step
(see Remark 6.3) at the end of the iteration process. Note that this procedure is not
required for A-DEF2, because this method corresponds to a nonsingular operator.

We perform the numerical experiment using W.,.,. for different y. The results can
be found in Table 6.8 and Figure 6.4. Here, we use asterisks to stress that an extra
uniqueness step is applied in the specific method. Moreover, notice that PREC, AD,
DEF1 and BNN are not included in this experiment, since they apply an arbitrary vector,
Viar = X, by definition.

From the results, it can be noticed that all involved methods converge appropriately
for v = 10719 For v > 10~®, DEF2, R-BNN1 and R-BNN2 fail to converge (with
respect to the residuals), although R-BNN1 is already converged and the current stop-
ping criterion is apparently unreliable for this method in this experiment. The most

6.4. Numerical Comparison 113

—=—DEF2

—— A-DEF2
R-BNN1
-« -R-BNN2
10° B
= -2
= 107 g
<«
=
1
e
107 E
10°+ B
L L L L L L L L
5 10 15 20 25 30 35 40
Iteration
(a) y=0.
—=— DEF2
—— A-DEF2
R-BNN1
-+ -R-BNN2
10° B
_<
=
§< N —H K e — ke — K R — k= - — K=k — Kk — K k- — K= % — K~k — K= % — K — |
I .
=107 B
10*107 |
L L

!
50 100 150 200 250

Iteration
-5
(b) y=10
—=—DEF2
——A-DEF2
R-BNN1
- *-R-BNN2

Il = I, / 1l

107 g

50 100 150 200 250
Iteration

() y=1071°

Figure 6.4: Relative errors during the iterative process for the bubbly flow problem with n = 642, k =
82, and perturbed starting vectors.

114 Chapter 6. Comparison of Two-Level PCG Methods — Part |

| | v = 10° | y=10° | y=10 " |
[Metnod [#it By [on B Jan Bl |

DEF2 42 1.1x 1078 | NC 1.4 x 107 NC 2.7 x 1019
A-DEF2 | 42 1.1 x 1078 | 42 1.2 x 1078 45 1.2 x 1078
R-BNN1 | 42 1.1x 1078 | NC 1.4 x 10719% | NC 3.6 x 10~ 7%
R-BNN2 | 42 1.1 x 1078 | NC 1.8 x 107°* | NC 1.1 x 1070

Table 6.8: Number of required iterations for convergence and the 2—norm of the relative errors of
some methods, for the bubbly flow problem with n = 642, k = 82, and perturbed starting vectors. An
asterisk (*) means that an extra uniqueness step is applied in that test case.

robust method is, obviously, A-DEF2. This method is completely insensitive to the
perturbation, «y. This experiment illustrates that the ‘reduced’ variants of BNN have
different robustness properties with respect to perturbations in starting vectors.

6.4.6 Further Discussion

The theoretical results given in Section 6.3 only hold in exact arithmetic and under
the assumptions required to prove them. However, from a numerical point of view,
we have observed that some of these assumptions are necessary, whereas others are
only sufficient for certain two-level PCG methods. The numerical results confirm the
theoretical fact that all 2L-PCG methods perform approximately the same, although
A-DEF1 shows problems in some test cases. This is understood by the fact that
A-DEF1 corresponds to a non-SPSD operator, as also discussed in Section 6.2.4.

If the dimension of the Galerkin matrix, £, becomes large, it is favorable to solve the
corresponding systems iteratively, with a low accuracy. In this case, we see that DEF1,
DEF2, R-BNN1 and R-BNN2 show difficulties in convergence. It can be observed
that the errors during the iterative process of DEF2 explode, whereas DEF1 converges
slowly to the solution, but in an erratic way. The most robust methods are AD, BNN,
A-DEF1 and A-DEF2.

If A is ill-conditioned and the tolerance of the termination criterion, chosen by
the user, becomes too severe, it is advantageous that the 2L-PCG method would still
work appropriately. However, we observe that DEF1, DEF2, A-DEF1, R-BNN1 and
R-BNN2 cannot deal with too strict tolerances. This is in contrast to AD, BNN,
A-DEF2, which remain robust in all test cases.

In theory, BNN gives the same iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2,
for certain starting vectors. In addition to the fact that these ‘reduced’ variants, except
A-DEF2, are not able to deal with inaccurate Galerkin solves, some of them are also
sensitive to perturbations of the starting vector. In contrast to the other methods,
A-DEF?2 is independent of these perturbations. This can be of great importance, if
one uses multigrid-like subdomains, where the number of subdomains, k, is very large,
and the starting vector cannot be obtained accurately.

In the numerical experiments, we observe that several methods show divergence,
stagnation or erratic behavior of the errors during the iterative process. This may be
caused by the fact that the residuals gradually lose orthogonality with respect to the

6.5. Concluding Remarks 115

columns of Z, see also [122]. It can easily be shown that
ZTr=0,, j=0.1,..., (6.18)

should hold for DEF1, DEF2, A-DEF2, R-BNN1 and R-BNN2. However, it appears
that (6.18) is not always satisfied in the experiments. A remedy to recover this or-
thogonality in the badly converging methods is described in, e.g., [122]. If we define
the ‘reorthogonalization’ matrix, W € R"*", as

W.=1-2zz"z)"'z", (6.19)
then W is orthogonal to Z, i.e.,
ZwW=2z"-7T2(2"2)" 172" =0, ,. (6.20)

Now, orthogonality of the residuals, {r;}, can be preserved by premultiplying r; by W
right after r; is computed in the algorithm:

no=Wr, j=01, . (6.21)

As a consequence, these adapted residuals satisfy (6.18), due to (6.20).
Remark 6.11.

e £q. (6.18) is not valid for AD, A-DEF1 and BNN. In the case of AD and BNN, this
is not a problem, because they appear to be extremely robust in most test cases.
This is in contrast to A-DEF1, which is not robust in several test cases, since
it is not an appropriate preconditioner, see Section 6.2.4. The nonrobustness of
this projector cannot be resolved using the reorthogonalization strategy.

e The reorthogonalization operator (6.21) is relatively cheap, provided that Z is
sparse.

In the numerical experiments of [134, Sect. 4.6], we show that the adapted versions
of the methods, including the reorthogonalization strategy, converge better in terms of
the residuals. Unfortunately, it appears that accurate solutions could not be obtained
using this approach. To preserve the relation, r; = b — Ax;, each iterate, x;, should be
adapted via

o ~1 Toy-1-T .
xi=x—AZ(Z"'Z)*Z'r;, j=0,1,.... (6.22)

However, it is clear that (6.22) is not useful to apply due to the presence of A 1in
that expression. Consequently, it is unlikely that, in practice, the 2L-PCG methods
would benefit from the reorthogonalization strategy.

6.5 Concluding Remarks

In this chapter, we consider the abstract forms of several two-level PCG methods,
listed in Table 6.1, which originated from the fields of deflation, domain decomposition

116 Chapter 6. Comparison of Two-Level PCG Methods — Part |

and multigrid. A comparison of these methods is carried out by investigating their
theoretical and numerical aspects.

Theoretically, DEF1 is the best method [103-105]. We see that all two-level
PCG methods, except for PREC and AD, have comparable eigenvalue distributions.
Two classes of two-level PCG methods can be distinguished, each having the same
spectral properties. The first class consists of DEF1, DEF2, R-BNN1 and R-BNN2,
and the second class includes BNN, A-DEF1 and A-DEF2. Although the differences
are surprisingly marginal, and, therefore, similar convergence behaviors are expected,
we derive that the associated spectrum of the methods of the first class is possibly
more favorable than those of the second class.

In numerical experiments with realistic termination criteria and relatively small per-
turbations in the starting vector and Galerkin solves, it is observed that all 2L-PCG
methods always converge faster than PREC. More importantly, all 2L-PCG methods
show approximately the same convergence behavior, although the residuals of AD has
sometimes a nonmonotonical convergence behavior. Both DEF1 and DEF2 are sensi-
tive to sufficiently large perturbations in the Galerkin solves or too strict termination
criterion. In contrast to DEF1, DEF2 also has the drawbacks that it cannot deal
with perturbed starting vectors and that the method diverges when the convergence
deteriorates. The errors are usually bounded in DEF1, when this method does not
converge.

We deduce that, for certain starting vectors, the expensive operator of BNN can
be reduced to simpler and cheaper operators, which are used in DEF2, A-DEF2, R-
BNN1 and R-BNN2. Hence, some 2L-PCG methods of the two spectral classes are
mathematically equivalent in exact arithmetic. However, these reduced variants, except
for A-DEF2, are not robust in the numerical experiments, when applying inaccurate
Galerkin solves, strict stopping tolerances or perturbed starting vectors. In fact, one
should realize that the reduced variants of BNN, except A-DEF2, are as not robust as
DEF1 or DEF2.

By examining all theoretical and numerical aspects, we conclude that BNN and
A-DEF2 are the best 2L-PCG methods in the sense of robustness. However, two
deflation matrices are involved in BNN, making the method expensive to use. On the
contrary, only one deflation matrix is involved in A-DEF2, so that it is attractive to
apply. Hence, A-DEF2 seems to be the best and most robust method, considering the
theory, numerical experiments, and the computational cost.

If robustness is not an crucial issue in experiments, then the deflation method
(DEF1 or DEF2) is a very efficient method (and often faster than other methods),
see also Chapter 8 where DEF1 and A-DEF2 are compared in more detail. Finally, the
two-level PCG method based on the multigrid V(1,1)-cycle preconditioner is excluded
in the comparison presented in this chapter, but it is related to the other methods in
the next chapter.

Chapter

Comparison of Two-Level PCG
Methods — Part |

7.1 Introduction

In the previous chapter, we have compared several two-level PCG methods originated
from different fields. In that comparison, we have not included the two-level PCG
method with a preconditioner based on a multigrid V(1,1)-cycle (denoted by the MG
method in this chapter), since it has very different spectral properties and requires a
specific theoretical treatment, because of the more general choice for the traditional
preconditioner allowed within MG. The aim of this chapter is to fill this gap. We focus
on the comparison between abstract balancing Neumann-Neumann (BNN), deflation
(DEF), and multigrid V(1,1)-cycle (MG) preconditioners. DEF is equal to the DEF1
method from Chapter 6.

Of course, the MG method [23, 69, 151, 178] and its properties [20, 53, 68, 96,
107] are well-known. Our intention is not to reproduce these results (although some
known results needed for the comparison are briefly reviewed), but to compare and
connect MG to the other 2L-PCG methods. Intuitively, we expect MG to have better
convergence properties than the other 2L-PCG methods, when the MG smoother (also
known as the MG relaxation) is chosen to be equal to M1, since it is the only 2L-
PCG method with two applications of the traditional preconditioners (in the pre- and
post-smoothing steps), in addition to a single coarse-grid correction step within one
iteration. DEF, on the other hand, has optimal convergence properties in terms of
its spectral properties compared with the other 2L-PCG methods (except MG), see
the previous chapter. Therefore, it is sufficient for the comparison to show that MG
has more favorable spectral properties than DEF, if MG is indeed superior to DEF.
Hence, we often base the analysis on the comparison of DEF and MG in this chapter.
However, the comparison between MG and BNN is, in some cases, easier to perform,
so BNN is used in the analysis as well.

Some spectral analysis for MG is carried out in [26]. In that paper, projection
vectors are based on exact eigenvectors of M~'A and more pre- and post-smoothing

117

118 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

steps are allowed per iteration. The resulting two-level preconditioner is called a ‘mul-
tiplicative two-grid spectral preconditioner’. It is shown that this preconditioner can
be effective for many practical applications, where sequences of linear systems have to
be solved. In this chapter, we restrict ourselves to the standard multigrid V(1,1)-cycle
preconditioner, while eigenvectors are sometimes used to illustrate the theoretical re-
sults. Moreover, we note that while the condition number of preconditioned systems
is an imperfect indicator of the convergence properties of CG, it is the only analysis
tool available with sufficient generality to compare the techniques considered here.

This chapter is organized as follows. In Section 7.2, DEF, BNN and MG are de-
scribed concisely. Then, some spectral properties of MG are presented in Section 7.3.
Thereafter, in Section 7.4, MG and DEF are compared by investigating their spectral
properties using special choices of parameters; it is shown there that MG can be less
effective than DEF. In Section 7.5, we show that MG is superior to DEF for more
sophisticated preconditioners. Subsequently, Section 7.6 is devoted to the compari-
son of MG, BNN and DEF with the same cost per iteration. For special choices of
preconditioners, we show that they are almost spectrally equivalent. Section 7.7 is
devoted to some numerical experiments in order to illustrate the theoretical results.
Some concluding remarks are presented in Section 7.8.

7.2 Two-Level PCG Methods

In this section, the 2L-PCG methods are described that will be examined to solve
the linear system, Ax = b, where A is assumed to be SPD. We remark again that
most results presented in this chapter are generalizable to linear systems where A is
SPSD. The following definition (cf. Definition 6.1) is assumed to hold throughout this
chapter.

Definition 7.1. Suppose that an SPD coefficient matrix, A € R"™" and a deflation-
subspace matrix, Z € R™X with full rank and k < n are given. Then, we define
the invertible Galerkin matrix, E € R¥*k the correction matrix, @ € R™ ", and the
deflation matrix, P € R"*" as follows:

P=1-AQ, Q=ZE1Z" E=7TAZ

In addition, M~ € R™" is an arbitrary preconditioning matrix and M~1 € R"" js an
SPD preconditioning matrix.

Remark 7.1. The difference between M~ and M~ is that M~ is assumed to be
symmetric, positive definite and nonsingular, whereas M~ might be nonsymmetric, sin-
gular, or even indefinite, so that it is basically the pseudo-inverse of M. Preconditioner
M~ is applied in deflation-like methods, whereas the more general preconditioner,
M=1, is applied solely in multigrid methods, where a general smoothing operator is
allowable.

7.2. Two-Level PCG Methods 119

The deflation method (DEF) is already described in the previous chapters. Recall
that its two-level preconditioner is

Poge = M7LP. (7.1)

In order to derive the BNN and MG preconditioners, we consider again the multi-
plicative combination of preconditioners, see Section 6.2.2. Recall that the multiplica-
tive operator consisting of three preconditioners is given by (see Eq. (6.5))

Pm3 =C14+Co+C3— CACT — C3AC, — C3ACT + C3ACLAC. (7.2)

It has already been derived that if one substitutes C; .= Q, Co .= M~ and C3 :=Q
into (7.2), we obtain
Penn = PTM*IP"FQ, (7.3)

which is the two-level preconditioner corresponding to the abstract balancing Neumann-
Neumann (BNN) method. We have shown that BNN has the same spectral properties
as the 2L-PCG methods based on multigrid V(0,1)- and V(1,0)-cycle preconditioners
(see Theorem 6.1).

On the other hand, we could also use M~! twice instead of Q, ie., C; =
M~T,Cy := Q and C3 := M~ 1 in (7.2). We use the general preconditioner, M1,
instead of M~!, because M~ is not required to be symmetric nor invertible to define
Pm,. The resulting two-level preconditioner, well-known as the multigrid V(1,1)-cycle
preconditioner, is then explicitly given by (see Eq. (6.12))

Puc=MTP+P M 1+Q - M TPAM L. (7.4)
The latter expression for Py also follows from the error-propagation operator:
V=l =PuA) = =M TAPT(I - M 1A), (7.5)
which is often written as
V.=S*P'S, S:=1—-M1A (7.6)

where S* := | — M~ T A denotes the adjoint of S with respect to the A-inner product.
Recall that matrices S and S* are known as the pre- and post-smoothers, respectively,
and PT is the coarse-grid correction operation. The resulting two-level PCG method
with Py, is called MG, see [23,69, 151, 178] for more details.

Note that Py is obviously symmetric, but it is not necessarily positive semi-definite,
see Section 7.3.2. Next, it can be observed that the two-level preconditioner cor-
responding to DEF is included as a term in the two-level preconditioner of MG if
M-t = M1 is taken (cf. Eqgs. (7.1) and (7.4)). Hence, we might expect that MG
is always more effective than DEF. For common choices of M~1, M~! and Z, this is
indeed the case, see Section 7.7.2. However, Section 7.4 shows that this is not true
in all cases.

120 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

To summarize, the abbreviations and the two-level preconditioners corresponding
to the proposed 2L-PCG methods are presented in Table 7.1.

‘ Name ‘ Method ‘ Two-level preconditioner, P
PREC | Traditional PCG M1
DEF | Deflation M-1p

BNN | Abstract Balancing PTM™1P+Q
MG Multigrid V/(1,1)-cycle | MT1P+ PTM 1 +Q — M~ 1PAM™!

Table 7.1: List of two-level PCG methods that are compared in this chapter.

Remark 7.2.

e £q. (7.4) is only used for the analysis of MG, but is never implemented us-
ing this explicit form as the action of P, can be computed with only a single
multiplication, each involving M~Y, M~T, and Q.

e We emphasize that the parameters of the two-level PCG methods that will be
compared can be arbitrary, so that the comparison between these methods is
based on their abstract versions. This means that the results of the comparison
are valid for any full-rank matrix Z, SPD matrices A, M~1, and matrix M~ 1.

7.3 Spectral Properties of MG

In this section, we present some results related to the spectral properties of the MG
method. We first prove a result analogous to [104, Thm. 2.5], demonstrating that the
MG preconditioner also clusters a number of eigenvalues at 1. Thereafter, we discuss
necessary and sufficient conditions for the MG preconditioner to be SPD. Note that
while these are natural concerns from a preconditioning point of view, these questions
are not commonly considered for MG methods, which are often applied as stationary
iterations and not used as preconditioners in all cases, unlike DEF.
First, we present some notation in Definition 7.2.

Definition 7.2. Let A and B be an SPD and arbitrary matrix, respectively. Define
B4 := |AZBAZ||o. Then,

e if B is SPD, then the SPD square root of B is denoted by B%;

e if||Blla <1, B is called convergent in the A-norm (or A-norm convergent).

7.3.1 Unit Eigenvalues of the MG-Preconditioned Matrix

In Chapters 3 and 6, we have seen that, for a SPD matrix A, DEF corresponds to a
two-level preconditioned coefficient matrix that has exactly k zero eigenvalues, whereas
the matrix associated with BNN has at least k unit eigenvalues. Theorem 7.1 shows
that the two-level preconditioned matrix corresponding to MG also has at least k unit
eigenvalues.

7.3. Spectral Properties of MG 121

Theorem 7.1. let Py and S be as given in (7.4) and (7.6), respectively. Suppose
that
dmAN(S)=m, meN. (7.7)

Then, PyucA has one as an eigenvalue, with geometric multiplicity at least k and at
most k + 2m.

Proof. In the following, we use the factorization of | — PucA = S*P’S as given
in Egs. (7.5) and (7.6). Note first that dimAN(S*) = dimAN(S) = m, see also
Lemma A.14.

Considering Eq. (7.6), there are three ways for a vector, v # 0,, to be in N(/ —
PucA):

(i) v e N(S), so that Sv = 0,;
(i) Sve N(PT), yielding PTSv = 0,;
(i) PTSv € N(S*), so that S*PTSv =0,.

We treat each case separately.

(i) The geometric multiplicity of the zero eigenvalue of I — Py,cA must be at least
m, due to Eq. (7.7). This accounts exactly for all contributions to N (/ — PycA) from
null space vectors of the first type.

(ii) Counting the geometric multiplicity of vectors of the second type is only slightly
more complicated. The fundamental theorem of linear algebra (see Theorem A.3) gives
an orthogonal decomposition of R" as

R"=R(S)aN (S). (7.8)
Since dimR (S) = n — m, it must be the case that
dimN (ST) = m. (7.9)
Now, consider the intersection of R (Z) with subspaces R (S) and N (S7):
21:=R(Z)NR(S), 2 :=R(Z)NN(ST),

and let dim Z; = ky and dim Z, = k>. Note that necessarily k1 + ko = k, and that k> is
no bigger than m, because of (7.9). Since N(P") = R (Z), we have dimN(S) = ki,
which is the contribution to the dimension of the null space by vectors of the second
type. Since ki + ko = k for ko < m, the total dimension of the null space arising from
vectors of the first and second type must satisfy k < ks +m < k+ m.

(iii) Similarly, we can determine the dimension of the null space of the third type.
Note first that (cf. Eq. (7.8))

R"=R(PTS)@N (STP).

122 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

Let M = N(S5*) and My = M NR(PTS). Then, the number of unit eigenvalues
of the third type is
m; =dmM; <dmM =m.

Thus, dim N(PycA) = m + ki + my, which can be bounded by
k<m+ki+m <k+2m.

Since counting the geometric multiplicity of zero eigenvalues of | — PycA is trivially
equal to the geometric multiplicity of unit eigenvalues of PycA (see Lemma A.1(b)),
the proof is complete. O

Remark 7.3.
e P.cA has at least k unit eigenvalues, even if S is singular.

e If zero is not an eigenvalue of S, then it is also not an eigenvalue of S* (which
is similar to ST). Thus, Theorem 7.1 then says that P,;A has exactly k unit
eigenvalues.

e Since M~ is nonsymmetric, the geometric and algebraic multiplicity of the zero
eigenvalue of S (or, equivalently, the unit eigenvalues of M—1A) should be dis-
tinguished, since they might differ.

e [n a similar manner as Theorem 7.1, it can be shown that PgyyA has at least k
and at most 2k + m unit eigenvalues.

7.3.2 Positive Definiteness of the MG preconditioner

Recall that a 2L-PCG method is guaranteed to converge if P, as given in (6.1), is
SPD or can be transformed into an SPD matrix. This is certainly satisfied for BNN
and DEF, see the previous chapter. Here, we examine this issue for MG. It is obvious
that Pye (and, therefore, also PycA) is not positive definite for all choices of Z and
M~1 asin the next example.

Example 7.1. Suppose that M—! = | and Z = [vy--- v, where {v;} is the set of
orthonormal eigenvectors corresponding to the eigenvalues of A, {\;}. Then,

Pue=P+P +Q - PA=21-27ZT + ZN"'ZT A+ ZZTA (7.10)
where N = diag(\q, .. ., Ak). Multiplying (7.10) by v; gives us

PucVi =2vi —=2ZZTvi+ ZN 1 ZTv, = A\jvi + X, ZZ 7 v,

LA simple example is Gauss-Seidel for the 1-D Poisson problem with homogeneous Dirichlet bound-
ary conditions. Take A = tridiag(—1,2, —1) and M to be the lower-triangular part of A. Then, S has
eigenvalue % with algebraic multiplicity 5, assuming that n is even. Since there is only one eigenvector
corresponding to this eigenvalue, the geometric multiplicity is 1.

7.3. Spectral Properties of MG 123

This implies

Py =)\l/_v,-, fori=1,..., k; (7.11)
et (2—=X)vi, fori=k+1,..., n. '

Hence, the spectrum of P, is given by

1 1
— ., .2 2= .
{>\1, ’>\k’ >\k+1,) >\n}
In this case, Py, is SPD if and only if A, < 2.

Example 7.1 shows that Py can be indefinite for some choices of Z and M~!. This
highlights an important difference between MG and DEF. Indeed, many preconditioners,
M=, that make sense with DEF lead to indefinite Pys, while choices of M~ that lead
to Pug. which is SPD, might give nonsymmetric operators for Ppee. Next, a necessary
and sufficient condition for Pyg to be SPD is given in Theorem 7.2.

Theorem 7.2. Let M~ and Z be as defined in Definition 7.1. Let Py be as given
in (7.4). A necessary and sufficient condition for Pye to be SPD is that Z and M~1
satisfy

min w’ (/_ﬂ*1 + M T - /_ﬂflAl\ZfT) w > 0. (7.12)

w: wlAZy Vy

Proof. By definition, Py is positive definite if and only if u” Pugu > 0 for all vectors
u#£0, Takingu:= A3y, this means that Py is SPD if and only if yT A>PycAsy > 0,
for all y, or that A%PMGA% is positive definite. Moreover, A%PMGA% is symmetric and,
so, it is SPD if and only if its smallest eigenvalue is greater than 0. This, in turn,
is equivalent to requiring that / — A%PMGA% has largest eigenvalue less than 1. But
| — A3PycAs is a similarity transformation of V (see Eq. (7.6)),

1 1 1 1
ATVA T = | — ATP,cA?,
which can be written as A2VA=2> = (RS)T(RS), for
11~ 1- 1,1
R:=1—A2QA2, S:=[— A2l 1Az

Note that the eigenvalues of (RS)7(RS) are the singular values squared of RS (see,
e.g., [63]), which are also the eigenvalues of (RS)(RS)” = RSSTR. So, the largest
eigenvalue of A>VA~3 is less than 1 if and only if the largest eigenvalue of RSSTRis
less than one. This happens if and only if

uTR(§§T)Ru

- <1, Yu#0, (7.13)

To maximize this ratio, we write u = A%Zyl 4+ Ry», and note that R is the L2-
. . 1
orthogonal projection onto the orthogonal complement of the range of A2Z. Then,

uTR(§§T)Ru = yQTR(§§T)Ry2, ulu= leZTAZyl +y2TR2y2.

124 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

So, maximizing the ratio over all choices of y; means choosing y; = 0,, so that the
denominator of (7.13) is as small as possible. Therefore,

uTRSSTRu yTRSSTRy;
— <1 VYu#0, & = _T<1V 0,. 7.14
UTU U7é n y27—R2y2 2 7é n ()
Thus, if the ratio on the right of (7.14) is bounded below 1 for all y», so must be the
ratio in Eq. (7.13). But, if the ratio in (7.13) is bounded below 1 for all u, then it is
bounded for u = Ry, which gives the bound at the right-hand side of (7.14).
Equivalently, we can maximize the ratio of Eq. (7.14) over R(R) = R(A%Z)l.
So, the largest eigenvalue of RSSTR is less than 1 if and only if
TggT
max ¥ < 1. (7.15)
x:xLA%ZyVy xXox

By computation, we have

SST — I —AF (M 4+ T — M PAMT) A3

N =

Therefore, the bound (7.15) is equivalent to requiring

XTA2 (MY + T — M TAM-T) Alx

> 0.
xTx

min
1
x:x1A2 ZyVy

. 1 . . .
Taking w = A2x, this is, in turn, equivalent to

mn w' (M'+M T —MTAM) w >0,
w:w lAZyVy

because w’ A~ 1w > 0 for all w. O

Thus, a necessary and sufficient condition for Py to be SPD is given by (7.12).
Intuitively, we expect the spectral properties of Py to reflect those of M~1, with
some account for the coarse-grid correction. Eq. (7.12) is particularly interesting in
comparison with Theorem 7.3, which gives a necessary and sufficient condition for
M~1 to define a convergent smoother, see also [57,180].

Theorem 7.3. Let M~ and Z be as defined in Definition 7.1. Let S be as given
in (7.6). A necessary and sufficient condition for S to be convergent in the A-norm is

minw!' (M + M T — M TAM ")w > 0. (7.16)
Proof. See [57,180]. O

Theorem 7.3 amounts to the condition

ISlla <1 & Amin(M+ MT — A) >0,

7.4. Comparison of a Special Case of MG and DEF 125

that can also be found, for example, in [180, Thm. 5.3]. On the other hand, Theo-
rem 7.2 gives

mn w/ M lw>0 & ~ min vi(M+M" — Ay >0,
w:w LAZyVy viv=M-"Tw,wlAZyVy
where
MY =mtym T M TAM L (7.17)
Necessarily,
~ min vVI(M+ MT = Av>miny Mty = Amin(M + M7 = A) > 0,
viv=M-Tw,wlAZyVy y

so the condition for Pyg to be SPD is weaker than the condition for a convergent S in
the A-norm. In other words, the A-norm convergence of S implies both convergence
of I — PucA, and that Pyg is SPD. However, Py can be SPD even if ||S||4 > 1, so
long as coarse-grid correction effectively treats amplified modes.

7.4 Comparison of a Special Case of MG and DEF

Here, we show that abstract preconditioners in the MG framework do not always lead to
better conditioned systems than DEF. Such problems can even be found in the case of
M=t = M~ =/, see Appendix |. In this section, we show that this can be generalized
to arbitrary M~1, but requiring that M~! = M~ and Z consisting of eigenvectors of
M~TA. We start with some spectral bounds on MG and DEF under these assumptions.
Thereafter, we perform a comparison between the condition numbers for MG and DEF.

Theorem 7.4 shows the eigenvalue distribution of PycA and PpeeA, if Z consists
of eigenvectors of M~ 1A,

Theorem 7.4. Suppose that M~ = M~ is arbitrary and {\;} is the set of eigenvalues
of M—1A with corresponding eigenvectors {v;}. Let Z be decomposed of vy, ..., V.
Suppose that MG is convergent, so that 0 < A\; < 2 holds for k < j < n. Furthermore,
suppose that the eigenvalues are ordered so that 0 < Xey1 < Aj < X, < 2 for all
k <j < n. Let Pper and Pyg be as given in (7.1) and (7.4), respectively. Then,

(i) PucA has the following eigenvalues:

1 fori=1,... k;
' ' Y 7.18
{A,-(QA,-), fori=k+1,..., n, ()

(ii) PperA has the following eigenvalues:

{ 0, fori=1 .. . k: (7.19)

A, fori=k+1, ..., n.

Proof. The proof follows from [26, Prop. 2] and [173, Sect. 4]. O

126 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

Hence, it depends on eigenvalues Ax41 and A, of M~LA whether Ky OF Kper iS more
favorable, since

1 An
e T i a1 (2 — Meat) An(2 = Am)b T N

(7.20)

for any M~1 = M~! and Z consisting of eigenvectors of M 'A. So, for some choices
of Z and M~1, MG vyields a larger condition number than DEF.

We discuss Figure 7.1 from which the best method can be easily determined for
given Agyq1 and A,. Note first that if Agy 1 = X,, then Py consists of at most
two different eigenvalues, 1 and X,(2 — X,). In addition, if Agks1 = 2 — X,, then
Kwg = [Ak+1(2—>\k+1)]71 = (2 — M) Y. Next, the region corresponding to
0 < Akt1 < Ay < 2 s naturally partitioned into two subdomains, along the line where
M11(2 = Akr1) = Ap(2 = Ap), which occurs when A\gyp =2 — A

o (f >\k+1(2 — >\k+1) < A,,(Q - >\n), then RKyve = [>\k+1(2 - >\k—|—1)]71 . Thus, Kue <
Koer If and only if

1
A <2 - —
k+1 < e
o if Aer1(2 = Aki1) > An(2=Xp), then Kye = [An(2 — >\n)]*1 . Thus, Kye < Kper
if and only if
Mer1 S A2(2 = Xn).

Figure 7.1 depicts these regions graphically. For any given Agy1 and X,, the method
with smallest condition number follows immediately from this figure. Example 7.2 gives
some consequences of Figure 7.1.

Example 7.2.
(a) Ifa(M~1A) C (0,0.5], then we deal with Region By, and, hence, Kper < Kug.

(b) Ifc(M~1A) C (0,2) with Axp1 = 2 — X\, then we deal with either Region A; or
Ao, and Kpgr > Ky holds.

Case (a) says that if M~ is a ‘bad’ smoother (no eigenvalues of S are less than %)
then MG is expected to converge worse than DEF. On the other hand, Case (b) implies
that if M~ s a ‘good’ smoother (all eigenvalues that need to be handled by relaxation
are done so with eigenvalues of S bounded in a neighborhood of the origin), then MG
converges better than DEF.

7.5 Effect of Relaxation Parameters

While DEF may have a smaller condition number than MG for some choices of M~ and
Z, MG has an added relaxation parameter that is often very important. We illustrate
this here by considering M~! = M~ = a/ for an optimized choice of a. Such a choice
of relaxation scheme within MG is commonly known as Richardson relaxation.

7.5. Effect of Relaxation Parameters 127

1.8f Sea B N
1.6f .. 1

1.4r v b

0.8 . 1

0.6/ -- —Ma1™

0.4r - -1f]
! Am2)

0.2r 225 \H
N T2

0 0.5 1 15 2

Figure 7.1: Regions where ke < kper (Regions A; and A>) and kper < kume (Regions By and B),
for arbitrary M~! = M™!, when Z consists of eigenvectors of M~'A. The two condition numbers are
equal along the dotted and dotted-dashed lines.

7.5.1 Analysis of Scaling Relaxation

Instead of considering the original linear system, Ax = b, we now consider the scaled
linear system,
aAx =ab, a>0, (7.21)

with M1 = M~ = |. A subscript, c, is added to the notation for operators and
matrices, if they are for (7.21). So, P, and Pyc. denote the deflation matrix and MG
preconditioner based on (7.21), respectively.

Solving the scaled linear system (7.21) with M1 = M~! = | is equivalent to
solving the preconditioned linear system, M~1Ax = M~1p, with M~1 = M~! = al.
The parameter, o, can then be regarded as a parameter of the relaxation instead of
the linear system. The relaxation processes are rescaled, whereas there is no net effect
on coarse-grid correction. Therefore, DEF is scaling invariant, i.e.,

An(M~1PaA) An(M~1PA)

Kpera = >\k+1(M71PaOtA) = >\k+1(M71PA) = KpEF-

In contrast, MG is not scaling invariant, and the positive-definiteness property of Pyga

depends strongly on a, since it is well-known that Richardson relaxation is convergent

' 0<a< L, (7.22)
A2

see, e.g., [180]. For multigrid, we typically try to choose a close to m, which

guarantees that the slow-to-converge modes of relaxation are only those associated

with the small eigenvalues of A. A better choice of a is possible if we make assumptions

128 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

on how the eigenvectors of A associated with small eigenvalues are treated by coarse-
grid correction. It is also possible to get an explicit expression for the optimal a, see
the next subsection.

7.5.2 Optimal Choice of

The best value of o depends on Z, so the optimal o, denoted by a,,, can only be
determined if the choice of Z is fixed. In this case, the job of relaxation is specifically
to reduce errors that are conjugate to the range of Z. The best choice of a is the one
that minimizes the ‘spectral radius’ of relaxation over the complement of the range of
interpolation, i.e.,
. wl(l — aA)w|
min — .
w,yT ZT Aw=0 Yy w'w

If we restrict ourselves to Z consisting of eigenvectors of A, parameter o, is easily
determined such that it gives the most favorable condition number for MG, see the
next theorem.

Theorem 7.5. Suppose that M—1 = M~ = al and {)\;} is the increasingly-sorted set
of eigenvalues of M~ A with corresponding eigenvectors {v;}. Let Z be decomposed
of k orthonormal eigenvectors from {v;}. Moreover, let P, be as given in (7.4) such
that PucA is SPD. Then, k(PucaA) is minimized for

2

e 7.23
Ak+1+ An ()

Aopr =

Proof. Note first that, by choosing M~! = M~! = a/, the error-propagation operator
for MG, V, can be written as (cf. Eq. (7.10)).

V=1-PuA=(—-aAP (| —aA) =2al +ZN"'Z" —2a7Z" —a’A+a’ZNZ".

So, applying Py to an eigenvector, v;, of A gives (cf. Eq. (7.11))

P %v,-, fori=1, ..., k:
Vi = i
Mo a(2—a)), fori=k+1,..., n.

Thus, PucA has eigenvalue 1 with algebraic multiplicity k, and n — k eigenvalues of
the form aXj(2 —aX;), fori=k+1,..., n.

Let {o,} be the set of eigenvalues of P,cA, which are positive and sorted increas-
ingly, so that its condition number is given by Z2. By assumption, aX;(2 — aX;) > 0

o1

foralli=k+1, ..., n and, by calculation, aX;(2 — aX;) < 1 for all @ and A;. Thus,

op= min {aX(2-aX)}, o,=1
i€[k+1,n]

Since the function f(X\) := aA(2 — a)) is concave down, we have

min - {aXi(2 —aX;)} = min{aX 11(2 — arks1). an(2 — aX,)}. (7.24)
ielk+1,n]

7.5. Effect of Relaxation Parameters 129

Subsequently, we want to maximize this minimum eigenvalue,
max min{aX,+1(2 — aXkr1), A (2 —a,)}.
This is achieved when we choose o so that
A k+1(2 — aXkt1) = aXp(2 — ady),

. __ 2
which occurs when a = YIRS =

Corollary 7.1. Let the conditions of Theorem 7.5 be satisfied. Then, Ky < Kper.

Proof. If the optimal weighting parameter, o, is substituted into (7.24), then the
smallest eigenvalue of PycA is equal to

AXk+1An
—_— 7.25
(Mkg1 + Ap)? (725)
As a consequence, the condition number of PysA is given by
(Akg1 + An)?
= 7.26
MG e, (7.26)
Finally, kye < Kper follows from the fact that
(Ak41 + An)? An 2 2
< & A A < (2An)7,
LY VEED PR V| A1 +20)" < (220)
which is always true, since A\gyr1 < Ap.]

Remark 7.4.

e The condition numbers corresponding to MG and DEF are the same if the spec-
trum of Ais ‘flat’ (i.e., if \kx1 = \p). But, using the optimized parameter, &,
in MG, it gives a more favorable condition number than DEF.

e In Section 7.4, it is shown that kys > Kpee Can happen in general. However,
according to Theorem 7.5, these examples can never be constructed if o, IS
used.

e [n practice, approximations to o are fairly easy to compute, although the ex-
act eigenvalue distribution is usually unknown. Gershgorin circle theorem (see,
e.g., [63, Sect. 8.1.2])) gives us estimates of both A1 and X\, which can be used
to approximate Aj41.

e An optimal weighting parameter, a.,,;, can also be considered for general precon-
ditioners, M~1; however, it is often much more difficult to express Qe EXplicitly,
as it depends on the spectral properties of M—A, which may not be known. In
general, the optimal choice of a is such that relaxation converges as quickly as
possible on the modes that are not being treated by the coarse-grid correction

130 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

phase. Thus, if the spectral picture of M—A is known well-enough to approxi-
mate the eigenvalues corresponding to Ax41 and A,, a similar choice of o, as
in Eq. (7.25) may be possible.

7.6 Symmetrizing the Smoother

In the previous section, we have seen that MG can be expected to converge in fewer
iterations than DEF for specific choices of M~1, M~—1 and Z. However, the fact that
MG requires fewer iterations than DEF for many preconditioners does not mean that
it is more efficient, since each iteration of MG is more expensive, due to the choice of
two smoothing steps. In order to make a fairer comparison between DEF and MG, we
now consider DEF using the preconditioning version of the symmetrized smoother:

S*S=(-MTAU-M?A)=1-M1A (7.27)

with
MY=mtem T M TAMTL (7.28)

Note that M1, as defined here, is the same as in Eq. (7.17). Then, we use

Mt=mM1 (7.29)

as the preconditioner in DEF, since this choice allows implementation in such a way
that each iteration of BNN, DEF and MG has similar cost. In this section, we compare
the spectra associated with MG, BNN and DEF using (7.29). For general Z and
M1 such that Mt is SPD, we show that BNN and DEF, both with preconditioner
M1, and MG yield the same eigenvalues for those modes that are not treated by the
coarse-grid correction, see Theorem 7.6.

Theorem 7.6. Let M1 be as given in Definition 7.1 such that Py is SPD. In addition,

let Mt = M~ be as defined in (7.28) such that Pgyy is SPD. Then, the eigenvalues
of PucA and PgyA are equal.

Proof. We show the equivalence of kys and Kgyy by examining the extreme eigenvalues
of their error-propagation forms,

| — PanA PT(I— M 1A)PT.

We examine both methods by making the same similarity transformation,

N

|~ PA— A3(] — PA)A 2.

This allows us to make use of the fact that / — A%QA% is an orthogonal projection in

7.6. Symmetrizing the Smoother 131

the L2-inner product. Computing the similarity transformed systems, we have

As (]~ PucAA2 = (I — A TA) (I — AZQA>)(I — As M 1A3):
Ar(] — PawAA™ 2 = (I — A2QA2)(I — AsM-1A2)(I — A2QA%).
By defining C := (I — AZQA>)(/ — A>M~1A3), we can rewrite the latter expressions
as .)
A2 (1 = PyA)A 2 = CTC;
{Aé(/PBNNA)A% = ccT,

where the following equalities are used:

(1 — A2QAZ)? | — A2QAZ;
(I - AQA)T = | A2QAS:
(I~ A 1A = |~ AT As;
| —ASM~ A = (I —ASM-TA3)(— A3 M~1A3).

N =

Since A%(I —PMGA)A’% and A%(I —PBNNA)A*% are similar to | — PycA and [— PguA,
respectively, and, o(CTC) = o(CCT) (see Lemma A.1), we obtain

o(l = PycA) = U(CTC) = o(l — PewA),
and the theorem follows immediately.]

From Theorem 7.6, we obtain that MG and BNN with M1 give exactly the same
condition number. This also implies that the condition number of MG is surprisingly
not smaller than the condition number of DEF, see the next corollary.

Corollary 7.2. Let M~! and M~ = M~ be as in Theorem 7.6 such that Ppes is
SPD. Then,

Kue = K,

Kper < Kue.
where Ky, kgyy and kpge are the condition numbers corresponding to MG, BNN and
DEF, respectively.
Proof. The corollary follows from Theorem 7.6 and [104, Thm. 2.7]. [

Remark 7.5.

e Ordering the smoothers in the opposite way might lead to a different definition
of M~1; this, in turn, could change the eigenvalues of MG and BNN, although
an analogous result to Theorem 7.6 still holds for the consistent choice of S and
Mt

e Corollary 7.2 shows that BNN, DEF and MG are expected to show comparable
convergence behavior for special choices of traditional preconditioners. We note
that this result is only valid in exact arithmetic. If coarse-grid systems are solved

132 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

inaccurately, DEF might have convergence difficulties, while BNN and MG are
less sensitive to it, see the previous chapter.

7.7 Numerical Experiments

In this section, we present the results of some numerical experiments, where PREC and
the 2L-PCG methods are compared. The starting vector for each iterative method is
arbitrary and the termination criterion of the iterative process is based on (2.23) with
5 = 1078 We start with a 1-D Poisson-like problem to illustrate the theory obtained
in Section 7.4. Then, we consider the same 2-D bubbly flow problem as in Section 6.4
to show the performance of DEF, BNN and MG in a more realistic setting. We stress
that these examples are chosen to highlight the presented theory and not to present
the efficiency of the solvers; in practice, very different choices of M~1, M~1 and Z are
used for each method, see Chapter 9.

7.7.1 1-D Poisson-like Problem

Several 1-D Poisson-like problems are considered, with the matrix

6 v 0
A |T P B.v€ER, (7.30)

oy

0 v B

where we vary the constants 8 and v so that each test case corresponds to a different
region as shown in Figure 7.1, see Table 7.2. In addition, we choose M~1 = M~! =
| and Z consisting of eigenvectors corresponding to the smallest eigenvalues of A.
Right-hand side, b, is chosen randomly. We take n = 100 (other values of n lead to
approximately the same results), and the number of projection vectors, k, is varied.
The results of the experiment can be found in Table 7.3.

| Problem | B v | Range of A; Region | Expected Fastest Method |
(T1) 15 0125 [1.25 1.75 B2 DEF
(T2) 1 —005 |[09 1.1 Al/A2| MG
(T3) 025 —0.1 |[0.05 045 BI DEF
(T4) 125 —0.125 | [1.0, 1.5] Al /A2 | MG/DEF

Table 7.2: Test cases corresponding to different regions as presented in Figure 7.1.

From Table 7.3(a), it can be seen that DEF yields a smaller condition number and
is faster than MG for specific choices of B and «y. On the other hand, as observed
in Table 7.3(b), B and <y can also be chosen such that MG yields a smaller condition
number and is faster than DEF.

Since the condition number associated with DEF is always below that of MG in the
case as presented in Table 7.3(c), DEF is expected to be faster than MG. However,

7.7. Numerical Experiments 133

(a) B=15 v=-0.125.
| [k=2 [k=20 | k=60 |
[Method [#1t. k [#It. & [#1It. k |

PREC 11 1.4 11 1.4 11 1.4
DEF 11 1.4 10 13| 8 11
BNN 11 1.7 10 1.7 8 1.7
MG 15 23| 15 23| 12 2.3

(b) B=1, v =—0.05.

| | k=2 | k=20 | k=60 |

| Method | #1t. K [#It. & | #It. kK |
PREC |9 12 |9 12 9 12
DEF 9 12 |9 12 |7 11
BNN 9 12 |9 12 |7 1.1
MG 5 101]5 101[5 1.01

(c) B=025 y= 01
| | k=2 | k=20 | k=60 |
| Method [#1t. &« | #It. &k [#It. & |

PREC 34 9.0 34 9.0 34 9.0
DEF 34 8.8 24 4.9 11 1.4
BNN 34 19.6 | 25 11.0 | 11 3.2
MG 30 10.1 | 22 5.7 11 1.9

(d) B=1.25, v=—0.125.
| | k=2 | k=20 | k=60 |
| Method [#1t. w [#It. & |[#It &k |

PREC 11 15|11 15|11 1.5
DEF 12 15|11 14 |8 1.1
BNN 12 15|11 158 1.5
MG 10 1.3 | 10 1319 1.3

Table 7.3: Results of the experiment with test cases as presented for the Poisson-like problem in
Table 7.2. The results are presented in terms of number of iterations, # It., and condition number, k.

that is not the case in this test problem. The two methods converge at the same rate
for large k, but MG is faster than DEF for small k. This can be explained by the fact
that the spectrum of eigenvalues of MG consists of two clusters, see Figure 7.2(c).
If the first cluster of ones is omitted (or is approximated by a Ritz value), then the
condition number of the remaining spectrum is favorable when compared to that of
DEF. For example, in the case of k = 2, we have kyc = 7.0 (instead of kye = 10.1)
when the unit eigenvalues are omitted. Obviously, this would then be the smallest
condition number over all of the methods.

Finally, MG has a smaller condition number and is faster than DEF for small k in
the case presented in Table 7.3(d). On the other hand, for large k, DEF has a smaller

134 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

condition number than MG and performs somewhat better than MG. Indeed, the best
method depends on A, 1 for this case with specific B and .

20 40 60 80 100 20 40 60 80 100
i i

(a) B=15, y=—0.125. (b) B=1, y= —0.05.

0.41
0.2p o DEF
‘ ‘ - MG
) 20 4 60 80 100
i i
() B=0.25 v=-0.1. (d) B=1.25 = —0.125.

Figure 7.2: Eigenvalues associated with DEF and MG for the test cases with kK = 20 as presented in
Table 7.3.

7.7.2 2-D Bubbly Flow Problem

In this section, a numerical comparison of the two-level PCG methods is performed
using 2-D bubbly flows with m = 5, € = 103, and s = 0.05. As in Section 6.4, M~!
is chosen to be the IC(0) preconditioner and subdomain deflation vectors are taken as
projection vectors based on Variant 5.2 (see Section 5.3)..

Experiment with M/~ ! = M~ !

The results with M~1 = M~ are presented in Table 7.4 (cf. Table 6.4).

From the table, it can be observed that, for all k, DEF and BNN require the same
number of iterations, whereas MG is the fastest method in terms of the number of
iterations, which is as expected. Recall that this does not necessarily mean that MG

7.8. Concluding Remarks 135

is the fastest method with respect to computing time, since each iteration of MG is
more expensive than an iteration of DEF.

| | k =22 | k =42 | k =82 |

[vethod [# 1 Tr Tgn Tt [on D]
DEF 149 15x107% | 144 31x107% | 42 1.8 x 1078
BNN 149 15x 1078 | 144 3.1x107% | 42 1.1 x 1078
MG 86 1.0x 1077 | 93 6.5x 1078 | 32 1.9%x 1078

Table 7.4: Number of required iterations for convergence and the 2—norm of the relative errors of
2L-PCG methods, for the bubbly flow problem with n = 64% and M™* = M™*. PREC requires 137
iterations and leads to a relative error of 4.6 x 107"

Experiment with Symmetrized Smoother

We perform the same experiment as above, but now taking Mt =M14+M T -
M~TAM=1, while M~1 is still the IC(0) preconditioner. In contrast to the previous
experiment, the amount of work for each iteration of BNN, MG and DEF is now
approximately the same and Theorem 7.6 holds. The results of this experiment are
presented in Table 7.5.

| | k =22 | k =42 | k =82 |
[Method [# 1. DT Topp Due Ty Ta e

KB |Ix]T2 KB
DEF 87 72x%x 1078 | 94 1.3x 1078 | 34 7.6 x 1079
BNN 87 7.2x%x 1078 | 94 1.3x 1078 | 34 7.6 x 1079
MG 86 1.0x 1077 | 93 6.5x 1078 | 32 1.9%x 1078

Table 7.5: Number of required iterations for convergence and the 2—norm of the relative errors of
2L-PCG methods, for the bubbly flow problem with n = 64> and M™' = M+ M T — M TAM ",
PREC requires 137 iterations and leads to a relative error of 4.6 x 107",

As can be observed in Table 7.5, MG is now comparable with DEF and BNN, as
expected from the theory of Section 7.6. All methods require approximately the same
number of iterations and lead to the same accuracy.

7.8 Concluding Remarks

We compare two-level PCG methods based on deflation (DEF), balancing Neumann-
Neumann (BNN) and multigrid V(1,1)-cycle (MG) preconditioners in their abstract
forms, which all consist of combinations of traditional and projection-type precondi-
tioners. When specific choices are made for the algorithmic components, each MG
iteration is more expensive than a DEF or BNN iteration, due to the more sophisti-
cated form of the two-level preconditioner. At first glance, we would expect MG to
be the most effective method; however, we show that there exist some traditional and
projection preconditioners such that DEF is expected to converge faster than MG in
exact arithmetic.

136 Chapter 7. Comparison of Two-Level PCG Methods — Part |l

If Richardson relaxation is used with an optimal weighting as a traditional precon-
ditioner, then we prove that MG always gives a more favorable condition number than
DEF or BNN. For more sophisticated and effective traditional preconditioners, we still
expect MG to be superior to DEF and BNN, although the work per iteration of MG
remains more than for the other methods.

For special choices of traditional preconditioners, we show that BNN, DEF and MG
require the same amount of work per iteration and their spectra only differ in one cluster
of eigenvalues around 0 or 1. Hence, these methods are expected to show comparable
convergence behavior, assuming that coarse-grid systems are solved accurately.

The gap from the previous chapter is filled by taking the MG preconditioner into
account. For certain choices of parameters, this two-level PCG method is strongly re-
lated to those as discussed in that chapter. The different methods with their optimized
set of parameters are further examined in the upcoming two chapters.

Chapter

Efficiency and Implementation of the
Deflation Method

8.1 Introduction

The deflation method (also known as DPCG and DEF) has been introduced in Chap-
ter 3, and, subsequently, some aspects of this method have been examined in the
subsequent chapters. Efficiency and implementation issues have not been extensively
taken into consideration so far in this thesis. The aim of this chapter is to focus on
those issues. We show that a good implementation of the deflation method is essential
in order to obtain a powerful and efficient method.

We have seen in the prior chapters that increasing the number of projection vectors
usually leads to a faster convergence of the iterative process. This does not give a more
efficient deflation method in general, since the cost of each iteration becomes higher
due to larger Galerkin systems (i.e., linear systems involving the Galerkin matrix, E)
that should be solved. Hence, there is always an optimum of the number of projection
vectors, regarding the total computing time that is required to find the solution using
the deflation method. This optimum depends on many aspects, such as

e sparsity pattern and dimension of the coefficient matrix, A;
e choice of the preconditioner, M~1:
e choice and dimensions of the deflation-subspace matrix, Z;

e way of computing the matrix-vector product Py, where P is the deflation matrix
and y is an arbitrary vector.

The latter aspect, computing Py, can be divided into several steps, see Algorithm 8.
The efficiency of implementing each line of this algorithm influences both the efficiency
of the whole deflation method and the optimal number of projection vectors that should
be chosen. In general, an optimum cannot be determined beforehand, but it is common
that a relatively low number of projection vectors often improves the efficiency.

137

138 Chapter 8. Efficiency and Implementation of the Deflation Method

In this chapter, Assumption 8.1 holds in order to determine the efficiency of the de-
flation method for one specific problem setting. Numerical experiments are performed
to determine the optimal choice of the number of subdomain projection vectors with
respect to the total computing time.

Algorithm 8 Computation of Py

1y =2y

2: Solve Ey, = yq
3 y3 1= (AZ)yr
4 Py:=y—ys

Assumption 8.1.

e A is derived after discretization of the Poisson problem that is originated from
bubbly flow applications (see Section 1.3), and it consists of 7 nonzero diagonals
in the 3-D case;

e M~ is the IC(0) preconditioner (see Section 2.5.1), so that the resulting defla-
tion method is DICCG (see Section 3.6);

e 7 consists of subdomain projection vectors (see Section 4.2.3). In addition, the
number of subdomains and deflation vectors is assumed to be equal.

The deflation method can be regarded as a two-grid method, because a Galerkin
system has to be solved at each iteration. If these systems are solved recursively, then
we would obtain a method that is very close to multigrid methods, see Chapter 9.
In this chapter, we restrict ourselves to Galerkin systems that are solved in either a
direct or an iterative way. In the latter case, the resulting deflation method can be
interpreted as an inner-outer iteration process, which requires a special treatment. For
example, attention should be paid to the stability and termination criteria for both the
inner- and outer-iteration process. We examine this issue in this chapter. Moreover,
some theoretical results are presented for the deflation method with a singular Galerkin
matrix. These insights provide us a better understanding of the efficiency of the
deflation method.

Remark 8.1. Subdomain deflation lends itself for an efficient parallel implementation.
This issue is discussed in Appendix F.

This chapter is organized as follows. In Section 8.2, we show the efficient imple-
mentation of the matrix-vector product, Py. Section 8.3 is devoted to the treatment
of Galerkin systems and the associated deflation methods. In Section 8.4, we focus on
the inner-outer iteration process and its stability properties. Numerical experiments are
performed in Section 8.5, and some concluding remarks are presented in Section 8.6.

8.2. Computations with the Deflation Matrix 139

8.2 Computations with the Deflation Matrix

In order to obtain a fast solver, the deflation method should be implemented efficiently
in a program code. In this section, we show how this can be done by considering each
step of the computations with the deflation matrix. We restrict the analysis to the
3-D case, since the treatment of the 2-D case is similar. We remark that the main
part of this analysis is only valid for 3-D regular grids, and that the floating point
operations (flops) counts and their analysis only hold for subdomain deflation, where
nonoverlapping identical cubes are used as subdomains. An further discussion of the
deflation operations can be found in Appendix D and [140], whereas the flop counts
of ICCG and DICCG are analyzed in Appendix E and [140].

8.2.1 Construction of AZ

The matrix-matrix product AZ can be computed efficiently by determining only the
nonzero entries. The outcome of this product is stored as a small matrix, denoted
by Saz € RY*3, where v € N is the number of nonzero entries of the matrix AZ.
The first and second columns of S~ are filled with the row and column indices of the
nonzero entries of AZ, respectively. The third column of S, stores the corresponding
values of these nonzero entries. The entries of S4~ can be determined efficiently, since
Z represents subdomains, {€2;}, which are nonoverlapping cubes. Moreover, AZ only
has nonzero contributions near the interfaces of these cubes, and, hence, it consists of
relatively many zeros. So, the few nonzero entries of AZ may be known beforehand.

Example 8.1. Let A € R** and Z € R**? be matrices, obtained from the 1-D
Poisson-like problem, given by

1 -1 0 0 1 0
A -1 2 -1 0 7 10
0o -1 2 -1 01
0O 0 -1 1 01
Then, this leads immediately to v = 4 and

2 1 1
— 3 1 —1

AZ = =
- oAz 2 2 -1
3 2 1

Considering the number of flops, it is not difficult to show that constructing S~
requires (’)(n%k%) flops in the 3-D case, see Section E.1.
8.2.2 Construction of £

The Galerkin matrix, E := Z" AZ, can be easily formed during the construction of
AZ. Each nonzero entry of AZ makes exactly one contribution to E, by simply adding

140 Chapter 8. Efficiency and Implementation of the Deflation Method

the value to the corresponding entry of E.

The way of solving the Galerkin system, Ey, = y;, determines the best storage of
E, see Section 8.3. The matrix corresponding to this efficient storage of E is denoted
by Sg. For the time being, the number of flops to solve a Galerkin system is denoted
by 9.

8.2.3 Calculation of Py and P'y

In contrast to AZ and E, the deflation matrix, P, is not constructed explicitly. Instead,
each step of the matrix-vector product Py, as presented in Algorithm 8, is performed
separately. In the same way, P’y can be treated. Both algorithms require O(n +)
flops.

Note that Z is not stored explicitly, since the matrix-vector products, Z7y and Zys»,
can be simply determined from y, requiring O(n) flops. Furthermore, both (AZ)y» and
(AZ)"y can also be easily computed, since Sa7 is known. Both computations require
O(n%k%) flops in the 3-D case, see Section E.1.

8.3 Efficient Solution of Galerkin Systems

In this section, we demonstrate the strategies to solve Galerkin systems (i.e., Line 2 of
Algorithm 8) efficiently. Recall first from Chapter 5 that three deflation variants can
be used, see Table 8.1 (which is the same as Table 5.1).

‘ ‘ Matrices ‘

| Variant | Coefficient Deflation-subspace Galerkin Correction Deflation |

5.1 A Zy_1 Ex Qi1 P
5.2 A Z Ex Q«k Pk
53 A 7 E, Qx P,

Table 8.1: Corresponding matrices of the proposed deflation variants in Chapter 5.
We distinguish two main DICCG methods in this chapter, which only differ in the
solver of the Galerkin systems, see Definition 8.1.
Definition 8.1.

e DICCGI—k is defined as DICCG corresponding to any deflation variant of Ta-
ble 8.1, where each Galerkin system is solved directly.

e DICCG2—k is defined as DICCG corresponding to any deflation variant of Ta-
ble 8.1, where each Galerkin system is solved iteratively.

Remark 8.2.

e [f there is no ambiguity, we omit the bars on matrices, and subscripts associated
with the matrices. In addition, DICCGI1—k and DICCG2—k are shortly denoted
by DICCGI and DICCG2, if k is unspecified.

8.3. Efficient Solution of Galerkin Systems 141

e [f one applies Variant 5.3 in DICCGI, then extra care is needed to solve the
corresponding Galerkin systems. The direct solver should generate a solution up
to the null space of the Galerkin matrix.

e Any deflation variant, as presented in Table 8.1, can be used for both DICCGI
and DICCG2, since we have shown in Section 5.4 that all variants are (almost)
mathematically equivalent. However, for convenience, we restrict ourselves to
Variant 5.1 and 5.2 for DICCG1, and Variant 5.1 and 5.3 for DICCG2, in this
chapter.

In this section, we first demonstrate how a Galerkin system, Ey», = y7, can be solved
efficiently for both DICCG1 and DICCG2. Both DICCG methods require a different
treatment. We then compare these methods theoretically. We use k, that denotes
the number of grid points in each spatial direction of a subdomain, i.e., ky, = 3/?
assuming that k is a divisor of n.

8.3.1 Galerkin Systems within DICCG1

To solve Ey>, = y; with a direct method, we apply the band-Cholesky decomposi-
tion [63, Sect. 4.3.5], and, thereafter, band-back/forward substitution [63, Sect. 4.3.2].
In this case, the bandwidth of E is k3 + k%, making the decomposition efficient only
for relatively small k.

Recall that both E, and E,_; are invertible, so that their band-Cholesky decompo-
sitions exist. Furthermore, constructing the Cholesky decomposition requires O(k%)
flops, whereas the backward and forward substitutions take O(kg) flops.

8.3.2 Galerkin Systems within DICCG2

To find a solution of Ey> = y; in DICCG2, we apply the iterative solver ICCG. This is
possible and efficient, since E has the same properties as A. Obviously, E is SPSD and
has a similar sparsity pattern to A, because Z is based on nonoverlapping subdomains.
Moreover, E is better conditioned than A, see Theorem 8.1.

Theorem 8.1. Let A, Ex_1 and Ex be as in Table 8.1. Then, the following inequalities
hold:
K(Ek-1) < K(A), K(Ek) < Kk(A). (8.1)

Proof. Note first that both £, _; and Ex have rank k — 1, as Z has full rank and the
algebraic multiplicity of the zero eigenvalue of A is one. In addition, without loss of
generality (see Theorem C.2), we rescale Z, with \/E such that it satisfies ZkTZk =1
In order to prove the left-hand inequality of (8.1), it suffices to show that

Ao(A) < w2(Ex) and uk(Ex) < An(A), (8.2)

where 0 = p1(Ex) < po(Ex) < ... < pk(Ex) and 0 = A1(A) < Xa(A) < ... < Ap(A)
are the eigenvalues of E, and A, respectively.

142 Chapter 8. Efficiency and Implementation of the Deflation Method

The inequalities (8.2) can be derived from Theorem A.2 (that is the Courant-
Fischer Minimax Theorem). From this theorem, we obtain in particular

Ao (A) = min wlAw, Ma(A) = max w' Aw, (8.3)

wTw=1, wlw(A) wlw=1

where u1(A) is the eigenvector corresponding to A;(A), see [73, Sect. 4.2] for more
details.

Note that u;(A) =1, and u1(E) = 14 hold due to Assumption 1.2 and Eq. (5.8).
In addition, for w := Z,y, we have

w’ Aw = (Zwy)"AZyy = y'Ey;
(Zky)T (Zxy) = yTy;
(Zky)"1, = y'z]1, = y'1,

using Property 5.1(i). Hence, this implies

min (Zy)TA(Zyy) = min y"Ey. (8.4)
(Zi)T(Zky)=1. Zky L1, yTy=1, yLll

Now, combining Egs. (8.3) and (8.4) gives us

A2 (A) = min w! Aw < min yTEy:p,2(E),
wlw=1, wll, yTy=1, y 11,

which is the left inequality of (8.2). For the right inequality of (8.2), it follows in a
similar way that

pk(E) = max y"Ey < max w! Aw = \,(A),
yTy=1 wlw=1
where we have applied

max (Z)T A(Zky) = max y Ey.
(Ziky)T (Ziy)=1 yTy=1

The right-hand inequality of (8.1) can be proven in a similar way as above. 0

Next, there is no need to force invertibility of Eg, since ICCG can deal with a
singular coefficient matrix. We only have to ensure the consistency of all Galerkin
systems during the outer-iteration process of DICCG2, see Theorem 8.2.

Theorem 8.2. Let DICCG2 be as given in Definition 8.1. Then, all Galerkin systems
within DICCG2 are consistent.

Proof. Recall that Ex_1 is invertible, so that we can restrict ourselves to £ .= E,. The
Galerkin system, Ey, = y;, appears three times in Algorithm 6 (Lines 1, 3 and 11),
which are treated separately below.

In the matrix-vector product Pry, we have to solve the Galerkin system Ey, = Z ' rg.

8.3. Efficient Solution of Galerkin Systems 143

This system is consistent, since it is compatible due to Eq. (5.8) and
ZTr) Ly=rd Zl=r{1,=b"1, - x]Al,=0, —x]0,=0,. (8.5)

Moreover, since
(ZTAp)) 1 = p] AZ1) = p] A1, =0, (8.6)

the system Ey, = ZTApj is compatible as well. Hence, PAp; is consistent. Finally,
using the same argument as above, we conclude that PT)?j+]_ is also consistent, using
the fact that P7 ;11 = Xj41 — ZETZT A%j4 1. O

From Theorem 8.2, we conclude that it is possible to solve each Galerkin system,
Ey, = yy, iteratively. Each of the ICCG steps costs O(k) flops, and the efficiency of
this method depends on the number of required inner ICCG iterations.

Remark 8.3. Note that the solution of the Galerkin systems in Variant 5.3 is not
unique, since it is determined up to a constant vector. If y, is a solution of Exy> = y1,
then y, + al, with a € R js also a solution. Fortunately, y3 .= AZyx(y2 + aly) is
unique, due to the fact that AZ 1, = A1, = 0,,. Hence, Algorithm 8 gives a unique
Py for all deflation variants.

Recall that, in the case of DICCG2, we have an inner-outer iterative process with
DICCG as an outer-iteration process and ICCG as an inner-iteration process, so that
we need two different termination criteria. The inner and outer tolerances are denoted
by Souer aNd Oiner, respectively, which satisfy

5\nner - w 5OUtEr1 w > 0 (87)

For large w > 1, DICCG2 does not converge, as the method is sensitive to inaccu-
rate solves of the Galerkin systems, see also [103, Sect. 3]. However, for small w < 1,
the convergence of the inner iterations of DICCG2 is relatively slow; the inner-iteration
process may stagnate or even diverge due to a too severe termination tolerance. There-
fore, w should be chosen carefully to obtain an convergent and efficient method. From
our numerical experiments with bubbly flows, it appears that

w=10"2 (8.8)

is an appropriate choice, but it usually depends on many factors, see [64,124] for more
details.

Remark 8.4. For problems with a large grid size or large jumps in the coefficient of the
PDEs, it could be advantageous to solve the inner iterations with DICCG, instead of
ICCG. The inner iterations could even be solved by a recursive application of DICCG,
see, e.g., [48]. This is in analogy with multigrid-like methods, see also [56, Sect. 3].

144 Chapter 8. Efficiency and Implementation of the Deflation Method

8.3.3 Comparison of Galerkin Matrices

Here, we examine the Galerkin matrices in the different deflation methods in order to
determine the fastest method.
Note first that the Galerkin matrices, Ex_; and Ey, satisfy

Ex = [By x (8.9)

X X

where x represents some irrelevant entries of Ex. Then, we can show that the eigen-
values of E, and E,_1 interlace, see Theorem 8.3.

Theorem 8.3. Let E,_1 and Ey be as given in Table 8.1. Then, the following inequal-
ities hold:

0=X(Ek) <A1(Ex—1) < Xo(Ex) < ..o < Xc1(Ex) < Mec1(Ex—1) < Mi(Ex).

Proof. The theorem follows immediately from the interlacing property (Lemma A.7).
O

In contrast to the case that A is invertible, the spectrum of Ex_; is not in the
range of the nonzero eigenvalues of Ey, i.e., k(Ex_1) is not smaller than k(Ey). But,
in practice, we often see that the largest eigenvalues of both matrices are almost the
same, whereas the smallest nonzero eigenvalues differ significantly, i.e., we have

A-1(Ek—1) = M(Ek), A(Ex-—1) < Aa(Eg),

for large k. This yields
K(Ex) < K(Ek-1)-

Accordingly, one should iterate with Ej, rather than Ex_;, to obtain the fastest ex-
pected convergence of the inner-iteration process. In other words, Variant 5.3 is the
variant of choice in DICCG2 and, hence, this is used in Section 8.5.3.

8.3.4 Deflation Properties for a Singular Galerkin Matrix

In Section 3.5, we have presented some theoretical results based on deflation matrices
whose Galerkin matrix, E, is nonsingular. Under certain circumstances, these results
also hold for the case with a singular Galerkin matrix. We start with Assumption 8.2
that is satisfied throughout this subsection.

Assumption 8.2. Suppose that Z, = [Zx 1, zx] with Zy 1 € R<(k=1) and z, € R"
holds. Then, we assume that Ey := ZkTAZk is a singular SPSD matrix, whose pseudo-
inverse E;} satisfies

El =

k (8.10)

0/, O

E;,ll 0k*l]

where Ex_1 1= ZkalAZk,l is an invertible SPD matrix.

8.4. Stabilization of the Deflation Method 145

Note that Eq. (8.10) can be deduced from Eq. (8.9) by choosing zeros for x. In fact,
this subsection deals with a particular choice for Ex_; and E.

From Assumption 8.2, we have that the nonzero eigenvalue distributions of Ej
and Ex_; are identical, so that Theorem 8.4 follows immediately. This results in the
fact that the convergence of the inner solver for Galerkin systems within both DICCG1
and DICCG2 is the same, if they are performed by a PCG method and the Galerkin
matrices satisfy Assumption 8.2.

Theorem 8.4. Let E, 1 and Ey satisfy Assumption 8.2. Then, k(Ex_1) = k(Eg).

Moreover, the proof of Theorem 5.5 is straightforward if Assumption 8.2 is satisfied.
For completeness, this is presented below.

Theorem 8.5. Let A and M~! be an SPSD and SPD matrix, respectively. Let Py
and P,_1 be as defined in Table 8.1. Suppose that Assumption 8.2 is satisfied. Then,
M=1PA= M"1P,_1A holds.

Proof. Using
Qx = ZkE,jZZ—
E.ll 0k
= [Zk-1. z] 02711 0 (Zk1, 2]
ZkflEktleTA
Q-1
the theorem follows immediately.]

8.4 Stabilization of the Deflation Method

In practice, the deflation method (DPCG or DEF) might be not robust if the number of
projection vectors, k, is relatively large. This is caused by the fact that Galerkin systems
involving Ex or Ex_1 might also become large and cannot be solved accurately. The
deflation method can be stabilized by adding a correction matrix in the linear system,
i.e., we solve (cf. Eq. (6.11))

(PTM™ 4+ Q)Ax = (PTM™! +Q)b, (8.11)

with starting vector xg = Qb+ P %, and an arbitrary vector X5. The resulting method
is called the adapted deflation method (ADPCG or A-DEF) method, which is equal to
the A-DEF2 method as introduced and analyzed in Chapter 6.

Remark 8.5.

e The operator PTM~1 + Q in Eq. (8.11) cannot be replaced by M~1P + @,
because it has been shown in Chapter 6 that the resulting method may suffer
from instability.

146 Chapter 8. Efficiency and Implementation of the Deflation Method

e The solution, x, in (8.11) is the same as the solution of Ax = b, since PT M~1+Q
Is invertible.

e The matrix-vector product Qy for any y € R" can be carried out efficiently in a
similar way as Py or PTy (see Section 8.2.3).

It has been demonstrated in Chapter 6 that ADPCG can be derived from the well-
known balancing Neumann-Neumann (BNN) method [89]. In addition, both methods
have more-or-less the same favorable robustness properties, due to the following the-
orem (which is Theorem 6.3 for an SPSD coefficient matrix, A).

Theorem 8.6. Let A and M~! be an SPSD and SPD matrix, respectively. Suppose
that P is a deflation matrix corresponding to any deflation variant as presented in
Table 8.1. Let the spectra of DPCG and ADPCG be given by

o(M~1PA) = {1, ..., At o(PTM YA+ QA) = {u1. ..., uat,

respectively. Then, the numbering of the eigenvalues within these spectra can be such
that the following statements hold:

)\,‘ZO,N,':l, fori=1,..., k;
Ai = Wi, fori=k+1,..., n.

Proof. The proof is almost the same as the proof of Theorem 6.3, see also [85]. [

If Galerkin systems with E, or Ex_1 are solved inaccurately, then the zero eigen-
values associated with DPCG become nearly zero, resulting in a method that is not
robust. On the other hand, we do not have this phenomenon in the ADPCG method,
since the corresponding eigenvalues of M~1A are projected to one instead of zero,
see Chapter 6 for more details. It follows that if the Galerkin system, Ey, = y;, Is
solved iteratively, then this can be done with a lower accuracy for ADPCG, compared
with DPCG. As discussed in Section 8.3, the Galerkin systems within DPCG should
be solved accurately. Following the discussion above, the expectation is that a larger
w in Eq. (8.7) can be taken in the ADPCG method. In the numerical experiments (of
Section 8.5.3, we investigate the choice of w for both DPCG and ADPCG in more
detail.

Remark 8.6. /f the Galerkin system, Ey, = y1, Is solved inaccurately, the resulting
operator PTM~1 4+ Q is varying at each iteration, while a fixed operator is expected in
the CG process. In other words, the operation

ya=(PTM 1 +Q) 'y
seen by the outer process turns out to be

yo = F(y1).

8.5. Numerical Experiments 147

where F can be regarded as a nonlinear mapping. If the inner tolerance is too loose,
the optimal convergence property of the CG process can only be preserved, if one
performs a full orthogonalization of the search direction vectors that can be extended
with truncation and restart strategies. This results in GMRES-like methods, such
as the Flexible CG method [109]. We also consider this variant in Section 8.5.3.
However, we note that it is possible to use the original (D)PCG method with inexact
preconditioning, since the convergence rate of the outer CG process can be maintained
up to a certain accuracy for the inner iterations, see [62, 64].

8.5 Numerical Experiments

In this section, we perform some 3-D numerical experiments with stationary bubbly flow
problems, which illustrate the theoretical results as obtained in the previous sections.
Results of the 2-D numerical experiments can be found in [140, Sect. 7]. The numerical
results are presented in terms of both the number of iterations and computing time,
so that this section is basically an extension of Section 3.6.

We apply the problem setting as given in Section 1.3. Four test problems are
considered with m = 0, 1,8, 27 air bubbles. The corresponding geometries of these
test problems can be found in Figure 1.2.

In Section 8.5.1, it is shown that the deflation method can indeed be implemented
efficiently. We vary the density contrast, €, the number of projection vectors, k, and
the grid size, n. First, ICCG and DICCG1 are compared, followed by the comparison of
DICCG1 and DICCG2. DICCG1 is based on Variant 5.2, whereas Variant 5.3 is used in
DICCG2. Subsequently, we compare DICCG2 and ADICCG?2 in Section 8.5.3, where
ADICCG2 denotes the ADICCG method in which the Galerkin system, Ey, = y1, Is
solved iteratively using ICCG. We investigate whether DICCG2 can indeed be stabilized
without losing efficiency.

For each iterative process, a random starting vector and the termination crite-
rion (2.23) with a tolerance § = 108 are used. As a measure of the accuracy of the
solutions, the exact relative residuals are also investigated in the experiments. These
results are omitted below, as these residuals are comparable for ICCG and both DICCG
methods in all cases.

8.5.1 Results for the Deflation Method with Efficient Implementation

The computations of this subsection are performed on a Pentium 4 (2.80 GHz) com-
puter with a memory capacity of 1GB. The code is compiled with FORTRAN g77 on
LINUX.

Results for a fixed grid size and density contrast

The results for all test cases with a grid size n = 100° and density contrast € = 103
are shown in Table 8.2.

148 Chapter 8. Efficiency and Implementation of the Deflation Method

| | m=0 | m=1 | m=38 | m =27 |
| Method | #1t. CPU[#It. CPU|#It. CPU| #It CPU|
ICCG 170 252 [211 311 [291 43.0 [310 46.0

DICCG1—23% | 109 20.2 | 206 37.5 | 160 29.1 | 275 50.4
DICCG1-53 | 56 11.3 | 58 115 | 72 14.2 | 97 19.0
DICCG1—-10% | 35 8.0 | 36 85 | 36 8.2 | 60 13.0
DICCG1—203 | 22 26.5 | 25 27.6 | 22 27.2 | 31 29.3

Table 8.2: Convergence results for ICCG and DICCG1 for all test problems with n = 100* and
€ = 10%. ‘# It' means the number of required iterations for convergence, and ‘CPU’ means the total
computational time in seconds.

Considering the results in Table 8.2, we see that DICCG1 always requires fewer
iterations when compared to ICCG. Recall that DICCG1 requires fewer iterations if
k becomes larger (cf. Section 3.6.1). The optimal choice with respect to the CPU
time is k = 103, i.e., DICCG1-103 converges most rapidly in all test cases. The
improvement in the CPU time is relatively large compared to ICCG. Furthermore, one
can notice that, in general, it is not always the case that more bubbles in the problem
setting lead to more iterations, and, therefore, more CPU time for both ICCG and
DICCGLI to converge. Namely, for DICCG1-23 and DICCG1-203, we observe that
fewer iterations and CPU time are required for the test case with m = 8 than for
m = 1. Finally, notice that, for large k, DICCG1 requires significant CPU time due to
the increase of the computational cost for solving Galerkin systems. Hence, DICCG1
does converge with a small number of iterations for k > 103, but it requires a lot of
CPU time for each iteration.

To visualize the results given in Table 8.2, we present those for the test case with
m = 27 in Figure 8.1. From Subfigure 8.1(a), it can be observed that as small k is
increased, the number of iterations of DICCGI1 decreases. For large k, the benefit is
smaller. Furthermore, after a peak at k = 23, the required CPU time for DICCG1
decreases until k = 103. Thereafter, the CPU time increases and DICCGL is less
efficient, see Figure 8.1(b). In Figure 8.1(c), the benefit factor for the number of iter-
ations is depicted for each k. Obviously, the larger k, the larger the profit of DICCGI1.
For example, DICCG1—203 requires almost 10 times fewer iterations than ICCG. Fi-
nally, the benefit factor for the CPU time is depicted for each k in Figure 8.1(d). For
k = 103, the maximum benefit factor is achieved. In this case, DICCG1—102 is around
3.5 times faster than ICCG.

Results for Varying Grid Sizes and Density Contrasts

The results for the test problem with 27 bubbles and varying grid sizes are presented
in Figure 8.2. Here, we use ¥ = Z—j as the ratio of the grid size and the number of
deflation vectors, both in one spatial direction. We investigate whether DICCGL1 is
scalable, i.e., whether the number of iterations of DICCG1 is equal for all k and for a
fixed ¥.

From the figure, one observes immediately that for larger grid sizes, the differences

8.5. Numerical Experiments

149

Number of iterations

0 5 10 15

20
k1/3
. . 1

(a) Number of iterations versus k3.
O]
910
Q
a o 1
e}
j=
© 8- 4
8
o 7 .
%)
S o 1
8
g s]
S
g 4 1
=)
E 3 i
c
5 ol |
<]
8, ‘ ‘ ‘

0 5 10 15 20

kll3

(c) Ratio of numbers of ICCG and DICCG1 iter-
1

ations versus k3.

Figure 8.1: Visualization of the

400 ‘ : :
—— ICCG . 13

-6 . DICCG1-k with N,/ k"*=10
_a— DICCG1-kwith N/ k"*=5

350(

300

250

200¢

1501

Number of Iterations

1001

0 R R R SR G St 4

%O 60 70 80 90 100
N,N,N
Xy oz

(a) Number of iterations versus grid size per di-

rection.

110

0 5 10 15

k1/3
(b) CPU time versus K3,
4

20

Ratio of CPU time ICCG and DICCG

0.5
0

10 15
k1/3

[

20

(d) Ratio of CPU time required for ICCG and

DICCG1 versus k3.

results for the test problem with m = 27.

250 ‘ : :
—— ICCG 3 s
-¢. DICCG1-kwith N, /k"*=10
—_a DICCG1-kwith N, /K"*=5
200 ,
7
=]
j=
S 150t |
Q
e
()
£
= 100t]
2
o
O
50f ,
-4
--------- <+
0 60 70 80 9 100 110

(b) CPU time versus grid size per direction.

Figure 8.2: Results for the test problem with m = 27 for varying grid sizes. ICCG and DICCG1 with

both 19 = 5 and 1 = 10 are presented.

150 Chapter 8. Efficiency and Implementation of the Deflation Method

in performance between ICCG and DICCGI1 also become significantly larger. For in-
stance, in the case of n = 1003, ICCG converges in 275 iterations and 50.4 seconds,
while DICCG1—102 finds the solution in 60 iterations and in only 13.0 seconds. More-
over, we notice that the number of ICCG iterations grows with the grid sizes, while the
number of iterations for DICCG1 for both 9 = 5 and ¢ = 10 remains approximately
constant. It seems that, in order to keep the number of iterations constant in DICCG1
as the grid size is increased, the number of deflation vectors must also increase, pro-
portionally to the grid sizes. Moreover, the CPU time required for DICCG1 increases
more-or-less quadratically with grid size, which is a consequence of the expensive direct
solve of the Galerkin systems. This is in agreement with the theory (cf. Section 8.3.1).
In the next subsection, this is remedied by using DICCG2 instead of DICCGLI.

Next, after experiments with varying grid sizes, we fix the grid size as n = 1003
and vary the low-density, € (which is %) The results are presented in Figure 8.3.

From the figure, we see that DICCG1 for k > 23 hardly depends on ¢, while ICCG
becomes obviously worse when we choose a smaller €. In other words, DICCG1 with
k > 23 is insensitive to the density contrast in terms of both the number of iterations
and the CPU time.

700

—— ICcCG 90} —e-lcce
-6 - DICCG1-2° -4 - DICCG1-2
eoor -=- DICCG1-5° || 80} -=— DICCG1-5°
-0~ DICCG1-10° - - DICCG1-10°
» 500F ¢ DICCG1-20° | 701 "=~ ¢ biccei-20°
5
Soa00f T 60y
b [=
> 50
o] r a
3 300 5
£ a0}
< 200}
300 ® ° 4
100
B = i mmmm @ mimmimmmim i m i @im i m i m g 20y
0 ‘ M ‘ M N S ST o A
-8 -7 -6 -5 -4 -3 . _ . — -~
10 10 10 10 10 10 10 8 10 7 1) 5 10 4 10 3
Low-density & Low-density €
(a) Number of iterations versus low-density €. (b) CPU time versus low-density €.

Figure 8.3: Results for the test problem with m = 27 for varying density contrast, €.

8.5.2 Comparison of DICCG1 and DICCG2

In the previous subsection, we have seen that DICCGLI is very efficient as long as
k < 203. From k = 203, each iteration of DICCGL is relatively expensive, although
only a relatively low number of iterations is needed. The bottleneck is the expensive
construction of the banded Cholesky decomposition of £. Direct computations with
E can be avoided by using DICCG2, hopefully resulting in a fast solver for large k.
In this subsection, a numerical comparison between DICCG1 and DICCG2 is carried
out. Note that, since we fix 8., = 1078 for all test cases, the termination tolerance,
Somer = 10719 should be adopted for the inner iterations in DICCG2, as mentioned in
Section 8.3.2.

8.5. Numerical Experiments 151

Some results for the test problem with m = 27 and varying grid sizes can be found
in Figure 8.4. Similar results are found for the other test problems. The number of
iterations required for both DICCG1 and DICCG?2 is more-or-less equal in all test cases,
which is in agreement with Theorem 5.5, so these results are omitted for convenience.

We observe in Figure 8.4 that for a relatively small number of deflation vectors,
DICCG1 and DICCG?2 perform approximately the same. However, for problems with
relatively large k, DICCG2 is clearly more efficient. The difference between the two
DICCG methods becomes significant at k = 203. In addition, we observe that, in all
cases, DICCGL1 achieves its optimum at k = 103, whereas the optimum of DICCG2 is
achieved for k > 103. Hence, we conclude that DICCG?2 is the most efficient method
for k > 103. This conclusion is rather natural, but cannot be drawn beforehand. For
example, unforeseen problems solving the Galerkin systems may occur, since the precise
efficiency of solving these systems is not known exactly, and the consistency of these
systems may be lost due to round-off errors.

100p -®- DICCG1-k (n=60%) ||
. -8 DICCG2-k (n=60°)
sol -m- DICCG1-k (=100 ||

' - DICCG2-k (n=100%)
) -#- DICCG1-k (n=120%)
—— DICCG2-k (n=120%) ||

o2}
(=}
T
-

IS
=)
T

CPU time (seconds)

201

4 T
10 15 20
kll3

Figure 8.4: CPU time of DICCG1 and DICCG2 for the test problem with m = 27 and various grid
sizes.

8.5.3 Comparison of DICCG2 and ADICCG2

The computations of this section are performed on an Intel Core 2 Duo (2.66 GHz)
computer with a memory capacity of 8GB. The code is compiled with the Intel FOR-
TRAN compiler, ifort, on LINUX. Some discrepancies could be observed between the
results of the experiments of this subsection and the previous subsection, due to an
updated code and computer environment.

We consider two test problems (cf. Figure 1.2):

e Test Problem 1: m = 8 bubbles, radius s = 0.10, grid size n = 100°;

e Test Problem 2: m = 27 bubbles, radius s = 0.05, grid size n = 1503,

where the density contrast is € = 103. We examine PCG and the deflation meth-
ods DICCG2 and ADICCG2 for different parameters of §,,... and number of deflation
vectors, k.

152 Chapter 8. Efficiency and Implementation of the Deflation Method

Results of the Experiments

The results of the experiments for the two test problems can be found in Table 8.3.

(a) Test Problem 1.
| | | k=5 | k=100 | k=200 | k=25]
| Method [b | #It. CPU | #1t. CPU | #1It. CPU | #It. CPU |
DICCG2 10710 | 151 179 | 66 8.5 32 5.8 28 6.5
1078 | NC - NC - NC - NC -
ADICCG2 | 1070 | 140 20.2 | 60 9.2 30 7.2 27 10.1
1078 | 140 20.1 | 60 9.1 |30 6.7 |27 9.4
107% | 140 20.1 | 60 9.1 | 30 6.3 | 27 8.2

107% | 141 202 | 60 9.0 29 5.6 29 7.0
1072 | NC - 194 282 | NC - NC -

(b) Test Problem 2.
| | | k=15 | k=25 | k=507 |
| Method [6wer | #1t. CPU | #1It. CPU | #It. CPU |
DICCG2 10710 | 53 24.1 | 44 25.1 | 24 82.1
1078 | NC - NC - NC -
ADICCG2 | 10710 | 50 27.6 | 41 325 | 22 130.4
1078 | 50 27.2 | 41 30.7 | 22 116.0
107% | 50 26.7 | 42 29.3 | 22 86.2

1074 | 52 27.4 | 43 27.0 | 24 58.2
102 | NC - NC - NC -

Table 8.3: Results for DICCG2 and ADICCG2 to solve Ax = b with n = 1003, corresponding to Test
Problem 1. ICCG requires 390 iterations and 37.0 seconds for Test Problem 1 and 543 iterations and
177.6 seconds for Test Problem 2. ‘# It' = number of iterations of the outer process, ‘CPU" = the
required computing time (in seconds) including the setup time of the methods, ‘'NC' = no convergence
within 250 iterations.

From Table 8.3, we see in all test cases that DICCG2 and ADICCG2 are always
faster and require fewer iterations compared with ICCG, which confirms Theorem 3.5.
Both deflation methods require approximately the same number of iterations for fixed
k, which is as expected from Theorem 8.6. It can be observed that increasing the
number of projection vectors, k, leads to a reduction of the number of iterations for
both DICCG2 and ADICCG2. This is in agreement with Theorem 3.3. In additio, we
expect that ADICCG2 is more robust than DICCG2 due to Theorem 8.6. This is indeed
the case: for §,.... < 1078 DICCG2 does not converge anymore, while ADICCG2 still
shows convergence, provided that ... < 10~*. We notice that the benefit of using a
larger i in ADICCG2 can be substantial for large k.

Furthermore, it can be noticed that there is an optimum regarding the computing
time for specific k and corresponding 8,..... For Test Problem 1, this is k = 203 and
Sinee = 10710 in the case of DICCG2, whereas k = 203 and §,.. = 10~ are the
optimal values in the case of ADICCG2. Considering Test Problem 2, the optimal
choices are k = 153 and §,,,.., = 10719 for DICCG2, and k = 253 and §,,., = 10~* for

8.5. Numerical Experiments 153

ADICCG2. Hence, ADICCG2 can be faster than DICCG2 using their optimal 6., .

Discussion of the Results

From the above results, it can be observed that the optimal values are w = 1072 for
DICCG2 and w = 10* for ADICCG2 with respect to Eq. (8.7). These still hold if
we vary Oower. Apparently, DICCG2 can deal with nearly zero eigenvalues as long as
they are very small, so that they are treated as zero eigenvalues by the method. In
addition, ADICCG?2 is faster than DICCG2 in some cases, because a larger 0,,., Can
be taken, while the number of outer iterations remain approximately the same. This
is rather surprising, because no extra orthogonalization steps considering the search
directions or residuals are added to the iterative process in order to preserve the known
orthogonality properties of the CG process.

We investigate the inner-outer iterations in more detail. Note first that each outer
iteration of ADICCG2 requires two inner solves (i.e., two solves for the Galerkin sys-
tems), whereas DICCG2 only needs one (cf. Egs. (3.14) and (8.11)). Therefore,
ADICCG2 can only be more efficient, if each inner solve of this method is performed
at least twice as fast as DICCG2, which is the case for sufficiently large 6. This
is illustrated in Figure 8.5, which shows a typical convergence of the residuals of an
inner solve, within an outer iteration of ADICCG2—253. It can be observed that
ADICCG2-252 would only be faster than DICCG2-253, if the inner solves are re-
duced from 142 to at most 71. This means that, in theory, one has to perform the
inner solves with an accuracy of approximately &,.. < 107°. This can indeed be
achieved for ADICCG2—253, see Table 8.3. Moreover, we remark that if kK becomes
relatively large, then E would also be very large. Then, it is inevitable to use DICCG2 or
ADICCG2 instead of ICCG in order to solve Ey, = y; efficiently. Recall that we would
then obtain an iterative method with a multilevel preconditioning, see Remark 8.4.

Typical convergence of the residuals of the inner solves

=
o
[

=
o
A

=
o
&

Norm of Relative Residuals

i
o

10710 L

20 40 60 80 100 120 140
Iterations

Figure 8.5: Convergence of the residuals during an inner solve at one iteration of ADICCG2—25°
(Test Problem 2). The plots are similar for the other outer iterations of the same test case, since one
applies the inaccurate solves to the Galerkin matrix, E.

Next, we examine the residuals of the outer iterations to see what happens if a
method does not converge, see Figure 8.6. From the figure, we can observe that if

154 Chapter 8. Efficiency and Implementation of the Deflation Method

DICCG2 shows no convergence, it even diverges. This is in contrast to ADICCG?2,
whose residuals are still decreasing slowly. This is an extra advantage of ADICCG2.
Although it might not be the fastest method, it gives somewhat more robust residuals
in case it converges slowly.

Convergence of the residuals of the outer solves of DPCG , Convergence of the residuals of the outer solves of ADPCG
" T T T T 10 . . : . -
1072 107}
107 107
—6
-6 10 F H B 4
10 : -8] 102
alnner=l EinnerilO
_10710 -
éinner_l0 —_ Binner_l0
10°L . i ;P i d 10 i i i . 1
50 100 150 200 250 50 100 150 200 250
Iterations Iterations
(a) DICCG2. (b) ADICCG2.

Figure 8.6: Convergence of the residuals of the outer iterations from DICCG2—25° and ADICCG2—252
(Test Problem 2).

The reason that ADICCG2 does not work for §,,... > 10~ % is twofold. On the one
hand, solving Ey» = y; with low accuracy can be interpreted as computing y» = ETy;
with a strongly perturbed matrix ET. As concluded in Section 8.4, the associated
spectrum of ADICCG2 remains the same if E* is slightly perturbed. Large perturba-
tions of E™ can lead to the appearance of relatively small eigenvalues in the spectrum,
which cause the slow convergence of the method. On the other hand, as mentioned in
Section 8.4, the (D)PCG algorithm cannot deal with strongly varying preconditioners,
because orthogonal properties of the residuals and search directions are not guaranteed
anymore. This problem might be solved by using flexible (D)PCG instead of (D)PCG,
but experiments show that this does not lead to better results. In Figure 8.7, the results
can be found for one test case of Test Problem 1, where two variants of ADICCG2
is used: the original adapted deflation method and its flexible variant without restart
or truncation strategies, denoted by ‘original ADICCG2" and 'flexible ADICCG2’, re-
spectively. It can be readily noticed in Figure 8.7 that the flexible variant might lead
to a convergent method (see the case with §,,... = 10*4), but it requires too many
iterations to be an effective method. The situation would be even worse, if restart or
truncation strategies are added.

8.6 Concluding Remarks

In Chapter 5, it is demonstrated that DICCG can be easily adapted so that it is
also applicable to linear systems with a singular coefficient matrix. Additionally, the
method is efficient for bubbly flow problems when measured by the required number of
iterations. In this chapter, we demonstrate that the computational time is also gained

8.6. Concluding Remarks 155

Convergence of the residuals of the outer solves of Original ADPCG Convergence of the residuals of the outer solves of Flexible ADPCG
0 T T T T T T T
10" 0
10 ' 5 =10°
inner
\
" 5 =107
N ! = = = “inner
107°H LI L
B 10 x‘,‘ élnner_lo
-4 ! l\
107 » y
107'F L
v
)
10 10°} S
T
vl
1\4‘\‘ ,“
10 ‘ ‘ : ‘ 10k ‘ R N ‘
50 100 150 200 250 50 100 150 200 250
Iterations Iterations
(a) Original ADICCG2. (b) Flexible ADICCG2.

Figure 8.7: Residual plots of the outer iterations from ADICCG2—25 (Test Problem 1).

by applying DICCG instead of ICCG, if an efficient implementation is used.

We show that the involved Galerkin systems within the deflation method can be
solved both directly and iteratively. The resulting DICCG methods are denoted by
DICCG1 and DICCG2, which only differ in the implementation of the solvers for the
Galerkin systems. A direct solver for these systems is adopted in DICCGI, whereas an
iterative solver for the Galerkin systems is applied in DICCG2. Theoretical properties of
these Galerkin systems are derived, which are of importance to DICCG2. Furthermore,
insights are gained into stabilizing the deflation method, resulting in the ADICCG2 (A-
DEF2) method. In this method, the inner iterations can be solved rather inaccurately,
while the number of outer iterations remain approximately the same.

Several 3-D numerical experiments based on bubbly flow problems are performed
in order to test the efficiency of DICCGI1 and DICCG2. For a relatively small number
of deflation vectors, DICCG1 performs very well, but DICCG2 is more efficient for
a larger grid size and/or number of deflation vectors. Compared with ICCG, both
methods significantly reduce the computational cost in all test cases, especially for
large problems. Additionally, they are insensitive to density contrasts, while ICCG
has difficulties for large contrasts. Furthermore, we show that the DICCG methods
are scalable in terms of iterations and CPU time, as long as the number of deflation
vectors is chosen proportionally to the grid size. Moreover, numerical experiments
illustrate that the DICCG2 can indeed be stabilized without losing much efficiency.
The resulting ADICCG2 method can be more efficient than DICCG2 for some test
cases. In order to improve the efficiency of the deflation methods considered in this
chapter, multigrid-like components could be incorporated. Moreover, these methods
can also be compared to well-known multigrid methods based on their typical and
optimized parameters, which is the main topic of the next chapter.

156 Chapter 8. Efficiency and Implementation of the Deflation Method

Chapter

Comparison of Deflation and Multigrid
with Typical Parameters

0.1 Introduction

In this chapter, we compare deflation and multigrid methods based on their typical
optimized parameters applied to linear systems coming from bubbly flow problems.
In the previous chapters, we have seen that the deflation method (DPCG) is a 2L-
PCG method that offers one attractive possibility for the efficient solution of the linear
system (see Eq. (1.1)),

Ax = b, (9.1)

which takes the form of a Poisson equation (also called ‘pressure-correction equation’)
with discontinuous coefficients and Neumann boundary conditions, see Eq. (1.3).
Recall from Chapters 6 and 7 that another option for the efficient solution of the
pressure-correction equation is the use of multigrid (MG) techniques. We have shown
that, algebraically, DPCG and PCG with a MG preconditioner are strongly related to
each other. These results are only valid when the same set of parameters are taken in
both corresponding algorithms. However, the preferred choices for these components
are quite different between the two methods, and, in addition, they have a different
meaning and background. The fine-grid smoother or preconditioner is usually chosen to
give effective treatment of certain modes of error. A complementary space is defined, in
terms of a set of deflation vectors or the range of the multigrid interpolation operator,
and an optimal correction over this space is computed. However, while deflation
techniques are typically based on a strong fine-scale preconditioner (such as an 1C(0)
preconditioner) in combination with a coarse-scale correction over a very small space,
multigrid techniques typically make use of a rather weak fine-scale smoother (e.g., a
Jacobi or Gauss-Seidel iteration) in combination with a coarse-scale correction over a
space that is a large fraction of the fine-scale problem size. Furthermore, the treatment
of the linear systems associated with the coarse scale are handled differently. Deflation
techniques typically solve these systems using a direct or iterative method, whereas a

157

158 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

recursive procedure is used in the multigrid approach.

The black box multigrid technique, first introduced in [3], uses geometrically struc-
tured coarse grids in combination with an interpolation operator designed to account
for the effects of jumps in the diffusion coefficients to achieve fast multigrid conver-
gence in many situations [12,37,39]. Algebraic multigrid, or AMG, is also known to
be effective for elliptic problems with jumps in their coefficients [118, 129], achieving
this efficiency by tailoring both the coarse-grid structure and interpolation operator to
account for the jumps in the coefficients. While both of these solvers are applied suc-
cessfully in many cases, the modelling of bubbly flows provides some unique challenges.
In particular, in simulations with bubbles that appear at the finest resolution of the grid,
these techniques may encounter difficulties in treating such small-scale effects through
adapting the coarse-scale models. In these cases, we find in this chapter that using the
above multigrid algorithms as preconditioners within PCG easily restores their optimal
convergence behavior at a minimal extra cost.

The use of MG-preconditioned CG within a pressure-correction method is not new.
Indeed, multigrid was first considered for use as a preconditioner for discontinuous-
coefficient problems very early in its history, see [18, 78]. Under certain symmetry
assumptions on relaxation and the coarse-grid operators, Tatabe demonstrated that
multigrid always defines a positive-definite preconditioner (regardless of the number
of pre- and post-relaxations) and, so, multigrid is acceptable as a preconditioner for
PCG [149]. In the fluid dynamics literature, Tatabe's MGCG method has been adopted
for the solution of the pressure-correction equation for variable-density flows [115,130].
Similarly, the MUDPACK software package [1] has also been used for solving these
equations [49, 50, 152], but this has been found to not offer robust performance to
the large density jumps that appear in realistic simulations [50]. In contrast to many
of these techniques, the multigrid algorithms considered here include two important
features, Galerkin coarsening and operator-induced interpolation. Galerkin coarsen-
ing creates the multigrid coarse-grid operators using matrix products that restrict the
fine-grid operators onto the range of interpolation. This greatly simplifies the task of
creating a consistent coarse-grid correction process for problems with density variations
that are not resolved on the coarse scale. Operator-induced interpolation techniques
further improve this approach by building interpolation operators tuned towards cap-
turing the fine-scale modes that are slow to be reduced by simple relaxation on the
variable-coefficient problem.

In this chapter, we make a detailed comparison between deflation and multigrid
methods with their own typical parameters for bubbly flow problems. While the appli-
cation of the deflation method in bubbly flows is examined in the previous chapters, the
use of advanced multigrid methods for these flow simulations has, to our knowledge,
not been previously considered in the literature. As well, the linear system (9.1) that
arises in 3-D two-phase flows offers a good opportunity for comparison of these two
families of solvers. In contrast to previous theoretical comparisons, as performed in
Chapters 6 and 7, we focus here on evaluating each solver using its most advantageous
selection of options.

9.2. Numerical Methods 159

The remainder of this chapter is organized as follows. Section 9.2 presents the
details of the deflation and especially the multigrid methods considered here. Some
implementation details of the two families of solvers are compared in Section 9.3. Then,
Section 9.4 shows a numerical comparison of the different solvers for 3-D stationary
bubbly flows. Concluding remarks are presented in Section 9.5.

Remark 9.1. Domain decomposition methods, such as the balancing Neumann-Neu-
mann method, with their typical and optimal parameters are not considered in this
chapter, because these methods are advantageous in especially a parallel environment.
Since this chapter is restricted to computations on a sequential computer, DDM is
excluded from the comparison.

9.2 Numerical Methods

We know from Section 1.3 that the solution of the pressure-correction equation within
operator-splitting approaches has long been recognized as a computational bottleneck
in fluid flow simulation. In the case of single-phase fluids, a common approach to
overcoming this bottleneck is the use of multigrid solvers for this equation [151].
Standard geometric multigrid techniques offer optimal-scaling solution properties for
the pressure-correction equation in a single-phase fluid. For two-phase fluids, however,
large differences in the fluid densities can lead to dramatic deterioration in the multigrid
performance. In this chapter, we consider alternate approaches to solving the pressure-
correction equation that do not exhibit the same sensitivity to jumps in the material
properties. We focus on solving Eq. (9.1), which is a discretization of the pressure-
correction equation.

9.2.1 Deflation Approach

Recall that the linear system that is solved in ICCG is (see Eq. (2.19))
M 'Ax = M 'b,

where M~1 denotes the IC(0) preconditioner. To improve the performance of ICCG,
we include a second operation in the preconditioner, so that we solve the following
system (see Eq. (3.14)):

M~tPA% = M~ 1Pb, (9.2)

where P := | — AZE~1ZT is the deflation matrix with Z := [z z» --- z]. The
resulting method is called DICCG. In this chapter, the vectors {z} are subdomain
deflation vectors (see Section 4.2.3). If k becomes large, the Galerkin systems involving
E become more costly to solve, and, in particular, the use of standard sparse direct
solvers may be inefficient. Instead, an iterative solver can be adopted to deal with these
Galerkin systems. In this chapter, the Galerkin systems in DICCG are, themselves,
solved using ICCG. The resulting method is known as DICCG2, see Section 8.3. As

160 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

mentioned in that section, as k increases, even standard iterative solution of the coarse-
level systems can become quite expensive, and deflation-like techniques should also be
incorporated into the coarse-level ICCG algorithm, leading to a recursive multi-level
deflation method [48]. This is, however, not considered in the results presented here.

9.2.2 Multigrid Approaches

Since Eq. (9.1) closely resembles the linear system associated with a diffusion equation,
another class of techniques to consider is the family of multigrid methods. In the case
of single-phase flow, in particular, the pressure-correction equation (see Eq. (1.3))
reduces to the case of a simple Poisson equation with a constant density, for which
geometric multigrid methods are known to provide optimal solution techniques [151,
178]. For two-phase fluids, more complicated multigrid techniques are necessary to
achieve optimal performance; such techniques are well-known in other fields. Here, we
present the details of these methods, and their specialization to solving (9.1).

Just as deflation methods use a correction over a small subspace to account for the
deficiencies of a traditional preconditioner, all multigrid methods combine the use of a
coarse-scale (or coarse-grid) correction process that is aimed at correcting modes that
a fine-scale iteration (or smoothing) is slow to resolve. Different multigrid methods
differ in the choices made in these two processes, particularly in the details of how
the coarse-scale space is chosen and how that correction is computed. Here, we
concentrate on multigrid methods that make use of simple pointwise smoothers, such as
the Jacobi or Gauss-Seidel iterations, and consider four different choices for the coarse-
grid correction procedure. A brief introduction into classical multigrid techniques is
presented in the following subsections; we refer to, e.g., [151, 178] for more details.

Geometric Multigrid

For the case of single-phase flows discretized on a regular grid, the use of geometric
multigrid techniques has long been studied (cf. [151,178]). These methods are based
on the realization that, while simple iterations, such as weighted-Jacobi and Gauss-
Seidel, do not efficiently resolve all modes of the solution, they do quickly and effectively
damp a large subspace of errors for a large class of matrices, including those considered
here. In particular, for single-phase flow (constant density), the errors that are not
quickly damped by these simple iterations are dominated by so-called ‘smooth’ error
modes; errors that vary slowly between neighboring grid points. It is, thus, the job of
the coarse-grid correction process to attenuate exactly these modes.

An important difference between the coarse-grid correction processes in multigrid
and deflation techniques is the size of the subspace employed for coarse-grid correction.
While deflation aims for a correction over a much smaller subspace than the fine-scale
problem size, the size of the coarse-grid problem in a multigrid method is specifically
chosen to be a relatively large fraction of the fine-grid size; typical coarsening rates are
by a factor of 2 or 3 in each dimension. Such slow coarsening is justified by considering
the convergence behavior of the complementary stationary iteration; for any fixed

9.2. Numerical Methods 161

reduction tolerance, the number of error modes which are reduced in magnitude by
a factor larger than that tolerance (i.e., the number of slowly converging modes)
increases with the size of the fine-grid matrix. Thus, to achieve convergence that is
truly independent of problem size using classical stationary iterations requires that the
size of the coarse-grid problem always remains a fixed fraction of the fine-grid problem
size.

Here, we consider a geometric multigrid approach using Gauss-Seidel smoothing.
For maximum efficiency, the algorithm is specialized to grids with the number of grid
points in each dimension of the form a2?, where a, 8 € N with typically & = 1 or
a = 3, so that the coarse grid may be chosen by reducing the grid size by a factor of 2
in each direction at all levels. Interpolation is trilinear cell-centered interpolation, while
restriction is taken as cell-centered piece-wise constant restriction [98]. Smoothing
and residuals on the coarse grid are realized using direct discretization of the fine-scale
homogeneous problem on the coarse grid. This is possible because of the assump-
tion of constant-density for the single-phase (incompressible) flow; for the two-phase
flows considered here, more sophisticated techniques, described below, are needed to
discretize, on the coarse scale, a fine-scale flow that may have phase boundaries that
cannot be represented on the coarse grid.

While geometric multigrid techniques often yield the fastest solvers for the constant-
coefficient version of the pressure-correction equation, several complications arise in
extending these techniques to the case of variable density. The properties of simple
smoothing techniques, such as Jacobi or Gauss-Seidel, are highly dependent on the
density; in the case of nonconstant density, the dominant errors after smoothing may
exhibit sharp transitions and/or cusps, which must be accounted for in the coarsen-
ing process. Furthermore, if the variations in density have fine-scale features (as we
expect for bubbly flows), it may not be clear how best to represent the equations on
the coarser grid, as needed in the multigrid process. In the following subsections, we
discuss several approaches for overcoming these obstacles.

Another approach to overcome the above discussed complications is to use the
geometric multigrid method as a preconditioner for the PCG iteration. A good solver,
such as geometric multigrid, for the constant-coefficient case is expected to make a
good preconditioner for the variable density case, so long as the density contrast is
not too significant. Results for this approach are reported in Section 9.4 as method
GMG-CG. All of the other multigrid approaches that we develop here may be applied
both as a standalone solver and as a preconditioner for PCG. This preconditioner is
basically the multigrid V(1,1)-cycle preconditioner as discussed in Chapter 7. In what
follows, we discuss only the case of these techniques being used as standalone solvers;
see Section 9.2.2.

Galerkin Coarsening

While GMG-CG (and geometric multigrid in general) performs well when the density
contrast is small, its performance suffers greatly when problems with large density
contrasts are considered (as shown in Section 9.4). Improving the multigrid perfor-

162 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

mance requires improvement in one (or both) of the multigrid components, smoothing
or coarse-grid correction. In GMG-CG, however, direct smoothing on (1.3) is re-
placed by smoothing on the constant-coefficient problem as a preconditioner for the
variable-density problem of interest. Thus, a first step in improving the performance of
GMG-CG would be to replace the smoothing on the homogeneous problem with that
on the real problem of interest.

Making the above improvement on the fine scale is simple to implement; both
the constant-density and variable-density problems are well-defined on the fine scale,
and it is relatively simple to replace smoothing on one with smoothing on the other.
On coarse scales, however, we have no direct representation of the fine-scale problem,
unless it is possible to represent the variation in the density naturally on the coarse scale.
For many flows of interest, this is clearly the case for all coarse scales in a multigrid
hierarchy. Thus, we need some indirect way to account for fine-scale variations in the
density directly in smoothing on the coarse scales.

There are many possible ways to create a coarse-scale model with a fine-scale
density distribution; the problem of numerical homogenization, or upscaling, is studied
in many disciplines, see, e.g., [176]. While these techniques focus on defining an
effective density coefficient that can be naturally represented on the coarse scale only,
we instead focus on the multigrid point of view that the primary purpose of smoothing
on the coarse scales is not to represent the flow on those scales but, rather, to compute
an appropriate correction to the errors in the fluid pressures on the fine scale.

Using the coarse-grid models to improve a fine-grid approximation to the pressure
naturally leads to the question of how good a correction is possible from a coarse grid.
Mathematically, we consider a fixed coarse grid and interpolation matrix, Z, that maps
from the coarse grid to the fine grid. Asking for the best possible correction from
the coarse grid, i.e., the best correction in the range of Z, means that we wish to
minimize some norm of the error, e, in our approximation, x;;1, to the solution, x,
that satisfies (9.1). Writing the corrected approximation as X1 = xj41 + Zy, for
some vector y, this means that we wish to minimize

€]l = [Ix = (Xji+1 + Zy)l = lle = Zyl.

Both the minimum value and the coarse-grid vector, y, for which the minimum
is achieved depend strongly on the norm chosen for the minimization. Choosing the
A-norm implies that the optimal choice for y satisfies

(ZTAZ)y =Z"Ae = Z"(b— Axj11).

That is, the best possible coarse-grid correction for a fixed choice of the multigrid
interpolation matrix, Z, may be expressed in terms of a Galerkin matrix, E := ZT AZ,
and restriction of the fine-grid residual, riy1 := b — Axj;1, using Z" as the restriction
map. This choice of coarse-grid and restriction operators is known in the multigrid
literature as Galerkin coarsening [106, 151, 178], because of its close relationship to
Galerkin finite elements.

9.2. Numerical Methods 163

A first generalization of GMG-CG is then to consider the multigrid method with
interpolation, Z, given as in GMG-CG, but with smoothing on all levels replaced by
Gauss-Seidel smoothing on the finest-grid matrix and its Galerkin restrictions. This
technique, which we denote by CCMG, was first proposed for problems similar to (1.3)
in [177] and later studied in [79, 163].

The Black Box Multigrid Method

While CCMG offers a great improvement over GMG-PCG in terms of its scalability,
its performance still degrades as the density contrast increases, see Table 9.1 in Sec-
tion 9.4. As CCMG arose through improvements to the smoothing phase in GMG-PCG,
we now consider the role of interpolation in the performance of CCMG. Of particu-
lar importance in achieving consistent multigrid performance regardless of the density
contrast or configuration of the flow is the principle of complementarity; as multigrid
methods aim to reduce errors through two distinct processes, smoothing and coarse-
grid correction, optimal multigrid performance can only occur when these processes
are appropriately complementary.

While we could aim to improve the performance of CCMG by making further im-
provements to the smoothing routine, such improvements often dramatically increase
the cost of the iteration. Instead, we aim to improve the multigrid performance by
making a different choice for the interpolation matrix, Z, to better complement the per-
formance of lexicographical Gauss-Seidel smoothing. It has long been recognized that
for problems with discontinuous coefficients, such as the pressure-correction equation,
the errors left after smoothing are not smooth, as in the case of constant-coefficient
problems [3]. Thus, while coarse-grid correction with a fixed interpolation operator,
such as those analyzed in [98] and discussed above, may be used to effectively com-
plement smoothing for constant-coefficient problems, they are less appropriate when
the problem contains large jumps in its coefficients.

The solution to the problem with large jumps in coefficients, first discussed in [3]
and further developed in [37,38], is to allow the coefficients of the interpolation matrix,
Z, to depend on the coefficients of A. Such an operator-induced interpolation is
better able to reflect the slow-to-converge errors of smoothing as these errors are,
themselves, dependent on the variation in A. The technique of the Black Box Multigrid
Method [37], also denoted by BoxM@G, defines the coefficients of interpolation to a fine-
grid point by combining the entries of the matrix in the rows corresponding to the grid
point and its graph neighborhood.

In 3-D, the BoxMG algorithm assumes that the fine-grid matrix comes from the
discretization of an equation such as (1.3) on a logically rectangular grid, see [38]. The
fine-grid operator is then assumed to have at most a 27-point connectivity structure;
for each grid point, connection is only allowed to grid points that reside in grid point
neighboring (possibly only at corners) that in which the grid point lies. The coarse grid
is constructed by removing every other plane of grid points in each direction, in contrast
to the coarsening used in GMG and CCMG, where finite volumes were aggregated in
pairs in each direction. Interpolation in BoxMG then falls into four categories: fine-grid

164 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

points may be themselves coarse-grid points (as the coarse grid is embedded in the fine
grid), they may lie on the line segment connecting two coarse-grid points, they may
lie in the same plane as four coarse-grid points, at the center of the square defined by
these grid points, or they may lie in a plane with no coarse-grid points, at the center
of the cube defined by 8 coarse-grid points.

Interpolation of corrections to embedded coarse-grid points is always done using
injection, as the errors at these grid points are directly represented on the coarse grid.
For fine-grid points lying between two coarse-grid points, the interpolation weights are
defined by first adding the matrix entries in the row of A corresponding to the grid point
along the planes orthogonal to the connecting line, collapsing the 27-point stencil to a
3-point stencil joining these three grid points. The correction to the grid point is then
computed by setting this 3-point stencil to zero, substituting in the injected corrections
at the coarse-grid points and solving for the correction at the fine-grid points. A similar
approach is used for fine-grid points lying at the center of a square in the plane of four
coarse-grid points, however first the four other neighboring grid points in that plane
are resolved using the first approach. In this way, the 27-point stencil needs only be
collapsed to a 9-point stencil, which can be treated using the previously computed
corrections as in the 3-point stencil case. Finally, the correction to the grid point at
the center of the cube defined by 8 coarse-grid points may be calculated directly, by
satisfying the 27-point stencil at this grid point using the corrections computed at all
of its neighbors, see [12].

The Galerkin matrix, £, in BoxMG is again defined using a Galerkin coarsening,
with Z defined as described above. It can be verified that, if the fine-grid stencil has its
nonzero connections confined to within a 27-point stencil pattern, then the coarse-grid
operator also has 27-point connectivity. Thus, BoxMG may be applied recursively to
define a full multigrid hierarchy. While there are many ways to use knowledge of the
discrete operator, or of the density distribution itself, to define the multigrid hierarchy,
the approach taken in BoxMG has been shown to be successful for a wide variety of
problems. In [101], it is shown that one of the reasons for the success of BoxMG is that
defining interpolation in this way approximately preserves the continuity of the normal
flux, %Vp) -n, across an interface with a jump in the density. Thus, BoxMG can
be thought of as combining effective multigrid principles with useful physical insight in
achieving a stable and efficient solution algorithm.

Algebraic Multigrid

With the early papers on BoxMG [3,12,37], it was recognized that the combination of
operator-induced interpolation and Galerkin coarsening can lead to very robust methods
for a wide class of problems. The algebraic multigrid method [22,118], or AMG, is
an algorithm based on a different implementation of the same principles, but which
can be applied to an even larger class of problems. In particular, AMG can be applied
to problems without a regular grid structure and allows for the choice of unstructured
coarse grids regardless of the fine-grid operator structure.

The central idea of AMG is that all components of the coarse-grid correction cycle

9.2. Numerical Methods 165

should be determined by the properties of the fine-grid operator. The first step in
coarsening is then to determine whether two grid points that are connected in the
fine-grid operator are connected in a significant way, where grid points / and j are said
to be connected if a;; # 0. Each grid point, /, is said to strongly depend on any of
its neighboring grid points for which aj; is of similar size as the largest entry in row /.
For M-matrices, such as the coefficient matrix of Eq. (9.1), we define the set of grid
points that / strongly depends upon as

Si= {j P—a 26 Tif{au}} '

for some suitable 8, 0 < 8 < 1. Once these strong connections are identified, a coarse
grid is formed by taking a maximal independent set of the graph created by the set of
edges, {a;;}, where j € S;.

To define interpolation in AMG, a similar strategy is used to collapse connections
between grid points that appear only on the fine grid and define an interpolation op-
erator. Choosing the coarse grid through the maximal independent subset algorithm
described above implies that the coarse-grid points are embedded in the fine grid. For
any fine-grid point, /, that is not also a coarse-grid point, interpolation can be defined
by collapsing the connections from / to other fine-grid points, j, based on their com-
mon coarse-grid neighbors. Unlike BoxMG, this is done without using any intuition
into the couplings involved; the elimination of these fine-fine connections is a purely
algebraic operation. Each fine-fine connection is replaced using a weighted average of
the coefficients connecting the fine-grid point, j, to the coarse-grid neighbors of grid
point /; see [118,129] for details.

Because both the choice of the coarse grid and the interpolation operator in AMG
are determined based on the fine-grid operator, we expect AMG to have convergence
properties similar to, or possibly even better than, those of BoxMG. However, the
price paid in AMG for this robustness is the use of completely unstructured matrix
and vector data structures, as a result of the unstructured grid hierarchy. Additionally,
the cost of the additional operations to compute the coarse grid (and, in fact, a
more expensive computation of the interpolation weights) makes AMG an expensive
alternative in situations where BoxMG (or CCMG or GMG) is expected to perform
well. Nevertheless, AMG is often the method of choice in commercial codes where
robustness is considered more important than achieving the smallest possible solution
time. Indeed, in CFD, AMG solvers have been recognized as an important tool for
achieving efficient solution in a wide variety of flow regimes, see [116].

On the Need for Preconditioning

While the multigrid methods discussed here are typically considered as standalone
solvers, it is sometimes useful to also consider them as two-level preconditioners for
2L-PCG. These preconditioners take the form of a typical multigrid V(1,1)-cycle, where
they only differ in the choices of the parameters, see Chapter 7. Both BoxMG and

166 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

AMG aim to directly treat the fine-scale structure of the density field through the use
of operator-dependent interpolation algorithms. It is possible, however, that operator-
dependent interpolation alone is not sufficient to yield an optimal solution algorithm in
all situations.

It is quite natural for AMG and BoxMG to not interpolate significantly across bubble
boundaries, see also [88, Sect. 3.3.5]. A intuitive requirement from this point of view
would be to require, for each fine-scale bubble, a sufficient number of coarse-grid
points to lie within the bubble, to allow for an accurate computation of a coarse-grid
correction for all grid points within the bubble. In a real-life simulation, however, this
may not be practical, due to bubbles and droplets that may only be resolved at the
size of a single grid point on the fine scale. In Section 9.4, we see that the number
of iterations for both BoxMG and AMG without the use of a Krylov wrapper increase
as the number of bubbles grows. While such an increase is not dramatic, it can
easily be attenuated by the use of these multigrid methods as a preconditioner for 2L-
PCG; in this case, the multigrid method gives good convergence for almost all types
of errors, and the CG acceleration effectively resolves the few error modes associated
with these small bubbles. In Section 9.4, we denote the 2L-PCG methods with CCMG,
BoxMG, and AMG preconditioners for 2L-PCG by CCMG-CG, BoxMG-CG, and AMG-
CG, respectively.

9.3 Implementation and Computational Cost

In the numerical experiments of Section 9.4, we make use of standard implementations
of the methods discussed above, when available. In this section, we discuss the relative
costs of these techniques, as well as their scalability for large problem sizes. Relative
to CG by itself, or even to ICCG, all of the other methods considered here have a larger
cost per iteration. Their utility lies in the significant reduction in iterations possible
using a multilevel technique as compared to a single-level method, such as ICCG. Here,
we stress the details of the relative costs of a single cycle of these algorithms, as a
prelude to the numerical results in Section 9.4.

0.3.1 Cost of Deflation

The computational cost of the deflation method has already been discussed in Chap-
ter 8 and Appendix E. Recall that the setup of the deflation method is rather cheap,
since Z may be constructed independently of the problem matrix. Furthermore, it is
not necessary to store Z explicitly in memory; AZ and E may be computed before-
hand. In the 3-D case, construction of AZ and E can each be done in O(n%k%)
flops. Moreover, DICCG needs only one more step than ICCG at each iteration. The
additional cost for the deflation step is O(n+ 6) flops, where 6 is the number of flops
required for the inner solves involving E. Using ICCG as inner iterative solver, each
inner iteration costs O(k) flops, and at most O(k%) iterations are required to achieve
sufficient accuracy in the inner solve, leading to 6 = O(k%) operations. Note that,

9.3. Implementation and Computational Cost 167

because AZ can be precomputed and is much sparser than A, there are no additional
matrix-vector multiplications with A required at each iteration of DICCG.

Remark 9.2. While, in principle, DICCG may be applied in an unstructured man-
ner, the implementation considered here is based on the assumption of a rectangular
tensor-product grid. This allows significant savings in both the storage and the com-
putational cost required by the iteration, as structured matrix data structures may be
used in place of the more general (and more costly) storage required by an unstruc-
tured implementation, see Chapter 8 and Appendix E. In this sense, DICCG tested
here is more comparable to a geometric multigrid approach than to AMG, although
the DICCG algorithm could be applied in the same unstructured settings as AMG.

9.3.2 Cost of Multigrid

The relative costs of the multigrid methods studied here, in principle, increase with the
complexity of the algorithm. Geometric multigrid can easily be implemented in a very
efficient manner. In fact, because GMG-CG uses smoothing only on the homogeneous
problem, it may be implemented in a fully matrix-free manner. The same stencil is
applied everywhere on each level, up to boundary conditions, and the simple transfer
operators can be implemented again with constant stencils away from the boundaries.
Thus, the true computational cost of a single iteration of GMG-CG is much smaller
than that of a method with similar number of operations, because of the optimization
possible under the assumption of constant coefficients in the operator.

While multigrid methods use much finer coarse grids than typical deflation methods,
their recursive treatment of these grids leads to an overall cost per iteration that
remains OQ(n). Consider, for example, the cost of a single GMG V(1,1)-cycle (that is,
the cost of a single preconditioning step in GMG-CG). On each level of the multigrid
hierarchy, two smoothing sweeps are performed at the appropriate resolution. On every
grid, the cost of these smoothing sweeps is directly proportional to the size of that
grid. Thus, O(n) operations are required for each sweep on the finest grid, O(g)
operations are required for each sweep on the first coarse grid (which has size g), and
(9(6—’1‘) operations per sweep are required on the next coarsest grid, etc. Overall, the
total number of operations required to perform two smoothing sweeps on all levels is
then bounded by % times the cost of a single sweep of smoothing on the finest level,
which is O(n). Similarly, the additional storage requirements for GMG-CG can also be
bounded by a small constant times the fine-scale, @(n) storage requirement for CG.

CCMG adds the cost of structured matrix storage and operations on all levels,
as well as that of the Galerkin product in the setup stage of the algorithm. For the
numerical results presented in Section 9.4, we use 64-point interpolation and restriction
stencils, corresponding to bilinear interpolation and its adjoint for restriction. This
results in some growth in the stencil size on coarser grids, but this growth can be easily
quantified and still included in a structured-grid matrix data structure. Alternately,
lower-order interpolation and restriction may be used, as in [79], to control the growth
of the stencil on coarse grids. While these costs somewhat increase the cost of CCMG

168 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

relative to GMG, the overall cost per cycle for CCMG remains O(n), as the added
storage and computational costs on each level are bounded by a small constant times
the number of unknowns on that level.

Here, we focus on an optimal implementation of the CCMG algorithm within the
AMG code, with a fixed choice of coarse grids and transfer operators. The implemen-
tation does not use the most efficient data structures and the reported CPU times
in Section 9.4 are much larger than strictly necessary for CCMG, although we stress
that the iteration counts and final residuals are the same for this implementation as
they would be for a more efficient one. In practice, the setup costs for CCMG should
be cheaper than those for BoxMG, due to the fixed interpolation pattern. However,
the cost of a single iteration of CCMG is expected to require more operations than a
single iteration of BoxMG, as BoxMG uses a 27-point interpolation stencil, compared
to CCMG's 64-point stencil, leading to denser coarse-grid matrices for CCMG when
compared with BoxMG. As will be seen in Section 9.4, the iteration counts for CCMG
clearly scale less well than those for DICCG, BoxMG, and AMG for the problems
considered here, particularly as the density contrast increases (Table 9.1).

In contrast to GMG and CCMG, BoxMG is not based on cell-centered data struc-
tures. Instead, BoxMG is, primarily, a node-based code; however, its robustness leads
to successful results for our cell-centered discretization as well. The added cost in
BoxMG is primarily in the setup phase of the algorithm, where coefficients of the op-
erator on each level are used in determining interpolation to that level. Coarsening in
BoxMG is also slightly different than that in CCMG and GMG, as it naturally takes
nodal fine grids of 26 + 1 grid points in each dimension into nodal coarse grids with
26-1 41 grid points; however, because of the use of operator-induced interpolation,
BoxMG is also able to successfully solve problems with grids of arbitrary sizes, as will
be seen in Section 9.4, while maintaining the typical @(n) complexity per multigrid
cycle.

Finally, AMG has the highest cost per iteration of the multigrid (and other) ap-
proaches considered here, because of the added cost of its unstructured grid processing
and data structures, as well as a significant setup cost. This is to be expected; our
choice of a structured-grid discretization naturally suggests that the best efficiency is
obtained with a structured-grid solver. Results for AMG are included to answer two
interesting questions. First, it is interesting to see how much of a performance loss is
seen with these unstructured data structures; results in Section 9.4 suggest that AMG
is typically a factor of 10 to 15 times slower than BoxMG, when used as a precondi-
tioner. Secondly, we note that while the CPU-time cost of AMG is significantly greater
than that of the multilevel structured-grid codes (indeed, it is sometimes greater than
that of simple ICCG), the iteration counts for AMG-CG are quite good (typically com-
parable to those of BoxMG). This demonstrates the scalability and robustness seen
with AMG, while highlighting the advantages of using a structured-grid algorithm when
possible.

9.3. Implementation and Computational Cost 169

9.3.3 Singularity of Coefficient Matrix

We recall that the coefficient matrix, A, is singular in (9.1). A nonunique solution,
x, always exists, because we know that the system is consistent. However, extra care
should be taken in the implementation of the methods we compare. Matrix E is often
singular, due to the singularity of A and the construction of Z. In this case, E~!
does not exist, and instead the pseudo-inverse, ET should be used in the operator P,
see Chapters 5 and 8. The iteration process, where the deflation matrix is based on
E™, does not cause any difficulties in DICCG, since the corresponding systems are
consistent, see Theorem 8.2.

The multigrid iterations are similarly insensitive to the singularity on all levels but the
coarsest, as only iterative approaches are used in reducing errors at all other levels. On
the coarsest level, the known form of the null space of E allows a simple perturbation
and projection technique to be used in the direct solve of this system; see Remark 5.4
and [39] for details.

0.3.4 Parallelization

While the tests performed in Section 9.4 are all done in a serial computing environ-
ment where, because of the efficiency seen in the best approaches, problems of up
to 8 million degrees of freedom are easily handled, it is important to stress that this
was done for convenience alone and not because of any inherent serial nature of the
algorithms considered. Indeed, much effort has been invested in the parallelization of
exactly the algorithms considered here. Parallelization of deflation solvers is considered
in Appendix F and [56], where it is shown that, with a sensible alignment of the sub-
domains and processor boundaries, deflation applied to block-IC preconditioners can
be implemented with limited increase in cost over that of the parallel matrix-vector
multiplies already required by block-incomplete Cholesky PCG.

Parallelization of standard multigrid methods has been considered for many prob-
lems and many architectures; see, for example, [52,76]. Similarly, parallel implementa-
tions exist for BoxMG [7] and AMG [71]. Because of the use of pointwise smoothers in
the smoothing step, virtually no parallel communication is necessary when block-Jacobi
smoothing is used in place of pointwise Gauss-Seidel. In AMG, parallel communication
and inherently serial algorithms is a well-studied issue, particularly with respect to the
choice of coarse grid [2].

9.3.5 Implementation

While we stress that there is nothing ‘out of the ordinary’ in the multigrid imple-
mentations considered here, it must be acknowledged that there have been many
less-successful attempts to apply multigrid to these problems. Therein lies the attrac-
tiveness of the DICCG method; given an existing code, with existing data structures
and single-level preconditioners, it is relatively simple to add an effective deflation step
to the existing pressure solver. In contrast, use of the best-available multigrid codes

170 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

(as considered here) requires some translation of the discrete problem into data struc-
tures that are more natural for multigrid treatment. This trade-off is at the root of
the questions investigated here. While a greater investment of programming effort
may be necessary to implement a robust, efficient multigrid solver, such as BoxMG,
this effort appears to pay off in the reduced computing times seen in the following
numerical results.

9.4 Numerical Experiments

In this section, we perform some numerical experiments with 3-D stationary bubbly flow
problems as described in Section 1.3, where the presented methods in this chapter
are compared. The geometry of some test cases can be found in Figure 1.2. The
computations are performed on an Intel Core 2 Duo (2.66 GHz) computer with a
memory capacity of 8GB. The code is compiled with the Intel FORTRAN compiler,
ifort, on LINUX.

The experiments are similar to those in Section 8.5.1. They are be divided into
several parts, where some parameters are varied to see how they affect the performance
of the methods: n (total number of degrees of freedom), m (number of bubbles), s
(radius of each bubble) and e (density contrast). The results of the experiments are
presented in terms of the required computing time (CPU), including both the setup
and solution time, number of iterations or cycles (# It.), and the obtained accuracy
(RES), measured as the relative norm of the residual, %.

For all 2L-PCG methods, the starting vector is the zero vector (i.e., xo = 0,),
and the termination criterion is based on (2.23) with § = 1078 In theory, the CG-
generated residuals as in (2.23) should be equal to the exact residuals in RES, but
they might differ in the experiments due to round-off errors, see also [66, Sect. 7.3].
Moreover, DICCG is based on Variant 5.2 (see Section 5.3), where we typically take
ki = %n%; k = 43,83,163 are chosen for n = 323,643,1283, respectively. Moreover,
in the stationary MG methods, it is common to use the stopping criterion based on
the real residuals, (i.e., % < § = 1078). Therefore, RES is always below §
for the stationary MG methods, while this is not necessarily the case for the 2L-PCG
methods. Finally, we remark that x;;; denotes the approximation of the solution after
J + 1 iterations in 2L-PCG methods, whereas it is the approximation after performing
J 4+ 1 multigrid cycles in stationary MG methods.

9.4.1 Varying Density Contrasts

The results for the test problem with varying contrast, €, are presented in Table 9.1.

A larger € typically corresponds to a linear system whose coefficient matrix is more
ill-conditioned. Therefore, most methods need more iterations and computing time
as € increases, as shown in Table 9.1. However, the performance of BoxMG-CG and
BoxMG appears to be independent of the contrast. In addition, they are the fastest
methods in the experiments, followed by DICCG for € = 103 or € = 10°. Moreover, we

9.4. Numerical Experiments 171

observe in Table 9.1 that GMG-CG and CCMG are very sensitive to €: the number of
iterations grows quickly with increasing €. In fact, for ¢ = 10, we see that GMG-CG
is competitive with both BoxMG and DICCG as a solution technique, For larger e,
however, the significant increase in number of iterations makes GMG-CG a much less
attractive option. For CCMG-CG and AMG-CG, the number of iterations only grows
slowly compared with GMG-CG. As mentioned in Section 9.3.2, CCMG-CG is not
implemented as efficiently as possible. Nevertheless, we can get an idea of the cost of
its optimal implementation by comparing with the performance of BoxMG. CCMG-CG
is at least as expensive per iteration as BoxMG, so, in the case of € = 103, CCMG-CG
would require at least 1.2 sec instead of 4.3 sec and may, therefore, be slightly faster
than DICCG. However, for e = 10°, CCMG-CG would need at least 2.5 sec, so DICCG
is faster than CCMG-CG for larger density contrasts.

We also observe in Table 9.1 that the accuracy of DICCG is consistently the worst
when compared with the other methods, although the differences are generally quite
small. As mentioned in Section 9.3.1, this is caused by the fact that the deflated
residuals are used in DICCG, leading to extra round-off errors.

| | e=10 | e=10° | e=10° |

| Method | CPU #1t. RES [CPU #1It. RES [CPU #It. RES |
ICCG 31 131 0.1E-7[58 244 01E-8[69 289 05E-8
DICCG 11 3 03E7|17 54 04E7|19 59 04E7

GMG-CG 1.0 33 0.1E-7 | 3.9 132 0.9E-8 | 8.0 267 0.8E-8
CCMG-CG | 33 10 0.1E-8 | 4.3 18 0.1E-7 | 6.7 37 0.4E-8
BoxMG-CG | 0.8 12 0.1E-8 | 0.8 12 0.2E-8 | 0.8 12 0.2E-8

AMG-CG 8.0 9 0.3E-8 | 8.9 14 0.1E-8 | 9.2 16 0.2E-8
CCMG 4.0 17 0.6E-8 | 11.2 79 0.1E-7 | 40.9 338 0.1E-7
BoxMG 0.8 17 0.3E-8 | 0.8 17 0.3E-8 | 0.8 17 0.3E-8
AMG 8.9 15 0.8E-8 | 13.0 40 0.1E-7 | 21.5 92 0.9E-8

Table 9.1: Convergence results for the experiment with n = 64°, m = 2%, s = 0.05, and varying the
contrast, €. ‘CPU’, '# It." and ‘RES’ denote the total computing time, number of iterations or cycles,
and the accuracy of the solution measured as the relative norm of the exact residuals, respectively.

9.4.2 Varying Bubbly Radii

The results for an experiment with varying the radius of the bubbles, s, are given in
Table 9.2. The smallest radius is chosen to be s = 0.01875, because the bubbles
are no longer resolved for s < & = 0.015635. In general, a smaller radius does not
significantly affect the conditioning of the coefficient matrix, but it does change the
form of the errors that are difficult to resolve, possibly making them more difficult to
approximate.

In Table 9.2, it can be seen that there are changes in convergence behavior of
the various methods for different radii. In general, a smaller s leads to a more favor-
able performance for several of the iterative methods, including ICCG, GMG-CG and
CCMG-CG. The other methods do not have a clear relation with respect to s. This

172 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

even seems to hold for the stationary methods, CCMG, BoxMG and AMG, which we
might expect to be sensitive to the size of the bubbles due to the challenges discussed
in Section 9.2.2. BoxMG and BoxMG-CG seem to be fully insensitive to s. They are
also the fastest methods in this experiment, followed by again DICCG. It is interesting
to note that while GMG-CG is very ineffective in the case of large bubbles, its perfor-
mance improves as the bubbles shrink, and, for the case of s = 0.01875, it becomes
competitive with BoxMG and DICCG.

| | s=0.1 | s =0.05 |

| Method | CPU #1t. RES | CPU #1It. RES |
ICCG 6.0 250 0.1E-7[58 244 0.1E-8
DICCG 13 39 03E-7|17 54 04E7

GMG-CG 4.3 143 0.9E-8 | 3.9 132 0.9E-8
CCMG-CG | 5.1 24 0.4E-8 | 4.3 18 0.1E-7
BoxMG-CG | 0.8 12 0.3E-8 | 0.8 12 0.2E-8
AMG-CG 8.3 11 0.6E-8 | 8.9 14 0.1E-8

CCMG 130 95 0.8E-8[112 79 O0.1E7
BoxMG 08 17 04E8|08 17 03E8
AMG 106 25 0.8E8| 130 40 O0.1E7
| | s =0.025 | s = 0.01875 |
| Method | CPU #1It. RES | CPU #It. RES |
ICCG 3.8 159 08E-8[41 170 0.9E-8
DICCG 15 46 09E-7 |15 45 0.8E-7

GMG-CG 2.6 85 0.8E-8 | 1.3 41 0.4E-8
CCMG-CG | 3.6 12 0.5E-8 | 3.8 14 0.4E-8
BoxMG-CG | 0.8 12 0.2E-8 | 0.8 12 0.1E-8
AMG-CG 8.2 12 0.7E-8 | 8.8 14 0.3E-8

CCMG 7.0 43 0.7E-8 | 10.1 69 0.9E-8
BoxMG 0.8 17 0.3E-8 | 0.8 17 0.3E-8
AMG 10.9 29 0.6E-8 | 12.8 39 0.7E-8

Table 9.2: Convergence results for the experiment with n = 64°, m = 2®, ¢ = 10°, and varying the
radius of the bubbles, s.

9.4.3 Varying Number of Bubbles

In Table 9.3, we present results demonstrating the performance of the various solvers
with variation in the number of bubbles, m. Note that the test case with m = 0
corresponds to the Poisson equation with a constant density, i.e., a domain with only
one phase. From Proposition 4.1, we know that increasing m leads to the appearance of
more large eigenvalues in the original coefficient matrix, A, and small eigenvalues in the
IC(0)-preconditioned coefficient matrix, M~1A. This results in a more difficult linear
system to solve, although both the original and preconditioned coefficient matrices are
not necessarily worse conditioned.

It can be seen in Table 9.3 that, for most methods, the convergence worsens with

9.4. Numerical Experiments 173

increasing m, as expected. Moreover, GMG-CG is the best method in the case of
m = 0, but quickly loses efficiency for m > 0. The number of iterations required
by CCMG also grows rapidly with m, whereas it increases gradually for CCMG-CQG,
AMG-CG and AMG. A single iteration of these methods, however, is more expensive
than one of BoxMG or DICCG, as mentioned in Section 9.3. For m > 0, BoxMG
and BoxMG-CG are always the fastest methods, followed by DICCG. The performance
of BoxMG-CG degrades only a little with increasing m, while the iteration counts for
BoxMG increase more substantially. For a sufficiently large number of deflation vectors,
k, DICCG would be less sensitive to changes in m, see Section 8.5.1.

| | m=20 | m=1 |

| Method | CPU #1t. RES | CPU #1t. RES |
ICCG 3.0 125 0.8E-8 | 3.9 163 0.7E-8
DICCG 1.0 31 0.2E-7 | 15 a7 0.2E-7
GMG-CG 0.3 8 0.1E-8 | 3.7 124 0.8E-8
CCMG-CG | 3.2 9 0.7E-8 | 3.7 13 0.7E-8
BoxMG-CG | 0.8 12 0.1E-8 | 0.8 12 0.1E-8
AMG-CG 7.7 7 0.9E-8 | 8.0 9 0.2E-8
CCMG 4.0 17 0.4E-8 | 10.0 68 0.9E-8
BoxMG 0.8 17 0.3E-8 | 0.8 17 0.3E-8
AMG 8.2 11 0.6E-8 | 11.8 33 0.6E-8

| A R

| Method | CPU #1t. RES | CPU #1t. RES |
ICCG 5.8 244 0.1E-8 | 8.2 342 0.8E-8
DICCG 1.7 54 0.4E-7 | 2.0 60 0.7E-7

GMG-CG 3.9 132 0.9E-8 | 9.8 329 0.8E-8
CCMG-CG | 4.3 18 0.1E-7 | 6.5 35 0.4E-8
BoxMG-CG | 0.8 12 0.2E-8 | 1.0 15 0.2E-8
AMG-CG 8.9 14 0.1E-8 | 8.9 14 0.8E-8

CCMG 11.2 79 0.1E-7 | 279 223 0.1E-7
BoxMG 0.8 17 0.3E-8 | 1.3 29 0.7E-8
AMG 13.0 40 0.1E-7 | 141 45 0.7E-8

Table 9.3: Convergence results for the experiment with n = 64, s = 0.05, € = 10°, and varying the
number of bubbles, m.

9.4.4 Varying Number of Grid Points

Table 9.4 presents results with a varying grid size, n. A larger n leads to coefficient
matrices that are more ill-conditioned, as mentioned in Section 9.2. It can be observed
in Table 9.4 that only BoxMG, BoxMG-CG and DICCG show perfectly scalable iteration
counts with respect to the number of grid points, although the computing times grow
relatively quickly. Recall that, for DICCG, more deflation vectors are taken for larger
n, which results in a decreasing number of iterations for DICCG. Moreover, observe
that BoxMG and BoxMG-CG outperform the other methods both in terms of the

174 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

number of iterations and the computing time. For larger n, the number of iterations
for CCMG-CG and AMG-CG grows very slowly; however, the large cost per iteration
combined with the large setup cost for these methods still makes them uncompetitive.
As mentioned earlier, a lower bound for the cost of CCMG-CG can be given; in the
case of n = 1283, CCMG-CG would require at least 11.1 sec (instead of 38.0 sec
for our current implementation), and, therefore, may be competitive with DICCG.
Furthermore, while AMG and AMG-CG are competitive in terms of the number of
iterations required for convergence, they are clearly much more expensive; this is due
to the extra costs associated with the unstructured-grid data structures used within
AMG, and the extra setup required based on this assumption, as discussed in Section
9.3.2.

| | n=32° | n=64° | n=128° |

| Method | CPU #1t. RES [CPU #It. RES |CPU #It. RES |
ICCG 03 112 09E-8[58 244 0.1E-8[923 444 0.9E-8
DICCG 02 64 08E7|17 54 04E7|117 39 03E7

GMG-CG 0.2 81 0.9E-8 | 3.9 132 0.9E-8 | 36.0 134 0.8E-8
CCMG-CG | 0.4 14 0.3E-8 | 4.3 18 0.1E-7 | 38.0 19 0.9E-8
BoxMG-CG | 0.1 12 0.2E-8 | 0.8 12 0.2E-8 | 7.0 12 0.3E-8
AMG-CG 0.8 10 0.4E-8 | 8.9 14 0.1E-8 | 89.0 15 0.2E-8

CCMG 0.8 44 0.1E-7 | 11.2 79 0.1E-7 | 99.1 85 0.8E-8
BoxMG 0.1 16 0.8E-8 | 0.8 17 0.3E-8 | 7.4 17 0.4E-8
AMG 0.9 20 0.1E-7 | 13.0 40 0.1E-7 | 129.2 45 0.8E-8

Table 9.4: Convergence results for the experiment with m = 2% s = 0.05, € = 10%, and varying the
total number of degrees of freedom, n.

In this experiment, the scalability of the methods can be easily observed. Consid-
ering the computing time, it can be seen that the required CPU time for both DICCG
and BoxMG increase by a factor of approximately 8 when doubling n in each direction.
This is quite favorable in comparison with the other methods, which scale with factors
of 10 or more. Finally, we observe that ICCG requires significantly more CPU time as
n increases, as predicted by the classical theory.

9.4.5 Difficult Test Problem

We end the stationary experiments with a test case where the most difficult parameters
(taken based on the previous experiments) are chosen. The results associated with this
experiment can be found in Table 9.5, using termination tolerance § = 10~8. We note
that a higher accuracy than § = 108 cannot be reached, due to the accumulation of
round-off errors and the effects of finite precision arithmetic.

As in the other experiments, BoxMG-CG and BoxMG perform the best, in terms
of both the number of iterations and the computing time. They are again followed by
DICCG, which also performs rather well. GMG-CG, CCMG, and AMG all typically fail
to converge within the allowed number of iterations for § = 108 (and also for the
weaker tolerance § = 10°°). CCMG-CG and AMG-CG do converge but, as always,

9.5. Concluding Remarks 175

are not competitive in terms of true CPU time.

[Method | CPU_ #1t. RES
ICCG 1954 942 0.1E-7
DICCG 19.6 65 0.5E-7
GMGCG |- >1000 -
CCMG CG | 1140 92 0.1E-7
BoxMG-CG | 7.4 13 0.4E-8
AMG CG | 107.6 29 0.8E 8
CCMG - >1000 -
BoxMG 78 18 0.7E-8
AMG - >1000 -

Table 9.5: Convergence results for the difficult test problem. The following parameters are kept
constant: n=128%, m=3% 5=0.025, ¢ = 10°, and § = 107 %.

While neither AMG nor CCMG converge within the allowed number of iterations
as standalone solvers, both perform reasonably well as preconditioners. In fact, both
unaccelerated solvers do converge, but very slowly, with AMG converging marginally
faster than CCMG. While it may be possible to improve this performance somewhat
by using different smoothing schemes, or by changing some of the parameters in the
AMG setup stage, this is beyond the scope of the current study.

9.5 Concluding Remarks

After performing an algebraic comparison of multilevel techniques based on their ab-
stract forms in Chapters 6 and 7, we present a comparison of several of these techniques
using their typical and optimized parameters, which may be considered as efficient
solvers for linear systems from two-phase bubbly flows. In particular, two families of
algorithms are considered in this chapter; the DICCG algorithm, based on the prin-
ciples of deflation for classical PCG techniques, and multigrid algorithms. For the
multigrid algorithms, we consider a range of approaches, including standard geometric,
robust geometric and algebraic multigrid variants, applied as both standalone solvers
and two-level preconditioners for 2L-PCG methods. The solvers are compared on a
series of 3-D stationary problems, where it is shown that BoxMG-CG and DICCG are
the most stable and efficient techniques. Overall, we demonstrate that solution of
the pressure-correction equation within bubbly flow applications can be significantly
accelerated using the methods studied here. In the next chapter, we continue on the
comparison of BoxMG-CG and DICCG, but applied to time-dependent bubbly flow
problems, where the density field varies at each time step. It might be interesting to
see whether the multilevel techniques are also efficient for these more realistic test
problems.

176 Chapter 9. Comparison of Deflation and Multigrid with Typical Parameters

e 1O

Bubbly Flow Simulations

10.1 Introduction

The main application of this thesis is bubbly flows, whose computation is a very active
research topic in CFD, see, for instance, [34,49,130, 152, 153, 155, 156] and, more
recently, [74,95,125,131,157]. In the previous chapters, we have performed numerical
experiments based on stationary bubbly flow problems, i.e., problems in which the
bubbles are fixed in the computational domain and do not evolve in time. We have
shown that DICCG and BoxMG-CG are efficient methods for solving the corresponding
linear systems in stationary problems, see Section 9.4. However, in practice, the density
field usually changes in time. Therefore, in this chapter, some numerical experiments
(also called simulations) are carried out based on 3-D time-dependent bubbly flow
problems, where the density field evolves in time.

The aim of this chapter is to examine whether DICCG and BoxMG are still effective
and efficient to solve a sequence of linear systems in simulations. A comparison between
DICCG variants for these simulations is carried out in Appendix H.

In Section 10.2, we first describe concisely the mathematical model that is used
for the bubbly flow simulations, where we refer [154, Sect. 8.3.2] for more details.
Thereafter, the results of the simulations are presented in Section 10.3. Concluding
remarks are given in Section 10.4.

10.2 Mathematical Model of the Bubbly Flow

Bubbly flows are mathematically governed by the incompressible Navier-Stokes equa-
tions, 5 . .
u
a%—u-Vu:—EVp+EV-u(Vu+VuT)+f, (10.1)

subject to an incompressibility constraint,
V-u=0, (10.2)

177

178 Chapter 10. Bubbly Flow Simulations

where u = (u, v, w)7 is the velocity vector, and p, p, i and f are the density, pressure,
viscosity and source function (consisting of, for example, gravity and interface ten-
sion forces), respectively, which are functions of spatial coordinates and time. In this
chapter, we only consider simulations without surface tension forces in order to obtain
complicated density fields with many and small bubbles. We assume the density and
viscosity are constant within each fluid. At the boundaries of the domain, we impose
Dirichlet boundary conditions for the velocity.

Eqgs. (10.1) and (10.2) are solved on an equidistant Cartesian grid in a rectangular
domain using a pressure-correction method [162]. These equations are discretized
using finite differences on a uniform staggered grid with n cells, where the grid points
of the pressure variables are located at the cell centers, and the grid points associated
with velocity components are located at the cell-face centers.

In the pressure-correction method, a tentative velocity vector, u*, is first computed
from

u* —u

At

1
= —V-u’u’+5v-u(Vu*+(Vu’)T), (10.3)

where u’ denotes the value of u at time step /. The resulting system of equations for
unknown vector u* is solved, for example, using the PCG method. The velocities at
the new time step, /+ 1, are computed from

1
=——Gp+ft
0

under the constraint of (10.2). This yields

{ = w300+): (10.4)

Dul+1 — O,

where D represents the discretization of the divergence operator, and G is the discrete
gradient operator. Finally, Equation (10.4) gives

D%Qp ~D <$u* + f> | (10.5)
which is known as both the pressure-correction equation and the Poisson equation
with a discontinuous coefficient (cf. Eq. (1.3)). Eq. (10.5) can again be solved using,
for example, the PCG method. However, solving (10.5) requires significantly more
computing time than finding the solution of (10.3), since the convergence of the
iterative process suffers from the highly discontinuous behavior of the coefficient, p,
but is not ameliorated by a small At. More strongly, solving (10.5) typically consumes
the bulk of the computing time for all computations of the bubbly flow, see, e.qg.,
[24,74,154]. Further details about the pressure-correction method applied to bubbly
flows can be found in [155-157].

Due to the staggered grid, we do not have pressure points at the boundaries of
the domain. Explicit pressure boundary conditions are, however, not required in the

10.3. Bubbly Flow Simulations 179

method, since, in Eq. (10.5), the velocity boundary conditions are naturally included
in the discrete divergent operator, D. It follows implicitly that Neumann boundary
conditions hold for the pressure. In this case, the pressure is a relative variable, since
the differences in pressure and not its absolute values are meaningful in the pressure-
correction method.

Eq. (10.5) can be written as a linear system (see Eq. (1.1))

Ax = b, A= [3,‘]] c Rnxn, (106)

for n = nynyn,, and a singular SPSD matrix, A. It appears that b € R(A) is always
satisfied for (1.1), see [145] for more details. In this case, (1.1) is consistent and the
solution, x, is determined up to a constant.

We consider two-phase bubbly flows with air (a low-density phase) and water (a
high-density phase). In this case, p is piecewise-constant with a density contrast
€ =~ 820, which is the ratio of the two densities, see Section 1.3. Moreover, the
density advection is performed using the mass-conserving level-set method [154, 157].

Remark 10.1.

e Operator-splitting methods, such as the pressure-correction method, are amongst
the oldest numerical schemes for solving the incompressible Navier-Stokes equa-
tions, dating back to the original work of Chorin [28,29]. In the 1980s, this work
was extended to second-order convergent methods for the velocities [13,162].

e Many other approaches could be employed for both the solution of the Navier-
Stokes equations and the advection of the density field. Artificial compressibil-
ity techniques, for example, replace the incompressibility condition by one with
a small compressibility term that vanishes when treated appropriately, recover-
ing, in this limit, the original (incompressible) Navier-Stokes equations [28, 84].
While we only consider the standard finite-difference discretization, other ap-
proaches are also possible; finite-element discretizations of Navier-Stokes are
complicated by the need to satisfy a discrete inf-sup condition to give stable
pressure discretizations [55, 60]. While we use an interface-capturing level-set
scheme, other approaches include front-tracking techniques [152], the volume-
of-fluid and marker-and-cell methods, as well as arbitrary Lagrangian-Eulerian
techniques. Lattice Boltzmann techniques may also be used to model incom-
pressible multi-phase flow, with similar considerations arising [75].

10.3 Bubbly Flow Simulations

In this section, we consider simulations of three ‘real-life’ bubbly flows. In order to
obtain sophisticated geometries, these flows are considered without surface tension.
The pressure-correction method is adopted to solve the Navier-Stokes equations, as
described in Section 10.2. The interface advection is carried out using the mass-
conserving level-set method [155-157]. Our main interest in each time step is the

180 Chapter 10. Bubbly Flow Simulations

pressure solve (10.6), which takes the bulk of the computing time in each simulation,
especially when the total degrees of freedom, n, are relatively large. The actual time
step, At, is restricted by

he

At <T:= ,
o 2(‘U‘max+|v‘max+|w|max)

where h is the distance between grid points in one direction and ¢ = 0.35 is the CFL
number, see [155] for more details. That means that we use an adaptive time stepping
procedure by considering the time-step restrictions due to convection of the bubbly
flow. At each time step, /, the actual time, t, is advected with an increment, At, that
obeys

At =min (T, Atmax)

where we choose Atna.x = 0.0005 sec.

DICCG—k denotes DICCG2 with k projection vectors (see Definition 8.1), based
on deflation variant 5.3 (see Table 5.1). Then, at each time step, the resulting linear
system (10.6), with n, is solved using both BoxMG-CG and DICCG—k, as these are
shown to be the most stable and efficient methods for the stationary problems consid-
ered in Section 9.4. The number of projection vectors, k, is chosen to minimize the
required CPU time. ICCG is used as a benchmark in the experiments. The initial guess
for each solve is chosen to be the previous solution, except for the first 10 time steps,
where the zero starting vector is used (to avoid problems with achieving a too-strict
relative residual reduction when the flow is initialized). The termination criterion of all
methods is chosen as in the stationary experiments in Section 9.4. For more details
on the physical problems simulated here, see [155, 156].

10.3.1 Rising Air Bubble in Water

We first consider a test problem where a cube of 1 cm? is filled with water to a height
of 0.6 cm. For these experiments, we take the density of water to be 820 times that
of air (i.e., € = 1.22 x 10~ 2). At the initial time step, / = 0, a spherical air bubble with
radius of 0.125 cm is located in the middle of the domain at a height of 0.35 cm. The
exact material constants and other relevant conditions for this simulation can be found
in [155, Sect. 7.2]. The evolution of the geometry during 500 time steps is given
in Figure 10.1. Here, we take a grid with n = 1003; in this case, the optimal value
for k in DICCG—k appears to be k = 203. Results of the experiment can be found in
Figure 10.2, showing both the number of iterations and computing time required for
each method for the pressure solves at each time step, /.

It can be readily observed from Figure 10.2 that, for each time step, both DICCG
and BoxMG-CG converge in fewer iterations and require less computing time than
ICCG. Due to the zero starting vector in the first 10 iterations, one can observe a
peak in the ICCG cost around these first iterations, whereas this phenomenon cannot
be clearly seen for DICCG and BoxMG-CG. Moreover, BoxMG-CG shows better per-
formance than DICCG. We remark that both methods behave smoothly in time and

10.3. Bubbly Flow Simulations 181

— T T T
0 = -

—1 == —1 ==

(a) =0 (t =0 sec). (b) /=100 (t = 0.013 sec). (c) 1 =200 (t = 0.022 sec).

/
v

—

(d) =300 (t =0.032 sec). (e) /=400 (t = 0.050 sec). (f) =500 (t = 0.064 sec).

Figure 10.1: Evolution of a rising bubble in water. Parameters / and t denote the time step and actual
time, respectively.

350 : 40 :
ICCG ICCG
3001 - - -DICCG-20° | 351 k - - -DICCG-20° |
— BoxMG-CG — BoxMG-CG
g ZSOMWMWWW 7
K] =
T Q
& 200 1 2
5 E 20
5 150f >
.g o 15f
Z 100} ©
10 5 .
L range I
501 4 571..«,-»_~- P e R T SO |
~~~~~~~~~~~~~ B T N—— e N A
0 ‘ : : ‘ 0 ‘ ‘ ‘ ‘
0 100 200 300 400 500 0 100 200 300 400 500
Time Step Time Step
(a) Number of iterations versus time step. (b) CPU time versus time step.

Figure 10.2: Results for ICCG, DICCG—20° and BoxMG-CG for the pressure solves during the real-life
simulation with a rising air bubble in water.



182 Chapter 10. Bubbly Flow Simulations

seem to be more-or-less independent of the (sometimes complicated) geometry of the
density field. This is in contrast to ICCG, whose convergence is rather erratic. Only
some small outliers can be observed in the convergence of DICCG and BoxMG. For
example, a small peak can be seen around / = 325 in DICCG, and around / = 390 and
| =410 in BoxMG-CG. This is likely related to particular changes in the density field
at these time steps, but it is difficult to pinpoint the cause, due to the complicated
surface dynamics at these time steps. Moreover, it can be seen that, for / € [150, 350],
more iterations are required especially for DICCG, because the geometry is most com-
plicated in this period, due to the interaction of the bubble with the interface and the
appearance of many droplets, as can be observed in Figure 10.1.

10.3.2 Falling Water Droplet in Air

In the next simulation, we consider a 1 cm? cube filled with water to a height of 0.45
cm. At the initial time step, / = 0, a spherical water droplet with radius 0.125 cm
is located in the middle of the domain at a height of 0.6 cm. The same material
constants and conditions are used as in Section 10.3.1. The evolution of the geometry
during the 500 time steps is depicted in Figure 10.3. Again, the grid resolution is
n = 1003 and the optimal number of projection vectors is k = 203.

e iy e e
- PN

—1 =T == ==

(a) =0 (t =0 sec). (b) /=100 (t = 0.013 sec). (c) 1 =200 (t = 0.027 sec).
= - A
(d) 1 =300 (t = 0.044 sec). (e) /=400 (t = 0.050 sec). (f) =500 (t = 0.059 sec).

Figure 10.3: Evolution of a falling droplet in air.

The results of the experiment can be found in Figure 10.4. It can again be noticed
that ICCG performs worse than both DICCG and BoxMG-CG. BoxMG-CG is always
faster than DICCG, although the differences are small in this experiment; the number
of iterations and computing time per time step are approximately the same for both



10.3. Bubbly Flow Simulations 183

methods. We observe a very smooth behavior of the corresponding performance curves,
because very few additional bubbles or droplets appear during the simulation. In this
experiment, BoxMG and DICCG are more-or-less insensitive to the geometry of the
density field, while it can be readily observed that the performance of ICCG does depend
on It.

350 ‘ 35 ‘
IC-CG ICCG
300 - - -DICCG-20° || a0l - - -DICCG-20° |
——BoxMG-CG —BoxMG-CG
@ 250 p 251 g
S M M P —~
S J AP Tl S [l LMyl i
S (ALTRGT o [T 2 i, A N
S200f e 1 < 200 VIS, pyereor ]
- :
5 150f 5 15¢
£ o
5 O
2 100f 10
R P TSPy . R e bt L R et
5ol ] B et taxssmsnan s M
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 100 200 300 400 500 0 100 200 300 400 500
Time Step Time Step
(a) Number of iterations versus time step. (b) CPU time versus time step.

Figure 10.4: Results for ICCG, DICCG—20° and BoxMG-CG for the pressure solves during the real-life
simulation of a falling water droplet in air.

10.3.3 Two Rising and Merging Air Bubbles in Water

In the final simulation, we consider a test problem where a 1 cm3 cube is filled with
water to a height of 0.65 cm. At the initial time step, / = 0, two air bubbles of radius
0.1 cm are located with centers at coordinates (0.5,0.5,0.37) and (0.5,0.3,0.15).
The evolution of the geometry during 2500 time steps can be found in Figure 10.5.
This test problem is, obviously, harder to solve than the previous two test problems,
since there is interaction between the two bubbles at the same time as they interact
with the water interface. In addition, we now consider a refined grid with n = 2003,
resulting in a strongly ill-conditioned coefficient matrix and making the problem very
complicated to solve. DICCG—k with k = 253 appears to be optimal in terms of the
required CPU time for all possible k.

Results are presented in Figure 10.6. ICCG is omitted in these results, since it
is extremely slow in this difficult test case, requiring, on average, over 700 iterations
and 500 seconds of CPU time per time step during the first 100 time steps, which
have relatively simple dynamics. It can be observed that the number of iterations, and,
therefore, also the computing time, increases gradually during the simulation for both
methods, but especially for DICCG—253. This is due to the fact that the geometry
of the problem becomes progressively more sophisticated as the simulation proceeds.
Apparently, the influence of the projection vectors depends heavily on the time step.
This even holds if we increase k. Obviously, BoxMG is always faster than DICCG
(especially for / € [1000, 2500]), both with respect to the number of iterations and the
computing time.



184 Chapter 10. Bubbly Flow Simulations

— = [ [

(@) =0 (t =0 sec). (b) /=500 (t = 0.025 sec). (c) 1=1000 (t =0.035 sec).

e B T

=
| =

(d) 1 =1500 (t =0.045 sec).  (e) I =2000 (t = 0.056 sec). (f) 1 =2500 (t = 0.066 sec).

Figure 10.5: Evolution of two rising air bubbles in water.

400 : ; 400 ‘ : : :
- - -DIccG-25° - - -DIccG-25° 4
3501 | —BoxMG-CG | 3501 | —BoxMG-CG i
;
o 300) 300 i
S g ° b &
§ 2501 : . b 9 250 i
Z 200} ~ M ﬁ - ] £ 200 '
5 £
3 f"’ 5
€ 1501 : 1 o 150 1
=1 'y‘ © 0
Z 100} ¥ 100/ J
o
SOW sow
‘ o ‘

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Time Step Time Step
(a) Number of iterations versus time step. (b) CPU time versus time step.

Figure 10.6: Results for DICCG—25 and BoxMG-CG for the pressure solve during the real-life simula-
tion with two rising air bubbles in water. ICCG is omitted in these results, because it is not competitive
with the other two methods.



10.4. Concluding Remarks 185

10.4 Concluding Remarks

In previous chapters, we have seen that some deflation (DICCG) and multigrid (BoxMG)
methods are effective to solve stationary bubbly flow problems. In this chapter, the
success of DICCG is emphasized in realistic bubbly flow simulations. Compared to
ICCG, the benefit of the deflation method is obviously observed in terms of both the
number of iterations and the CPU time. Moreover, we conclude that BoxMG-CG per-
forms better than DICCG, especially for relatively large grid sizes. BoxMG-CG is more
scalable, and requires fewer iterations and less computing time in all experiments, for
all time steps.

BoxMG seems to have a low sensitivity to the density fields, gives accurate solutions
and is very robust in all cases. Improvement of DICCG to give performance comparable
to BoxMG-CG is a subject for future research. The relatively large coarse grids required
by DICCG to achieve good convergence properties suggest that there is a need for a
better solver for the coarse linear systems in DICCG in order to make the method more
efficient and scalable. Overall, we demonstrate that solution of the pressure-correction
equation within bubbly flow simulations can be significantly accelerated using two-level
PCG methods.



186 Chapter 10. Bubbly Flow Simulations




e L1

Conclusions

The focus of this thesis is on the analysis of two-level preconditioned Conjugate Gra-
dient (PCG) methods in which the deflation method (DPCG or DEF) plays a central
role. Most of the performed numerical experiments are based on the Poisson equation
with a discontinuous coefficient derived from bubbly flow problems.

11.1 Conclusions

For linear systems with a nonsingular coefficient matrix, it is known that DEF can
be very effective and efficient. We show that most of this theory is generalizable to
singular coefficient matrices. Three variants of the deflation methods that can deal
with these matrices are discussed, where we prove that all of these variants correspond
to almost the same deflated-preconditioned coefficient matrices. In fact, these variants
are equivalent to the original deflation method, so that DEF is expected to be effective
and efficient when it is applied to linear systems with a singular coefficient matrix.

In each iteration of DEF, coarse linear systems, based on the Galerkin matrix, must
be solved. We show that this can be done with a direct or iterative method, so that it
involves an inner-outer iteration process in the latter case. We examine their efficiency
and derive their theoretical properties. The optimal approach depends on the problem
setting and grid size. For problems with highly refined grids or many projection vectors,
DEF based on inner-outer iterations is the most attractive choice.

The deflation method with fixed subdomain vectors as projection vectors is well-
understood if the underlying PDEs use constant coefficients. However, the density
coefficient is often varying in time, such as in our bubbly flow simulations. We show
that DEF with fixed subdomain projection vectors is still the method of choice for this
case, although level-set and level-set-subdomain projection vectors, which depend on
the density field and have different implementation properties, could also be attractive
in practice. In addition, we show that the projection vectors should always be good ap-
proximations of eigenvectors associated with unfavorable eigenvalues of the coefficient
matrix. We demonstrate that our choices of projection vectors (subdomain, level-set
or level-set-subdomain vectors) are, indeed, good approximations for these eigenvec-

187



188 Chapter 11. Conclusions

tors in our bubbly flow problems. It depends on the implementation, the geometry
of problem, and the maximum number of allowed projection vectors, which of these
variants is the most suitable one in practice.

The effectiveness and efficiency of the deflation method are also emphasized in
numerical experiments for both stationary and time-dependent bubbly flows. Compared
with PCG, DEF significantly reduces the computational cost for most of the test cases,
especially for problems with many bubbles or a highly refined grid. Additionally, the
deflation method is less sensitive to the contrasts between the phases, and is scalable
in terms of iterations and CPU time, as long as the number of projection vectors is
chosen to be proportional to the grid size.

In addition to the deflation method, several other two-level PCG methods are
well-known in the literature, among them are methods based on additive coarse-grid
correction (AD), balancing Neumann-Neumann (BNN), reduced variants of balanc-
ing Neumann-Neumann (R-BNN), and multigrid V(1,0)-, V(0,1)- and V(1,1)-cycles.
The abstract forms of these methods are compared theoretically and numerically. For
certain choices, we obtain the remarkable result that some of these methods are math-
ematically equivalent. Most of these methods can be divided into two classes, each
having the same spectral properties. The differences between the two classes are small,
so that similar convergence behaviors are expected. Moreover, we show both theoret-
ically and numerically that the second class (consisting of the two-level PCG methods
based on BNN and multigrid V(1,0)-, V(0,1)-cycles) is more robust than the first class
(consisting of DEF and R-BNN), although some of the methods from these classes
are mathematically equivalent.

We derive that the two-level PCG method with the multigrid V(1,0)-cycle precon-
ditioner is the same as an adapted variant of both DEF and R-BNN. In addition, we
advocate that this method is the best method with respect to effectiveness, efficiency
and robustness for a class of problems. Additionally, when simple choices are made for
the algorithmic components, each iteration of the two-level PCG method based on a
multigrid V(1,1)-cycle (MG) is more expensive than a DEF iteration. At first glance,
we would expect MG to be the most effective method; however, we show that there
exist some parameters such that DEF is expected to converge more rapidly than MG.
But, for more realistic choice of parameters, MG is expected to be faster than both
DEF and the other 2L-PCG methods given above, although the work per iteration of
MG may remain more than for the other methods. For typical choices of parameters,
we derive that BNN, DEF and MG require the same amount of work per iteration,
and their spectra are almost the same. Hence, these methods are expected to show a
comparable convergence behavior while the corresponding cost is similar.

A comparison between DEF and MG is also performed, where the preconditioners
are based on their own typical and optimized set of parameters. For the multigrid
algorithms, we consider a range of approaches, including standard geometric, robust
geometric and algebraic multigrid variants. The solvers are compared on a series of sta-
tionary problems in three dimensions, where we demonstrate that DEF and MG based
on the Dendy's blackbox multigrid preconditioner (BoxMG-CG) are the most robust



11.2. Future Research 189

and efficient 2L-PCG methods. Large time-dependent bubbly flow simulations are also
performed, showing efficient and scalable solution of the pressure-correction equation
using these methods. BoxMG-CG is more scalable, and requires fewer iterations and
less computing time than DEF.

Overall, we demonstrate that solving the Poisson equation with a discontinuous
coefficient within bubbly flow applications can be done more efficiently using some of
the two-level PCG methods studied in this thesis.

11.2 Future Research

As shown in this thesis, the deflation method is a fast and efficient method. However,
it should be improved to give performance comparable to BoxMG-CG for very large
problems. The relatively large coarse grids, required by the deflation method to achieve
good convergence properties, suggest that there is a need for a better solver for the
linear systems associated with the Galerkin matrix. This is required to make the method
more efficient and scalable. An alternative is to use the multilevel (projection-based)
Krylov method as proposed in [48], where the Galerkin systems are solved recursively,
so that the resulting approach is close to typical multigrid methods.

Moreover, the choice of the traditional preconditioner and the projection vectors
could be further improved in the deflation method. Currently, we use the incomplete
Cholesky preconditioner, but it might be more favorable to use operator-based precon-
ditioners, based on ideas described in [32]. In addition, we use subdomain projection
vectors that are chosen independently of the discontinuous coefficient. \We have an-
alyzed that this is an efficient approach, but coefficient-dependent projection vectors
(such as the level-set or level-set-subdomain vectors, which are described in this thesis)
might be advantageous for relatively large and complicated bubbly flow problems.

Another important issue for future research is the parallelization of the deflation
method (and its adapted variant) in this thesis, following the guidelines given in [56].
This is required to cope with very large 3-D bubbly flows problems. A fast traditional
preconditioner based on block incomplete Cholesky factorization and first steps to
parallelize the deflation operator have already been carried out. In addition, parallel
asynchronous iterative methods exhibit properties that are highly favorable in the con-
text of large heterogeneous networks of computers. By combining these methods with
deflation—type techniques, sophisticated parallel preconditioners may be constructed
that are both efficient and robust. This approach is currently under investigation by
Tijmen Collignon with promising preliminary results.



190 Chapter 11. Conclusions




Appendix

Basic Theoretical Results

In this chapter, we present some fairly basic results related to linear algebra, which are
used in this thesis.

Lemma A.1. Let B,C € R"™" be arbitrary matrices. Then, the following equations
hold:

(a) o(BC) = o(CB);
(b) o(B+1)=a(B)+o(l);
(c) o(B) = o(BT).

Proof. (a) Let A € C and v € C" be an eigenvalue and corresponding eigenvector of
BC, respectively. We consider two cases:

e A\ # 0: the corresponding v satisfies BCv # 0,, so, in particular, we have
Cv # 0,,. Then, the following equations are equivalent:

BCv = M\v;
CBCv = XCv;
CBw = \w,

where w == Cv #0,,.

e )\ = 0: we have
det(BC) = det(CB) =0,

and, hence, if X is a zero eigenvalue of BC, then it is also a zero eigenvalue of
CB.

In other words, X is an eigenvalue of both BC and CB.
(b) Let A € C and v € C" be an eigenvalue and corresponding eigenvector of B+1,

191



192 Appendix A. Basic Theoretical Results

respectively. Then, the following equations are equivalent

(B+hHv = Ay,
Bv = (A—1)v;
Bv = v,

where u = X\ — 1. In other words, XA is an eigenvalue of B + [ if and only if A — 1 is
an eigenvalue of B.

(c) By definition of determinants, det(B — \/) = det(B” — A/) holds for all A € C,
so that o(B) = o(B'). O

Lemma A.2. Let B € R™" be an SPSD matrix. Let C € R"™" be any matrix. Then,
B :=CT"BC is SPSD.

Proof. Matrix B is symmetric, since
BT =(c"BC)T =c"BTCc=C"BC =B.
Moreover, by definition,
u"Bu>0, YueR"
If we choose, in particular, u := Cv, we obtain
(cv)TB(Cv)=vTcTBCcvT =v Bv >0,
which proves that B is SPSD. ]

Lemma A.3. Let S € R™" satisfy S = S. Let R € R™" be an SPD matrix such
that SR is symmetric. Then, SR is SPD.

Proof. Note first that
SR=5?R=S5(SR)" =SR"S"T = SRST,

because SR is symmetric and S is a projection matrix. Then, the lemma follows from
Lemma A.2 by taking C := ST and B := R. O

Next, for two symmetric matrices, B and C, we write B < C if B — C is PSD.

LemmaA.4 (Thm. 4.3.10f [73]). Let B,C € R"*" be SPD matrices with the property
that B < C. Then,
Ai(B) > N(C), i=1,2. ..n

Lemma A.5 (Thm. 4.3.6 of [73]). Let B,C € R"*" be symmetric and suppose that
B has at most rank s. Then,

A/(B)S)\H_k(B—FC), I:1,2 ..... n—s.

Subsequently, Lemma A.6 is presented, which is from the perturbation theory for
the symmetric eigenvalue problem (see also [179] and [63, Thm. 8.1.8]).



193

Lemma A.6. Suppose B = C + Tcc’ where B € R"*" js symmetric, ¢ € R" has unit
2-norm and T > 0. Then,

)\,’(C)S)\,’(B)S)\,’+1(C), i=12,..., n—1. (A.l)
Moreover, there exist my, mo, .. ., mp, > 0 such that
>\,(B) :)\,-(C)—i-m,-’r, I = 1,2 ..... n, (A2)

withmy +my+ ... +my=1.

The next lemma is known as the interlacing property or the interlacing eigenvalues
theorem for bordered matrices (see, e.g., [63, Thm. 8.1.7]).

Lemma A.7 (Interlacing Property). If B € R"™" js symmetric and B = B(1 : 5,1 :s),
then

>\1(Bs+1) < >\1(Bs) < >\2(Bs+1) <...< >\S(BS+1) < As(Bs) < >\s+1(Bs+1)'
for1 <s<n-—1.

Next, given an SPSD matrix F € R"*" and an SPD matrix G € R"*", we consider
the eigenproblem,
G 'Fy =)y,

which can be rewritten as
(F=XG)y =0,

where X and y are an eigenvalue and corresponding eigenvector of G~ 1F, respectively.
The latter problem is known as the symmetric-definite generalized eigenproblem, and
F — \G is called a pencil, see, e.g., [63, Sect. 8.7]. In this case, A and y are known as
a generalized eigenvalue and generalized eigenvector of the pencil F — AG, respectively.
Moreover, the Crawford number, c(F, G), of the pencil F — A\G is defined as

c(F,G) = Hn‘w‘in ) (v"Fy)?+ (y"Gy)? > 0. (A.3)
Yil2=

The following lemma gives information about the eigenvalues after perturbing matrix G.

This lemma is a simplified variant of the original theorem given in [127], see also [63,

Sect. 8.7].

Lemma A.8. Let F € R"™" be an SPSD matrix and G € R"" be an SPD matrix. Let
F — X\;G be the symmetric-definite n x n pencil with A1 < X < ... < A,. Suppose Rg
is a symmetric n x n matrix that satisfies |Rg||3 < c(F,G). Then, F — ui(G + Rg)
is symmetric-definite with p1 < uy < ... < w,, satisfying

R
| arctan (X;) — arctan ()| < arctan <|C(FG|G2)> L i=1,2,.. ., n. (A.4)



194 Appendix A. Basic Theoretical Results

A matrix, B = [b; ;] € R"*" is irreducibly diagonally dominant if B is irreducible
and
byl > > Ibigl J=1..., n,
i#j
with strict inequality for at least one j. Now, the following lemma, which is [120,
Corollary 4.8], can be proven.

Lemma A.9. If a matrix B is irreducibly diagonal dominant, then it is nonsingular.

Next, we give some results that characterize eigenvalues in a variational way, see
also [73, Section 4.2]. Most of them use the so-called Rayleigh-Ritz ratio given by

vy By
yly '

BeR™" yeR"

Theorem A.1 (Rayleigh-Ritz Theorem). Let B € R"*" be a symmetric matrix. Then,

MyTy <y"By <xny'y, VyeR"

and
A - A = v'By _ TRy
max — n - maxyion Ty - maXyTyzly y.
. TB . T
Amin = Ap = Mminyzg, nyyy = min,r,_1y' By.

Theorem A.2 (Courant-Fischer Minimax Theorem). Let B € R"*" be a symmetric
matrix. Suppose that r is a given integer with 1 < r < n. Then, fory # 0,, we have

yT Ay

MiNy,, . wo eRmxn MAXy Lwy, W, Ty = Ar (A5)
a )
: vy A _
MaXy, o errxn MINy Ly Ty, Ar.

We remark that if we take r = n and r = 1 in the first and second expression of (A.5),
respectively, the assertions reduce to Theorem A.1.
Subsequently, the Frobenius norm and p-norm for matrices are defined as

n
1By
1BllF = ,| S b2, 1Bl = sup . (A.6)
y

= Ivllo

respectively. In particular, the 2-norm for symmetric matrices is defined as

B
|1Bll2 := sup 1Byl
y0 |lyli2

= max{ [A1(B)[, |Aa(B) }, (A7)
where A1 < ... < A,. Moreover, we mention well-known properties of the eigenvalues
of symmetric matrices, which can be found in [63, Sect. 8.1.2].

Lemma A.10. Let B, G € R"*" be symmetric matrices. Then,

(i) ST [ Ai(B+G) = X(B) I” <|IG|%;



195

(i) Xi(B) + A1(G) < Mi(B+G) < Xi(B) + M(G), i=1,2,.. ., n;
(i) [X\i(B+G)=X(B)| <||Gll., i=1,2, ..., n.

Lemma A.10(ii) is known as the Wielandt-Hoffman theorem.
If an invertible matrix satisfies some conditions, then some entries of the inverse
are known a priori, see the next lemma.

Lemma A.11. Let C = [¢; ;| € R"™" be a symmetric and invertible matrix with the
property that
Cl,=ve” y#£0. (A.8)

Then, the entries of the last row and last column of C™1 = [c,.fjl] have the same value,
}/, Ie.,

1
C,i=¢,=— Vi J A9
J =G =5 (A.9)

Proof. From Eq. (A.8), we obtain yC1el™ =1, This yields

1
~1 ~1
VG = 1 — €1 = ;
forall i=12,..., n. Due to the symmetry of C, its inverse is also symmetric and
Eq. (A.9) follows. O

Lemma A.12. Suppose that u = [u;] € R" and v = [vi] € R". Then, rank uv’ = 1.
Proof. Since

uv’ = [up --- u,,]T[vl s V] = [viu vou -+ vpul,
the columns are multiples of each other, so that rank uv’ = 1. O

Lemma A.13. Let matrices B € R™5t, D € R"™* and an invertible matrix, C € R
be given. If R(B) C R(D), then R(CB) C R(CD) holds.

Proof. Denote B = [b; --- bs] and D = [d1 --- ds,], where {b;} and {d;} are sets
of vectors. Since R(B) C R(D) holds, we can write

bi=cidy + - ¢cs,ds,, ¢ €R,
foralli=1, ..., s1. So, we also have
Cbj=cCdy +---¢,Cds,, ¢ €R,
giving us R(CB) C R(CD). O

Subsequently, we present two well-known theorems in the linear algebra (see,
e.g., [128]), followed by a consequence of these theorems.



196 Appendix A. Basic Theoretical Results

Theorem A.3 (Fundamental Theorem of Linear Algebra). Let B be a symmetric ma-
trix. Then,
N(B)=R(B)t, R(B)=N(B)*.

Theorem A.4 (Rank-Nullity Theorem). For any B € R™" we have

rank B +dim N (B) = n.

Lemma A.14. Suppose that S := | — RB and S* := | — R" B, where B € R™" js
SPD and R € R"™ " js any matrix. Then,

dimN (S) = dimN (S%).

Proof. Note first that S* is similar to S”, since S* = B~1ST B. Hence, the eigenvalues
of S* and ST are the same (including multiplicity), so that

dimN (S*) =dimAN (S7).

Lemma A.4 says that
dmR(S)+dimN (S) =n.

On the other hand, Theorem A.3 gives an orthogonal decomposition of
R"=R(S)®N (ST), (A.10)

implying that
dmN (ST) =n—dmR(S) =dimN (S).

O

The following standard definitions are related to orthogonal complements and direct
sums.

Definition A.1. Let H be a vector space with an arbitrary inner product, {-,-), and let
Z be a closed subspace of H. Then, the orthogonal complement ) of Z, also denoted
by Z+ is defined as

YV={yeH | (zy)=0 VzeZ}, (A11)
so that Z is the subspace orthogonal to ).

Definition A.2. Let X be a vector space. Suppose that Y and Z are subspaces of X .
Then, X is said to be the direct sum of Y and Z, written as

X=YoZ, (A.12)
if each x € X has a unique representation,

xX=y+z, (A.13)



197

where y € Y and z € Z.

In other words, the direct sum of two subspaces, ) and Z, is the sum of subspaces in
which Y and Z have only the zero element in common. Using Definitions A.1 and A.2,
we can derive Lemma A.15, which is well-known and states that the union of the
subspaces )Y and Z is exactly H (see, e.g., [83, pp. 146-147]).

Lemma A.15. Let H,Y and Z be defined as in Definition A.1. Then,
H=Yo®Z. (A.14)

Note that dim Y + dim Z = n for H := R"”. This means that ) = R""° holds as
Z = R*® with s < n is given.



198 Appendix A. Basic Theoretical Results




Appendix

Determination of Bubbles from the
|_evel-Set Function

The level-set approach [102, 110] can be adopted to describe the density field, p,
implicitly in many applications, such as two-phase bubbly flow applications, see [143,
154, 156]. In this approach, the interfaces of the bubbles are defined by the zero
level-set of a marker function W(x, t) that is defined as follows:

W =0, at the interface;
W > 0, inside the high-density phase;
v <0, elsewhere.

The interface is implicitly advected, by advecting W as if it would be a material property:

8_\11 +u-VVv =0,

ot
where u is the velocity vector in €2. Therefore, p can be determined at each time step,
without having the exact coordinates of the bubbles. For choosing deflation vectors in
the deflation method, an extra procedure for determining the bubbles from W should
be carried out. For example, Algorithm 9 gives the pseudo-code of an algorithm for
determining bubbles from a given level-set function, which can be used for 2-D problems
on an equidistant grid ! ?
point X;.

. In this algorithm, X; denotes an adjacent grid point of grid

In Algorithm 9, three loops are needed to distinguish the bubbles from the rest of
the domain and to include their adjacent grid points, requiring O(n) flops. Note that,
in the case of deciding whether a grid point is in a bubble, we simply look at the sign
of the corresponding element of W. If the value is positive, the grid point is in the
interior of the bubble, if it is negative, then it is outside the bubble, and, otherwise,

! John Brusche has contributed to the realization of this algorithm.
?If the computations are performed on an unstructured grid, similar algorithms as Algorithm 9 can
be applied using reordering strategies, such as Cuthill McKee's algorithm [33].

199



200 Appendix B. Determination of Bubbles from the Level-Set Function

Algorithm 9 Determination of bubbles from the level-set function in 2-D
1: Setj=1and f =0,

2. for x; to x, (from left to right and from bottom to top) do
3 if x; € /\hl then

4 if left and/or bottom X; ¢ Ay, then

5: fi =17,

6 J=J+1

7 else

8 fi = ming, f;

9 end if

10  end if

11: end for

12: for x, to xi(from right to the left and from top to bottom) do
13: if x; € /\h1 then

14 if right and/or top X; ¢ Ay, then
15: fi =J;

16: J=J+1

17: else

18 fi = ming, f;

19: end if

20: end if

21: end for

22: Renumber all f; # 0;
23: for x; to x, do
24 if x; € /\hl and X; ¢ /\/L,1 then

25: fz = £
26: end if
27: end for

it is on the interface. In this way, it is straightforward to determine the bubbles from
the level-set function, and to obtain a code where each deflation vector corresponds
to exactly one bubble. The algorithm is further explained in Example B.1.

Example B.1. A 2-D bubbly flow problem with m = 3 bubbles is considered, see
Figure B.1. In each of the subplots, one can see the intermediate and final results of
applying Algorithm 9 to determine each bubble.



201

(c) After renumbering (Line 22). (d) After the algorithm (Line 27).

Figure B.1: A 2-D bubbly flow problem with m = 3 showing the application of Algorithm 9. The
numbers given in the plots are the corresponding nonzero entries of vector f.



202 Appendix B. Determination of Bubbles from the Level-Set Function




Appendix

More Insights into Deflation applied to
Singular Coefficient Matrices

In addition to Chapter 5, we give some more results and insights into the application
of the deflation method applied to linear systems with singular coefficient matrices .
The main focus of this appendix is on proving Theorem 5.5.

The following definition holds throughout this appendix.

Definition C.1. Suppose that an SPD coefficient matrix, A € R"™" s given. Let
Z € R™K pe a deflation-subspace matrix with full rank and k < n. Let Z, € R"*ka pe
a deflation-subspace matrix with full rank and k, < k satisfying N'(A) N R(Z,) = 0.
Then, we define

P = I-AQ, Q = ZEtZzT, E = ZTAZ
P, = |-AQ, Q, = Z,E;'ZI E, = ZIAZ,.

Note that E can be singular, while E, is obviously nonsingular (see Section 3.2). In
addition, if there does not exist a vector, y, such that y C R(Z) for y € N(A), then
P=P,

C.1 Theoretical Results

We show that a deflation matrix based on a singular Galerkin matrix can always be
reduced to a deflation matrix based on a nonsingular Galerkin matrix.

Theorem C.1. Let A € R™" and Z € R™¥ be as given in Definition C.1. Then,
there exists a matrix Z, € R™ ks with k, < k such that E, is invertible and

QR=Q,;, P=P~F,. (C1)

'This appendix is based on research that is still ongoing, see [85].

203



204 Appendix C. More Insights into Deflation applied to Singular Coefficient Matrices

Proof. Since E is SPSD, there exists an orthogonal matrix, U € R¥*k such that

UTEU =
0k ko) ko O(k—ka).(k—ka)

Dy 0k, (k—kn) ]

where D; € Rk*ka with k, < k is a nonsingular diagonal matrix. Now, let

U=[U,Us], Us e RF¥ka ), € RF*(k—ka),

Then,
v
ZU=[2Uy, 2], (ZU)T = | [ior (C.2)
2
Moreover, note that
Q=ZE*ZT =ZUWUTEL)TUT ZT, (C.3)
for each orthogonal matrix, U € R¥*k Combining Egs. (C.2) and (C.3) yields
Q=ZE*Z" = ZUWUTEUL*tUTZT
+
ulz"
= ZU L E[ZUy, ZU urz?t
( UQTZT [ 1 2])
D;t Ok, (k—k.) ulz?
= [ZU1, ZU)] L a(k~ka
Ok ks Ok—ko). (k) | | U527

= ZU;D;'UT ZT

= ZU(U[EU) U ZT.
Therefore, for Z, := ZU; € R¥*% we have

Q=2ZE"Z" = Z,(2]AZ;) 2] = Q.
so that the theorem follows immediately. ]

Theorem C.1 shows that, for each SPSD coefficient matrix, A, and deflation-subspace
matrix, Z, there exists a reduced deflation-subspace matrix, Z, such that E; is non-
singular and deflation matrices P and P, are equal.

Furthermore, the proof of Theorem C.1 also provides a technique to construct
Z,. choose Z, := ZU; with U; consisting of eigenvectors of E corresponding to the
nonzero eigenvalues. Note that these eigenvectors are orthogonal to the eigenvectors
associated with the zero eigenvalues, so that N'(A) € R(U1) and Z, has full rank.
Therefore, if N(E) is known, a basis of its orthogonal complement, say W, can be
constructed such that R(U;) = R(W). Hence,

R(ZUy) = R(ZW).



C.2. Proof of Theorem 5.5 205

Thus, by using Theorem 3.2, ZW can also be applied as a reduced deflation-subspace
matrix, resulting in Theorem C.2.

Theorem C.2. Let A € R™" and Z € R"™k be as given in Definition C.1. Suppose
that E has rank k,. Let Zs := ZW and Z, be defined as in the proof of Theorem C.1.
Suppose that W consists of basis vectors of the orthogonal complement of N(E).
Then, ZI AZ is nonsingular and

Q=Q.=27zlAz5) 7]

C.2 Proof of Theorem 5.5

Using the results of the previous section, we can prove Theorem 5.5 (that is equal to
Theorem C.3), see below.

Theorem C.3. Let A€ R™" Z € R™* and E € R¥*¥ be as given in Definition C.1.
Suppose that

Al, = 0, (C.4)
Z].k = ln; (C5)
dmR(E) = k-1, (C.6)

and Z, 1 =|z1,..., Zk 1]. Let Ex 1, Qx_1 and P 1 be as defined in Definition 5.3.
Then, Ex_1 is nonsingular and

AQA = AQx 1 A.

Hence, (see Eq. (5.27))
M IPA=M 1P, A.

Proof. From Egs. (C.4) and (C.5), we obtain E1, = 04, so that N(E) = R(1x).
Next, we choose a basis W of the orthogonal complement of R(1x). We take the

vectors {w; € RF:i=1,. . ., k — 1}, where
wo= (L]
_ _ 4T
wo = [l el
_ _ T
wer = [=nen ]

Eq. (C.5) gives us



206 Appendix C. More Insights into Deflation applied to Singular Coefficient Matrices

which can be rewritten as

1 1 K
1A T T ln—ZZj : (C.7)
Jj=2
On the other hand, we obtain
S|
ZWl _Zl—;ﬁzj (CS)

Combining Egs. (C.8) and (C.7) yields

1 1
ZWl = <1+ﬁ> Zl—f'mln.

Similarly, we obtain

1 1 _
ZW’:<1+m>Zi+m1"' =1 ..., k —1.

Hence, . )
ZW = |az, ..., azk,1]+m1,,1nT,1, a=1+——. (C.9)

Suppose now that

Then, with Eq. (C.4), we obtain
WTEW = ZTAZ,

while Theorem C.2 implies that Z7 AZ is nonsingular. Using Egs. (C.4) and (C.9), we
obtain AZW = AZ, so that

AZWWTEW) TWTZTA=AZ(ZTAZ) 1 ZT A.
Since R(Z) = R(Zx_1), Theorem 3.2 yields
AZWWTEW) *WTZTA= AZ, 1E, 1 Z] (A (C.10)
On the other hand, we have
AQA = AZWWTEW) tWTZTA (C.11)
from Theorem C.2. Combining Egs. (C.10) and (C.11) yields

AQA = AQk—1A,



C.2. Proof of Theorem 5.5 207

which also implies
M7 IPA=M1P_,A.

Remark C.1.

e From the proof of Theorem C.3, it is important to note that the following in-
equalities hold:

R#Qr-1,. AQ#AQk 1. QA# Qi 1A,
while these would be equalities if E is nonsingular.

e Several other interesting theoretical results for the deflation technique based on
a singular Galerkin matrix can be found in [85].



208 Appendix C. More Insights into Deflation applied to Singular Coefficient Matrices




Appendix

Efficient Implementation of Deflation
Operations

In this appendix, we demonstrate the efficient computation of AZ and E, so that they
can be easily incorporated in the deflation method. One can consult [140] for more
details. Recall that A € R"*" is a coefficient matrix, Z € R"*k is the deflation-
subspace matrix, and E := ZTAZ € R**k is the Galerkin matrix. As discussed in
Chapter 8, the nonzeros of these matrices are stored in the matrices Sa> and Sg,
respectively, whose exact forms are explained below. Moreover, Assumption D.1 holds
throughout this appendix (see Assumption 8.1).

Assumption D.1.

e A is derived after discretization of the Poisson problem that is originated from
bubbly flow problems (see Section 1.3) and consists of 5 and 7 nonzero diagonals
in the 2-D and 3-D case, respectively;

e 7 consists of subdomain deflation vectors (see Section 4.2.3), where the subdo-
mains are squares and cubes in the 2-D and 3-D case, respectively. In addition,
the number of subdomains and deflation vectors is assumed to be equal.

D.1 Efficient Construction of S;> and Sg in 2-D

Matrix Spz € RY*3 can be deduced from AZ, where 7y is the number of nonzero
entries of AZ. The first and second columns of S,> are the row and column indices
of the nonzero entries of AZ, respectively. The third column of S,> stores their
corresponding values.

Each deflation vector in Z corresponds to one subdomain in €. If we assume Q2
to be a square, then these subdomains can be divided into nine different groups as
depicted in Figure D.1. Note that all groups (except the corner groups 1, 3, 7, 9) may
consist of more subdomains. For instance, for k = 25, Group 5 consists of exactly 16
subdomains, while each of Group 2, 4, 6 and 8 consists of 4 subdomains. Moreover,

209



210

Appendix D. Efficient Implementation of Deflation Operations

in Figure D.2, we can see the different cases and the grid points that are involved in
the computation of Sa~. In addition, the variables used in this section are explained

in the Table D.1.

e o o o e e o o ® e o o
e o _o o e e _o o ® e _o o
o o 7. [ ] o o 8. [ ] ® o 9. ®
e o o o e o o o ® o o o
e o @ o e e 9 o ® e o °
e o o o e e _o o ® e o o
e o 4. L] e e 5. L] L N 6. L]
e o @ o e e 9 o ® e o °
e o @ o e e 9 o ® e o °
e o o o e e _o o ® e _o0o @
e o 1. L] e e 2. L] L N 3. L]
e o @ o e e 9 o ® e o °

Figure D.1: Domain Q divided into nine subdomains (k = 9)

exactly one group.

® @ [ ] [ ] [ ] (] e & ® [ ]
e e_o E]ﬂz E OHXI Wo *
L] .7. * * e ® .8. (J L)
(o e o (o |@3LU 4p@|(® o o (o [(®
(R ] [ ] ® ® @ L ] [ ]

2D 2D

2u 2u
@ o o o e s o o
® e o ® [®3LU 4U@]|() & o (9 [(®

* o ® 0 * L]

Drat( | 2] s |2
@ e o ® |®3p DO|@® e e @@
e e L] L) ® @ [ ] L ]

2D 2D

U 2u
e e [ LJ o © [ ) [ ]
®© e o @ |@U4U@®|@® o ¢ ® |®
e e [ ) * L ] (] e o [ ) L] [ )
° olo E]]R o| e 020 E]
e e [ ) * * L] .IIYI ,W. L)

. so that each subdomain corresponds to

3RD @]

Figure D.2: Cases of grid points involved in the groups of Saz.

D.1.1 Number of Nonzero Entries in AZ

The number of nonzeros of AZ, =y, can be computed by counting the number of
nonzeros for the different kinds of subdomains.

e Corner Subdomains (Group 1, 3, 7, 9). Each corner subdomain has nonzero
contributions of 4n, — 1 grid points, so that v, = 4(4np, — 1).



D.1. Efficient Construction of Saz and Sg in 2-D 211

Variable | Meaning |

k Number of subdomains

Ky Number of subdomains in one direction (= vk in the 2-D case)
np Number of grid points in one direction of a subdomain

04 Total number of nonzeros in AZ

Ye Number of nonzeros in AZ from all corner subdomains

Yb Number of nonzeros in AZ from all boundary subdomains

VYi Number of nonzeros in AZ from all interior subdomains

Table D.1: Explanation of the variables.

e Boundary Subdomains (Group 2, 4, 6, 8). Each boundary subdomain consists of
6np, — 2 involving grid points. Because we have 4(k, — 2) boundary subdomains,
¥y = 8(3np — 1)(ky — 2) holds.

e Interior Subdomains (Group 5). 8n, — 4 grid points are involved per interior
subdomain. Since there are (k, — 2)? interior subdomains, this yields v, =
4(2n, — 1) (ke — 2)°.

Now, 7 is given by

Y = YtV ti

= 4(4np— 1) +8(3np — 1)(ke — 2) + 4(2np — 1) (ke — 2)2. (B.1)

Obviously, if k is large, then «y; is the dominant term in Eq. (D.1).

D.1.2 Treatment of the Different Cases

The different cases as presented in Figure D.2 are considered separately.

Case 1 (1R, 1L, 1M)

We distinguish the cases ‘left’ (L), ‘right’ (R) and ‘'middle’ (M) variant in Case 1,
where we note that the work is twice as much compared to ‘left’ or ‘right’ for variant
‘middle’. For each row of the domain, we add the values of A corresponding to the
involved grid points to Sa~, where it is sometimes efficient to use

—ajj = Zai,k, (D.2)

k)

since Al, = 0, holds from Assumption 1.2. For instance, for the case 'left’, we add
two values of A to Spz in each row: for the first entry, y, we add the negative value
of the corresponding right entry of A, and we add the corresponding left entry of A to
Sz for the second entry, y + 1.



212 Appendix D. Efficient Implementation of Deflation Operations

Case 2 (2U, 2D)

Two variants ‘up’ (U) and ‘down’ (D) are distinguished for this case. The corresponding
entries of Sy~ can be easily computed: we add the corresponding bottom entry of A
for ‘up’, while the top entry of A is added to S, in the case of ‘down’.

Case 3 (3LU, 3LD, 3RU, 3RD, 3MU, 3MD)

This case consists of six different variants. Each variant requires a sequence of opera-
tions, since the ‘corner’ points have to be treated differently compared to the ‘boundary’
points. For instance, Variant ‘3LU’ requires the computations of the boundary points,
followed by two corner points that should be treated separately, both using again (D.2).

Case 4 (4D, 4U)

We distinguish the variants ‘4D’ and '4U’, whose treatment is analogous to the proce-
dure of the variants in Case 3. Instead of two corner points, we now have four corner
points that should be handled separately.

D.1.3 Construction of S,»

The computation of Sa7 is straightforward by using the cases as described above.
Each subdomain is handled by determining the entries corresponding to each case. If
k = 4, then four subdomains should be considered with three cases each. In the case
of k > 4, Group 2 (or 4, 6, 8) in Figure 2 consists of k, —2 subdomains, while Group 5
consists of (ky — 2)? subdomains.

Moreover, recall that if the singular coefficient matrix, A, is made invertible ac-
cording to Definition 5.2, then S,» consists of an extra row. Combining the facts
(AZ)nn =0ann and d,, = (1 + 0)an,,, we obtain

g .
(AZ)nn = 150 cTa,,,,,.

D.1.4 Construction of S¢

The Galerkin matrix, E, is a relatively small and sparse SPD matrix with the same
nonzero pattern as A. The different cases in the computations of S,> can also be
applied to construct Sg. Obviously, each nonzero entry of AZ is used once in order
to compute Sg. The geometry of the procedure is given in Figure D.3, where the
following remarks can be made.

e [ issymmetric, so that only a limited number of nonzero entries of AZ is required
to compute Sg.

e Sc is stored efficiently as Sg = [e; e e3] € R¥*3 where ¢; is the main
diagonal of E, and e, and e3 are the second and third nonzero subdiagonals
of E, respectively. All indicated interior grid points contribute to e;, while all



D.2. Efficient Construction of Saz and Sg in 3-D 213

right and top grid points next to the interior grid points contribute to e, and es,
respectively. Later on, zero columns can be added between e, and es, which can
be filled with entries coming from the Cholesky decomposition.

e The construction of Sg can be easily implemented in the existing code of the
computation of S,7.

S

(3¢ "o @@BLU 4D@®

e ¢ o o E2

2D
o 2U .
E3& e o o E3( o e o)
e e s @ f@®iu w@l® )
@ | @ e | ®
4]51@@112 E
¢ ® [®3p 4P@
e @ [ ] L) E2
2D
E3 ’o'"izuo'"'o__': E3

e ¢ o 0 ®Lu W&

: 1“@2 I

E2

Figure D.3: Cases of grid points involved in £ := Z" AZ, denoted by E1, E2 and E3, whose values in
AZ contribute to e1, e and es, respectively.

D.2 Efficient Construction of S,> and Sg in 3-D

The results from the previous section can be generalized to the 3-D case. FEach
subdomain of Figure D.2 takes the form of a block in this case. These blocks are
numbered lexicographically. We demonstrate the efficient computation of S4> and
SEe. where the analysis is based on 9 subdomains followed by 27 and more subdomains.

D.2.1 Number of Nonzero Entries in AZ

Similarly to the 2-D case, the number of nonzero entries of AZ, «y, can be easily
computed, see below.

e Corner Blocks. It is easy to see that 6n§ — 3np + 1 nonzero entries are involved
for each of the eight corner blocks, so that y. = 8(6n§ —3np +1).

e [nterior Blocks. 12nﬁ — 12np + 8 nonzero entries are involved for each interior
block. This implies v; = (kx —2)3(12n7 — 12n, 4+ 8), because we have (ky — 2)3
interior blocks.



214 Appendix D. Efficient Implementation of Deflation Operations

e Boundary Blocks. We divide the boundary blocks into ‘real-boundary’ blocks
and ‘boundary-interior’ blocks. Each of the 12(ky — 2) real-boundary blocks has
8n§ — 5n, + 2 nonzero entries, whereas each of the 6(k, —2)? boundary-interior
blocks requires 10nﬁ — 8np + 4 entries. Hence, v, = 12(ky — 2)8nﬁ —b5np+2+
60(kx — 2)?n3 — 8np + 4.

The total number -y can now again be computed using v = y¢ + ¥ + ¥p. As in the
2-D case, one extra row is required for Spz, if A is forced to be invertible using
Definition 5.2.

D.2.2 Matrix S, for Eight Blocks

In the case of eight subdomains, we only need Groups 1, 3, 7 and 9 of Figure D.2,
which are sections of corresponding blocks in 3-D. We treat Block 1 extensively. The
remaining blocks can be analyzed in a similar way.

Block 1

Block 1 is artificially divided into layers, where each layer corresponds to one position
on the z-axis. Note that the layersof z =1, ..., np — 1 are identical, see Figure D.4.
As a consequence, they are the same as Block 1 in the 2-D case. For layer z = ny,
each grid point of the block accounts for an extra entry (at z = n, +1). This requires
the introduction of 'Case 6' that encounters for these entries. In addition, Cases 1
and 3 are not required anymore. Finally, for layer z = n, 4+ 1, each interior grid point
of the block has a contribution that is treated in Case 5.

z=1,...,Nb-1 z=Nb z=Nb+1
22U 2u
e e e o e e e o ® ° o o

Figure D.4: Treatment of Block 1.

Other Blocks

The remaining blocks can be treated in the same way as Block 1. In Table D.2, we
summarize the involved cases for each of these blocks.

D.2.3 Matrix S,> for 27 Blocks

For k = 27, the eight blocks from the previous subsection are the eight corner blocks.
The remaining 19 blocks can be constructed in a straightforward way. The different
cases for each block are considered below.



D.2. Efficient Construction of Saz and Sg in 3-D 215
z-position Block 1 Block 2 Block 3 Block 4
1,..., n,—1 | 1R, 3LU, 2U | 1L, 3RU, 2U | 2U, 3LD, 1R | 2D, 3RD, 1L
np 6LUp, 2U 6RUp, 2U 2U, 6LDp 2D, 6RDp
np+1 5D 5D 5D 5D
z-position Block 5 Block 6 Block 7 | Block 8
1,..., n,—1 | 5U 5U 5U 5U
np 6RUn, 2U 6RUn, 2U 2D 2D, 6RDn
np+1 1L, 3RU, 2U | 1L, 3RU, 2U | 6LDn 2D, 3RD, 1L
Table D.2: Cases involved in the blocks for eight subdomains in 3-D.
Blocks 1-9

The treatment of Blocks 1-9 is presented in Table D.3.

| z-position | Block 1 | Block2 [ Block 3
1,..., n,—1 | 1R, 3LU, 2U | 1M, 4U, 2U | 2U, 3LD, 1R
np 6LUp, 2U 6MUp, 2U 2U, 6LDp
np+1 5D 5D 5D
z-position Block 4 Block 5 Block 6
1,..., n,—1 | 2D, 3LD, 1R, 3LU, 2U | 2D, 4D, 1M, 4U, 2U | 2D, 3RD, 1L, 3RU, 2U
np 2D, 6LMp, 2U 2D, 6MMp, 2U 2D, 6MMp, 2U
n,+1 5D 5D 5D
z-position Block 7 Block 8 Block 9
1,..., n,—1 | 2U, 3LD, 1R | 2D, 4D, 1M | 2D, 3RD, 1L
np 2U, 6LDp 2D, 6MDp 2D, 6RDP
np+1 5D 5D 5D
Table D.3: Cases involved in Blocks 1-9 for k = 27 in the 3-D case.
Blocks 10-18

Blocks 10—18 can be constructed from Blocks 1-9. Instead of three, we obviously have
five different layers. The last three layers are the same as the block on the bottom
of these layers, while the first two blocks follow immediately from the last two blocks.
For example, Block 10 consists of

np 5U;
np+1: 6LUn;

z=< np+2,..., 2n, —1: 1R, 3LU, 2U;
2np 6LUp, 2U;
2np, +1 5D.



216 Appendix D. Efficient Implementation of Deflation Operations

Therefore, the cases for the last three layers with respect to the z-position (i.e.,
zZ=np+2, ..., 2np 4+ 1) are exactly the same as given for Block 1. In addition, the
cases associated with the first two layers (i.e., z = np, n, + 1) are almost identical to
the cases corresponding to the last two cases (i.e., z = 2np, 2np + 1), where 'p’ is
replaced by ‘n’ in Case 6. A similar pattern of cases can be derived for Blocks 10-18.

Blocks 19-27

Blocks 19-27 also follow immediately from Blocks 1-9. The different layers of Blocks 1—
9 should be reversed and, moreover, ‘p’ should be replaced by ‘n" in Case 6, while ‘D’
should be replaced by ‘U’ in Case 5. For instance, Block 20 consists of

2np 5U;
z=< 2n,+1: 6MUn; 2U;
2np +2, ..., 3np: 1M, 4U, 2U;

This is exactly the reverse procedure of Block 2, where 5D and 6L.Up are now 5U and

6LUn, respectively. In a similar way, the other blocks can be analyzed.

D.2.4 Matrix S,> with Variable Number of Blocks

The determination of matrix S,~ with a variable number of blocks is a straightforward
generalization of the case with 27 blocks as described above. Each of the 27 blocks
should now be considered as different classes, which cover all new blocks.

D.2.5 Construction of S¢

Matrix Sg is constructed in the same way as the 2-D case. Instead of Sg = [e1 e €3],
we now have Sg = [e1 e e3 e4], where e4 can be computed similarly to e, and es.



Appendix

Flop Counts for the Deflation Method

In this appendix, we compare the floating-point operations (flops) of ICCG and DICCG
in more detail. The DICCG1 and DICCG2 methods (see Section 8.3), which only differ
in the inner-iteration solver, are examined. We restrict ourselves to the 3-D case; a
thorough 2-D analysis can be found in [140]. Moreover, the following assumption holds
throughout this appendix.

Assumption E.1.

e A € R"™" consists of 7 nonzero diagonals;

M~1 is the IC(0) preconditioner (see Section 2.5.1), so that the resulting defla-
tion method is DICCG;

Z € R™¥ consists of subdomain deflation vectors (see Section 4.2.3) where
k < n;

AZ is computed and stored efficiently as Spz (see Appendix D.2);

E € RK*k has bandwidth k2 + ky = k3 + k3, and it is computed and stored
efficiently as Sg (see Appendix D.2).

Assumption E.1 leads to fairly standard results as given in Table E.1, where Fy« denotes
the number of flops required for a specific operation x, and chol(A) is the Cholesky
factor, C, that satisfies A= CC'.

Notation ‘ Operation ‘ # Flops ‘
F(yl,yg) (ylva) 2n

Fy1+y2 1 + ¥2 n

FAy Ay 13n
Fero(A) construct C from A 12n
Fay,—y, | solve y» from CCTys, = y; | 15n

Table E.1: Results of flop counts for standard operations.

217



218 Appendix E. Flop Counts for the Deflation Method

E.1 Deflation Operations

The flop counts for some operations in the deflation method are presented below.

Computation of S,> and Sg

According to Appendix D, the number of rows of S,» in the 3-D case is given by
Y = Yc + i + Vb, where

Ye = 8(6n7 —3np+1);
v = (ke —2)3(12n7 — 120, + 8); (E.1)
Yo = T6(ky —2)n2 —5np+ 2+ 60(ky — 2)%n2 — 8np + 4.

Substituting n, = /7 and ke = vk into (E.1) and rearranging some terms, we obtain

2
Yo ~ 48(k)
2 1
vi &~ 12n3k3 + 8k;
vy A~ 6003,

resulting in

win

21 2 n
y & 1205 k3 + 6005 + 48 <;> + 8k,

Recall from Appendix D that Sa~ and Sg can be constructed with the same cost. The
number of flops to create AZ and E, denoted by Fa> and Fg, is

n

2
k>3 + 8k ~ O(n3k3).

Fem Fay ~ 1203k + 6005 + 48 (
This latter expression can also be obtained by observing that y; > ~y,+ for sufficiently
large k, so that the contributions of 7, and <. could be neglected. Moreover, the
construction of Sy and Sg in the 3-D case ((’)(n%k%) flops) is clearly more expensive
than in the 2-D case (O(n%) flops).

Computation of (AZ)"y;, Z"y1, (AZ)y> and Zy,
We easily derive
2 1
FAZy2 = F(AZ)Tyl = 2’Y ~ O(niki),

and
Fzy2 — FZTyl =n= O(n)

In contrast to the 2-D case, the difference of cost between the computations of (AZ)y;
and Zyy is relatively small.



E.1. Deflation Operations 219

Computation of Solving Ey, = y;

The Galerkin system, Ey, = yi, is solved differently in DICCG1 and DICCG2, see
below.

e DICCGI: Solving Ey, = yy directly. The factor, L, of band-Cholesky decompo-
sition is constructed from E, followed by solving y» from LLTy> = y;. Since the
bandwidth of £ is k3 + k3 , we obtain (cf. [137, Appendix B])

Funo(e) = K ((k§ +k3)2 4+ 3(k3 + k%)) +k~ O(KY),

and , . ,
FEy,=y1 piccar = k (2(k3 +k3) + 1) ~ O(k2).

e DICCG2: Solving Ey, = y; iteratively. If Ey, = y; is solved using ICCG, it can
be easily shown that

FEy,—y1 picce: = 31k + 36kl ccq,

where /ccc is the number of inner iterations of ICCG.

Clearly, it depends on k and lccc whether DICCG1 or DICCG?2 is the most efficient
method.

Computations of Py and PAy

Obviously, Fp, and Fpa, depend on the choice of DICCG1 or DICCG2. We obtain
FPy,DICCGl = FZTyl + FEyQ:yl,chcm + F(AZ)yQ + Fyfy3
2
— N+ 2k3 +2k3 + k+24n3k3 + 12007 + 96 (£)3 4 16k + n,

and
FPy,chccz = FZTyl + FEy;:yl,chccz + F(AZ)yQ + Fy7y3
2 1
= n+ 31k + 36klccc + 24n3k3.

Moreover, we have

FPAy,DICCGl = FPy,DICCGl + FAy
2
150 + 2403k + 12007 + 96 (£)3 + 2k7 + 2k3 + 17k,

Il

and

FPAy,DlCCG2 = FPy,DICCGQ + FAy
2
— 150+ 24n%k? + 12007 + 47k + 36kl cce + 96 (2)3

Hence, both Fp, and Fpa, for DICCG1 and DICCG2 require O(n) flops.



220 Appendix E. Flop Counts for the Deflation Method

E.2 ICCG, DICCG1 and DICCG2

In this section, we first determine the number of flops required before and after the
iteration process of ICCG, DICCG1 and DICCG2. Thereafter, we compute the number
of flops required within the iteration process. Finally, the total flops of the methods
are determined.

Computations outside the Iteration Process

Compared to ICCG, both DICCGL and DICCG2 methods need some additional work
before and after the iteration process, whose number of flops is determined below.
Frior. piccer @and Fuior picce2 denote the extra flops for DICCGL and DICCG2 prior to the

p
iteration process, whereas F.ue piccer and Fager piccge denote the extra flops for DICCG1

and DICCG?2 required after the iteration process, respectively. We obtain the following
results:

Fpr\or. DICCG1 - FAZ + FE + FchoI(E)
2
= 24n7k3 + 12003 + 96 (2)5 + 16k + k3 + 2k + 4k3 + 3k3 + k,
and
Fprior, DICCG2 — FAZ + FE
2
— 24n3ki +120n% + 96 (2)° + 16k.

Subsequently, in order to compute F.qe picce: and Faser piccgo, We determine the number
of flops for the computation of Qy:

FQy,DICCGl = FZTyl + FEy;:yl,chcm + FZ_)/Q
5 4
= 2n+ 2k3 + 2k3 + k,

FQy,chccz = FZTyl + FEy;:yl,chccz + FZ_)/Q
= 2/7—}—31/(—{-36/(/‘(16
Hence, this yields
Fafter. DICCG1L — FQy,D|CCG1 + FPTy,DICCGl + FY1+y2
5 4 2 1 2
= 2n+4+2k3 +2kz + k+2n+24n3ks + 12003+
2
96 (2)3 4 2k3 + 2k + 17k,

Fafter. DICCG2 — FQy,DICCGQ + FPTy,D\CCGQ + Fy1+y2
2 1 2
= 2n+ 31k + 36klccg + 16n+ 24n3k= + 12003+

2
4Tk + 36klcce + 96 () .

As a result, Fo is O(n3k3), whereas Fq.. is O(n) for both DICCGI and DICCG2.
Furthermore, ICCG, DICCGL and DICCG?2 have several computations in common,



E.2. ICCG, DICCG1 and DICCG2 221

whose number of flops is denoted by F.ommonou- |t 1S €aSy to see that

Fcommonfout = 39”

Computations within the Iteration Process

We compute the number of flops that is involved in the iteration process of ICCG,
DICCG1 and DICCG2. The flops of their common operations,

Fcommon—in = 31”;

can be easily derived. Next, the difference between ICCG and DICCG1/DICCG2 within
the iteration process is computing w; := Ap; and w; := PAp; (cf. Algorithms 3 and 6).
Combining the facts

FPAp,D\CCGl = FPAy,D\CCGl
2
= 150+ 24n5k3 + 12005 + 96 () + 2k5 + 2k3 + 17k,

and

FPAp,D\CCGQ = FPAy,D\CCGQ
— 1504 24n3kz + 12003 + 47k + 36kl ccq + 96 (£)

wIN

with
FAp,ICCG = FAy,\CCG = 13n,

we deduce that both Fpa, and Fap are O(n).

Total Number of Flops for ICCG, DICCG1 and DICCG2

Using the above results, the total number of flops for ICCG is

FICCG — Fcommonfout + (Fcommonfin + FAp)I\CCG
39n+ (31n+ 13n)/ccq
39/7 + 44n/|CCG,

while, for DICCG1 and DICCG2, we obtain

FDICCGI - Fpr\or, DICCG1 + Fcommon—m + Fafter, DICCG1 + (Fcommonfin + FPAp,D\CCGl) /D\CCGI
— 430+ 4Tn3k: + 24007 + 192 (2)7 4 k3 + 2k2 + 8k + Tk + 25k+

5

<46n +24n5 k3 412007 + 96 (2)7 + 2k + 2k3 + 17k> [

N wIn

and

FDICCGQ = Fpr\or, DICCG2 + Fcommon—m + Fafter. DICCG2 + (Fcommonf\n + FPAp,DICCGQ) IDlCCGQ
2
— 570+ 58k + 48n3k3 + 24007 + 192 (2)3 4 16k + 72k occet+
2
(460 + 2403k + 12003 + 47k + 36Kl s + 96 (£)7 ) forcccn



222 Appendix E. Flop Counts for the Deflation Method

Obviously, it depends on the exact values of k and n, and the number of inner/outer
iterations which of the ICCG, DICCG1 and DICCG2 methods is the most efficient one.



Appendix

Parallel Version of the Deflation
Method

Parallel computing is fast becoming an inexpensive alternative to the standard super-
computer approach for solving large linear systems, see, e.g., [4,36,44,120]. The main
operations to be parallelized for Krylov iterative methods, in particular the deflation
method, are:

(a) matrix-vector multiplications;

(b) vector updates;

(c) dot products;

(d) preconditioning setup and operations;
(e) deflation setup and operations.

The potential bottlenecks are setting up the preconditioner and solving linear systems
with the preconditioner (Operation (d)). On the other hand, deflation setup and
operations (Operation (e)) can be easily parallelized if subdomain deflation vectors are
used, which is explained in Section F.2. In addition, we note that the dot-product
operation (c) might be troublesome in computational applications, since all processors
must synchronize and perform communication before computations can be continued
(at least for parallel synchronous iterative methods).

Since Operation (d) might be rather complicated in the parallel approach, we treat
this in more detail. Preconditioners are considered based on Schur-complement and
nonoverlapping additive-Schwarz (also known as additive Schwarz with minimum over-
lap) methods. Equivalently, instead of the traditional DICCG method, we consider
the Deflated PCG method with a block-Jacobi preconditioner, M,!, or a block-1C(0)
preconditioner, Mg, see Section F.1 and also [137].

223



224 Appendix F. Parallel Version of the Deflation Method

F.1 Traditional Parallel Preconditioners

Recall that (see Section 2.5.1)

A1 %)
A
MBJ == - y (Fl)
2, A,

where A; denotes the /-th diagonal block of the coefficient matrix, A. It can be shown
that solving Mg,y»> = y;1 accurately is equivalent to the Schur-complement approach.
In practice, each submatrix, A;, can be relatively large, so that it might be attractive
to solve each subsystem of Mg,y» = y; inaccurately. This latter approach is equivalent
to solving linear systems with the additive-Schwarz preconditioner, see also [126].
On the other hand, the incomplete Cholesky (IC(0)) decomposition of the blocks of
Mg, can also be used to construct an efficient parallel preconditioner. The resulting
preconditioner is called the block-IC preconditioner, denoted by M;!. Since there
is no overlap between the blocks in any of the above described preconditioners, the
corresponding preconditioning steps are well-parallelizable.

F.2 Parallel Deflation

In this section, we describe concisely in which way Operation (e) can be carried out
efficiently in a parallel environment, see [56] for more details. We restrict ourselves
to subdomain deflation, where each available processor corresponds to one subdomain
and a fixed number of unknowns. For convenience, one subdomain per processor is
assumed. The coupling with neighboring subdomains is realized by the use of virtual
grid points added to the local grids. In this way, a block-row of the linear system,
Ax = b, corresponding to the subdomain ordering

Al o A

Api - App

can be represented locally on one processor: the diagonal block, A;;, represents coupling
between local unknowns of subdomain €2;, and the off-diagonal blocks of €2; represent
coupling between local unknowns and the virtual grid points.

For the deflation operations in parallel, we first compute and store successively the
matrices £ and E~' on each processor, whereas AZ is computed and stored locally.
The use of P within the deflation method involves the operation y» = PAy;, which
consists of the following operations:

e the matrix-vector multiplication x; ;= Ay1, requiring nearest neighbor communi-
cations;



F.2. Parallel Deflation 225

e the local contribution to the restriction x, := Z' x1, which should be distributed
to all processors;

e 2 coarse-grid operation, x3 ;= E~'xy, that is locally determined;
e y, .= | — AZx3, which is also determined locally.

The total communication involved in y» = PAy; is a nearest neighbor communication
of the length of the interface.

For a five-point discretization of PDEs (i.e., standard 2-D problems), it can be
verified that the added iteration expense of deflation is less expensive than an 1C(0)
factorization, and the resulting parallel method can be implemented efficiently on a dis-
tributed memory computer, see [56, Sect. 5]. More research is required to investigate
this issue for more-points discretization and 3-D problems.

It is well-known that the overlapping of subdomains in the traditional preconditioner
makes the parallel iterative method more-or-less independent of the subdomain grid
size, but overlapping is not always easy to implement on top of an existing software
package. In order to make a parallel iterative method more robust, one could apply
the deflation technique as suggested above. In [56], it is shown that only a slow
increase of the number of iterations can be observed when the subdomain grid size is
constant and the number of (deflation) subdomains increases. Additionally, for a fixed
global grid, the number of iterations even decreases if the number of processors grows,
see [56,137].

Finally, in order to improve the parallel deflation method, one can also apply the
deflation technique on the local level. If the block-Jacobi preconditioner is used, then
solving Mg,y» = y; consists of solving subsystems of the form

Ai()i=0n)i i=12,..., p. (F.2)

If this is done iteratively, the convergence could be improved by solving the deflated
subsystems of the form

PAi(y2)i = Pi(y1)i, 1=1,2,..., D,

instead of (F.2), where each smaller local deflation matrix, P, is based on the grid
points of the specific subdomain. The overall deflation method can then be interpreted
as a twofold deflation method, which is still a topic of current research.



226 Appendix F. Parallel Version of the Deflation Method




Appendix

Two-Level PCG Methods applied to
Porous-Media Flows

As an extension of Section 6.4, a numerical comparison of two-level PCG methods
for 2-D porous-media flows is performed in this appendix. This is a continuation of
Section 6.4, where the same comparison has been done for 2-D bubbly flows.

G.1 Problem Setting

We solve the linear system, Ax = b, which is derived after discretization of the Poisson
equation with a discontinuous coefficient,

—V-(c(x)Vp(x)) =0, x=(x,y)eQ=(01)> (G.1)

where p denotes the pressure, and o is the permeability of the porous-media flow.
Except for the discontinuous coefficient, Eq. (G.1) is the same as the Poisson equation
in bubbly flow problems (cf. Eq. (1.3)). The exact description of the test problem and
the corresponding choice for projection vectors are given below. In addition, the further
setup and procedure of the experiment are taken to be the same as in Section 6.4.1.

In the porous-media flow problem, Q consists of equal shale (¢ = 107°) and
sandstone (o = 1) layers with uniform thickness, see Figure G.1(a). We impose a
Dirichlet condition on the boundary y = 1 and homogeneous Neumann conditions on
the other boundaries. The layers are denoted by the disjoint set, {2;, j =1,2,..., k},
such that Q = Uj’leﬁj. The discretized domain and layers are denoted by 2, and €y,
respectively.

We choose as preconditioner, M~1, the IC(0) factorization of A. In contrast to
the projection vectors used in bubbly flows (see Section 6.4), the projection vectors
are now chosen to be strongly related to the geometry of the problem. For each

227



228 Appendix G. Two-Level PCG Methods applied to Porous-Media Flows

Composition Permeabilit
Shale 10° Q,
Sandstong 1¢° Q,
Shale 10° Q3
Sandstong 10 Q,
Shale 10°® Qg
(a) Piecewise-constant coefficient. (b) Projection vectors.

Figure G.1: Geometry of the projection vectors and piecewise-constant coefficient in the porous-media
flow.

a projection vector, z;, is defined as follows:

N o 0, X,'EQh\ﬁhj;
(z)i { 1 x e (G.2)

where x; is a grid point of Q4. In this case, each projection vector corresponds to a
unique layer, see also Figure G.1(b). Then, we define Z :=[z; zp -+ z].

G.2 Experiment using Standard Parameters

In the first numerical experiment, standard parameters are used with stopping tolerance
5 = 10719 an exact Galerkin matrix inverse, E~1, and an unperturbed starting vector,
Vitart -

The results of the experiment are presented in Table G.1 and Figure G.2. The
relative errors are omitted, because they are approximately the same. The figure
presents only one test case, since a similar behavior is seen for the other test cases.
Moreover, for the sake of a better view, the results for PREC are omitted in Figure G.2.

From Table G.1, we observe that PREC needs more iterations to converge when
n or k is increased. This only holds partly for the two-level PCG methods. The
convergence of the other methods is less sensitive to the number of layers, since the
number of projection vectors is chosen to be equal to the number of layers. PREC is
obviously the slowest method, and the two-level PCG methods, except for A-DEF1,
show approximately the same performance, which confirms the theory (cf. Theorem 6.1
and 6.3). Notice that even AD shows comparable results with the other two-level PCG
methods (except A-DEF1), but it can be observed in Figure G.2 that AD shows a very
erratic behavior with respect to the errors in the 2—norm (which has not been seen
in the bubbly flow experiments). In other words, although AD requires approximately



G.2. Experiment using Standard Parameters 229

| [ k=5 | k=17 |
| Method [ n =292 | n=54% | n=41 [ n =55 |
PREC [ 102 174 184 222
AD 59 95 74 90
DEF1 | 58 94 75 90
DEF2 | 68 94 75 90
A-DEF1 | 58 95 86 103
A-DEF2 | 58 94 75 90
BNN 58 94 75 90
R-BNN1 | 58 94 75 90
R-BNN2 | 58 94 75 90

Table G.1: Number of required iterations for convergence of all proposed methods, for the porous-
media problem with ‘standard’ parameters. The 2—norm of the relative error is approximately the
same for all methods in each test case, and, hence, they are omitted in the table.

the same number of iterations, the errors measured in the 2—norm are larger, and
the iterated solution is less reliable. Furthermore, A-DEF1 is somewhat slower in
convergence, especially if the test case becomes more complicated.

Subsequently, we present the same results in terms of computational cost. We
restrict ourselves to the test case with n = 552 and k = 7, see Table G.2. Analogous
results are obtained for the other test cases. The total computational cost within
the iterations is given, following the analysis carried out in Section 6.2.4. Due to the
sparsity of Z, both Z and AZ can be stored as approximately two vectors, resulting in
the fact that there is no need to perform extra matrix-vector multiplications in addition
to those required by PREC. It depends on the exact implementation of the methods
(such as the storage and computation with Z, AZ and E) to determine which two-
level PCG method requires the lowest computational cost. For example, if both IP, VU
and GSS require the same amount of computing time, then it can be deduced from
Table G.2 that BNN is the most expensive method, whereas AD, following by DEF1,
DEF2 and R-BNN2, has the lowest computational cost per iteration.

Method [ 1P VU GSS PR |

PREC 222 666 O 222
AD 270 270 90 90
DEF1 270 360 90 90
DEF2 270 360 90 90
A-DEF1 | 412 412 103 103
A-DEF2 | 450 360 180 90
BNN 540 450 180 90
R-BNN1 | 450 450 180 90
R-BNN2 | 270 360 90 90

Table G.2: Total computational cost within the iterations in terms of number of inner products (‘IP"),
vector updates (‘VU'), Galerkin system solves (‘GSS’), preconditioning step with M~! (‘PR’), for the
porous-media problem with n = 552, k = 7, and 'standard’ parameters.



230 Appendix G. Two-Level PCG Methods applied to Porous-Media Flows

10° ——AD
-+~ DEF1
—=—DEF2
-6 -A-DEF1
——A-DEF2
107 1 -e-BNN ||
R-BNN1
- » -R-BNN2
<
=
= -4
= 10 4
=3
1
e
10°° 4
10° F N g
T 0~
| | | | | | | | |
10 20 30 40 50 60 70 80 90 100
Iteration
(a) Relative errors in the A—norm.
—e—AD
-+~ DEF1
10 —=—DEF2 [i
- ¢ -A-DEF1 ]
. ——A-DEF2 ||
10 -e-BNN f
R-BNNL1f
: - » ~R-BNN2||
10 |
™ E
=
=10 |
x
I
-

.
O\

10

10 ¢

N--meo -1
| | | | \F; - et
10 20 30 40 50 60 70 80 90 100
Iteration

(b) Relative errors in the 2—norm.

Figure G.2: Relative errors during the iterative process, for the porous-media problem with n = 552,
k =7, and ‘standard’ parameters.

G.3 Experiment using Inaccurate Coarse Solves

In the next experiment, we solve Ey, = y; inexactly. In this case, y» can be interpreted
as E~1y;, where E1 is defined as (see Eq. (6.16))

E':=(U+yRE I +yR), >0, (G.3)



G.4. Experiment using Severe Termination Tolerances 231

where R € R¥*¥is a symmetric random matrix with entries from the interval [-0.5, 0.5].
The sensitivity of the two-level PCG methods to this inaccurate solve with various val-
ues of 9 are investigated, and the results are related to Theorem G.3.

The results of the experiment can be found in Table G.3 and Figure G.3. We
observe that the most robust two-level PCG methods are AD, BNN and A-DEF2,
since they are largely sensitive to perturbations in E~1. On the other hand, DEF1,
DEF2, R-BNN1 and R-BNN2 are obviously the worst methods, as expected, since the
zero eigenvalues of the corresponding two-level preconditioned matrices become nearly
zero eigenvalues due to the perturbation, 9 (cf. Section 6.3.1). In addition, it can be
observed that the errors diverge or stagnate for all test cases with DEF2 and R-BNN2,
whereas they remain bounded and tend to converge in the case of DEF1 and R-BNN1.

| | P = 10712 | 1 =10"° | P =101 |
[t —xT[2 Xt —xT[2 [Tt —x1[2
| Method | #1t. Tl [ #l B (g S|
PREC 222 26x107% (222 26x10° | 222 26x10°°
AD 90 1.0x 1077 | 90 1.4x1077 | 92 1.2x 1077

DEF1 90 2.6 x 107% | NC 6.8x 1077 | 178 1.4x 1073
DEF2 90 2.6 x 107% | NC 1.6 x 1072 | NC 2.0 x 10**
A-DEF1 | 103 2.0x107%| 103 22x107% | 120 2.6x 107"
A-DEF2 | 90 2.2x107% | 90 2.6 x 1078 | 90 25x 1077
BNN 90 2.3x107% | 90 2.8x 1078 | 90 7.1x10°8
R-BNN1 | 90 6.8x 1077 | 159 22x107% | 213 6.9x107°
R-BNN2 | 90 2.6 x 107® | NC 2.6 x 1072 | NC 1.8 x 10*2

Table G.3: Number of required iterations for convergence and the 2—norm of the relative errors of
all methods, for the porous-media problem with parameters n = 552 and k = 7. A perturbed Galerkin
matrix inverse, E !, is used with a varying perturbation, .

G.4 Experiment using Severe Termination Tolerances

In this section, we perform a numerical experiment with various values of the termina-
tion tolerance, 9.

The results of the experiment are presented in Table G.4 and Figure G.4. It can be
seen that all methods perform well, even in the case of a relatively strict termination
criterion (i.e., § = 107'?). PREC also converges in all cases, but not within 250
iterations. Note, moreover, that it does not give an accurate solution if § is chosen
too large, see [173]. For § < 10 ', DEF1, DEF2, R-BNN1 and R-BNN2, show
difficulties, since they do not converge appropriately and may even diverge. This is
in contrast to PREC, AD, BNN, A-DEF1 and A-DEF2, which give good convergence
results for 6 = 10716, Therefore, these two-level PCG methods can be characterized
as robust methods with respect to several termination criteria.



232 Appendix G. Two-Level PCG Methods applied to Porous-Media Flows

—e— AD
4 -+- DEF1

0 —=—DEF2
10 - ¢ -A-DEF1
——A-DEF2
-e-BNN

s | R-BNN1
10 - v . - » -R-BNN2|{

I = I, /1l
o
OI
A
T
Il

=
O\
&
N
v
7
|

10 - ~o

50 100 150 200 250
Iteration

(a) Relative errors in the A—norm.

2
10" - o AD H

-+ DEF1
—=—DEF2
-¢-A-DEF1
—6—A-DEF2 |
-e-BNN
R-BNN1

-* -R-BNN2
B it e R e e il i e R e e e e
\/\

I = xll, /[l

1
150 200 250
Iteration

(b) Relative errors in the 2—norm.

Figure G.3: Relative errors during the iterative process for the porous-media problem with n = 552, k =
7 and E’l, where a perturbation ¥ = 1078 is taken.



G.4. Experiment using Severe Termination Tolerances 233

10° ——AD |
-+- DEF1
—=—DEF2
-9 -A-DEF1
1021 ——A-DEF2 |
-e-BNN
R-BNN1
- » -R-BNN2
_<10™ B
=
<
x
1107 R
i N
= T —4—
10° \ R
.
o
-10 \0\\
10 o J
\\
‘ ‘ AN
50 100 250
Iteration

(a) Relative errors in the A—norm.

Il = xll, / Il

Iteration

(b) Relative errors in the 2—norm.

Figure G.4: Relative errors during the iterative process for the porous-media problem with n = 552, k =
7., and termination tolerance § = 1071,



234 Appendix G. Two-Level PCG Methods applied to Porous-Media Flows

| | 6=10° | =10 " | §=101° |

[Method [ Dhpl  [#r  Dhpt [#n Bk |
PREC 134 37x10!' | >250 24x10°% ] >250 24x10°8
AD 80 52 x107% | 123 2.4 x 1078 | 139 2.4 x 108

DEF1 80 7.5x107% | 121 2.0x 1078 | NC 4.4 x 1077
DEF2 80 7.5x 1078 | 144 1.9 x 1078 | NC 6.6 x 101!
A-DEF1 | 80 9.4 x107% | 121 2.5x 1078 | 190 25x 1078
A-DEF2 | 80 7.7x1078% | 121 2.5x 1078 | 138 25x 1078
BNN 80 7.7x107% | 121 2.4 x107° | 138 2.4 x 1078
R-BNN1 | 80 7.6 x 1078 | 121 2.3x 1078 | NC 2.3x 1078
R-BNN2 | 80 75x 1078 | 121 1.9 x 1078 | NC 1.9x 1078

Table G.4: Number of required iterations for convergence and the 2—norm of the relative errors of
all methods, for the porous-media problem with parameters n = 552 and k = 7. Various termination
tolerances, 6, are tested.

G.5 Experiment using Perturbed Starting Vectors

In Section 6.3.2, we have proven that BNN with V... = Qb+ PTX gives exactly
the same iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2, in exact arithmetic. In
our next experiment, we perturb V., in DEF2, A-DEF2, R-BNN1 and R-BNN2, and
examine whether this influences the convergence results. The perturbed V..., denoted
by W.... is defined as a componentwise multiplication of a random vector and V...
i.e., each entry of W, is defined as (see Eq. (6.17))

(Wstart)i = (1 +,Y(V0)I) (Vstart)ir I — 11 2 ----- n,

where v > 0 gives control over the accuracy of the starting vector, and vector vy is a
random vector with entries from the interval [-0.5, 0.5], taken to give each entry of
V. @ different perturbation.

We perform the numerical experiment using W,.,. for different y. The results can
be found in Table G.5 and Figure G.5. Here, we use asterisks to stress that an extra
uniqueness step is applied in the specific method. Moreover, notice that PREC, AD,
DEF1 and BNN are not included in this experiment, since they apply an arbitrary vector,
V.o = X, by definition.

| | =101 | y=10" | v =10° |
[Method [t Dol Tgn Bl Tane Bk |

DEF2 90 2.2x 1078 | NC 2.1 x 10T | NC 35 x 10118
A-DEF2 | 90 25x107% | 90 25x107% | 90 2.4 x 1078

R-BNN1 | 90 2.5x 1078 | NC 2.5 x 1078* | NC 1.3 x 107°*
R-BNN2 | 90 2.0x 1078 | NC 2.9 x 1076* | NC 25 x 107 1*

Table G.5: Number of required iterations for convergence and the 2—norm of the relative errors of
some methods, for the porous-media problem with parameters n = 55%, k = 7, and perturbed starting
vectors. An asterisk (*) means that an extra uniqueness step is applied in that test case.

From the results, it can be noticed that all involved methods converge appropriately



G.5. Experiment using Perturbed Starting Vectors 235

10%°

—+—DEF2
——A-DEF2
R-BNN1
- * ~R-BNN2
10° B
<
ES
<1 B
_<
=
I
-
10° \ B
e kA A ke~ A~ e~ e — = e e~ e — 4 — 4 — 4 — ]
107 B
| | ! !
50 100 150 200 250

Iteration

Figure G.5: Relative errors in the A—norm during the iterative process for the porous-media problem
with n = 55%, k = 72, and perturbed starting vectors with oy = 107>, The plot of the relative errors in
the 2—norm is omitted, since the two plots are approximately the same.

for v = 10719 For v > 1072, DEF2, R-BNN1 and R-BNN2 fail to converge. The
most robust method is, obviously, A-DEF2. This method seems to be completely
insensitive to the perturbation, «y. This experiment shows that the ‘reduced’ variants

of BNN have different robustness properties with respect to perturbations in starting
vectors.



236 Appendix G. Two-Level PCG Methods applied to Porous-Media Flows




Appendix

DICCG Variants applied to Bubbly Flow
Simulations

We perform two 3-D simulations of / = 250 time steps in order to test the DICCG1(—k)
and DICCG2(—k) methods as given in Definition 8.1. Recall that the difference be-
tween the two deflation methods is the inner solver for the Galerkin systems: this is
done in a direct way in DICCG1, while ICCG is applied within DICCG2. In this ap-
pendix, we show that both deflation variants are applicable to bubbly flow simulations,
and the performance of these methods is comparable for relatively small problems.

In the first simulation, an air bubble is rising in water, whereas a water droplet
is falling in the air in the second simulation. We do not include surface tension in
the simulations in order to obtain complicated density geometries. We refer to [154,
Sect. 8.3.4] for more details. Similarly to Section 10.3, we concentrate on solving the
linear system (10.6) derived from a Poisson problem (10.5) at each time step. We
adopt ICCG, DICCG1 and DICCG2 to solve (10.5). We take deflation variant 5.1 in
DICCG1 and deflation variant 5.3 in DICCG2 (cf. Table 5.1).

H.1 Simulation 1: Rising Air Bubble in Water

For the first simulation, the starting position of the bubble in the domain and the
evolution of its movement for / € [0, 250] can be found in Figure H.1.

In [154], the Poisson solver is based on ICCG. Here, we compare this method to
both DICCG1-10% and DICCG2-202 for n = 1003. It turns out that these deflation
methods are optimal in the sense that they need the lowest computational time to
perform the simulation compared to DICCG1 and DICCG2 with different k (cf. Fig-
ure 8.4). The results are presented in Figure H.2.

From Figure H.2(a), we notice that the number of iterations is strongly reduced by
the deflation method. DICCG1 102 and DICCG2 202 require at most 60 iterations,
while ICCG converges in between 200 and 300 iterations for most time steps. For each
I, DICCG2-202 requires fewer iterations than DICCG1—103, which is in agreement

237



238 Appendix H. DICCG Variants applied to Bubbly Flow Simulations

T T

(a) I =0. (b) I = 50. (c) I = 100.

I

(d) I = 150. (e) I = 200. (f) I = 250.

Figure H.1: Evolution of the rising bubble in water in the first 250 time steps.

with Theorem 3.3. Moreover, we observe the erratic behavior of ICCG, whereas the
deflation methods are less sensitive to the geometries of the bubbles, during the evo-
lution of the simulation. Considering CPU time, DICCG1—-102 and DICCG2-202 also
show very good performance, see Figure H.2(b). For most time steps, ICCG requires
25-45 seconds to converge, whereas both deflation methods are comparable and only
need around 9-14 seconds. Moreover, in Figure H.2(c), one can find the gain factors
for both the ratios of the iterations and the CPU time between ICCG and the two
deflation methods, respectively. From this figure, we conclude that DICCG1 103 or
DICCG2-20° need approximately 4-8 times fewer iterations, depending on the time
step. More importantly, both deflation methods converge approximately 2—4 times
faster than ICCG at all time steps.

We end this subsection with the remark that similar results can be found for other
choices of grid sizes. For problems with larger grid sizes, the deflation methods become
more favorable, when compared to ICCG.

H.2 Simulation 2: Falling Water Droplet in Air

For the second simulation, the starting position of the droplet in the domain and the
evolution of its movement can be found in Figure H.3. The results are presented in
Figure H.4, where again DICCG1—10% and DICCG2-202 are adopted.

Similar observations as those from the previous subsection can be drawn from
Figure H.4. Obviously, the deflation methods are more efficient, when compared with
ICCG, in terms of both number of iterations and required CPU time. We observe that



H.2. Simulation 2: Falling Water Droplet in Air 239

55 :
%0 ETSY —icce
ICCG 5ol , Ll
— DICCG1-10° —_ DICCGl—103
soor - -- DIcCG2-20° || 45, - -- DICCG2-20° ||
40t
o 2507
= g 35+
g ki)
3 2007 5 30-
5 £
o £ 51
T 150f i S
< o
g O 201
z

=
o
o
T
I
i
ul

10
sof TN
P, [ DD A sptyare 5 i
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 50 100 150 200 250 0 50 100 150 200 250
Time Step Time Step
(a) Number of iterations versus time step. (b) CPU time versus time step.
11 : : ‘ :
L — lterations ICCG / Iterations DICCG1-10°
00 -~ - Iterations ICCG / Iterations DICCG2-20°
of | — CPU Time ICCG / CPU Time DICCG1-10° ||
gl - -+ CPU Time ICCG / CPU Time DICCG2-20°
\
:8: e Wiy, oAl B Vo w'\ By am A~y ””»,\/
L<E 6r "' 5 l"v Nl \\"“"\'\"“",/’L} ,y\rz‘ ‘\\‘N PEEAT Ay
£ 50 "
g R
at
3 ‘l\wr,/-‘\.,‘
ol
1t
0 ‘ ‘ ‘ ‘
0 50 100 150 200 250
Time Step

(c) Gain factors of DICCG1-10® and
DICCG2—20* with respect to ICCG.

Figure H.2: Results for ICCG, DICCG1-10° and DICCG2—20% for the simulation with a rising air
bubble in water.

both DICCG1—103 and DICCG2—203 need approximately 3-5 times fewer iterations
and they converge more-or-less 2—4 times faster than ICCG. In this test problem, it
can be observed that DICCG2—20? performs somewhat better than DICCG1—103.

Finally, a small jump in the DICCG1—103 performance can be noticed around the
205-th time step in Figure H.4. This might be the result of the appearance of a rising
droplet, which can be observed in Figures H.3(e) and (f) as well. This jump is not
significant in DICCG2—-203. Apparently, a larger set of deflation vectors effectively
treats that droplet.



240 Appendix H. DICCG Variants applied to Bubbly Flow Simulations

|
/
!
]

A\
v
A\
v
A\
v

(a) I =0 (b) I = 50. (c) I = 100.

.
B
i

I e

(d) I = 150. (e) I = 200. (f) 1 = 250.

/
/
/

Figure H.3: Evolution of the falling droplet in air in the first 250 time steps.



H.2. Simulation 2: Falling Water Droplet in Air 241

45 :
300 :
— cca —icce ,
— DICCG1-10° 40r —_ DICCGl—103 H
250f - - - DICCG2-20° || -~ DICCG2-20
35t -
12}
5 200 ° 30
8 X}
e 3 25
5 150 E
5 520
gl o
§ 100t 7 © 15t 1
10F 7
s0- _’__,"\—-_———\—--vr\-~\_,/\-' ------ IR
I A SR LT ST 5r 1
o ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘
(] 50 100 150 200 250 () 50 100 150 200 250
Time Step Time Step
(a) Number of iterations versus time step. (b) CPU time versus time step.
12 : ‘ : :
— lterations ICCG / Iterations DICCG1-10°
- - - Iterations ICCG / lterations DICCG2-20°
10p — CPU Time ICCG / CPU Time DICCG1-1C® ]
- -- CPU Time ICCG / CPU Time DICCG2-20°
8r e 1

wery
1 et
W R
VoM L
U EAIRATS 1
S
!

il AR

\
.
oy

0
v

Gain Factor
(2]

% 50 100 150 200 250
Time Step
(c) Gain factors of DICCG1-10° and

DICCG2—20% with respect to ICC G.

Figure H.4: Results for ICCG, DICCG1—10° and DICCG2—203 for the simulation with a falling water
droplet in air.



242 Appendix H. DICCG Variants applied to Bubbly Flow Simulations




Appendix

Comparison of Deflation and Multigrid
for a Special Case

We consider the two-level PCG methods (DEF and MG) based on the following two-
level preconditioners (see Eqgs. (7.1) and (7.4)):

Poer = M=1P;
Puc = M TP+P M +Q— M TPAM .

We show that abstract preconditioners in the MG framework do not always lead to
better conditioned two-level coefficient matrices compared to DEF. Such problems can
even be found in the case of M~ = M~1 =/.

We assume that Z = [vq - - - vx], where {v;} is the set of orthonormal eigenvectors
corresponding to the increasing set of eigenvalues of A, {\;}. Then, we know from
Example 7.1 that the MG operator is only SPD if A\; < 2. Similar to Example 7.1, we
obtain

PucAvi = 2Av; —2ZZTAv; + ZN1ZT Ay, — A%v; + ZZT A%y,
= 2NV —2NZZTvi+ NZN T ZT v = N2y + X2 ZZ Ty,

where A = diag(\q, .. ., Ak). This implies

P Avi — QAivi = 2Xivi + vi = A2V + A%y = v, fori=1,..., k;
Mer 2)\,'V,'*>\I-2V,', = N@—XN)y, fori=k+1,..., n.

Hence, if A has eigenvalues {)\;}, then the spectrum of PyA is given by
{1,..., L As1(2 = Ags1), oo, An(2 =20} (1.1)
We note that \;(2 — X;) < 1foralli=k+1 . .., n, because of 0 < A; < 2, see

243



244 Appendix |. Comparison of Deflation and Multigrid for a Special Case

Figure 1.1. Accordingly, the condition number of PycA is given by

1
K = - .
Y min{ 12— A1) An(2 - M)}

On the other hand, for DEF, we know that (see Section 3.5)

0 fori=1,... k;
o ok .2
PoerAv; {A/v,', fori=k+1, .., n. o

Therefore, (cf. Eq. (3.2))
— An
Kper = Mot
It depends on eigenvalues A1 and A, of A whether Ky or kper IS more favorable.
If Akt ..., A, — 2, then obviously Kper < K. In other words, M~1 and Z can be
chosen in such a way that MG with an SPD operator is expected to converge slower

than DEF, see also Example |.1.

0.8

0.6f

A(2-N)

0.4f

0.2f

Figure 1.1: Function X\;(2 — \;) for \; € [0, 2].

Example |.1. We construct a simple example to show that K. < Kpegr does not hold
in general, even if Py is SPD.
Let A be an SPD diagonal matrix given by

A = diag(1,1.25,1.5,1.75).

Then, the spectrum of A is ¢ = (1,1.25,1.5,1.75), where the corresponding eigen-
vectors are columns of |: | = [vy v» vz v4]. Hence, Pyg is SPD.
Choose now Z = [vi vo] and M~' = |. Then, the eigenvalues of P,,cA are given

by Eq. (1.1):

Ome = {1,1,23(2 = X3), Aa(2 — Aa)} = {1,1,0.4375,0.75},



245

whereas (cf. Eq. (1.2))
O-DEF — {O, O, >\3, >\4} - {O, O, 15, 175}

This leads immediately to the condition numbers

1
_ - — 22857,
M s (2 — Aer1) An(2 — An)}  0.4375
and An 175
=1 = - —1.1667
Kper Mo 15 ,

SO that Kug > Kper Obviously holds in this case.

Example 1.2. It is easy to construct examples showing that Ky < Kpee. FoOr instance,
take
A = diag(0.5,0.75,1.0,1.25),

with the same setting of the parameters of MG and DEF as in Example I.1. Then,
O-MG:{1111110-9375}1 UDEF:{01011-011-25}1

giving us
L 1.0667 1.25 1.25
K = = ) s K = — = ) s
M 0.9375 PET10

SO that Kuys < Kper holds in this case.




246 Appendix |. Comparison of Deflation and Multigrid for a Special Case




Bibliography

[1] J. C. Adams. MUDPACK: Multigrid portable FORTRAN software for the effi-
cient solution of linear elliptic partial differential equations. Appl. Math. Comput.,
34(2):113-146, 1989.

[2] D. M. Alber and L. N. Olson. Parallel coarse-grid selection. Numer. Lin. Alg.
Appl., 14(8):611-643, 2007.

[3] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter. The multigrid method
for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci.
Stat. Comput., 2:430—-454, 1981.

[4] P. Arbenz and W. Petersen. Introduction to Parallel Computing. Oxford Uni-
versity Press, Oxford, 2004.

[5] M. E. Argentati, A. V. Knyazev, C. C. Paige, and |. Panayotov. Bounds on
changes in Ritz values for a perturbed invariant subspace of a Hermitian matrix.
SIAM J. Matrix Anal. Appl., 2008. Submitted. Published as a technical report
http://arxiv.org/abs/math/0610498.

[6] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor. A taxonomy for conjugate
gradient methods. SIAM J. Numer. Anal., 27(6):1542-1568, 1990.

[7] T. Austin, M. Berndt, B. K. Bergen, J. E. Dendy, and J. D. Moulton. Parallel,
scalable, and robust multigrid on structured grids. T-7 Research Highlight LA-
UR-03-9167, Theoretical Division, Los Alamos National Laboratory, Los Alamos,
NM, USA, 2003.

[8] O. Axelsson. Iterative solution methods. Cambridge University Press, Cambridge,
UK, 1994,

[9] O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of pre-
conditioning methods. Numer. Math., 48(5):479-498, 1986.

[10] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution

247



248

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia,
PA, 1994. Second edition.

P. Bastian, W. Hackbusch, and G. Wittum. Additive and multiplicative multi-
grid. A comparison. Comput., 60(4):345-364, 1998.

A. Behie and P. A. Forsyth. Multi—grid solution of three—dimensional problems
with discontinuous coefficients. Appl. Math. Comput., 13:229-240, 1983.

J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for
the incompressible Navier-Stokes equations. J. Comput. Phys., 85(2):257-283,
1989.

A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and Applica-
tions. Springer, New York, 2003. Second Edition.

A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences. SIAM, Philadelphia, PA, USA, 1994. Corrected republication, with
supplement, of work first published in 1979 by Academic Press.

R. Blaheta. Multilevel iterative methods and deflation. In P. Wesseling, E. Onate,
and J. Periaux, editors, European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2006, Delft, 2006. TU Delft.

P. Bochev and R. B. Lehoucq. On the finite element solution of the pure
Neumann problem. SIAM Rev., 47(1):50-66, 2005.

D. Braess. On the combination of the multigrid method and conjugate gradients.
In Multigrid methods, Il (Cologne, 1985), volume 1228 of Lecture Notes in
Math., pages 52—64. Springer, Berlin, 1986.

J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of precondi-
tioners for elliptic problems by substructuring. I. Math. Comput., 47(175):103—
134, 1986.

J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu. Convergence estimates for
multigrid algorithms without regularity assumptions. Math. Comp., 57:23-45,
1991.

A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math.
Comp., 31(138):333-390, 1977.

A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for
sparse matrix equations. In D. J. Evans, editor, Sparsity and Its Applications,
pages 257-284. Cambridge University Press, Cambridge, 1984.

W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM
Books, Philadelphia, 2000. Second edition.



Bibliography 249

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

B. Bunner and G. Tryggvason. Dynamics of homogeneous bubbly flows. Part
1. Rise velocity and microstructure of the bubbles. J. Fluid Mech., 466:17-52,
2002.

K. Burrage, J. Erhel, B. Pohl, and A. Williams. A deflation technique for linear
systems of equations. SIAM J. Sci. Comput., 19(4):1245-1260, 1998.

B. Carpentieri, L. Giraud, and S. Gratton. Additive and multiplicative two-
level spectral preconditioning for general linear systems. SIAM J. Sci. Comput.,
29(4):1593-1612, 2007.

A. Chapman and Y. Saad. Deflated and augmented Krylov subspace techniques.
Numer. Lin. Alg. Appl., 4(1):43-66, 1997.

A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp.,
22:745-762, 1968.

A. J. Chorin. On the convergence of discrete approximations to the Navier-
Stokes equations. Math. Comp., 23:341-353, 1969.

A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
McCormick, G. N. Miranda, and J. W. Ruge. Robustness and scalability of
algebraic multigrid. SIAM J. Sci. Comput., 21(5):1886-1908, 2000.

M. Clemens, M. Wilke, R. Schuhmann, and T. Weiland. Subspace projection
extrapolation scheme for transient field simulations. /IEEE Transactions on Mag-
netics, 40(2):934-937, 2004.

P. Concus and G. H. Golub. Use of fast direct methods for the efficient numerical
solution of nonseparable elliptic equations. SIAM J. Numer. Anal., 10:1103-
1120, 1973.

E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.
In Proceedings of the 1969 24th national conference, pages 157—-172, New York,
NY, USA, 1969. ACM Press.

F. S. de Sousa, N. Mangiavacchi, L. G. Nonato, A. Castelo, M. F. Tomé¢,
V. G. Ferreira, J. A. Cuminato, and S. McKee. A front-tracking/front-capturing
method for the simulation of 3D multi-fluid flows with free surfaces. J. Comput.
Phys., 198(2):469-499, 2004.

E. de Sturler. Truncation strategies for optimal Krylov subspace methods. SIAM
J. Numer. Anal., 36(3):864-889, 1999.

J. Demmel, M. Heath, and H. van der Vorst. Parallel numerical linear algebra. In
Acta Numerica 1993, pages 111-198. Cambridge University Press, Cambridge,
UK, 1993.

J. E. Dendy. Black box multigrid. J. Comput. Phys., 48(3):366—-386, 1982.



250

Bibliography

[38]

39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

J. E. Dendy. Two multigrid methods for three-dimensional equations with highly
discontinuous coefficients. SIAM J. Sci. Stat. Comput., 8:673-685, 1987.

J. E. Dendy. Black box multigrid for periodic and singular problems. Appl. Math.
Comput., 25(1, part 1):1-10, 1988.

Z. Dostal. Conjugate gradient method with preconditioning by projector. Int. J.
Comput.. Math., 23:315-323, 1988.

M. Dryja. An additive Schwarz algorithm for two- and three-dimensional finite
element elliptic problems. In T. Chan, R. Glowinski, J. Périaux, and O. Wid-
lund, editors, Domain Decomposition Methods, pages 168-172, Philadelphia,
PA, 1989. SIAM.

M. Dryja and O. B. Widlund. Towards a unified theory of domain decomposi-
tion algorithms for elliptic problems. In T. Chan, R. Glowinski, J. Périaux, and
O. Widlund, editors, Third International Symposium on Domain Decomposition
Methods for Partial Differential Equations, pages 3—-21. SIAM, Philadelphia, PA,
1990.

M. Dryja and O. B. Widlund. Schwarz methods of Neumann-Neumann type for
three-dimensional elliptic finite element problems. Comm. Pure Appl. Math.,
48(2):121-155, 1995.

. S. Duff and H. A. van der Vorst. Developments and trends in the parallel
solution of linear systems. Parallel Comput., 25(13-14):1931-1970, 1999.

M. Eiermann, O. G. Ernst, and O. Schneider. Analysis of acceleration strategies
for restarted minimal residual methods. J. Comput. Appl. Math., 123(1-2):261-
292, 2000.

J. Erhel and F. Guyomarc'h. An augmented conjugate gradient method for
solving consecutive symmetric positive definite linear systems. SIAM J. Matrix
Anal. Appl., 21(4):1279-1299, 2000.

Y. A. Erlangga and R. Nabben. Deflation and balancing preconditioners for
Krylov subspace methods applied to nonsymmetric matrices. SIAM J. Matrix
Anal., 2008. To appear.

Y. A. Erlangga and R. Nabben. Multilevel projection-based nested Krylov iter-
ation for boundary value problems. SIAM J. Sci. Comput., 30(3):1572-1595,
2008.

A. Esmaeeli and G. Tryggvason. Direct numerical simulations on bubbly flows.
Part 1. Low Reynolds number arrays. J. Fluid Mech., 377:313-345, 1998.

A. Esmaeeli and G. Tryggvason. Direct numerical simulations on bubbly flows.
Part 2. Moderate Reynolds number arrays. J. Fluid Mech., 385:325-358, 1999.



Bibliography 251

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence
of a conjugate gradient method. SIAM J. Numer. Anal., 21:352-362, 1984.

R. D. Falgout and J. E. Jones. Multigrid on massively parallel architectures. In
Multigrid methods, VI (Gent, 1999), volume 14 of Lect. Notes Comput. Sci.
Eng., pages 101-107. Springer, Berlin, 2000.

R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov. On two-grid convergence
estimates. Num. Lin. Alg. Appl., 12(5-6):471-494, 2005.

P. F. Fischer. An overlapping Schwarz method for spectral element solution of
the incompressible Navier-Stokes equations. J. Comput. Phys., 133(1):84-101,
1997.

M. Fortin. Old and new finite elements for incompressible flows. Int. J. Numer.
Methods Fluids, 1(4):347-364, 1981.

J. Frank and C. Vuik. On the construction of deflation-based preconditioners.
SIAM J. Sci. Comp., 23:442-462, 2001.

A. Frommer, R. Nabben, and D. B. Szyld. Convergence of stationary iterative
methods for Hermitian semidefinite linear systems and applications to Schwarz
methods. SIAM J. Matrix Anal. Appl., 2008. To appear.

H. De Gersem and K. Hameyer. A deflated iterative solver for magnetostatic
finite element models with large differences in permeability. Eur. Phys. J. Appl.
Phys., 13:45-49, 2000.

L. Giraud, D. Ruiz, and A. Touhami. A comparative study of iterative solvers
exploiting spectral information for SPD systems. SIAM J. Sci. Comput.,
27(5):1760-1786, 2006.

V. Girault and P.-A. Raviart. Finite element approximation of the Navier-Stokes
equations, volume 749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
1979.

G. H. Golub and D. P. O'Leary. Some history of the conjugate gradient and
Lanczos methods. SIAM Rev., 31(1):50-102, 1989.

G. H. Golub and M. L. Overton. The convergence of inexact Chebyshev
and Richardson iterative methods for solving linear systems. Numer. Math.,
53(5):571-593, 1988.

G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins Univ.
Press, Baltimore, MD, 1996. Third edition.

G. H. Golub and Q. Ye. Inexact preconditioned conjugate gradient method with
inner-outer iteration. SIAM J. Sci. Comput., 21(4):1305-1320, 2000.



252

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

I. G. Graham and R. Scheichl. Robust domain decomposition algorithms for
multiscale PDEs. Numer. Methods Partial Differ. Eq., 23:859-878, 2007.

A. Greenbaum. [Iterative methods for solving linear systems, volume 17 of Fron-
tiers in Applied Mathematics. SIAM, Philadelphia, PA, 1997.

|. Gustafsson. A class of first order factorization methods. BIT, 18(2):142-156,
1978.

W. Hackbusch. Convergence of multi—grid iterations applied to difference equa-
tions. Math. Comp., 34:425-440, 1980.

W. Hackbusch. Multigrid Methods and Applications. Springer-Verlag, Berlin,
1985.

L. A. Hageman and D. M. Young. Applied iterative methods. Computer Science
and Applied Mathematics. Academic Press, New York, NY, USA, 1981.

V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver
and preconditioner. Appl. Numer. Math., 41(1):155-177, 2002.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bur. Stand., 49:409-436, 1952.

R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, New
York, NY, USA, 1990. USA Edition.

J. Hua and J. Lou. Numerical simulation of bubble rising in viscous liquid. J.
Comput. Phys., 222(2):769-795, 2007.

T. Inamuro, T. Ogata, S. Tajima, and N. Konishi. A lattice Boltzmann method
for incompressible two-phase flows with large density differences. J. Comp. Phys.,
198:628-644, 2004.

J. E. Jones and S. F. McCormick. Parallel multigrid methods. In Parallel nu-
merical algorithms (Hampton, VA, 1994), volume 4 of ICASE/LaRC Interdiscip.
Ser. Sci. Eng., pages 203-224. Kluwer Acad. Publ., Dordrecht, 1997.

E. F. Kaasschieter. Preconditioned conjugate gradients for solving singular sys-
tems. J. Comput. Appl. Math., 24(1-2):265-275, 1988.

R. Kettler and J. A. Meijerink. A multigrid method and a combined multigrid-
conjugate gradient method for elliptic problems with strongly discontinuous co-
efficients in general domains. Tech. Rep. 604, Shell Oil Company, 1981.

M. Khalil and P. Wesseling. Vertex-centered and cell-centered multigrid for
interface problems. J. Comput. Phys., 98:1-20, 1992.

S. A. Kharchenko and A. Yu. Yeremin. Eigenvalue translation based precondi-
tioners for the GMRES(k) method. Num. Lin. Alg. Appl., 2(1):51-77, 1995.



Bibliography 253

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

A. V. Knyazev and M. E. Argentati. Rayleigh-Ritz majorization error bounds
with applications to FEM and subspace iterations. SIAM J. Numer. Anal.,
2008. Submitted. Published as a technical report http://arxiv.org/abs/
math/0701784.

L. Y. Kolotilina. Twofold deflation preconditioning of linear algebraic systems.
|. Theory. J. Math. Sci., 89:1652-1689, 1998.

E. Kreyszig. Introductory Functional Analysis with Applications. Wiley, New
York, 1989.

D. Kwak, C. Kiris, and J. Dacles-Mariani. An assessment of artificial compress-
ibility and pressure projection methods for incompressible flow simulations. In
Sixteenth International Conference on Numerical Methods in Fluid Dynamics,
volume 515 of Lecture Notes in Physics, pages 177—182. Springer, 1998.

E. Ludwig, R. Nabben, and J. M. Tang. Deflation and projection methods applied
to positive semi-definite systems. 2008. In preparation.

D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading,
Massachussets, 1984. Second edition.

S. P. Maclachlan, J. M. Tang, and C. Vuik. Fast and robust solvers for pressure
correction in bubbly flow problems. DIAM Report 08-01, Delft University of
Technology, Delft, 2008.

S. P. Maclachlan, J. M. Tang, and C. Vuik. Fast and robust solvers for pressure
correction in bubbly flow problems. 2008. Submitted.

J. Mandel. Balancing domain decomposition. Comm. Numer. Meth. Engrg.,
9:233-241, 1993.

J. Mandel. Hybrid domain decomposition with unstructured subdomains. In
A. Quarteroni, Y. A. Kuznetsov, J. Périaux, and O. B. Widlund, editors, Domain
Decomposition Methods in Science and Engineering: The Sixth International
Conference on Domain Decomposition, volume 157 of Contemporary Mathe-
matics, pages 103—-112. AMS, 1994. Como, Italy, June 15-19, 1992.

J. Mandel and M. Brezina. Balancing domain decomposition for problems with
large jumps in coefficients. Math. Comp., 65:1387-1401, 1996.

L. Mansfield. On the use of deflation to improve the convergence of conjugate
gradient iteration. Communs. Appl. Numer. Meth., 4:151-156, 1988.

L. Mansfield. On the conjugate gradient solution of the Schur complement sys-
tem obtained from domain decomposition. SIAM J. Numer. Anal., 27(6):1612—
1620, 1990.



254

Bibliography

[94]

[95]

[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

L. Mansfield. Damped Jacobi preconditioning and coarse grid deflation for con-
jugate gradient iteration on parallel computers. SIAM J. Sci. Stat. Comput.,
12(6):1314-1323, 1991.

E. Marchandise, P. Geuzaine, N. Chevaugeon, and J. Remacle. A stabilized finite
element method using a discontinuous level set approach for the computation
of bubble dynamics. J. Comput. Phys., 225(1):949-974, 2007.

S. F. McCormick and J. W. Ruge. Convergence estimates for multigrid al-
gorithms without regularity assumptions. SIAM J. Numer. Anal., 19:924-929,
1982.

J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear
systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp.,
31(137):148-162, 1977.

M. Mohr and R. Wienands. Cell-centred multigrid revisited. Comput. Vis. Sci.,
7(3-4):129-140, 2004.

R. B. Morgan. A restarted GMRES method augmented with eigenvectors. SIAM
J. Matrix Anal. Appl., 16(4):1154-1171, 1995.

R. B. Morgan. GMRES with deflated restarting. SIAM J. Sci. Comput.,
24(1):20-37, 2002.

J. D. Moulton, J. E. Dendy, and J. M. Hyman. The black box multigrid numerical
homogenization algorithm. J. Comput. Phys., 141:1-29, 1998.

W. Mulder, S. Osher, and J. A. Sethian. Computing interface motion in com-
pressible gas dynamics. J. Comput. Phys., 100(2):209-228, 1992.

R. Nabben and C. Vuik. A comparison of Deflation and Coarse Grid Correction
applied to porous media flow. SIAM J. Numer. Anal., 42:1631-1647, 2004.

R. Nabben and C. Vuik. A comparison of deflation and the balancing precondi-
tioner. SIAM J. Sci. Comput., 27:1742-1759, 2006.

R. Nabben and C. Vuik. A comparison of abstract versions of deflation, balancing
and additive coarse grid correction preconditioners. Numer. Lin. Alg. Appl.,
15(4):355-372, 2008.

R. A. Nicolaides. On the /? convergence of an algorithm for solving finite element
equations. Math. Comp., 31:892-906, 1977.

R. A. Nicolaides. On some theoretical and practical aspects of multigrid methods.
Math. Comp., 33:933-952, 1979.

R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary
value problems. SIAM J. Numer. Anal., 24(2):355-365, 1987.



Bibliography 255

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Y. Notay. Flexible conjugate gradients. SIAM J. Sci. Comput., 22(4):1444—
1460, 2000.

S. Osher and R. P. Fedkiw. Level set methods: an overview and some recent
results. J. Comput. Phys., 169(2):463-502, 2001.

A. Padiy, O. Axelsson, and B. Polman. Generalized augmented matrix pre-
conditioning approach and its application to iterative solution of ill-conditioned
algebraic systems. SIAM J. Matrix Anal. Appl., 22(3):793-818, 2000.

M. L. Parks, E. de Sturler, D. D. Johnson G. Mackey, and S. Maiti. Recy-
cling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput.,
28(5):1651-1674, 2006.

S. V. Patankar. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New
York, 1980.

L. F. Pavarino and O. B. Widlund. Balancing Neumann-Neumann methods for
incompressible Stokes equations. Comm. Pure Appl. Math., 55(3):302-335,
2002.

E. G. Puckett, A. S. Almgren, J. B. Bell, D. L. Marcus, and W. J. Rider.
A high-order projection method for tracking fluid interfaces in variable density
incompressible flows. J. Comp. Phys., 130:269-282, 1997.

M. Raw. Robustness of coupled algebraic multigrid for the Navier-Stokes equa-
tions. Technical Paper 96-0297, AIAA Press, Washington, D.C., 1996.

J. K. Reid. On the method of conjugate gradients for the solution of large sparse
linear equations. In J. K. Reid, editor, Large Sparse Sets of Linear Equations,
pages 231-254. Academic Press, New York, NY, USA, 1971.

J. W. Ruge and K. Stiiben. Algebraic multigrid (AMG). In S. F. McCormick,
editor, Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pages
73-130. SIAM, Philadelphia, PA, 1987.

Y. Saad. ILUM: a multi-elimination ILU preconditioner for general sparse matri-
ces. SIAM J. Sci. Comput., 17(4):830-847, 1996.

Y. Saad. [terative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA,
USA, 2003. Second edition.

Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856—
869, 1986.

Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. A deflated version of the
Conjugate Gradient algorithm. SIAM J. Sci. Comput., 21(5):1909-1926, 2000.



256

Bibliography

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

R. Scheichl and E. Vainikko. Additive Schwarz and aggregation-based coarsening
for elliptic problems with highly variable coefficients. Comp., 80(4):319-343,
2007.

V. Simoncini and D. B. Szyld. On the occurrence of superlinear convergence of
exact and inexact Krylov subspace methods. SIAM Rev., 47(2):247-272, 2005.

R. Singh and W. Shyy. Three-dimensional adaptive cartesian grid method
with conservative interface restructuring and reconstruction. J. Comput. Phys.,
224(1):150-167, 2007.

B. F. Smith, P. E. Bjgrstad, and W. Gropp. Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Cambridge Univer-
sity Press, Cambridge, UK, 1996.

G. W. Stewart. Perturbation bounds for the definite generalized eigenvalue
problem. Lin. Alg. Appl., 23:69-85, 1979.

G. Strang. Introduction to Linear Algebra. \Wellesley-Cambridge Press, Wellesley,
MA, 1993.

K. Stiiben. An introduction to algebraic multigrid. In U. Trottenberg, C. Oost-
erlee, and A. Schiiller, editors, Multigrid, pages 413-528. Academic Press, San
Diego, CA, 2001.

M. Sussman and E. G. Puckett. A coupled level set and volume-of-fluid method
for computing 3D and axisymmetric incompressible two-phase flows. J. Comput.
Phys., 162(2):301-337, 2000.

M. Sussman, K. M. Smith, M. Y. Hussaini, M. Ohta, and R. Zhi-Wei. A
sharp interface method for incompressible two-phase flows. J. Comput. Phys.,
221(2):469-505, 2007.

J. M. Tang, S. P. MacLachlan, R. Nabben, and C. Vuik. A comparison of
two-level preconditioners based on multigrid and deflation. DIAM Report 08-05,
Delft University of Technology, Delft, 2006.

J. M. Tang, S. P. MacLachlan, R. Nabben, and C. Vuik. Theoretical comparison
of two-level preconditioners based on multigrid and deflation. 2008. Submitted.

J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. Theoretical and numer-
ical comparison of various projection methods derived from deflation, domain
decomposition and multigrid methods. DIAM Report 07-04, Delft University of
Technology, Delft, 2007.

J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. Comparison of two-
level pcg methods derived from deflation, domain decomposition and multigrid
methods. 2008. Submitted.



Bibliography 257

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

J. M. Tang and C. Vuik. On the theory of deflation and singular symmetric posi-
tive semi-definite matrices. DIAM Report 05-06, Delft University of Technology,
Delft, 2005.

J. M. Tang and C. Vuik. Parallel deflated CG methods applied to moving bound-
ary problems. Literature overview. DIAM Report 05-02, Delft University of
Technology, Delft, 2005.

J. M. Tang and C. Vuik. Deflated ICCG method applied to 3-D multi-phase
flows. In T.E. Simos, G. Psihoyios, and Ch. Tsitouras, editors, Extended Ab-
stracts, ICNAAM 2006, International Conference of Numerical Analysis and Ap-
plied Mathematics, pages 323-326, Weinheim, 2006. Wiley.

J. M. Tang and C. Vuik. Deflated ICCG method solving the singular and discon-
tinuous diffusion equation derived from 3-D multi-phase flows. In P. Wesseling,

E. Onate, and J. Periaux, editors, European Conference on Computational Fluid
Dynamics ECCOMAS CFD 2006, Delft, 2006. TU Delft.

J. M. Tang and C. Vuik. An efficient deflation method applied to 2-D and 3-
D bubbly flow problems. DIAM Report 06-01, Delft University of Technology,
Delft, 2006.

J. M. Tang and C. Vuik. New variants of deflation techniques for bubbly flow
problems. DIAM Report 06-14, Delft University of Technology, Delft, 2006.

J. M. Tang and C. Vuik. Acceleration of preconditioned Krylov solvers for bubbly
flow problems. In Y. Shi, G. D. van Albada, and J. Dongarra, editors, Compu-
tational Science - ICCS 2007. 7th International Conference, Beijing China, May
27-30, 2007, Proceedings, Part I, Lecture Notes in Computer Science, Vol.
4487, pages 603-614, Berlin, 2007. Springer.

J. M. Tang and C. Vuik. Efficient deflation methods applied to 3-D bubbly flow
problems. Elec. Trans. Numer. Anal., 26:330-349, 2007.

J. M. Tang and C. Vuik. Fast deflation methods with applications to two-phase
flows. DIAM Report 07-10, Delft University of Technology, Delft, 2007.

J. M. Tang and C. Vuik. New variants of deflation techniques for bubbly flow
problems. J. Numer. Anal. Indust. Appl. Math., 2(3—4):227-249, 2007.

J. M. Tang and C. Vuik. On deflation and symmetric positive semi-definite
matrices. J. Comput. Appl. Math., 206(2):603-614, 2007.

J. M. Tang and C. Vuik. Acceleration of preconditioned Krylov solvers for bubbly
flow problems. In R. Wyrzykowski, J. Dongarra, K. Karczweski, and J. Was-
niewski, editors, Parallel Processing and Applied Mathematics. 7th International
Conference, PPAM 2007. Gdansk, Poland, September 2007. Revised Papers,
Lecture Notes in Computer Science, Vol. 4967, pages 1323-1332, Berlin, 2008.
Springer.



258

Bibliography

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

J. M. Tang and C. Vuik. Fast deflation methods with applications to two-phase
flows. Int. J. Multisc. Comput. Eng., 6(1):13-24, 2008.

O. Tatebe. The multigrid preconditioned conjugate gradient method. In N. D.
Melson, T. A. Manteuffel, and S. F. McCormick, editors, Sixth Copper Mountain
Conference on Multigrid Methods, volume CP 3224, pages 621-634, Hampton,
VA, 1993. NASA.

A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and
Theory, volume 34 of Springer Series in Computational Mathematics. Springer,
Berlin, 2004.

U. Trottenberg, C. W. Oosterlee, and A. Schiiller. Multigrid. Academic Press,
London, 2000.

G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber,
J. Han, S. Nas, and Y.-J. Jan. A front-tracking method for the computations
of multiphase flow. J. Comput. Phys., 169:708-759, 2001.

G. Tryggvason, A. Esmaeeli, J. Lu, and S. Biswas. Direct numerical simulations
of gas/liquid multiphase flows. J. Comput. Phys., 38(9):660—681, 2006.

S. P. van der Pijl. Computation of bubbly flows with a mass-conserving level-set
method. PhD thesis, Delft University of Technology, 2005.

S. P.van der Pijl, A. Segal, and C. Vuik. Modelling of three-dimensional multi-
phase flows with a mass-conserving level-set method. DIAM Report 06-10, Delft
University of Technology, Delft, 2006.

S. P. van der Pijl, A. Segal, C. Vuik, and P. Wesseling. A mass-conserving
Level-Set method for modelling of multi-phase flows. Int. J. Numer. Methods
Fluids, 47:339-361, 2005.

S. P. van der Pijl, A. Segal, C. Vuik, and P. Wesseling. Computing three-
dimensional two-phase flows with a mass-conserving level set method. Comput.
Vis. Sci., 2008. To appear.

A. van der Sluis. Condition, equilibration, and pivoting in linear algebraic systems.
Numer. Math., 15:74-86, 1970.

A. van der Sluis and H. A. van der Vorst. The rate of convergence of conjugate
gradients. Numer. Math., 48(5):543-560, 1986.

H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of BI-
CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.,
13(2):631-644, 1992.

H. A. van der Vorst. lterative Krylov Methods for Large Linear Systems. Cam-
bridge University Press, Cambridge, 2003.



Bibliography 259

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

J. van Kan. A second-order accurate pressure-correction scheme for viscous
incompressible flow. SIAM J. Sci. Stat. Comput., 7(3):870-891, 1986.

J. van Kan, C. Vuik, and P. Wesseling. Fast pressure calculation for 2D and 3D
time dependent incompressible flow. Num. Lin. Alg. Appl., 7:429-447, 2000.

P. Vanék. Acceleration of convergence of a two-level algorithm by smooth trans-
fer operators. Appl. Math., 37:265-274, 1992.

P. Vanék. Fast multigrid solvers. Appl. Math., 40:1-20, 1995.

P. Vanék, J. Mandel, and M. Brezina. Algebraic multigrid by smooth aggregation
for second and fourth order elliptic problems. Comput., 56:179-196, 1996.

R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J.,
1962.

J. Verkaik. Deflated Krylov-Schwarz domain decomposition for the incompress-
ible Navier-Stokes equations on a colocated grid. Msc thesis, Delft University
of Technology, 2003. Available on http://ta.twi.tudelft.nl/nw/users/

vuik/numanal/verkaik_afst.pdf.

J. Verkaik, C. Vuik, B. D. Paarhuis, and A. Twerda. The deflation acceler-
ated Schwarz method for CFD. In V. S. Sunderam, G. D. van Albada, P. M. A.
Sloot, and J. J. Dongarra, editors, Computational Science-ICCS 2005: 5th Inter-
national Conference, Atlanta, GA, USA, May 22-25, 2005, Proceedings, Part I,
pages 868-875, Berlin, 2005. Springer. Lecture Notes in Computer Science
3514.

F. Vermolen, C. Vuik, and A. Segal. Deflation in preconditioned conjugate
gradient methods for finite element problems. In M. K¥izek, P. Neittaanmaki,
R. Glowinski, and S. Korotov, editors, Conjugate Gradient and Finite Element
Methods, pages 103—129. Springer, Berlin, 2004.

C. Vuik and J. Frank. Coarse grid acceleration of a parallel block preconditioner.
Fut. Gener. Comput. Syst., 17:933-940, 2001.

C. Vuik, R. Nabben, and J. M. Tang. Deflation acceleration for domain decompo-
sition preconditioners. In P. Wesseling, C.W. Oosterlee, and P. Hemker, editors,
Proc. 8th European Multigrid Conference, September 27-30, 2005, Schevenin-
gen, The Netherlands. Delft University of Technology, 2006.

C. Vuik, A. Segal, and J. A. Meijerink. An efficient preconditioned CG method
for the solution of a class of layered problems with extreme contrasts in the
coefficients. J. Comput. Phys., 152:385-403, 1999.

C. Vuik, A. Segal, J. A. Meijerink, and G. T. Wijma. The construction of
projection vectors for a Deflated ICCG method applied to problems with extreme
contrasts in the coefficients. J. Comput. Phys., 172:426-450, 2001.



260 Bibliography

[175] C. Vuik, A. Segal, L. El Yaakoubi, and E. Dufour. A comparison of various de-
flation vectors applied to elliptic problems with discontinuous coefficients. Appl.
Numer. Math., 41:219-233, 2002.

[176] X.-H. Wen and J. J. Gémez-Hernéndez. Upscaling hydraulic conductivities in
heterogeneous media: An overview. J. Hydrology, 183:9-32, 1996.

[177] P. Wesseling. Cell-centered multigrid for interface problems. J. Comput. Phys.,
79:85-91, 1988.

[178] P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons,
Chichester, 1992. Corrected Reprint. Philadelphia: R.T. Edwards, Inc., 2004.

[179] J. H. Wilkinson. The algebraic eigenvalue problem. Oxford University Press,
Inc., New York, NY, USA, 1988.

[180] D. M. Young. lterative Solutions of Large Linear Systems. Academic Press,
New York, 1971.



List of Publications

Journal Papers

e J.M. Tang and C. Vuik, ‘On Deflation and Symmetric Positive Semi-Definite Ma-
trices’, Journal of Computational and Applied Mathematics, Vol. 206, Issue 2,
pp. 603-614, 2007.

e J.M. Tang and C. Vuik, ‘Efficient Deflation Methods applied to 3-D Bubbly Flow
Problems’, Electronic Transactions on Numerical Analysis, Vol. 26, pp. 330—-349,
2007.

e J .M. Tang and C. Vuik, ‘New Variants of Deflation Techniques for Pressure
Correction in Bubbly Flow Problems', Journal of Numerical Analysis, Industrial
and Applied Mathematics, Vol. 2, Issue 3—4, pp. 227-249, 2007.

e J.M. Tang and C. Vuik, ‘Fast Deflation Methods with Applications to Two-Phase
Flows, International Journal for Multiscale Computational Engineering, Vol. 6,
Issue 1, pp. 13-24, 2008.

e S.P. Maclachlan, J.M. Tang, and C. Vuik, 'Fast and Robust Solvers for Pressure
Correction in Bubbly Flow Problems’, submitted (2007).

e J.M. Tang, R. Nabben, C. Vuik, and Y.A. Erlangga, ‘Comparison of Two-Level
PCG Methods derived from Deflation, Domain Decomposition and Multigrid
Methods', submitted (2008).

e J.M. Tang, S.P. MacLachlan, R. Nabben, and C. Vuik, ‘A Comparison of Two-
Level Preconditioners based on Deflation and Multigrid', submitted (2008).

e E. Ludwig, R. Nabben, and J.M. Tang, ‘Deflation and Projection Methods applied
to Positive Semi-Definite Systems’, in preparation.

261



262 Bibliography

Proceeding Papers

e C. Vuik, R. Nabben, and J.M. Tang, 'Deflation Acceleration for Domain Decom-
position Preconditioners’, Proceedings of the 8th European Multigrid Confer-
ence on Multigrid, Multilevel and Multiscale Methods, The Hague, The Nether-
lands, September 27-30, 2005, (Eds: P. Wesseling, C.W. Oosterlee, P. Hemker),
CDROM ISBN 90-9020969-7.

e J.M. Tang and C. Vuik, '‘Deflated ICCG Method solving the Singular and Dis-
continuous Diffusion Equation derived from 3-D Multi-Phase Flows’, Proceedings
of ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8,
2006, (Eds: P. Wesseling, E. Onate, J. Periaux), CDROM ISBN 90-9020970-0.

e J.M. Tang and C. Vuik, ‘Deflated ICCG Method applied to 3-D Multi-Phase
Flow', Proceedings of International Conference on Numerical Analysis and Ap-
plied Mathematics 2006 (ICNAAM-2006), Hersonnisos, Crete, Greece, Septem-
ber 15-19, 2006 (Eds: T.E. Simos, G. Psihoyios, Ch. Tsitouras), Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, pp. 323-326, ISBN 3-527-40743-X.

e J.M. Tang and C. Vuik, ‘Acceleration of Preconditioned Krylov Solvers for Bubbly
Flow Problems’, Computational Science - ICCS 2007. 7th International Confer-
ence, Beijing, China, May 27-30, 2007, Proceedings, Part | (Eds.: Y. Shi, G.D.
van Albada, J. Dongarra, P.M.A. Sloot), LNCS Vol. 4487, pp. 874-881, 2007.

e J.M. Tang and C. Vuik, ‘Acceleration of Preconditioned Krylov Solvers for Bubbly
Flow Problems’, Parallel Processing and Applied Mathematics. 7th International
Conference, PPAM 2007. Gdansk, Poland, September 2007. Revised Papers
(Eds.: R. Wyrzykowski, J. Dongarra, K. Karczweski, J. Wasniewski), LNCS
Vol. 4967, pp. 1323-1332, 2008.

Technical Reports

e J .M. Tang, 'Parallel Deflated CG Methods applied to Moving Boundary Prob-
lems. Literature Overview', DIAM Report 05-02, Delft University of Technology,
2005.

e J.M. Tang and C. Vuik, ‘On the Theory of Deflation and Singular Symmetric
Positive Semi-Definite Matrices’, DIAM Report 05-06, Delft University of Tech-
nology, 2005.

e J.M. Tang and C. Vuik, ‘An Efficient Deflation Method applied to 2-D and 3-D
Bubbly Flow Problems’, DIAM Report 06-01, Delft University of Technology,
2006.

e J.M. Tang and C. Vuik, ‘New Variants of Deflation Techniques for Bubbly Flow
Problems’, DIAM Report 06-14, Delft University of Technology, 2006.



Bibliography 263

e J.M. Tang, R. Nabben, C. Vuik, and Y.A. Erlangga, ‘Theoretical and Numerical
Comparison of Various Projection Methods derived from Deflation, Domain De-
composition and Multigrid Methods’, DIAM Report 07-04, Delft University of
Technology, 2007.

e J.M. Tang and C. Vuik, ‘Fast Deflation Methods with Applications to Two-Phase
Flows', DIAM Report 07-10, Delft University of Technology, 2007.

e S.P. Maclachlan, J.M. Tang, and C. Vuik, 'Fast and Robust Solvers for Pressure
Correction in Bubbly Flow Problems’, DIAM Report 08-01, Delft University of
Technology, 2008.

e J.M. Tang, S.P. MaclLachlan, R. Nabben, and C. Vuik, ‘Theoretical Compari-
son of Two-Level Preconditioners based on Deflation and Multigrid’, DIAM Re-
port 08-05, Delft University of Technology, 2008.

Miscellaneous Contributions

e Jok Tang and Kees Vuik, ‘Deflated PCG Method for the Poisson Solver’, Bur-
gersdag 2008, Delft, The Netherlands, January 10, 2008. Winner of the Best
Poster Presentation.

e Jok M. Tang, ‘A Generalized Projected CG Method with Applications to Bubbly
Flow Problems’, IMACS 2008: 9th IMACS International Symposium on lIterative
Methods in Scientific Computing, Lille, France, March 17-21, 2008. Winner of
the Student Paper Competition.

Relevant Talks

e ‘Deflated ICCG Methods applied to 3-D Multi-Phase Problems’, 9th Copper
Mountain Conference on Iterative Methods, Colorado, USA, April 2006.

e ‘Deflated ICCG Method applied to 3-D Multi-Phase Flows', Euromech Collo-
quium 479: Numerical Simulation of Multiphase Flows with Deformable Inter-
faces, Scheveningen, The Netherlands, August 2006.

e ‘Deflated ICCG Methods applied to 3-D Multi-Phase Problems’, ECCOMAS
CFD 2006: European Conference on Computational Fluid Dynamics, Egmond
aan Zee, The Netherlands, September 2006.

e 'Deflated ICCG Methods applied to 3-D Multi-Phase Problems’, ICNAAM 2006:
International Conference of Numerical Analysis and Applied Mathematics, Crete,
Greece, September 2006.

e ‘Deflation Method applied to 3-D Bubbly Flow Problems’, Diplomanden- und
Doktorandenseminar Numerische Mathematik WS 2006/07, Berlin, Germany,
November 2006.



264

Bibliography

e ‘Versnellen van Numerieke Methoden voor de Berekening van Stromingen met

Bellen en Bubbels', 43rd Dutch Mathematical Conference 2007, Leiden, The
Netherlands, April 2007. Selected by a jury for the competition of the Philips
Mathematics Prize for PhD-students.

‘Acceleration of Preconditioned Krylov Solvers for Bubbly Flow Problems’, ICCS
2007: International Conference on Computational Science 2007, Beijing, China,
May 2007.

‘Deflated PCG Method applied to Bubbly Flow Problems’, Computing Laboratory
Seminar, Oxford, England, August 2007.

‘Acceleration of Preconditioned Krylov Solvers for Bubbly Flow Problems’, PPAM
2007: Parallel Processing and Applied Mathematics, Gdansk, Poland, September
2007.

‘Comparison of Projection Methods with Applications to Bubbly Flows', Diplo-
manden- und Doktorandenseminar Numerische Mathematik WS 2007/08, Berlin,
Germany, November 2007.

‘A Generalized Two-Level PCG Method', Gene Golub DCSE Symposium, Delft,
The Netherlands, February 2008.

‘A Generalized Two-Level Preconditioned Conjugate Gradient Method’', IMACS
2008: 9th IMACS International Symposium on lIterative Methods in Scientific
Computing, Lille, France, March 2008.

‘A Generalized Two-Level Preconditioned Conjugate Gradient Method', 10th
Copper Mountain Conference on lIterative Methods, Colorado, USA, April 2008.

“Two-Level Preconditioned Conjugate Gradient Methods’', ECCOMAS 2008: 5th.
European Congress on Computational Methods in Applied Sciences and Engi-
neering, Venice, ltaly, July 2008.



Curriculum Vitae

Jok Man Tang was born on September 1, 1981, in Utrecht, The Netherlands. He
completed secondary school at St. Bonifatius College (Utrecht) in 1999. From 1999 to
2004, he studied Applied Mathematics at Delft University of Technology. He obtained
his Bachelor of Science degree in 2003, followed by his Master of Science degree (cum
laude) in 2004. His Master's thesis, ‘Construction of a Combined Preconditioner for
the Helmholtz Problem', was carried out in the numerical analysis group of Prof. P.
Wesseling at Delft University of Technology, in collaboration with Shell International
Exploration and Production, under supervision of Prof. C. Vuik and Prof. W. Mulder.

He worked as a PhD student in the numerical analysis group at Delft University of
Technology from October 2004 to September 2008. He was supervised by Prof. C.
Vuik, and has collaborated with especially Prof. R. Nabben (Technische Universitat
Berlin, Germany) and S.P. MacLachlan (Tufts University, USA), which have led to
several publications. He visited University of Oxford and Technische Universitat Berlin
several times for his work. In addition, the research has been presented at many
international conferences and symposiums.

He was awarded prizes for the Best Poster Presentation (Burgersdag 2008, Delft,
January 2008) and Best Student Paper (9th IMACS International Symposium on It-
erative Methods in Scientific Computing, Lille, France, March 2008). Moreover, he
has taught linear algebra and was a teaching assistant for differential equations and
numerical analysis courses. In addition, he has co-organized PhDays 2007 (Baarschot,
April 2007), the Gene Golub DCSE Symposium (Delft, February 2008), and PhDays
2008 (De Haan, Belgium, April=June 2008).

265



