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Summary
Two-Level Pre
onditioned Conjugate Gradient Methodswith Appli
ations to Bubbly Flow ProblemsJok M. TangThe Pre
onditioned Conjugate Gradient (PCG) method is one of the most populariterative methods for solving large linear systems with a symmetri
 and positive semi-de�nite 
oe�
ient matrix. However, if the pre
onditioned 
oe�
ient matrix is ill-
onditioned, the 
onvergen
e of the PCG method typi
ally deteriorates. Instead, atwo-level PCG method 
an be used. The 
orresponding two-level pre
onditioner usuallytreats unfavorable eigenvalues of the 
oe�
ient matrix e�e
tively, so that the two-levelPCG method is expe
ted to 
onverge faster than the original PCG method. Manytwo-level pre
onditioners are known in the �elds of de�ation, multigrid and domainde
omposition methods. Several of them are dis
ussed in this thesis, where the mainfo
us is on the de�ation method.We show some theoreti
al properties of the de�ation method, whi
h give insightsinto the e�e
tiveness of this method. A 
ru
ial 
omponent of the de�ation pre
on-ditioner is the 
hoi
e of proje
tion ve
tors. Several 
hoi
es are dis
ussed and exam-ined. We advo
ate that subdomain proje
tion ve
tors, whi
h are based on disjoint andpie
ewise-
onstant ve
tors, are among the best 
hoi
es for a 
lass of problems.Subsequently, we examine the appli
ation of the de�ation method to linear systemswith singular 
oe�
ient matri
es. Several mathemati
ally equivalent variants of theoriginal de�ation method are proposed to deal with the possible singularity of this
oe�
ient matrix. In addition, two approa
hes are dis
ussed in order to handle 
oarselinear systems with a Galerkin matrix, whi
h are involved in ea
h iteration of thede�ation method. After the dis
ussion of the implementation and e�
ien
y issues ofthe de�ation method, it is demonstrated that this method is usually faster than theoriginal PCG method.Moreover, we present a 
omparison between the de�ation method and other well-known two-level PCG methods, among them the balan
ing-Neumann-Neumann, addi-tive 
oarse-grid 
orre
tion, and multigrid methods based on symmetri
 and nonsym-v



vimetri
 V-
y
les. As the parameters of the 
orresponding two-level pre
onditioners areabstra
t, we show that these methods are strongly 
onne
ted to ea
h other. The
omparison is also done where the di�erent two-level PCG methods adopt their typi
aland optimized set of parameters. Numeri
al experiments show that some multigridmethods are attra
tive in addition to the de�ation method.The major appli
ation of this thesis is the Poisson equation with a dis
ontinuous
oe�
ient, whi
h is derived from 2-D and 3-D bubbly �ow problems. Most of theperformed numeri
al experiments in this thesis are based on this equation. Both sta-tionary and time-dependent experiments are 
arried out to emphasize the theoreti
alresults. We show that two-level PCG methods are signi�
antly faster than the originalPCG method in almost all experiments. Hen
e, 
omputations involved in bubbly �ows
an be performed very e�
iently using these PCG methods.



Samenvatting
Tweelaags Gepre
onditioneerde Ge
onjugeerde Gradiënten Methodenmet Toepassingen in Stromingsproblemen met BellenJok M. TangDe gepre
onditioneerde ge
onjugeerde gradiënten (PCG) methode is één van de meestpopulaire iteratieve methoden voor het oplossen van groots
halige lineaire systemen,waarbij de 
oë�
iëntenmatrix symmetris
h en positief semi-de�niet is. E
hter, alsde gepre
onditioneerde 
oë�
iëntenmatrix sle
ht ge
onditioneerd is, dan vertoont dePCG methode langzame 
onvergentie. In plaats hiervan kan de tweelaagse PCG meth-ode gebruikt worden die gebaseerd is op een tweelaagse pre
onditioner. Deze pre-
onditioner elimineert de e�e
ten van de kleine en grote eigenwaarden van de 
oë�-
iëntenmatrix, waardoor de tweelaagse PCG methode sneller 
onvergeert dan de oor-spronkelijke methode. Vele tweelaagse pre
onditioners zijn bekend in de vakgebiedenvan de�atie, multirooster en domein de
ompositie methoden. In dit proefs
hrift on-derzoeken we deze pre
onditioners nader, waar we ons voornamelijk 
on
entreren opde de�atie methode.We laten theoretis
he eigens
happen van de de�atie methode zien, die inzi
ht gevenin de e�e
tiviteit van deze methode. Een 
ru
iale 
omponent van de de�atie pre
on-ditioner is de keuze van de proje
tieve
toren. Diverse keuzes worden beargumenteerden onderzo
ht. We laten zien dat subdomein proje
tieve
toren, die gebaseerd zijn opdisjun
te en stuksgewijs 
onstante ve
toren, een van de beste keuzes zijn voor eenspe
i�
ieke klasse van problemen.Vervolgens onderzoeken we de toepassing van de de�atie methode op lineaire sys-temen waarbij de 
oë�
iëntenmatrix singulier is. Vers
heidene wiskundig equivalentevarianten afgeleid van de originele de�atie methode worden behandeld. Deze variantenzijn bestand tegen de mogelijke singulariteit van de 
oë�
iëntenmatrix. Verder wordentwee varianten bekeken die ges
hikt zijn om kleinere lineaire systemen binnen de de-�atie methode op te lossen waarbij de Galerkin matrix betrokken is. Na het behandelenvan de implementatie en de e�
iëntie van de de�atie methode, laten we zien dat dezemethode in de meeste gevallen sneller 
onvergeert dan de originele PCG methode.vii



viii Verder presenteren we een vergelijking tussen de de�atie methode en andere be-kende tweelaagse PCG methoden, waaronder de gebalan
eerde Neumann-Neumann,additief grof-rooster 
orre
tie en multirooster methoden gebaseerd op symmetris
heen niet-symmetris
he V-
y
li. Indien de parameters in de te bes
houwen tweelaagsepre
onditioners gelijk zijn, kunnen we aantonen dat de vers
hillende methoden sterk aanelkaar gerelateerd zijn. De vergelijking is verder ook uitgevoerd, waarbij de tweelaagsePCG methoden hun karakteristieke en geoptimaliseerde verzameling van parametersaannemen. Numerieke experimenten laten zien dat sommige multirooster methodenattra
tief zijn naast de de�atie methode.De belangrijkste toepassing in dit proefs
hrift is de Poisson vergelijking met een dis-
ontinue 
oë�
iënt, hetgeen afgeleid is van 2-D en 3-D twee-fase stromingsproblemenmet bellen. De meeste van de uitgevoerde numerieke experimenten zijn gebaseerd opdeze vergelijking. Zowel stationaire als tijdsafhankelijke experimenten zijn uitgevoerdom de theoretis
he resultaten te onderbouwen. We laten zien dat in bijna alle experi-menten de tweelaagse PCG methoden signi�
ant sneller 
onvergeren dan de originelePCG methode, waardoor de berekeningen voor twee-fase stromingen met bellen e�-
iënter uitgevoerd kunnen worden.
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Chapter 1Introdu
tion1.1 Ba
kgroundThe fo
us of this thesis is on the numeri
al solution of the linear partial di�erentialequations (PDEs) resulting from the mathemati
al modeling of physi
al systems and,in parti
ular, bubbly �ows. We assume that these PDEs have already been dis
retizedin a sensible manner through the use of �nite di�eren
es, �nite volumes or �niteelements. Our primary fo
us is on e�
ient solution of linear systems, of the formAx = b; A 2 Rn�n; n 2 N; (1.1)that arise from su
h dis
retizations, where n is the number of degrees of freedom andis 
alled the dimension of A. In Eq. (1.1), the 
oe�
ient matrix, A, is assumed to bereal, symmetri
, and positive semi-de�nite (SPSD), i.e.,A = AT ; yTAy � 0 8y 2 Rn;and has d zero eigenvalues with 
orresponding linearly independent eigenve
tors. Ifd > 0, then A is singular. To guarantee that Eq. (1.1) is 
onsistent, the right-handside, b, is presumed to be in the range of A, i.e., b 2 R(A) where R(A) := fy 2 Rn :y = Aw for w 2 Rng. Thus, the next assumption holds throughout this thesis.Assumption 1.1. The 
oe�
ient matrix, A, is SPSD and has d zero eigenvalues.Moreover, the linear system (1.1) is 
onsistent.The null spa
e of A is de�ned as N (A) := fw 2 Rn : Aw = 0ng, where 0n is the all-zero ve
tor with n entries. Then, N (A) is the orthogonal 
omplement of the 
olumnspa
e of A, i.e., N (A) = R(A)?. As a 
onsequen
e, the linear system (1.1) is only
onsistent if bTw = 0 is satis�ed for all w 2 N (A).Linear system (1.1) is typi
ally large, sparse, and ill-
onditioned. That means that
urrent problems of interest involve millions of degrees of freedom, a �xed numberof nonzero entries per row and 
olumn of A, and 
ondition number of A, denotedas �(A), approa
hing in�nity as problem size or 
oe�
ient ratio in the original PDEs1



2 Chapter 1. Introdu
tionin
reases, respe
tively. In this thesis, we denote by �i(B) (or, shortly, �i) the i-theigenvalue of an arbitrary symmetri
 matrix, B 2 Rn�n, where the set f�ig is alwaysordered in
reasingly (unless otherwise stated), i.e., �1 � �2 � : : : � �n. This set,f�ig, is 
alled the spe
trum of B and is denoted as �(B). If B is SPSD, then its(spe
tral) 
ondition number is de�ned as the ratio of the largest and the smallestnonzero eigenvalues, i.e., �(B) := �n�d+1 :The linear system (1.1) 
an be solved using dire
t methods. Most of these solversgenerally involve expli
it fa
torization of (permutations of) A into a produ
t of alower and an upper triangular matrix. Important advantages of dire
t solvers are theirrobustness and general appli
ability. However, the bottlene
k of dire
t solvers is thatthe matrix fa
tor is often signi�
antly denser than A. On the one hand, this mightlead to an ex
essive amount of 
omputations and, on the other hand, it might leadto insu�
ient memory to form and store matrix fa
tors. Therefore, dire
t methodsare typi
ally prohibitively expensive and in some 
ases impossible, even with the bestavailable 
omputing power.Instead of dire
t solvers, iterative methods are more attra
tive to use to �nd thesolution of (1.1). In this 
ase, both memory requirements and 
omputing time 
an beredu
ed, espe
ially if A is large and sparse. Moreover, these methods are mandatoryfor some numeri
al dis
retization methods, where A is not expli
itly available. Theterm `iterative method' refers to a wide range of te
hniques that use iterates, or su
-
essive approximations, to obtain more a

urate solutions to a linear system at ea
hiteration step. Krylov subspa
e iterative methods, espe
ially the Conjugate Gradient(CG) method of Hestenes and Stiefel, are prominent iterative methods to solve (1.1).In these methods, the 
losest approximation to the solution of (1.1) is found in a sub-spa
e whose size is iteratively in
reased. The 
onvergen
e of these methods dependshighly on �(A), whi
h again typi
ally grows as the problem size in
reases. To avoidthe in
rease in iterations, it is 
ommon pra
ti
e to modify the Krylov subspa
e methodin the hopes of redu
ing the di�
ulties in solving the given system. If this is applied toCG, then the resulting method is 
alled the pre
onditioned Conjugate Gradient (PCG)method. In this 
ase, (1.1) is multiplied by a pre
onditioner, M�1, 
hosen to redu
ethe 
ondition number of the iteration matrix from �(A) to �(M� 12AM� 12 ), whi
h isequivalent to �(M�1A). The resulting pre
onditioned system that should be solvedreads M�1Ax = M�1b; (1.2)where M is assumed to be symmetri
 and positive de�nite (SPD), i.e.,M = MT ; yTMy > 0 8y 6= 0n:PCG is more e�e
tive than original CG for many problems of interest. When M�1yis easily 
omputed for a given ve
tor, y , the additional 
ost of the pre
onditioning inthe Krylov iteration 
an 
ertainly pay o�, if it results in a more amenable spe
trum of



1.2. Two-level Pre
onditioned Conjugate Gradient Methods 3M�1A. That is, if �(M�1A) is signi�
antly less than �(A), or if the spe
trum is more
lustered than that of the original matrix, we 
an expe
t signi�
antly fewer iterations tobe needed. However, even with sophisti
ated pre
onditioners, su
h as pre
onditionersbased on in
omplete fa
torizations, �(M�1A) might still be
ome larger as the problemsize or 
oe�
ient ratio in the original PDEs in
reases. In this 
ase, PCG may su�erfrom slow 
onvergen
e due to the presen
e of unfavorable eigenvalues in �(M�1A).1.2 Two-level Pre
onditioned Conjugate Gradient MethodsIn addition to a traditional pre
onditioner, M�1, a se
ond kind of pre
onditioner 
an bein
orporated to improve the 
onditioning of the 
oe�
ient matrix even further, so thatthe resulting approa
h e�e
tively treats the e�e
t of all unfavorable eigenvalues. This
ombined pre
onditioning is known as `two-level pre
onditioning', and the resultingiterative method is 
alled a `two-level PCG (2L-PCG) method'. In this 
ase, CG,in 
ombination with a pre
onditioner based on a multigrid (MG) method or domainde
omposition method (DDM), 
an be regarded as a 2L-PCG method, sin
e most ofthese methods rely on pre
onditioning on two levels. These pre
onditioners have beenknown for a long time, dating ba
k at least to the 1930s.The main fo
us of this thesis is on the 2L-PCG method whose two-level pre
on-ditioner is based on a de�ation te
hnique. The resulting method is often 
alled thede�ation method and was introdu
ed independently by Ni
olaides and Dostal in the1990s.1.3 Bubbly Flow ProblemsThe main appli
ation of this thesis is two-phase bubbly �ows, as in Figure 1.1. Com-putation of these �ows is a very a
tive resear
h topi
 in 
omputational �uid dynami
s(CFD). Understanding the dynami
s and intera
tion of bubbles and droplets in a largevariety of pro
esses in nature, engineering, and industry are 
ru
ial for e
onomi
ally ande
ologi
ally optimized design. Bubbly �ows o

ur, for example, in 
hemi
al rea
tors,boiling, fuel inje
tors, 
oating, and vol
ani
 eruptions.Two-phase �ows are 
ompli
ated to simulate, be
ause the geometry of the problemtypi
ally varies with time, and the �uids involved have very di�erent material properties.A simple example is that of air bubbles in water, where the densities vary by a fa
torof about 800. In this thesis, we 
onsider both stationary and time-dependent bubbly�ows, where the 
omputational domain is always a unit square or unit 
ube �lled witha �uid to a 
ertain height. The bubbles and droplets in the domain are always 
hosensu
h that they are lo
ated in a stru
tured way and have equal radius, s, at the startingtime. Typi
al 3-D test problems, 
onsidered in this thesis, are depi
ted in Figure 1.2.2-D test problems are always based on se
tions of these 3-D domains. Throughoutthis thesis, lengths are typi
ally given in 
entimeters (
m).Mathemati
ally, bubbly �ows are modelled using the Navier-Stokes equations in-
luding boundary and interfa
e 
onditions, whi
h 
an be approximated numeri
ally
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Figure 1.1: A droplet splash: an example of a two-phase bubbly �ow problem.

(a) m = 1 and s = 0:1. (b) m = 8 and s = 0:05. (
) m = 27 and s = 0:025.Figure 1.2: Geometry of some stationary bubbly �ows 
onsidered in this thesis (m = number ofbubbles, s = radius of the bubbles).using operator-splitting te
hniques. In these s
hemes, equations for the velo
ity andpressure are solved sequentially at ea
h time step. In many popular operator-splittingmethods, the pressure 
orre
tion is formulated impli
itly, requiring the solution of alinear system (1.1) at ea
h time step. This system takes the form of a Poisson equa-tion with dis
ontinuous 
oe�
ients (also 
alled the `pressure(-
orre
tion) equation')and Neumann boundary 
onditions, i.e.,
{ �r � ( 1�(x)rp(x)) = f (x); x 2 
;��np(x) = g(x); x 2 �
; (1.3)where 
; p; �; x, and n denote the 
omputational domain, pressure, density, spatial
oordinates, and the unit normal ve
tor to the boundary, �
, respe
tively. Right-handsides f and g follow expli
itly from the operator-splitting method, where g is su
h thatmass is 
onserved, leading to a singular but 
ompatible linear system (1.1) 1.We de�ne nx ; ny and nz as the number of degrees of freedom in ea
h spatialdire
tion, so that n = nxnynz . In this thesis, we perform the 
omputations on auniform Cartesian grid with nx = ny = nz . Furthermore, we 
onsider two-phase bubbly1For stationary bubbly �ow problems, we take f (x) = 0, so that the right-hand side of the linearsystem, b, only 
ontains 
omponents from the boundary 
onditions. In addition, we take g(x) to be



1.3. Bubbly Flow Problems 5�ows with, for example, air and water.In this 
ase, � is pie
ewise 
onstant with a relatively large 
ontrast:� = { �0 = 1; x 2 �0;�1 = "; x 2 �1: (1.4)For �ows with water and air, the density 
ontrast, de�ned as � := �0�1 = "�1, is � � 103,see Figure 1.3. In this 
ase, �0 is water, the main �uid of the �ow around the m airbubbles, and �1 is the region inside the bubbles.
10−3 10−3

100

10−310−3

10−3

Composition

water

air air

air air

air

Density

Figure 1.3: A two-phase bubbly �ow with the phases air and water.Solving linear system (1.1), that is a dis
retization of (1.3), within an operator-splitting approa
h has long been re
ognized as a 
omputational bottlene
k in �uid-�owsimulation, sin
e it typi
ally 
onsumes the bulk of the 
omputing time. Whether �nite-di�eren
e, �nite-element, or �nite-volume te
hniques are used to dis
retize (1.3), theresulting matrix is sparse, but with a bandwidth of nxny , in lexi
ographi
al ordering.For a dis
retization on a 
ube with 100 degrees of freedom in ea
h dire
tion, this meansthat A is of dimension n = 106, with bandwidth nxny = 104. It is well-known thatdire
t solution te
hniques without reordering require a number of operations that s
aleas n 73 for a banded Cholesky de
omposition, O(1014) operations in the example above.Thus, here, we 
onsider the solution of (1.1) using iterative te
hniques. Standard PCGmethods are not suitable, sin
e they exhibit a strong sensitivity to the density 
ontrastand grid size. There is a real need for two-level pre
onditioning in order to a

eleratethe 
onvergen
e of the iterative pro
ess of PCG. Hen
e, we apply 2L-PCG methodsto solve (1.1).Next, de�ne 1p as the all-one ve
tor with p entries. Then, the following assumptionholds in our bubbly �ow problem, whi
h follows impli
itly from the above problem
onstant at ea
h boundary; we use the following boundary 
onditions in the 3-D 
ase:
8
><
>:

��np(x)jx=0 = � ��np(x)jx=1 = 1;��np(x)jy=0 = � ��np(x)jy=1 = �1;��np(x)jz=0 = � ��np(x)jz=1 = 1:In a similar way, su
h boundary 
onditions are 
hosen in 2-D stationary problems.
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tionsetting.Assumption 1.2. In bubbly �ow problems, we assume that A is a singular M-matrix,and the equations A1n = 0n and bT1n = 0 are satis�ed.A symmetri
 M-matrix is a square SPSD matrix whose o�-diagonal entries areless than or equal to zero. A

ording to [15℄, d = 1 holds for a singular M-matrix,A. In other words, we have rank A = n � 1 and dim N (A) = 1, where rank B anddim B denote the rank of matrix B and the dimension of subspa
e B, respe
tively.Note that Assumption 1.1 follows immediately from Assumption 1.2, sin
e (1.1) isalways 
onsistent. For b = 0n, this is trivial, and, for b 6= 0n, b ? N (A) = spanf1ngresulting in the fa
t that b 2 R(A). Therefore, although A is singular, (1.1) is always
onsistent and an in�nite number of solutions exists. Due to the Neumann boundary
onditions, the solution, x , of (1.1) is �xed up to a 
onstant, i.e., if x1 is a solutionthen x1 + 
1n is also a solution of (1.1), where 
 2 R is any 
onstant. This situationpresents no real di�
ulty, sin
e pressure is a relative variable, not an absolute one inthe operator-splitting methods.1.4 S
ope of the ThesisThis thesis deals with a

eleration of PCG using two-level pre
onditioning in order tosolve linear systems with an SPSD 
oe�
ient matrix. The main 2L-PCG method isthe de�ation method. In the literature, mu
h is known about applying the de�ationmethod to linear systems with invertible 
oe�
ient matri
es and to problems with�xed and known density �elds. In this thesis, we generalize it to linear systems withsingular 
oe�
ient matri
es and to problems where the density �eld varies or 
annotbe des
ribed expli
itly. Moreover, we investigate the e�
ient implementation of thede�ation method and the further improvements of the method. We also 
omparethe de�ation method with other well-known 2L-PCG methods by 
onsidering both theabstra
t variants and their optimal variants with their typi
al parameters. Numeri
alexperiments with bubbly �ows are performed to illustrate the theoreti
al results.Remark 1.1. Many theoreti
al results presented in this thesis are generally appli
ableand are not restri
ted to appli
ations of bubbly �ows, although these bubbly �ows arethe main appli
ation of this thesis. Therefore, Assumption 1.2 is not demanded in thegeneral dis
ussion, but is only required when the general theoreti
al results are appliedto bubbly �ows. In addition, all results that require Assumption 1.2 
an also be appliedto other �elds where this assumption is ful�lled.1.5 Outline of the ThesisThe outline of this thesis is as follows.



1.5. Outline of the Thesis 7Chapter 2: Iterative Methods. This 
hapter is devoted to the introdu
tion of itera-tive methods, espe
ially the CG and PCG methods. In most introdu
tory books, CGand PCG are derived and analyzed where A is assumed to be invertible, but we give themethods and their 
on
ise derivations for general SPSD 
oe�
ient matri
es. More-over, some properties of these methods are presented, whi
h are not fully 
lear in theliterature. Finally, the drawba
ks of PCG are illustrated using numeri
al experimentswith bubbly �ows.Chapter 3: De�ation Method. In order to improve the 
onvergen
e of the stan-dard PCG method, the de�ation method and its pre
onditioned variant are introdu
edin Chapter 3. We give their derivation in detail and present some new theoreti
alproperties. We show, both theoreti
ally and numeri
ally, that the de�ation method isexpe
ted to be more e�e
tive than the original PCG method.Chapter 4: Sele
tion of De�ation Ve
tors. The su

ess of the de�ation methodhighly depends on the 
hoi
e of the so-
alled `de�ation ve
tors'. Good approximationsof eigenve
tors asso
iated with unfavorable eigenvalues are often 
hosen, whi
h areusually dense and not straightforward to obtain. In addition, the density �eld is oftennot known expli
itly in our bubbly �ow appli
ation, whi
h might lead to di�
ulties forapproximating eigenve
tors. We analyze this issue in more detail in Chapter 4 andprovide some strategies to determine the best de�ation ve
tors for bubbly �ow prob-lems. We 
ome up with several suitable 
hoi
es, whose utility is illustrated in numeri
alexperiments.Chapter 5: Subdomain De�ation applied to Singular Matri
es. Theoreti
al re-sults for the de�ation method are well-known if it is applied to nonsingular 
oe�
ientmatri
es. The appli
ation of this method to singular 
oe�
ient matri
es is more 
om-pli
ated and has not been widely 
onsidered in the literature. This issue is furtherinvestigated in Chapter 5. We show equivalen
es between de�ation methods appliedto singular and invertible 
oe�
ient matri
es. We 
ome up with several mathemati-
ally equivalent variants of the two-level pre
onditioner 
orresponding to the de�ationmethod. Numeri
al experiments are used to show that these variants 
an be easilyapplied in pra
ti
e.Chapter 6: Comparison of Two-level PCG Methods � Part I. The main fo
us ofthis thesis is on the de�ation method, whereas other attra
tive 2L-PCG methods areknown in the literature. In Chapter 6, we 
ompare the de�ation method with someprominent 2L-PCG methods 
oming from the �elds of de�ation, DDM and MG. Botha theoreti
al and numeri
al 
omparison are performed using the abstra
t forms of thesemethods. We investigate their spe
tral properties, equivalen
es, e�e
tiveness and ro-bustness, and end up with a 2L-PCG method of our 
hoi
e.



8 Chapter 1. Introdu
tionChapter 7: Comparison of Two-Level PCG Methods � Part II. In Chapter 6, the2L-PCG method based on the standard multigrid V(1,1)-
y
le method is ex
luded inthe 
omparison, sin
e it has di�erent spe
tral properties and requires a spe
ial theo-reti
al treatment. Chapter 7 examines this method in more detail. We 
ompare the2L-PCG methods as dis
ussed in Chapter 6, and show that it depends on the 
hosenparameters whi
h 2L-PCG method is the most e�e
tive one.Chapter 8: E�
ien
y and Implementation Issues of the De�ation Method. In theprevious 
hapters, we have shown that the de�ation method is expe
ted to 
onvergefaster than PCG in terms of iteration 
ounts. However, the de�ation method needs tobe implemented e�
iently in order to obtain a fast method with respe
t to 
omputingtime as well. This issue is examined in Chapter 8, where we show how ea
h step of thede�ation algorithm 
an be best implemented for a 
lass of problems. At ea
h iterationof the de�ation method, 
oarse linear systems should be solved, whi
h is usually doneby a dire
t method. If the number of de�ation ve
tors is relatively large, we showthat it is more attra
tive to use an iterative method, so that the resulting method isbased on an inner-outer iteration pro
ess. This is further detailed and illustrated withnumeri
al experiments in Chapter 8.Chapter 9: Comparison of De�ation and Multigrid with Typi
al Parameters. InChapter 6 and 7, the 2L-PCG methods have been 
ompared in their abstra
t forms. Inthis 
ase, the di�erent parameters within these methods 
an be arbitrary, but are equalfor ea
h method, whi
h allows us to perform a general 
omparison. The 
omparison
an also be 
arried out with typi
al parameters in the methods. Ea
h 2L-PCG methodthen takes its optimized set of parameters that is typi
al in the �eld where the method
omes from. Chapter 9 is devoted to this 
omparison. The aim of this 
hapter isto show whi
h optimized 2L-PCG method is 
urrently the best one to apply for 3-Dbubbly �ow appli
ations.Chapter 10: Bubbly Flow Simulations. In the previous 
hapters, we have shownthat 2L-PCG methods are bene�
ial to use for stationary bubbly �ow problems. InChapter 10, the exa
t mathemati
al model for the bubbly �ows is formulated, sothat real-life time-dependent experiments 
an be performed. We show that 2L-PCGmethods redu
e signi�
antly the 
omputations of bubbly �ow simulations and are lesssensitive to the density �eld 
ompared with standard PCG methods.Chapter 11: Con
lusions. The main 
on
lusions of the thesis and ideas for futureresear
h are presented in Chapter 11.This thesis is based on the te
hni
al reports [87,132,134,136,137,140,141,144℄,the pro
eeding papers [138,139,142,147,172℄, and, espe
ially, the journal papers [85,88, 133, 135, 143, 145, 146, 148℄. It is written in su
h a way that the thesis itself andevery 
hapter are self-
ontained as mu
h as possible.



1.6. Notation 91.6 NotationThroughout this thesis, we use the notation as given in Table 1.1.Notation MeaningI identity matrix with an appropriate dimensione(
)� 
-th 
olumn of I with dimension �e(
)�;� �� � matrix with � identi
al 
olumns e(
)�1�;� �� � matrix whose entries are ones1� 
olumn of 1�;�0�;� �� � matrix whose entries are zeros0� 
olumn of 0�;�Table 1.1: Notation for standard matri
es and ve
tors where �; �; 
 2 N.
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Chapter 2Iterative Methods
2.1 Introdu
tionRe
all that the main fo
us of this thesis is on solving the linear system (see Eq. (1.1))Ax = b; A = [ai j ℄ 2 Rn�n; (2.1)where A is a sparse and SPSD 
oe�
ient matrix. We aim at solving (2.1) using Kryloviterative methods, whi
h are examined in this 
hapter.We start this 
hapter by reviewing basi
 iterative methods. This is followed by pre-senting the Conjugate Gradient (CG) method, whi
h is a well-known iterative methodto solve (2.1). The rate at whi
h CG and general iterative methods 
onverge dependsgreatly on the spe
trum of the 
oe�
ient matrix, A. Hen
e, these methods usually in-volve a se
ond matrix that transforms A into one with a more favorable spe
trum. Theresulting method is then 
alled the pre
onditioned Conjugate Gradient (PCG) method,and is des
ribed in Se
tion 2.4. Some further 
onsiderations regarding pre
ondition-ing, starting ve
tors and termination 
riteria of the iterative pro
edure are dis
ussedin Se
tion 2.5. We 
on
lude this 
hapter with the appli
ation of the solvers to bubbly�ow problems in order to illustrate the performan
e of the PCG methods.2.2 Basi
 Iterative MethodsIterative methods generate a sequen
e of iterates, fxjg, that approximate the exa
tsolution, x . These methods essentially involve matrix A only in the 
ontext of matrix-ve
tor multipli
ations. The starting point of these methods is 
onsidering a splittingof A of the form A = M � N; M;N 2 Rn�n; (2.2)where M is assumed to be invertible. If the splitting (2.2) is substituted into Eq. (2.1),we obtain Mx = b + Nx: (2.3)11



12 Chapter 2. Iterative MethodsFrom Eq. (2.3), a basi
 iterative method 
an be 
onstru
ted as follows:Mxj+1 = b + Nxj ; (2.4)where the iterate, xj+1, in the (j + 1)-th step 
an be determined from the previousiterate, xj . Eq. (2.4) 
an be rewritten asxj+1 = xj +M�1rj ; (2.5)where the residual after the j-th iteration is de�ned asrj := b � Axj ;that is a measure of the di�eren
e of the iterative and the exa
t solution of (2.1). Forthe iteration (2.5) to be pra
ti
al, it must be relatively easy to solve a linear systemwith M as the 
oe�
ient matrix. For example, M = diag(A) is used in Ja
obi iter-ations, M 
onsists of the lower-triangular part of A in Gauss-Seidel iterations, and amore 
ompli
ated M is used in (symmetri
) su

essive over-relaxation ((S)SOR) itera-tions, that 
an be derived from Gauss-Seidel iterations by introdu
ing an extrapolationparameter. It has been re
ognized that these basi
 iterative methods are impra
ti
al,be
ause they 
onverge slowly, need good tuning of some parameters, or require stri
t
onditions for 
onvergen
e. More basi
 iteration methods and their analysis 
an befound in [8,63,70,120,167℄.When the �rst iterations of (2.5) are developed, one obtains




x0;x1 = x0 +M�1r0;x2 = x0 + 2M�1r0 �M�1AM�1r0;x3 = x0 + 3M�1r0 � 3M�1AM�1r0 + (M�1A)2M�1r0;...This yieldsxj+1 2 x0 + span{M�1rj ;M�1A(M�1rj); : : : ; (M�1A)j�1(M�1rj)} :Subspa
es of the formKj(A; r0) := span{r0; Ar0; A2r0; : : : ; Aj�1r0}are 
alled Krylov subspa
es with dimension j , belonging to A and r0. Hen
e, thefollowing holds for basi
 iterative methods:xj+1 2 x0 +Kj(M�1A;M�1r0): (2.6)These methods are also 
alled Krylov(-subspa
e) methods. From Eq. (2.6), it followsthat Krylov methods rely on �nding M�1 (that is often 
alled a `pre
onditioner') and a



2.3. Conjugate Gradient Method 13basis for Kj , su
h that the iterative method 
onverges fast with a reasonable a

ura
yand e�
ien
y with respe
t to memory storage and 
omputational time.Krylov methods 
an be divided into stationary and nonstationary variants. Methodssu
h as Ja
obi, Gauss-Seidel, (S)SOR iterations are stationary methods, sin
e thesame operations on the 
urrent iteration ve
tors are performed in ea
h iteration. Theyare easy to understand and implement, but they are often not e�e
tive. On theother hand, nonstationary methods, that have iteration-dependent 
oe�
ients, area relatively re
ent development. Their analysis is 
ommonly harder to understand,but they 
an be highly e�
ient. They rely on forming an orthogonal basis of theKrylov sequen
e {r0; Ar0; A2r0; : : : ; Aj�1r0}. The iterates are then 
onstru
ted byminimizing the residual over the subspa
e formed. The prototypi
al method in this
lass is the (pre
onditioned) Conjugate Gradient ((P)CG) method, whi
h is des
ribedin Se
tion 2.3 and 2.4. This is a popular and e�e
tive nonstationary Krylov solver forlinear systems with an SPSD 
oe�
ient matrix, as the storage for only a limited numberof ve
tors is required. For non-SPSD matri
es, the Krylov solvers GMRES [121℄ andBi-CGSTAB [160℄ are popular methods in use, see [120,160℄.2.3 Conjugate Gradient MethodThe Conjugate Gradient (CG) method is probably the most prominent iterative methodfor solving the SPSD linear system (2.1). It is dis
overed independently by Hestenesand Stiefel, and they jointly published the method in [72℄, whi
h has be
ome the
lassi
al referen
e on CG. We refer to [8, 61, 63, 86, 117, 120, 161℄ for more detailsabout this method.The purpose of CG is to 
onstru
t a sequen
e, fxjg, that satis�es (2.6), withM = I and the property that minxj2Kj (A;r0) jjxj � x jjA (2.7)holds, where jjw jjA :=√(w;Aw) is used for any w 2 Rn. In other words, the error isminimized in the A-semi-norm (that is often abbreviated as the A-norm, if there is noambiguity) at ea
h iteration. This minimum is guaranteed to exist in general, only ifA is SPSD. Moreover, CG requires that sear
h dire
tion ve
tors, fpjg, are 
onjugatewith respe
t to A, i.e., (Api ; pj) = 0; i 6= j; (2.8)hen
e the name `Conjugate Gradient method'. It 
an be shown that (2.8) is equivalentto the fa
t that the residuals, frjg, form an orthogonal set, i.e.,(ri ; rj) = 0; i 6= j: (2.9)Now, the CG method pro
eeds as follows. The (j+1)-th iterate is updated via thesear
h dire
tion: xj+1 = xj + �jpj ; (2.10)



14 Chapter 2. Iterative Methodswhere �j 2 R. This yields rj+1 = rj � �jApj : (2.11)It 
an be shown that �j = (rj ; rj)(Apj ; pj) (2.12)minimizes jjxj � x jjA over all possible 
hoi
es of �j and ensures that Eq. (2.9) issatis�ed. The sear
h dire
tions are updated using the residuals:pj+1 = rj+1 + �jpj ; (2.13)where �j 2 R equal to �j = (rj+1; rj+1)(rj ; rj) (2.14)ensures that Eq. (2.8) is satis�ed. In fa
t, it 
an be shown that Eqs. (2.12) and (2.14)make pj+1 
onjugate to all previous sear
h dire
tions, fpi : i = 1; : : : ; jg, and rj+1orthogonal to all previous residuals, fri : i = 1; : : : ; jg.The above derivation leads to Algorithm 1, see below. This is essentially the formof the CG algorithm that appeared in [72℄.Algorithm 1 Conjugate Gradient (CG) solving Ax = b1: Sele
t x0. Compute r0 := b � Ax0 and set p0 := r0.2: for j := 0; 1; : : : ; until 
onvergen
e do3: wj := Apj4: �j := (rj ;rj )(wj ;pj )5: xj+1 := xj + �jpj6: rj+1 := rj � �jwj7: �j := (rj+1;rj+1)(rj ;rj )8: pj+1 := rj+1 + �jpj9: end for10: xit := xj+1Remark 2.1.� The iterative solution of Ax = b is denoted by xit in Algorithm 1 to distinguishit from the exa
t solution, x .� It is straightforward to derive CG from the Lan
zos algorithm for solving sym-metri
 eigensystems and vi
e versa. The relationship 
an be exploited to obtainrelevant information about the eigensystem of A. We refer to [8, 63, 120℄ formore details.� It 
an be proven that the CG algorithm indeed minimizes the error in the solutionve
tor over the Krylov subspa
e in the A-norm, as presented in (2.7).



2.4. Pre
onditioned Conjugate Gradient Method 15� The equality (rj ; rj) = 0 only happens if the solution, x , is already found. More-over, sin
e b 2 R(A) and Axj+1 2 R(A), the residual, rj+1, is also in therange of A, i.e., rj+1 2 R(A). Be
ause pj+1 is a linear 
ombination of theresiduals, fr1; : : : ; rjg, it is in the range of A as well, so that Apj+1 6= 0n ifpj+1 6= 0n. Therefore, (Apj ; pj) = 0 never happens, sin
e A is SPSD and rj 6= 0n(see [63, Lemma 10.2.1℄). Hen
e, breakdown of CG (even for a singular 
oe�-
ient matrix) only o

urs if it is already 
onverged.Due to the SPSD property of A, the algorithm 
an be formulated su
h that thememory spa
e is needed for only four ve
tors and one matrix. Ea
h iteration requiresthe 
omputations of two inner produ
ts, one matrix-ve
tor multipli
ation and fourve
tor updates. Note that a basis for the Krylov subspa
e does not need to be stored,and the algorithm only uses short re
urren
es.Be
ause the residuals, frjg, are orthogonal to ea
h other, it follows that CG 
er-tainly 
onverges within n iterations in exa
t arithmeti
. Moreover, the 
onvergen
e rateis bounded as a fun
tion of the 
ondition number of matrix A, �(A), see Lemma 2.1.Lemma 2.1. Let A and x be the 
oe�
ient matrix and the solution ve
tor as inEq. (2.1), respe
tively. Let fxig be the sequen
e of CG-generated iterates. After j +1iterations of CG, the error is bounded byjjx � xj+1jjA � 2jjx � x0jjA(√�(A) � 1√�(A) + 1)j+1 : (2.15)Proof. The proof is almost identi
al to the proof of [105, Thm. 3.3℄.Remark 2.2.� From Inequality (2.15), it follows that the 
onvergen
e of CG does not dependon zero eigenvalues, see also [77℄.� The a

ura
y of fxjg is often mu
h better than that (2.15) predi
ts, due to agood 
lustering of the eigenvalues of A or a favorable 
hoi
e of starting ve
tors,see [159℄.From Lemma 2.1, a heuristi
 rule 
an be formulated: a faster 
onvergen
e of CG isexpe
ted for a smaller �. In the ideal 
ase, we should have �(A) � 1. In the nextse
tion, we show that the linear system (2.1) 
an be 
onverted into a related linearsystem su
h that the new 
oe�
ient matrix, Ã, is 
loser to the identity, i.e., �(Ã)approa
hes 1.2.4 Pre
onditioned Conjugate Gradient MethodThe previous se
tion has been 
on
luded by observing that CG is e�e
tive if the 
oef-�
ient matrix is well-
onditioned or has a favorable 
lustering of eigenvalues. Both thee�
ien
y and robustness of CG 
an be improved by using so-
alled `pre
onditioning'.



16 Chapter 2. Iterative MethodsPre
onditioning is simply a means of transforming the original linear system (2.1) intoone whi
h has the same solution, but whi
h is likely to be easier to solve with CG. Inother words, instead of solving (2.1), we solve the transformed pre
onditioned linearsystem, Ã~x = ~b; (2.16)where Ã := M� 12AM� 12 ; ~x := M 12 x; ~b :=M� 12b: (2.17)MatrixM�1 is 
alled the pre
onditioner, as in basi
 iterative methods. It is required thatM is SPD, so that M� 12 exists and (M� 12 )T = M� 12 holds. Subsequently, Lemma 2.2shows that (2.16) satis�es Assumption 1.1.Lemma 2.2. Let the linear system (2.16) with 
oe�
ient matrix Ã be given. Then,Eq. (2.16) satis�es Assumption 1.1, i.e.,� Ã is SPSD;� Ã has d zero eigenvalues;� Eq. (2.16) is 
onsistent.Proof. The fa
t that Ã is SPSD follows immediately from Lemma A.2 by substitutingB := A and C = M� 12 .Moreover, note thatAvi = 0n , M�1Avi = 0n; i = 1; : : : ; d;where v1; : : : ; vd are the eigenve
tors asso
iated with the d zero eigenvalues of A.Combining this fa
t with the equality �(Ã) = �(M�1A) (Lemma A.1), it follows thatboth A and Ã have d zero eigenvalues.In order to prove that Eq. (2.16) is 
onsistent, it su�
es to show that ~b =2 N (Ã)for ~b 6= 0n. De�ne ~y := M 12 y for any y 2 N (A). Then,Ã~y = M� 12Ay = M� 120n = 0n;and, for ~b 6= 0n, ~bT ~y = (M� 12b)TM 12 y = bT y = 0;sin
e b =2 N (A) by hypothesis.Remark 2.3. If y 2 N (A), then ~y := M 12 y 2 N (Ã).Algorithm 1 
an now be applied to the linear system (2.16). This results in thepre
onditioned Conjugate Gradient (PCG) method, see Algorithm 2. The iterate, ~xj+1,
an be regarded as an approximation of the solution, ~x , and ~rj+1 = ~b � Ã~xj+1 
an beinterpreted as the pre
onditioned residual.



2.4. Pre
onditioned Conjugate Gradient Method 17Algorithm 2 Pre
onditioned CG (PCG) solving Ax = b (Original Variant)1: Sele
t ~x0. Compute ~r0 := ~b � Ã~x0 and set ~p0 := ~r0.2: for j := 0; 1; : : : ; until 
onvergen
e do3: ~wj := Ã~pj4: �j := (~rj ;~rj )(~pj ; ~wj )5: ~xj+1 := ~xj + �j ~pj6: ~rj+1 := ~rj � �j ~wj7: �j := (~rj+1;~rj+1)(~rj ;~rj )8: ~pj+1 := ~rj+1 + �j ~pj9: end for10: xit := M� 12 ~xj+1Subsequently, Algorithm 2 
an be simpli�ed using the following substitutions:




~xj+1 = M 12 xj+1;~rj+1 = M� 12 rj+1;~pj+1 = M 12pj+1;~wj+1 = M 12wj+1: (2.18)This yields Algorithm 3, see below.Algorithm 3 Pre
onditioned CG (PCG) solving Ax = b (Pra
ti
al Variant)1: Sele
t x0. Compute r0 := b � Ax0,solve My0 = r0, and set p0 := y0.2: for j := 0; 1; : : : ; until 
onvergen
e do3: wj := Apj4: �j := (rj ;yj )(pj ;wj )5: xj+1 := xj + �jpj6: rj+1 := rj � �jwj7: Solve Myj+1 = rj+18: �j := (rj+1;yj+1)(rj ;yj )9: pj+1 := yj+1 + �jpj10: end for11: xit := xj+1Remark 2.4.� From Algorithm 3, it follows that it is not required to determine M 12 or its inverseexpli
itly.� Compared to Algorithm 1, an additional linear system, Myj+1 = rj+1, has to besolved at ea
h iteration. Moreover, an extra matrix, M, and an extra ve
tor, yj ,should be stored in memory.



18 Chapter 2. Iterative Methods� In Algorithm 3, (pj ; Apj) and (rj ; yj) do not vanish, sin
e M is SPD and both(~pj ; Ã~pj) and (~rj ; ~rj) are nonzero if the (pre
onditioned) solution is not yet found(
f. Remark 2.1).Be
ause Algorithm 2 
an be rewritten as Algorithm 3, the pre
onditioned linearsystem (2.16) is often denoted byM�1Ax = M�1b; M = [mi j ℄ = Rn�n: (2.19)Moreover, the next lemmas show some properties of PCG.Lemma 2.3. Let A and M�1 be given as in (2.19). Let frig and fpig be sequen
es ofresiduals and sear
h dire
tions satisfying Eq. (2.18), respe
tively. Then, the followingequality holds for PCG: (M�1ri ; rj) = (Api ; pj) = 0; i 6= j: (2.20)Proof. Note �rst that (~ri ; ~rj) = (M� 12 ri ;M� 12 rj) = (M�1ri ; rj);and (Ã~pi ; ~pj) = (M� 12AM� 12M 12pi ;M 12pj) = (M� 12Api ;M 12pj) = (Api ; pj);using Eq. (2.18). Sin
e (~ri ; ~rj) = (Ã~pi ; ~pj) = 0 holds for i 6= j (see Eqs. (2.8)and (2.9)), the lemma now follows immediately.
Lemma 2.4. Let A and M�1 be given as in (2.19). Let fxig be a sequen
e of PCG-generated iterates. Then, xj+1 satis�es the following inequality:jjx � xj+1jjA � 2jjx � x0jjA(√� (M�1A)� 1√� (M�1A) + 1)j+1 : (2.21)Proof. We have (see Eq. (2.15))jj~x � ~xj+1jj eA � 2jj~x � ~x0jj eA√�(Ã)� 1

√�(Ã)+ 1j+1 : (2.22)



2.5. Further Considerations 19The lemma follows from (2.22), Lemma A.1 and the fa
t thatjj~x � ~xi jj eA = (~x � ~xi)T Ã (~x � ~xi)= (M 12 x �M 12 xi)T M� 12AM� 12 (M 12 x �M 12 xi)= (x � xi)T M 12M� 12AM� 12M 12 (x � xi)= (x � xi)T A (x � xi)= jjx � xi jjA;with i = 0; 1; : : : ; j + 1.A

ording to Lemma 2.3, both CG and PCG minimize the error in the solution ve
torover the Krylov subspa
e in the A-norm, rather than in the Ã-norm, see also [8,Se
t. 11.2℄. Furthermore, it 
an be noti
ed from Lemma 2.4 that a fast 
onvergen
eof PCG relies on the 
hoi
e of M�1. In the ideal 
ase, we should have �(Ã) =� (M�1A) � 1.2.5 Further ConsiderationsFor the PCG method, there are still a few issues left that need further dis
ussion, su
has the 
hoi
e of the pre
onditioner, starting ve
tor, and termination 
riterion of theiterative pro
ess. These issues are 
onsidered in this se
tion.2.5.1 Pre
onditioningAlgorithm 3 is only e�
ient if the pre
onditioner, M�1, satis�es the following require-ments:(i) M is easy to 
onstru
t;(ii) the linear system Myj+1 = rj+1 should be solvable at low 
ost;(iii) the eigenvalues of Ã should be 
lustered (around 1).In other words, a good pre
onditioner improves the 
onvergen
e of the iterative method,su�
iently to over
ome the extra 
ost of both 
onstru
ting and applying the pre
on-ditioner. The most standard pre
onditioner is the Ja
obi pre
onditioner, de�ned asM = diag(A). In [158℄, it is shown that this 
hoi
e minimizes �(M�1A), if the pre
on-ditioner is restri
ted to a diagonal matrix. Blo
k versions of the Ja
obi pre
onditioner
an be derived by a partitioning of the variables. If the index set, S = f1; 2; : : : ; ng, ispartitioned as S = [qSq with disjoint sets, fSqg, thenmi j = { ai j ; if i and j are in the same index subset;0; otherwise.



20 Chapter 2. Iterative MethodsThe resulting pre
onditioner is now a blo
k-diagonal matrix, known as the blo
k-Ja
obipre
onditioner.Another simple way of de�ning a pre
onditioner is to perform an in
omplete fa
tor-ization of A. For example, the in
omplete Cholesky de
omposition without �ll-in [97℄,known as IC(0), is 
ommonly used. The resulting PCG method is often 
alled ICCG.In this approa
h, we have M = LLT , where L = [li j ℄ 2 Rn�n is a lower-triangular ma-trix having the same sparsity pattern as A, and is 
lose to the lower-triangular matrixasso
iated with the exa
t Cholesky de
omposition. More spe
i�
ally, the entries of thein
omplete Cholesky fa
tor, L, should satisfy the following 
onditions:
{ li j = 0; if ai j = 0;(LLT )i j = ai j ; if ai j 6= 0:If A is an SPSD matrix with ai ;j � 0 for all i 6= j , su
h an L always exists, see [77℄.A

ordingly, IC(0) 
an always be 
onstru
ted for our bubbly �ows problem, as A is anSPSD M-matrix, see Assumption 1.2.Remark 2.5.� The general algorithm for 
onstru
ting L 
an be found in [63,97℄. This algorithm
an be redu
ed by a

ounting for the exa
t nonzero pattern of A.� In pra
ti
e, matri
es A and L are stored in an appropriate data stru
ture to savememory storage and obtain an e�
ient method.There are various variants of ICCG known in the literature, su
h as MICCG [9℄,RICCG [67℄ and ILUM [119℄. More general matrix-based pre
onditioners 
an be foundin, e.g., [120℄. Another type of pre
onditioners is operator-based, that exploits prop-erties of the physi
al problems from whi
h the linear system arises. For example, if weaim at solving the linear system derived from Eq. (1.3), then the pre
onditioner 
an bebased on the same equation but with a 
onstant � (that is the Poisson equation with a
onstant 
oe�
ient), or te
hniques as des
ribed in [32℄. The di�
ulty of �nding e�e
-tive pre
onditioners is well-re
ognized, and the development of su
h pre
onditioners isa major issue in the 
urrent a
tive resear
h.Remark 2.6.� It might happen that Myj+1 = rj+1 
annot be solved a

urately. In this 
ase,this solve 
an be regarded as yj+1 =M(rj+1), where M is a nonlinear mappingfrom Rn to Rn. In order to preserve the optimal 
onvergen
e property of PCG,one 
an perform a full orthogonalization of the sear
h dire
tion ve
tors, whi
hmight be extended by trun
ation and restart strategies. This leads to meth-ods based on GMRES, su
h as the Flexible PCG method [109℄. However, it ispossible to use the original PCG method with inexa
t pre
onditioning, sin
e the
onvergen
e rate of the outer PCG pro
ess 
an be maintained up to a 
ertaina

ura
y for the inner solve, yj+1 =M(rj+1), see, e.g., [62,64℄.



2.5. Further Considerations 21� CG is usually straightforward to parallelize, while PCG might have di�
ultiesdue to the 
hoi
e of the pre
onditioner, see [4,44,161℄. For example, the IC(0)pre
onditioner is 
umbersome to parallelize, in 
ontrast to the (blo
k-)Ja
obipre
onditioner. Hen
e, extra attention should be paid to the pre
onditioner,M�1, in a parallel environment.2.5.2 Starting Ve
tors and Termination CriteriaIn general, there is no restri
tion for 
hoosing the starting ve
tor, x0, in the (P)CGmethod. The 
onvergen
e rate of the iterative pro
ess hardly depends on it, unlessx � x0 is already 
onjugate to some of the eigenve
tors of M�1A. Common 
hoi
esfor x0 are the zero ve
tor, the random ve
tor, and a rough estimate of x .In Algorithm 1, 2 and 3, `until 
onvergen
e' means that the iterative pro
ess shouldbe terminated if the error, jjx � xk jjA, is su�
iently small. Be
ause this error term isnot available, it is 
ustomary to terminate if the (pre
onditioned) residual falls belowa spe
i�ed value. This leads to the following widely used termination 
riteria:jjrj+1jj2jjr0jj2 < Æ; (2.23)and jjyj+1jj2jjy0jj2 = jjM�1rj+1jj2jjM�1r0jj2 < Æ; (2.24)where rj+1 and yj+1 represent the original and pre
onditioned residuals at iterationj + 1, respe
tively. The toleran
e, Æ > 0, determines the a

ura
y of the solution andis a user-supplied parameter.Remark 2.7.� Termination 
riterion (2.23) does not depend on the pre
onditioner. Therefore,this 
riterion is suitable if PCG methods with di�erent M have to be 
ompared.� If M�1A � I, thenjjyj+1jj2jjy0jj2 = jjM�1(b � Axj+1)jj2jjM�1(b � Ax0)jj2 = jjM�1A(x � Axj+1)jj2jjM�1A(x � x0)jj2 � jjx � xj+1jj2jjx � x0jj2 ;so that termination 
riterion (2.24) relies on `real' relative errors.� Both 
riteria (2.23) and (2.24) have the drawba
k that they strongly depend onthe starting ve
tor, x0. A relatively large and ina

urate x0 leads to an ina

uratesolution, while x0 
lose to the solution might result in a too stringent termination
riterion. More details on various termination 
riteria used in pra
ti
e 
an befound in, e.g., [10℄.



22 Chapter 2. Iterative Methods2.6 Appli
ation to Bubbly FlowsIn this se
tion, we present the performan
e of PCG in our main appli
ation of bubbly�ow problems. The 
omputations are performed on a serial Pentium 4 (2.80 GHz)
omputer with a memory 
apa
ity of 1GB. Moreover, the 
ode is 
ompiled with FOR-TRAN g77 on LINUX.Both 2-D and 3-D variants of the problem setting, as given in Figure 1.2 of Se
-tion 1.3, are 
onsidered, where the radius of the bubbles is s = 0:1. The number ofbubbles, m, the grid size, n, and the density 
ontrast, �, are varied in the experiments.We adopt ICCG (that is, PCG with the IC(0) pre
onditioner) to solve the resulting lin-ear system. PCG with Ja
obi and Blo
k-Ja
obi pre
onditioners is 
onsidered in [137℄,and is less e�
ient 
ompared to ICCG. We 
hoose for a random starting ve
tor, andthe termination 
riterion is based on (2.24) with toleran
e Æ = 10�8.The results of the experiment are given in terms of the total 
omputing time andthe number of required iterations for 
onvergen
e of ICCG, see Table 2.1 and 2.2. Thea

ura
y of the solutions is also 
he
ked. They are omitted in the results, sin
e theyare of the same order.(a) n = 1002, � = 103 andvarious number of bubbles,m.m # It. CPU0 109 0.11 128 0.19 247 0.3
(b) m = 9, � = 103 and vari-ous grid sizes, n.n # It. CPU1002 247 0.32502 466 3.65002 1027 34.4(
) m = 9, n = 1002 and var-ious density 
ontrasts, �.� # It. CPU103 247 0.3106 352 0.3108 381 0.4Table 2.1: Results for ICCG applied to 2-D bubbly �ow problems. `# It' means the number of requirediterations, and `CPU' is the 
orresponding 
omputational time in se
onds.From Table 2.1 and 2.2, it 
an be readily observed that 3-D problems take moreiterations and 
omputing time to solve 
ompared to 2-D problems, be
ause the de-grees of freedom are larger in the 3-D 
ase. We see that the 
onvergen
e of ICCGdeteriorates when M�1A be
omes more ill-
onditioned; this is the 
ase when� the domain 
onsists of more bubbles;� the degrees of freedom are in
reased;� the density 
ontrast grows.Hen
e, ICCG is not a s
alable and robust method.



2.7. Con
luding Remarks 23(a) n = 1003, � = 103 andvarious number of bubbles,m.m # It. CPU0 170 25.21 211 31.18 291 43.027 310 46.0
(b) m = 27, � = 103 and var-ious grid sizes, n.n # It. CPU503 199 3.61003 310 46.01203 363 90.5(
) m = 27, n = 1002 andvarious density 
ontrasts, �.� # It. CPU103 310 46.0106 503 71.8108 532 77.5Table 2.2: Results for ICCG applied to 3-D bubbly �ow problems.2.7 Con
luding RemarksIn this 
hapter, we review basi
 and Krylov iterative methods. The (P)CG is a popularKrylov iterative method, whi
h is dis
ussed in more detail. Some theoreti
al propertiesthat are not fully 
lear in the literature are derived and explained.Numeri
al experiments show that ICCG (that is PCG with the IC(0) pre
onditioner)is not e�e
tive to deal with sophisti
ated bubbly �ows. Consequently, there is a needfor an alternative of PCG, so that the 
onvergen
e of its iterative pro
ess is morerobust and s
alable with respe
t to the number of bubbles, the grid size, and thedensity 
ontrast. We deal with this issue in the remainder of this thesis.
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Chapter 3De�ation Method
3.1 Introdu
tionThe linear system of our primary interest is (see Eq. (2.1))Ax = b; A 2 Rn�n; (3.1)where the SPSD 
oe�
ient matrix, A, has d zero eigenvalues, and b 2 R(A) holds.As dis
ussed in Chapter 2, PCG is a popular method to solve (3.1), and the resultingpre
onditioned linear system to be 
onsidered is (see Eq. (2.19))M�1Ax = M�1b; (3.2)where M�1 is an SPD pre
onditioner. The spe
trum of M�1A, � (M�1A), often 
on-sists of unfavorable eigenvalues that deteriorate the 
onvergen
e of PCG and makesPCG less robust, see also [175℄. In this 
hapter, we des
ribe the so-
alled de�ationmethod that e�e
tively treats these eigenvalues, so that the 
onvergen
e 
an be sig-ni�
antly improved, and a more robust and s
alable method 
an be obtained.The de�ation method applied to CG is independently proposed by Ni
olaides [108℄and Dostal [40℄. It is further exploited in several papers, among them are [56, 58, 82,93, 94, 99, 103, 104, 122, 173℄. Below, we �rst des
ribe the de�ation method and itspre
onditioned variant following [173℄, where we a

ount for the possible singularityof the 
oe�
ient matrix, A. We derive and dis
uss these methods in
luding theirtheoreti
al properties. Moreover, the e�e
tiveness of the de�ation method is illustratedin bubbly �ow appli
ations.3.2 PreliminariesThis se
tion presents some preliminaries that are required to des
ribe the de�ationmethod. We start with De�nition 3.1. 25



26 Chapter 3. De�ation MethodDe�nition 3.1. Let A be an SPSD 
oe�
ient matrix as given in (3.1). Supposethat Z 2 Rn�k, with full rank and k < n � d , is given. Then, we de�ne the invertibleGalerkin matrix, E 2 Rk�k, the 
orre
tion matrix, Q 2 Rn�n, and the de�ation matrix,P 2 Rn�n, as follows:P := I � AQ; Q := ZE�1ZT ; E := ZTAZ: (3.3)Remark 3.1.� The Galerkin matrix, E, is also known as the 
oarse matrix. In addition, linearsystem Ey2 = y1 is often 
alled the Galerkin or 
oarse system.� The matri
es as de�ned in De�nition 3.1 
an be easily generalized for a non-SPSD 
oe�
ient matrix, A. We refer to [47,48,171℄ for more details.In Eq. (3.3), Z is the so-
alled `de�ation-subspa
e matrix' whose k 
olumns are 
alledthe `de�ation ve
tors' or `proje
tion ve
tors'. These ve
tors remain unspe
i�ed for themoment, but they are 
hosen in su
h a way that E is nonsingular. In other words, thefollowing assumption is always ful�lled in this 
hapter (and in most of the up
oming
hapters).Assumption 3.1. Z is 
hosen su
h that N (A) * R(Z), so that E is nonsingular.The fa
t that E is nonsingular if N (A) * R(Z) follows from the next lemma.Lemma 3.1. Let A, Z and E be as given in De�nition 3.1, where Z satis�es Assump-tion 3.1. If N (A) * R(Z), then E is nonsingular.Proof. Note �rst that N (A) * R(Z) yieldsZ�y =2 N (A) 8�y 2 Rn: (3.4)Sin
e A is SPSD, we have yTAy > 0; y =2 N (A):In parti
ular, we 
an take y = Z�y and substitute this into the latter expression, givingus (Z�y)TA(Z�y) = �yTZTAZ�y = �yTE�y > 0; Z�y =2 N (A) 8�y 2 Rn: (3.5)Combining (3.4) and (3.5) leads to the fa
t that E is nonsingular.If N (A) � R(Z), then E would be singular. In this 
ase, the Moore-Penrosegeneralized inverse (also known as the pseudo-inverse) should be used rather than thereal inverse. This is further 
onsidered in Chapter 8.From Eq. (3.3), some results 
an be readily obtained, see Lemma 3.2.



3.2. Preliminaries 27Lemma 3.2. Let A, Z, E, Q and P be as given in De�nition 3.1, where Z satis�esAssumption 3.1. Let x and b be the solution and right-hand side of (3.1), respe
tively.Then, the following equalities hold:(a) ET = E;(b) QT = Q = QAQ;(
) QAZ = Z;(d) PAQ = 0n;n;(e) P 2 = P ;(f) AP T = PA;(g) (I � P T )x = Qb.Proof.(a) ET = (ZTAZ)T = ZTAZ = E;(b) QT = (ZE�1ZT )T = ZE�1ZT = Q using (a), andQAQ = ZE�1ZTAZE�1ZT = ZE�1EE�1ZT = ZE�1ZT = Q;(
) QAZ = ZE�1ZTAZ = ZE�1E = Z;(d) PAQ = (I � AQ)AQ = AQ� AQAQ = AQ� AQ = 0n;n using (b);(e) P 2 = (I � AQ)2 = I � 2AQ + AQAQ = I � 2AQ + AQ = I � AQ = P , usingagain (b);(f) AP T = A(I �QA) = A� AQA = (I � AQ)A = PA;(g) (I � P T )x = QAx = Qb, using Eq. (3.1).Remark 3.2.� In 
ontrast to P , matri
es E and Q are symmetri
 (Lemma 3.2(a) and (b)).� P is a proje
tor (Lemma 3.2(e)).� Although x is unknown, (I�P T )x 
an be 
omputed beforehand using Lemma 3.2(g).The next lemmas are frequently used in this thesis.Lemma 3.3. Let P , A and Z be as given in De�nition 3.1, where Z satis�es Assump-tion 3.1. Then, the following equalities hold:(a) PAZ = 0n;k ;



28 Chapter 3. De�ation Method(b) P TZ = 0n;k .Proof. Using Lemma 3.2(
), we obtain(a) PAZ = (I � AQ)AZ = AZ � AQAZ = AZ � AZ = 0n;k ;(b) P TZ = (I �QA)Z = Z �QAZ = Z � Z = 0n;k .Remark 3.3.� PA has k +d zero eigenvalues (Lemma 3.3(a)), sin
e N (PA) = R(Z) � N (A)and N (A) \R(Z) = ; (Assumption 3.1).� The de�ation matrix, P , has only zero and unit eigenvalues, so that P is positivesemi-de�nite. This follows from the fa
ts that PAZ = 0n;k (Lemma 3.3(a))and P 2Y = PY for full rank Y 2 Rn�(n�k�d) satisfying R(Y ) = R(AZ)?(Lemma 3.2(e)).Lemma 3.4. Suppose that A and P are given as in De�nition 3.1, where Z satis�esAssumption 3.1. Then, PA is SPSD.Proof. Note �rst that PA = P 2A = PAP T ;using Lemma 3.2(e) and (f). Then, the lemma follows immediately via Lemma A.2 bysubstituting B := A and C := P T .3.3 De�ated CG MethodIn this se
tion, the De�ated CG (DCG) method is introdu
ed.The original linear system (3.1) 
an be solved by employing the splittingx = (I � P T )x + P T x: (3.6)In Eq. (3.6), (I � P T )x 
an be 
omputed immediately from Lemma 3.2(g). Hen
e,only P T x should be 
omputed in (3.6) in order to �nd x . We 
an writex = (I � P T )x + P T x , x = Qb + P T x, Ax = AQb + AP T x, b = AQb + PAx, Pb = PAx; (3.7)where we have used Lemma 3.2(f). Note that x at the end of Expression (3.7) isnot ne
essarily a solution of the original linear system (3.1), sin
e it might 
onsist of
omponents of the null spa
e of PA, N (PA). Therefore, this `de�ated' solution isdenoted as x̂ rather than x . We now 
an solve the de�ated system,PAx̂ = Pb; (3.8)



3.3. De�ated CG Method 29using CG. Solutions x̂ and x are related to ea
h other by Lemma 3.5.Lemma 3.5. Let P be as given in De�nition 3.1, where Z satis�es Assumption 3.1.Suppose that x and x̂ are solutions of (3.1) and (3.8), respe
tively. Then, P T x̂ = P T xholds.Proof. De
ompose x̂ as x̂ = x + y;where y 2 R(Z) � N (PA) (Lemma 3.3(a)). This yieldsP T x̂ = P T x + P T y = P T x;sin
e P T y = 0n due to Lemma 3.3(b).From Lemma 3.5, solution x 
an be easily obtained from x̂ . This is summarized in thenext 
orollary.Corollary 3.1. Let P and Q be as given in De�nition 3.1, where Z satis�es Assump-tion 3.1. Suppose that b is the right-hand side of (3.1). Then, solution x of (3.1) 
anbe expressed as x = Qb + P T x̂ ; (3.9)where x̂ is a solution of (3.8).Proof. This follows immediately from Eqs. (3.6), (3.7), (3.8) and Lemma 3.5.Remark 3.4.� Sin
e PA is SPSD (Lemma 3.4), this 
an be interpreted as the new 
oe�
ientmatrix of the linear system.� The de�ated linear system (3.8) is obviously singular. It 
an only be solved aslong as it is 
onsistent, i.e., as long as Pb = PAx̂ for some x̂, see also [77℄.Sin
e b 2 R(A) holds, we also have Pb 2 R(PA). Hen
e (3.8) is a 
onsistentsystem.The resulting DCG algorithm is presented in Algorithm 4. It 
an be observed thatit is almost equal to the original CG method (
f. Algorithm 1).Remark 3.5.� If P = I, Algorithm 1 is readily obtained from Algorithm 4.� fr̂jg is the set of de�ated residuals satisfying r̂j = P rj = P (b � Ax̂j). Thehats on rj+1, wj and xj+1 emphasize that they are de�ated versions of the sameparameters in Algorithm 1. Impli
itly, the other parameters are also de�atedversions, but the hats are negle
ted here for 
onvenien
e.



30 Chapter 3. De�ation MethodAlgorithm 4 De�ated Conjugate Gradient (DCG) solving Ax = b1: Sele
t x0. Compute r0 := (b � Ax0), set r̂0 := P r0 and p0 := r̂0.2: for j := 0; 1; : : : ; until 
onvergen
e do3: ŵj := PApj4: �j := (r̂j ;r̂j )(ŵj ;pj )5: x̂j+1 := x̂j + �jpj6: r̂j+1 := r̂j � �j ŵj7: �j := (r̂j+1;r̂j+1)(r̂j ;r̂j )8: pj+1 := r̂j+1 + �jpj9: end for10: xit := Qb + P T x̂j+1� Note that pj+1 =2 R(Z), sin
e pj+1 is a linear 
ombination of the de�ated resid-uals, fr̂ig with i = 0; : : : ; j + 1, and ea
h r̂i satis�es(r̂i ; y) = r̂Ti y = (P ri)T y = rTi P T y = rTi 0n = 0; 8y 2 R(Z);using Lemma 3.3(b). Therefore, the inner produ
ts, (ŵj ; pj) and (r̂j ; r̂j), 
anonly vanish if the de�ated solution, x̂, has already been found (
f. Remark 2.1).3.4 De�ated PCG MethodThe de�ated system (3.8) 
an also be solved by using an SPD pre
onditioner, M�1.In this 
ase, we solve P̃ Ã~̂x = P̃~b; (3.10)with (
f. Eq. (2.17))̃A := M� 12AM� 12 ; ~̂x := M 12 x̂ ; ~b :=M� 12b;and P̃ := I � ÃQ̃; Q̃ := Z̃Ẽ�1Z̃T ; Ẽ := Z̃T ÃZ̃; (3.11)where Z̃ 2 Rn�k 
an be interpreted as a pre
onditioned de�ation-subspa
e matrix.The resulting method is 
alled the De�ated PCG (DPCG) method. When Algorithm 4is applied to (3.10), we end up with Algorithm 5 (
f. Algorithm 2) that des
ribes theDPCG method.Remark 3.6. All properties and results given in Se
tion 3.3 hold in parti
ular forEq. (3.10) and Algorithm 5.Next, Lemma 3.6 is required for the further analysis of DPCG.Lemma 3.6. Let P and M�1 be as given in De�nition 3.1, where Z satis�es Assump-tion 3.1. Suppose that P̃ and Z̃ are de�ned as in (3.11). Let r̂j+1 and ~̂rj+1 be residualsfrom Algorithms 4 and 5, respe
tively. Then, the following equalities hold:



3.4. De�ated PCG Method 31Algorithm 5 De�ated PCG (DPCG) solving Ax = b (Original Variant)1: Sele
t ~x0. Compute ~r0 := (~b � Ã~x0), set ~̂r0 := P̃ ~r0, and ~p0 := ~̂r0.2: for j := 0; 1; : : : ; until 
onvergen
e do3: ~̂wj := P̃ Ã~pj4: �j := (~̂rj ;~̂rj )(~pj ; ~̂wj )5: ~̂xj+1 := ~̂xj + �j ~pj6: ~̂rj+1 := ~̂rj � �j ~̂wj7: �j := (~̂rj+1;~̂rj+1)(~̂rj ;~̂rj )8: ~pj+1 := ~̂rj+1 + �j ~pj9: end for10: ~xj+1 := Q̃~b + P̃ T ~̂xj+111: xit := M� 12 ~xj+1(a) P̃ = M� 12PM 12 with Z = M� 12 Z̃;(b) ~̂rj+1 = M� 12 r̂j+1.Proof. The lemma follows immediately fromP̃ = I � ÃZ̃Ẽ�1Z̃T= I �M� 12AM� 12 Z̃(Z̃TM� 12AM� 12 Z̃)�1Z̃T= I �M� 12AZ(ZTAZ)�1(M 12Z)T= M� 12 (I � AZ(ZTAZ)�1ZT )M 12= M� 12PM 12 ; (3.12)so that we also have ~̂rj+1 = P̃ (~b � Ã~xj+1)= P̃M� 12 (b � Axj+1)= P̃M� 12 rj+1= M� 12P rj+1= M� 12 r̂j+1:Analogously to the PCG method, DPCG 
an be rewritten by using new variablessatisfying (
f. (2.18)) 



~̂xj+1 = M 12 x̂j+1;~̂rj+1 = M� 12 r̂j+1;~pj+1 = M 12pj+1;~̂wj+1 = M 12 ŵj+1; (3.13)where we have used Lemma 3.6. Substituting Expressions (3.13) into Algorithm 5



32 Chapter 3. De�ation Methodgives us Algorithm 6 (
f. Algorithm 3).Algorithm 6 De�ated PCG (DPCG) solving Ax = b (Pra
ti
al Variant)1: Sele
t x0. Compute r0 := b � Ax0 and r̂0 = P r0,solve My0 = r̂0 and set p0 := y0.2: for j := 0; : : : ; until 
onvergen
e do3: ŵj := PApj4: �j := (r̂j ;yj )(pj ;ŵj )5: x̂j+1 := x̂j + �jpj6: r̂j+1 := r̂j � �j ŵj7: Solve Myj+1 = r̂j+18: �j := (r̂j+1;yj+1)(r̂j ;yj )9: pj+1 := yj+1 + �jpj10: end for11: xit := Qb + P T xj+1From Algorithm 6, it follows that it is not required to determine P̃ or M 12 expli
itly.As a result, linear system (3.10) is often denoted byM�1PAx̂ = M�1Pb: (3.14)Remark 3.7.� A de�ation te
hnique applied to a pre
onditioned system (i.e., Eq. (3.10)) isequivalent to pre
onditioning of a de�ated system (i.e., Eq. (3.14)).� All known properties and results for PCG also hold for DPCG, where PA 
an beinterpreted as the 
oe�
ient matrix A in Eq. (2.19) and Algorithm 3. Moreover,if P = I is taken, Algorithm 6 is redu
ed to Algorithm 3.� DPCG 
ould also be derived in a di�erent way, so that the resulting linear systemis P TM�1Ax = P TM�1b; (3.15)rather than Eq. (3.14), where the last step of Algorithm 6 (Line 11) is 
arriedout before the iteration pro
ess starts, see [82, 93, 94, 108, 122℄. More detailsabout this variant 
an be found in Chapter 6.Similar results as Lemma 2.3 and 2.4 hold for DPCG, see below.Lemma 3.7. Suppose that A, M�1 and P are given as in De�nition 3.1, where Zsatis�es Assumption 3.1. Let fr̂ig and fpig be sequen
es of residuals and sear
hdire
tions as generated by Algorithm 6, respe
tively. Then, the following equalityholds for DPCG: (M�1r̂i ; r̂j) = (PApi ; pj) = 0; i 6= j: (3.16)Proof. The proof is similar to the proof of Lemma 2.3.



3.5. Properties of the De�ation Method 33Lemma 3.8. Suppose that A, M�1 and P are given as in De�nition 3.1, where Zsatis�es Assumption 3.1. Let x be the solution of Eq. (3.1) and fx̂ig be the sequen
eof solutions generated by Algorithm 6. Then, the (j + 1)-th iterate of DPCG, x̂j+1,satis�es the next inequality:jjx̂ � x̂j+1jjA � 2jjx̂ � x̂0jjA(√� (M�1PA)� 1√� (M�1PA) + 1)j+1 : (3.17)Proof. We have (see Eq. (2.21))jjx̂ � x̂j+1jjPA � 2jjx̂ � x̂0jjPA(√� (M�1PA)� 1√� (M�1PA) + 1)j+1 : (3.18)Moreover, note that PA(P T y) = P 2Ay = PAy by applying Lemma 3.2. Hen
e, y isa solution of Eq. (3.8) if and only if P T y is also a solution of (3.8). Therefore,jjx̂ � x̂j+1jj2PA = (x̂ � x̂j+1)TPA(x̂ � x̂j+1)= (x̂ � x̂j+1)TPAP T (x̂ � x̂j+1)= (P T x̂ � P T x̂j+1)TA(P T x̂ � P T x̂j+1)= (x̂ � x̂j+1)TA(x̂ � x̂j+1)= jjx̂ � x̂j+1jj2A:Substituting jjx̂ � x̂j+1jjPA = jjx̂ � x̂j+1jjA into (3.18) leads to (3.17).Lemma 3.7 implies that, for the DPCG method, the sear
h dire
tions, fpig, are 
on-jugate with respe
t to PA, while the de�ated residuals, fr̂ig, are orthogonal in theM�1-norm. In addition, the 
onvergen
e of DPCG highly depends on � (M�1PA)a

ording to Lemma 3.8.3.5 Properties of the De�ation MethodIn this se
tion, we derive some theoreti
al properties of the DPCG method, where Z is�rst assumed to 
onsist of eigenve
tors, and, thereafter, Z is arbitrary. If we restri
tourselves to linear systems with an invertible 
oe�
ient matrix, then more propertiesof this method 
an be found in [56,82,103�105,122,173℄.3.5.1 Results for an Eigenve
tor De�ation Subspa
eTheorem 3.1 (
f. [103, Thm. 2.5℄) shows that using eigenve
tors as de�ation ve
tors
an be e�e
tive in order to obtain a small � (M�1PA).Theorem 3.1. Suppose that A, M�1 and P are given as in De�nition 3.1. Let M�1Ahave eigenvalues f�ig with 
orresponding orthonormal eigenve
tors fvig. If Z :=



34 Chapter 3. De�ation Method[vd+1 vd+2 � � � vd+k ℄, then�(M�1PA) = f0; : : : ; 0; �d+k+1; : : : ; �ng:
Proof. We �rst prove thatP̃ Ã~vi = { 0; i = 1; : : : ; d + k;�i ; ~vi i = d + k + 1; : : : ; n; (3.19)where f~vig is the set of orthonormal eigenve
tors 
orresponding to the eigenvalues ofP̃ Ã. Note that, a

ording to Lemma A.1, M�1A and Ã have the same eigenvalues,f�ig, but 
orresponding to di�erent eigenve
tors (i.e, f~vig 6= fvig). De�ne � =diag(�d+1; : : : ; �d+k) and Z̃ := [~vd+1 � � � ~vd+k ℄, giving us ÃZ̃ = Z̃�. Sin
e theeigenve
tors are orthonormal (i.e., ~vTi ~vj = Æi j , where Æi j denotes the Krone
ker delta),we have Z̃T Z̃ = I. Then, we deriveẼ = Z̃T ÃZ̃ = Z̃T Z̃� = �;yielding P̃ = I � ÃZ̃T Ẽ�1Z̃T = I � Z̃T���1Z̃T = I � Z̃Z̃T :Moreover, we havẽZZ̃T ~vi = { Z̃e(i)k = ~vi ; i = d + 1; : : : ; d + k;Z̃0k = 0n; i = d + k + 1; : : : ; n:This results inP̃ Ã~vi = �i P̃ ~vi = �i ~vi � �i Z̃Z̃T ~vi =  0; i = 1; : : : ; d ;�i ~vi � �i ~vi = 0; i = d + 1; : : : ; d + k;�i ~vi � 0 = �i ~vi ; i = d + k + 1; : : : ; n;whi
h proves Eq. (3.19).Subsequently, Eq. (3.19) 
an be transformed into M�1PAvi = �vi , sin
eP̃ Ã~vi = �~vi , M� 12PM 12 (M� 12AM� 12) ~vi = �i ~vi, M� 12PAM� 12 ~vi = �i ~vi, M� 12PAvi = �iM 12 vi, M�1PAvi = �vi ;where Z := M� 12 Z̃, vi := M� 12 ~vi and Lemma 3.6(a) are used. Indeed, �i is an



3.5. Properties of the De�ation Method 35eigenvalue of both M�1PA and P̃ Ã. Sin
eÃ~vi = �i ~vi , M� 12AM� 12 ~vi = �i ~vi, M� 12AM� 12M 12 vi = �iM 12 vi, M�1Avi = �ivi ;we obtain that fvig is the set of eigenve
tors of M�1A, that 
an be s
aled su
h thatthey are orthonormal.Corollary 3.2. Suppose that we have the same setting as in Theorem 3.1. Then,� (M�1PA) � � (M�1A).Proof. � (M�1PA) = �n�d+k+1 � �n�d+1 = � (M�1A).From Lemma 3.8 and Corollary 3.2, we obtain that DPCG with eigenve
tors as de-�ation ve
tors is expe
ted to 
onverge faster than PCG. The resulting method issometimes 
alled `eigenve
tor de�ation' or `spe
tral de�ation'.Remark 3.8. Eigenve
tors 
orresponding to the smallest nonzero eigenvalues of A areused as de�ation ve
tors in Theorem 3.1, sin
eM�1 often treats the largest eigenvaluesof A e�e
tively. In this 
ase, the de�ation method is fast in 
onvergen
e if P a
ts asa 
omplementary part of the pre
onditioning by proje
ting the smallest eigenvalues tozero. However, in general, eigenve
tors asso
iated with the largest eigenvalues of A,or a 
ombination of these two approa
hes, 
an also be used as de�ation ve
tors inorder to redu
e � (M�1PA), see, e.g., [82℄ where two-fold de�ation te
hniques areintrodu
ed based on this idea.3.5.2 Results for an Arbitrary De�ation Subspa
eEigenve
tor de�ation 
an be very e�e
tive, but, unfortunately, eigenve
tors are usuallyexpensive to 
ompute in pra
ti
e. In addition, eigenve
tors are often dense, leading toa possibly expensive de�ation matrix, P . Ideally, Z should 
onsist of sparse and goodapproximations of eigenve
tors, whi
h is further examined in Chapter 4. Moreover, it isalso 
ommon to 
hoose algebrai
 ve
tors as 
olumns in Z (see also Chapter 4). In this
ase, it is not ne
essarily guaranteed that these ve
tors are good approximations of theunfavorable eigenve
tors. Hen
e, the properties as des
ribed in Se
tion 3.5.1 are notvalid anymore. Instead, we show some properties of the DPCG method, where Z isarbitrary. Note that these properties hold in parti
ular for Z 
onsisting of eigenve
tors.Comparison of De�ated Coe�
ient Matri
esDe�ne Pi := I � AQi ; Qi := ZiE�1i ZTi ; Ei := ZTi AZi ; Zi 2 Rn�ki ; (3.20)



36 Chapter 3. De�ation Methodfor ki < n � d and i = 1; 2; : : : ; k, where ea
h Zi satis�es Assumption 3.1. It is
onvenient to adopt this notation with subs
ripts by 
omparing de�ation matri
eswith di�erent de�ation subspa
es. We start with Theorem 3.2 and 3.3, whi
h aregeneralizations of [103, Lemma 2.9 and Theorem 2.12℄.Theorem 3.2. Let Zi and Pi be de�ned as in (3.20) with i = 1; 2 and k1 = k2 = k. IfR(Z1) = R(Z2), then M�1P1A = M�1P2A, and, in parti
ular, Q1 = Q2.Proof. The proof is identi
al to the proof for the 
ase that A is invertible, see [103,Lemma 2.9℄.Theorem 3.3. Suppose that A and M�1 are given as in De�nition 3.1. Let Zi and Pibe de�ned as in (3.20) with i = 1; 2. If R(Z1) � R(Z2), then�(M�1P1A) � �(M�1P2A): (3.21)Proof. In Se
tion 3.4, it has been shown that M�1PiA = P̃i Ã for i = 1; 2, with
{ Ã := M� 12AM� 12 ;P̃i := I � ÃQ̃i ; Q̃i := Z̃i Ẽ�1i Z̃Ti ; Ẽi := Z̃Ti ÃZ̃i ; Zi := M� 12 Z̃i :Moreover, if R(Z1) � R(Z2) (i.e., R(M� 12 Z̃1) � R(M� 12 Z̃2)), then also R(Z̃1) �R(Z̃2), using Lemma A.13. Now, it su�
es to prove that

{ �n(P̃1Ã) � �n(P̃2Ã);�k1+d+1(P̃1Ã) � �k2+d+1(P̃2Ã); (3.22)sin
e this implies �(P̃1Ã) � �(P̃2Ã) for R(Z̃1) � R(Z̃2); hen
e, the lemma follows.Note �rst that (P̃1 � P̃2)Ã is positive semi-de�nite, whi
h 
an be easily proven byapplying the same pro
edure as in the proof of [103, Lemma 2.8℄. By 
ombining thisfa
t with [103, Lemma 2.2℄, the �rst inequality of (3.22) 
an be obtained. The proof ofthe se
ond inequality of (3.22) is exa
tly the same as for the 
ase that Ã is invertible,see the proof of [103, Thm. 2.10℄.Corollary 3.3. Suppose that A and M�1 are given as in De�nition 3.1. Let Pi bede�ned as in (3.20). De�ne Zi := [z1 z2 � � � zi ℄ for i = 1; 2; : : : ; k. Then,�d+2(M�1P1A) � �d+3(M�1P2A) � : : : � �d+k+1(M�1PkA);and �n(M�1P1A) � �n(M�1P2A) � : : : � �n(M�1PkA):This yields�(M�1P1A) � �(M�1P2A) � : : : � �(M�1PkA) = �(M�1PA):Proof. Note that R(Zi�1) � R(Zi) holds for all i = 2; : : : ; k. Then, the 
orollaryfollows from Theorem 3.3.



3.5. Properties of the De�ation Method 37Theorem 3.2 implies that P is determined by the spa
e spanned by the 
olumns ofZ rather than the a
tual 
olumns. This has dire
t 
onsequen
es for 
onstru
tingthe de�ation ve
tors, see Chapter 4. Furthermore, Theorem 3.3 and Corollary 3.3show that the 
ondition number of M�1PA be
omes more favorable by in
reasingthe number of (arbitrary) ve
tors in Z; hen
e, a better 
onvergen
e of the iterativepro
ess is expe
ted, although more work is needed to solve the Galerkin system atea
h iteration.Comparison of De�ated and Original Coe�
ient Matri
esHere, we prove that the 
ondition number of PA is always below that of A for all
hoi
es of Z, see Theorem 3.4.Theorem 3.4. Suppose that A and P are given as in De�nition 3.1. For any full-rankZ, the following inequality holds: �(PA) � �(A): (3.23)Proof. It su�
es to show that
{ �d+1(A) � �d+k+1(PA);�n(A) � �n(PA);for all Z with rank Z = k.The proof of �n(PA) < �n(A) is as follows. Note thatA� PA = AQA;whi
h is symmetri
, be
ause of (AQA)T = AQA. Moreover,(AQ)2 = AQAQ = AQ;
an be derived from Lemma 3.2(b), so that AQ is a proje
tor. Therefore, AQA isSPSD, where we have also used Lemma A.3 by taking S := AQ and R := A. Then,�i(A) � �i(PA), for all i = 1; : : : ; n, follows from Lemma A.4. Thus, we parti
ularlyhave �n(A) � �n(PA):Next, we show that �d+1(A) � �d+k+1(PA). Due to Corollary 3.3, it su�
es toprove �d+1(A) � �d+2(P1A), where Z1 
onsists of just one de�ation ve
tor, so thatP1A = (I � AZ1E�11 ZT )A = (I � 
AzzT )A = A� 
AzzTA; (3.24)with z := Z1 2 Rn and 
 := E�11 2 R. The inequality Az 6= 0n is always satis�ed, sin
eN (A) * R(Z) (otherwise Assumption 1.2 
annot be satis�ed). Eq. (3.24) impliesP1A = A�R; R := 
AzzTA;



38 Chapter 3. De�ation Methodso that R is symmetri
. From Lemma A.12, we haverank R = rank 
AzzTA = rank AzzTA = rank zzT = 1; Az 6= 0n:Hen
e, the 
onditions of Lemma A.5 are satis�ed. By taking B := A and C := �R inthat lemma, �i(A) � �i+1(P1A) is obtained for i = 1; 2; : : : ; n. In parti
ular, we have�d+1(A) � �d+2(P1A);whi
h 
ompletes the proof.Subsequently, we prove that Theorem 3.4 
an be generalized using an SPD pre-
onditioner, M�1, see Theorem 3.5.Theorem 3.5. Let P be given as in De�nition 3.1. Then, the following inequalityholds: �(M�1PA) � �(M�1A); (3.25)for any A, M�1 and Z as given in De�nition 3.1.Proof. In Se
tion 3.4, it has been shown that M�1PA = P̃ Ã; with
{ Ã := M� 12AM� 12 ;P̃ := I � ÃQ̃; Q̃ := Z̃Ẽ�1Z̃T ; Ẽ := Z̃T ÃZ̃; Z :=M� 12 Z̃:Combining Lemma A.1 and Theorem 3.4, we obtain�(M�1PA) = �(P̃ Ã) � �(Ã) = �(M�1A):

Theorem 3.5 shows that M�1PA is always better 
onditioned than M�1A. Therefore,the 
onvergen
e of DPCG is expe
ted to be equal or faster than the original PCGmethod for ea
h full-rank matrix Z and SPD matrix M�1.3.5.3 Termination CriteriaIn many numeri
al experiments performed in this thesis, PCG and DPCG are 
ompared.For a fair 
omparison, equivalent termination 
riteria of the methods are essential. Forthis purpose, we need the following lemma.Lemma 3.9. Let ri and r̂i be residuals from Algorithms 3 and 6, respe
tively. Then,r̂i = ri holds for i = 0; 1; : : :.



3.6. Appli
ation to Bubbly Flow Problems 39Proof. Using Lemma 3.2 and Corollary 3.1, we deriver̂i = P (b � A~xi)= Pb � AP T x̂i= b � A(Qb + P T xi)= b � Axi= ri :From Lemma 3.9, we obtain that the de�ated residuals are identi
al to the originalresiduals, although they might di�er in pra
ti
e due to round-o� errors. Consequently,equivalent termination 
riteria of PCG and DPCG 
an be derived, so that we obtain(
f. Eq. (2.23)) jjrj+1jj2jjr0jj2 < Æ , jjr̂j+1jj2jjr̂0jj2 < Æ; (3.26)and (
f. Eq. (2.24)) jjM�1rj+1jj2jjM�1r0jj2 < Æ , jjM�1 r̂j+1jj2jjM�1 r̂0jj2 < Æ; (3.27)for a spe
i�ed termination toleran
e, Æ > 0. Both 
riteria, (3.26) and (3.27), are usedthroughout this thesis. A deeper dis
ussion about the termination 
riterion of DPCG
an be found in [173, Se
t. 4℄.3.6 Appli
ation to Bubbly Flow ProblemsThe 2-D and 3-D variants of the bubbly �ows, as given in Se
tion 1.3 (see Figure 1.2),are 
onsidered in this se
tion. In Se
tion 2.6, we have seen that M�1A is very ill-
onditioned for sophisti
ated bubbly �ows, where M�1 is the IC(0) pre
onditioner. Inthis 
ase, ICCG shows slow 
onvergen
e. In this se
tion, the 
onvergen
e is a

eleratedusing the de�ation method. The resulting method is 
alled DICCG, that is DPCGwith the IC(0) pre
onditioner. We often denote DICCG with k de�ation ve
tors asDICCG�k.The most simple 
hoi
e for the de�ation subspa
e is the subspa
e spanned bystru
tured and uniform subdomains, whi
h are 
hosen independently of the bubbly�ow geometry, see Figure 3.1. Mathemati
ally, this is de�ned as follows. Let the opendomain, 
, be divided into subdomains, 
j ; j = 1; 2; : : : ; q+1, su
h that 
 = [q+1j=1
jand 
i \
j = ; for all i 6= j . In addition, q is always 
hosen su
h that q+1 is a divisorof n. The dis
retized domain and subdomains are denoted by 
h and 
hj , respe
tively.Then, for ea
h 
hj with j = 1; 2; : : : ; q + 1, we introdu
e a de�ation ve
tor, zj , asfollows: (zj)i := { 0; xi 2 
h n
hj ;1; xi 2 
hj ; (3.28)



40 Chapter 3. De�ation Methodwhere xi is a grid point in the dis
retized domain, 
h. Then, for q > 1, we de�neZ := [z1 z2 � � � zq℄, so that k = q. Hen
e, Z 
onsists of disjun
t orthogonal pie
ewise-
onstant ve
tors and satis�es 1n = N (A) * R(Z), whi
h implies nonsingularity of E.A deeper dis
ussion on subdomain de�ation is presented in Chapter 4.
Ω1 Ω2

Ω3 Ω4

Figure 3.1: De�ation subdomains with k = 3, whi
h are 
hosen independently of the density geometryof the bubbly �ow.The e�
ien
y of DICCG depends on the implementation of this method. We dealwith this issue in Chapter 8. For the time being, we report the results by 
onsideringthe number of iterations. In the numeri
al experiments, the number of bubbles, m,is varied, whereas the grid sizes (n = 1002 in 2-D and n = 1003 in 3-D) and density
ontrast (� = 103) are �xed. The stopping 
riterion is based on (3.27) with Æ = 10�8.3.6.1 Results of Numeri
al ExperimentsThe results of both 2-D and 3-D experiments are presented in Table 3.1. The a

ura
yof the solutions are of the same order (see [140℄), and, therefore, they are not in
ludedin the table.Considering the results in Table 3.1, we see that DICCG�k always requires feweriterations 
ompared to ICCG. This 
on�rms Theorem 3.5. It 
an be observed that, forlarger k, DICCG�k requires fewer iterations than for smaller k, whi
h is as expe
tedfrom Theorem 3.3. The gain fa
tor of DICCG�k for large k 
an be more than 10,but we note that ea
h iteration be
omes more expensive in this 
ase, see Chapter 8for details. Moreover, an in
rease of the number of bubbles often leads to a worseperforman
e of ICCG and DICCG�k be
omes more superior to ICCG. Additionally,DICCG�k is less sensitive to m for larger k.Subsequently, the relative residuals of both ICCG and DICCG based on (3.27)are depi
ted for two test 
ases in Figure 3.2. It 
an be noti
ed that the behaviorof the residuals of ICCG is irregular, due to possible unfavorable eigenve
tors 
ausedby the presen
e of the bubbles. For DICCG�k, we 
an see that a larger k leads to asmoother behavior of the residuals; hen
e, a faster 
onvergen
e of the iterative pro
ess.The su

ess of the method is two-fold: a larger k leads to a de�ation subspa
e thatapproximates more eigenve
tors 
orresponding to the unfavorable eigenvalues and ea
h



3.7. Con
luding Remarks 41(a) 2-D experiments with n = 1002 and � = 103.Method m = 0 m = 1 m = 9ICCG 109 128 247DICCG�(52 � 1) 49 51 70DICCG�(102 � 1) 32 34 44DICCG�(202 � 1) 21 22 27DICCG�(252 � 1) 19 20 23DICCG�(502 � 1) 12 13 14(b) 3-D experiments with n = 1003 and � = 103.Method m = 0 m = 1 m = 8 m = 27ICCG 170 211 291 310DICCG�(23 � 1) 109 206 160 275DICCG�(53 � 1) 56 58 72 97DICCG�(103 � 1) 35 36 36 60DICCG�(203 � 1) 22 25 22 31Table 3.1: Number of iterations for ICCG and DICCG�k for various number of bubbles, m, andde�ation ve
tors, k .of these approximations is more a

urate.3.7 Con
luding RemarksIn this 
hapter, we des
ribe a de�ation method applied to linear systems with a singular
oe�
ient matrix. Thereafter, new theoreti
al properties are derived and the de�ationtheory applied to invertible 
oe�
ient matri
es is generalized. Numeri
al experimentsshow that the de�ation method with subdomain de�ation ve
tors are very e�e
tive forbubbly �ow problems.There are several open issues left, whi
h are treated in the next 
hapters. Weexplain the e�e
tiveness of subdomain de�ation ve
tors, and 
ompare them with other
ommon 
hoi
es. Moreover, we deal with the implementation of the de�ation methodto obtain an e�
ient solver. The optimal 
hoi
e of the number of de�ation ve
tors isinvestigated. In addition, the appli
ation of de�ation to singular 
oe�
ient matri
es isexamined. We also relate and 
ompare the de�ation method to other two-level PCGmethods in order to determine the optimal method.
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(a) 2-D experiment with 9 bubbles.
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(b) 3-D experiment with 27 bubbles.Figure 3.2: Norm of the relative residuals during the iterations of ICCG and DICCG�k .



Chapter 4Sele
tion of De�ation Ve
tors4.1 Introdu
tionThe underlying idea of applying the de�ation method is to e�e
tively treat (extremely)unfavorable eigenvalues that delay the 
onvergen
e of the PCG method. Re
all thatthe de�ation matrix is de�ned as (see De�nition 3.1)P := I � AQ; Q := ZE�1ZT ; E := ZTAZ; (4.1)with a full-rank de�ation-subspa
e matrix, Z 2 Rn�k, 
onsisting of de�ation ve
tors(also known as proje
tion ve
tors). As mentioned in Chapter 3, the su

ess of thede�ation method highly depends on the 
hoi
e of Z. In the ideal 
ase with respe
t to
onvergen
e, Z should 
onsist of eigenve
tors asso
iated with the most unfavorable(often the smallest) eigenvalues ofM�1A, see Theorem 3.1. These eigenvalues do notplay a role anymore in the 
onvergen
e behavior, so that a faster 
onvergen
e of theiterative pro
ess 
an be expe
ted. However, the 
omputation of these eigenve
tors 
anbe very expensive, and, in addition, these dense ve
tors might be ine�
ient in use, sin
ethey require mu
h memory and expensive 
omputations with P . Therefore, we intendto �nd sparse de�ation ve
tors that approximate the unfavorable eigenspa
e, so thatTheorem 3.1 still holds to a 
ertain extent. Additionally, with respe
t to implementa-tion, it would be favorable to have de�ation ve
tors su
h that the resulting de�ationmethod is easily parallelizable, and is straightforward to implement in an existing PCG
ode. In summary, the de�ation method should satisfy the next requirements in theideal 
ase:� the de�ation-subspa
e matrix, Z, is sparse;� the de�ation ve
tors approximate the eigenspa
e 
orresponding to the unfavor-able eigenvalues;� the 
ost of 
onstru
ting de�ation ve
tors is relatively low;� the method has favorable parallel properties;43
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tion of De�ation Ve
tors� the approa
h 
an be easily implemented in an existing PCG 
ode.Remark 4.1. The best strategy to 
hoose Z strongly depends on the appli
ation, thewishes of the user and the available information about the solution or (the behaviorof) unfavorable eigenve
tors. There is no optimal 
hoi
e that always leads to the bestresults for all appli
ations. One of the main fo
uses in this 
hapter is 
onstru
ting astrategy to �nd optimal de�ation ve
tors for bubbly �ow problems, that might workfor various other appli
ations as well.This 
hapter is organized as follows. In Se
tion 4.2, some strategies for 
hoosingde�ation ve
tors known in the literature are reviewed and dis
ussed. Subsequently,Se
tion 4.3 is devoted to �nding and analyzing the optimal strategy to 
hoose Z forbubbly �ow appli
ations. Finally, the 
on
luding remarks are presented in Se
tion 4.4.4.2 Choi
es of De�ation Ve
torsIn the literature of de�ation, MG and DDM, several te
hniques are known to 
hoosede�ation ve
tors. Ea
h �eld has its typi
al strategy to �nd the optimal 
hoi
e. Below,we des
ribe and dis
uss the approa
hes based on approximated eigenve
tor, re
y
ling,subdomain, and multigrid de�ation ve
tors. Most of the other alternatives known inthe literature are related to these approa
hes.4.2.1 Approximated Eigenve
tor De�ationThe de�ation te
hnique based on approximated eigenve
tors is a popular approa
h,see, e.g., [25,27,122,173℄.In [173℄, an e�e
tive s
heme is proposed based on physi
al de�ation in whi
hthe de�ation ve
tors are derived from the solutions of the original PDEs on spe
i�
subdomains. The resulting Z is sparse, whereas the 
orresponding ve
tors span theunfavorable eigenspa
e.A general framework based on Flexible GMRES (FGMRES) is des
ribed in [27℄.This framework in
ludes te
hniques that are used to enhan
e the robustness of Krylovsubspa
e methods, su
h as the de�ated GMRES method, suggested in [80, 99℄, thataims at enhan
ing 
onvergen
e by modifying the spe
trum of the original matrix. Theapproa
h uses Ritz values and relies on solving generalized eigenvalue problems withmu
h lower dimensions than A itself. If these dimensions be
ome large, this approa
his only su

essful to e�
iently solve SPD systems with multiple right-hand sides of theform Ax (i) = b(i); i = 1; 2; : : : ; (4.2)see also [122, Se
t. 5℄. In addition, the de�ation matrix, P , obtained by the proposedde�ation method is not sparse, resulting in possibly expensive 
omputations with P , andlarge memory requirements. In addition, formulating and solving generalized eigenvalueproblems are more straightforward for the 
lassi
al GMRES algorithm than for CG,making this approa
h somewhat less suitable for CG-like methods. Finally, the approa
h



4.2. Choi
es of De�ation Ve
tors 45seems unlikely to be helpful in realisti
 situations, be
ause, for very large linear systems,removing a small number of eigenvalues out of many of them 
lose to zero might havea limited e�e
t on the solver, see [27℄.A de�ation te
hnique applied to basi
 iterative methods based on Eq. (2.4), su
has Gauss-Seidel or Ja
obi iterations, is proposed in [25℄. This de�ation te
hnique re-lies on 
omputing so-
alled orthogonalized di�eren
e ve
tors and determining S
hurve
tors of a matrix with lower dimensions. It provides a distin
t advantage for ill-
onditioned systems, where the underlying s
heme would either diverge or 
onvergevery slowly. Several numeri
al experiments in [25℄ demonstrate the e�
ien
y of themethod. However, for linear systems where the basi
 iterative s
heme is already 
on-verging reasonably well, the a

elerated 
onvergen
e provided by de�ation is not worthby 
onsidering the required extra work, see [25, Se
t. 6℄.In general, it 
an be observed that de�ation based on approximated eigenve
torsmight be e�e
tive, but some additional e�orts are needed to �nd these approximatedeigenve
tors, and su�
ient memory should be available to store them. For relativelylarge problems, solving (generalized) eigenvalue problems may take a 
onsiderable time,espe
ially in PCG methods, sin
e PCG is based on short-term re
urren
es. Addition-ally, the number of approximated eigenve
tors should be su�
iently small in order torestri
t the extra work 
onsidering P and to redu
e memory requirements, sin
e theseeigenve
tors are usually dense. However, this is not always possible, sin
e the spe
trummight 
onsist of many unfavorable eigenvalues in realisti
 problems.4.2.2 Re
y
ling De�ationRelated to approximated eigenve
tor de�ation is solution and re
y
ling de�ation, see,e.g., [31,112℄.Solution de�ation, proposed in [31℄, applies a subspa
e-proje
tion extrapolations
heme for the starting ve
tor generation of linear systems from impli
it time integra-tion s
hemes. The s
heme yields optimal linear 
ombinations from multiple availablestarting ve
tors. Similarly to eigenve
tor de�ation, spe
tral 
omponents of the exa
tsolution 
ontained therein are optimally resolved whi
h redu
es the 
ondition number.Suppose fx (1); x (2); : : : ; x (q�1)g is the set of solutions of the linear systems at timesteps l = 1; 2; : : : ; q � 1. Then, the de�ation-subspa
e matrix 
an be de�ned asZ = [x (1) x (2) � � � x (q�1)℄: (4.3)Although numeri
al experiments in [31℄ emphasize the improved 
onvergen
e of CG
ombined with solution de�ation, we note that this approa
h has the drawba
k thatZ is dense in general, and, additionally, it is not guaranteed that R(Z) indeed 
onsistsof any relevant spe
tral 
omponents.Another approa
h is des
ribed in [112℄, where de�ation ve
tors are based on re-
y
ling information of (previous) Krylov iterations in GMRES-like methods with rela-tively short-term re
urren
es. The resulting method is based on GMRES with de�atedrestarting ve
tors (i.e., GMRES-DR [100℄), and GCR with a so-
alled optimal trun-
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tors
ation (i.e., GCROT [35℄). Re
y
ling de�ation is su

essful, if a sequen
e of linearsystems (4.2), or even a sequen
e of the formA(i)x (i) = b(i); i = 1; 2; : : : ; (4.4)has to be solved. Note that we indeed have su
h a sequen
e (4.4) in bubbly �owsimulations, see also Chapter 10. Like most of the approximate de�ation methods,the re
y
ling de�ation approa
h requires a signi�
ant setup time to �nd the de�ationve
tors, espe
ially for large grid sizes. Additionally, those ve
tors are usually dense,resulting in possible implementation and memory di�
ulties.4.2.3 Subdomain De�ationAnother variant of de�ation is subdomain de�ation, where the de�ation ve
tors are
hosen in an algebrai
 way, see [92,108,170,175℄ and Se
tion 3.6. The 
omputationaldomain is divided into several subdomains, where ea
h subdomain 
orresponds to oneor more de�ation ve
tors. The resulting approa
h is often 
alled `subdomain de�ation',and it is strongly related to approa
hes known in DDM, see, e.g., [126℄.In [175℄, subdomain de�ation is applied to the di�usion equation as given inEq. (1.3). Assume that the 
omputational domain, 
, is divided into several sub-domains, 
j , where ea
h 
j 
orresponds to one de�ation ve
tor, 
onsisting of ones forgrid points in the interior of the dis
retized subdomain, 
hj , and zeros for other gridpoints. Then, subdomain de�ation is e�e
tive, if ea
h subdomain, 
j , 
orresponds toexa
tly one 
onstant part of the 
oe�
ient, �. In this 
ase, the subspa
e spanned bythe de�ation ve
tors is proved to be almost equal to the eigenspa
e asso
iated withthe smallest eigenvalues. In addition, this approa
h 
onverges as fast as the physi-
al de�ation approa
h [173℄ that has been des
ribed in Se
tion 4.2.1, but it is moree�
ient due to a sparser stru
ture of Z.A detailed treatment of interfa
e points of the subdomains, f
jg, 
an be foundin [170℄. It is shown that the subdomain te
hnique is most su

essful if there is nooverlap between subdomains. In this 
ase, we have pie
ewise-
onstant, disjoint, andorthogonal de�ation ve
tors.Example 4.1. Suppose that we have a 1-D 
omputational domain, 
, 
onsisting of thegrid points x1; : : : ; x6, that is divided into two subdomains su
h that 
h1 = fx1; x2; x3gand 
h2 = fx4; x5; x6g. Then, we obtainZ = [ 1 1 1 0 0 00 0 0 1 1 1 ]T : (4.5)Ea
h row of Z 
onsists of exa
tly one nonzero, and the rows are 
learly orthogonal,disjoint, and pie
ewise-
onstant.Example 4.2. A graphi
al representation of 2-D subdomains based on a grid sizen = 642 
an be found in Figure 4.1. Similar to Example 4.1, the 
orrespondingde�ation ve
tors 
an be obtained.
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Figure 4.1: Representation of the 2-D subdomains with k = 3 in a square domain, 
, 
onsisting ofn = 642 grid points.Remark 4.2. The underlying idea of 
hoosing pie
ewise-
onstant de�ation ve
tors isto approximate eigenve
tors belonging to the smallest eigenvalues. Sin
e the eigen-ve
tors often represent 
omponents of the solution that is not ne
essarily linear, thesepie
ewise-
onstant de�ation ve
tors might only give a rough approximation. Thismotivates several authors (e.g., [54, 169℄), to augment the de�ation subspa
e withpie
ewise-linear (or even higher-order) subdomain de�ation ve
tors. Following Exam-ple 4.1, we obtain (
f. Eq. (4.5))Z =  1 1 1 0 0 01 2 3 0 0 00 0 0 1 1 10 0 0 1 2 3 T : (4.6)Hen
e, we have two de�ation ve
tors per subdomain in 1-D. Generalization to 2-D and 3-D is straightforward for pie
ewise-
onstant de�ation ve
tors, in 
ontrast topie
ewise-linear de�ation ve
tors. In 2-D, one might take three ve
tors per subdomain:one 
onstant and two pie
ewise-linear ve
tors in ea
h spatial dire
tion. Likewise, one
an use four ve
tors per subdomain in 3-D. If the number of subdomains is large, thenthis would lead to a relatively large number of pie
ewise-linear de�ation ve
tors, makingthe de�ation te
hnique more expensive than pie
ewise-
onstant subdomain de�ation.In addition, the implementation of pie
ewise-linear ve
tors 
an be performed less e�-
ient than pie
ewise-
onstant ve
tors, see Remark 4.3. Nevertheless, the employmentof pie
ewise-linear de�ation ve
tors may a

elerate signi�
antly the 
onvergen
e ofthe iterative method, espe
ially if the unfavorable eigenve
tors have a linear form.Remark 4.3.� In Example 4.1 and 4.2 and Remark 4.2, we have assumed that N (A) * R(Z),otherwise Assumption 3.1 
annot be ful�lled. However, if, for instan
e, N (A) =1n, then Z should be adapted to obey N (A) * R(Z). This 
an be easily done by
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tion of De�ation Ve
torsdeleting one pie
ewise-
onstant de�ation ve
tor, while the resulting null spa
e ofPA remains the same. More details 
an be found in Se
tion 4.3 and Chapter 5.� A

ording to Theorem 3.2, ea
h 
olumn of Z in Example 4.1 and 4.2 and Re-mark 4.2 
an be res
aled, while the resulting de�ation matri
es remain the same.� The de�ation method with pie
ewise-
onstant de�ation ve
tors 
an be imple-mented very e�
iently if A has some favorable properties, see Chapter 8.4.2.4 Multigrid and Multilevel De�ation Ve
torsIn the �eld of multigrid and multilevel methods, matri
es Z and ZT are known as theprolongation and restri
tion matrix, respe
tively, whereas a 
omputation with P 
anbe interpreted as a 
oarse-grid 
orre
tion. A basi
 
hoi
e for Z (and 
orrespondingZT ) is a sparse matrix, given byZ =  12 1 12 0 � � � ?0 0 12 1 12 0 � � �. . .? � � � 0 12 1 12



T : (4.7)Many other prolongation and restri
tion matri
es are known in the multigrid literature,see [126, 151, 178℄. The 
olumns of Z should approximate the slow-varying eigenve
-tors, often 
orresponding to small eigenvalues, in order to obtain an e�e
tive method.As also observed in (4.7), the number of de�ation ve
tors is generally large. In this
ase, the resulting method requires a rather di�erent approa
h to be e�
ient, 
om-pared to the methods as dis
ussed so far. We fo
us on this issue in Chapter 9, and,in the meantime, this 
lass of multigrid de�ation ve
tors is not further 
onsidered.4.2.5 Dis
ussion of Di�erent Approa
hesOur approa
h of 
hoi
e is subdomain de�ation, be
ause of the following fa
ts.� The resulting de�ation-subspa
e matrix, Z, is sparse: ea
h row 
onsists of onlyone nonzero.� The number of de�ation ve
tors is relatively small: k � n.� The de�ation ve
tors appear to approximate the eigenspa
e asso
iated with theunfavorable eigenvalues, resulting in faster 
onvergen
e of the iterative pro
ess:this is explained for spe
i�
 problem settings in [170,175℄.� The de�ation ve
tors 
an be easily found: these ve
tors 
orrespond to subdo-mains, whi
h are straightforward to obtain.� The approa
h is well-parallelizable: the de�ation ve
tors are disjoint, so that ithas ex
ellent parallel properties (see Appendix F).



4.3. Appli
ation to Bubbly Flows 49� The approa
h 
an easily be implemented in an existing PCG 
ode: only a fewadditional steps should be in
orporated in the PCG 
ode, see Chapter 8.As dis
ussed above, not all of these 
riteria are satis�ed for approximate eigenve
-tor, solution re
y
ling, and multigrid de�ation. These 
riteria seem to be ful�lled forsubdomain de�ation, so that our main fo
us is on this approa
h.There are still several di�
ulties left if one applies subdomain de�ation ve
tors in,for example, bubbly �ow appli
ations.� Subdomain de�ation is often applied to linear systems with a nonsingular 
oe�-
ient matrix, while our 
oe�
ient matrix of interest is singular.� Subdomain de�ation is used for problems with a �xed 
oe�
ient matrix, wherethe (density) 
oe�
ient in the original PDEs is often des
ribed expli
itly. In ourbubbly �ow appli
ations, the density �eld is given impli
itly and the 
oe�
ientmatrix varies in time.In the next se
tion, we examine whether subdomain de�ation 
an still be applied takingthe above di�
ulties into a

ount. In addition, subdomain de�ation ve
tors are appliedsu

essfully to several other problems, but a theoreti
al proof is still la
king. In [170℄, itis shown that the unfavorable eigenspa
e and the eigenspa
e spanned by the subdomainde�ation ve
tors are almost the same, but the proof seems not to be fully 
orre
t andthe 
onne
tion to the 
orresponding spe
tra is not 
ompletely obvious. Ultimately, wehave to show that the most unfavorable eigenvalues are e�e
tively treated by usingsubdomain de�ation ve
tors. This is further analyzed in the next se
tion, where themain appli
ation is bubbly �ows.4.3 Appli
ation to Bubbly FlowsIn this se
tion, we adopt the problem setting as des
ribed in Se
tion 1.3 and examinethe optimal strategy to 
hoose the de�ation ve
tors for bubbly �ow problems. For thesake of 
onvenien
e, we restri
t ourselves to ICCG and DICCG, so that the followingassumption holds throughout this se
tion.Assumption 4.1. M�1 is the IC(0) pre
onditioner based on a SPSD 
oe�
ient ma-trix, A.4.3.1 PreliminariesRe
all that m 2 N denotes the number of bubbles in domain 
, where �0 and �1are the high- and low-density phases, respe
tively. In addition, Assumption 1.2 holdsthroughout this whole se
tion. If the m bubbles are numbered, then we de�ne �i � 
as the domain 
orresponding to the i-th bubble, in
luding its interfa
e that may lie in�0, for i = 1; 2; : : : ;m. Hen
e, we have�1 � [mi=1�i and \mi=1 �i = ;:
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tion of De�ation Ve
torsThe dis
retized domain and the 
orresponding grid points are denoted by 
h and fxig,respe
tively. Moreover, �h0 , �h1 and �hi are the dis
retized variants of �0, �1 and �i ,respe
tively. For ea
h i = 1; : : : ;m, we introdu
e the 
hara
teristi
 ve
tor, �i 2 Rn,asso
iated with the i-th bubble, where ea
h entry, (�i)j , is de�ned as follows:(�i)j = { 1; if xj 2 �hi ;0; elsewhere:Noti
e that the set of ve
tors f�igi=1;:::;m is linearly independent.For i � 2, the eigenvalues of M�1A, f�ig, appear to be of order 1, ex
ept for afew eigenvalues that are of order ". The number of these O(")�eigenvalues dependson the number of bubbles, m, see Proposition 4.1.Proposition 4.1. Let A and M�1 satisfy Assumptions 1.2 and 4.1, respe
tively. Sup-pose that 1 < m < n. Then, the eigenvalues of M�1A, f�ig, satisfy�i =  0; for i = 1;O("); for i = 2; : : : ;m;O(1); for i = m + 1; : : : ; n:Moreover, for i = 2; : : : ;m, ea
h eigenve
tor, vi , 
orresponding to �i is 
onstant in �1.Hen
e, M�1A has exa
tly m � 1 eigenvalues of O("), if there are m bubbles in 
.Note that Proposition 4.1 still holds if bubbles tou
h the boundaries. Similar resultsare proven in literature, see, e.g., [174, Thm. 2.2℄, where the 
oe�
ient matrix isinvertible and appli
ations are given to steady porous-media �ows.Moreover, from Proposition 4.1, we obviously have that M�1A is ill-
onditionedwhen " � 1 and m > 1. This results in the fa
t that ICCG 
onverges slowly. Thede�ation method 
ould be adopted in order to e�e
tively treat the O(")�eigenvalues,resulting in a more e�e
tive method. We sometimes add the de�ation-subspa
e matrixas a subs
ript to P to stress the 
hoi
e of this de�ation-subspa
e. For example, wehave PZ := I � AQZ ; QZ := ZE�1Z ZT ; EZ := ZTAZ: (4.8)Re
all that Theorem 3.5 ensures that M�1PZA has a more favorable spe
trum thanM�1A. Hen
e, the following 
orollary follows.Corollary 4.1. Let A and M�1 satisfy Assumptions 1.2 and 4.1, respe
tively. Supposethat PZ is de�ned as in Eq. (4.8). Let 0 = �1 < �2 � : : : � �n be the eigenvalues ofM�1A, and �1 � �2 � : : : � �n be the eigenvalues of M�1PZA.� If 1n 2 R(Z), then �(M�1PZA) = f0; : : : ; 0; �k+1; : : : ; �ng; (4.9)with �1 � �i � �n for i = k + 1; : : : ; n.



4.3. Appli
ation to Bubbly Flows 51� If 1n =2 R(Z), then �(M�1PZA) = f0; : : : ; 0; �k+2; : : : ; �ng; (4.10)with �1 � �i � �n for i = k + 2; : : : ; n.Note that the de�ation subspa
e is larger for 1n =2 R(Z), than for 1n 2 R(Z). Of
ourse, it depends on the de�ation-subspa
e matrix, Z, in whi
h way the eigenvalues,f�ig, are distributed exa
tly; therefore, the su

ess of DICCG is related to the 
hoi
eof Z. Re
all that Theorem 3.1 shows that the most straightforward 
hoi
e for the
olumns of Z is the set of eigenve
tors 
orresponding to the O(")�eigenvalues, sothat they are eliminated from the spe
trum of M�1PZA. As a 
onsequen
e, the next
orollary holds.Corollary 4.2. Let A and M�1 obey Assumptions 1.2 and 4.1, respe
tively. Supposethat PV is the de�ation matrix, where V denotes its de�ation-subspa
e matrix. IfV := [v1 v2 � � � vk ℄ 
onsists of eigenve
tors 
orresponding to all O(")�eigenvalues ofM�1A, then �(M�1PV A) only 
onsists of zeros and O(1)�eigenvalues.Hen
e, the appli
ation of eigenve
tors asso
iated with O(")�eigenvalues as de�ationve
tors is a good strategy to improve the 
onvergen
e of the iterative pro
ess. In this
ase, it is su�
ient to take k = m, when all O(")�eigenvalues should be eliminated.Moreover, due to Assumption 1.2, v1 is the 
onstant eigenve
tor 
orresponding tothe zero eigenvalue. As a 
onsequen
e, v1 may be omitted in V , so that k = m � 1de�ation ve
tors would even be su�
ient for the elimination of all O(")�eigenvalues.Although the resulting de�ation method 
an be very e�e
tive, this method based ona dense matrix V might be ine�
ient in use. In the next subse
tions, a perturbationanalysis is 
arried out, resulting in de�ation methods with appropriate 
hoi
es for Z.4.3.2 Inexa
t Eigenve
tor De�ationHere, we analyze the de�ation te
hnique whose de�ation ve
tors are based on inexa
teigenve
tors 
orresponding to the smallest eigenvalues of M�1A.De�ne �V := [�v1 �v2 � � � �vk ℄, where ea
h �vi is an approximation of the exa
t eigen-ve
tor of M�1A, vi , i.e.,�vi := vi + Æi ; Æi 2 Rn; i = 1; 2; : : : ; k; (4.11)where k � m. As mentioned earlier, it is desirable to 
onstru
t a de�ation method with�V as de�ation-subspa
e matrix that has the same favorable features as the de�ationmethod based on V . At least, the resulting spe
trum of M�1P�V A with k = m shouldnot 
ontain any eigenvalue of O(") anymore. In this 
ase, ea
h Æi has to be 
hosen insu
h a way that the eigenvalues of the resulting matrix, M�1P�V A, satisfyO(")� ��i � �n; for i = k + 1; : : : ;m; (4.12)



52 Chapter 4. Sele
tion of De�ation Ve
torswhere ��i is an eigenvalue of M�1P�V A, and 1n 2 R(�V ) is assumed. However, as far aswe know, no expli
it results are given in the literature 
on
erning the way in whi
h vi
an be perturbed su
h that (4.12) is satis�ed. In the remainder of this subse
tion, wegive some propositions and theoreti
al results, whi
h eventually result in heuristi
 rulesfor 
hoosing Æi . These are partly based on numeri
al experiments des
ribed in [141℄.De�ne �i 2 Rn as the ve
tor with the entries of �vi , that 
orrespond to the bubblesof phase �1 in
luding the interfa
es, and let the other entries be zero, i.e., for ea
h i ,the entries of �i are de�ned by(�i)j = { (�vi)j ; if xj 2 �h1 or xj 2 ��h1;0; otherwise;where ��h1 denotes the interfa
es 
orresponding to �h1. Similarly to �i , we de�ne~1n 2 Rn as follows: (~1n)j = { 1; if xj 2 �h1 or xj 2 ��h1 ;0; otherwise.Moreover, we suppose that the perturbations, fÆig, satisfy Assumption 4.2.Assumption 4.2. Let A satisty Assumption 1.2. Then, ea
h perturbation, Æi 2 Rn,with i = 1; 2; : : : ; k, is 
hosen su
h that1. jjAÆi jj2 = O(") for ea
h Æi ;2. entries 
orresponding to at least one bubble in �1 are nonzero in �vi ;3. the set f~1n; �1; : : : ; �kg is linearly independent.The �rst 
ondition of Assumption 4.2 means that the norm of the perturbation issmall, after premultipli
ation with A. The se
ond 
ondition says that it is not allowedto 
hoose a perturbation, Æi , in su
h a way that all entries of �vi 
orresponding to thebubbles are zero. The �nal 
ondition means that ea
h Æi should be 
hosen in su
h away that ea
h ve
tor of f~1n; �1; : : : ; �kg does not 
orrespond to the same bubbles.Example 4.3. In our bubbly �ow appli
ations, a perturbation, Æi 2 Rn, satis�es As-sumption 4.2 in, for instan
e, the following two 
ases:� 
hoose arbitrary entries for Æi that 
orresponds to the high-density phase, �0;� 
hoose arbitrary but identi
al entries in Æi that 
orresponds to a 
omplete bubblein
luding its interfa
e in the low-density phase, �1, su
h that ea
h Æi 
orrespondsto a di�erent bubble.Next, let V" 2 Rn�k with k � m � 1 be de�ned as a matrix 
onsisting of 
olumnsbeing eigenve
tors of M�1A 
orresponding to O(")�eigenvalues. In addition, de�ne�V" 2 Rn�k as a perturbation of V", su
h that ea
h Æi obeys Assumption 4.2, i.e.,ea
h 
olumn of �V" is the sum of the 
orresponding 
olumn of V" and Æi satisfyingAssumption 4.2 (
f. Eq. (4.11)). Then, it appears that Assumption 4.3 is alwaysful�lled in our experiments.



4.3. Appli
ation to Bubbly Flows 53Assumption 4.3. Let A ful�ll Assumption 1.2. Suppose that P�V" and PV" are de�ationmatri
es, where �V" and V" denote their de�ation-subspa
e matrix, respe
tively. Let Rbe an n � n matrix. Then, P�V"A = PV"A+R with jjQjj2 = O(").Furthermore, we de�ne (~�i)j := { 1; if (�i)j 6= 0;0; otherwise:Then, � 2 f0; 1; : : : ;mg denotes the maximum number of independent 
hara
teristi
ve
tors, �hi , su
h that �hi 2 span f~1n; ~�1; : : : ; ~�kg:In other words, � is the number of bubbles whi
h are e�e
tively 
aptured by f~�ig. Forinstan
e, � = k means that the number of de�ation ve
tors is equal to the number ofve
tors 
orresponding to separate bubbles that 
an be 
onstru
ted from the de�ationsubspa
e. Now, Theorem 4.1 follows easily.Theorem 4.1. Let A, P�V" and PV" satisfy Assumption 4.3. Suppose that � = k. Then,for j = 1; : : : ; n, we havej�j(P�V"A)� �j(PV"A)j � 
; 
 = O("): (4.13)Proof. Sin
e P�V"A = PV"A + R with jjRjj2 = O("), the theorem follows immediatelyfrom Lemma A.10(iii).As a 
onsequen
e of Theorem 4.1, perturbations that meet Assumption 4.2 do notsigni�
antly in�uen
e the spe
trum of the de�ated matrix, PV"A. If, for instan
e, PV"Adoes not 
ontain O(")�eigenvalues, then neither does P�V"A.Unfortunately, Theorem 4.1 
annot be generalized to pre
onditioned de�ated ma-tri
es, in 
ontrast to what is 
laimed in the literature, see, e.g., [170℄. In otherwords, (4.13) does not hold in general, if M�1P�V A and M�1PV A are substituted intoP�V A and PV A, respe
tively. Counterexamples 
an be easily found using numeri
al ex-periments. It turns out that the pre
onditioned variant of Theorem 4.1 only holds forthe smallest eigenvalues, see Proposition 4.2.Proposition 4.2. Let A and M�1 ful�ll Assumptions 1.2 and 4.1, respe
tively. LetP�V" and PV" ful�ll Assumption 4.3. Let k 2 f1; 2; : : : ;m � 1g be given. Choose ea
hÆi 2 Rn su
h that Assumption 4.2 is ful�lled. Suppose that � = k and 1n =2 R(V�").Then, j�j(M�1P�V"A)� �j(M�1PV"A)j � 
; 
 = O(");for all j = 1; : : : ;m.A

ording to Proposition 4.2, O(")�eigenvalues of M�1PV"A are not signi�
antlyin�uen
ed by these perturbations, if ea
h perturbation, Æi , is 
hosen su
h that As-sumption 4.2 is satis�ed. However, Proposition 4.2 does not say anything about theother eigenvalues of M�1PV"A. Fortunately, it 
an be observed that the number of
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tion of De�ation Ve
torsO(")�eigenvalues is equal for M�1PV"A and M�1P�V"A, if � = k. In addition, a similarresult follows for � < k. These results are stated in Conje
ture 4.1.Conje
ture 4.1. Let A, M�1, P�V" and PV" be as given in Proposition 4.2. Let k 2f1; 2; : : : ;m � 1g be given and suppose that � = k holds. Choose ea
h Æi 2 Rn su
hthat Assumption 4.2 is ful�lled. Then, the number of O(")�eigenvalues of M�1P�V"Ais equal to { m � � � 1; if � < m � 1;0; if � � m � 1:Moreover, if � � k, then the number of O(")�eigenvalues of both M�1P�V"A andM�1PV"A is the same.As a spe
ial 
ase of Conje
ture 4.1, we have that both M�1P�V"A and M�1PV"A do not
ontain any O(")�eigenvalue, if k = m�1 and ea
h Æi has nonzero entries asso
iatedwith at least one bubble. Example 4.4 shows another appli
ation of the 
onje
ture.Example 4.4. Consider a 2-D bubbly �ow problem with m = 5, see Figure 4.2. Inthis 
ase, the spe
trum of M�1A 
ontains four O(")�eigenvalues. The 
orrespondingeigenve
tors are taken as de�ation ve
tors. Figure 4.2 presents two situations, where 
is divided into four (de�ation) subdomains, 
i , ea
h 
orresponding to one perturbationve
tor, Æi , whose entries are 
onstant in this subdomain and zero elsewhere. In the
ase of Figure 4.2(a), none of the perturbations satisfy Assumption 4.2. Therefore,all four O(")�eigenvalues of M�1A remain in the spe
trum of M�1P�V"A. However,in the 
ase of Figure 4.2(b), all perturbations meet Assumption 4.2, but obviously� = 3. A

ording to Conje
ture 4.1, the spe
trum of M�1P�V"A 
onsists of exa
tly oneO(")�eigenvalue.
δ3 δ4

δ2δ1

(a) Wrong 
hoi
e of subdomains:the middle bubble is not 
apturedby one subdomain (� = 0). δ3 δ4

δ1 δ2

(b) Good 
hoi
e of subdomains:ea
h bubble is in the interior of asubdomain (� = 3).Figure 4.2: A 2-D example of a bubbly �ow problem with m = 5 and two di�erent situations for theperturbations, fÆig.



4.3. Appli
ation to Bubbly Flows 55Remark 4.4.� From Conje
ture 4.1, we obtain the unexpe
ted result that a good strategy for
hoosing an appropriate de�ation ve
tor, �vi = vi + Æi , is related to AÆi , ratherthan to M�1AÆi .� We refer to [123℄ for related results 
on
erning the 
hoi
e of de�ation ve
tors.In that paper, two-level overlapping domain de
omposition pre
onditioners with
oarse spa
es are studied by smoothed aggregation in iterative solvers for �niteelement dis
retizations of ellipti
 problems. Furthermore, similar observations aspresented in this se
tion are proven using fun
tional analysis. It is a topi
 offuture resear
h to extend the theory given in [123℄ to the de�ation strategieshere.� Conje
ture 4.1 might be proven using ideas given in re
ent papers [5,81℄. In thesepapers, theoreti
al bounds for eigenvalue approximations are presented, usingso-
alled prin
ipal angles between subspa
es spanned by eigenve
tors asso
iatedwith these (perturbed) eigenvalues. This is also left for future resear
h.4.3.3 Level-Set De�ation Ve
torsIn the previous subse
tion, we have seen that exa
t eigenve
tors are not requiredto eliminate the smallest nonzero eigenvalues from the spe
trum of M�1PZA. Con-je
ture 4.1 
an serve as a guideline for approximating eigenve
tors 
orresponding toO(")�eigenvalues. This leads to strategies for 
hoosing e�e
tive de�ation ve
tors.We start with the so-
alled level-set de�ation method that is des
ribed below.By 
ombining the results obtained in Example 4.3 and Conje
ture 4.1, it 
an be
on
luded that eigenve
tors, fvig, asso
iated with the O(")�eigenvalues are still well-approximated, if� all entries of vi 
orresponding to a bubble of �1 in
luding its interfa
e ��1 ares
aled by a 
onstant. Therefore, the value 1 
an be 
hosen for the asso
iatedentries of the perturbed eigenve
tor �vi , as it follows from Assumption 4.1 thatall entries in a bubble are 
onstant;� the entries of vi 
orresponding to the high-density phase �0 
an be perturbedarbitrarily. To obtain sparse perturbed eigenve
tors, f�vig, these entries of vishould be perturbed su
h that they be
ome zero. In other words, (�vi)j = 0, ifxj 2 �h0 and xj =2 ��h1 .Hen
e, ea
h vi 
an be approximated well by a sparse �vi su
h that only the entries
orresponding to bubbles are nonzero. From Conje
ture 4.1, we also �nd that, if� � m � 1, then all O(")�eigenvalues of M�1A 
an be eliminated by 
hoosing k =m � 1. The requirement that � � m � 1 is automati
ally ful�lled if we asso
iateea
h �vi with one unique bubble, so that only the entries 
orresponding to a singlebubble are nonzero. The resulting de�ation-subspa
e matrix with f�vig is denoted by
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tion of De�ation Ve
torsWL 2 Rn�k, and the resulting de�ation method is 
alled L-DICCG�k, where k isalways 
hosen to be m � 1. We de�ne W̃L 2 Rn�m as WL 2 Rn�(m�1) extended witha 
olumn asso
iated with the ex
luded bubble. Later on, W̃L is used to de�ne thelevel-set-subdomain de�ation variant.Remark 4.5.� If some bubbles in 
 are very 
lose to ea
h other, then some grid points, fxig,might belong to the same nonzero entries of several 
olumns of WL. In this 
ase,row sums of WL 
an be larger than one, resulting in nondisjoint 
olumns. Thismight require a more sophisti
ated implementation of the method. On the otherhand, if disjoint ve
tors are imposed by 
hoosing zero instead of one at someentries asso
iated with the bubble interfa
e, then the 
orresponding eigenve
torsappear to be approximated badly. This results in slower 
onvergen
e of theiterative pro
ess, see also Se
tion 4.3.7.� If the density �eld, �, is known expli
itly, then L-DICCG�k 
an be simply appliedby lo
ating the bubbles in �1, and 
hoosing one for the 
orresponding entries ofthe 
olumns of WL. However, � is often given impli
itly in many appli
ations, sothat the method 
an only be used if an extra pro
edure exists that determines thebubbles expli
itly. For example, the level-set approa
h [102, 110℄ is adopted todes
ribe � impli
itly in our appli
ations, see, e.g., [143,154,156℄. In Appendix B,this method is des
ribed 
on
isely and an algorithm is presented for determiningthe bubbles from this level-set fun
tion.� The name `level-set de�ation' suggests that this approa
h is only appli
able if thedensity is des
ribed by the level-set fun
tion. This is however not the 
ase. Theapproa
h 
an always be applied, as long as the bubbles 
an be des
ribed eitherimpli
itly or expli
itly. More general names for the approa
h are `
oe�
ient-dependent de�ation' or 'density de�ation'.4.3.4 Subdomain De�ationIn bubbly �ow problems where 
 
ontains many bubbles or the density �eld, �, isunknown or too 
omplex, it is more appropriate to apply the de�ation te
hnique withsubdomain de�ation ve
tors instead of level-set de�ation ve
tors. These subdomainve
tors 
an be 
onstru
ted without any knowledge of � and are des
ribed earlier inSe
tions 3.6 and 4.2.3. We denote the de�ation method with subdomain ve
torsas S-DICCG�k, where k is the number of subdomains minus one. Moreover, WS 2Rn�k denotes the 
orresponding de�ation-subspa
e matrix, whi
h is de�ned in a moremathemati
al way below (
f. Se
tion 3.6).Let 
 be divided into open (equal) subdomains 
i ; i = 1; 2; : : : ; q + 1, su
h that
 = [q+1i=1 
i and 
i \
j = ; for all i 6= j . The dis
retized subdomains are denoted by
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hi . For ea
h 
hi , we introdu
e a de�ation ve
tor, zi , as follows:(zi)j := { 0; xj 2 
h n 
hi ;1; xj 2 
hi :Then, WS is de�ned by WS := [z1 z2 � � � zq℄; (4.14)so that k = q. Hen
e, WS 
onsists of disjoint (and, hen
e, orthogonal) pie
ewise-
onstant ve
tors, whi
h is generally not the 
ase for WL. Moreover, note that WS isusually less sparse and 
onsists of more ve
tors than WL, while the amount of work isO(n) for the 
onstru
tion of both WS and WL.We 
ould also extend WS with an extra 
olumn, zq+1, yieldingW̃S := [z1 z2 � � � zq zq+1℄;whi
h is used in Se
tion 4.3.5. Note that ea
h subdomain 
orresponds to one de�ationve
tor, and we have the identity W̃S1q+1 = 1n: (4.15)Remark 4.6.� Eq. (4.15) is a useful property with respe
t to implementation and some proofsof theoreti
al results. However, re
all that this might give rise to di�
ulties forapproximating eigenvalues asso
iated with the bubbles, espe
ially if bubbles arevery 
lose to ea
h other. In order to approximate the 
orresponding eigenve
torsappropriately, some row sums of WS should be larger than one, whereas this isnot possible using the 
urrent de�nition of WS.� We show in Chapter 5 that the de�ation matrix based onWS and W̃S are identi
al.Be
ause of Conje
ture 4.1, S-DICCG�k 
an only be e�
ient if ea
h subdomain,
j , 
ontains a part of at most one bubble. Otherwise, one or more O(")�eigenvalueswould remain in the spe
trum of M�1PWSA. Hen
e, the e�
ien
y of the de�ationmethod with a �xed setting of subdomains depends on the number and the lo
ationof the bubbles in 
. In order to ensure the e�
ien
y of the method, the number ofsubdomains, k, should be taken relatively large, 
ompared with the number of bubbles.We �nd that subdomain de�ation ve
tors also approximate other eigenve
tors 
or-responding to small eigenvalues of O(1), sin
e they appear to vanish from the spe
trumof M�1PWSA, for su�
iently large k. In Se
tion 4.3.6, we illustrate this in numeri
alexperiments, but we already state this observation in Proposition 4.3.Proposition 4.3. Let A and M�1 ful�ll Assumptions 1.2 and 4.1, respe
tively. LetWS be as de�ned in (4.14). Then, for su�
iently large k, R(WS) approximates theeigenspa
e 
orresponding to all O(")� and the smallest O(1)�eigenvalues of M�1A.
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tion of De�ation Ve
torsHen
e, S-DICCG�k is able to eliminate both O(")� and O(1)�eigenvalues fromM�1A. This means that, although S-DICCG�k is usually more expensive per itera-tion than L-DICCG�k, the total 
omputational 
ost 
an be mu
h less due to faster
onvergen
e.4.3.5 Level-Set-Subdomain De�ationFor a density �eld having a 
omplex geometry, S-DICCG�k with large k might en-
ounter di�
ulties to treat all O(")�eigenvalues e�e
tively, although the smallestO(1)�eigenvalues 
ould be eliminated. On the other hand, L-DICCG�k with k = m�1easily deals with the O(")�eigenvalues, while the O(1)�eigenvalues are usually un-tou
hed. Therefore, it might be bene�
ial to 
ombine both approa
hes. This newde�ation variant is 
alled LS-DICCG�k, and WLS 2 Rn�k denotes its 
orrespondingde�ation-subspa
e matrix. The exa
t form of WLS is de�ned below.The most straightforward 
hoi
e is to take W̃LS := [W̃L; W̃S℄, so that the level-set-subdomain de�ation-subspa
e matrix, WLS, is equal to� W̃LS, if 1n =2 R(W̃LS);� W̃LS without its last 
olumn, if 1n 2 R(W̃LS).In this 
ase, WLS 
onsists of at most q+m�1 
olumns. If both W̃L and W̃S are knowna priori, WLS 
an be 
onstru
ted immediately. Although the resulting approa
h mightbe e�e
tive, there are some obvious drawba
ks:� row sums of WLS larger than one are inevitable, whi
h makes the method lesssuitable for a parallel environment, and its implementation less e�
ient than theimplementations of level-set or subdomain de�ation;� it is not guaranteed that WLS has full rank.Instead of this above straightforward 
hoi
e of level-set-subdomain de�ation, we
hoose for an alternative approa
h. First, we de�ne some simple operations on ma-tri
es. The operation [Y 2 Rr�1, a
ting on Y = [yi ;j ℄ 2 Rr�s, means that a ve
toris 
reated whose entries are the maximum entries of ea
h row of Y , i.e., we have([Y )i = maxj yi ;j for ea
h i , requiring O(r) �ops. Moreover, for Y1 2 Rr�s1 andY2 2 Rr�s2, the operation Y1 \ Y2 2 Rr�s3 means that a new matrix (or ve
tor) is 
re-ated, whose 
olumns are equal to all possible 
omponentwise multipli
ations betweenthe 
olumns of Y1 and Y2 that are nonzero. Note that s3 � s1s2 holds and the amountof work for this operation is at most O(rs1s2). We now de�neW̃LS := [W1;W2℄; (4.16)with W1 := W̃S \ (1n � [W̃L); W2 := W̃L \ W̃S: (4.17)Hen
e, W1 
onsists of all subdomain ve
tors of WS where the entries 
orrespondingto �1 are zero. Moreover, W2 
onsists of 
olumns whose entries 
orrespond to the



4.3. Appli
ation to Bubbly Flows 59bubbles divided by the subdomains of W̃S. Now, the level-set-subdomain de�ation-subspa
e matrix, WLS, is equal to� W̃LS, if 1n =2 R(W̃LS);� W̃LS without its last 
olumn, if 1n 2 R(W̃LS).As noted earlier, both WLS and W̃LS lead to the same de�ation matrix. Example 4.5illustrates their 
onstru
tion.Example 4.5. LetW̃S = [ 1 1 1 1 0 0 0 00 0 0 0 1 1 1 1 ]T ; W̃L = [ 0 1 1 0 0 0 0 00 0 0 0 0 1 1 0 ]Tbe the de�ation-subspa
e matri
es 
orresponding to S-DICCG�1 and L-DICCG�1,respe
tively. Then, this yields[W̃L = [ 0 1 1 0 0 1 1 0 ]T ; 1n�[W̃L = [ 1 0 0 1 1 0 0 1 ]T ;resulting in W1 = W̃S \ (1n � [W̃L) = [ 1 0 0 1 0 0 0 00 0 0 0 1 0 0 1 ]T ;and W2 = W̃L \ W̃S = [ 0 1 1 0 0 0 0 00 0 0 0 0 1 1 0 ]T :This implies W̃LS = [W1;W2℄ =  1 0 0 1 0 0 0 00 0 0 0 1 0 0 10 1 1 0 0 0 0 00 0 0 0 0 1 1 0 T :As 1n 2 R(W̃LS), the level-set-subdomain de�ation-subspa
e matrix WLS is equal toWLS =  1 0 0 1 0 0 0 00 0 0 0 1 0 0 10 1 1 0 0 0 0 0 T :Remark 4.7.� If k is general, L-DICCG�k, S-DICCG�k and LS-DICCG�k are often denotedby L-DICCG, S-DICCG and LS-DICCG, respe
tively.� We have { R(W̃S) � R(W̃LS);R(W̃L) � R(W̃LS);
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tors
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4 5(a) L-DICCG�4 (k = m � 1).
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3 4(b) S-DICCG�3 (k = q = 3).
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9 12(
) LS-DICCG�11 (k < m(q + 1)).Figure 4.3: A 2-D bubbly �ow problem with m = 5, whi
h illustrates the level-set, subdomain andlevel-set-subdomain de�ation te
hnique.whi
h means that the de�ation subspa
e of LS-DICCG 
ontains the de�ationsubspa
es of both L-DICCG and S-DICCG.� The 
onstru
tion of WLS requires at most O(nms) �ops. In addition, 
omparedwith L-DICCG and S-DICCG, LS-DICCG requires more de�ation ve
tors, so aniteration of this hybrid method is more expensive due to the more sophisti
ated
oarse solves. However, sin
e the spe
trum of M�1PWLSA is more favorable,
onvergen
e 
an be mu
h faster, resulting in a possibly lower total 
omputational
ost of LS-DICCG.� The row sum of WLS is at most one. If 1n =2 R(W̃LS), then we even haveW̃LS1k = 1n. Consequently, LS-DICCG 
an be easily parallelized and the method
an be implemented very e�
iently.� Level-set de�ation might be 
ombined with other (de�ation) te
hniques to endup with more e�e
tive hybrid methods. In fa
t, level-set de�ation is used toremove the e�e
ts of the bubbles, so that it 
ould be 
ombined with any e�e
tivesolver (su
h as standard multigrid or methods based on fast Fourier transforms)to ta
kle Poisson problems with a 
onstant 
oe�
ient, i.e., problems withoutbubbles. This is left for future resear
h.



4.3. Appli
ation to Bubbly Flows 61We end this se
tion with Example 4.6, that illustrates the de�ation approa
hesproposed in this se
tion.Example 4.6. Consider a 2-D bubbly �ow problem with m = 5. The asso
iatedde�ation ve
tors in L-DICCG�4, S-DICCG�3 and the resulting LS-DICCG�11 aredepi
ted graphi
ally in Figure 4.3.4.3.6 Numeri
al ExperimentsAfter presenting possible 
hoi
es of de�ation ve
tors applied to bubbly �ows, we showtheir e�
ien
y in 2-D numeri
al experiments. We test the three de�ation approa
hesL-DICCG, S-DICCG and LS-DICCG, and 
ompare them with ICCG. The 
omputationsare performed on a Pentium 4 (2.80 GHz) 
omputer with a memory 
apa
ity of 1GBusing MATLAB. Sin
e it is easy to use the sparse implementation for matri
es andve
tors in MATLAB, we are able to measure fairly the 
omputing time that is requiredfor the whole iteration pro
ess of the 
ompared methods 1.First, we 
onsider brie�y the test problem without bubbles, that is the Poissonproblem with a 
onstant 
oe�
ient, so that " = 1. Next, we treat the test problemwith bubbles, where we vary the grid size, n, the density 
ontrast, � = 1" , and thenumber of bubbles, m. The employed geometry of the density �eld based on m = 5
an be found in Figure 1.3. The linear system, Ax = b, is solved, where the termination
riterion is based on (3.27) with Æ = 10�7.Test Problem with a Constant Coe�
ientFor this spe
i�
 test problem without bubbles in the domain, S-DICCG is the onlymethod that 
an be applied. The results for the problem with � = 1 and n = 162 arepresented in Table 4.1. Method # It.ICCG 23S-DICCG�3 22S-DICCG�15 15S-DICCG�63 10Table 4.1: Results for the Poisson problem with � = 1 and n = 162. `# It' means the number ofrequired iterations for 
onvergen
e.From Table 4.1, it 
an be noti
ed that S-DICCG redu
es the number of iterations,
ompared with ICCG. The 
orresponding eigenvalues of M�1A and M�1PWSA 
an befound in Figure 4.4.From both subplots of Figure 4.4, we observe that small O(1)�eigenvalues ofM�1A are eliminated from the spe
trum of M�1PWSA (
f. Proposition 4.3), whereas1This is in
luding the 
omputation of AZ and E, but ex
luding the 
onstru
tion of Z, sin
e it
annot be done e�
iently in MATLAB. However, the 
omparison is still fair, sin
e the 
omputational
ost to 
onstru
t Z is negligible by 
onsidering the �op 
ounts given in previous subse
tions.
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tion of De�ation Ve
torsthe large eigenvalues remain in the spe
trum. In
reasing the number of de�ationve
tors results in the elimination of more small eigenvalues. This 
an be explainedby the fa
t that the 
orresponding eigenve
tors are relatively smooth, so that they
an be well-approximated by the subdomain de�ation ve
tors. Other eigenve
tors
orresponding to larger eigenvalues of M�1A do not have a smooth behavior, and,therefore, these are more di�
ult to approximate by using these ve
tors, see [141, Se
t.10.1℄ for more details.
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eigenvalues M−1A

eigenvalues M−1PA(b) S-DICCG�63 (10 iterations).Figure 4.4: Eigenvalues of M�1A and M�1PWSA for S-DICCG, applied to the Poisson problem with� = 1 and n = 162.Test Problem with Varying Grid SizesNext, we perform a numeri
al experiment for the Poisson problem with m = 5, � = 106,and varying grid sizes. The 
onvergen
e results, in
luding the 
omputational 
ost, 
anbe found in Table 4.2. n = 162 n = 322 n = 642De�ation Method k # It. CPU # It. CPU # It. CPUICCG � 39 0.04 82 0.53 159 10.92S-DICCG�k 3 37 0.12 80 0.67 194 14.0115 36 0.07 97 0.80 193 13.8263 19 0.11 16 0.20 26 2.14L-DICCG�k 4 17 0.09 37 0.37 75 6.17LS-DICCG�k 11 14 0.07 30 0.29 54 4.0835 10 0.08 21 0.32 40 3.0583 � � 15 0.20 25 2.05Table 4.2: Results for the Poisson problem with m = 5, � = 106, and varying grid sizes, n. `#It' means the number of required iterations, and `CPU' is the 
orresponding 
omputational time inse
onds.For all grid sizes, it 
an be observed that S-DICCG�63 is very e�
ient, 
omparedwith ICCG. This is in 
ontrast to S-DICCG�3 and S-DICCG�15, whose performan
eis 
omparable to ICCG. The explanation is that Assumption 4.2 is ful�lled only for
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ation to Bubbly Flows 63k = 63, and, a

ording to Conje
ture 4.1, the spe
trum asso
iated with S-DICCG�63does not 
ontain O(")�eigenvalues, see also Se
tion 4.3.7. For the other two 
ases,S-DICCG�3 and S-DICCG�15, some de�ation subdomains 
onsist of parts of severalbubbles, and, therefore, the 
orresponding de�ation ve
tors do not satisfy Assump-tion 4.2. Hen
e, the number of O(")�eigenvalues remains the same after applyingsubdomain de�ation. Furthermore, note that ICCG requires signi�
antly fewer itera-tions than S-DICCG�3 and S-DICCG�15 in the 
ase of n = 642. This is 
aused by thefa
t that the 
orresponding residuals show errati
 behavior with relatively large bumps,so that a small round-o� error during the iteration pro
ess 
an lead to signi�
antdi�eren
es in 
onvergen
e, see [141, Se
t. 10.3℄ for more details.From Table 4.2, we observe that L-DICCG redu
es signi�
antly the number ofiterations. It is an e�
ient method, sin
e it requires only four de�ation ve
tors. We�nd that LS-DICCG performs very well in all 
ases, but S-DICCG and LS-DICCGbe
ome 
omparable for su�
iently large k.Remark 4.8. If there are some limitations with respe
t to the number of de�ationve
tors due to memory 
apa
ity, then LS-DICCG would 
onverge faster than S-DICCG.Suppose that only k < 50 de�ation ve
tors 
an be kept in memory, than the fastestmethod is LS-DICCG�35 a

ording to Table 4.2.Test Problem with Varying Density ContrastsWe �x m = 5 and n = 642, whereas the density 
ontrast, �, is varied in the nextnumeri
al experiment. The results of this experiment are presented in Table 4.3.� = 103 � = 106De�ation Method k # It. CPU # It. CPUICCG � 118 8.12 159 10.92S-DICCG�k 3 134 9.79 194 14.0115 131 9.60 193 13.8263 26 2.31 26 2.14L-DICCG�k 4 74 5.98 75 6.17LS-DICCG�k 11 54 4.05 54 4.0835 40 3.08 40 3.0583 25 2.46 25 2.41Table 4.3: Results for the Poisson problem with m = 5, n = 642, and varying density 
ontrast, �.From Table 4.3, we see that ICCG requires more iterations and CPU time forlarger �, due to the presen
e of O(")�eigenvalues in the 
orresponding spe
trum. Thisobservation does not hold for L-DICCG and LS-DICCG, whi
h is a favorable feature ofthese methods, and it 
on�rms the theory given in the previous se
tion. For su�
ientlylarge k, it 
an be noti
ed that S-DICCG is also insensitive to �. Furthermore, it 
anagain be observed that S-DICCG�3 and S-DICCG�15 
onverge more slowly thanICCG, whereas S-DICCG�63 is faster in this experiment.
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tion of De�ation Ve
torsTest Problem with Varying Number of BubblesWe 
onsider the Poisson problem with � = 106, n = 642, and a varying number ofbubbles, m. The results of this experiment 
an be found in Table 4.4.We observe that ICCG needs more iterations for larger m. This 
an be explained byProposition 4.1, whi
h states that an in
rease of m leads to more O(")�eigenvalues.For L-DICCG, LS-DICCG, and S-DICCG with su�
iently large k, we see that theirperforman
e depends less on m, whi
h is a favorable feature of these de�ation ap-proa
hes.Noti
e that L-DICCG�0 is unde�ned, so this method 
annot be applied for m = 1.Furthermore, L-DICCG 
onverges in fewer iterations for in
reasing m > 1. Finally,S-DICCG 
onverges again slower than ICCG for k � 15.m = 1 m = 2 m = 5De�ation Method k # It. CPU k # It. CPU k # It. CPUICCG � 89 6.13 � 104 7.20 � 159 10.92S-DICCG�k 3 96 7.39 3 69 5.13 3 194 14.0115 52 3.97 15 64 4.79 15 193 13.8263 26 2.14 63 27 2.16 63 26 2.14L-DICCG�k 0 � � 1 79 5.79 4 75 6.17LS-DICCG�k 7 67 5.30 6 65 5.11 11 54 4.0819 41 3.14 24 42 3.22 35 40 3.0567 26 2.50 72 26 2.11 83 25 2.05Table 4.4: Results for the Poisson problem with � = 106, n = 642, and varying number of bubbles, m.In 
ontrast to ICCG, all approa
hes of the de�ation method (ex
ept for S-DICCGwith relatively small k) hardly depend on m. This implies that, for problems with anin
reasing number of bubbles, the de�ation method be
omes more and more superiorto ICCG.4.3.7 Analysis of Small EigenvaluesIn this subse
tion, we present some spe
tral information 
orresponding to the de�ationapproa
hes. These are based on the numeri
al experiments des
ribed in Se
tion 4.3.6.Level-Set De�ationIn Se
tion 4.3.6, we have noti
ed that L-DICCG�4 redu
es signi�
antly the number ofiterations, 
ompared with ICCG. Figure 4.5 shows the 
orresponding spe
tra. Be
ausewe 
on
entrate on small eigenvalues, only the 80 smallest eigenvalues of ea
h spe
trumare presented.First, it 
an be noti
ed in Figure 4.5(a), that O(1)�eigenvalues are approximatelythe same for ICCG and L-DICCG�4. In Figure 4.5(b), we see that all O(10�6)�eigen-values are removed from M�1PWLA. However, eigenvalues in the vi
inity of 0.2 appear,see Figure 4.5(a).



4.3. Appli
ation to Bubbly Flows 65As noti
ed in Se
tions 4.3.2 and 4.3.3, interfa
es of bubbles should 
ontributeto the de�ation ve
tors. If these interfa
es are ex
luded in the level-set de�ationve
tors, then the 
onvergen
e of L-DICCG�4 is signi�
antly slower. In this 
ase, itappears that O(10�6)�eigenvalues are e�e
tively eliminated, but with the drawba
kthat eigenvalues between " and 1 appear.
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eigenvalues M−1A

eigenvalues M−1PA(b) Logarithmi
 s
ale: L-DICCG�4.Figure 4.5: Eigenvalues of both M�1A and M�1PWLA 
orresponding to L-DICCG�4, for the Poissonproblem with � = 106 and n = 162.Subdomain De�ationIn Se
tion 4.3.6, we have seen that S-DICCG�15 does not give any improvement ofthe 
onvergen
e, whereas S-DICCG�63 is very e�
ient, 
ompared with ICCG. This
an be understood by 
onsidering their spe
tral plots, see Figure 4.6 where the 80smallest eigenvalues of ea
h spe
trum are depi
ted.It appears that values below 10�8 
an be interpreted as zero eigenvalues in Fig-ure 4.6. Then, in the 
ase of S-DICCG�15 (see Figure 4.6(b)), it 
an be observedthat none of the O(10�6)�eigenvalues of M�1A are eliminated after de�ation, sin
ethey remain in the spe
trum of M�1PWSA. Moreover, S-DICCG�63 
onverges veryfast, be
ause the O(10�6)�eigenvalues vanish from the spe
trum, see Figure 4.6(d).Apparently, only for su�
iently large k, ea
h de�ation subdomain 
onsists of a part ofat most one bubble. Hen
e, the smallest eigenvalues 
an be eliminated, whi
h 
on�rmsConje
ture 4.1.With respe
t to the small O(1)�eigenvalues, we observe in Figure 4.6(a) that theyare approximately the same for ICCG and S-DICCG�15. Moreover, for the 
ase ofS-DICCG�63 (Figure 4.6(
)), it 
an be seen that the smallest O(1)�eigenvalues donot appear in the spe
trum of M�1PWSA, whi
h is similar to the 
ase of L-DICCG�4(
f. Figure 4.5(a)). However, some other small eigenvalues around 0.1 
an be no-ti
ed in Figure 4.6(
). Roughly speaking, the eliminated O(10�6)�eigenvalues giverise to small eigenvalues of order 10�1. Apparently, the eigenve
tors asso
iated withO(10�6)�eigenvalues are not approximated a

urately enough by the subdomain de�a-tion ve
tors, even if we in
rease k. This might be 
aused by the fa
t that, by de�nition,
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eigenvalues M−1A

eigenvalues M−1PA(d) Logarithmi
 s
ale: S-DICCG�63.Figure 4.6: Eigenvalues of M�1A and M�1PWSA 
orresponding to S-DICCG, for the Poisson problemwith � = 106 and n = 162.the subdomain de�ation ve
tors have the unfavorable property that they are disjoint.This 
an be remedied by using LS-DICCG instead of S-DICCG, see Se
tion 4.3.7.
Level-Set-Subdomain De�ationAs observed in Se
tion 4.3.6, LS-DICCG performs very well for all k. The relatedspe
tral plots 
an be found in Figure 4.7.From Figure 4.7(a) and 4.7(b), we see that only O(10�6)�eigenvalues disappearand all O(1)�eigenvalues remain in the spe
trum in the 
ase of LS-DICCG�11. InFigure 4.7(
) and 4.7(d), it 
an be observed that both O(10�6)� and the smallestO(1)�eigenvalues do not appear in the spe
trum 
orresponding to LS-DICCG�35.More importantly, in 
ontrast to the 
ases of S-DICCG and L-DICCG, the eliminationof O(10�6)�eigenvalues by LS-DICCG does not give rise to new eigenvalues between" and 1. This is a favorable feature of level-set-subdomain de�ation.
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eigenvalues M−1A

eigenvalues M−1PA(d) Logarithmi
 s
ale: LS-DICCG�35.Figure 4.7: Eigenvalues of both M�1A and M�1PWLSA 
orresponding to LS-DICCG, for the Poissonproblem with " = 106 and n = 162.4.4 Con
luding RemarksSome strategies for 
hoosing de�ation ve
tors are reviewed in this 
hapter: approxi-mate eigenve
tor, re
y
ling, subdomain and multigrid de�ation ve
tors. Ea
h of themhas its own advantages and drawba
ks. The most favorable 
hoi
e strongly depends onmany aspe
ts, su
h as the problem setting, spe
i�
 appli
ation, a priori knowledge of(spe
tral) information, linear systems to be solved, used Krylov solver, and maximumnumber of allowed de�ation ve
tors. Hen
e, there is no ultimate strategy that alwaysperforms best for all 
ases, although we advo
ate that subdomain de�ation is oftenthe most appropriate 
hoi
e.In the se
ond part of this 
hapter, we present some spe
tral analysis to de�ationwith inexa
t eigenve
tors, whi
h leads to strategies for 
hoosing the best de�ationve
tors in bubbly �ow appli
ations. The main result is that eigenve
tors 
orrespondingto the smallest eigenvalues 
an be perturbed in su
h a way that they be
ome sparse,whi
h motivates the use of subdomain de�ation. Based on this result, two otherde�ation approa
hes are introdu
ed and dis
ussed. The �rst approa
h is the level-setde�ation method, where the sparse de�ation ve
tors are based on the geometry of thedensity �eld. The se
ond approa
h, whi
h is the level-set-subdomain de�ation method,
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tion of De�ation Ve
tors
ombines original subdomain and level-set de�ation, and has the advantages of bothapproa
hes.In the numeri
al experiments, we 
ompare the proposed de�ation approa
hes forbubbly �ows. In most test 
ases, all of them perform very well 
ompared with ICCG.In addition, they are insensitive to large density 
ontrasts and the number of bubbles.Subdomain de�ation is only e�
ient for a su�
iently large number of subdomains. Inthis 
ase, not only the smallest eigenvalues 
orresponding to the bubbles are eliminated,but also other small eigenvalues. Moreover, level-set de�ation eliminates the smallesteigenvalues 
orresponding to bubbles at low 
ost, but leaves the other eigenvaluesmore or less untou
hed. For both of these methods, the elimination of the smallesteigenvalues may result in a spe
trum that 
onsists of eigenvalues whi
h are obviouslysmaller than those of the main 
luster. It appears that level-set-subdomain de�ationdoes not have this drawba
k. Therefore, it is an e�
ient method, although the workper iteration and the work to 
reate the de�ation ve
tors 
an be signi�
antly largerthan for the other two approa
hes. However, we note that, if the number of de�ationve
tors is su�
iently large, then the di�eren
e in performan
e between subdomainand level-set-subdomain de�ation is small. In addition, subdomain de�ation has theimportant advantages that it 
an be used as a bla
kbox method without any knowledgeof the density �eld, and 
an be implemented and parallelized in a straightforward way.Hen
e, subdomain de�ation is our method of 
hoi
e and it is frequently used in theremainder of this thesis.Finally, a topi
 for future resear
h is improving the proposed de�ation approa
hes.Sin
e level-set de�ation is used to treat the bubbles e�e
tively, it might be possible to
ombine it with any e�e
tive solver (su
h as standard multigrid or methods based onfast Fourier transforms) for the standard Poisson problem with a 
onstant 
oe�
ientin order to obtain a powerful method, that 
ould e�e
tively deal with bubbly �owproblems.



Chapter 5Subdomain De�ation applied toSingular Matri
es5.1 Introdu
tionIn Chapter 3, new theoreti
al results have been presented for the de�ation methodapplied to singular 
oe�
ient matri
es. In this 
hapter, we deal with the issue ofde�ation and singularity in more detail. Although many results presented here 
an begeneralized to de�ation with a general Z, we restri
t ourselves to subdomain de�ationfor 
onvenien
e, see De�nition 5.1.De�nition 5.1. Let the open domain, 
, be divided into subdomains,
j ; j = 1; 2; : : : ; q+1, su
h that 
 = [q+1j=1
j and 
i \ 
j = ; for all i 6= j . The dis
retized domainand subdomains are denoted by 
h and 
hj , respe
tively. Then, for ea
h 
hj withj = 1; 2; : : : ; q + 1, a de�ation ve
tor, zj , is de�ned as follows:(zj)i := { 0; xi 2 
h n
hj ;1; xi 2 
hj ; (5.1)where xi is a grid point in the dis
retized domain, 
h. Then, for 1 < j � q, thede�ation-subspa
e matri
es are de�ned as
{ Zj := [z1 � � � zj] ;Ẑj := [Zj�1; z0] ;where z0 = 1n. In addition, we de�ne Z1 := z1 and Ẑ1 := z0.By 
onstru
tion, subdomain de�ation ve
tors are disjoint and sparse. Moreover, Prop-erty 5.1 
an be derived from De�nition 5.1.Property 5.1. Let Zj , Ẑj and zj be as given in De�nition 5.1. Then, the followingstatements hold: 69



70 Chapter 5. Subdomain De�ation applied to Singular Matri
es(i) Zk1k = 1n;(ii) Zk�11k�1 6= Ẑk1k 6= 1n;(iii) ZTk�1e(n)n = 0k�1;(iv) ẐTk�1e(n)n = 1n;(v) Ẑke(k)k = z0;(vi) Zje(i)j = zi ; 1 < j � k; 1 � i � j ;(vii) Ẑje(i)j = zi ; 1 < j < k; 1 � i � j .Subs
ripts 
orresponding to matri
es will be omitted, if we deal with general matri
eswithout spe
i�ed dimensions.In all previous 
hapters, we have performed the analysis and 
omputations basedon a singular 
oe�
ient matrix, A, from the linear system (see Eq. (1.1))Ax = b; A 2 Rn�n: (5.2)However, in many CFD pa
kages, one imposes an invertible A, denoted by �A, see also[17,77,113℄. This makes the solution, x , of (5.2) unique, whi
h might be advantageousin 
omputations:� dire
t solution methods, su
h as Gaussian elimination, might have some di�
ul-ties to solve (5.2) with a singular A;� linear system (5.2) might be in
onsistent as a result of rounding errors, whereasthe linear system with �A is always 
onsistent;� the de�ation te
hnique requires an invertible matrix E = ZTAZ. This is guar-anteed for any full-rank Z = [z1 � � � zk ℄ if �A is used.One 
ommon way to for
e invertibility of A is to repla
e its last entry, an;n, by �an;n =(1+�)an;n with � > 0. In fa
t, a Diri
hlet boundary 
ondition is imposed at one pointof the domain, 
. This modi�
ation results in an invertible linear system,�Ax = b; �A = [�ai ;j ℄ 2 Rn�n; (5.3)where �A is SPD. In pra
ti
e, it appears that the 
ondition number, �, is relativelylarge, espe
ially if � is 
lose to 0, see Lemma 5.1(ii). Hen
e, solving (5.3) with the CGmethod typi
ally shows slow 
onvergen
e, see also [77, Se
t. 4℄ and [113, Se
t. 6.7℄.Similarly, this fa
t holds for the ICCG method as well, see Se
tion 5.5.1. In this
hapter, a 
omparative study is performed on the de�ation methods based on (5.2)and (5.3).We have assumed in the previous 
hapters that Z does not 
onsist of 
ompo-nents of the null spa
e of A, N (A), in order to ensure that E is nonsingular (see



5.2. Preliminaries 71Assumption 3.1). However, N (A) is not always known a priori, and, additionally, itis sometimes not pra
ti
al to ex
lude some 
omponents from Z. In this 
hapter, weinvestigate this issue in more detail. It is derived that there exists a strong 
onne
tionbetween de�ation methods based on a singular and nonsingular matrix E.The main questions that are answered in this 
hapter are:� 
an the de�ation method based on a singular E always be transformed into amethod with a nonsingular E, while A is still singular?� is it possible to transform the de�ation method based on a singular A into amethod where A is nonsingular?We start with some notations, de�nitions and preliminary results in Se
tion 5.2.Se
tion 5.3 is devoted to the introdu
tion of the de�ation variants that are 
ompared inthis 
hapter. The theoreti
al 
omparison of these variants is performed in Se
tion 5.4.Some results of numeri
al experiments are presented in Se
tion 5.5. We end this
hapter with some 
on
luding remarks in Se
tion 5.6.Throughout this 
hapter, Assumption 1.2 holds. Re
all that this assumption isalways ful�lled in bubbly �ow appli
ations, but it 
ould also be applied to other �elds.5.2 PreliminariesWe start this se
tion by presenting the de�nition of a nonsingular 
oe�
ient matrix,�A, based on A.De�nition 5.2. Let A satisfy Assumption 1.2. Suppose that � > 0 is given. Then,the 
oe�
ients of �A = [�ai j ℄ are de�ned as�ai ;j = { (1 + �)ai ;j ; if i = j = n;ai ;j ; otherwise. (5.4)The next two properties follow immediately, where we use Lemma A.9.Property 5.2. Let �A be as given in De�nition 5.2. Then, �A is invertible and SPD.Property 5.3. Let �A be as given in De�nition 5.2. Then, it satis�es �A1n;n = �an;ne(n)n;n.In parti
ular, �A1n = �an;ne(n)n .It 
an be easily shown that for
ing invertibility of A automati
ally leads to a worse
ondition number, see Lemma 5.1.Lemma 5.1. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respe
tively.Then,(i) �( �A) � �(A); for all � > 0;(ii) lim�!0 �( �A) =1.
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esProof. (i) Note that we 
an write�A = A+ �

T ; 
 = e(n)n ; � = �an;n:Lemma A.6 
an now be applied by taking B := �A and C := A. From Eq. (A.1), wethen obtain �i(A) � �i( �A) � �i+1(A); i = 1; 2; : : : ; n � 1:Therefore, �1(A) < �1( �A) � �2(A); (5.5)using Property 5.2. Furthermore, from Eq. (A.2), we derive�n( �A) � �n(A): (5.6)By 
ombining Eqs. (5.5) and (5.6),�( �A) = �n( �A)�1( �A) � �n(A)�2(A) = �(A)follows.(ii) Taking B := A and G := �A� B in Lemma A.10(ii) leads toG = �an;ne(n)n (e(n)n )T ;yielding �1(G) = : : : = �n�1(G) = 0; �n(G) = �an;n:As a result of Lemma A.10(ii), we obtain�i(A) � �i( �A) � �i(A) + �an;n; i = 1; 2; : : : ; n;so, in parti
ular,0 < �1( �A) � �an;n; �n(A) � �n( �A) � �n(A) + �an;n:This implies lim�!0�( �A) = lim�!0 �n( �A)�1( �A) � lim�!0 �n(A)�an;n =1:
Remark 5.1. Lemma 5.1 seems to be generalizable for pre
onditioned 
oe�
ient ma-tri
es, although a proof is la
king.Let B 2 Rn�n be an arbitrary matrix. Then, B+ 2 Rn�n denotes the pseudo-inverse (also 
alled Moore-Penrose generalized inverse) of B, if it satis�es all following
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onditions: 



BB+B = B;B+BB+ = B+;(BB+)T = BB+;(B+B)T = B+B: (5.7)Obviously, if B is nonsingular, then the pseudo-inverse and the inverse 
oin
ide, i.e.,B+ = B�1. In general, the pseudo-inverse always exists and is unique: for any B, thereis pre
isely one B+ that satis�es (5.7). We refer to, e.g., [14, 73℄ for more details onthe pseudo-inverse.Remark 5.2. The pseudo-inverse of a symmetri
 (and possibly singular) matrix, A,
an be 
omputed expli
itly by �rst writingA = V �V T ; V = [v1 v2 � � � vn℄; � = diag(�1; �2; : : : ; �n);with diagonal matrix � 
onsisting of the eigenvalues of A, and V being an orthonormalmatrix that 
onsists of the 
orresponding eigenve
tors. Now, the pseudo-inverse of A
an be determined via A+ := V �+V T ;where �+ is a diagonal matrix with the re
ipro
als of ea
h nonzero entry on thediagonal of �, and leaving the zeros in pla
e. For example, � = diag(0; 1; 2; 3) gives�+ = diag (0; 1; 12 ; 13). This implies that a solution of the 
onsistent linear system,Ax = b, is given by x = A+b = V �+V Tb:Using pseudo-inverses, the next de�nition and 
orresponding 
orollaries 
an begiven.De�nition 5.3. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respe
tively.Let Zi and Ẑi be as given in De�nition 5.1. Then, the de�ation matri
es are de�nedas 



Pi := I � AQi ; Qi := ZiE+i ZTi ; Ei := ZTi AZi ;�Pi := I � �A �Qi ; �Qi := Zi �E�1i ZTi ; �Ei := ZTi �AZi ;P̂i := I � �AQ̂i ; Q̂i := Ẑi Ê�1i ẐTi ; Êi := ẐTi �AẐi :Both �Pi and P̂i are based on the invertible 
oe�
ient matrix, �A, whi
h only di�er fromthe de�ation-subspa
e matri
es. Hen
e, �Ei and Êi are both nonsingular, so that �E�1iand Ê�1i exist. On the other hand, Pi is based on the singular 
oe�
ient matrix, A.Sin
e the resulting Ek is singular due to Corollary 5.2, its pseudo-inverse has to beused in Pi .Corollary 5.1. Let P̂k and �Pk be as given in De�nition 5.3. Then, P̂k = �Pk holds.Proof. This follows immediately from Theorem 3.2, sin
e R(Zk) = R(Ẑk).Corollary 5.2. Let Ei be as given in De�nition 5.3. Then,
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es� Ek�1 is nonsingular;� Ek is singular.Proof. (i) Sin
e N (A) * R(Zk�1) is satis�ed, Ek�1 is nonsingular, due to Lemma 3.1.(ii) Using Property 5.1(i), we haveEk1k = ZTk AZk1k = ZTk A1n = ZTk 0n = 0k ; (5.8)so that Ek is singular.Remark 5.3. In Chapter 3, some properties of the de�ation method have been derivedusing de�ation matrix Pk , where Ek is assumed to be invertible. These properties holdin parti
ular for the de�ation methods based on �Pk and P̂k .5.3 De�ation VariantsIn this se
tion, we present three de�ation variants based on De�nitions 5.2 and 5.3.Variant 5.1. Solve �x from M�1Pk�1A�x = M�1Pk�1b: (5.9)Variant 5.2. Solve �x from �M�1 �Pk �A�x = �M�1 �Pkb: (5.10)Variant 5.3. Solve �x from M�1PkA�x = M�1Pkb: (5.11)Variant 5.1 is the 
ommon de�ation method that has been used in prior 
hapters, withthe only di�eren
e that k � 1 instead of k de�ation ve
tors are adopted. Variant 5.2is based on the nonsingular 
oe�
ient matrix, �A, so that this variant is always well-de�ned. Finally, Variant 5.3 is basi
ally identi
al to the original DPCG for invertible
oe�
ient matri
es (see, e.g., [56,103℄), sin
e the original 
oe�
ient matrix and all kde�ation ve
tors are used in this variant. Hen
e, it is the most natural generalizationof DPCG for singular systems, although additional e�orts are required to generalize allknown results for invertible 
oe�
ient matri
es or singular 
oe�
ient matri
es with anonsingular Galerkin matrix, E. However, this 
an be 
ir
umvented, be
ause we showin Se
tion 5.4.4 that Variant 5.3 is (almost) identi
al to the other two variants.Remark 5.4.� For Variants 5.1 and 5.2, it is 
ommon to solve the Galerkin systems asso
iatedwith Ek�1 or �Ek in a dire
t way, if k is relatively small. However, these Galerkinsystems 
ould also be solved iteratively, whi
h 
an be more e�
ient if k is rela-tively large. On the other hand, although E�1k does not exist, it may be possible



5.4. Theoreti
al Comparison of De�ation Variants 75to apply a dire
t method for solving the 
orresponding Galerkin systems. Extra
are is then needed by applying, e.g., Gaussian elimination or the band-Choleskyde
omposition, to handle the singularity of Ek and to generate a solution upto N (Ek). However, in this thesis, we restri
t ourselves to solve the Galerkinsystems in Variant 5.3 iteratively, so that the pseudo-inverse is not expli
itly re-quired. This does not 
ause any problems, as long as these Galerkin systems are
onsistent, see Chapter 8.� There are more de�ation variants known in the literature, whi
h deal with sin-gular 
oe�
ient matri
es. For example, a variant 
an be based on Variant 5.3,where one entry of Zk is perturbed su
h that Ek be
omes nonsingular. Spe
ial
are should be taken to 
hoose this perturbation appropriately, see [168℄. An-other variant, that is frequently applied in the multigrid �eld, is also related toVariant 5.3. If we restri
t ourselves to two-grid methods, then Ek is perturbedsu
h that it be
omes nonsingular. In other words, the 
orresponding de�ationmatrix isPi := I � AQi ; Qi := Zi Ê�1i ZTi ; Ei := ZTi AZi ; Êi � Ei : (5.12)Êi 
ould be obtained in the same way as Â (
f. De�nition 5.2). The asso
iatedGalerkin systems 
an now be solved with a dire
t method, see also Chapter 9.However, if an iterative method is used, then a slower 
onvergen
e would beexpe
ted, 
ompared to the 
onvergen
e for solving the Galerkin systems in Vari-ant 5.3. This follows from the fa
t that Êi is more ill-
onditioned than theoriginal Ei (
f. Lemma 5.1(i)).For the sake of 
onvenien
e, the 
orresponding matri
es of the three de�ationvariants are summarized in Table 5.1. These variants are 
ompared in the next se
tionin order to determine the most e�e
tive variant.Matri
esVariant Coe�
ient De�ation-subspa
e Galerkin Corre
tion De�ation5.1 A Zk�1 Ek�1 Qk�1 Pk�15.2 �A Zk �Ek �Qk �Pk5.3 A Zk Ek Qk PkTable 5.1: Corresponding matri
es of the proposed de�ation variants.5.4 Theoreti
al Comparison of De�ation VariantsIn this se
tion, we �rst show that the 
ondition number of �A is redu
ed to the 
onditionnumber of A by a simple de�ation te
hnique. Thereafter, we prove that even thematri
es �M�1 �Pk �A and M�1Pk�1A 
orresponding to Variants 5.1 and 5.2, respe
tively,are (almost) equal. Finally, it is also shown that M�1Pk�1A from Variant 5.1 and
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esM�1PkA from Variant 5.3 are equal. As a 
onsequen
e, Variants 5.1, 5.2 and 5.3 arebased on approximately identi
al pre
onditioned-de�ated 
oe�
ient matrix, so thatthey would theoreti
ally lead to the same 
onvergen
e results.5.4.1 On the Conne
tion of the Singular and Invertible MatrixRe
all that �P1 is the de�ation matrix with one 
onstant de�ation ve
tor based on �A.In this subse
tion, we show that the de�ated matrix, �P1 �A, is identi
al to the originalsingular matrix, A. We start with Lemma 5.2, that shows that �P1 is the identity matrixex
ept for the last row.Lemma 5.2. Let �P1 be as given in De�nition 5.3. Then, �P1 = I � e(n)n;n.Proof. For k = 1, we have�P1 = I � �Az0 �E�1zT0 ; �E�1 = (zT0 �Az0)�1 = 1�an;n ;using Property 5.3. Hen
e, �P1 = I � �A1n;n�an;n = I � e(n)n;n:As a 
onsequen
e, �P1 has the properties that the last 
olumn is 0n, and the matrix
onsists of only the values 0, 1 and �1. Next, by applying Lemma 5.2, we obtain thefollowing theorem.Theorem 5.1. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respe
tively.Let �P1 be as given in De�nition 5.3. Then, �P1 �A = A holds.Proof. Due to Lemma 5.2, �P1 �A = A holds for all rows ex
ept the last one. Theanalysis of the last row of �P1 �A, whi
h is (e(n)n � 1n)T �A, is as follows. Sin
e 1Tn A = 0Tnand (e(n)n � 1n)T �A = (e(n)n � 1n)TA hold, this yields(e(n)n � 1n)T �A = (e(n)n )T A:Hen
e, the last row of �P1 �A and A is also equal, whi
h proves the theorem.Theorem 5.1 implies that, after premultiplying with the de�ation matrix with k = 1,the invertible 
oe�
ient matrix, �A, be
omes equal to the original singular 
oe�
ientmatrix, A. Apparently, only one eigenvalue of �A depends on the value of �, whi
h
orresponds to the 
onstant eigenve
tor. This eigenve
tor is eliminated e�e
tively by�P1, so that �P1 �A and A are equal. Moreover, a

ording to the proof of Theorem 5.1,the results for this de�ation te
hnique are independent of the entries of the last rowof �A.



5.4. Theoreti
al Comparison of De�ation Variants 775.4.2 Comparison of the De�ated Singular and Invertible MatrixTheorem 5.2 is the main result of this subse
tion. In order to prove this theorem,a set of lemmas is required, whi
h are stated below. The most important lemmasare Lemma 5.3 and Lemma 5.6, whi
h show that de�ation matrix �Pk is invariant byright-multipli
ation by �P1, and that de�ated matri
es �PkA and Pk�1A are identi
al.Lemma 5.3. Let �Pi be as given in De�nition 5.3. �Pk �P1 = �Pk holds.Proof. Note �rst that the last 
olumn of �E�1 is equal to 1�an;n 1k by usingZTk �AZk1k = �an;nZTk e(n)n = �an;ne(k)kand Lemma A.11. Then, for all �, the last 
olumn of �A �Qk is exa
tly e(n)n , sin
e wehave
( �A �Qk)1:n;n = ( �AZk �E�1ZTk )1:n;n =∑kp=1 ( �AZk)1:n;p ( �E�1ZTk )p;n= 1�an;n ∑kp=1( �AZk)1:n;p = 1�an;n �A1n = 1�an;n �an;ne(n)n = e(n)n ;for all i = 1; 2; : : : ; n, where De�nition 5.1 and Property 5.1 are used. Therefore, thelast 
olumn of �Pk = I � �A �Qk is 0n. Using the latter fa
t 
ombined with Property 5.3,we obtain �Pk �A1n = 0n. Hen
e, this implies�Pk �P1 = �Pk (I � � �A1n) = �Pk � � �Pk �A1n = �Pk :Lemma 5.4. Let Ẑk and �A be as given in De�nitions 5.1 and 5.2, respe
tively. Then,there exists a matrix �Y := [zk+1 zk+2 � � � zn℄ 2 R(n�k)�n su
h that� X := [�Y ; Ẑk] is invertible;� ẐTk �A�Y = 0k;n�k holds.Proof. It is always possible to �nd a full-rank matrix, �Y , su
h thatR(X) = R(�Y )�R(Ẑk);where R(�Y ) is the orthogonal 
omplement of R(Ẑk), see Lemma A.15. Then, byde�nition (see De�nition A.2), X := [�Y ; Ẑk] is an invertible matrix. Furthermore, byDe�nition A.2, we have (
f. Eq. (A.11))R(�Y ) = {y 2 Rn j hw; yi �A = 0 8w 2 R(Ẑk)} :In parti
ular, for all w 2 R(Ẑk) and y 2 R(�Y ), we have hw; yi �A = wT �Ay = 0; whi
hyields ẐTk �A�Y = 0k;n�k .
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esLemma 5.5. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respe
tively.Suppose that z0 is as given in De�nitions 5.1. Let Pk�1 and P̂k be as given in De�ni-tion 5.3. Then, the following equalities hold:(i) (Pk�1 � P̂k � e(n)n zT0 ) �Az0 = 0n;(ii) (Pk�1 � P̂k) �AZk�1 = 0n;k�1.Proof. (i) Note �rst thatZTk�1 �Az0 = 0n; Q̂k �Az0 = Ẑk Ê�1k (ẐTk �Az0) = Ẑke(k)k = z0; (5.13)using Property 5.1. Combining Eq. (5.13) with Property 5.3 yields
( �AQ̂k � AQk�1) �Az0 = �AQ̂k �Az0 � AZk�1E�1k�1 (ZTk�1 �Az0)= �Az0 = �an;ne(n)n : (5.14)Moreover, we derive e(n)n 1Tn �Az0 = �an;ne(n)n;ne(n)n = �an;ne(n)n ; (5.15)using the fa
ts that e(n)n 1Tn = e(n)n;n and e(n)n;ne(n)n = e(n)n . Equalizing Eqs. (5.14)and (5.15) results in (Pk�1 � P̂k � e(n)n zT0 ) �Az0 = 0n:(ii) Note �rst that the following identities hold for i � k � 1:� Qk�1Azi = Zk�1E�1k�1 (ZTk�1Azi) = Zk�1e(i)k�1 = zi ;� Q̂k �Azi = Ẑk �E�1k (ẐTk �Azi) = Ẑke(i)k = zi ;� �Azi = Azi ,applying Property 5.1. As a 
onsequen
e,

(Pk�1 � P̂k) �Azi = �AQ̂k �Azi � AQk�1Azi = �Azi � Azi = 0n;for i = 1; 2; : : : ; k � 1. This yields (Pk�1 � P̂k) �AZk�1 = 0n;k�1.Lemma 5.6. Let A satisfy Assumption 1.2. Let �Pk and Pk�1 be as given in De�ni-tion 5.3. Then, �PkA = Pk�1A holds.Proof. It is su�
ient to prove that (Pk�1 � �Pk)A = 0n;n. Sin
e A1n = 0n (Assump-tion 1.2) holds, this implies that we have to show that ea
h row of Pk�1� �Pk 
ontainsthe same entries. In other words, after de�ningB := [%1 %2 : : : %n℄T1Tn ;



5.4. Theoreti
al Comparison of De�ation Variants 79it su�
es to prove that there exist some parameters, %i 2 R; i = 1; 2; : : : ; n, and aninvertible matrix, C 2 Rn�n, su
h that
(Pk�1 � P̂k � B)C = 0n;n (5.16)is satis�ed. Then, this would yield Pk�1� �Pk = B, sin
e P̂k = �Pk holds (Corollary 5.1).The proof is as follows. TakeC := �A [Ẑk ; �Y ] = �A [Zk�1; z0; �Y ] ;where �Y = [zk+1 zk+2 � � � zn℄ has the properties that the set,fzi : i = 0; 1; : : : ; n; i 6= kg;is linearly independent and ẐTk �A�Y = 0Tn�k (5.17)is satis�ed. Using Lemma 5.4, su
h a matrix, �Y , 
an always be 
onstru
ted. Notethat, from Eq. (5.17), we parti
ularly obtainzT0 �A�Y = 0Tn�k ; ZTk�1 �A�Y = 0k�1: (5.18)Next, the following equalities hold:� (Pk�1 � P̂k) �A�Y = 0n;n�k , by 
ombining Eqs. (5.17) and (5.18);� (Pk�1 � P̂k) �AZk�1 = 0n;k�1 (Lemma 5.5(ii));� B [ �AZk�1; �A�Y ] = 0n;n, sin
e Eq. (5.18) holds and zT0 AZk�1 = 0Tk�1 followsfrom Properties 5.1 and 5.3.Combining these latter results gives us

(Pk�1 � P̂k � B) [ �AZk�1; �A�Y ] = 0n;n�1; (5.19)for all %i . Moreover, (Pk�1 � P̂k � B) �Az0 = 0n (5.20)holds due to Lemma 5.5(i), by taking %1 : : : = %n�1 = 0 and %n = 1. Hen
e, 
ombiningEqs. (5.19) and (5.20) yields
(Pk�1 � P̂k � B)C = (Pk�1 � P̂k � B) [ �AZk�1; �Aẑ0; �A�Y ] = 0n;n;with %1 : : : = %n�1 = 0 and %n = 1, whi
h 
ompletes the proof of the lemma.Finally, Theorem 5.2 shows that the de�ated singular matri
es based on A and �Aare equal, whi
h is a rather unexpe
ted result. The 
onsequen
e of the theorem is thatVariants 5.1 and 5.2 have the same expe
ted 
onvergen
e rate.
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esTheorem 5.2. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respe
tively.Let Pk�1 and �Pk be as given in De�nition 5.3. Then, �Pk �A = Pk�1A holds for all � > 0and k > 1.Proof. The following equalities hold:� �P1 �A = A (Theorem 5.1);� �Pk �P1 = �Pk (Lemma 5.3);� �PkA = Pk�1A (Lemma 5.6),whi
h are valid for all � > 0 and k � 1. Hen
e,�Pk �A = �Pk �P1 �A = �PkA = Pk�1A:
5.4.3 Comparison of the Pre
onditioned De�ated Singular and InvertibleMatrixIn this subse
tion, we restri
t ourselves to the standard in
omplete Cholesky (IC(0))pre
onditioners, see the next de�nition.Assumption 5.1. Suppose that A satis�es Assumption 1.2 and let �A be given asDe�nition 5.2. Then, M�1 and �M�1 are the IC(0) pre
onditioners based on A and �A,respe
tively.From Theorem 5.2, the equality �Pk �A = Pk�1A holds. This implies that the pre-
onditioned variant of this equality also holds, see the next 
orollary.Corollary 5.3. Let A and �A be as in Assumption 1.2 and De�nition 5.2, respe
tively.Let �Pk and Pk�1 be as in De�nition 5.3. Moreover, let M�1 be as in Assumption 5.1.Then, M�1 �Pk �A = M�1Pk�1A:However, if A is not known expli
itly, thenM�1 
ould be di�
ult to determine, whereas�M�1 
ould be readily obtained from �A. This might be in
onvenient, be
ause of thefa
t that �M�1 �Pk �A 6= M�1Pk�1A. However, we show in this subse
tion thatlim�!0�( �M�1 �Pk �A) = �(M�1Pk�1A) (5.21)holds. First, we deal with the 
omparison of the 
ondition numbers of M�1A and�M�1A, and, thereafter, we generalize these results to M�1Pk�1A and �M�1 �Pk �A.An algorithm for 
omputing the IC(0) pre
onditioner 
an be found in, e.g., [63,Se
t. 10.3.2℄. Re
all that the IC(0) pre
onditioner is formed by M = LLT , where L isa lower-triangular matrix. Analogously, �M = �L�LT 
an be 
omputed from �A. A

ording
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al Comparison of De�ation Variants 81to the algorithm des
ribed in [63℄, the IC(0) pre
onditioners of A and �A are the sameex
ept the last entry, sin
e only the last entry of L and �L di�ers, i.e.,�M �M = 
e(n)n (e(n)n )T ; 
 2 R: (5.22)If we denote M = [mi ;j ℄ and �M = [ �mi ;j ℄, then we have mn;n = an;n and �mn;n = �an;n byde�nition. Consequently,
 = �mn;n �mn;n = �an;n � an;n = �an;n:This implies lim�!0 
 = lim�!0�an;n = 0: (5.23)Now, we 
an prove that the 
ondition numbers of M�1A and �M�1A are the samefor � ! 0, see Theorem 5.3.Theorem 5.3. Suppose that A satis�es Assumption 1.2. Let M�1 and �M�1 be asgiven in Assumption 5.1. Then, the following identity holds:lim�!0 �( �M�1A) = �(M�1A):Proof. The eigenproblems of M�1A and �M�1A are given byM�1Av = �v; �M�1Aw = �w; v; w 2 Rn; �; � 2 R: (5.24)These eigenproblems 
an be rewritten as generalized eigenproblems,(A� �M)v = 0; (A� � �M)w = 0:Due to Eq. (5.22), we have M + RM = �M, with the symmetri
 perturbation matrix,RM, given by RM = �e(n)n (e(n)n )T ; � 2 R:This yields jjRM jj2 = max f j�1(RM)j ; j�n(RM)j g = �:We note that RM satis�es jjRM jj22 < 
(A;M), where 
(A;M) denotes the Crawfordnumber (see Eq. (A.3)). This is due to the fa
t that there exists a parameter, �0 > 0,su
h that �2 < 
(A;M) is satis�ed for all � < �0, sin
e 
(A;M) does obviously notdepend on �.Lemma A.8 
an now be applied, sin
e the 
onditions of this lemma are satis�ed.Note that lim�!0 � = 0 follows from Eq. (5.23). This implieslim�!0 �
(A;M) = 1
(A;M) lim�!0 � = 0;
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esso, in parti
ular, lim�!0 ar
tan( �
(A;M)) = 0: (5.25)Now, the eigenvalues of (5.24) are related by Eq. (A.4) of Lemma A.8, i.e.,j ar
tan (�i)� ar
tan (�i) j � ar
tan( jjRM jj2
(A;M)) : (5.26)By 
ombining Eqs. (5.25) and (5.26), we obtainlim�!0 ar
tan (�i) = ar
tan (�i) ;resulting in lim�!0 �i = �i ; sin
e the ar
tan-operator is bije
tive and 
ontinuous.Hen
e, the theorem follows immediately.Next, we 
ompare the 
ondition numbers of M�1PkA and �M�1 �Pk �A. Re
all thatboth A and Pk�1A are SPSD matri
es, so that we 
an substitute Pk�1A into A inTheorem 5.3. Sin
e �Pk �A = Pk�1A follows from Theorem 5.2, this gives us the nexttheorem.Theorem 5.4. Suppose that A satis�es Assumption 1.2. Let Pk�1 and �Pk be as givenin De�nition 5.3. Moreover, let M�1 and �M�1 satisfy Assumption 5.1. Then,lim�!0 �( �M�1 �Pk �A) = �(M�1Pk�1A):Theorem 5.4 states that, although �M�1 �Pk �A and M�1Pk�1A di�er, their 
onditionnumber are almost identi
al for a su�
iently small perturbation, �. As a result, Vari-ants 5.1 and 5.2 are expe
ted to have a similar 
onvergen
e rate.5.4.4 Comparison of the Pre
onditioned De�ated Singular Matri
esHere, we prove that the pre
onditioned de�ated matri
es, M�1Pk�1A and M�1PkA,
orresponding to Variants 5.1 and 5.3 are equal. This main result is presented inTheorem 5.5.Theorem 5.5. Suppose that A satis�es Assumption 1.2. Let Pi and M�1 be as inDe�nition 5.3 and Assumption 5.1, respe
tively. Then, the following identity holds:M�1PkA = M�1Pk�1A: (5.27)Proof. The proof 
an be found in Appendix C.A

ording to Theorem 5.5, the de�ated-pre
onditioned matri
es based on k �1 and kde�ation ve
tors are the same, so that Variants 5.1 and 5.3 are mathemati
ally equiv-alent.



5.5. Appli
ation to Bubbly Flows 83Remark 5.5.� From Theorem 5.5, it 
an be observed that it is possible to base 
omputationswith de�ation matri
es on the real inverse rather than the pseudo-inverse of E.This theorem 
an even be generalized to general singular 
oe�
ient matri
esand de�ation ve
tors, see Appendix C for details. This resear
h is still ongoingduring writing this thesis, see [85℄.� By 
ombining Theorems 5.3 and 5.5, we 
on
lude that all proposed de�ationvariants are equivalent for su�
iently small �, so the e�e
tiveness of these vari-ants is approximately the same. It depends on the e�
ien
y of implementationof the variants in order to de
ide whi
h variant is the best one in pra
ti
e, seeChapter 8.5.5 Appli
ation to Bubbly FlowsIn this se
tion, we illustrate the theoreti
al results, as presented in the previous se
tion,with bubbly �ow experiments. The 3-D variants of the bubbly �ows with � = 103,m = 23 and s = 0:05, as given in Figure 1.2 of Se
tion 1.3, are 
onsidered. Both theresulting linear systems, Ax = b and �Ax = b, are ill-
onditioned, due to the presen
e ofbubbles. These linear systems are solved using ICCG and DICCG�k (i.e., DPCG withthe IC(0) pre
onditioner and k de�ation ve
tors). The termination 
riterion is basedon (3.27) with Æ = 10�8, and the de�ation-subspa
e matrix, Z, 
onsists of subdomainde�ation ve
tors as de�ned in Se
tion 4.2.3. We vary the perturbation parameter, �,and the number of de�ation ve
tors, k, in our experiments.Note that numeri
al experiments with Variant 5.1 have already been performed inChapters 3 and 4. In Se
tion 5.5.1, we present the results for Variant 5.2. Thereafter,Se
tion 5.5.2 is devoted to the 
omparison of Variants 5.1 and 5.2. Variant 5.3 isex
luded in these experiments, sin
e it requires spe
ial 
are for 
omputations with E+k .This topi
 is further investigated in Chapter 8.5.5.1 Results of ICCG and DICCG with Variant 5.2The results of ICCG and DICCG with Variant 5.2 
an be found in Table 5.2. Notethat both methods are based on �Ax = b with an invertible 
oe�
ient matrix, �A. In the
ase of ICCG, the results of solving the original linear system, Ax = b, with a singularmatrix, A, are added for 
omparison.From Table 5.2, it 
an be observed that the number of iterations for DICCG isindependent of � (as long as it is su�
iently small), as expe
ted from Theorem 5.3.Con�rming Theorem 5.1, we see that the required number of iterations for ICCG isequal to the number for DICCG�1, when the problem with arbitrary � > 0 is solved.Moreover, we noti
e that in
reasing the number of de�ation ve
tors, k, leads to anonin
reasing number of iterations for DICCG (
f. Theorem 3.3).
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es(a) ICCG.n � = 0 � = 10�1 � = 10�3323 100 138 147643 118 195 195(b) DICCG�k (Variant 5.2).n = 323 n = 643k � = 10�1 � = 10�3 � = 10�1 � = 10�31 100 100 118 11823 66 66 126 12643 66 66 131 13183 28 28 106 106Table 5.2: Number of iterations for ICCG and DICCG (Variant 5.2) to solve the linear system �Ax = bwith invertible �A, for the test 
ase with m = 23, � = 103, and s = 0:05.In Figure 5.1(a), the residuals of ICCG and DICCG 
an be found for the test
ase of n = 323 and � = 10�3. From this �gure, it 
an be observed that ICCGshows an errati
 
onvergen
e behavior, while DICCG 
onverges almost monotoni
ally.Apparently, the spa
e spanned by eigenve
tors 
orresponding to the small eigenvaluesare well-approximated by the spa
e spanned by the subdomain de�ation ve
tors (
f.the results in Chapter 4). Moreover, we observe that the residuals of DICCG�23 andDICCG�43 almost 
oin
ide. This might be 
aused by the fa
t that some unfavorableeigenve
tors ofM�1A are not treated e�e
tively by both 23 and 43 subdomain de�ationve
tors, and it is related to the geometry of the density �eld. When we take m = 33bubbles, the results with k = 43 are mu
h better than for k = 23, see Table 5.3. Inaddition, in Figure 5.1(b), the residuals of ICCG and DICCG are presented for the test
ase with n = 323 and � = 10�3. Now, the residuals of DICCG�43 de
rease almostmonotoni
ally, whereas the residuals of both ICCG and DICCG�23 are still errati
. Inthis 
ase, eigenve
tors asso
iated with small eigenvalues are worse approximated bythe de�ation ve
tors, 
ompared to the 
ase with m = 23 bubbles (
f. Figure 5.1(a)).This is 
aused by the position of the bubbles with respe
t to the subdomains, and thein
reased number of bubbles that is more 
ompli
ated to treat with a relatively smallnumber of de�ation ve
tors.5.5.2 Results of the Comparison between Variants 5.1 and 5.2This subse
tion deals with a numeri
al 
omparison of Variants 5.1 and 5.2. The samesetting as in the previous subse
tion is used. The results are presented in Table 5.4.Re
all that Variant 5.1 adopts the de�ation method with k � 1 instead of k de�ationve
tors, so that DICCG�1 is not de�ned in this 
ase.From Table 5.4, we observe immediately that the results for Variant 5.2 (Ta-ble 5.4(a)) are the same as those for Variant 5.1 (Table 5.4(b)). Indeed, the twodi�erent variants with a singular and invertible 
oe�
ient matrix seem to be mathe-mati
ally equivalent, whi
h 
on�rms Theorem 5.4.
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(b) m = 33 bubbles.Figure 5.1: Residuals of ICCG, DICCG�23 and DICCG�33 with Variant 5.2, for the test 
ase withn = 323 and � = 10�3. (a) ICCG.n � = 0 � = 10�1 � = 10�3323 140 206 233643 246 246 362(b) DICCG�k (Variant 5.2).n = 323 n = 643k � = 10�1 � = 10�3 � = 10�1 � = 10�31 140 140 246 24623 137 137 197 19743 76 76 131 13183 42 42 59 59Table 5.3: Number of iterations for ICCG and DICCG (Variant 5.2) to solve �Ax = b, for the test 
asewith m = 33, � = 103, and s = 0:05.
(a) Variant 5.1 (based on A).k n = 323 n = 64323 66 12643 66 131 (b) Variant 5.2 (based on �A).n = 323 n = 643k � = 10�1 � = 10�3 � = 10�1 � = 10�323 66 66 126 12643 66 66 131 131Table 5.4: Number of iterations for DICCG (both Variant 5.1 and Variant 5.2) to solve Ax = b (witha singular A) and �Ax = b (with an invertible �A) for m = 23.



86 Chapter 5. Subdomain De�ation applied to Singular Matri
es5.6 Con
luding RemarksIn this 
hapter, we present three di�erent de�ation variants, whi
h 
an deal with thesingularity of the 
oe�
ient matrix, A. In Variant 5.2, an invertible 
oe�
ient matrix,�A, is used instead of the singular matrix A, while the solution of the linear systemremains the same. Invertibility of the matrix gives several advantages for the iterativesolver. The drawba
k, however, is that the 
ondition number of �A be
omes worse
ompared to that of A. We show that this di�
ulty 
an be 
ompletely remedied byapplying the de�ation te
hnique with just one de�ation ve
tor. Moreover, Variants 5.1and 5.3 are based on the original singular matrix, A. In Variant 5.1, the de�ation-subspa
e matrix is 
hosen su
h that the real inverse of the resulting Galerkin matrixalways exists. This variant is basi
ally the de�ation method as 
onsidered in prior
hapters. Moreover, the de�ation matrix in Variant 5.3 relies on the natural 
hoi
e ofde�ation ve
tors and the pseudo-inverse of the Galerkin matrix. This variant is mostrelated to the general de�ation method applied to invertible 
oe�
ient matri
es.The proposed de�ation variants are analyzed and 
ompared. We show that the
orresponding pre
onditioned-de�ated 
oe�
ient matri
es are the same, for 
ertainde�ation ve
tors and small perturbations of A to 
onstru
t �A. Hen
e, the 
onver-gen
e behavior of the de�ation variants are expe
ted to be 
omparable. It depends onthe implementation and pra
ti
al wishes of the user whi
h variant 
an be best used.Results of numeri
al experiments 
on�rm the theoreti
al results, and show the goodperforman
e and equivalen
es of the de�ation variants. Variant 5.3 is not 
onsideredyet due to its implementation 
omplexity. This variant is further analyzed in Chapter 8.



Chapter 6Comparison of Two-Level PCGMethods � Part I
6.1 Introdu
tionIn the previous 
hapters, the de�ation method has been analyzed extensively. Thismethod was originally used by Ni
olaides [108℄ and Dostal [40℄ to a

elerate the 
on-vergen
e of PCG, and several 
ontributions were made sin
e then, in
luding [45, 82,122,173℄. Following [108℄, the 
onvergen
e of PCG 
an be improved if the 
omponentsof the residual asso
iated with the smallest eigenvalues are no longer present during theiteration pro
ess. The 
orresponding pre
onditioner of the de�ation method 
onsistsof a 
ombination of a traditional single-level pre
onditioner, M�1, and a se
ond-levelpre
onditioner, P . In this 
ase, the de�ation pre
onditioner 
an be regarded as a two-level pre
onditioner, and the resulting method 
an be interpreted as a two-level PCG(2L-PCG) method, see also Se
tion 1.2.In addition to the traditional pre
onditioner, a se
ond kind of pre
onditioner isin
orporated in ea
h 2L-PCG method to improve the 
onditioning of the 
oe�
ientmatrix, so that the resulting approa
h e�e
tively treats the e�e
t of both small andlarge eigenvalues. Besides the �eld of de�ation, a PCG method in 
ombination with apre
onditioner based on multigrid (MG) or domain de
omposition method (DDM), 
anbe seen as a 2L-PCG method, sin
e most of these methods rely on pre
onditioningon two levels. Probably the simplest form of 2L-PCG is CG 
ombined with a two-grid method. In this 
ase, together with the �ne-grid linear system from whi
h theapproximate solution of the original PDEs is 
omputed, a 
oarse-grid system is builtbased on a prede�ned 
oarse grid. From MG point of view, the (se
ond-level) 
oarse-grid system is used to redu
e the slow-varying, low-frequen
y 
omponents of the error,whi
h 
ould not be e�e
tively redu
ed on the (�rst-level) �ne grid. These low-frequen
y
omponents of the error are asso
iated with the small eigenvalues of the 
oe�
ientmatrix. The high-frequen
y 
omponents are, however, e�e
tively handled on the �negrid. The latter is asso
iated with the large eigenvalues of the 
oe�
ient matrix.87



88 Chapter 6. Comparison of Two-Level PCG Methods � Part IIn order to attain a further redu
tion of the error, however, it is required that theslow-varying 
omponents of the error on the �ne grid are well approximated on the
oarse grid. While the two-grid method on its own is a good method for some 
lass ofproblems, a better 
onvergen
e bound 
an be obtained if it is used as a pre
onditionerfor PCG.The two-grid pre
onditioning has been known for a long time, dating ba
k at leastto the 1930s. Its potential was �rst exploited by Fedorenko and Bakhalov in the 1960s,and later by Brandt [21℄ and Ha
kbus
h [69℄, whi
h paved the way to the birth of MGmethods. We refer to [151, 178℄ and referen
es therein for more details. In the two-grid method, the se
ond-level problem is derived from the systemati
 
oarsening of theunderlying, prede�ned �ne grid, and, hen
eforth, has a geometri
al relationship withthe �ne grid, see [126,150℄. MG methods 
an be useful for solving problems with high
oe�
ient ratios, see, e.g., [164�166℄. On the other hand, a more general two-levelmethod is obtained if the se
ond-level problem is built by using only the 
oe�
ientmatrix. This generalization results in the so-
alled algebrai
 multigrid (AMG) method.AMG 
an be very e�e
tive for ellipti
 problems on unstru
tured grids, even with high
oe�
ient ratios [30,118℄. Similar observations 
an also be made for DDM. As in the
ase of MG, DDM by its own is an e�e
tive method for some 
lass of problems, andthe 
onvergen
e 
an be further improved if it is 
ombined with CG. Abstra
t balan
ingNeumann-Neumann (BNN) methods [89�91℄ are well-known examples in this �eld.Other examples of DDM, whi
h are useful for solving problems with high-
oe�
ientratios, 
an be found in [126,150℄.At �rst glan
e, 2L-PCG methods from de�ation, DDM and MG seem to be di�er-ent. For example, in de�ation, eigenve
tors or eigenve
tor approximations asso
iatedwith the unfavorable eigenvalues are often used as proje
tion ve
tors. In 
ontrast,MG or DDM use spe
ial proje
tion ve
tors, whi
h represent interpolations betweenthe �ne-grid and 
oarse-grid subspa
e. Surprisingly, from algebrai
/abstra
t point ofview, the 2L-PCG methods from the three �elds are quite 
omparable or even equiv-alent. For example, the de�ation operator is the same as the multigrid operator ifno pre- and post-smoothing are performed, i.e., the de�ation operator is the same asthe 
oarse-grid 
orre
tion operator in MG. While de�ation is quite su

essful withinKrylov methods, using only 
oarse-grid 
orre
tion does not lead to a su

essful MGmethod [150℄. This motivates us to approa
h the 2L-PCG methods from an abstra
tpoint of view. In this 
hapter, we introdu
e a generalized formulation for de�ation,MG and DDM, resulting in a uni�ed theory.In [103�105℄, theoreti
al 
omparisons are presented for the de�ation, BNN and ad-ditive 
oarse-grid 
orre
tion (AD) methods. It is proven, using spe
tral analysis amongother te
hniques, that the de�ation method is expe
ted to yield faster 
onvergen
e
ompared to the other two methods. For 
ertain starting ve
tors, de�ation and BNNeven produ
e the same iterates. Although these methods seem to be 
omparable, de-�ation is not always robust, as observed in the limited numeri
al experiments providedin [103�105℄. The residuals may stagnate or even diverge during the iteration pro
ess,if the required a

ura
y is (too) high. The AD and BNN pre
onditioners are more ro-



6.1. Introdu
tion 89bust, but they also have drawba
ks: BNN is more expensive to apply, and AD is slowerto 
onverge. It is known in the literature, see [89, 150℄, that the implementation ofthe robust BNN method 
an be made less expensive, so that the total amount of workis 
omparable to de�ation and AD. In this 
ase, new 2L-PCG methods 
an be de�nedand they 
an be interpreted as redu
ed variants of the original BNN method. However,not mu
h is known about the robustness of these redu
ed variants, as most theoreti
alresults apply to only the original method. One of the subje
ts of this 
hapter is to dealwith this issue in detail. More re
ent papers about the robustness of 2L-PCG methods
an be further found in, e.g., [16,59,65℄.In this 
hapter, the two-level PCG methods are 
ompared theoreti
ally by inves-tigating the 
orresponding spe
tral properties, their numeri
al implementations, andequivalen
es. Thereafter, the main fo
us is on numeri
al experiments, where the 2L-PCG methods are tested for their 
onvergen
e properties and robustness. The e�e
tof di�erent implementations is analyzed, and the results are related to the theory. Notethat, in [103�105℄, the 
omparisons of de�ation, BNN and AD are mainly based ontheoreti
al aspe
ts, whereas only a limited numeri
al 
omparison is presented. This
hapter fo
uses equally on theoreti
al and numeri
al aspe
ts of these of 2L-PCG meth-ods. The following questions are answered in this 
hapter:� what is the relation and equivalen
es between the two-level PCG methods?� whi
h two-level PCG methods 
an be applied, if one uses ina

urate 
oarsesolvers, severe termination 
riteria or perturbed starting ve
tors?� is there a two-level pre
onditioner that is as robust as BNN and as 
heap andfast as de�ation?Similar to the 2L-PCG methods 
onsidered in this 
hapter, there are some othervariants known as augmented subspa
e CG [46℄, de�ated Lan
zos method [122℄,and the Odir and Omin version of CG 
ombined with extra ve
tors [6℄. We referto [122, 124℄ for a dis
ussion and 
omparison of these methods. In the overview pa-per [124℄, more details and referen
es are also given about Krylov subspa
e methodswith respe
t to inexa
t 
omputations and their equivalen
es. Another 
omparison of2L-PCG methods is 
arried out in [59℄, where methods known as Init-CG, Def-CG,Proj-CG and SLRU are 
ompared. The aim of that paper is to obtain an optimalsolver, that exploits a

urate spe
tral information about the 
oe�
ient matrix in ane�
ient way. In 
ontrast to that paper, our 
omparison of 2L-PCG methods is donewithout any spe
tral information of the 
oe�
ient matrix, A. Re
ently, novel additiveand multipli
ative two-level pre
onditioners applied to general linear systems are 
on-sidered in [26℄. These spe
tral pre
onditioners are based on multigrid ideas, and 
anbe well analyzed for spe
ial 
hoi
es of the restri
tion and prolongation operators.This 
hapter is organized as follows. In Se
tion 6.2, we introdu
e and dis
usstwo-level PCG methods. Se
tion 6.3 is devoted to the theoreti
al 
omparison of thesemethods. Subsequently, the numeri
al 
omparison of the two-level PCG methods is
arried out in Se
tion 6.4. Finally, some 
on
luding remarks are given in Se
tion 6.5.



90 Chapter 6. Comparison of Two-Level PCG Methods � Part IRemark 6.1. In this 
hapter, we restri
t ourselves to a nonsingular 
oe�
ient matrix,A, for 
onvenien
e. However, all main results are generalizable for A that is singular,see [85℄.6.2 Two-Level PCG MethodsIn this se
tion, two-level PCG methods are de�ned and motivated, but we start withsome terminology (
f. De�nition 3.1), and a preliminary result (
f. Lemma 3.2).De�nition 6.1. Suppose that an SPD 
oe�
ient matrix, A 2 Rn�n, and a de�ationsubspa
e matrix, Z 2 Rn�k, with full rank and k < n are given. Then, we de�nethe invertible Galerkin matrix, E 2 Rk�k, the 
orre
tion matrix, Q 2 Rn�n, and thede�ation matrix, P 2 Rn�n, as follows:P := I � AQ; Q := ZE�1ZT ; E := ZTAZ:Lemma 6.1. Let A 2 Rn�n and Z 2 Rn�k be given. Suppose that Q and P are givenas in De�nition 6.1. Then, the following equalities hold:(a) P = P 2;(b) PA = AP T ;(
) P TZ = 0n;k , P TQ = 0n;n;(d) PAZ = 0n;k , PAQ = 0n;n;(e) QA = I � P T , QAZ = Z, QAQ = Q;(f) QT = Q.Remark 6.2.� E is SPD for any full-rank Z, sin
e A is SPD.� In this 
hapter, k � n does not ne
essarily hold. But if k � n does hold, then Eis a matrix with small dimensions, so that it 
an be easily 
omputed and fa
tored.From an abstra
t point of view, all two-level pre
onditioners of the methods 
onsistof an arbitrary M�1, 
ombined with one or more matri
es P and Q. In the nextsubse
tion, we give an explanation of the 
hoi
es for these matri
es in the di�erent�elds. Nevertheless, from our point of view, matri
es M�1 and Z are arbitrary (but�xed) for ea
h 2L-PCG method. In this way, the abstra
t setting allows us to 
omparethe methods in terms of operators, although they have their roots in di�erent �elds.



6.2. Two-Level PCG Methods 916.2.1 Ba
kground of the Matri
es in Domain De
omposition, Multigridand De�ationIn the 2L-PCG methods used in DDM, su
h as the BNN and (two-level) additiveS
hwarz methods, the single-level pre
onditioner, M�1, 
onsists of lo
al exa
t or in-exa
t solves on subdomains. Moreover, Z des
ribes a prolongation (or interpolation)operator, while ZT is a restri
tion operator based on the subdomains. In this 
ase, Eis 
alled the 
oarse-grid (or Galerkin) matrix. In order to speed up the 
onvergen
eof the additive S
hwarz method, a 
oarse-grid 
orre
tion matrix, Q, 
an be added,whi
h is a so-
alled additive 
oarse-grid 
orre
tion. Finally, P 
an be interpreted as asubspa
e 
orre
tion, in whi
h ea
h subdomain is agglomerated into a single 
ell. Moredetails 
an be found in [126,150℄.In the MG approa
h, Z and ZT are also the prolongation and restri
tion opera-tors, respe
tively, where typi
al MG grid-transfer operators allow interpolation betweenneighboring subdomains. E and Q are again the 
oarse-grid (or Galerkin) and 
oarse-grid 
orre
tion matri
es, respe
tively, 
orresponding to the Galerkin approa
h. MatrixP 
an be interpreted as the algebrai
 form of the 
oarse-grid 
orre
tion step in MG,where linear systems with E are usually solved re
ursively. In the 
ontext of MG meth-ods,M�1 should work as a smoother (also known as relaxation method) that eliminatesthe high-frequen
y errors in the residuals and often 
orresponds to Ja
obi or Gauss-Seidel iterations. Before or after the smoothing step(s), a 
oarse-grid 
orre
tion, P ,is applied to remove the slow frequen
ies in the residuals. We refer to [69, 151, 178℄for more details.As dis
ussed in the previous 
hapter, M�1 is often a traditional pre
onditioner,su
h as an In
omplete Cholesky fa
torization, in de�ation methods. Furthermore, thede�ation-subspa
e matrix, Z, 
onsists of so-
alled de�ation ve
tors, whi
h are usedin the de�ation matrix, P . In this 
ase, the 
olumn spa
e of Z builds the de�ationsubspa
e, i.e., the spa
e to be proje
ted out of the residuals. It often 
onsists ofeigenve
tors, approximations of eigenve
tors, or pie
ewise-
onstant ve
tors, whi
h arestrongly related to DDM. If one 
hooses eigenve
tors, the 
orresponding eigenvalueswould be shifted to zero in the spe
trum of the de�ated matrix. This fa
t has motivatedthe name `de�ation method'. In the literature, the de�ation two-level pre
onditioneris also known as the spe
tral pre
onditioner, see, e.g., [59℄. Usually, systems with Eare solved dire
tly, using, e.g., a Cholesky de
omposition.6.2.2 General Linear SystemsThe general linear system, whi
h is the basis for two-level PCG methods, isPAx = b; P;A 2 Rn�n: (6.1)In the standard (single-level) PCG method, x = x is the solution of the original linearsystem, Ax = b, A = A is the SPD 
oe�
ient matrix, P = M�1PREC represents atraditional SPD pre
onditioner, and b = M�1PRECb is the right-hand side, see also [63,97℄.



92 Chapter 6. Comparison of Two-Level PCG Methods � Part IWe denote this method by `Traditional PCG' (PREC).Next, A may also be a 
ombination of A and P , su
h that A is SP(S)D, whileP remains a traditional pre
onditioner. Note that this does not 
ause di�
ulties forthe CG pro
ess, sin
e it is robust for SPSD matri
es as long as the linear systemis 
onsistent (
f. Chapter 1), see [77℄. Furthermore, instead of 
hoosing one tra-ditional pre
onditioner for P, we 
an 
ombine di�erent single-level and se
ond-levelpre
onditioners in an additive or multipli
ative way, whi
h is illustrated below.The additive 
ombination of two SPD pre
onditioners, C1 and C2, leads to Pa2,given by Pa2 := C1 + C2; (6.2)whi
h is also SPD. Of 
ourse, the summation of the pre
onditioners 
an be done withdi�erent weights for C1 and C2. Moreover, (6.2) 
an be easily generalized to Pai formore SPD pre
onditioners, C1; C2; : : : ; Ci .The multipli
ative 
ombination of pre
onditioners 
an be explained by 
onsideringthe stationary iterative methods indu
ed by the pre
onditioner. Assuming that C1 andC2 are two SPD pre
onditioners, we 
an 
ombine
{ x i+ 12 = x i + C1(b � Ax i);x i+1 = x i+ 12 + C2(b � Ax i+ 12 ); (6.3)to obtain x i+1 = x i + Pm2(b � Ax i), withPm2 := C1 + C2 � C2AC1; (6.4)whi
h 
an be interpreted as the multipli
ative operator 
onsisting of two pre
ondition-ers. Subsequently, C1 and C2 
ould again be 
ombined with another SPD pre
ondi-tioner, C3, in a multipli
ative way, yieldingPm3 = C1 + C2 + C3 � C2AC1 � C3AC2 � C3AC1 + C3AC2AC1: (6.5)This 
an also be generalized to Pmi for C1; C2; : : : ; Ci .6.2.3 De�nition of the Two-Level PCG MethodsThe two-level PCG methods that are 
onsidered in this 
hapter are presented andmotivated below.Additive MethodIf one substitutes a traditional pre
onditioner, C1 :=M�1, and a 
oarse-grid 
orre
tionmatrix, C2 := Q, into the additive 
ombination given in (6.2), this yieldsPAD = M�1 +Q: (6.6)Using the additive S
hwarz pre
onditioner forM�1, the abstra
t form (6.6) in
ludes



6.2. Two-Level PCG Methods 93the additive 
oarse-grid 
orre
tion pre
onditioner [19℄. The BPS pre
onditioner, intro-du
ed by Bramble, Pas
iak and S
hatz in [19℄, 
an be written as (6.6). This is furtheranalyzed in, e.g., [41,42,111℄. If the multipli
ative S
hwarz pre
onditioner is taken asM�1, we obtain the Hybrid-2 pre
onditioner [150, p. 47℄. In the MG language, PADis sometimes 
alled an additive multigrid pre
onditioner, see [11℄. In this 
hapter, theresulting method asso
iated with PAD is 
alled `Additive Coarse-Grid Corre
tion' (AD).De�ation MethodsThe de�ation te
hnique is exploited in several papers, amongst them are [56,58,82,93,94, 99, 103, 104, 108, 122,173℄. Some di�eren
es in the formulations 
an be observedin these papers, while they are basi
ally mathemati
ally equivalent. One of theseformulations of the de�ation method is presented in Chapter 3. This method is 
alled`De�ation Variant 1' (DEF1) in this 
hapter.An alternative way to des
ribe the de�ation te
hnique is to start with an arbitraryve
tor, �x , and 
hoose x0 := Qb + P T �x. Then, the solution of Ax = b 
an be
onstru
ted from the de�ated systemAP T y = r0; r0 := b � Ax0: (6.7)The nonunique solution, y , is then used to obtain �y := P T y . It 
an be shown thatx = x0 + �y is the unique solution of Ax = b. Similarly, de�ated system (6.7) 
an alsobe solved with a single-level pre
onditioner, M�1, leading toM�1AP T y = M�1r0; r0 := b � Ax0: (6.8)Similar to the pro
edure for the unpre
onditioned 
ase, x 
an be found from thenonuniquely determined solution, y , of (6.8). This leads to an algorithm that is basedon the proje
tion operator P TM�1, rather than M�1P as in DEF1, see [82,108,122℄.Hen
e, we solve P TM�1Ax = P TM�1b; (6.9)where the iterates, fxig, within the algorithm are uniquely determined as long as x0 :=Qb+P T �x is used. We treat this in more detail in Se
tion 6.3.2. The resulting methodis denoted by `De�ation Variant 2' (DEF2). Observe that Eq. (6.9) 
annot be writtenin the form of (6.1) with an SPD operator P and an SPSD matrix A. Fortunately, inSe
tion 6.3.2, it is shown that (6.9) is equivalent to a linear system that is in the formof (6.1).Remark 6.3. The main di�eren
e between DEF1 and DEF2 is their �ipped operators.In addition, if we de�ne the `uniqueness'-operation as 
omputing w := Qb + P T ~w ,for a given ve
tor ~w , this operation is 
arried out at the end of the iteration pro
essin DEF1, so that an arbitrarily 
hosen starting ve
tor, x0, 
an be used. On the otherhand, this operation is applied prior to the iteration pro
ess in DEF2, whi
h 
an beinterpreted as adopting a spe
ial starting ve
tor. As a 
onsequen
e, they have di�erentrobustness properties with respe
t to starting ve
tors, see Se
tion 6.4.5.



94 Chapter 6. Comparison of Two-Level PCG Methods � Part IAdapted De�ation MethodsIf one applies C1 := Q and C2 := M�1 in a multipli
ative 
ombination as given in (6.4),then this yields PA-DEF1 = M�1P +Q; (6.10)see [134℄ for more details. In the MG language, this operator results from a nonsym-metri
 multigrid V(1,0)-
y
le iteration s
heme, where one �rst applies a 
oarse-grid
orre
tion, followed by a smoothing step. Note that, although Q and M�1 are SPDpre
onditioners, (6.10) is a nonsymmetri
 operator, and, even more, it is not symmet-ri
 with respe
t to the inner produ
t indu
ed by A. In addition, PA-DEF1 
an also beinterpreted as an adapted de�ation pre
onditioner, sin
e M�1P from DEF1 is 
om-bined in an additive way with a 
oarse-grid 
orre
tion, Q. Hen
e, the resulting method
orresponding to PA-DEF1 is denoted by the `Adapted De�ation Variant 1' (A-DEF1).Subsequently, we 
an also reverse the order of Q and M�1 (i.e., C1 := M�1 andC2 := Q) in (6.4), giving us PA-DEF2 = P TM�1 +Q: (6.11)Using an additive S
hwarz pre
onditioner for M�1, PA-DEF2 is the two-level Hybrid-IIS
hwarz pre
onditioner [126, p. 48℄. In MG methods, PA-DEF2 is the nonsymmetri
multigrid V(0,1)-
y
le pre
onditioner, where M�1 is used as a smoother. Similar toA-DEF1, PA-DEF2 is nonsymmetri
. Fortunately, we see in Se
tion 6.3.2 that A-DEF2is equivalent to a method based on a symmetri
 operator. As in the 
ase of PA-DEF1,the operator PA-DEF2 
an also be regarded as an adapted de�ation pre
onditioner, sin
eP TM�1 from DEF2 is 
ombined with Q, in an additive way. A

ordingly, the resultingmethod is denoted by the `Adapted De�ation Variant 2' (A-DEF2) method.Abstra
t Balan
ing MethodsThe operators PA-DEF1 and PA-DEF2 
an be symmetrized by using the multipli
ative 
om-bination of three pre
onditioners. If one substitutes C1 := Q; C2 := M�1 and C3 := Qinto (6.5), we obtain PBNN = P TM�1P +Q:The operator PBNN is a well-known operator in DDM. In 
ombination with an addi-tive S
hwarz pre
onditioner for M�1, and after some s
aling and spe
ial 
hoi
es ofZ, the operator PBNN is known as the Balan
ing-Neumann-Neumann pre
onditioner,introdu
ed in [89℄, and further analyzed in, e.g., [43, 90, 91, 114,150℄. In the abstra
tform, PBNN is 
alled the Hybrid-1 pre
onditioner [150, p. 34℄. Here, we 
all it `Abstra
tBalan
ing Neumann-Neumann' (BNN).Of 
ourse, PA-DEF1 and PA-DEF2 
ould also be symmetrized by using twi
eM�1 insteadof Q (i.e., C1 := M�1; C2 := Q and C3 := M�1) in Eq. (6.5). This results in thewell-known symmetri
 multigrid V(1,1)-
y
le iteration s
heme, where a pre-smoothingstep is followed by a 
oarse-grid 
orre
tion and ended with a post-smoothing step. The
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onditioner is then expli
itly given byP = M�1P + P TM�1 +Q�M�1PAM�1: (6.12)Note that this operator also follows by 
ombining the A-DEF1 and A-DEF2 operatorsin a multipli
ative way. In (6.12), a stru
tural di�eren
e 
an be observed betweenBNN and the multigrid V (1; 1)-
y
le iteration. As mentioned before, in MG, M�1 isthe smoothing operator, and the 
oarse-grid system typi
ally has half of the order ofthe original system per dire
tion. Hen
e, smoothing is 
heap 
ompared to solving the
oarse-grid system. In this 
ase, symmetrizing with another smoothing step is natural.In DDM, M�1 
ontains all lo
al solves of the subdomain systems, while the dimensionof the Galerkin system is typi
ally mu
h smaller than the dimension of the originalsystem. Hen
e, a symmetrization with a 
oarse-grid solve is inexpensive in DDM.Ex
ept for spe
ial 
hoi
es of the restri
tion and prolongation operator, see, e.g., [26℄,it is generally di�
ult to analyze the spe
tra of the system pre
onditioned by (6.12)in 
omparison with the other methods des
ribed in this 
hapter. Therefore, we do notin
lude this pre
onditioner in our 
omparison, but we fo
us on this issue in Chapter 7.Moreover, we also 
onsider two variants of BNN. In the �rst variant, we omit theterm Q from PBNN, giving us PR-BNN1 = P TM�1P;whi
h remains a symmetri
 operator. To our knowledge, PR-BNN1 is unknown in theliterature, and this is the �rst time that its properties are analyzed. The 
orrespondingmethod is 
alled `Redu
ed BNN Variant 1' (R-BNN1). Next, in the se
ond variant ofBNN, we omit both the P and Q terms from PBNN, resulting inPR-BNN2 = P TM�1; (6.13)and this method is denoted by `Redu
ed BNN Variant 2' (R-BNN2). Noti
e that theoperators of both R-BNN2 and DEF2 are equal, i.e.,PDEF2 = PR-BNN2 = P TM�1;where only the implementation is di�erent, see Se
tion 6.2.4. In fa
t, the implementa-tion of DEF2 is equivalent to the approa
h as applied in, e.g., [122℄, where the de�ationmethod is derived by 
ombining a de�ated Lan
zos pro
edure and the standard CGalgorithm. On the other hand, R-BNN2 is the approa
h where de�ation is in
orporatedinto the CG algorithm in a dire
t way [82℄, and it is also the approa
h where a hybridvariant is employed in DDM [150℄. Finally, as mentioned earlier, P TM�1 is a nonsym-metri
 pre
onditioner, but it is shown in Se
tion 6.3.2 that both PR-BNN1 and PR-BNN2are equivalent to PBNN for 
ertain starting ve
tors. Consequently, we 
lassify thesemethods as variants of the original BNN method, rather than as variants of de�ationmethods.



96 Chapter 6. Comparison of Two-Level PCG Methods � Part I6.2.4 Aspe
ts of Two-Level PCG MethodsFor the sake of 
ompleteness, the 2L-PCG methods that are 
onsidered in this 
hapterare given in Table 6.1. More details about the methods 
an be found in the referen
es,given in the last 
olumn of this table. Subsequently, the implementation and the
omputational 
ost of these methods are 
onsidered in this subse
tion.Name Method Operator Referen
esPREC Traditional PCG M�1 [63,97℄AD Additive Coarse-Grid Corre
tion M�1 +Q [19,126,150℄DEF1 De�ation Variant 1 M�1P [173℄DEF2 De�ation Variant 2 P TM�1 [82,108,122℄A-DEF1 Adapted De�ation Variant 1 M�1P +Q [126,151,178℄A-DEF2 Adapted De�ation Variant 2 P TM�1 +Q [126,151,178℄BNN Abstra
t Balan
ing P TM�1P +Q [89℄R-BNN1 Redu
ed Balan
ing Variant 1 P TM�1P �R-BNN2 Redu
ed Balan
ing Variant 2 P TM�1 [89,150℄Table 6.1: List of methods that are 
ompared in this 
hapter. The operator of ea
h method 
an beinterpreted as the pre
onditioner P, given in (6.1) with A = A. Where possible, referen
es to themethods and their implementations are presented in the last 
olumn.Implementation IssuesThe implementation of the 2L-PCG methods given in Table 6.1 
an be presented inone algorithm, resulting in a generalized 2L-PCG method, see Algorithm 7. For ea
hmethod, the 
orresponding matri
es, Mi , and ve
tors, Vstart and Vend, are presented inTable 6.2. For more details, we refer to [134℄.Algorithm 7 Generalized Two-Level PCG Method for solving Ax = b.1: Sele
t arbitrary �x and Vstart;M1;M2;M3;Vend from Table 6.22: Set x0 := Vstart, and 
ompute r0 := b � Ax0, y0 :=M1r0; p0 :=M2y03: for j := 0; 1; : : : ; until 
onvergen
e do4: wj :=M3Apj5: �j := (rj ;yj )(pj ;wj )6: xj+1 := xj + �jpj7: rj+1 := rj � �jwj8: yj+1 :=M1rj+19: �j := (rj+1;yj+1)(rj ;yj )10: pj+1 :=M2yj+1 + �jpj11: end for12: xit := VendFrom Algorithm 7 and Table 6.2, it 
an be observed that one or more pre
ondi-tioning and proje
tion operations are 
arried out in the steps where the matri
es Mi ,



6.2. Two-Level PCG Methods 97Method Vstart M1 M2 M3 VendPREC �x M�1 I I xj+1AD �x M�1 +Q I I xj+1DEF1 �x M�1 I P Qb + P T xj+1DEF2 Qb + P T �x M�1 P T I xj+1A-DEF1 �x M�1P +Q I I xj+1A-DEF2 Qb + P T �x P TM�1 +Q I I xj+1BNN �x P TM�1P +Q I I xj+1R-BNN1 Qb + P T �x P TM�1P I I xj+1R-BNN2 Qb + P T �x P TM�1 I I xj+1Table 6.2: Choi
es of parameters for ea
h method, used in the generalized two-level PCG method asgiven in Algorithm 7.with i = 1; 2; 3, are involved. For most 2L-PCG methods, these steps are 
om-bined to obtain the pre
onditioned/proje
ted residuals, fyig. DEF2 is the only methodwhere a proje
tion step is applied to the sear
h dire
tions, fpig. Likewise, DEF1is the only method where the proje
tion is performed to 
reate wj . In this 
ase,rj+1 = P (b � Axj+1) should hold, while rj+1 = b � Axj+1 is satis�ed for the othermethods. As dis
ussed in Se
tion 3.5.3, termination 
riterion (2.23) based on frig 
anbe used to 
ompare the 2L-PCG methods in a fair way.Remark 6.4.� Note that Algorithms 3 (PCG) and 6 (DPCG) are parti
ular 
hoi
es of Algo-rithm 7.� Noti
e that we use the same arbitrary starting ve
tor, �x, in ea
h method, butthe a
tual starting ve
tor, Vstart, may di�er for ea
h method. Likewise, it 
analso be noti
ed that the ending ve
tor, Vend, is the same for all methods, ex
eptfor DEF1.� A 2L-PCG method is guaranteed to 
onverge if P, as given in (6.1), is SPDor 
an be transformed into an SPD matrix, see, e.g., [51℄ for more details.This is obviously the 
ase for PREC, AD, DEF1 and BNN. It 
an be shown thatDEF2, A-DEF2, R-BNN1 and R-BNN2 also rely on appropriate operators, whereVstart = Qb + P T �x plays an important role in this derivation, see Theorem 6.4.A-DEF1 is the only method whi
h does not have an SPD operator and 
annotbe de
omposed or transformed into an SPD operator, P. Therefore, it is notguaranteed that A-DEF1 always works, but it performs rather satisfa
torily formost of the test 
ases 
onsidered in Se
tion 6.4.Computational CostThe 
omputational 
ost of ea
h method depends not only on the 
hoi
es of M�1 andZ, but also on the implementation and the storage of the matri
es. It is easy to see
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h iteration, PREC requires 1 matrix-ve
tor multipli
ation (MVM), 2 innerprodu
ts (IP), 3 ve
tor updates (VU) and 1 pre
onditioning step.Note that AZ and E should be 
omputed and stored beforehand, so that only oneMVM with A is required in ea
h iteration of the 2L-PCG methods. Moreover, wedistinguish between two 
ases 
onsidering Z and AZ:� Z is su�
iently sparse, so that Z and AZ 
an be stored in approximately twove
tors;� Z is dense, so that Z and AZ are full matri
es.The �rst 
ase, whi
h is the best 
ase in terms of e�
ien
y, o

urs often in DDM,where the 
olumns of Z 
orrespond to subdomains, while the se
ond (and worst) 
aseo

urs, for example, in approximated eigenve
tor de�ation methods. Of 
ourse, thereare many relevant 
ases where Z and AZ 
annot be stored within two ve
tors, whiledense storage of these matri
es is not ne
essary; however, this is not 
onsidered in this
hapter for 
onvenien
e. For ea
h 2L-PCG method, we give the extra 
omputational
ost per iteration above that of PREC, see Table 6.3. In the table, the number ofoperations of the form Py and Qy , for a given ve
tor, y , per iteration is also provided.Note that, if both Py and Qy should be 
omputed for the same ve
tor, y , su
h as inA-DEF1 and BNN, then Qy 
an be determined e�
iently, sin
e it only requires one IPif Z is sparse, or one MVM if Z is dense.From Table 6.3, it 
an be seen that AD is obviously the 
heapest method periteration, while BNN and R-BNN1 are the most expensive 2L-PCG methods, sin
etwo operations with P and P T are involved. With respe
t to the implementation, thisimplies that AD only needs two inner/matrix-ve
tor produ
ts and one Galerkin systemsolves extra 
ompared to PREC, while both BNN and R-BNN1 require obviously moreinner/matrix-ve
tor produ
ts, Galerkin system solves and additional ve
tor updates.Finally, we observe that using a 2L-PCG method is only e�
ient if Z is sparse, or ifthe number of proje
tion ve
tors is relatively small in the 
ase of a dense matrix, Z.Remark 6.5.� The given 
omputational 
ost in Table 6.3 is based on the resulting abstra
toperators and implementation as presented in Algorithm 7. As mentioned inSe
tions 6.2.2 and 6.2.3, the methods have di�erent origins with their own spe-
i�
 and optimal implementation, so that the amount of work for ea
h method
an be less as suggested in Table 6.3.� We emphasize that the parameters of the 2L-PCG methods that are 
ompared
an be arbitrary, so that the 
omparison between these methods is based on theirabstra
t versions. This means that the results of the 
omparison are valid forany full-rank matrix Z and SPD matri
es A and M�1.� In Chapter 8, the e�
ien
y and implementation of DEF1 and A-DEF2 for aspe
i�
 
hoi
e of Z are examined in more detail.



6.3. Theoreti
al Comparison 99Theory ImplementationMethod Py , P T y Qy IP / MVM VU GSSAD 0 1 2 0 1DEF1 1 0 2 1 1DEF2 1 0 2 1 1A-DEF1 1 1 3 1 1A-DEF2 1 1 4 1 2BNN 2 1 5 2 2R-BNN1 2 0 4 2 2R-BNN2 1 0 2 1 1Table 6.3: Extra 
omputational 
ost per iteration of the two-level PCG methods 
ompared to PREC.IP = inner produ
ts, MVM = matrix-ve
tor multipli
ations, VU = ve
tor updates and GSS = Galerkinsystem solves. Note that IP holds for sparse Z and MVM holds for dense Z.We note that e�
ien
y and implementation issues have not been taken into 
on-sideration so far in this thesis. The aim of this 
hapter is to deal with those issues inmore detail. We show that a good implementation of the de�ation method is essentialin order to obtain a powerful and e�
ient method.6.3 Theoreti
al ComparisonIn this se
tion, a 
omparison of eigenvalue distributions 
orresponding to the operatorsof the 2L-PCG methods is 
arried out, and, thereafter, some equivalen
e relationsbetween the methods are derived. Although some parts of the results are 
loselyrelated to results known in the literature [103,104,150℄, we in
lude them here in orderto make this 
hapter self-
ontained.6.3.1 Spe
tral Analysis of the MethodsWe start this subse
tion with a de�nition.De�nition 6.2. Suppose that arbitrary matri
es C;D 2 Rn�n have the following spe
-tra: �(C) := f�1; �2; : : : ; �ng; �(D) := f�1; �2; : : : ; �ng;respe
tively. Then, the addition of two sets, �(C) and �(D), is de�ned as�(C) + �(D) := f�1 + �1; �2 + �2; : : : ; �n + �ng:In Se
tion 3.5.2, we have shown that� (M�1PA) � � (M�1A) ;for any SPD matri
es A and M�1, and any full-rank Z. This means that the two-level pre
onditioned matrix 
orresponding to DEF1 is better 
onditioned than thatof PREC. It follows from the analysis below that the two-level pre
onditioned matrix
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orresponding to PREC is always worse 
onditioned 
ompared to the other 2L-PCGmethods.In [103, 104℄, it is shown that the 
ondition number of DEF1 is not worse thanthat of both AD and BNN, i.e.,
{ � (M�1PA) � � (M�1A+QA) ;� (M�1PA) � � (P TM�1PA+QA) ; (6.14)for all full-rank Z and SPD matri
es A and M�1.Remark 6.6. Inequalities su
h as (6.14) 
annot be derived between between AD andBNN. One would expe
t the 
ondition number asso
iated with BNN to be below thatasso
iated with AD, but this is not always the 
ase, see [105℄ for a 
ounterexample.In addition to the 
omparisons of AD, DEF1 and BNN performed in [103�105℄,more relations between the eigenvalue distribution of these and other 2L-PCG methodsare presented below. We �rst show in Theorem 6.1 that DEF1, DEF2, R-BNN1 andR-BNN2 have identi
al spe
tra, and that the same is true for BNN, A-DEF1 andA-DEF2.Theorem 6.1. Suppose that A;M�1 2 Rn�n are SPD. Let Q and P be as given inDe�nition 6.1. Then, the following two statements hold:� � (M�1PA) = � (P TM�1A) = � (P TM�1PA);� � ((P TM�1P +Q)A) = � ((M�1P +Q)A) = � ((P TM�1 +Q)A).Proof. Using Lemma A.1 and Lemma 6.1, we obtain immediately� (M�1PA) = � (AM�1P ) = � (P TM�1A) ;and � (M�1PA) = � (M�1P 2A)= � (M�1PAP T )= � (P TM�1PA) ;whi
h proves the �rst statement. Moreover, we also have that� (P TM�1PA+QA) = � (P TM�1PA� P T + I)= � ((M�1PA� I)P T )+ �(I)= � (M�1P 2A� P T )+ �(I)= � (M�1PA+QA) ;and, likewise, � (P TM�1A+QA) = � (P TM�1A� P T )+ �(I)= � (AM�1P � P )+ �(I)= � (PAM�1P � P )+ �(I)= � (P TM�1AP T � P T )+ �(I)= � (P TM�1PA+QA) ;



6.3. Theoreti
al Comparison 101whi
h 
ompletes the proof of the se
ond statement.As a 
onsequen
e of Theorem 6.1, DEF1, DEF2, R-BNN1 and R-BNN2 
an beinterpreted as one 
lass of 2L-PCG methods having the same spe
tral properties,whereas BNN, A-DEF1 and A-DEF2 lead to another 
lass of 2L-PCG methods. Thesetwo 
lasses 
an be related to ea
h other by [104, Thm. 2.8℄, whi
h states that if�(M�1PA) = f0; : : : ; 0; �k+1; : : : ; �ng is given, then �(P TM�1PA+QA) = f1; : : : ; 1;�k+1; : : : ; �ng. We 
an show that the reverse statement also holds. These results aregiven in Theorem 6.2.Theorem 6.2. Suppose that A;M�1 2 Rn�n are SPD. Let Q and P be as in De�ni-tion 6.1. Let the spe
tra of DEF1 and BNN be given by�(M�1PA) = f�1; : : : ; �ng; �(P TM�1PA+QA) = f�1; : : : ; �ng;respe
tively. Then, the eigenvalues within these spe
tra 
an be ordered su
h that thefollowing statements hold:
{ �i = 0; �i = 1; for i = 1; : : : ; k;�i = �i ; for i = k + 1; : : : ; n:Proof. Using Lemma 6.1, we have(P TM�1P +Q)AZ = Z; M�1PAZ = 0n;k :As a 
onsequen
e, the 
olumns of Z are the eigenve
tors 
orresponding to the eigenval-ues of BNN and DEF1 that are equal to 1 and 0, respe
tively. Due to [104, Thm. 2.8℄,it su�
es to show that if�(P TM�1PA+QA) = f1; : : : ; 1; �k+1; : : : ; �ngholds, then this implies�(M�1PA) = f0; : : : ; 0; �k+1; : : : ; �ng:The proof is as follows.Consider the eigenvalues, f�ig, and 
orresponding eigenve
tors, fvig, with i =k + 1; : : : ; n of BNN, i.e., (P TM�1P +Q)Avi = �ivi , whi
h impliesP T (P TM�1P +Q)Avi = �iP T vi : (6.15)Applying Lemma 6.1, we have(P T )2M�1PA+ P TQA = P TM�1PAP T :
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an be rewritten asP TM�1PAwi = �iwi ;with wi := P T vi . Note that P T y = 0n if y 2 R(Z), due to Lemma 6.1. However,wi 6= 0n, sin
e vi =2 R(Z) for i = k+1; : : : ; n. Hen
e, �i is an eigenvalue of P TM�1PAas well. Lemma 6.1 implies� (M�1PA) = � (P TM�1PA) ;so that �i is also an eigenvalue of DEF1.Due to Theorem 6.2, both DEF1 and BNN provide almost the same spe
tra with thesame 
lustering. The zero eigenvalues of DEF1 are repla
ed by unit eigenvalues in the
ase of BNN.Remark 6.7. If 1 2 [�k+1; �n℄, then the 
ondition numbers of BNN and DEF1 areidenti
al. On the other hand, if 1 =2 [�k+1; �n℄, then DEF1 has a more favorable
ondition number 
ompared to BNN, see also [104℄. In this latter 
ase, if j iterationsof CG a
hieve a suitable redu
tion in the error using DEF1, more than j iterations ofCG might be required to optimally eliminate all errors asso
iated with eigenvalue 1.Next, Theorem 6.3 relates all methods in terms of their spe
tra and provides astrong 
onne
tion between the two 
lasses as given in Theorem 6.1.Theorem 6.3. Let the spe
trum of DEF1, DEF2, R-BNN1 or R-BNN2 be given byf0; : : : ; 0; �k+1; : : : ; �ng;satisfying �k+1 � �k+2 � : : : � �n. Let the spe
trum of BNN, A-DEF1 or A-DEF2be f1; : : : ; 1; �k+1; : : : ; �ng;with �k+1 � �k+2 � : : : � �n. Then, �i = �i for all i = k + 1; : : : ; n.Proof. The theorem follows immediately from Theorem 6.1 and 6.2.From Theorem 6.3, it 
an be 
on
luded that all 2L-PCG methods have almost thesame 
lusters of eigenvalues. Therefore, we expe
t that the 
onvergen
e of all methodsare similar, see Se
tion 6.4.2 for some test 
ases. Moreover, the zeros in the spe
trumof the �rst 
lass (
onsisting of DEF1, DEF2, R-BNN1 or R-BNN2) might be
omenearly zero, due to round-o� errors or the approximate solution of Galerkin systems inthe operator. This gives an unfavorable spe
trum, resulting in slow 
onvergen
e of themethod. This phenomenon does not appear in the 
ase of BNN, A-DEF1 or A-DEF2.Small perturbations in those 2L-PCG methods lead to small 
hanges in their spe
traand 
ondition numbers. Theoreti
ally, this 
an be analyzed using Z 
onsisting ofeigenve
tors, see [103, Se
t. 3℄, but, in general, it is di�
ult to examine for general Z.This issue is further illustrated in Se
tions 6.4.3 and 6.4.4 using numeri
al experiments.



6.3. Theoreti
al Comparison 1036.3.2 Equivalen
es between the MethodsIn this subse
tion, we show that DEF2, A-DEF2, R-BNN1 and R-BNN2 produ
e iden-ti
al iterates in exa
t arithmeti
. More importantly, we prove that these 2L-PCGmethods are mathemati
ally equivalent to the more expensive BNN method for 
ertainstarting ve
tors. First, Lemma 6.2 shows that some steps in the BNN implementation
an be redu
ed, see also [89℄ and [150, Se
t. 2.5.2℄.Lemma 6.2. Let Q and P be as given in De�nition 6.1. Suppose that Vstart = Qb+P T �xinstead of Vstart = �x is used in BNN, where �x 2 Rn is an arbitrary ve
tor. Then, thisimplies that� Qrj+1 = 0n;� P rj+1 = rj+1,for all j = �1; 0; 1; : : :, in the BNN implementation of Algorithm 7.Proof. Both statements 
an be proven by indu
tion.For the �rst statement, the proof is as follows. It 
an be veri�ed that Qr0 = 0n andQAp0 = 0n. By the indu
tive hypothesis, Qrj = 0n and QApj = 0n hold. Then, for theindu
tive step, we obtain Qrj+1 = 0n andQApj+1 = 0n, sin
e Qrj+1 = Qrj��jQApj =0n; and QApj+1 = QAyj+1 + �jQApj= QAP TM�1P rj+1 +QAQrj+1= 0n;where we have used Lemma 6.1.Next, for the se
ond statement, P r0 = r0 and PAp0 = Ap0 
an be easily veri�ed.Assume that P rj = rj and PApj = Apj . Then, both P rj+1 = rj+1 and PApj+1 = Apj+1hold, be
ause P rj+1 = P rj � �jPApj= rj � �jApj= rj+1;and PApj+1 = PAyj+1 + �jPApj= PAP TM�1P rj+1 + �jApj= AP TM�1rj+1 + �jApj= AP TM�1P rj+1 + �jApj= A(yj+1 + �jpj)= Apj+1;where we have applied the result of the �rst statement.Subsequently, we provide a more detailed 
omparison between BNN and DEF1in terms of errors in the A�norm, see Lemma 6.3. In fa
t, it is a generalizationof [104, Thm. 3.4 and 3.5℄, where we now apply an arbitrary starting ve
tor, �x , insteadof the zero starting ve
tor.



104 Chapter 6. Comparison of Two-Level PCG Methods � Part ILemma 6.3. Suppose that A 2 Rn�n is SPD. Let Q and P be as given in De�nition 6.1.Let (xj+1)DEF1 and (xj+1)BNN denote iterate xj+1 of BNN and DEF1 as provided byAlgorithm 7, respe
tively. Then, these iterates satisfy
{ jjx � (xj+1)DEF1jjA � jjx � (xj+1)BNNjjA; if (x0)DEF1 = (x0)BNN;(xj+1)DEF1 = (xj+1)BNN; if (x0)DEF1 = �x and (x0)BNN = Qb + P T �x:Proof. The proof is analogous to the proofs as given in [104, Thm. 3.4 and 3.5℄.From Lemma 6.3, we 
on
lude that the errors of the iterates built by DEF1 are neverlarger than those of BNN in the A�norm. Additionally, DEF1 and BNN produ
e thesame iterates in exa
t arithmeti
, if Vstart = Qb + P T �x is used in BNN.Next, Lemma 6.2 and 6.3 
an now be 
ombined to obtain the following importantresult.Theorem 6.4. Let Q and P be as given in De�nition 6.1. Let �x 2 Rn be an arbitraryve
tor. Then, the following methods produ
e exa
tly the same iterates, fxj+1g, inexa
t arithmeti
:� BNN with Vstart = Qb + P T �x ;� DEF2, A-DEF2, R-BNN1 and R-BNN2 (with Vstart = Qb + P T �x);� DEF1 (with Vstart = �x) whose iterates are based on xj+1 = Qb + P T xj+1.Proof. The theorem follows immediately from Lemma 6.2 and 6.3.As a result of Theorem 6.4, if Vstart = Qb+P T �x is used, then BNN is mathemati
allyequivalent to R-BNN1, R-BNN2, A-DEF2 and DEF2, sin
e they produ
e identi
aliterates. They even produ
e the same iterates as DEF1, if ea
h iterate of DEF1, xj+1,is transformed into Qb+P T xj+1. In Se
tion 6.4.2, we show that the methods as givenin Theorem 6.4 indeed lead to almost identi
al results with respe
t to 
onvergen
ebehavior.Remark 6.8.� Another 
onsequen
e of Theorem 6.4 is that the 
orresponding operators forDEF2, A-DEF2, R-BNN1 and R-BNN2 are all appropriate in a 
ertain subspa
e,although they are not symmetri
. Hen
e, a CG pro
ess in 
ombination withthese operators should, in theory, work properly.� The results as presented in Theorem 6.4 might not be valid anymore in the
omputations, if the round-o� errors are too large. Therefore, although BNN,DEF2, A-DEF2, R-BNN1 and R-BNN2 give exa
tly the same iterates, all involved2L-PCG methods ex
ept for BNN may lead to ina

urate solutions and maysu�er from nonrobustness in numeri
al experiments, see also Se
tion 6.4.5. Inthis 
ase, the omitted proje
tion and 
orre
tion steps of the BNN algorithm,as suggested in Lemma 6.2, are important to maintain the robustness of themethod.



6.4. Numeri
al Comparison 1056.4 Numeri
al ComparisonIn this se
tion, a numeri
al 
omparison of the 2L-PCG methods is performed using 2-Dbubbly �ows with m = 5, � = 103 and s = 0:05 as des
ribed in Se
tion 1.3. In order toensure that the obtaining results are no artifa
ts, the experiments are also 
arried outusing 2-D Poisson problems with a 
onstant 
oe�
ient and 2-D porous-media �ows,see Appendix G and [134, Se
t. 4℄.The IC(0) pre
onditioner is 
hosen asM�1, but it seems that other traditional SPDpre
onditioners 
ould also be used instead, leading to similar results, see [137, 173℄.Moreover, k = q + 1 subdomain de�ation ve
tors are taken as proje
tion ve
tors (
f.Se
tion 3.6) based on Variant 5.2 (see Se
tion 5.3). We remark that the proje
tionve
tors are not restri
ted to 
hoi
es that are 
ommon in DDM and de�ation. Typi
alMG proje
tion ve
tors 
ould also be taken, see [48℄ and Chapter 9.6.4.1 Setup of the ExperimentsWe start with a numeri
al experiment using standard parameters, whi
h means that anappropriate termination 
riterion, exa
t 
omputation of E�1, and exa
tly 
omputedstarting ve
tors are used. Subsequently, numeri
al experiments are performed with in-exa
t E�1, severe termination toleran
es, and perturbed starting ve
tors, respe
tively.The results for ea
h method are presented in two ways. Firstly, the results aresummarized in a table, presenting the number of iterations and the standard norm ofthe relative errors (i.e., jjxit�xjj2jjxjj2 with the iterated solution, xit). Se
ondly, the resultsare presented graphi
ally by showing the relative errors in the A�norm (i.e., jjxj�xjjAjjxjjAwith xj denoting the j�th iterate) during the iteration pro
esses. We re
all that ea
h2L-PCG method optimizes the error in the A�norm, rather than in the (two-level)pre
onditioned A�norm (see Se
tion 2.4), so that it is natural to report the errorsin the A�norm in the experiments. Moreover, the errors are also measured in the2�norm, sin
e it may be a more relevant and useful measure of the error, and itappears that there are signi�
ant di�eren
es between these two measures. Finally, forea
h test 
ase, the iterative pro
ess of ea
h method is terminated if the maximumallowed number of iterations (
hosen to be equal to 250) is rea
hed, or if the normof the relative residual falls below a toleran
e, Æ > 0, see (2.23). As mentioned inSe
tion 6.2.4, this termination 
riterion leads to a fair 
omparison of the 2L-PCGmethods.Remark 6.9. As mentioned in Se
tion 6.2.1, the 
hoi
e of parameters, Z, M�1 andthe dire
t solver for E�1, are the same for ea
h 2L-PCG method. This allows us to
ompare these methods fairly. However, in pra
ti
e, the 2L-PCG methods are derivedfrom di�erent �elds, where typi
al 
hoi
es asso
iated with these �elds are made forthese parameters. In Chapter 9, we 
ompare the 2L-PCG methods with their typi
alparameters.



106 Chapter 6. Comparison of Two-Level PCG Methods � Part I6.4.2 Experiment using Standard ParametersIn the �rst numeri
al experiment, standard parameters are used with stopping toleran
eÆ = 10�10, an exa
t Galerkin matrix inverse, E�1, and an unperturbed starting ve
tor,Vstart. The results of the experiment 
an be found in Table 6.4 and Figure 6.1.k = 22 k = 42 k = 82Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 137 4:6� 10�7 137 4:6� 10�7 137 1:8� 10�7AD 161 1:1� 10�8 163 8:4� 10�9 60 1:1� 10�8DEF1 149 1:5� 10�8 144 3:1� 10�8 42 1:8� 10�8DEF2 149 1:5� 10�8 144 3:1� 10�8 42 1:8� 10�8A-DEF1 239 3:5� 10�7 NC 9:0� 10�6 48 1:5� 10�9A-DEF2 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8BNN 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8R-BNN1 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8R-BNN2 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8Table 6.4: Number of required iterations for 
onvergen
e and the 2�norm of the relative errors ofall methods, for the bubbly �ow problem with n = 642, and `standard' parameters. `NC' means no
onvergen
e within 250 iterations.By 
onsidering Table 6.4 and Figure 6.1, we observe that all methods performthe same, ex
ept for PREC, AD and A-DEF1. A-DEF1 has di�
ulties to 
onverge,espe
ially for the 
ases with k = 22 and k = 42. This is not surprising, sin
e it 
annotbe shown that it is an appropriate pre
onditioner, see Se
tion 6.2.4. In addition, thenumber of proje
tion ve
tors is apparently too low to approximate the eigenve
tors
orresponding to the small eigenvalues, whi
h is the result of the presen
e of thebubbles. Therefore, we hardly see any improvements by 
omparing all 2L-PCG methodsto PREC in the 
ase of k = 22 and k = 42. It is unexpe
ted that PREC requires feweriterations in these 
ases, but we observe that the 
orresponding solution is somewhatless a

urate than the others. Moreover, we remark that AD performs obviously worse,
ompared to the other 2L-PCG methods.The total 
omputational 
ost of the methods in this experiment is presented inTable 6.5. We restri
t ourselves to the test 
ase with k = 82, sin
e analogous resultsare obtained for the other test 
ases. It depends on the exa
t implementation of themethods to determine whi
h 2L-PCG method requires the lowest 
omputational 
ost.6.4.3 Experiment using Ina

urate Galerkin SolvesFor problems with a relatively large number of proje
tion ve
tors, it might be expensiveto �nd an a

urate solution of the Galerkin system, Ey2 = y1, by a dire
t solver atea
h iteration of the 2L-PCG methods. Instead, only an approximate solution, ~y2,
an be determined, using, for example, approximate solvers based on SSOR or ILUTpre
onditioners, re
ursive MG methods or nested iterations, su
h as a standard (Krylov)iterative solver with a low a

ura
y. In this 
ase, ~y2 
an be interpreted as Ẽ�1y1, whereẼ is an inexa
t matrix based on E. This motivates our next experiment, using Ẽ�1
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(
) k = 82.Figure 6.1: Relative errors during the iterative pro
ess, for the bubbly �ow problem with n = 642, and`standard' parameters.



108 Chapter 6. Comparison of Two-Level PCG Methods � Part IMethod IP VU GSS PRPREC 137 411 0 137AD 180 180 42 42DEF1 126 168 42 42DEF2 126 168 42 42A-DEF1 192 192 48 48A-DEF2 210 168 84 42BNN 252 210 84 42R-BNN1 210 210 84 42R-BNN2 126 168 42 42Table 6.5: Computational 
ost within the iterations in terms of number of inner produ
ts (`IP'), ve
torupdates (`VU'), Galerkin system solves (`GSS'), and pre
onditioning step with M�1 (`PR'), for thebubbly �ow problem with n = 642, k = 82, and `standard' parameters.de�ned as Ẽ�1 := (I +  R)E�1(I +  R);  > 0; (6.16)where R 2 Rk�k is a symmetri
 random matrix with entries from the interval [�0:5; 0:5℄,see also [103, Se
t. 3℄ for more details. Note that theory, as derived in Se
tion 6.3.2,is not valid for any  > 0, but we will see that some of those theoreti
al results arestill 
on�rmed for relatively large  . The sensitivity of the 2L-PCG methods to thisina

urate solve with various values of  are investigated, and the results are related toTheorem 6.16. Note that the results for PREC are not in�uen
ed by this adaptationof E�1. They are only in
luded for referen
e.Remark 6.10. Eq. (6.16) does not re�e
t the way that inexa
t Galerkin solves typi
allyenter 2L-PCG methods, but it does provide us with good insights into approximateGalerkin solves applied to these methods. Additionally, the approximation of E�1 
anbe quanti�ed expli
itly using Eq. (6.16). Experiments with Galerkin solves that aredone iteratively (i.e., nested iterations) 
an be found in Chapter 8. In that 
hapter,it is shown that it is reasonable to apply (6.16), sin
e they give similar results as inthis subse
tion. Moreover, it turns out that the original PCG rather than a �exiblevariant 
an still be used in these experiments, as long as the inner stopping toleran
eis su�
iently small. More details about inexa
t Krylov subspa
e methods 
an also befound in [124℄.The results of the experiment 
an be found in Table 6.6 and Figure 6.2. Weobserve that the most robust 2L-PCG methods are AD, BNN, A-DEF1 and A-DEF2,sin
e they are largely sensitive to perturbations in E�1. On the other hand, DEF1,DEF2, R-BNN1 and R-BNN2 are obviously the worst methods, as expe
ted, sin
e thezero eigenvalues of the 
orresponding systems be
ome small nearly-zero eigenvaluesdue to the perturbation,  (
f. Se
tion 6.3.1).6.4.4 Experiment using Severe Termination Toleran
esIn pra
ti
e, two-level PCG methods are sometimes 
ompared with a too stri
t termi-nation 
riterion. Su
h a 
omparison 
an be unfair, as 
ertain 2L-PCG methods are
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(
)  = 10�4.Figure 6.2: Relative errors during the iterative pro
ess, for the bubbly �ow problem with parametersn = 642 and k = 82, and a perturbed Galerkin matrix inverse, eE�1.



110 Chapter 6. Comparison of Two-Level PCG Methods � Part I = 10�12  = 10�8  = 10�4Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 137 4:6� 10�7 137 4:6� 10�7 137 4:6� 10�7AD 60 2:3� 10�8 60 2:3� 10�8 63 7:8� 10�9DEF1 42 1:2� 10�8 NC 8:3� 10�4 NC 9:2� 10�2DEF2 42 1:2� 10�8 NC 3:9� 10+2 NC 2:2� 10+2A-DEF1 48 8:8� 10�9 48 8:8� 10�9 48 8:5� 10�9A-DEF2 42 1:1� 10�8 42 1:1� 10�8 43 8:2� 10�9BNN 42 1:1� 10�8 42 1:1� 10�8 42 1:1� 10�8R-BNN1 42 1:1� 10�8 NC 4:1� 10�7 NC 1:7� 10�4R-BNN2 42 1:2� 10�8 NC 3:7� 10�5 NC 1:5� 10�1Table 6.6: Number of required iterations for 
onvergen
e and the 2�norm of the relative errors of allmethods for the bubbly �ow problem with parameters n = 642 and k = 82, and a perturbed Galerkinmatrix inverse, eE�1, is used with varying perturbation  . `NC' means no 
onvergen
e within 250iterations.sensitive to severe termination 
riteria, see, e.g., [65℄. We investigate this by perform-ing a numeri
al experiment with various values of the toleran
e, Æ. Note that, for arelatively small Æ, this may lead to a too severe termination 
riterion with respe
t toma
hine pre
ision. However, the aims of this experiment are to test the sensitivityof the 2L-PCG methods to Æ, and to investigate the maximum a

ura
y that 
an berea
hed, rather than to perform realisti
 experiments.Æ = 10�8 Æ = 10�12 Æ = 10�16Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 122 6:6� 10�6 162 1:8� 10�10 179 2:1� 10�13AD 45 1:4� 10�6 75 1:1� 10�10 178 4:8� 10�13DEF1 32 9:4� 10�7 53 1:5� 10�10 NC 5:7� 10�6DEF2 32 9:4� 10�7 53 1:5� 10�10 NC 6:3� 10�7A-DEF1 34 9:7� 10�7 61 8:2� 10�11 233 2:2� 10�13A-DEF2 32 9:4� 10�7 53 1:5� 10�10 133 8:3� 10�13BNN 32 9:4� 10�7 53 1:5� 10�10 133 5:9� 10�13R-BNN1 32 9:4� 10�7 53 1:5� 10�10 NC 2:2� 10�12R-BNN2 32 9:4� 10�7 53 1:5� 10�10 NC 8:1� 10�9Table 6.7: Number of required iterations for 
onvergen
e and the 2�norm of the relative errors ofall methods, for the bubbly �ow problem with parameters n = 642 and k = 82. Various terminationtoleran
es, Æ, are tested.The results of the experiment are presented in Table 6.7 and Figure 6.3. It 
an beseen that all methods perform well, even in the 
ase of a relatively stri
t termination
riterion (i.e., Æ = 10�12). PREC also 
onverges in all 
ases, but not within 250iterations. Note, moreover, that it does not give an a

urate solution if Æ is 
hosentoo large. For Æ < 10�12, DEF1, DEF2, R-BNN1 and R-BNN2 show di�
ulties,sin
e they do not 
onverge appropriately and may even diverge. This is in 
ontrastto PREC, AD, BNN, A-DEF1 and A-DEF2, whi
h give good 
onvergen
e results forÆ = 10�16. Therefore, these 2L-PCG methods 
an be 
hara
terized as robust methods
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(b) Æ = 10�12.
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) Æ = 10�16.Figure 6.3: Relative errors during the iterative pro
ess for the bubbly �ow problem with parametersn = 642; k = 82, and various termination 
riterion.



112 Chapter 6. Comparison of Two-Level PCG Methods � Part Iwith respe
t to termination 
riteria.Some of the non
onverging methods might eventually give the solution after themaximum number of iterations, but su
h a solution takes too mu
h 
omputing time;hen
e, the result is useless. Moreover, the non
onverging behavior is 
aused by round-o� errors, resulting in, for example, a la
k of orthogonality of the residuals with respe
tto Z, see Se
tion 6.4.6.6.4.5 Experiment using Perturbed Starting Ve
torsIn Se
tion 6.3.2, it is proven that BNN with Vstart = Qb + P T �x gives exa
tly thesame iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2, in exa
t arithmeti
. In this
ase, the resulting operators are well-de�ned and they should perform appropriately.In our next experiment, we perturb Vstart in DEF2, A-DEF2, R-BNN1 and R-BNN2,and examine whether this in�uen
es the 
onvergen
e results. The motivation of thisexperiment is the same as for the experiment 
arried out in Se
tion 6.4.3; for relativelylarge problems, it 
an be 
ompli
ated to determine Vstart a

urately, due to, for example,the ina

urate 
omputation of Galerkin solves. It is important to note that if we useapproximate starting ve
tors, then there is no longer any equivalen
e between BNNand its redu
ed methods, as provided in the results of Se
tion 6.3.2. In this 
ase, it isinteresting to see how these methods perform in pra
ti
e.The perturbed Vstart, denoted byWstart, is de�ned as a 
omponentwise multipli
ationof a random ve
tor and Vstart, i.e., ea
h entry of Wstart is de�ned as(Wstart)i := (1 + 
(v0)i) (Vstart)i ; i = 1; 2; : : : ; n; (6.17)where 
 � 0 gives 
ontrol over the a

ura
y of the starting ve
tor, and v0 is a randomve
tor with entries from the interval [�0:5; 0:5℄, taken to give ea
h entry of Vstart adi�erent perturbation. As in the experiment performed in Se
tion 6.4.3, the 
hoi
e ofWstart does not re�e
t the way in whi
h starting ve
tors are perturbed in pra
ti
e, butit provides us with some valuable insights where the perturbation 
an be quanti�ed inan easy way. Furthermore, note that if DEF2, R-BNN1 or R-BNN2 
onverge usingWstart, then we may obtain a nonunique solution, sin
e the 
orresponding operator issingular. Therefore, as in the 
ase of DEF1, we should apply the `uniqueness' step(see Remark 6.3) at the end of the iteration pro
ess. Note that this pro
edure is notrequired for A-DEF2, be
ause this method 
orresponds to a nonsingular operator.We perform the numeri
al experiment using Wstart for di�erent 
. The results 
anbe found in Table 6.8 and Figure 6.4. Here, we use asterisks to stress that an extrauniqueness step is applied in the spe
i�
 method. Moreover, noti
e that PREC, AD,DEF1 and BNN are not in
luded in this experiment, sin
e they apply an arbitrary ve
tor,Vstart = �x, by de�nition.From the results, it 
an be noti
ed that all involved methods 
onverge appropriatelyfor 
 = 10�10. For 
 � 10�5, DEF2, R-BNN1 and R-BNN2 fail to 
onverge (withrespe
t to the residuals), although R-BNN1 is already 
onverged and the 
urrent stop-ping 
riterion is apparently unreliable for this method in this experiment. The most
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 = 10�10.Figure 6.4: Relative errors during the iterative pro
ess for the bubbly �ow problem with n = 642; k =82, and perturbed starting ve
tors.
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 = 100 
 = 10�5 
 = 10�10Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2DEF2 42 1:1� 10�8 NC 1:4� 10+4 NC 2:7� 10+9A-DEF2 42 1:1� 10�8 42 1:2� 10�8 45 1:2� 10�8R-BNN1 42 1:1� 10�8 NC 1:4� 10�10* NC 3:6� 10�7*R-BNN2 42 1:1� 10�8 NC 1:8� 10�5* NC 1:1� 10+0*Table 6.8: Number of required iterations for 
onvergen
e and the 2�norm of the relative errors ofsome methods, for the bubbly �ow problem with n = 642; k = 82, and perturbed starting ve
tors. Anasterisk (*) means that an extra uniqueness step is applied in that test 
ase.robust method is, obviously, A-DEF2. This method is 
ompletely insensitive to theperturbation, 
. This experiment illustrates that the `redu
ed' variants of BNN havedi�erent robustness properties with respe
t to perturbations in starting ve
tors.6.4.6 Further Dis
ussionThe theoreti
al results given in Se
tion 6.3 only hold in exa
t arithmeti
 and underthe assumptions required to prove them. However, from a numeri
al point of view,we have observed that some of these assumptions are ne
essary, whereas others areonly su�
ient for 
ertain two-level PCG methods. The numeri
al results 
on�rm thetheoreti
al fa
t that all 2L-PCG methods perform approximately the same, althoughA-DEF1 shows problems in some test 
ases. This is understood by the fa
t thatA-DEF1 
orresponds to a non-SPSD operator, as also dis
ussed in Se
tion 6.2.4.If the dimension of the Galerkin matrix, E, be
omes large, it is favorable to solve the
orresponding systems iteratively, with a low a

ura
y. In this 
ase, we see that DEF1,DEF2, R-BNN1 and R-BNN2 show di�
ulties in 
onvergen
e. It 
an be observedthat the errors during the iterative pro
ess of DEF2 explode, whereas DEF1 
onvergesslowly to the solution, but in an errati
 way. The most robust methods are AD, BNN,A-DEF1 and A-DEF2.If A is ill-
onditioned and the toleran
e of the termination 
riterion, 
hosen bythe user, be
omes too severe, it is advantageous that the 2L-PCG method would stillwork appropriately. However, we observe that DEF1, DEF2, A-DEF1, R-BNN1 andR-BNN2 
annot deal with too stri
t toleran
es. This is in 
ontrast to AD, BNN,A-DEF2, whi
h remain robust in all test 
ases.In theory, BNN gives the same iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2,for 
ertain starting ve
tors. In addition to the fa
t that these `redu
ed' variants, ex
eptA-DEF2, are not able to deal with ina

urate Galerkin solves, some of them are alsosensitive to perturbations of the starting ve
tor. In 
ontrast to the other methods,A-DEF2 is independent of these perturbations. This 
an be of great importan
e, ifone uses multigrid-like subdomains, where the number of subdomains, k, is very large,and the starting ve
tor 
annot be obtained a

urately.In the numeri
al experiments, we observe that several methods show divergen
e,stagnation or errati
 behavior of the errors during the iterative pro
ess. This may be
aused by the fa
t that the residuals gradually lose orthogonality with respe
t to the
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olumns of Z, see also [122℄. It 
an easily be shown thatZT rj = 0k ; j = 0; 1; : : : ; (6.18)should hold for DEF1, DEF2, A-DEF2, R-BNN1 and R-BNN2. However, it appearsthat (6.18) is not always satis�ed in the experiments. A remedy to re
over this or-thogonality in the badly 
onverging methods is des
ribed in, e.g., [122℄. If we de�nethe `reorthogonalization' matrix, W 2 Rn�n, asW := I � Z(ZTZ)�1ZT ; (6.19)then W is orthogonal to Z, i.e.,ZTW = ZT � ZTZ(ZTZ)�1ZT = 0k;n: (6.20)Now, orthogonality of the residuals, frjg, 
an be preserved by premultiplying rj by Wright after rj is 
omputed in the algorithm:rj :=Wrj ; j = 0; 1; : : : : (6.21)As a 
onsequen
e, these adapted residuals satisfy (6.18), due to (6.20).Remark 6.11.� Eq. (6.18) is not valid for AD, A-DEF1 and BNN. In the 
ase of AD and BNN, thisis not a problem, be
ause they appear to be extremely robust in most test 
ases.This is in 
ontrast to A-DEF1, whi
h is not robust in several test 
ases, sin
eit is not an appropriate pre
onditioner, see Se
tion 6.2.4. The nonrobustness ofthis proje
tor 
annot be resolved using the reorthogonalization strategy.� The reorthogonalization operator (6.21) is relatively 
heap, provided that Z issparse.In the numeri
al experiments of [134, Se
t. 4.6℄, we show that the adapted versionsof the methods, in
luding the reorthogonalization strategy, 
onverge better in terms ofthe residuals. Unfortunately, it appears that a

urate solutions 
ould not be obtainedusing this approa
h. To preserve the relation, rj = b�Axj , ea
h iterate, xj , should beadapted via xj := xj � A�1Z(ZTZ)�1ZT rj ; j = 0; 1; : : : : (6.22)However, it is 
lear that (6.22) is not useful to apply due to the presen
e of A�1 inthat expression. Consequently, it is unlikely that, in pra
ti
e, the 2L-PCG methodswould bene�t from the reorthogonalization strategy.6.5 Con
luding RemarksIn this 
hapter, we 
onsider the abstra
t forms of several two-level PCG methods,listed in Table 6.1, whi
h originated from the �elds of de�ation, domain de
omposition
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omparison of these methods is 
arried out by investigating theirtheoreti
al and numeri
al aspe
ts.Theoreti
ally, DEF1 is the best method [103�105℄. We see that all two-levelPCG methods, ex
ept for PREC and AD, have 
omparable eigenvalue distributions.Two 
lasses of two-level PCG methods 
an be distinguished, ea
h having the samespe
tral properties. The �rst 
lass 
onsists of DEF1, DEF2, R-BNN1 and R-BNN2,and the se
ond 
lass in
ludes BNN, A-DEF1 and A-DEF2. Although the di�eren
esare surprisingly marginal, and, therefore, similar 
onvergen
e behaviors are expe
ted,we derive that the asso
iated spe
trum of the methods of the �rst 
lass is possiblymore favorable than those of the se
ond 
lass.In numeri
al experiments with realisti
 termination 
riteria and relatively small per-turbations in the starting ve
tor and Galerkin solves, it is observed that all 2L-PCGmethods always 
onverge faster than PREC. More importantly, all 2L-PCG methodsshow approximately the same 
onvergen
e behavior, although the residuals of AD hassometimes a nonmonotoni
al 
onvergen
e behavior. Both DEF1 and DEF2 are sensi-tive to su�
iently large perturbations in the Galerkin solves or too stri
t termination
riterion. In 
ontrast to DEF1, DEF2 also has the drawba
ks that it 
annot dealwith perturbed starting ve
tors and that the method diverges when the 
onvergen
edeteriorates. The errors are usually bounded in DEF1, when this method does not
onverge.We dedu
e that, for 
ertain starting ve
tors, the expensive operator of BNN 
anbe redu
ed to simpler and 
heaper operators, whi
h are used in DEF2, A-DEF2, R-BNN1 and R-BNN2. Hen
e, some 2L-PCG methods of the two spe
tral 
lasses aremathemati
ally equivalent in exa
t arithmeti
. However, these redu
ed variants, ex
eptfor A-DEF2, are not robust in the numeri
al experiments, when applying ina

urateGalerkin solves, stri
t stopping toleran
es or perturbed starting ve
tors. In fa
t, oneshould realize that the redu
ed variants of BNN, ex
ept A-DEF2, are as not robust asDEF1 or DEF2.By examining all theoreti
al and numeri
al aspe
ts, we 
on
lude that BNN andA-DEF2 are the best 2L-PCG methods in the sense of robustness. However, twode�ation matri
es are involved in BNN, making the method expensive to use. On the
ontrary, only one de�ation matrix is involved in A-DEF2, so that it is attra
tive toapply. Hen
e, A-DEF2 seems to be the best and most robust method, 
onsidering thetheory, numeri
al experiments, and the 
omputational 
ost.If robustness is not an 
ru
ial issue in experiments, then the de�ation method(DEF1 or DEF2) is a very e�
ient method (and often faster than other methods),see also Chapter 8 where DEF1 and A-DEF2 are 
ompared in more detail. Finally, thetwo-level PCG method based on the multigrid V(1,1)-
y
le pre
onditioner is ex
ludedin the 
omparison presented in this 
hapter, but it is related to the other methods inthe next 
hapter.



Chapter 7Comparison of Two-Level PCGMethods � Part II7.1 Introdu
tionIn the previous 
hapter, we have 
ompared several two-level PCG methods originatedfrom di�erent �elds. In that 
omparison, we have not in
luded the two-level PCGmethod with a pre
onditioner based on a multigrid V(1,1)-
y
le (denoted by the MGmethod in this 
hapter), sin
e it has very di�erent spe
tral properties and requires aspe
i�
 theoreti
al treatment, be
ause of the more general 
hoi
e for the traditionalpre
onditioner allowed within MG. The aim of this 
hapter is to �ll this gap. We fo
uson the 
omparison between abstra
t balan
ing Neumann-Neumann (BNN), de�ation(DEF), and multigrid V(1,1)-
y
le (MG) pre
onditioners. DEF is equal to the DEF1method from Chapter 6.Of 
ourse, the MG method [23, 69, 151, 178℄ and its properties [20, 53, 68, 96,107℄ are well-known. Our intention is not to reprodu
e these results (although someknown results needed for the 
omparison are brie�y reviewed), but to 
ompare and
onne
t MG to the other 2L-PCG methods. Intuitively, we expe
t MG to have better
onvergen
e properties than the other 2L-PCG methods, when the MG smoother (alsoknown as the MG relaxation) is 
hosen to be equal to M�1, sin
e it is the only 2L-PCG method with two appli
ations of the traditional pre
onditioners (in the pre- andpost-smoothing steps), in addition to a single 
oarse-grid 
orre
tion step within oneiteration. DEF, on the other hand, has optimal 
onvergen
e properties in terms ofits spe
tral properties 
ompared with the other 2L-PCG methods (ex
ept MG), seethe previous 
hapter. Therefore, it is su�
ient for the 
omparison to show that MGhas more favorable spe
tral properties than DEF, if MG is indeed superior to DEF.Hen
e, we often base the analysis on the 
omparison of DEF and MG in this 
hapter.However, the 
omparison between MG and BNN is, in some 
ases, easier to perform,so BNN is used in the analysis as well.Some spe
tral analysis for MG is 
arried out in [26℄. In that paper, proje
tionve
tors are based on exa
t eigenve
tors of M�1A and more pre- and post-smoothing117



118 Chapter 7. Comparison of Two-Level PCG Methods � Part IIsteps are allowed per iteration. The resulting two-level pre
onditioner is 
alled a `mul-tipli
ative two-grid spe
tral pre
onditioner'. It is shown that this pre
onditioner 
anbe e�e
tive for many pra
ti
al appli
ations, where sequen
es of linear systems have tobe solved. In this 
hapter, we restri
t ourselves to the standard multigrid V(1,1)-
y
lepre
onditioner, while eigenve
tors are sometimes used to illustrate the theoreti
al re-sults. Moreover, we note that while the 
ondition number of pre
onditioned systemsis an imperfe
t indi
ator of the 
onvergen
e properties of CG, it is the only analysistool available with su�
ient generality to 
ompare the te
hniques 
onsidered here.This 
hapter is organized as follows. In Se
tion 7.2, DEF, BNN and MG are de-s
ribed 
on
isely. Then, some spe
tral properties of MG are presented in Se
tion 7.3.Thereafter, in Se
tion 7.4, MG and DEF are 
ompared by investigating their spe
tralproperties using spe
ial 
hoi
es of parameters; it is shown there that MG 
an be lesse�e
tive than DEF. In Se
tion 7.5, we show that MG is superior to DEF for moresophisti
ated pre
onditioners. Subsequently, Se
tion 7.6 is devoted to the 
ompari-son of MG, BNN and DEF with the same 
ost per iteration. For spe
ial 
hoi
es ofpre
onditioners, we show that they are almost spe
trally equivalent. Se
tion 7.7 isdevoted to some numeri
al experiments in order to illustrate the theoreti
al results.Some 
on
luding remarks are presented in Se
tion 7.8.7.2 Two-Level PCG MethodsIn this se
tion, the 2L-PCG methods are des
ribed that will be examined to solvethe linear system, Ax = b, where A is assumed to be SPD. We remark again thatmost results presented in this 
hapter are generalizable to linear systems where A isSPSD. The following de�nition (
f. De�nition 6.1) is assumed to hold throughout this
hapter.De�nition 7.1. Suppose that an SPD 
oe�
ient matrix, A 2 Rn�n, and a de�ation-subspa
e matrix, Z 2 Rn�k, with full rank and k < n are given. Then, we de�nethe invertible Galerkin matrix, E 2 Rk�k, the 
orre
tion matrix, Q 2 Rn�n, and thede�ation matrix, P 2 Rn�n, as follows:P := I � AQ; Q := ZE�1ZT ; E := ZTAZ:In addition, �M�1 2 Rn�n is an arbitrary pre
onditioning matrix and M�1 2 Rn�n is anSPD pre
onditioning matrix.Remark 7.1. The di�eren
e between M�1 and �M�1 is that M�1 is assumed to besymmetri
, positive de�nite and nonsingular, whereas �M�1 might be nonsymmetri
, sin-gular, or even inde�nite, so that it is basi
ally the pseudo-inverse of �M. Pre
onditionerM�1 is applied in de�ation-like methods, whereas the more general pre
onditioner,�M�1, is applied solely in multigrid methods, where a general smoothing operator isallowable.



7.2. Two-Level PCG Methods 119The de�ation method (DEF) is already des
ribed in the previous 
hapters. Re
allthat its two-level pre
onditioner is PDEF = M�1P: (7.1)In order to derive the BNN and MG pre
onditioners, we 
onsider again the multi-pli
ative 
ombination of pre
onditioners, see Se
tion 6.2.2. Re
all that the multipli
a-tive operator 
onsisting of three pre
onditioners is given by (see Eq. (6.5))Pm3 = C1 + C2 + C3 � C2AC1 � C3AC2 � C3AC1 + C3AC2AC1: (7.2)It has already been derived that if one substitutes C1 := Q; C2 := M�1 and C3 := Qinto (7.2), we obtain PBNN = P TM�1P +Q; (7.3)whi
h is the two-level pre
onditioner 
orresponding to the abstra
t balan
ing Neumann-Neumann (BNN) method. We have shown that BNN has the same spe
tral propertiesas the 2L-PCG methods based on multigrid V(0,1)- and V(1,0)-
y
le pre
onditioners(see Theorem 6.1).On the other hand, we 
ould also use �M�1 twi
e instead of Q, i.e., C1 :=�M�T ; C2 := Q and C3 := �M�1 in (7.2). We use the general pre
onditioner, �M�1,instead of M�1, be
ause �M�1 is not required to be symmetri
 nor invertible to de�nePm3. The resulting two-level pre
onditioner, well-known as the multigrid V(1,1)-
y
lepre
onditioner, is then expli
itly given by (see Eq. (6.12))PMG = �M�TP + P T �M�1 +Q� �M�TPA �M�1: (7.4)The latter expression for PMG also follows from the error-propagation operator:V := (I �PMGA) = (I � �M�TA)P T (I � �M�1A); (7.5)whi
h is often written as V := S�P TS; S := I � �M�1A; (7.6)where S� := I � �M�TA denotes the adjoint of S with respe
t to the A-inner produ
t.Re
all that matri
es S and S� are known as the pre- and post-smoothers, respe
tively,and P T is the 
oarse-grid 
orre
tion operation. The resulting two-level PCG methodwith PMG is 
alled MG, see [23,69,151,178℄ for more details.Note that PMG is obviously symmetri
, but it is not ne
essarily positive semi-de�nite,see Se
tion 7.3.2. Next, it 
an be observed that the two-level pre
onditioner 
or-responding to DEF is in
luded as a term in the two-level pre
onditioner of MG if�M�1 = M�1 is taken (
f. Eqs. (7.1) and (7.4)). Hen
e, we might expe
t that MGis always more e�e
tive than DEF. For 
ommon 
hoi
es of M�1, �M�1 and Z, this isindeed the 
ase, see Se
tion 7.7.2. However, Se
tion 7.4 shows that this is not truein all 
ases.



120 Chapter 7. Comparison of Two-Level PCG Methods � Part IITo summarize, the abbreviations and the two-level pre
onditioners 
orrespondingto the proposed 2L-PCG methods are presented in Table 7.1.Name Method Two-level pre
onditioner, PPREC Traditional PCG M�1DEF De�ation M�1PBNN Abstra
t Balan
ing P TM�1P +QMG Multigrid V(1,1)-
y
le �M�1P + P T �M�1 +Q� �M�1PA �M�1Table 7.1: List of two-level PCG methods that are 
ompared in this 
hapter.Remark 7.2.� Eq. (7.4) is only used for the analysis of MG, but is never implemented us-ing this expli
it form as the a
tion of PMG 
an be 
omputed with only a singlemultipli
ation, ea
h involving �M�1, �M�T , and Q.� We emphasize that the parameters of the two-level PCG methods that will be
ompared 
an be arbitrary, so that the 
omparison between these methods isbased on their abstra
t versions. This means that the results of the 
omparisonare valid for any full-rank matrix Z, SPD matri
es A;M�1, and matrix �M�1.7.3 Spe
tral Properties of MGIn this se
tion, we present some results related to the spe
tral properties of the MGmethod. We �rst prove a result analogous to [104, Thm. 2.5℄, demonstrating that theMG pre
onditioner also 
lusters a number of eigenvalues at 1. Thereafter, we dis
ussne
essary and su�
ient 
onditions for the MG pre
onditioner to be SPD. Note thatwhile these are natural 
on
erns from a pre
onditioning point of view, these questionsare not 
ommonly 
onsidered for MG methods, whi
h are often applied as stationaryiterations and not used as pre
onditioners in all 
ases, unlike DEF.First, we present some notation in De�nition 7.2.De�nition 7.2. Let A and B be an SPD and arbitrary matrix, respe
tively. De�nejjBjjA := jjA 12BA� 12 jj2. Then,� if B is SPD, then the SPD square root of B is denoted by B 12 ;� if jjBjjA < 1, B is 
alled 
onvergent in the A-norm (or A-norm 
onvergent).7.3.1 Unit Eigenvalues of the MG-Pre
onditioned MatrixIn Chapters 3 and 6, we have seen that, for a SPD matrix A, DEF 
orresponds to atwo-level pre
onditioned 
oe�
ient matrix that has exa
tly k zero eigenvalues, whereasthe matrix asso
iated with BNN has at least k unit eigenvalues. Theorem 7.1 showsthat the two-level pre
onditioned matrix 
orresponding to MG also has at least k uniteigenvalues.



7.3. Spe
tral Properties of MG 121Theorem 7.1. Let PMG and S be as given in (7.4) and (7.6), respe
tively. Supposethat dimN (S) = �m; �m 2 N: (7.7)Then, PMGA has one as an eigenvalue, with geometri
 multipli
ity at least k and atmost k + 2 �m.Proof. In the following, we use the fa
torization of I � PMGA = S�P TS as givenin Eqs. (7.5) and (7.6). Note �rst that dimN (S�) = dimN (S) = �m, see alsoLemma A.14.Considering Eq. (7.6), there are three ways for a ve
tor, v 6= 0n, to be in N (I �PMGA):(i) v 2 N (S), so that Sv = 0n;(ii) Sv 2 N (P T ), yielding P TSv = 0n;(iii) P TSv 2 N (S�), so that S�P TSv = 0n:We treat ea
h 
ase separately.(i) The geometri
 multipli
ity of the zero eigenvalue of I �PMGA must be at least�m, due to Eq. (7.7). This a

ounts exa
tly for all 
ontributions to N (I �PMGA) fromnull spa
e ve
tors of the �rst type.(ii) Counting the geometri
 multipli
ity of ve
tors of the se
ond type is only slightlymore 
ompli
ated. The fundamental theorem of linear algebra (see Theorem A.3) givesan orthogonal de
omposition of Rn asRn = R (S)�N (ST ) : (7.8)Sin
e dimR (S) = n � �m, it must be the 
ase thatdimN (ST ) = �m: (7.9)Now, 
onsider the interse
tion of R (Z) with subspa
es R (S) and N (ST ):Z1 := R (Z) \R (S) ; Z2 := R (Z) \N (ST ) ;and let dimZ1 = k1 and dimZ2 = k2. Note that ne
essarily k1+k2 = k, and that k2 isno bigger than �m, be
ause of (7.9). Sin
e N (P T ) = R (Z), we have dimN (S) = k1;whi
h is the 
ontribution to the dimension of the null spa
e by ve
tors of the se
ondtype. Sin
e k1 + k2 = k for k2 � �m, the total dimension of the null spa
e arising fromve
tors of the �rst and se
ond type must satisfy k � k1 + �m � k + �m:(iii) Similarly, we 
an determine the dimension of the null spa
e of the third type.Note �rst that (
f. Eq. (7.8))Rn = R (P TS)�N (STP ) :



122 Chapter 7. Comparison of Two-Level PCG Methods � Part IILet M := N (S�) and M1 = M\R (P TS). Then, the number of unit eigenvaluesof the third type is �m1 = dimM1 � dimM = �m:Thus, dimN (PMGA) = �m + k1 + �m1; whi
h 
an be bounded byk � �m + k1 +m1 � k + 2 �m:Sin
e 
ounting the geometri
 multipli
ity of zero eigenvalues of I � PMGA is triviallyequal to the geometri
 multipli
ity of unit eigenvalues of PMGA (see Lemma A.1(b)),the proof is 
omplete.Remark 7.3.� PMGA has at least k unit eigenvalues, even if S is singular.� If zero is not an eigenvalue of S, then it is also not an eigenvalue of S� (whi
his similar to ST ). Thus, Theorem 7.1 then says that PMGA has exa
tly k uniteigenvalues.� Sin
e �M�1 is nonsymmetri
, the geometri
 and algebrai
 multipli
ity of the zeroeigenvalue of S (or, equivalently, the unit eigenvalues of �M�1A) should be dis-tinguished, sin
e they might di�er. 1� In a similar manner as Theorem 7.1, it 
an be shown that PBNNA has at least kand at most 2k + �m unit eigenvalues.7.3.2 Positive De�niteness of the MG pre
onditionerRe
all that a 2L-PCG method is guaranteed to 
onverge if P, as given in (6.1), isSPD or 
an be transformed into an SPD matrix. This is 
ertainly satis�ed for BNNand DEF, see the previous 
hapter. Here, we examine this issue for MG. It is obviousthat PMG (and, therefore, also PMGA) is not positive de�nite for all 
hoi
es of Z and�M�1, as in the next example.Example 7.1. Suppose that �M�1 = I and Z = [v1 � � � vk ℄, where fvig is the set oforthonormal eigenve
tors 
orresponding to the eigenvalues of A, f�ig. Then,PMG = P + P T +Q� PA = 2I � 2ZZT + Z��1ZT � A+ ZZTA; (7.10)where � = diag(�1; : : : ; �k). Multiplying (7.10) by vi gives usPMGvi = 2vi � 2ZZT vi + Z��1ZT vi � �ivi + �iZZT vi :1A simple example is Gauss-Seidel for the 1-D Poisson problem with homogeneous Diri
hlet bound-ary 
onditions. Take A = tridiag(�1;2;�1) and M to be the lower-triangular part of A. Then, S haseigenvalue 12 with algebrai
 multipli
ity n2 , assuming that n is even. Sin
e there is only one eigenve
tor
orresponding to this eigenvalue, the geometri
 multipli
ity is 1.



7.3. Spe
tral Properties of MG 123This implies PMGvi = { 1�i vi ; for i = 1; : : : ; k;(2� �i)vi ; for i = k + 1; : : : ; n: (7.11)Hen
e, the spe
trum of PMG is given by
{ 1�1 ; : : : ; 1�k ; 2� �k+1; : : : ; 2� �n} :In this 
ase, PMG, is SPD if and only if �n < 2.Example 7.1 shows that PMG 
an be inde�nite for some 
hoi
es of Z and �M�1. Thishighlights an important di�eren
e between MG and DEF. Indeed, many pre
onditioners,M�1, that make sense with DEF lead to inde�nite PMG, while 
hoi
es of �M�1 that leadto PMG, whi
h is SPD, might give nonsymmetri
 operators for PDEF. Next, a ne
essaryand su�
ient 
ondition for PMG to be SPD is given in Theorem 7.2.Theorem 7.2. Let �M�1 and Z be as de�ned in De�nition 7.1. Let PMG be as givenin (7.4). A ne
essary and su�
ient 
ondition for PMG to be SPD is that Z and �M�1satisfy minw : w?AZy 8y wT ( �M�1 + �M�T � �M�1A �M�T )w > 0: (7.12)Proof. By de�nition, PMG is positive de�nite if and only if uTPMGu > 0 for all ve
torsu 6= 0n. Taking u := A 12 y , this means that PMG is SPD if and only if yTA 12PMGA 12 y > 0;for all y , or that A 12PMGA 12 is positive de�nite. Moreover, A 12PMGA 12 is symmetri
 and,so, it is SPD if and only if its smallest eigenvalue is greater than 0. This, in turn,is equivalent to requiring that I � A 12PMGA 12 has largest eigenvalue less than 1. ButI � A 12PMGA 12 is a similarity transformation of V (see Eq. (7.6)),A 12 V A� 12 = I � A 12PMGA 12 ;whi
h 
an be written as A 12 V A� 12 = (RS̃)T (RS̃); forR := I � A 12QA 12 ; S̃ := I � A 12 �M�1A 12 :Note that the eigenvalues of (RS̃)T (RS̃) are the singular values squared of RS̃ (see,e.g., [63℄), whi
h are also the eigenvalues of (RS̃)(RS̃)T = RS̃S̃TR: So, the largesteigenvalue of A 12 V A� 12 is less than 1 if and only if the largest eigenvalue of RS̃S̃TR isless than one. This happens if and only ifuTR(S̃S̃T )RuuT u < 1; 8u 6= 0n: (7.13)To maximize this ratio, we write u = A 12Zy1 + Ry2; and note that R is the L2-orthogonal proje
tion onto the orthogonal 
omplement of the range of A 12Z. Then,uTR(S̃S̃T )Ru = yT2 R(S̃S̃T )Ry2; uT u = yT1 ZTAZy1 + yT2 R2y2:



124 Chapter 7. Comparison of Two-Level PCG Methods � Part IISo, maximizing the ratio over all 
hoi
es of y1 means 
hoosing y1 = 0n, so that thedenominator of (7.13) is as small as possible. Therefore,uTRS̃S̃TRuuT u < 1 8u 6= 0n , yT2 RS̃S̃TRy2yT2 R2y2 < 1 8y2 6= 0n: (7.14)Thus, if the ratio on the right of (7.14) is bounded below 1 for all y2, so must be theratio in Eq. (7.13). But, if the ratio in (7.13) is bounded below 1 for all u, then it isbounded for u = Ry2, whi
h gives the bound at the right-hand side of (7.14).Equivalently, we 
an maximize the ratio of Eq. (7.14) over R(R) = R(A 12Z)?.So, the largest eigenvalue of RS̃S̃TR is less than 1 if and only ifmaxx:x?A 12Zy8y xT S̃S̃T xxT x < 1: (7.15)By 
omputation, we haveS̃S̃T = I � A 12 ( �M�1 + �M�T � �M�1A �M�T )A 12 :Therefore, the bound (7.15) is equivalent to requiringminx:x?A 12Zy8y xTA 12 ( �M�1 + �M�T � �M�1A �M�T )A 12 xxT x > 0:Taking w = A 12 x , this is, in turn, equivalent tominw :w?AZy8y wT ( �M�1 + �M�T � �M�1A �M�T )w > 0;be
ause wTA�1w > 0 for all w .Thus, a ne
essary and su�
ient 
ondition for PMG to be SPD is given by (7.12).Intuitively, we expe
t the spe
tral properties of PMG to re�e
t those of �M�1, withsome a

ount for the 
oarse-grid 
orre
tion. Eq. (7.12) is parti
ularly interesting in
omparison with Theorem 7.3, whi
h gives a ne
essary and su�
ient 
ondition forM�1 to de�ne a 
onvergent smoother, see also [57,180℄.Theorem 7.3. Let �M�1 and Z be as de�ned in De�nition 7.1. Let S be as givenin (7.6). A ne
essary and su�
ient 
ondition for S to be 
onvergent in the A-norm isminw wT ( �M�1 + �M�T � �M�1A �M�T )w > 0: (7.16)Proof. See [57,180℄.Theorem 7.3 amounts to the 
onditionkSkA < 1 , �min( �M + �MT � A) > 0;



7.4. Comparison of a Spe
ial Case of MG and DEF 125that 
an also be found, for example, in [180, Thm. 5.3℄. On the other hand, Theo-rem 7.2 givesminw :w?AZy8y wT M̃�1w > 0 , minv :v= �M�Tw;w?AZy8y vT ( �M + �MT � A)v > 0;where M̃�1 := �M�1 + �M�T � �M�TA �M�1: (7.17)Ne
essarily,minv :v= �M�Tw;w?AZy8y vT ( �M + �MT � A)v > miny yT M̃�1y = �min( �M + �MT � A) > 0;so the 
ondition for PMG to be SPD is weaker than the 
ondition for a 
onvergent S inthe A-norm. In other words, the A-norm 
onvergen
e of S implies both 
onvergen
eof I � PMGA, and that PMG is SPD. However, PMG 
an be SPD even if jjSjjA � 1, solong as 
oarse-grid 
orre
tion e�e
tively treats ampli�ed modes.7.4 Comparison of a Spe
ial Case of MG and DEFHere, we show that abstra
t pre
onditioners in the MG framework do not always lead tobetter 
onditioned systems than DEF. Su
h problems 
an even be found in the 
ase ofM�1 = �M�1 = I, see Appendix I. In this se
tion, we show that this 
an be generalizedto arbitrary M�1, but requiring that �M�1 = M�1 and Z 
onsisting of eigenve
tors ofM�1A. We start with some spe
tral bounds on MG and DEF under these assumptions.Thereafter, we perform a 
omparison between the 
ondition numbers for MG and DEF.Theorem 7.4 shows the eigenvalue distribution of PMGA and PDEFA, if Z 
onsistsof eigenve
tors of M�1A.Theorem 7.4. Suppose thatM�1 = �M�1 is arbitrary and f�ig is the set of eigenvaluesof M�1A with 
orresponding eigenve
tors fvig. Let Z be de
omposed of v1; : : : ; vk .Suppose that MG is 
onvergent, so that 0 � �j � 2 holds for k < j � n. Furthermore,suppose that the eigenvalues are ordered so that 0 < �k+1 � �j � �n � 2 for allk < j � n. Let PDEF and PMG be as given in (7.1) and (7.4), respe
tively. Then,(i) PMGA has the following eigenvalues:
{ 1; for i = 1; : : : ; k;�i(2� �i); for i = k + 1; : : : ; n; (7.18)(ii) PDEFA has the following eigenvalues:

{ 0; for i = 1; : : : ; k;�i ; for i = k + 1; : : : ; n: (7.19)Proof. The proof follows from [26, Prop. 2℄ and [173, Se
t. 4℄.
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e, it depends on eigenvalues �k+1 and �n of M�1A whether �MG or �DEF is morefavorable, sin
e�MG = 1minf�k+1(2� �k+1); �n(2� �n)g ; �DEF = �n�k+1 ; (7.20)for any M�1 = �M�1 and Z 
onsisting of eigenve
tors of M�1A. So, for some 
hoi
esof Z and M�1, MG yields a larger 
ondition number than DEF.We dis
uss Figure 7.1 from whi
h the best method 
an be easily determined forgiven �k+1 and �n. Note �rst that if �k+1 = �n, then PMG 
onsists of at mosttwo di�erent eigenvalues, 1 and �n(2 � �n). In addition, if �k+1 = 2 � �n, then�MG = [�k+1(2� �k+1)℄�1 = [�n(2� �n)℄�1. Next, the region 
orresponding to0 < �k+1 � �n � 2 is naturally partitioned into two subdomains, along the line where�k+1(2� �k+1) = �n(2� �n), whi
h o

urs when �k+1 = 2� �n:� if �k+1(2��k+1) � �n(2��n), then �MG = [�k+1(2� �k+1)℄�1 : Thus, �MG <�DEF if and only if �k+1 � 2� 1�n ;� if �k+1(2��k+1) � �n(2��n), then �MG = [�n(2� �n)℄�1 : Thus, �MG < �DEFif and only if �k+1 � �2n(2� �n):Figure 7.1 depi
ts these regions graphi
ally. For any given �k+1 and �n, the methodwith smallest 
ondition number follows immediately from this �gure. Example 7.2 givessome 
onsequen
es of Figure 7.1.Example 7.2.(a) If �(M�1A) � (0; 0:5℄, then we deal with Region B1, and, hen
e, �DEF � �MG:(b) If �(M�1A) � (0; 2) with �k+1 � 2��n, then we deal with either Region A1 orA2, and �DEF > �MG holds.Case (a) says that if M�1 is a `bad' smoother (no eigenvalues of S are less than 12),then MG is expe
ted to 
onverge worse than DEF. On the other hand, Case (b) impliesthat if M�1 is a `good' smoother (all eigenvalues that need to be handled by relaxationare done so with eigenvalues of S bounded in a neighborhood of the origin), then MG
onverges better than DEF.7.5 E�e
t of Relaxation ParametersWhile DEF may have a smaller 
ondition number than MG for some 
hoi
es ofM�1 andZ, MG has an added relaxation parameter that is often very important. We illustratethis here by 
onsideringM�1 = �M�1 = �I for an optimized 
hoi
e of �. Su
h a 
hoi
eof relaxation s
heme within MG is 
ommonly known as Ri
hardson relaxation.
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Figure 7.1: Regions where �MG < �DEF (Regions A1 and A2) and �DEF < �MG (Regions B1 and B2),for arbitrary M�1 = �M�1, when Z 
onsists of eigenve
tors of M�1A. The two 
ondition numbers areequal along the dotted and dotted-dashed lines.7.5.1 Analysis of S
aling RelaxationInstead of 
onsidering the original linear system, Ax = b, we now 
onsider the s
aledlinear system, �Ax = �b; � > 0; (7.21)with M�1 = �M�1 = I. A subs
ript, �, is added to the notation for operators andmatri
es, if they are for (7.21). So, P� and PMG,� denote the de�ation matrix and MGpre
onditioner based on (7.21), respe
tively.Solving the s
aled linear system (7.21) with M�1 = �M�1 = I is equivalent tosolving the pre
onditioned linear system, M�1Ax = M�1b, with M�1 = �M�1 = �I.The parameter, �, 
an then be regarded as a parameter of the relaxation instead ofthe linear system. The relaxation pro
esses are res
aled, whereas there is no net e�e
ton 
oarse-grid 
orre
tion. Therefore, DEF is s
aling invariant, i.e.,�DEF,� = �n(M�1P��A)�k+1(M�1P��A) = �n(M�1PA)�k+1(M�1PA) = �DEF:In 
ontrast, MG is not s
aling invariant, and the positive-de�niteness property of PMG,�depends strongly on �, sin
e it is well-known that Ri
hardson relaxation is 
onvergentif 0 < � < 2jjAjj2 ; (7.22)see, e.g., [180℄. For multigrid, we typi
ally try to 
hoose � 
lose to 1jjAjj2 , whi
hguarantees that the slow-to-
onverge modes of relaxation are only those asso
iatedwith the small eigenvalues of A. A better 
hoi
e of � is possible if we make assumptions
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tors of A asso
iated with small eigenvalues are treated by 
oarse-grid 
orre
tion. It is also possible to get an expli
it expression for the optimal �, seethe next subse
tion.7.5.2 Optimal Choi
e of �The best value of � depends on Z, so the optimal �, denoted by �opt, 
an only bedetermined if the 
hoi
e of Z is �xed. In this 
ase, the job of relaxation is spe
i�
allyto redu
e errors that are 
onjugate to the range of Z. The best 
hoi
e of � is the onethat minimizes the `spe
tral radius' of relaxation over the 
omplement of the range ofinterpolation, i.e., minw;yTZTAw=0 8y jwT (I � �A)w jwTw :If we restri
t ourselves to Z 
onsisting of eigenve
tors of A, parameter �opt is easilydetermined su
h that it gives the most favorable 
ondition number for MG, see thenext theorem.Theorem 7.5. Suppose that M�1 = �M�1 = �I and f�ig is the in
reasingly-sorted setof eigenvalues of M�1A with 
orresponding eigenve
tors fvig. Let Z be de
omposedof k orthonormal eigenve
tors from fvig. Moreover, let PMG be as given in (7.4) su
hthat PMGA is SPD. Then, �(PMG,�A) is minimized for�opt = 2�k+1 + �n : (7.23)Proof. Note �rst that, by 
hoosing �M�1 = M�1 = �I, the error-propagation operatorfor MG, V , 
an be written as (
f. Eq. (7.10)).V = I�PMGA = (I��A)P T (I��A) = 2�I+Z��1ZT �2�ZZT ��2A+�2Z�ZT :So, applying PMG to an eigenve
tor, vi , of A gives (
f. Eq. (7.11))PMGvi = { 1�i vi ; for i = 1; : : : ; k;�(2� ��i); for i = k + 1; : : : ; n:Thus, PMGA has eigenvalue 1 with algebrai
 multipli
ity k, and n � k eigenvalues ofthe form ��i(2� ��i), for i = k + 1; : : : ; n.Let f�ig be the set of eigenvalues of PMGA, whi
h are positive and sorted in
reas-ingly, so that its 
ondition number is given by �n�1 . By assumption, ��i(2 � ��i) > 0for all i = k + 1; : : : ; n and, by 
al
ulation, ��i(2� ��i) < 1 for all � and �i . Thus,�1 = mini2[k+1;n℄f��i(2� ��i)g; �n = 1:Sin
e the fun
tion f (�) := ��(2� ��) is 
on
ave down, we havemini2[k+1;n℄f��i(2� ��i)g = min f��k+1(2� ��k+1); ��n(2� ��n)g : (7.24)
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t of Relaxation Parameters 129Subsequently, we want to maximize this minimum eigenvalue,max� min f��k+1(2� ��k+1); ��n(2� ��n)g :This is a
hieved when we 
hoose � so that��k+1(2� ��k+1) = ��n(2� ��n);whi
h o

urs when � = 2�k+1+�n .Corollary 7.1. Let the 
onditions of Theorem 7.5 be satis�ed. Then, �MG � �DEF.Proof. If the optimal weighting parameter, �opt, is substituted into (7.24), then thesmallest eigenvalue of PMGA is equal to4�k+1�n(�k+1 + �n)2 : (7.25)As a 
onsequen
e, the 
ondition number of PMGA is given by�MG = (�k+1 + �n)24�k+1�n : (7.26)Finally, �MG � �DEF follows from the fa
t that(�k+1 + �n)24�k+1�n � �n�k+1 , (�k+1 + �n)2 � (2�n)2;whi
h is always true, sin
e �k+1 � �n.Remark 7.4.� The 
ondition numbers 
orresponding to MG and DEF are the same if the spe
-trum of A is `�at' (i.e., if �k+1 = �n). But, using the optimized parameter, �opt,in MG, it gives a more favorable 
ondition number than DEF.� In Se
tion 7.4, it is shown that �MG � �DEF 
an happen in general. However,a

ording to Theorem 7.5, these examples 
an never be 
onstru
ted if �opt isused.� In pra
ti
e, approximations to � are fairly easy to 
ompute, although the ex-a
t eigenvalue distribution is usually unknown. Gershgorin 
ir
le theorem (see,e.g., [63, Se
t. 8.1.2℄)) gives us estimates of both �1 and �n, whi
h 
an be usedto approximate �k+1.� An optimal weighting parameter, �opt, 
an also be 
onsidered for general pre
on-ditioners, �M�1; however, it is often mu
h more di�
ult to express �opt expli
itly,as it depends on the spe
tral properties of �M�1A, whi
h may not be known. Ingeneral, the optimal 
hoi
e of � is su
h that relaxation 
onverges as qui
kly aspossible on the modes that are not being treated by the 
oarse-grid 
orre
tion
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tral pi
ture of �M�1A is known well-enough to approxi-mate the eigenvalues 
orresponding to �k+1 and �n, a similar 
hoi
e of �opt asin Eq. (7.25) may be possible.7.6 Symmetrizing the SmootherIn the previous se
tion, we have seen that MG 
an be expe
ted to 
onverge in feweriterations than DEF for spe
i�
 
hoi
es of M�1, �M�1 and Z. However, the fa
t thatMG requires fewer iterations than DEF for many pre
onditioners does not mean thatit is more e�
ient, sin
e ea
h iteration of MG is more expensive, due to the 
hoi
e oftwo smoothing steps. In order to make a fairer 
omparison between DEF and MG, wenow 
onsider DEF using the pre
onditioning version of the symmetrized smoother:S�S = (I � �M�TA)(I � �M�1A) = I � M̃�1A; (7.27)with M̃�1 := �M�1 + �M�T � �M�TA �M�1: (7.28)Note that M̃�1, as de�ned here, is the same as in Eq. (7.17). Then, we useM�1 := M̃�1 (7.29)as the pre
onditioner in DEF, sin
e this 
hoi
e allows implementation in su
h a waythat ea
h iteration of BNN, DEF and MG has similar 
ost. In this se
tion, we 
omparethe spe
tra asso
iated with MG, BNN and DEF using (7.29). For general Z and�M�1 su
h that M̃�1 is SPD, we show that BNN and DEF, both with pre
onditionerM̃�1, and MG yield the same eigenvalues for those modes that are not treated by the
oarse-grid 
orre
tion, see Theorem 7.6.Theorem 7.6. Let �M�1 be as given in De�nition 7.1 su
h that PMG is SPD. In addition,let M�1 = M̃�1 be as de�ned in (7.28) su
h that PBNN is SPD. Then, the eigenvaluesof PMGA and PBNNA are equal.Proof. We show the equivalen
e of �MG and �BNN by examining the extreme eigenvaluesof their error-propagation forms,
{ I �PMGA = S�P TS;I �PBNNA = P T (I � M̃�1A)P T :We examine both methods by making the same similarity transformation,I �PA! A 12 (I �PA)A� 12 :This allows us to make use of the fa
t that I � A 12QA 12 is an orthogonal proje
tion in
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t. Computing the similarity transformed systems, we have
{ A 12 (I �PMGA)A� 12 = (I � A 12 �M�TA 12 )(I � A 12QA 12 )(I � A 12 �M�1A 12 );A 12 (I �PBNNA)A� 12 = (I � A 12QA 12 )(I � A 12 M̃�1A 12 )(I � A 12QA 12 ):By de�ning C := (I � A 12QA 12 )(I � A 12M�1A 12 ); we 
an rewrite the latter expressionsas { A 12 (I �PMGA)A� 12 = CTC;A 12 (I �PBNNA)A� 12 = CCT ;where the following equalities are used:





(I � A 12QA 12 )2 = I � A 12QA 12 ;(I � A 12QA 12 )T = I � A 12QA 12 ;(I � A 12 �M�1A 12 )T = I � A 12 �M�TA 12 ;I � A 12 M̃�1A 12 = (I � A 12 �M�TA 12 )(I � A 12 �M�1A 12 ):Sin
e A 12 (I�PMGA)A� 12 and A 12 (I�PBNNA)A� 12 are similar to I�PMGA and I�PBNNA,respe
tively, and, �(CTC) = �(CCT ) (see Lemma A.1), we obtain�(I �PMGA) = �(CTC) = �(I �PBNNA);and the theorem follows immediately.From Theorem 7.6, we obtain that MG and BNN with M̃�1 give exa
tly the same
ondition number. This also implies that the 
ondition number of MG is surprisinglynot smaller than the 
ondition number of DEF, see the next 
orollary.Corollary 7.2. Let �M�1 and M�1 = M̃�1 be as in Theorem 7.6 su
h that PDEF isSPD. Then, { �MG = �BNN;�DEF � �MG;where �MG; �BNN and �DEF are the 
ondition numbers 
orresponding to MG, BNN andDEF, respe
tively.Proof. The 
orollary follows from Theorem 7.6 and [104, Thm. 2.7℄.Remark 7.5.� Ordering the smoothers in the opposite way might lead to a di�erent de�nitionof M̃�1; this, in turn, 
ould 
hange the eigenvalues of MG and BNN, althoughan analogous result to Theorem 7.6 still holds for the 
onsistent 
hoi
e of S andM̃�1.� Corollary 7.2 shows that BNN, DEF and MG are expe
ted to show 
omparable
onvergen
e behavior for spe
ial 
hoi
es of traditional pre
onditioners. We notethat this result is only valid in exa
t arithmeti
. If 
oarse-grid systems are solved
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urately, DEF might have 
onvergen
e di�
ulties, while BNN and MG areless sensitive to it, see the previous 
hapter.7.7 Numeri
al ExperimentsIn this se
tion, we present the results of some numeri
al experiments, where PREC andthe 2L-PCG methods are 
ompared. The starting ve
tor for ea
h iterative method isarbitrary and the termination 
riterion of the iterative pro
ess is based on (2.23) withÆ = 10�8. We start with a 1-D Poisson-like problem to illustrate the theory obtainedin Se
tion 7.4. Then, we 
onsider the same 2-D bubbly �ow problem as in Se
tion 6.4to show the performan
e of DEF, BNN and MG in a more realisti
 setting. We stressthat these examples are 
hosen to highlight the presented theory and not to presentthe e�
ien
y of the solvers; in pra
ti
e, very di�erent 
hoi
es of �M�1, M�1 and Z areused for ea
h method, see Chapter 9.7.7.1 1-D Poisson-like ProblemSeveral 1-D Poisson-like problems are 
onsidered, with the matrixA = � 
 ;
 � . . .. . . . . . 
; 
 �


; �; 
 2 R; (7.30)where we vary the 
onstants � and 
 so that ea
h test 
ase 
orresponds to a di�erentregion as shown in Figure 7.1, see Table 7.2. In addition, we 
hoose �M�1 = M�1 =I and Z 
onsisting of eigenve
tors 
orresponding to the smallest eigenvalues of A.Right-hand side, b, is 
hosen randomly. We take n = 100 (other values of n lead toapproximately the same results), and the number of proje
tion ve
tors, k, is varied.The results of the experiment 
an be found in Table 7.3.Problem � 
 Range of �i Region Expe
ted Fastest Method(T1) 1:5 �0:125 [1:25; 1:75℄ B2 DEF(T2) 1 �0:05 [0:9; 1:1℄ A1 / A2 MG(T3) 0:25 �0:1 [0:05; 0:45℄ B1 DEF(T4) 1:25 �0:125 [1:0; 1:5℄ A1 / A2 MG/DEFTable 7.2: Test 
ases 
orresponding to di�erent regions as presented in Figure 7.1.From Table 7.3(a), it 
an be seen that DEF yields a smaller 
ondition number andis faster than MG for spe
i�
 
hoi
es of � and 
. On the other hand, as observedin Table 7.3(b), � and 
 
an also be 
hosen su
h that MG yields a smaller 
onditionnumber and is faster than DEF.Sin
e the 
ondition number asso
iated with DEF is always below that of MG in the
ase as presented in Table 7.3(
), DEF is expe
ted to be faster than MG. However,
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al Experiments 133(a) � = 1:5; 
 = �0:125.k = 2 k = 20 k = 60Method # It. � # It. � # It. �PREC 11 1.4 11 1.4 11 1.4DEF 11 1.4 10 1.3 8 1.1BNN 11 1.7 10 1.7 8 1.7MG 15 2.3 15 2.3 12 2.3(b) � = 1; 
 = �0:05.k = 2 k = 20 k = 60Method # It. � # It. � # It. �PREC 9 1.2 9 1.2 9 1.2DEF 9 1.2 9 1.2 7 1.1BNN 9 1.2 9 1.2 7 1.1MG 5 1.01 5 1.01 5 1.01(
) � = 0:25; 
 = �0:1.k = 2 k = 20 k = 60Method # It. � # It. � # It. �PREC 34 9.0 34 9.0 34 9.0DEF 34 8.8 24 4.9 11 1.4BNN 34 19.6 25 11.0 11 3.2MG 30 10.1 22 5.7 11 1.9(d) � = 1:25; 
 = �0:125.k = 2 k = 20 k = 60Method # It. � # It. � # It. �PREC 11 1.5 11 1.5 11 1.5DEF 12 1.5 11 1.4 8 1.1BNN 12 1.5 11 1.5 8 1.5MG 10 1.3 10 1.3 9 1.3Table 7.3: Results of the experiment with test 
ases as presented for the Poisson-like problem inTable 7.2. The results are presented in terms of number of iterations, # It., and 
ondition number, �.that is not the 
ase in this test problem. The two methods 
onverge at the same ratefor large k, but MG is faster than DEF for small k. This 
an be explained by the fa
tthat the spe
trum of eigenvalues of MG 
onsists of two 
lusters, see Figure 7.2(
).If the �rst 
luster of ones is omitted (or is approximated by a Ritz value), then the
ondition number of the remaining spe
trum is favorable when 
ompared to that ofDEF. For example, in the 
ase of k = 2, we have �MG = 7:0 (instead of �MG = 10:1)when the unit eigenvalues are omitted. Obviously, this would then be the smallest
ondition number over all of the methods.Finally, MG has a smaller 
ondition number and is faster than DEF for small k inthe 
ase presented in Table 7.3(d). On the other hand, for large k, DEF has a smaller
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ondition number than MG and performs somewhat better than MG. Indeed, the bestmethod depends on �k+1 for this 
ase with spe
i�
 � and 
.
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 = �0:125.Figure 7.2: Eigenvalues asso
iated with DEF and MG for the test 
ases with k = 20 as presented inTable 7.3.7.7.2 2-D Bubbly Flow ProblemIn this se
tion, a numeri
al 
omparison of the two-level PCG methods is performedusing 2-D bubbly �ows with m = 5, � = 103, and s = 0:05. As in Se
tion 6.4, M�1is 
hosen to be the IC(0) pre
onditioner and subdomain de�ation ve
tors are taken asproje
tion ve
tors based on Variant 5.2 (see Se
tion 5.3)..Experiment with �M�1 =M�1The results with �M�1 = M�1 are presented in Table 7.4 (
f. Table 6.4).From the table, it 
an be observed that, for all k, DEF and BNN require the samenumber of iterations, whereas MG is the fastest method in terms of the number ofiterations, whi
h is as expe
ted. Re
all that this does not ne
essarily mean that MG



7.8. Con
luding Remarks 135is the fastest method with respe
t to 
omputing time, sin
e ea
h iteration of MG ismore expensive than an iteration of DEF.k = 22 k = 42 k = 82Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2DEF 149 1:5� 10�8 144 3:1� 10�8 42 1:8� 10�8BNN 149 1:5� 10�8 144 3:1� 10�8 42 1:1� 10�8MG 86 1:0� 10�7 93 6:5� 10�8 32 1:9� 10�8Table 7.4: Number of required iterations for 
onvergen
e and the 2�norm of the relative errors of2L-PCG methods, for the bubbly �ow problem with n = 642 and �M�1 = M�1. PREC requires 137iterations and leads to a relative error of 4:6� 10�7.Experiment with Symmetrized SmootherWe perform the same experiment as above, but now taking M�1 = �M�1 + �M�T ��M�TA �M�1, while �M�1 is still the IC(0) pre
onditioner. In 
ontrast to the previousexperiment, the amount of work for ea
h iteration of BNN, MG and DEF is nowapproximately the same and Theorem 7.6 holds. The results of this experiment arepresented in Table 7.5. k = 22 k = 42 k = 82Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2DEF 87 7:2� 10�8 94 1:3� 10�8 34 7:6� 10�9BNN 87 7:2� 10�8 94 1:3� 10�8 34 7:6� 10�9MG 86 1:0� 10�7 93 6:5� 10�8 32 1:9� 10�8Table 7.5: Number of required iterations for 
onvergen
e and the 2�norm of the relative errors of2L-PCG methods, for the bubbly �ow problem with n = 642 and M�1 = �M�1 + �M�T � �M�TA �M�1.PREC requires 137 iterations and leads to a relative error of 4:6� 10�7.As 
an be observed in Table 7.5, MG is now 
omparable with DEF and BNN, asexpe
ted from the theory of Se
tion 7.6. All methods require approximately the samenumber of iterations and lead to the same a

ura
y.7.8 Con
luding RemarksWe 
ompare two-level PCG methods based on de�ation (DEF), balan
ing Neumann-Neumann (BNN) and multigrid V(1,1)-
y
le (MG) pre
onditioners in their abstra
tforms, whi
h all 
onsist of 
ombinations of traditional and proje
tion-type pre
ondi-tioners. When spe
i�
 
hoi
es are made for the algorithmi
 
omponents, ea
h MGiteration is more expensive than a DEF or BNN iteration, due to the more sophisti-
ated form of the two-level pre
onditioner. At �rst glan
e, we would expe
t MG tobe the most e�e
tive method; however, we show that there exist some traditional andproje
tion pre
onditioners su
h that DEF is expe
ted to 
onverge faster than MG inexa
t arithmeti
.
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hardson relaxation is used with an optimal weighting as a traditional pre
on-ditioner, then we prove that MG always gives a more favorable 
ondition number thanDEF or BNN. For more sophisti
ated and e�e
tive traditional pre
onditioners, we stillexpe
t MG to be superior to DEF and BNN, although the work per iteration of MGremains more than for the other methods.For spe
ial 
hoi
es of traditional pre
onditioners, we show that BNN, DEF and MGrequire the same amount of work per iteration and their spe
tra only di�er in one 
lusterof eigenvalues around 0 or 1. Hen
e, these methods are expe
ted to show 
omparable
onvergen
e behavior, assuming that 
oarse-grid systems are solved a

urately.The gap from the previous 
hapter is �lled by taking the MG pre
onditioner intoa

ount. For 
ertain 
hoi
es of parameters, this two-level PCG method is strongly re-lated to those as dis
ussed in that 
hapter. The di�erent methods with their optimizedset of parameters are further examined in the up
oming two 
hapters.



Chapter 8E�
ien
y and Implementation of theDe�ation Method8.1 Introdu
tionThe de�ation method (also known as DPCG and DEF) has been introdu
ed in Chap-ter 3, and, subsequently, some aspe
ts of this method have been examined in thesubsequent 
hapters. E�
ien
y and implementation issues have not been extensivelytaken into 
onsideration so far in this thesis. The aim of this 
hapter is to fo
us onthose issues. We show that a good implementation of the de�ation method is essentialin order to obtain a powerful and e�
ient method.We have seen in the prior 
hapters that in
reasing the number of proje
tion ve
torsusually leads to a faster 
onvergen
e of the iterative pro
ess. This does not give a moree�
ient de�ation method in general, sin
e the 
ost of ea
h iteration be
omes higherdue to larger Galerkin systems (i.e., linear systems involving the Galerkin matrix, E)that should be solved. Hen
e, there is always an optimum of the number of proje
tionve
tors, regarding the total 
omputing time that is required to �nd the solution usingthe de�ation method. This optimum depends on many aspe
ts, su
h as� sparsity pattern and dimension of the 
oe�
ient matrix, A;� 
hoi
e of the pre
onditioner, M�1;� 
hoi
e and dimensions of the de�ation-subspa
e matrix, Z;� way of 
omputing the matrix-ve
tor produ
t Py , where P is the de�ation matrixand y is an arbitrary ve
tor.The latter aspe
t, 
omputing Py , 
an be divided into several steps, see Algorithm 8.The e�
ien
y of implementing ea
h line of this algorithm in�uen
es both the e�
ien
yof the whole de�ation method and the optimal number of proje
tion ve
tors that shouldbe 
hosen. In general, an optimum 
annot be determined beforehand, but it is 
ommonthat a relatively low number of proje
tion ve
tors often improves the e�
ien
y.137



138 Chapter 8. E�
ien
y and Implementation of the De�ation MethodIn this 
hapter, Assumption 8.1 holds in order to determine the e�
ien
y of the de-�ation method for one spe
i�
 problem setting. Numeri
al experiments are performedto determine the optimal 
hoi
e of the number of subdomain proje
tion ve
tors withrespe
t to the total 
omputing time.Algorithm 8 Computation of Py1: y1 := ZT y2: Solve Ey2 = y13: y3 := (AZ)y24: Py := y � y3Assumption 8.1.� A is derived after dis
retization of the Poisson problem that is originated frombubbly �ow appli
ations (see Se
tion 1.3), and it 
onsists of 7 nonzero diagonalsin the 3-D 
ase;� M�1 is the IC(0) pre
onditioner (see Se
tion 2.5.1), so that the resulting de�a-tion method is DICCG (see Se
tion 3.6);� Z 
onsists of subdomain proje
tion ve
tors (see Se
tion 4.2.3). In addition, thenumber of subdomains and de�ation ve
tors is assumed to be equal.The de�ation method 
an be regarded as a two-grid method, be
ause a Galerkinsystem has to be solved at ea
h iteration. If these systems are solved re
ursively, thenwe would obtain a method that is very 
lose to multigrid methods, see Chapter 9.In this 
hapter, we restri
t ourselves to Galerkin systems that are solved in either adire
t or an iterative way. In the latter 
ase, the resulting de�ation method 
an beinterpreted as an inner-outer iteration pro
ess, whi
h requires a spe
ial treatment. Forexample, attention should be paid to the stability and termination 
riteria for both theinner- and outer-iteration pro
ess. We examine this issue in this 
hapter. Moreover,some theoreti
al results are presented for the de�ation method with a singular Galerkinmatrix. These insights provide us a better understanding of the e�
ien
y of thede�ation method.Remark 8.1. Subdomain de�ation lends itself for an e�
ient parallel implementation.This issue is dis
ussed in Appendix F.This 
hapter is organized as follows. In Se
tion 8.2, we show the e�
ient imple-mentation of the matrix-ve
tor produ
t, Py . Se
tion 8.3 is devoted to the treatmentof Galerkin systems and the asso
iated de�ation methods. In Se
tion 8.4, we fo
us onthe inner-outer iteration pro
ess and its stability properties. Numeri
al experiments areperformed in Se
tion 8.5, and some 
on
luding remarks are presented in Se
tion 8.6.



8.2. Computations with the De�ation Matrix 1398.2 Computations with the De�ation MatrixIn order to obtain a fast solver, the de�ation method should be implemented e�
ientlyin a program 
ode. In this se
tion, we show how this 
an be done by 
onsidering ea
hstep of the 
omputations with the de�ation matrix. We restri
t the analysis to the3-D 
ase, sin
e the treatment of the 2-D 
ase is similar. We remark that the mainpart of this analysis is only valid for 3-D regular grids, and that the �oating pointoperations (�ops) 
ounts and their analysis only hold for subdomain de�ation, wherenonoverlapping identi
al 
ubes are used as subdomains. An further dis
ussion of thede�ation operations 
an be found in Appendix D and [140℄, whereas the �op 
ountsof ICCG and DICCG are analyzed in Appendix E and [140℄.8.2.1 Constru
tion of AZThe matrix-matrix produ
t AZ 
an be 
omputed e�
iently by determining only thenonzero entries. The out
ome of this produ
t is stored as a small matrix, denotedby SAZ 2 R
�3, where 
 2 N is the number of nonzero entries of the matrix AZ.The �rst and se
ond 
olumns of SAZ are �lled with the row and 
olumn indi
es of thenonzero entries of AZ, respe
tively. The third 
olumn of SAZ stores the 
orrespondingvalues of these nonzero entries. The entries of SAZ 
an be determined e�
iently, sin
eZ represents subdomains, f
jg, whi
h are nonoverlapping 
ubes. Moreover, AZ onlyhas nonzero 
ontributions near the interfa
es of these 
ubes, and, hen
e, it 
onsists ofrelatively many zeros. So, the few nonzero entries of AZ may be known beforehand.Example 8.1. Let A 2 R4�4 and Z 2 R4�2 be matri
es, obtained from the 1-DPoisson-like problem, given byA =  1 �1 0 0�1 2 �1 00 �1 2 �10 0 �1 1  ; Z =  1 01 00 10 1  :Then, this leads immediately to 
 = 4 andAZ =  0 01 �1�1 10 0  ; SAZ =  2 1 13 1 �12 2 �13 2 1  :Considering the number of �ops, it is not di�
ult to show that 
onstru
ting SAZrequires O(n 23 k 13 ) �ops in the 3-D 
ase, see Se
tion E.1.8.2.2 Constru
tion of EThe Galerkin matrix, E := ZTAZ, 
an be easily formed during the 
onstru
tion ofAZ. Ea
h nonzero entry of AZ makes exa
tly one 
ontribution to E, by simply adding



140 Chapter 8. E�
ien
y and Implementation of the De�ation Methodthe value to the 
orresponding entry of E.The way of solving the Galerkin system, Ey2 = y1, determines the best storage ofE, see Se
tion 8.3. The matrix 
orresponding to this e�
ient storage of E is denotedby SE. For the time being, the number of �ops to solve a Galerkin system is denotedby #.8.2.3 Cal
ulation of Py and P T yIn 
ontrast to AZ and E, the de�ation matrix, P , is not 
onstru
ted expli
itly. Instead,ea
h step of the matrix-ve
tor produ
t Py , as presented in Algorithm 8, is performedseparately. In the same way, P T y 
an be treated. Both algorithms require O(n + #)�ops.Note that Z is not stored expli
itly, sin
e the matrix-ve
tor produ
ts, ZT y and Zy2,
an be simply determined from y , requiring O(n) �ops. Furthermore, both (AZ)y2 and(AZ)T y 
an also be easily 
omputed, sin
e SAZ is known. Both 
omputations requireO(n 23 k 13 ) �ops in the 3-D 
ase, see Se
tion E.1.8.3 E�
ient Solution of Galerkin SystemsIn this se
tion, we demonstrate the strategies to solve Galerkin systems (i.e., Line 2 ofAlgorithm 8) e�
iently. Re
all �rst from Chapter 5 that three de�ation variants 
anbe used, see Table 8.1 (whi
h is the same as Table 5.1).Matri
esVariant Coe�
ient De�ation-subspa
e Galerkin Corre
tion De�ation5.1 A Zk�1 Ek�1 Qk�1 Pk�15.2 �A Zk �Ek �Qk �Pk5.3 A Zk Ek Qk PkTable 8.1: Corresponding matri
es of the proposed de�ation variants in Chapter 5.We distinguish two main DICCG methods in this 
hapter, whi
h only di�er in thesolver of the Galerkin systems, see De�nition 8.1.De�nition 8.1.� DICCG1�k is de�ned as DICCG 
orresponding to any de�ation variant of Ta-ble 8.1, where ea
h Galerkin system is solved dire
tly.� DICCG2�k is de�ned as DICCG 
orresponding to any de�ation variant of Ta-ble 8.1, where ea
h Galerkin system is solved iteratively.Remark 8.2.� If there is no ambiguity, we omit the bars on matri
es, and subs
ripts asso
iatedwith the matri
es. In addition, DICCG1�k and DICCG2�k are shortly denotedby DICCG1 and DICCG2, if k is unspe
i�ed.



8.3. E�
ient Solution of Galerkin Systems 141� If one applies Variant 5.3 in DICCG1, then extra 
are is needed to solve the
orresponding Galerkin systems. The dire
t solver should generate a solution upto the null spa
e of the Galerkin matrix.� Any de�ation variant, as presented in Table 8.1, 
an be used for both DICCG1and DICCG2, sin
e we have shown in Se
tion 5.4 that all variants are (almost)mathemati
ally equivalent. However, for 
onvenien
e, we restri
t ourselves toVariant 5.1 and 5.2 for DICCG1, and Variant 5.1 and 5.3 for DICCG2, in this
hapter.In this se
tion, we �rst demonstrate how a Galerkin system, Ey2 = y1, 
an be solvede�
iently for both DICCG1 and DICCG2. Both DICCG methods require a di�erenttreatment. We then 
ompare these methods theoreti
ally. We use kx that denotesthe number of grid points in ea
h spatial dire
tion of a subdomain, i.e., kx := 3√ nk ,assuming that k is a divisor of n.8.3.1 Galerkin Systems within DICCG1To solve Ey2 = y1 with a dire
t method, we apply the band-Cholesky de
omposi-tion [63, Se
t. 4.3.5℄, and, thereafter, band-ba
k/forward substitution [63, Se
t. 4.3.2℄.In this 
ase, the bandwidth of E is k 23 + k 13 , making the de
omposition e�
ient onlyfor relatively small k.Re
all that both Ek and Ek�1 are invertible, so that their band-Cholesky de
ompo-sitions exist. Furthermore, 
onstru
ting the Cholesky de
omposition requires O(k 73 )�ops, whereas the ba
kward and forward substitutions take O(k 53 ) �ops.8.3.2 Galerkin Systems within DICCG2To �nd a solution of Ey2 = y1 in DICCG2, we apply the iterative solver ICCG. This ispossible and e�
ient, sin
e E has the same properties as A. Obviously, E is SPSD andhas a similar sparsity pattern to A, be
ause Z is based on nonoverlapping subdomains.Moreover, E is better 
onditioned than A, see Theorem 8.1.Theorem 8.1. Let A, Ek�1 and Ek be as in Table 8.1. Then, the following inequalitieshold: �(Ek�1) � �(A); �(Ek) � �(A): (8.1)Proof. Note �rst that both Ek�1 and Ek have rank k � 1, as Z has full rank and thealgebrai
 multipli
ity of the zero eigenvalue of A is one. In addition, without loss ofgenerality (see Theorem C.2), we res
ale Zk with√ nk su
h that it satis�es ZTk Zk = I.In order to prove the left-hand inequality of (8.1), it su�
es to show that�2(A) � �2(Ek) and �k(Ek) � �n(A); (8.2)where 0 = �1(Ek) < �2(Ek) � : : : � �k(Ek) and 0 = �1(A) < �2(A) � : : : � �n(A)are the eigenvalues of Ek and A, respe
tively.



142 Chapter 8. E�
ien
y and Implementation of the De�ation MethodThe inequalities (8.2) 
an be derived from Theorem A.2 (that is the Courant-Fis
her Minimax Theorem). From this theorem, we obtain in parti
ular�2(A) = minwTw=1; w?w1(A)wTAw; �n(A) = maxwTw=1wTAw; (8.3)where u1(A) is the eigenve
tor 
orresponding to �1(A), see [73, Se
t. 4.2℄ for moredetails.Note that u1(A) = 1n and u1(E) = 1k hold due to Assumption 1.2 and Eq. (5.8).In addition, for w := Zky , we have




wTAw = (Zky)TAZky = yTEy ;(Zky)T (Zky) = yT y ;(Zky)T1n = yTZTk 1n = yT1k ;using Property 5.1(i). Hen
e, this impliesmin(Zky)T (Zky)=1; Zky?1n (Zky)TA(Zky) = minyT y=1; y?1k yTEy: (8.4)Now, 
ombining Eqs. (8.3) and (8.4) gives us�2(A) = minwTw=1; w?1n wTAw � minyT y=1; y?1k yTEy = �2(E);whi
h is the left inequality of (8.2). For the right inequality of (8.2), it follows in asimilar way that �k(E) = maxyT y=1 yTEy � maxwTw=1wTAw = �n(A);where we have applied max(Zky)T (Zky)=1(Zky)TA(Zky) = maxyT y=1 yTEy:The right-hand inequality of (8.1) 
an be proven in a similar way as above.Next, there is no need to for
e invertibility of Ek , sin
e ICCG 
an deal with asingular 
oe�
ient matrix. We only have to ensure the 
onsisten
y of all Galerkinsystems during the outer-iteration pro
ess of DICCG2, see Theorem 8.2.Theorem 8.2. Let DICCG2 be as given in De�nition 8.1. Then, all Galerkin systemswithin DICCG2 are 
onsistent.Proof. Re
all that Ek�1 is invertible, so that we 
an restri
t ourselves to E := Ek . TheGalerkin system, Ey2 = y1, appears three times in Algorithm 6 (Lines 1, 3 and 11),whi
h are treated separately below.In the matrix-ve
tor produ
t P r0, we have to solve the Galerkin system Ey2 = ZT r0.



8.3. E�
ient Solution of Galerkin Systems 143This system is 
onsistent, sin
e it is 
ompatible due to Eq. (5.8) and(ZT r0)T1k = rT0 Z1k = rT0 1n = bT 1n � xT0 A1n = 0n � xT0 0n = 0n: (8.5)Moreover, sin
e (ZTApj)T1k = pTj AZ1k = pTj A1n = 0n; (8.6)the system Ey2 = ZTApj is 
ompatible as well. Hen
e, PApj is 
onsistent. Finally,using the same argument as above, we 
on
lude that P T ~xj+1 is also 
onsistent, usingthe fa
t that P T ~xj+1 = ~xj+1 � ZE+ZTA~xj+1.From Theorem 8.2, we 
on
lude that it is possible to solve ea
h Galerkin system,Ey2 = y1, iteratively. Ea
h of the ICCG steps 
osts O(k) �ops, and the e�
ien
y ofthis method depends on the number of required inner ICCG iterations.Remark 8.3. Note that the solution of the Galerkin systems in Variant 5.3 is notunique, sin
e it is determined up to a 
onstant ve
tor. If y2 is a solution of Eky2 = y1,then y2 + �1k with � 2 R is also a solution. Fortunately, y3 := AZk(y2 + �1k) isunique, due to the fa
t that AZk1k = A1n = 0n. Hen
e, Algorithm 8 gives a uniquePy for all de�ation variants.Re
all that, in the 
ase of DICCG2, we have an inner-outer iterative pro
ess withDICCG as an outer-iteration pro
ess and ICCG as an inner-iteration pro
ess, so thatwe need two di�erent termination 
riteria. The inner and outer toleran
es are denotedby Æouter and Æinner, respe
tively, whi
h satisfyÆinner = ! Æouter; ! > 0: (8.7)For large ! � 1, DICCG2 does not 
onverge, as the method is sensitive to ina

u-rate solves of the Galerkin systems, see also [103, Se
t. 3℄. However, for small !� 1,the 
onvergen
e of the inner iterations of DICCG2 is relatively slow; the inner-iterationpro
ess may stagnate or even diverge due to a too severe termination toleran
e. There-fore, ! should be 
hosen 
arefully to obtain an 
onvergent and e�
ient method. Fromour numeri
al experiments with bubbly �ows, it appears that! = 10�2 (8.8)is an appropriate 
hoi
e, but it usually depends on many fa
tors, see [64,124℄ for moredetails.Remark 8.4. For problems with a large grid size or large jumps in the 
oe�
ient of thePDEs, it 
ould be advantageous to solve the inner iterations with DICCG, instead ofICCG. The inner iterations 
ould even be solved by a re
ursive appli
ation of DICCG,see, e.g., [48℄. This is in analogy with multigrid-like methods, see also [56, Se
t. 3℄.



144 Chapter 8. E�
ien
y and Implementation of the De�ation Method8.3.3 Comparison of Galerkin Matri
esHere, we examine the Galerkin matri
es in the di�erent de�ation methods in order todetermine the fastest method.Note �rst that the Galerkin matri
es, Ek�1 and Ek , satisfyEk = [ Ek�1 �� � ] ; (8.9)where � represents some irrelevant entries of Ek . Then, we 
an show that the eigen-values of Ek and Ek�1 interla
e, see Theorem 8.3.Theorem 8.3. Let Ek�1 and Ek be as given in Table 8.1. Then, the following inequal-ities hold:0 = �1(Ek) � �1(Ek�1) � �2(Ek) � : : : � �k�1(Ek) � �k�1(Ek�1) � �k(Ek):Proof. The theorem follows immediately from the interla
ing property (Lemma A.7).In 
ontrast to the 
ase that A is invertible, the spe
trum of Ek�1 is not in therange of the nonzero eigenvalues of Ek , i.e., �(Ek�1) is not smaller than �(Ek). But,in pra
ti
e, we often see that the largest eigenvalues of both matri
es are almost thesame, whereas the smallest nonzero eigenvalues di�er signi�
antly, i.e., we have�k�1(Ek�1)! �k(Ek); �1(Ek�1)� �2(Ek);for large k. This yields �(Ek) � �(Ek�1):A

ordingly, one should iterate with Ek , rather than Ek�1, to obtain the fastest ex-pe
ted 
onvergen
e of the inner-iteration pro
ess. In other words, Variant 5.3 is thevariant of 
hoi
e in DICCG2 and, hen
e, this is used in Se
tion 8.5.3.8.3.4 De�ation Properties for a Singular Galerkin MatrixIn Se
tion 3.5, we have presented some theoreti
al results based on de�ation matri
eswhose Galerkin matrix, E, is nonsingular. Under 
ertain 
ir
umstan
es, these resultsalso hold for the 
ase with a singular Galerkin matrix. We start with Assumption 8.2that is satis�ed throughout this subse
tion.Assumption 8.2. Suppose that Zk = [Zk�1; zk ℄ with Zk�1 2 Rn�(k�1) and zk 2 Rnholds. Then, we assume that Ek := ZTk AZk is a singular SPSD matrix, whose pseudo-inverse E+k satis�es E+k = [ E�1k�1 0k�10Tk�1 0 ] ; (8.10)where Ek�1 := ZTk�1AZk�1 is an invertible SPD matrix.



8.4. Stabilization of the De�ation Method 145Note that Eq. (8.10) 
an be dedu
ed from Eq. (8.9) by 
hoosing zeros for �. In fa
t,this subse
tion deals with a parti
ular 
hoi
e for Ek�1 and Ek .From Assumption 8.2, we have that the nonzero eigenvalue distributions of Ekand Ek�1 are identi
al, so that Theorem 8.4 follows immediately. This results in thefa
t that the 
onvergen
e of the inner solver for Galerkin systems within both DICCG1and DICCG2 is the same, if they are performed by a PCG method and the Galerkinmatri
es satisfy Assumption 8.2.Theorem 8.4. Let Ek�1 and Ek satisfy Assumption 8.2. Then, �(Ek�1) = �(Ek).Moreover, the proof of Theorem 5.5 is straightforward if Assumption 8.2 is satis�ed.For 
ompleteness, this is presented below.Theorem 8.5. Let A and M�1 be an SPSD and SPD matrix, respe
tively. Let Pkand Pk�1 be as de�ned in Table 8.1. Suppose that Assumption 8.2 is satis�ed. Then,M�1PkA = M�1Pk�1A holds.Proof. Using Qk = ZkE+k ZTk= [Zk�1; zk ℄[ E�1k�1 0k�10Tk�1 0 ] [Zk�1; zk ℄T= Zk�1E+k�1ZTk�1= Qk�1;the theorem follows immediately.8.4 Stabilization of the De�ation MethodIn pra
ti
e, the de�ation method (DPCG or DEF) might be not robust if the number ofproje
tion ve
tors, k, is relatively large. This is 
aused by the fa
t that Galerkin systemsinvolving Ek or Ek�1 might also be
ome large and 
annot be solved a

urately. Thede�ation method 
an be stabilized by adding a 
orre
tion matrix in the linear system,i.e., we solve (
f. Eq. (6.11))(P TM�1 +Q)Ax = (P TM�1 +Q)b; (8.11)with starting ve
tor x0 = Qb+P T ~x0 and an arbitrary ve
tor ~x0. The resulting methodis 
alled the adapted de�ation method (ADPCG or A-DEF) method, whi
h is equal tothe A-DEF2 method as introdu
ed and analyzed in Chapter 6.Remark 8.5.� The operator P TM�1 + Q in Eq. (8.11) 
annot be repla
ed by M�1P + Q,be
ause it has been shown in Chapter 6 that the resulting method may su�erfrom instability.



146 Chapter 8. E�
ien
y and Implementation of the De�ation Method� The solution, x , in (8.11) is the same as the solution of Ax = b, sin
e P TM�1+Qis invertible.� The matrix-ve
tor produ
t Qy for any y 2 Rn 
an be 
arried out e�
iently in asimilar way as Py or P T y (see Se
tion 8.2.3).It has been demonstrated in Chapter 6 that ADPCG 
an be derived from the well-known balan
ing Neumann-Neumann (BNN) method [89℄. In addition, both methodshave more-or-less the same favorable robustness properties, due to the following the-orem (whi
h is Theorem 6.3 for an SPSD 
oe�
ient matrix, A).Theorem 8.6. Let A and M�1 be an SPSD and SPD matrix, respe
tively. Supposethat P is a de�ation matrix 
orresponding to any de�ation variant as presented inTable 8.1. Let the spe
tra of DPCG and ADPCG be given by�(M�1PA) = f�1; : : : ; �ng; �(P TM�1A+QA) = f�1; : : : ; �ng;respe
tively. Then, the numbering of the eigenvalues within these spe
tra 
an be su
hthat the following statements hold:
{ �i = 0; �i = 1; for i = 1; : : : ; k;�i = �i ; for i = k + 1; : : : ; n:Proof. The proof is almost the same as the proof of Theorem 6.3, see also [85℄.If Galerkin systems with Ek or Ek�1 are solved ina

urately, then the zero eigen-values asso
iated with DPCG be
ome nearly zero, resulting in a method that is notrobust. On the other hand, we do not have this phenomenon in the ADPCG method,sin
e the 
orresponding eigenvalues of M�1A are proje
ted to one instead of zero,see Chapter 6 for more details. It follows that if the Galerkin system, Ey2 = y1, issolved iteratively, then this 
an be done with a lower a

ura
y for ADPCG, 
omparedwith DPCG. As dis
ussed in Se
tion 8.3, the Galerkin systems within DPCG shouldbe solved a

urately. Following the dis
ussion above, the expe
tation is that a larger! in Eq. (8.7) 
an be taken in the ADPCG method. In the numeri
al experiments (ofSe
tion 8.5.3, we investigate the 
hoi
e of ! for both DPCG and ADPCG in moredetail.Remark 8.6. If the Galerkin system, Ey2 = y1, is solved ina

urately, the resultingoperator P TM�1+Q is varying at ea
h iteration, while a �xed operator is expe
ted inthe CG pro
ess. In other words, the operationy2 = (P TM�1 +Q)�1y1seen by the outer pro
ess turns out to bey2 = F(y1);



8.5. Numeri
al Experiments 147where F 
an be regarded as a nonlinear mapping. If the inner toleran
e is too loose,the optimal 
onvergen
e property of the CG pro
ess 
an only be preserved, if oneperforms a full orthogonalization of the sear
h dire
tion ve
tors that 
an be extendedwith trun
ation and restart strategies. This results in GMRES-like methods, su
has the Flexible CG method [109℄. We also 
onsider this variant in Se
tion 8.5.3.However, we note that it is possible to use the original (D)PCG method with inexa
tpre
onditioning, sin
e the 
onvergen
e rate of the outer CG pro
ess 
an be maintainedup to a 
ertain a

ura
y for the inner iterations, see [62,64℄.8.5 Numeri
al ExperimentsIn this se
tion, we perform some 3-D numeri
al experiments with stationary bubbly �owproblems, whi
h illustrate the theoreti
al results as obtained in the previous se
tions.Results of the 2-D numeri
al experiments 
an be found in [140, Se
t. 7℄. The numeri
alresults are presented in terms of both the number of iterations and 
omputing time,so that this se
tion is basi
ally an extension of Se
tion 3.6.We apply the problem setting as given in Se
tion 1.3. Four test problems are
onsidered with m = 0; 1; 8; 27 air bubbles. The 
orresponding geometries of thesetest problems 
an be found in Figure 1.2.In Se
tion 8.5.1, it is shown that the de�ation method 
an indeed be implementede�
iently. We vary the density 
ontrast, �, the number of proje
tion ve
tors, k, andthe grid size, n. First, ICCG and DICCG1 are 
ompared, followed by the 
omparison ofDICCG1 and DICCG2. DICCG1 is based on Variant 5.2, whereas Variant 5.3 is used inDICCG2. Subsequently, we 
ompare DICCG2 and ADICCG2 in Se
tion 8.5.3, whereADICCG2 denotes the ADICCG method in whi
h the Galerkin system, Ey2 = y1, issolved iteratively using ICCG. We investigate whether DICCG2 
an indeed be stabilizedwithout losing e�
ien
y.For ea
h iterative pro
ess, a random starting ve
tor and the termination 
rite-rion (2.23) with a toleran
e Æ = 10�8 are used. As a measure of the a

ura
y of thesolutions, the exa
t relative residuals are also investigated in the experiments. Theseresults are omitted below, as these residuals are 
omparable for ICCG and both DICCGmethods in all 
ases.8.5.1 Results for the De�ation Method with E�
ient ImplementationThe 
omputations of this subse
tion are performed on a Pentium 4 (2.80 GHz) 
om-puter with a memory 
apa
ity of 1GB. The 
ode is 
ompiled with FORTRAN g77 onLINUX.Results for a �xed grid size and density 
ontrastThe results for all test 
ases with a grid size n = 1003 and density 
ontrast � = 103are shown in Table 8.2.



148 Chapter 8. E�
ien
y and Implementation of the De�ation Methodm = 0 m = 1 m = 8 m = 27Method # It. CPU # It. CPU # It. CPU # It. CPUICCG 170 25.2 211 31.1 291 43.0 310 46.0DICCG1�23 109 20.2 206 37.5 160 29.1 275 50.4DICCG1�53 56 11.3 58 11.5 72 14.2 97 19.0DICCG1�103 35 8.0 36 8.5 36 8.2 60 13.0DICCG1�203 22 26.5 25 27.6 22 27.2 31 29.3Table 8.2: Convergen
e results for ICCG and DICCG1 for all test problems with n = 1003 and� = 103. `# It' means the number of required iterations for 
onvergen
e, and `CPU' means the total
omputational time in se
onds.Considering the results in Table 8.2, we see that DICCG1 always requires feweriterations when 
ompared to ICCG. Re
all that DICCG1 requires fewer iterations ifk be
omes larger (
f. Se
tion 3.6.1). The optimal 
hoi
e with respe
t to the CPUtime is k = 103, i.e., DICCG1�103 
onverges most rapidly in all test 
ases. Theimprovement in the CPU time is relatively large 
ompared to ICCG. Furthermore, one
an noti
e that, in general, it is not always the 
ase that more bubbles in the problemsetting lead to more iterations, and, therefore, more CPU time for both ICCG andDICCG1 to 
onverge. Namely, for DICCG1�23 and DICCG1�203, we observe thatfewer iterations and CPU time are required for the test 
ase with m = 8 than form = 1. Finally, noti
e that, for large k, DICCG1 requires signi�
ant CPU time due tothe in
rease of the 
omputational 
ost for solving Galerkin systems. Hen
e, DICCG1does 
onverge with a small number of iterations for k > 103, but it requires a lot ofCPU time for ea
h iteration.To visualize the results given in Table 8.2, we present those for the test 
ase withm = 27 in Figure 8.1. From Sub�gure 8.1(a), it 
an be observed that as small k isin
reased, the number of iterations of DICCG1 de
reases. For large k, the bene�t issmaller. Furthermore, after a peak at k = 23, the required CPU time for DICCG1de
reases until k = 103. Thereafter, the CPU time in
reases and DICCG1 is lesse�
ient, see Figure 8.1(b). In Figure 8.1(
), the bene�t fa
tor for the number of iter-ations is depi
ted for ea
h k. Obviously, the larger k, the larger the pro�t of DICCG1.For example, DICCG1�203 requires almost 10 times fewer iterations than ICCG. Fi-nally, the bene�t fa
tor for the CPU time is depi
ted for ea
h k in Figure 8.1(d). Fork = 103, the maximum bene�t fa
tor is a
hieved. In this 
ase, DICCG1�103 is around3.5 times faster than ICCG.Results for Varying Grid Sizes and Density ContrastsThe results for the test problem with 27 bubbles and varying grid sizes are presentedin Figure 8.2. Here, we use  := nxkx as the ratio of the grid size and the number ofde�ation ve
tors, both in one spatial dire
tion. We investigate whether DICCG1 iss
alable, i.e., whether the number of iterations of DICCG1 is equal for all k and for a�xed  .From the �gure, one observes immediately that for larger grid sizes, the di�eren
es
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(d) Ratio of CPU time required for ICCG andDICCG1 versus k 13 .Figure 8.1: Visualization of the results for the test problem with m = 27.
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(b) CPU time versus grid size per dire
tion.Figure 8.2: Results for the test problem with m = 27 for varying grid sizes. ICCG and DICCG1 withboth  = 5 and  = 10 are presented.
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ien
y and Implementation of the De�ation Methodin performan
e between ICCG and DICCG1 also be
ome signi�
antly larger. For in-stan
e, in the 
ase of n = 1003, ICCG 
onverges in 275 iterations and 50.4 se
onds,while DICCG1�103 �nds the solution in 60 iterations and in only 13.0 se
onds. More-over, we noti
e that the number of ICCG iterations grows with the grid sizes, while thenumber of iterations for DICCG1 for both  = 5 and  = 10 remains approximately
onstant. It seems that, in order to keep the number of iterations 
onstant in DICCG1as the grid size is in
reased, the number of de�ation ve
tors must also in
rease, pro-portionally to the grid sizes. Moreover, the CPU time required for DICCG1 in
reasesmore-or-less quadrati
ally with grid size, whi
h is a 
onsequen
e of the expensive dire
tsolve of the Galerkin systems. This is in agreement with the theory (
f. Se
tion 8.3.1).In the next subse
tion, this is remedied by using DICCG2 instead of DICCG1.Next, after experiments with varying grid sizes, we �x the grid size as n = 1003and vary the low-density, " (whi
h is 1� ). The results are presented in Figure 8.3.From the �gure, we see that DICCG1 for k > 23 hardly depends on ", while ICCGbe
omes obviously worse when we 
hoose a smaller ". In other words, DICCG1 withk > 23 is insensitive to the density 
ontrast in terms of both the number of iterationsand the CPU time.
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(b) CPU time versus low-density ".Figure 8.3: Results for the test problem with m = 27 for varying density 
ontrast, �.8.5.2 Comparison of DICCG1 and DICCG2In the previous subse
tion, we have seen that DICCG1 is very e�
ient as long ask < 203. From k = 203, ea
h iteration of DICCG1 is relatively expensive, althoughonly a relatively low number of iterations is needed. The bottlene
k is the expensive
onstru
tion of the banded Cholesky de
omposition of E. Dire
t 
omputations withE 
an be avoided by using DICCG2, hopefully resulting in a fast solver for large k.In this subse
tion, a numeri
al 
omparison between DICCG1 and DICCG2 is 
arriedout. Note that, sin
e we �x Æouter = 10�8 for all test 
ases, the termination toleran
e,Æinner = 10�10, should be adopted for the inner iterations in DICCG2, as mentioned inSe
tion 8.3.2.



8.5. Numeri
al Experiments 151Some results for the test problem with m = 27 and varying grid sizes 
an be foundin Figure 8.4. Similar results are found for the other test problems. The number ofiterations required for both DICCG1 and DICCG2 is more-or-less equal in all test 
ases,whi
h is in agreement with Theorem 5.5, so these results are omitted for 
onvenien
e.We observe in Figure 8.4 that for a relatively small number of de�ation ve
tors,DICCG1 and DICCG2 perform approximately the same. However, for problems withrelatively large k, DICCG2 is 
learly more e�
ient. The di�eren
e between the twoDICCG methods be
omes signi�
ant at k = 203. In addition, we observe that, in all
ases, DICCG1 a
hieves its optimum at k = 103, whereas the optimum of DICCG2 isa
hieved for k > 103. Hen
e, we 
on
lude that DICCG2 is the most e�
ient methodfor k > 103. This 
on
lusion is rather natural, but 
annot be drawn beforehand. Forexample, unforeseen problems solving the Galerkin systems may o

ur, sin
e the pre
isee�
ien
y of solving these systems is not known exa
tly, and the 
onsisten
y of thesesystems may be lost due to round-o� errors.
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Figure 8.4: CPU time of DICCG1 and DICCG2 for the test problem with m = 27 and various gridsizes.8.5.3 Comparison of DICCG2 and ADICCG2The 
omputations of this se
tion are performed on an Intel Core 2 Duo (2.66 GHz)
omputer with a memory 
apa
ity of 8GB. The 
ode is 
ompiled with the Intel FOR-TRAN 
ompiler, ifort, on LINUX. Some dis
repan
ies 
ould be observed between theresults of the experiments of this subse
tion and the previous subse
tion, due to anupdated 
ode and 
omputer environment.We 
onsider two test problems (
f. Figure 1.2):� Test Problem 1: m = 8 bubbles, radius s = 0:10, grid size n = 1003;� Test Problem 2: m = 27 bubbles, radius s = 0:05, grid size n = 1503,where the density 
ontrast is � = 103. We examine PCG and the de�ation meth-ods DICCG2 and ADICCG2 for di�erent parameters of Æinner and number of de�ationve
tors, k.



152 Chapter 8. E�
ien
y and Implementation of the De�ation MethodResults of the ExperimentsThe results of the experiments for the two test problems 
an be found in Table 8.3.(a) Test Problem 1.k = 53 k = 103 k = 203 k = 253Method Æinner # It. CPU # It. CPU # It. CPU # It. CPUDICCG2 10�10 151 17.9 66 8.5 32 5.8 28 6.510�8 NC � NC � NC � NC �ADICCG2 10�10 140 20.2 60 9.2 30 7.2 27 10.110�8 140 20.1 60 9.1 30 6.7 27 9.410�6 140 20.1 60 9.1 30 6.3 27 8.210�4 141 20.2 60 9.0 29 5.6 29 7.010�2 NC � 194 28.2 NC � NC �(b) Test Problem 2.k = 153 k = 253 k = 503Method Æinner # It. CPU # It. CPU # It. CPUDICCG2 10�10 53 24.1 44 25.1 24 82.110�8 NC � NC � NC �ADICCG2 10�10 50 27.6 41 32.5 22 130.410�8 50 27.2 41 30.7 22 116.010�6 50 26.7 42 29.3 22 86.210�4 52 27.4 43 27.0 24 58.210�2 NC � NC � NC �Table 8.3: Results for DICCG2 and ADICCG2 to solve Ax = b with n = 1003, 
orresponding to TestProblem 1. ICCG requires 390 iterations and 37.0 se
onds for Test Problem 1 and 543 iterations and177.6 se
onds for Test Problem 2. `# It' = number of iterations of the outer pro
ess, `CPU' = therequired 
omputing time (in se
onds) in
luding the setup time of the methods, `NC' = no 
onvergen
ewithin 250 iterations.From Table 8.3, we see in all test 
ases that DICCG2 and ADICCG2 are alwaysfaster and require fewer iterations 
ompared with ICCG, whi
h 
on�rms Theorem 3.5.Both de�ation methods require approximately the same number of iterations for �xedk, whi
h is as expe
ted from Theorem 8.6. It 
an be observed that in
reasing thenumber of proje
tion ve
tors, k, leads to a redu
tion of the number of iterations forboth DICCG2 and ADICCG2. This is in agreement with Theorem 3.3. In additio, weexpe
t that ADICCG2 is more robust than DICCG2 due to Theorem 8.6. This is indeedthe 
ase: for Æinner � 10�8, DICCG2 does not 
onverge anymore, while ADICCG2 stillshows 
onvergen
e, provided that Æinner � 10�4. We noti
e that the bene�t of using alarger Æinner in ADICCG2 
an be substantial for large k.Furthermore, it 
an be noti
ed that there is an optimum regarding the 
omputingtime for spe
i�
 k and 
orresponding Æinner. For Test Problem 1, this is k = 203 andÆinner = 10�10 in the 
ase of DICCG2, whereas k = 203 and Æinner = 10�4 are theoptimal values in the 
ase of ADICCG2. Considering Test Problem 2, the optimal
hoi
es are k = 153 and Æinner = 10�10 for DICCG2, and k = 253 and Æinner = 10�4 for



8.5. Numeri
al Experiments 153ADICCG2. Hen
e, ADICCG2 
an be faster than DICCG2 using their optimal Æinner.Dis
ussion of the ResultsFrom the above results, it 
an be observed that the optimal values are ! = 10�2 forDICCG2 and ! = 104 for ADICCG2 with respe
t to Eq. (8.7). These still hold ifwe vary Æouter. Apparently, DICCG2 
an deal with nearly zero eigenvalues as long asthey are very small, so that they are treated as zero eigenvalues by the method. Inaddition, ADICCG2 is faster than DICCG2 in some 
ases, be
ause a larger Æinner 
anbe taken, while the number of outer iterations remain approximately the same. Thisis rather surprising, be
ause no extra orthogonalization steps 
onsidering the sear
hdire
tions or residuals are added to the iterative pro
ess in order to preserve the knownorthogonality properties of the CG pro
ess.We investigate the inner-outer iterations in more detail. Note �rst that ea
h outeriteration of ADICCG2 requires two inner solves (i.e., two solves for the Galerkin sys-tems), whereas DICCG2 only needs one (
f. Eqs. (3.14) and (8.11)). Therefore,ADICCG2 
an only be more e�
ient, if ea
h inner solve of this method is performedat least twi
e as fast as DICCG2, whi
h is the 
ase for su�
iently large Æinner. Thisis illustrated in Figure 8.5, whi
h shows a typi
al 
onvergen
e of the residuals of aninner solve, within an outer iteration of ADICCG2�253. It 
an be observed thatADICCG2�253 would only be faster than DICCG2�253, if the inner solves are re-du
ed from 142 to at most 71. This means that, in theory, one has to perform theinner solves with an a

ura
y of approximately Æinner � 10�5. This 
an indeed bea
hieved for ADICCG2�253, see Table 8.3. Moreover, we remark that if k be
omesrelatively large, then E would also be very large. Then, it is inevitable to use DICCG2 orADICCG2 instead of ICCG in order to solve Ey2 = y1 e�
iently. Re
all that we wouldthen obtain an iterative method with a multilevel pre
onditioning, see Remark 8.4.
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Figure 8.5: Convergen
e of the residuals during an inner solve at one iteration of ADICCG2�253(Test Problem 2). The plots are similar for the other outer iterations of the same test 
ase, sin
e oneapplies the ina

urate solves to the Galerkin matrix, E.Next, we examine the residuals of the outer iterations to see what happens if amethod does not 
onverge, see Figure 8.6. From the �gure, we 
an observe that if



154 Chapter 8. E�
ien
y and Implementation of the De�ation MethodDICCG2 shows no 
onvergen
e, it even diverges. This is in 
ontrast to ADICCG2,whose residuals are still de
reasing slowly. This is an extra advantage of ADICCG2.Although it might not be the fastest method, it gives somewhat more robust residualsin 
ase it 
onverges slowly.
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=10−4(b) ADICCG2.Figure 8.6: Convergen
e of the residuals of the outer iterations from DICCG2�253 and ADICCG2�253(Test Problem 2).The reason that ADICCG2 does not work for Æinner � 10�4 is twofold. On the onehand, solving Ey2 = y1 with low a

ura
y 
an be interpreted as 
omputing y2 = E+y1with a strongly perturbed matrix E+. As 
on
luded in Se
tion 8.4, the asso
iatedspe
trum of ADICCG2 remains the same if E+ is slightly perturbed. Large perturba-tions of E+ 
an lead to the appearan
e of relatively small eigenvalues in the spe
trum,whi
h 
ause the slow 
onvergen
e of the method. On the other hand, as mentioned inSe
tion 8.4, the (D)PCG algorithm 
annot deal with strongly varying pre
onditioners,be
ause orthogonal properties of the residuals and sear
h dire
tions are not guaranteedanymore. This problem might be solved by using �exible (D)PCG instead of (D)PCG,but experiments show that this does not lead to better results. In Figure 8.7, the results
an be found for one test 
ase of Test Problem 1, where two variants of ADICCG2is used: the original adapted de�ation method and its �exible variant without restartor trun
ation strategies, denoted by `original ADICCG2' and '�exible ADICCG2', re-spe
tively. It 
an be readily noti
ed in Figure 8.7 that the �exible variant might leadto a 
onvergent method (see the 
ase with Æinner = 10�4), but it requires too manyiterations to be an e�e
tive method. The situation would be even worse, if restart ortrun
ation strategies are added.8.6 Con
luding RemarksIn Chapter 5, it is demonstrated that DICCG 
an be easily adapted so that it isalso appli
able to linear systems with a singular 
oe�
ient matrix. Additionally, themethod is e�
ient for bubbly �ow problems when measured by the required number ofiterations. In this 
hapter, we demonstrate that the 
omputational time is also gained
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(b) Flexible ADICCG2.Figure 8.7: Residual plots of the outer iterations from ADICCG2�253 (Test Problem 1).by applying DICCG instead of ICCG, if an e�
ient implementation is used.We show that the involved Galerkin systems within the de�ation method 
an besolved both dire
tly and iteratively. The resulting DICCG methods are denoted byDICCG1 and DICCG2, whi
h only di�er in the implementation of the solvers for theGalerkin systems. A dire
t solver for these systems is adopted in DICCG1, whereas aniterative solver for the Galerkin systems is applied in DICCG2. Theoreti
al properties ofthese Galerkin systems are derived, whi
h are of importan
e to DICCG2. Furthermore,insights are gained into stabilizing the de�ation method, resulting in the ADICCG2 (A-DEF2) method. In this method, the inner iterations 
an be solved rather ina

urately,while the number of outer iterations remain approximately the same.Several 3-D numeri
al experiments based on bubbly �ow problems are performedin order to test the e�
ien
y of DICCG1 and DICCG2. For a relatively small numberof de�ation ve
tors, DICCG1 performs very well, but DICCG2 is more e�
ient fora larger grid size and/or number of de�ation ve
tors. Compared with ICCG, bothmethods signi�
antly redu
e the 
omputational 
ost in all test 
ases, espe
ially forlarge problems. Additionally, they are insensitive to density 
ontrasts, while ICCGhas di�
ulties for large 
ontrasts. Furthermore, we show that the DICCG methodsare s
alable in terms of iterations and CPU time, as long as the number of de�ationve
tors is 
hosen proportionally to the grid size. Moreover, numeri
al experimentsillustrate that the DICCG2 
an indeed be stabilized without losing mu
h e�
ien
y.The resulting ADICCG2 method 
an be more e�
ient than DICCG2 for some test
ases. In order to improve the e�
ien
y of the de�ation methods 
onsidered in this
hapter, multigrid-like 
omponents 
ould be in
orporated. Moreover, these methods
an also be 
ompared to well-known multigrid methods based on their typi
al andoptimized parameters, whi
h is the main topi
 of the next 
hapter.



156 Chapter 8. E�
ien
y and Implementation of the De�ation Method



Chapter 9Comparison of De�ation and Multigridwith Typi
al Parameters
9.1 Introdu
tionIn this 
hapter, we 
ompare de�ation and multigrid methods based on their typi
aloptimized parameters applied to linear systems 
oming from bubbly �ow problems.In the previous 
hapters, we have seen that the de�ation method (DPCG) is a 2L-PCG method that o�ers one attra
tive possibility for the e�
ient solution of the linearsystem (see Eq. (1.1)), Ax = b; (9.1)whi
h takes the form of a Poisson equation (also 
alled `pressure-
orre
tion equation')with dis
ontinuous 
oe�
ients and Neumann boundary 
onditions, see Eq. (1.3).Re
all from Chapters 6 and 7 that another option for the e�
ient solution of thepressure-
orre
tion equation is the use of multigrid (MG) te
hniques. We have shownthat, algebrai
ally, DPCG and PCG with a MG pre
onditioner are strongly related toea
h other. These results are only valid when the same set of parameters are taken inboth 
orresponding algorithms. However, the preferred 
hoi
es for these 
omponentsare quite di�erent between the two methods, and, in addition, they have a di�erentmeaning and ba
kground. The �ne-grid smoother or pre
onditioner is usually 
hosen togive e�e
tive treatment of 
ertain modes of error. A 
omplementary spa
e is de�ned, interms of a set of de�ation ve
tors or the range of the multigrid interpolation operator,and an optimal 
orre
tion over this spa
e is 
omputed. However, while de�ationte
hniques are typi
ally based on a strong �ne-s
ale pre
onditioner (su
h as an IC(0)pre
onditioner) in 
ombination with a 
oarse-s
ale 
orre
tion over a very small spa
e,multigrid te
hniques typi
ally make use of a rather weak �ne-s
ale smoother (e.g., aJa
obi or Gauss-Seidel iteration) in 
ombination with a 
oarse-s
ale 
orre
tion over aspa
e that is a large fra
tion of the �ne-s
ale problem size. Furthermore, the treatmentof the linear systems asso
iated with the 
oarse s
ale are handled di�erently. De�ationte
hniques typi
ally solve these systems using a dire
t or iterative method, whereas a157
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al Parametersre
ursive pro
edure is used in the multigrid approa
h.The bla
k box multigrid te
hnique, �rst introdu
ed in [3℄, uses geometri
ally stru
-tured 
oarse grids in 
ombination with an interpolation operator designed to a

ountfor the e�e
ts of jumps in the di�usion 
oe�
ients to a
hieve fast multigrid 
onver-gen
e in many situations [12, 37, 39℄. Algebrai
 multigrid, or AMG, is also known tobe e�e
tive for ellipti
 problems with jumps in their 
oe�
ients [118, 129℄, a
hievingthis e�
ien
y by tailoring both the 
oarse-grid stru
ture and interpolation operator toa

ount for the jumps in the 
oe�
ients. While both of these solvers are applied su
-
essfully in many 
ases, the modelling of bubbly �ows provides some unique 
hallenges.In parti
ular, in simulations with bubbles that appear at the �nest resolution of the grid,these te
hniques may en
ounter di�
ulties in treating su
h small-s
ale e�e
ts throughadapting the 
oarse-s
ale models. In these 
ases, we �nd in this 
hapter that using theabove multigrid algorithms as pre
onditioners within PCG easily restores their optimal
onvergen
e behavior at a minimal extra 
ost.The use of MG-pre
onditioned CG within a pressure-
orre
tion method is not new.Indeed, multigrid was �rst 
onsidered for use as a pre
onditioner for dis
ontinuous-
oe�
ient problems very early in its history, see [18, 78℄. Under 
ertain symmetryassumptions on relaxation and the 
oarse-grid operators, Tatabe demonstrated thatmultigrid always de�nes a positive-de�nite pre
onditioner (regardless of the numberof pre- and post-relaxations) and, so, multigrid is a

eptable as a pre
onditioner forPCG [149℄. In the �uid dynami
s literature, Tatabe's MGCG method has been adoptedfor the solution of the pressure-
orre
tion equation for variable-density �ows [115,130℄.Similarly, the MUDPACK software pa
kage [1℄ has also been used for solving theseequations [49, 50, 152℄, but this has been found to not o�er robust performan
e tothe large density jumps that appear in realisti
 simulations [50℄. In 
ontrast to manyof these te
hniques, the multigrid algorithms 
onsidered here in
lude two importantfeatures, Galerkin 
oarsening and operator-indu
ed interpolation. Galerkin 
oarsen-ing 
reates the multigrid 
oarse-grid operators using matrix produ
ts that restri
t the�ne-grid operators onto the range of interpolation. This greatly simpli�es the task of
reating a 
onsistent 
oarse-grid 
orre
tion pro
ess for problems with density variationsthat are not resolved on the 
oarse s
ale. Operator-indu
ed interpolation te
hniquesfurther improve this approa
h by building interpolation operators tuned towards 
ap-turing the �ne-s
ale modes that are slow to be redu
ed by simple relaxation on thevariable-
oe�
ient problem.In this 
hapter, we make a detailed 
omparison between de�ation and multigridmethods with their own typi
al parameters for bubbly �ow problems. While the appli-
ation of the de�ation method in bubbly �ows is examined in the previous 
hapters, theuse of advan
ed multigrid methods for these �ow simulations has, to our knowledge,not been previously 
onsidered in the literature. As well, the linear system (9.1) thatarises in 3-D two-phase �ows o�ers a good opportunity for 
omparison of these twofamilies of solvers. In 
ontrast to previous theoreti
al 
omparisons, as performed inChapters 6 and 7, we fo
us here on evaluating ea
h solver using its most advantageoussele
tion of options.
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al Methods 159The remainder of this 
hapter is organized as follows. Se
tion 9.2 presents thedetails of the de�ation and espe
ially the multigrid methods 
onsidered here. Someimplementation details of the two families of solvers are 
ompared in Se
tion 9.3. Then,Se
tion 9.4 shows a numeri
al 
omparison of the di�erent solvers for 3-D stationarybubbly �ows. Con
luding remarks are presented in Se
tion 9.5.Remark 9.1. Domain de
omposition methods, su
h as the balan
ing Neumann-Neu-mann method, with their typi
al and optimal parameters are not 
onsidered in this
hapter, be
ause these methods are advantageous in espe
ially a parallel environment.Sin
e this 
hapter is restri
ted to 
omputations on a sequential 
omputer, DDM isex
luded from the 
omparison.9.2 Numeri
al MethodsWe know from Se
tion 1.3 that the solution of the pressure-
orre
tion equation withinoperator-splitting approa
hes has long been re
ognized as a 
omputational bottlene
kin �uid �ow simulation. In the 
ase of single-phase �uids, a 
ommon approa
h toover
oming this bottlene
k is the use of multigrid solvers for this equation [151℄.Standard geometri
 multigrid te
hniques o�er optimal-s
aling solution properties forthe pressure-
orre
tion equation in a single-phase �uid. For two-phase �uids, however,large di�eren
es in the �uid densities 
an lead to dramati
 deterioration in the multigridperforman
e. In this 
hapter, we 
onsider alternate approa
hes to solving the pressure-
orre
tion equation that do not exhibit the same sensitivity to jumps in the materialproperties. We fo
us on solving Eq. (9.1), whi
h is a dis
retization of the pressure-
orre
tion equation.9.2.1 De�ation Approa
hRe
all that the linear system that is solved in ICCG is (see Eq. (2.19))M�1Ax = M�1b;where M�1 denotes the IC(0) pre
onditioner. To improve the performan
e of ICCG,we in
lude a se
ond operation in the pre
onditioner, so that we solve the followingsystem (see Eq. (3.14)): M�1PA~x = M�1Pb; (9.2)where P := I � AZE�1ZT is the de�ation matrix with Z := [z1 z2 � � � zk ℄: Theresulting method is 
alled DICCG. In this 
hapter, the ve
tors fzig are subdomainde�ation ve
tors (see Se
tion 4.2.3). If k be
omes large, the Galerkin systems involvingE be
ome more 
ostly to solve, and, in parti
ular, the use of standard sparse dire
tsolvers may be ine�
ient. Instead, an iterative solver 
an be adopted to deal with theseGalerkin systems. In this 
hapter, the Galerkin systems in DICCG are, themselves,solved using ICCG. The resulting method is known as DICCG2, see Se
tion 8.3. As
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al Parametersmentioned in that se
tion, as k in
reases, even standard iterative solution of the 
oarse-level systems 
an be
ome quite expensive, and de�ation-like te
hniques should also bein
orporated into the 
oarse-level ICCG algorithm, leading to a re
ursive multi-levelde�ation method [48℄. This is, however, not 
onsidered in the results presented here.9.2.2 Multigrid Approa
hesSin
e Eq. (9.1) 
losely resembles the linear system asso
iated with a di�usion equation,another 
lass of te
hniques to 
onsider is the family of multigrid methods. In the 
aseof single-phase �ow, in parti
ular, the pressure-
orre
tion equation (see Eq. (1.3))redu
es to the 
ase of a simple Poisson equation with a 
onstant density, for whi
hgeometri
 multigrid methods are known to provide optimal solution te
hniques [151,178℄. For two-phase �uids, more 
ompli
ated multigrid te
hniques are ne
essary toa
hieve optimal performan
e; su
h te
hniques are well-known in other �elds. Here, wepresent the details of these methods, and their spe
ialization to solving (9.1).Just as de�ation methods use a 
orre
tion over a small subspa
e to a

ount for thede�
ien
ies of a traditional pre
onditioner, all multigrid methods 
ombine the use of a
oarse-s
ale (or 
oarse-grid) 
orre
tion pro
ess that is aimed at 
orre
ting modes thata �ne-s
ale iteration (or smoothing) is slow to resolve. Di�erent multigrid methodsdi�er in the 
hoi
es made in these two pro
esses, parti
ularly in the details of howthe 
oarse-s
ale spa
e is 
hosen and how that 
orre
tion is 
omputed. Here, we
on
entrate on multigrid methods that make use of simple pointwise smoothers, su
h asthe Ja
obi or Gauss-Seidel iterations, and 
onsider four di�erent 
hoi
es for the 
oarse-grid 
orre
tion pro
edure. A brief introdu
tion into 
lassi
al multigrid te
hniques ispresented in the following subse
tions; we refer to, e.g., [151,178℄ for more details.Geometri
 MultigridFor the 
ase of single-phase �ows dis
retized on a regular grid, the use of geometri
multigrid te
hniques has long been studied (
f. [151,178℄). These methods are basedon the realization that, while simple iterations, su
h as weighted-Ja
obi and Gauss-Seidel, do not e�
iently resolve all modes of the solution, they do qui
kly and e�e
tivelydamp a large subspa
e of errors for a large 
lass of matri
es, in
luding those 
onsideredhere. In parti
ular, for single-phase �ow (
onstant density), the errors that are notqui
kly damped by these simple iterations are dominated by so-
alled `smooth' errormodes; errors that vary slowly between neighboring grid points. It is, thus, the job ofthe 
oarse-grid 
orre
tion pro
ess to attenuate exa
tly these modes.An important di�eren
e between the 
oarse-grid 
orre
tion pro
esses in multigridand de�ation te
hniques is the size of the subspa
e employed for 
oarse-grid 
orre
tion.While de�ation aims for a 
orre
tion over a mu
h smaller subspa
e than the �ne-s
aleproblem size, the size of the 
oarse-grid problem in a multigrid method is spe
i�
ally
hosen to be a relatively large fra
tion of the �ne-grid size; typi
al 
oarsening rates areby a fa
tor of 2 or 3 in ea
h dimension. Su
h slow 
oarsening is justi�ed by 
onsideringthe 
onvergen
e behavior of the 
omplementary stationary iteration; for any �xed
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al Methods 161redu
tion toleran
e, the number of error modes whi
h are redu
ed in magnitude bya fa
tor larger than that toleran
e (i.e., the number of slowly 
onverging modes)in
reases with the size of the �ne-grid matrix. Thus, to a
hieve 
onvergen
e that istruly independent of problem size using 
lassi
al stationary iterations requires that thesize of the 
oarse-grid problem always remains a �xed fra
tion of the �ne-grid problemsize.Here, we 
onsider a geometri
 multigrid approa
h using Gauss-Seidel smoothing.For maximum e�
ien
y, the algorithm is spe
ialized to grids with the number of gridpoints in ea
h dimension of the form �2�, where �; � 2 N with typi
ally � = 1 or� = 3, so that the 
oarse grid may be 
hosen by redu
ing the grid size by a fa
tor of 2in ea
h dire
tion at all levels. Interpolation is trilinear 
ell-
entered interpolation, whilerestri
tion is taken as 
ell-
entered pie
e-wise 
onstant restri
tion [98℄. Smoothingand residuals on the 
oarse grid are realized using dire
t dis
retization of the �ne-s
alehomogeneous problem on the 
oarse grid. This is possible be
ause of the assump-tion of 
onstant-density for the single-phase (in
ompressible) �ow; for the two-phase�ows 
onsidered here, more sophisti
ated te
hniques, des
ribed below, are needed todis
retize, on the 
oarse s
ale, a �ne-s
ale �ow that may have phase boundaries that
annot be represented on the 
oarse grid.While geometri
 multigrid te
hniques often yield the fastest solvers for the 
onstant-
oe�
ient version of the pressure-
orre
tion equation, several 
ompli
ations arise inextending these te
hniques to the 
ase of variable density. The properties of simplesmoothing te
hniques, su
h as Ja
obi or Gauss-Seidel, are highly dependent on thedensity; in the 
ase of non
onstant density, the dominant errors after smoothing mayexhibit sharp transitions and/or 
usps, whi
h must be a

ounted for in the 
oarsen-ing pro
ess. Furthermore, if the variations in density have �ne-s
ale features (as weexpe
t for bubbly �ows), it may not be 
lear how best to represent the equations onthe 
oarser grid, as needed in the multigrid pro
ess. In the following subse
tions, wedis
uss several approa
hes for over
oming these obsta
les.Another approa
h to over
ome the above dis
ussed 
ompli
ations is to use thegeometri
 multigrid method as a pre
onditioner for the PCG iteration. A good solver,su
h as geometri
 multigrid, for the 
onstant-
oe�
ient 
ase is expe
ted to make agood pre
onditioner for the variable density 
ase, so long as the density 
ontrast isnot too signi�
ant. Results for this approa
h are reported in Se
tion 9.4 as methodGMG-CG. All of the other multigrid approa
hes that we develop here may be appliedboth as a standalone solver and as a pre
onditioner for PCG. This pre
onditioner isbasi
ally the multigrid V(1,1)-
y
le pre
onditioner as dis
ussed in Chapter 7. In whatfollows, we dis
uss only the 
ase of these te
hniques being used as standalone solvers;see Se
tion 9.2.2.Galerkin CoarseningWhile GMG-CG (and geometri
 multigrid in general) performs well when the density
ontrast is small, its performan
e su�ers greatly when problems with large density
ontrasts are 
onsidered (as shown in Se
tion 9.4). Improving the multigrid perfor-
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al Parametersman
e requires improvement in one (or both) of the multigrid 
omponents, smoothingor 
oarse-grid 
orre
tion. In GMG-CG, however, dire
t smoothing on (1.3) is re-pla
ed by smoothing on the 
onstant-
oe�
ient problem as a pre
onditioner for thevariable-density problem of interest. Thus, a �rst step in improving the performan
e ofGMG-CG would be to repla
e the smoothing on the homogeneous problem with thaton the real problem of interest.Making the above improvement on the �ne s
ale is simple to implement; boththe 
onstant-density and variable-density problems are well-de�ned on the �ne s
ale,and it is relatively simple to repla
e smoothing on one with smoothing on the other.On 
oarse s
ales, however, we have no dire
t representation of the �ne-s
ale problem,unless it is possible to represent the variation in the density naturally on the 
oarse s
ale.For many �ows of interest, this is 
learly the 
ase for all 
oarse s
ales in a multigridhierar
hy. Thus, we need some indire
t way to a

ount for �ne-s
ale variations in thedensity dire
tly in smoothing on the 
oarse s
ales.There are many possible ways to 
reate a 
oarse-s
ale model with a �ne-s
aledensity distribution; the problem of numeri
al homogenization, or ups
aling, is studiedin many dis
iplines, see, e.g., [176℄. While these te
hniques fo
us on de�ning ane�e
tive density 
oe�
ient that 
an be naturally represented on the 
oarse s
ale only,we instead fo
us on the multigrid point of view that the primary purpose of smoothingon the 
oarse s
ales is not to represent the �ow on those s
ales but, rather, to 
omputean appropriate 
orre
tion to the errors in the �uid pressures on the �ne s
ale.Using the 
oarse-grid models to improve a �ne-grid approximation to the pressurenaturally leads to the question of how good a 
orre
tion is possible from a 
oarse grid.Mathemati
ally, we 
onsider a �xed 
oarse grid and interpolation matrix, Z, that mapsfrom the 
oarse grid to the �ne grid. Asking for the best possible 
orre
tion fromthe 
oarse grid, i.e., the best 
orre
tion in the range of Z, means that we wish tominimize some norm of the error, e, in our approximation, xj+1, to the solution, x ,that satis�es (9.1). Writing the 
orre
ted approximation as x̂j+1 = xj+1 + Zy , forsome ve
tor y , this means that we wish to minimizekêk = kx � (xj+1 + Zy)k = ke � Zyk:Both the minimum value and the 
oarse-grid ve
tor, y , for whi
h the minimumis a
hieved depend strongly on the norm 
hosen for the minimization. Choosing theA-norm implies that the optimal 
hoi
e for y satis�es(ZTAZ)y = ZTAe = ZT (b � Axj+1):That is, the best possible 
oarse-grid 
orre
tion for a �xed 
hoi
e of the multigridinterpolation matrix, Z, may be expressed in terms of a Galerkin matrix, E := ZTAZ,and restri
tion of the �ne-grid residual, rj+1 := b�Axj+1, using ZT as the restri
tionmap. This 
hoi
e of 
oarse-grid and restri
tion operators is known in the multigridliterature as Galerkin 
oarsening [106, 151, 178℄, be
ause of its 
lose relationship toGalerkin �nite elements.
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al Methods 163A �rst generalization of GMG-CG is then to 
onsider the multigrid method withinterpolation, Z, given as in GMG-CG, but with smoothing on all levels repla
ed byGauss-Seidel smoothing on the �nest-grid matrix and its Galerkin restri
tions. Thiste
hnique, whi
h we denote by CCMG, was �rst proposed for problems similar to (1.3)in [177℄ and later studied in [79,163℄.The Bla
k Box Multigrid MethodWhile CCMG o�ers a great improvement over GMG-PCG in terms of its s
alability,its performan
e still degrades as the density 
ontrast in
reases, see Table 9.1 in Se
-tion 9.4. As CCMG arose through improvements to the smoothing phase in GMG-PCG,we now 
onsider the role of interpolation in the performan
e of CCMG. Of parti
u-lar importan
e in a
hieving 
onsistent multigrid performan
e regardless of the density
ontrast or 
on�guration of the �ow is the prin
iple of 
omplementarity; as multigridmethods aim to redu
e errors through two distin
t pro
esses, smoothing and 
oarse-grid 
orre
tion, optimal multigrid performan
e 
an only o

ur when these pro
essesare appropriately 
omplementary.While we 
ould aim to improve the performan
e of CCMG by making further im-provements to the smoothing routine, su
h improvements often dramati
ally in
reasethe 
ost of the iteration. Instead, we aim to improve the multigrid performan
e bymaking a di�erent 
hoi
e for the interpolation matrix, Z, to better 
omplement the per-forman
e of lexi
ographi
al Gauss-Seidel smoothing. It has long been re
ognized thatfor problems with dis
ontinuous 
oe�
ients, su
h as the pressure-
orre
tion equation,the errors left after smoothing are not smooth, as in the 
ase of 
onstant-
oe�
ientproblems [3℄. Thus, while 
oarse-grid 
orre
tion with a �xed interpolation operator,su
h as those analyzed in [98℄ and dis
ussed above, may be used to e�e
tively 
om-plement smoothing for 
onstant-
oe�
ient problems, they are less appropriate whenthe problem 
ontains large jumps in its 
oe�
ients.The solution to the problem with large jumps in 
oe�
ients, �rst dis
ussed in [3℄and further developed in [37,38℄, is to allow the 
oe�
ients of the interpolation matrix,Z, to depend on the 
oe�
ients of A. Su
h an operator-indu
ed interpolation isbetter able to re�e
t the slow-to-
onverge errors of smoothing as these errors are,themselves, dependent on the variation in A. The te
hnique of the Bla
k Box MultigridMethod [37℄, also denoted by BoxMG, de�nes the 
oe�
ients of interpolation to a �ne-grid point by 
ombining the entries of the matrix in the rows 
orresponding to the gridpoint and its graph neighborhood.In 3-D, the BoxMG algorithm assumes that the �ne-grid matrix 
omes from thedis
retization of an equation su
h as (1.3) on a logi
ally re
tangular grid, see [38℄. The�ne-grid operator is then assumed to have at most a 27-point 
onne
tivity stru
ture;for ea
h grid point, 
onne
tion is only allowed to grid points that reside in grid pointneighboring (possibly only at 
orners) that in whi
h the grid point lies. The 
oarse gridis 
onstru
ted by removing every other plane of grid points in ea
h dire
tion, in 
ontrastto the 
oarsening used in GMG and CCMG, where �nite volumes were aggregated inpairs in ea
h dire
tion. Interpolation in BoxMG then falls into four 
ategories: �ne-grid
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al Parameterspoints may be themselves 
oarse-grid points (as the 
oarse grid is embedded in the �negrid), they may lie on the line segment 
onne
ting two 
oarse-grid points, they maylie in the same plane as four 
oarse-grid points, at the 
enter of the square de�ned bythese grid points, or they may lie in a plane with no 
oarse-grid points, at the 
enterof the 
ube de�ned by 8 
oarse-grid points.Interpolation of 
orre
tions to embedded 
oarse-grid points is always done usinginje
tion, as the errors at these grid points are dire
tly represented on the 
oarse grid.For �ne-grid points lying between two 
oarse-grid points, the interpolation weights arede�ned by �rst adding the matrix entries in the row of A 
orresponding to the grid pointalong the planes orthogonal to the 
onne
ting line, 
ollapsing the 27-point sten
il to a3-point sten
il joining these three grid points. The 
orre
tion to the grid point is then
omputed by setting this 3-point sten
il to zero, substituting in the inje
ted 
orre
tionsat the 
oarse-grid points and solving for the 
orre
tion at the �ne-grid points. A similarapproa
h is used for �ne-grid points lying at the 
enter of a square in the plane of four
oarse-grid points, however �rst the four other neighboring grid points in that planeare resolved using the �rst approa
h. In this way, the 27-point sten
il needs only be
ollapsed to a 9-point sten
il, whi
h 
an be treated using the previously 
omputed
orre
tions as in the 3-point sten
il 
ase. Finally, the 
orre
tion to the grid point atthe 
enter of the 
ube de�ned by 8 
oarse-grid points may be 
al
ulated dire
tly, bysatisfying the 27-point sten
il at this grid point using the 
orre
tions 
omputed at allof its neighbors, see [12℄.The Galerkin matrix, E, in BoxMG is again de�ned using a Galerkin 
oarsening,with Z de�ned as des
ribed above. It 
an be veri�ed that, if the �ne-grid sten
il has itsnonzero 
onne
tions 
on�ned to within a 27-point sten
il pattern, then the 
oarse-gridoperator also has 27-point 
onne
tivity. Thus, BoxMG may be applied re
ursively tode�ne a full multigrid hierar
hy. While there are many ways to use knowledge of thedis
rete operator, or of the density distribution itself, to de�ne the multigrid hierar
hy,the approa
h taken in BoxMG has been shown to be su

essful for a wide variety ofproblems. In [101℄, it is shown that one of the reasons for the su

ess of BoxMG is thatde�ning interpolation in this way approximately preserves the 
ontinuity of the normal�ux, (1�rp) � n, a
ross an interfa
e with a jump in the density. Thus, BoxMG 
anbe thought of as 
ombining e�e
tive multigrid prin
iples with useful physi
al insight ina
hieving a stable and e�
ient solution algorithm.Algebrai
 MultigridWith the early papers on BoxMG [3,12,37℄, it was re
ognized that the 
ombination ofoperator-indu
ed interpolation and Galerkin 
oarsening 
an lead to very robust methodsfor a wide 
lass of problems. The algebrai
 multigrid method [22, 118℄, or AMG, isan algorithm based on a di�erent implementation of the same prin
iples, but whi
h
an be applied to an even larger 
lass of problems. In parti
ular, AMG 
an be appliedto problems without a regular grid stru
ture and allows for the 
hoi
e of unstru
tured
oarse grids regardless of the �ne-grid operator stru
ture.The 
entral idea of AMG is that all 
omponents of the 
oarse-grid 
orre
tion 
y
le
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al Methods 165should be determined by the properties of the �ne-grid operator. The �rst step in
oarsening is then to determine whether two grid points that are 
onne
ted in the�ne-grid operator are 
onne
ted in a signi�
ant way, where grid points i and j are saidto be 
onne
ted if ai j 6= 0. Ea
h grid point, i , is said to strongly depend on any ofits neighboring grid points for whi
h ai j is of similar size as the largest entry in row i .For M-matri
es, su
h as the 
oe�
ient matrix of Eq. (9.1), we de�ne the set of gridpoints that i strongly depends upon asSi = {j : �ai j � � �maxJ 6=i f�aiJg} ;for some suitable �, 0 < � � 1. On
e these strong 
onne
tions are identi�ed, a 
oarsegrid is formed by taking a maximal independent set of the graph 
reated by the set ofedges, fai jg, where j 2 Si .To de�ne interpolation in AMG, a similar strategy is used to 
ollapse 
onne
tionsbetween grid points that appear only on the �ne grid and de�ne an interpolation op-erator. Choosing the 
oarse grid through the maximal independent subset algorithmdes
ribed above implies that the 
oarse-grid points are embedded in the �ne grid. Forany �ne-grid point, i , that is not also a 
oarse-grid point, interpolation 
an be de�nedby 
ollapsing the 
onne
tions from i to other �ne-grid points, j , based on their 
om-mon 
oarse-grid neighbors. Unlike BoxMG, this is done without using any intuitioninto the 
ouplings involved; the elimination of these �ne-�ne 
onne
tions is a purelyalgebrai
 operation. Ea
h �ne-�ne 
onne
tion is repla
ed using a weighted average ofthe 
oe�
ients 
onne
ting the �ne-grid point, j , to the 
oarse-grid neighbors of gridpoint i ; see [118,129℄ for details.Be
ause both the 
hoi
e of the 
oarse grid and the interpolation operator in AMGare determined based on the �ne-grid operator, we expe
t AMG to have 
onvergen
eproperties similar to, or possibly even better than, those of BoxMG. However, thepri
e paid in AMG for this robustness is the use of 
ompletely unstru
tured matrixand ve
tor data stru
tures, as a result of the unstru
tured grid hierar
hy. Additionally,the 
ost of the additional operations to 
ompute the 
oarse grid (and, in fa
t, amore expensive 
omputation of the interpolation weights) makes AMG an expensivealternative in situations where BoxMG (or CCMG or GMG) is expe
ted to performwell. Nevertheless, AMG is often the method of 
hoi
e in 
ommer
ial 
odes whererobustness is 
onsidered more important than a
hieving the smallest possible solutiontime. Indeed, in CFD, AMG solvers have been re
ognized as an important tool fora
hieving e�
ient solution in a wide variety of �ow regimes, see [116℄.On the Need for Pre
onditioningWhile the multigrid methods dis
ussed here are typi
ally 
onsidered as standalonesolvers, it is sometimes useful to also 
onsider them as two-level pre
onditioners for2L-PCG. These pre
onditioners take the form of a typi
al multigrid V(1,1)-
y
le, wherethey only di�er in the 
hoi
es of the parameters, see Chapter 7. Both BoxMG and
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al ParametersAMG aim to dire
tly treat the �ne-s
ale stru
ture of the density �eld through the useof operator-dependent interpolation algorithms. It is possible, however, that operator-dependent interpolation alone is not su�
ient to yield an optimal solution algorithm inall situations.It is quite natural for AMG and BoxMG to not interpolate signi�
antly a
ross bubbleboundaries, see also [88, Se
t. 3.3.5℄. A intuitive requirement from this point of viewwould be to require, for ea
h �ne-s
ale bubble, a su�
ient number of 
oarse-gridpoints to lie within the bubble, to allow for an a

urate 
omputation of a 
oarse-grid
orre
tion for all grid points within the bubble. In a real-life simulation, however, thismay not be pra
ti
al, due to bubbles and droplets that may only be resolved at thesize of a single grid point on the �ne s
ale. In Se
tion 9.4, we see that the numberof iterations for both BoxMG and AMG without the use of a Krylov wrapper in
reaseas the number of bubbles grows. While su
h an in
rease is not dramati
, it 
aneasily be attenuated by the use of these multigrid methods as a pre
onditioner for 2L-PCG; in this 
ase, the multigrid method gives good 
onvergen
e for almost all typesof errors, and the CG a

eleration e�e
tively resolves the few error modes asso
iatedwith these small bubbles. In Se
tion 9.4, we denote the 2L-PCG methods with CCMG,BoxMG, and AMG pre
onditioners for 2L-PCG by CCMG-CG, BoxMG-CG, and AMG-CG, respe
tively.9.3 Implementation and Computational CostIn the numeri
al experiments of Se
tion 9.4, we make use of standard implementationsof the methods dis
ussed above, when available. In this se
tion, we dis
uss the relative
osts of these te
hniques, as well as their s
alability for large problem sizes. Relativeto CG by itself, or even to ICCG, all of the other methods 
onsidered here have a larger
ost per iteration. Their utility lies in the signi�
ant redu
tion in iterations possibleusing a multilevel te
hnique as 
ompared to a single-level method, su
h as ICCG. Here,we stress the details of the relative 
osts of a single 
y
le of these algorithms, as aprelude to the numeri
al results in Se
tion 9.4.9.3.1 Cost of De�ationThe 
omputational 
ost of the de�ation method has already been dis
ussed in Chap-ter 8 and Appendix E. Re
all that the setup of the de�ation method is rather 
heap,sin
e Z may be 
onstru
ted independently of the problem matrix. Furthermore, it isnot ne
essary to store Z expli
itly in memory; AZ and E may be 
omputed before-hand. In the 3-D 
ase, 
onstru
tion of AZ and E 
an ea
h be done in O(n 23 k 13 )�ops. Moreover, DICCG needs only one more step than ICCG at ea
h iteration. Theadditional 
ost for the de�ation step is O(n+ �) �ops, where � is the number of �opsrequired for the inner solves involving E. Using ICCG as inner iterative solver, ea
hinner iteration 
osts O(k) �ops, and at most O(k 13 ) iterations are required to a
hievesu�
ient a

ura
y in the inner solve, leading to � = O(k 43 ) operations. Note that,
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ause AZ 
an be pre
omputed and is mu
h sparser than A, there are no additionalmatrix-ve
tor multipli
ations with A required at ea
h iteration of DICCG.Remark 9.2. While, in prin
iple, DICCG may be applied in an unstru
tured man-ner, the implementation 
onsidered here is based on the assumption of a re
tangulartensor-produ
t grid. This allows signi�
ant savings in both the storage and the 
om-putational 
ost required by the iteration, as stru
tured matrix data stru
tures may beused in pla
e of the more general (and more 
ostly) storage required by an unstru
-tured implementation, see Chapter 8 and Appendix E. In this sense, DICCG testedhere is more 
omparable to a geometri
 multigrid approa
h than to AMG, althoughthe DICCG algorithm 
ould be applied in the same unstru
tured settings as AMG.9.3.2 Cost of MultigridThe relative 
osts of the multigrid methods studied here, in prin
iple, in
rease with the
omplexity of the algorithm. Geometri
 multigrid 
an easily be implemented in a verye�
ient manner. In fa
t, be
ause GMG-CG uses smoothing only on the homogeneousproblem, it may be implemented in a fully matrix-free manner. The same sten
il isapplied everywhere on ea
h level, up to boundary 
onditions, and the simple transferoperators 
an be implemented again with 
onstant sten
ils away from the boundaries.Thus, the true 
omputational 
ost of a single iteration of GMG-CG is mu
h smallerthan that of a method with similar number of operations, be
ause of the optimizationpossible under the assumption of 
onstant 
oe�
ients in the operator.While multigrid methods use mu
h �ner 
oarse grids than typi
al de�ation methods,their re
ursive treatment of these grids leads to an overall 
ost per iteration thatremains O(n). Consider, for example, the 
ost of a single GMG V(1,1)-
y
le (that is,the 
ost of a single pre
onditioning step in GMG-CG). On ea
h level of the multigridhierar
hy, two smoothing sweeps are performed at the appropriate resolution. On everygrid, the 
ost of these smoothing sweeps is dire
tly proportional to the size of thatgrid. Thus, O(n) operations are required for ea
h sweep on the �nest grid, O(n8)operations are required for ea
h sweep on the �rst 
oarse grid (whi
h has size n8), andO( n64) operations per sweep are required on the next 
oarsest grid, et
. Overall, thetotal number of operations required to perform two smoothing sweeps on all levels isthen bounded by 167 times the 
ost of a single sweep of smoothing on the �nest level,whi
h is O(n). Similarly, the additional storage requirements for GMG-CG 
an also bebounded by a small 
onstant times the �ne-s
ale, O(n) storage requirement for CG.CCMG adds the 
ost of stru
tured matrix storage and operations on all levels,as well as that of the Galerkin produ
t in the setup stage of the algorithm. For thenumeri
al results presented in Se
tion 9.4, we use 64-point interpolation and restri
tionsten
ils, 
orresponding to bilinear interpolation and its adjoint for restri
tion. Thisresults in some growth in the sten
il size on 
oarser grids, but this growth 
an be easilyquanti�ed and still in
luded in a stru
tured-grid matrix data stru
ture. Alternately,lower-order interpolation and restri
tion may be used, as in [79℄, to 
ontrol the growthof the sten
il on 
oarse grids. While these 
osts somewhat in
rease the 
ost of CCMG
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al Parametersrelative to GMG, the overall 
ost per 
y
le for CCMG remains O(n), as the addedstorage and 
omputational 
osts on ea
h level are bounded by a small 
onstant timesthe number of unknowns on that level.Here, we fo
us on an optimal implementation of the CCMG algorithm within theAMG 
ode, with a �xed 
hoi
e of 
oarse grids and transfer operators. The implemen-tation does not use the most e�
ient data stru
tures and the reported CPU timesin Se
tion 9.4 are mu
h larger than stri
tly ne
essary for CCMG, although we stressthat the iteration 
ounts and �nal residuals are the same for this implementation asthey would be for a more e�
ient one. In pra
ti
e, the setup 
osts for CCMG shouldbe 
heaper than those for BoxMG, due to the �xed interpolation pattern. However,the 
ost of a single iteration of CCMG is expe
ted to require more operations than asingle iteration of BoxMG, as BoxMG uses a 27-point interpolation sten
il, 
omparedto CCMG's 64-point sten
il, leading to denser 
oarse-grid matri
es for CCMG when
ompared with BoxMG. As will be seen in Se
tion 9.4, the iteration 
ounts for CCMG
learly s
ale less well than those for DICCG, BoxMG, and AMG for the problems
onsidered here, parti
ularly as the density 
ontrast in
reases (Table 9.1).In 
ontrast to GMG and CCMG, BoxMG is not based on 
ell-
entered data stru
-tures. Instead, BoxMG is, primarily, a node-based 
ode; however, its robustness leadsto su

essful results for our 
ell-
entered dis
retization as well. The added 
ost inBoxMG is primarily in the setup phase of the algorithm, where 
oe�
ients of the op-erator on ea
h level are used in determining interpolation to that level. Coarsening inBoxMG is also slightly di�erent than that in CCMG and GMG, as it naturally takesnodal �ne grids of 2� + 1 grid points in ea
h dimension into nodal 
oarse grids with2��1 + 1 grid points; however, be
ause of the use of operator-indu
ed interpolation,BoxMG is also able to su

essfully solve problems with grids of arbitrary sizes, as willbe seen in Se
tion 9.4, while maintaining the typi
al O(n) 
omplexity per multigrid
y
le.Finally, AMG has the highest 
ost per iteration of the multigrid (and other) ap-proa
hes 
onsidered here, be
ause of the added 
ost of its unstru
tured grid pro
essingand data stru
tures, as well as a signi�
ant setup 
ost. This is to be expe
ted; our
hoi
e of a stru
tured-grid dis
retization naturally suggests that the best e�
ien
y isobtained with a stru
tured-grid solver. Results for AMG are in
luded to answer twointeresting questions. First, it is interesting to see how mu
h of a performan
e loss isseen with these unstru
tured data stru
tures; results in Se
tion 9.4 suggest that AMGis typi
ally a fa
tor of 10 to 15 times slower than BoxMG, when used as a pre
ondi-tioner. Se
ondly, we note that while the CPU-time 
ost of AMG is signi�
antly greaterthan that of the multilevel stru
tured-grid 
odes (indeed, it is sometimes greater thanthat of simple ICCG), the iteration 
ounts for AMG-CG are quite good (typi
ally 
om-parable to those of BoxMG). This demonstrates the s
alability and robustness seenwith AMG, while highlighting the advantages of using a stru
tured-grid algorithm whenpossible.
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ient MatrixWe re
all that the 
oe�
ient matrix, A, is singular in (9.1). A nonunique solution,x , always exists, be
ause we know that the system is 
onsistent. However, extra 
areshould be taken in the implementation of the methods we 
ompare. Matrix E is oftensingular, due to the singularity of A and the 
onstru
tion of Z. In this 
ase, E�1does not exist, and instead the pseudo-inverse, E+ should be used in the operator P ,see Chapters 5 and 8. The iteration pro
ess, where the de�ation matrix is based onE+, does not 
ause any di�
ulties in DICCG, sin
e the 
orresponding systems are
onsistent, see Theorem 8.2.The multigrid iterations are similarly insensitive to the singularity on all levels but the
oarsest, as only iterative approa
hes are used in redu
ing errors at all other levels. Onthe 
oarsest level, the known form of the null spa
e of E allows a simple perturbationand proje
tion te
hnique to be used in the dire
t solve of this system; see Remark 5.4and [39℄ for details.9.3.4 ParallelizationWhile the tests performed in Se
tion 9.4 are all done in a serial 
omputing environ-ment where, be
ause of the e�
ien
y seen in the best approa
hes, problems of upto 8 million degrees of freedom are easily handled, it is important to stress that thiswas done for 
onvenien
e alone and not be
ause of any inherent serial nature of thealgorithms 
onsidered. Indeed, mu
h e�ort has been invested in the parallelization ofexa
tly the algorithms 
onsidered here. Parallelization of de�ation solvers is 
onsideredin Appendix F and [56℄, where it is shown that, with a sensible alignment of the sub-domains and pro
essor boundaries, de�ation applied to blo
k-IC pre
onditioners 
anbe implemented with limited in
rease in 
ost over that of the parallel matrix-ve
tormultiplies already required by blo
k-in
omplete Cholesky PCG.Parallelization of standard multigrid methods has been 
onsidered for many prob-lems and many ar
hite
tures; see, for example, [52,76℄. Similarly, parallel implementa-tions exist for BoxMG [7℄ and AMG [71℄. Be
ause of the use of pointwise smoothers inthe smoothing step, virtually no parallel 
ommuni
ation is ne
essary when blo
k-Ja
obismoothing is used in pla
e of pointwise Gauss-Seidel. In AMG, parallel 
ommuni
ationand inherently serial algorithms is a well-studied issue, parti
ularly with respe
t to the
hoi
e of 
oarse grid [2℄.9.3.5 ImplementationWhile we stress that there is nothing `out of the ordinary' in the multigrid imple-mentations 
onsidered here, it must be a
knowledged that there have been manyless-su

essful attempts to apply multigrid to these problems. Therein lies the attra
-tiveness of the DICCG method; given an existing 
ode, with existing data stru
turesand single-level pre
onditioners, it is relatively simple to add an e�e
tive de�ation stepto the existing pressure solver. In 
ontrast, use of the best-available multigrid 
odes



170 Chapter 9. Comparison of De�ation and Multigrid with Typi
al Parameters(as 
onsidered here) requires some translation of the dis
rete problem into data stru
-tures that are more natural for multigrid treatment. This trade-o� is at the root ofthe questions investigated here. While a greater investment of programming e�ortmay be ne
essary to implement a robust, e�
ient multigrid solver, su
h as BoxMG,this e�ort appears to pay o� in the redu
ed 
omputing times seen in the followingnumeri
al results.9.4 Numeri
al ExperimentsIn this se
tion, we perform some numeri
al experiments with 3-D stationary bubbly �owproblems as des
ribed in Se
tion 1.3, where the presented methods in this 
hapterare 
ompared. The geometry of some test 
ases 
an be found in Figure 1.2. The
omputations are performed on an Intel Core 2 Duo (2.66 GHz) 
omputer with amemory 
apa
ity of 8GB. The 
ode is 
ompiled with the Intel FORTRAN 
ompiler,ifort, on LINUX.The experiments are similar to those in Se
tion 8.5.1. They are be divided intoseveral parts, where some parameters are varied to see how they a�e
t the performan
eof the methods: n (total number of degrees of freedom), m (number of bubbles), s(radius of ea
h bubble) and � (density 
ontrast). The results of the experiments arepresented in terms of the required 
omputing time (CPU), in
luding both the setupand solution time, number of iterations or 
y
les (# It.), and the obtained a

ura
y(RES), measured as the relative norm of the residual, jjb�Axj+1jj2jjb�Ax0jj2 .For all 2L-PCG methods, the starting ve
tor is the zero ve
tor (i.e., x0 = 0n),and the termination 
riterion is based on (2.23) with Æ = 10�8. In theory, the CG-generated residuals as in (2.23) should be equal to the exa
t residuals in RES, butthey might di�er in the experiments due to round-o� errors, see also [66, Se
t. 7.3℄.Moreover, DICCG is based on Variant 5.2 (see Se
tion 5.3), where we typi
ally takek 13 = 18n 13 ; k = 43; 83; 163 are 
hosen for n = 323; 643; 1283, respe
tively. Moreover,in the stationary MG methods, it is 
ommon to use the stopping 
riterion based onthe real residuals, (i.e., jjb�Axj+1jj2jjb�Ax0jj < Æ = 10�8). Therefore, RES is always below Æfor the stationary MG methods, while this is not ne
essarily the 
ase for the 2L-PCGmethods. Finally, we remark that xj+1 denotes the approximation of the solution afterj + 1 iterations in 2L-PCG methods, whereas it is the approximation after performingj + 1 multigrid 
y
les in stationary MG methods.9.4.1 Varying Density ContrastsThe results for the test problem with varying 
ontrast, �, are presented in Table 9.1.A larger � typi
ally 
orresponds to a linear system whose 
oe�
ient matrix is moreill-
onditioned. Therefore, most methods need more iterations and 
omputing timeas � in
reases, as shown in Table 9.1. However, the performan
e of BoxMG-CG andBoxMG appears to be independent of the 
ontrast. In addition, they are the fastestmethods in the experiments, followed by DICCG for � = 103 or � = 105. Moreover, we
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al Experiments 171observe in Table 9.1 that GMG-CG and CCMG are very sensitive to �: the number ofiterations grows qui
kly with in
reasing �. In fa
t, for � = 10, we see that GMG-CGis 
ompetitive with both BoxMG and DICCG as a solution te
hnique, For larger �,however, the signi�
ant in
rease in number of iterations makes GMG-CG a mu
h lessattra
tive option. For CCMG-CG and AMG-CG, the number of iterations only growsslowly 
ompared with GMG-CG. As mentioned in Se
tion 9.3.2, CCMG-CG is notimplemented as e�
iently as possible. Nevertheless, we 
an get an idea of the 
ost ofits optimal implementation by 
omparing with the performan
e of BoxMG. CCMG-CGis at least as expensive per iteration as BoxMG, so, in the 
ase of � = 103, CCMG-CGwould require at least 1.2 se
 instead of 4.3 se
 and may, therefore, be slightly fasterthan DICCG. However, for � = 105, CCMG-CG would need at least 2.5 se
, so DICCGis faster than CCMG-CG for larger density 
ontrasts.We also observe in Table 9.1 that the a

ura
y of DICCG is 
onsistently the worstwhen 
ompared with the other methods, although the di�eren
es are generally quitesmall. As mentioned in Se
tion 9.3.1, this is 
aused by the fa
t that the de�atedresiduals are used in DICCG, leading to extra round-o� errors.� = 10 � = 103 � = 105Method CPU # It. RES CPU # It. RES CPU # It. RESICCG 3.1 131 0.1E-7 5.8 244 0.1E-8 6.9 289 0.5E-8DICCG 1.1 35 0.3E-7 1.7 54 0.4E-7 1.9 59 0.4E-7GMG-CG 1.0 33 0.1E-7 3.9 132 0.9E-8 8.0 267 0.8E-8CCMG-CG 3.3 10 0.1E-8 4.3 18 0.1E-7 6.7 37 0.4E-8BoxMG-CG 0.8 12 0.1E-8 0.8 12 0.2E-8 0.8 12 0.2E-8AMG-CG 8.0 9 0.3E-8 8.9 14 0.1E-8 9.2 16 0.2E-8CCMG 4.0 17 0.6E-8 11.2 79 0.1E-7 40.9 338 0.1E-7BoxMG 0.8 17 0.3E-8 0.8 17 0.3E-8 0.8 17 0.3E-8AMG 8.9 15 0.8E-8 13.0 40 0.1E-7 21.5 92 0.9E-8Table 9.1: Convergen
e results for the experiment with n = 643, m = 23, s = 0:05, and varying the
ontrast, �. `CPU', `# It.' and `RES' denote the total 
omputing time, number of iterations or 
y
les,and the a

ura
y of the solution measured as the relative norm of the exa
t residuals, respe
tively.9.4.2 Varying Bubbly RadiiThe results for an experiment with varying the radius of the bubbles, s, are given inTable 9.2. The smallest radius is 
hosen to be s = 0:01875, be
ause the bubblesare no longer resolved for s < 164 = 0:015635. In general, a smaller radius does notsigni�
antly a�e
t the 
onditioning of the 
oe�
ient matrix, but it does 
hange theform of the errors that are di�
ult to resolve, possibly making them more di�
ult toapproximate.In Table 9.2, it 
an be seen that there are 
hanges in 
onvergen
e behavior ofthe various methods for di�erent radii. In general, a smaller s leads to a more favor-able performan
e for several of the iterative methods, in
luding ICCG, GMG-CG andCCMG-CG. The other methods do not have a 
lear relation with respe
t to s. This



172 Chapter 9. Comparison of De�ation and Multigrid with Typi
al Parameterseven seems to hold for the stationary methods, CCMG, BoxMG and AMG, whi
h wemight expe
t to be sensitive to the size of the bubbles due to the 
hallenges dis
ussedin Se
tion 9.2.2. BoxMG and BoxMG-CG seem to be fully insensitive to s. They arealso the fastest methods in this experiment, followed by again DICCG. It is interestingto note that while GMG-CG is very ine�e
tive in the 
ase of large bubbles, its perfor-man
e improves as the bubbles shrink, and, for the 
ase of s = 0:01875, it be
omes
ompetitive with BoxMG and DICCG.s = 0:1 s = 0:05Method CPU # It. RES CPU # It. RESICCG 6.0 250 0.1E-7 5.8 244 0.1E-8DICCG 1.3 39 0.3E-7 1.7 54 0.4E-7GMG-CG 4.3 143 0.9E-8 3.9 132 0.9E-8CCMG-CG 5.1 24 0.4E-8 4.3 18 0.1E-7BoxMG-CG 0.8 12 0.3E-8 0.8 12 0.2E-8AMG-CG 8.3 11 0.6E-8 8.9 14 0.1E-8CCMG 13.0 95 0.8E-8 11.2 79 0.1E-7BoxMG 0.8 17 0.4E-8 0.8 17 0.3E-8AMG 10.6 25 0.8E-8 13.0 40 0.1E-7s = 0:025 s = 0:01875Method CPU # It. RES CPU # It. RESICCG 3.8 159 0.8E-8 4.1 170 0.9E-8DICCG 1.5 46 0.9E-7 1.5 45 0.8E-7GMG-CG 2.6 85 0.8E-8 1.3 41 0.4E-8CCMG-CG 3.6 12 0.5E-8 3.8 14 0.4E-8BoxMG-CG 0.8 12 0.2E-8 0.8 12 0.1E-8AMG-CG 8.2 12 0.7E-8 8.8 14 0.3E-8CCMG 7.0 43 0.7E-8 10.1 69 0.9E-8BoxMG 0.8 17 0.3E-8 0.8 17 0.3E-8AMG 10.9 29 0.6E-8 12.8 39 0.7E-8Table 9.2: Convergen
e results for the experiment with n = 643, m = 23, � = 103, and varying theradius of the bubbles, s.9.4.3 Varying Number of BubblesIn Table 9.3, we present results demonstrating the performan
e of the various solverswith variation in the number of bubbles, m. Note that the test 
ase with m = 0
orresponds to the Poisson equation with a 
onstant density, i.e., a domain with onlyone phase. From Proposition 4.1, we know that in
reasingm leads to the appearan
e ofmore large eigenvalues in the original 
oe�
ient matrix, A, and small eigenvalues in theIC(0)-pre
onditioned 
oe�
ient matrix, M�1A. This results in a more di�
ult linearsystem to solve, although both the original and pre
onditioned 
oe�
ient matri
es arenot ne
essarily worse 
onditioned.It 
an be seen in Table 9.3 that, for most methods, the 
onvergen
e worsens with
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al Experiments 173in
reasing m, as expe
ted. Moreover, GMG-CG is the best method in the 
ase ofm = 0, but qui
kly loses e�
ien
y for m > 0. The number of iterations requiredby CCMG also grows rapidly with m, whereas it in
reases gradually for CCMG-CG,AMG-CG and AMG. A single iteration of these methods, however, is more expensivethan one of BoxMG or DICCG, as mentioned in Se
tion 9.3. For m > 0, BoxMGand BoxMG-CG are always the fastest methods, followed by DICCG. The performan
eof BoxMG-CG degrades only a little with in
reasing m, while the iteration 
ounts forBoxMG in
rease more substantially. For a su�
iently large number of de�ation ve
tors,k, DICCG would be less sensitive to 
hanges in m, see Se
tion 8.5.1.m = 0 m = 1Method CPU # It. RES CPU # It. RESICCG 3.0 125 0.8E-8 3.9 163 0.7E-8DICCG 1.0 31 0.2E-7 1.5 47 0.2E-7GMG-CG 0.3 8 0.1E-8 3.7 124 0.8E-8CCMG-CG 3.2 9 0.7E-8 3.7 13 0.7E-8BoxMG-CG 0.8 12 0.1E-8 0.8 12 0.1E-8AMG-CG 7.7 7 0.9E-8 8.0 9 0.2E-8CCMG 4.0 17 0.4E-8 10.0 68 0.9E-8BoxMG 0.8 17 0.3E-8 0.8 17 0.3E-8AMG 8.2 11 0.6E-8 11.8 33 0.6E-8m = 23 m = 33Method CPU # It. RES CPU # It. RESICCG 5.8 244 0.1E-8 8.2 342 0.8E-8DICCG 1.7 54 0.4E-7 2.0 60 0.7E-7GMG-CG 3.9 132 0.9E-8 9.8 329 0.8E-8CCMG-CG 4.3 18 0.1E-7 6.5 35 0.4E-8BoxMG-CG 0.8 12 0.2E-8 1.0 15 0.2E-8AMG-CG 8.9 14 0.1E-8 8.9 14 0.8E-8CCMG 11.2 79 0.1E-7 27.9 223 0.1E-7BoxMG 0.8 17 0.3E-8 1.3 29 0.7E-8AMG 13.0 40 0.1E-7 14.1 45 0.7E-8Table 9.3: Convergen
e results for the experiment with n = 643, s = 0:05, � = 103, and varying thenumber of bubbles, m.9.4.4 Varying Number of Grid PointsTable 9.4 presents results with a varying grid size, n. A larger n leads to 
oe�
ientmatri
es that are more ill-
onditioned, as mentioned in Se
tion 9.2. It 
an be observedin Table 9.4 that only BoxMG, BoxMG-CG and DICCG show perfe
tly s
alable iteration
ounts with respe
t to the number of grid points, although the 
omputing times growrelatively qui
kly. Re
all that, for DICCG, more de�ation ve
tors are taken for largern, whi
h results in a de
reasing number of iterations for DICCG. Moreover, observethat BoxMG and BoxMG-CG outperform the other methods both in terms of the
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al Parametersnumber of iterations and the 
omputing time. For larger n, the number of iterationsfor CCMG-CG and AMG-CG grows very slowly; however, the large 
ost per iteration
ombined with the large setup 
ost for these methods still makes them un
ompetitive.As mentioned earlier, a lower bound for the 
ost of CCMG-CG 
an be given; in the
ase of n = 1283, CCMG-CG would require at least 11.1 se
 (instead of 38.0 se
for our 
urrent implementation), and, therefore, may be 
ompetitive with DICCG.Furthermore, while AMG and AMG-CG are 
ompetitive in terms of the number ofiterations required for 
onvergen
e, they are 
learly mu
h more expensive; this is dueto the extra 
osts asso
iated with the unstru
tured-grid data stru
tures used withinAMG, and the extra setup required based on this assumption, as dis
ussed in Se
tion9.3.2. n = 323 n = 643 n = 1283Method CPU # It. RES CPU # It. RES CPU # It. RESICCG 0.3 112 0.9E-8 5.8 244 0.1E-8 92.3 444 0.9E-8DICCG 0.2 64 0.8E-7 1.7 54 0.4E-7 11.7 39 0.3E-7GMG-CG 0.2 81 0.9E-8 3.9 132 0.9E-8 36.0 134 0.8E-8CCMG-CG 0.4 14 0.3E-8 4.3 18 0.1E-7 38.0 19 0.9E-8BoxMG-CG 0.1 12 0.2E-8 0.8 12 0.2E-8 7.0 12 0.3E-8AMG-CG 0.8 10 0.4E-8 8.9 14 0.1E-8 89.0 15 0.2E-8CCMG 0.8 44 0.1E-7 11.2 79 0.1E-7 99.1 85 0.8E-8BoxMG 0.1 16 0.8E-8 0.8 17 0.3E-8 7.4 17 0.4E-8AMG 0.9 20 0.1E-7 13.0 40 0.1E-7 129.2 45 0.8E-8Table 9.4: Convergen
e results for the experiment with m = 23, s = 0:05, � = 103, and varying thetotal number of degrees of freedom, n.In this experiment, the s
alability of the methods 
an be easily observed. Consid-ering the 
omputing time, it 
an be seen that the required CPU time for both DICCGand BoxMG in
rease by a fa
tor of approximately 8 when doubling n in ea
h dire
tion.This is quite favorable in 
omparison with the other methods, whi
h s
ale with fa
torsof 10 or more. Finally, we observe that ICCG requires signi�
antly more CPU time asn in
reases, as predi
ted by the 
lassi
al theory.9.4.5 Di�
ult Test ProblemWe end the stationary experiments with a test 
ase where the most di�
ult parameters(taken based on the previous experiments) are 
hosen. The results asso
iated with thisexperiment 
an be found in Table 9.5, using termination toleran
e Æ = 10�8. We notethat a higher a

ura
y than Æ = 10�8 
annot be rea
hed, due to the a

umulation ofround-o� errors and the e�e
ts of �nite pre
ision arithmeti
.As in the other experiments, BoxMG-CG and BoxMG perform the best, in termsof both the number of iterations and the 
omputing time. They are again followed byDICCG, whi
h also performs rather well. GMG-CG, CCMG, and AMG all typi
ally failto 
onverge within the allowed number of iterations for Æ = 10�8 (and also for theweaker toleran
e Æ = 10�6). CCMG-CG and AMG-CG do 
onverge but, as always,
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ompetitive in terms of true CPU time.Method CPU # It. RESICCG 195.4 942 0.1E-7DICCG 19.6 65 0.5E-7GMG-CG � > 1000 �CCMG-CG 114.0 92 0.1E-7BoxMG-CG 7.4 13 0.4E-8AMG-CG 107.6 29 0.8E-8CCMG � > 1000 �BoxMG 7.8 18 0.7E-8AMG � > 1000 �Table 9.5: Convergen
e results for the di�
ult test problem. The following parameters are kept
onstant: n = 1283, m = 33, s = 0:025, � = 105, and Æ = 10�8.While neither AMG nor CCMG 
onverge within the allowed number of iterationsas standalone solvers, both perform reasonably well as pre
onditioners. In fa
t, bothuna

elerated solvers do 
onverge, but very slowly, with AMG 
onverging marginallyfaster than CCMG. While it may be possible to improve this performan
e somewhatby using di�erent smoothing s
hemes, or by 
hanging some of the parameters in theAMG setup stage, this is beyond the s
ope of the 
urrent study.9.5 Con
luding RemarksAfter performing an algebrai
 
omparison of multilevel te
hniques based on their ab-stra
t forms in Chapters 6 and 7, we present a 
omparison of several of these te
hniquesusing their typi
al and optimized parameters, whi
h may be 
onsidered as e�
ientsolvers for linear systems from two-phase bubbly �ows. In parti
ular, two families ofalgorithms are 
onsidered in this 
hapter; the DICCG algorithm, based on the prin-
iples of de�ation for 
lassi
al PCG te
hniques, and multigrid algorithms. For themultigrid algorithms, we 
onsider a range of approa
hes, in
luding standard geometri
,robust geometri
 and algebrai
 multigrid variants, applied as both standalone solversand two-level pre
onditioners for 2L-PCG methods. The solvers are 
ompared on aseries of 3-D stationary problems, where it is shown that BoxMG-CG and DICCG arethe most stable and e�
ient te
hniques. Overall, we demonstrate that solution ofthe pressure-
orre
tion equation within bubbly �ow appli
ations 
an be signi�
antlya

elerated using the methods studied here. In the next 
hapter, we 
ontinue on the
omparison of BoxMG-CG and DICCG, but applied to time-dependent bubbly �owproblems, where the density �eld varies at ea
h time step. It might be interesting tosee whether the multilevel te
hniques are also e�
ient for these more realisti
 testproblems.
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Chapter 10Bubbly Flow Simulations
10.1 Introdu
tionThe main appli
ation of this thesis is bubbly �ows, whose 
omputation is a very a
tiveresear
h topi
 in CFD, see, for instan
e, [34, 49, 130, 152, 153, 155, 156℄ and, morere
ently, [74,95,125,131,157℄. In the previous 
hapters, we have performed numeri
alexperiments based on stationary bubbly �ow problems, i.e., problems in whi
h thebubbles are �xed in the 
omputational domain and do not evolve in time. We haveshown that DICCG and BoxMG-CG are e�
ient methods for solving the 
orrespondinglinear systems in stationary problems, see Se
tion 9.4. However, in pra
ti
e, the density�eld usually 
hanges in time. Therefore, in this 
hapter, some numeri
al experiments(also 
alled simulations) are 
arried out based on 3-D time-dependent bubbly �owproblems, where the density �eld evolves in time.The aim of this 
hapter is to examine whether DICCG and BoxMG are still e�e
tiveand e�
ient to solve a sequen
e of linear systems in simulations. A 
omparison betweenDICCG variants for these simulations is 
arried out in Appendix H.In Se
tion 10.2, we �rst des
ribe 
on
isely the mathemati
al model that is usedfor the bubbly �ow simulations, where we refer [154, Se
t. 8.3.2℄ for more details.Thereafter, the results of the simulations are presented in Se
tion 10.3. Con
ludingremarks are given in Se
tion 10.4.10.2 Mathemati
al Model of the Bubbly FlowBubbly �ows are mathemati
ally governed by the in
ompressible Navier-Stokes equa-tions, �u�t + u � ru = �1�rp + 1�r � � (ru+ruT )+ f; (10.1)subje
t to an in
ompressibility 
onstraint,r � u = 0; (10.2)177



178 Chapter 10. Bubbly Flow Simulationswhere u = (u; v ; w)T is the velo
ity ve
tor, and �, p, � and f are the density, pressure,vis
osity and sour
e fun
tion (
onsisting of, for example, gravity and interfa
e ten-sion for
es), respe
tively, whi
h are fun
tions of spatial 
oordinates and time. In this
hapter, we only 
onsider simulations without surfa
e tension for
es in order to obtain
ompli
ated density �elds with many and small bubbles. We assume the density andvis
osity are 
onstant within ea
h �uid. At the boundaries of the domain, we imposeDiri
hlet boundary 
onditions for the velo
ity.Eqs. (10.1) and (10.2) are solved on an equidistant Cartesian grid in a re
tangulardomain using a pressure-
orre
tion method [162℄. These equations are dis
retizedusing �nite di�eren
es on a uniform staggered grid with n 
ells, where the grid pointsof the pressure variables are lo
ated at the 
ell 
enters, and the grid points asso
iatedwith velo
ity 
omponents are lo
ated at the 
ell-fa
e 
enters.In the pressure-
orre
tion method, a tentative velo
ity ve
tor, u�, is �rst 
omputedfrom u� � ul�t = �r � ulul + 1�r � � (ru� + (rul)T ) ; (10.3)where ul denotes the value of u at time step l . The resulting system of equations forunknown ve
tor u� is solved, for example, using the PCG method. The velo
ities atthe new time step, l + 1, are 
omputed fromul+1 � u��t = �1�Gp + f;under the 
onstraint of (10.2). This yields
{ ul+1 = u� +�t (�1�Gp + f) ;Dul+1 = 0; (10.4)where D represents the dis
retization of the divergen
e operator, and G is the dis
retegradient operator. Finally, Equation (10.4) givesD1�Gp = D( 1�t u� + f) ; (10.5)whi
h is known as both the pressure-
orre
tion equation and the Poisson equationwith a dis
ontinuous 
oe�
ient (
f. Eq. (1.3)). Eq. (10.5) 
an again be solved using,for example, the PCG method. However, solving (10.5) requires signi�
antly more
omputing time than �nding the solution of (10.3), sin
e the 
onvergen
e of theiterative pro
ess su�ers from the highly dis
ontinuous behavior of the 
oe�
ient, �,but is not ameliorated by a small �t. More strongly, solving (10.5) typi
ally 
onsumesthe bulk of the 
omputing time for all 
omputations of the bubbly �ow, see, e.g.,[24, 74, 154℄. Further details about the pressure-
orre
tion method applied to bubbly�ows 
an be found in [155�157℄.Due to the staggered grid, we do not have pressure points at the boundaries ofthe domain. Expli
it pressure boundary 
onditions are, however, not required in the
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e, in Eq. (10.5), the velo
ity boundary 
onditions are naturally in
ludedin the dis
rete divergent operator, D. It follows impli
itly that Neumann boundary
onditions hold for the pressure. In this 
ase, the pressure is a relative variable, sin
ethe di�eren
es in pressure and not its absolute values are meaningful in the pressure-
orre
tion method.Eq. (10.5) 
an be written as a linear system (see Eq. (1.1))Ax = b; A = [ai j ℄ 2 Rn�n; (10.6)for n = nxnynz , and a singular SPSD matrix, A. It appears that b 2 R(A) is alwayssatis�ed for (1.1), see [145℄ for more details. In this 
ase, (1.1) is 
onsistent and thesolution, x , is determined up to a 
onstant.We 
onsider two-phase bubbly �ows with air (a low-density phase) and water (ahigh-density phase). In this 
ase, � is pie
ewise-
onstant with a density 
ontrast� � 820, whi
h is the ratio of the two densities, see Se
tion 1.3. Moreover, thedensity adve
tion is performed using the mass-
onserving level-set method [154,157℄.Remark 10.1.� Operator-splitting methods, su
h as the pressure-
orre
tion method, are amongstthe oldest numeri
al s
hemes for solving the in
ompressible Navier-Stokes equa-tions, dating ba
k to the original work of Chorin [28,29℄. In the 1980s, this workwas extended to se
ond-order 
onvergent methods for the velo
ities [13,162℄.� Many other approa
hes 
ould be employed for both the solution of the Navier-Stokes equations and the adve
tion of the density �eld. Arti�
ial 
ompressibil-ity te
hniques, for example, repla
e the in
ompressibility 
ondition by one witha small 
ompressibility term that vanishes when treated appropriately, re
over-ing, in this limit, the original (in
ompressible) Navier-Stokes equations [28, 84℄.While we only 
onsider the standard �nite-di�eren
e dis
retization, other ap-proa
hes are also possible; �nite-element dis
retizations of Navier-Stokes are
ompli
ated by the need to satisfy a dis
rete inf-sup 
ondition to give stablepressure dis
retizations [55, 60℄. While we use an interfa
e-
apturing level-sets
heme, other approa
hes in
lude front-tra
king te
hniques [152℄, the volume-of-�uid and marker-and-
ell methods, as well as arbitrary Lagrangian-Euleriante
hniques. Latti
e Boltzmann te
hniques may also be used to model in
om-pressible multi-phase �ow, with similar 
onsiderations arising [75℄.10.3 Bubbly Flow SimulationsIn this se
tion, we 
onsider simulations of three `real-life' bubbly �ows. In order toobtain sophisti
ated geometries, these �ows are 
onsidered without surfa
e tension.The pressure-
orre
tion method is adopted to solve the Navier-Stokes equations, asdes
ribed in Se
tion 10.2. The interfa
e adve
tion is 
arried out using the mass-
onserving level-set method [155�157℄. Our main interest in ea
h time step is the



180 Chapter 10. Bubbly Flow Simulationspressure solve (10.6), whi
h takes the bulk of the 
omputing time in ea
h simulation,espe
ially when the total degrees of freedom, n, are relatively large. The a
tual timestep, �t, is restri
ted by�t � � := h'2 (jujmax + jv jmax + jw jmax) ;where h is the distan
e between grid points in one dire
tion and ' = 0:35 is the CFLnumber, see [155℄ for more details. That means that we use an adaptive time steppingpro
edure by 
onsidering the time-step restri
tions due to 
onve
tion of the bubbly�ow. At ea
h time step, l , the a
tual time, t, is adve
ted with an in
rement, �t, thatobeys �t = min (�;�tmax) ;where we 
hoose �tmax = 0:0005 se
.DICCG�k denotes DICCG2 with k proje
tion ve
tors (see De�nition 8.1), basedon de�ation variant 5.3 (see Table 5.1). Then, at ea
h time step, the resulting linearsystem (10.6), with n, is solved using both BoxMG-CG and DICCG�k, as these areshown to be the most stable and e�
ient methods for the stationary problems 
onsid-ered in Se
tion 9.4. The number of proje
tion ve
tors, k, is 
hosen to minimize therequired CPU time. ICCG is used as a ben
hmark in the experiments. The initial guessfor ea
h solve is 
hosen to be the previous solution, ex
ept for the �rst 10 time steps,where the zero starting ve
tor is used (to avoid problems with a
hieving a too-stri
trelative residual redu
tion when the �ow is initialized). The termination 
riterion of allmethods is 
hosen as in the stationary experiments in Se
tion 9.4. For more detailson the physi
al problems simulated here, see [155,156℄.10.3.1 Rising Air Bubble in WaterWe �rst 
onsider a test problem where a 
ube of 1 
m3 is �lled with water to a heightof 0.6 
m. For these experiments, we take the density of water to be 820 times thatof air (i.e., " = 1:22�10�3). At the initial time step, l = 0, a spheri
al air bubble withradius of 0.125 
m is lo
ated in the middle of the domain at a height of 0.35 
m. Theexa
t material 
onstants and other relevant 
onditions for this simulation 
an be foundin [155, Se
t. 7.2℄. The evolution of the geometry during 500 time steps is givenin Figure 10.1. Here, we take a grid with n = 1003; in this 
ase, the optimal valuefor k in DICCG�k appears to be k = 203. Results of the experiment 
an be found inFigure 10.2, showing both the number of iterations and 
omputing time required forea
h method for the pressure solves at ea
h time step, l .It 
an be readily observed from Figure 10.2 that, for ea
h time step, both DICCGand BoxMG-CG 
onverge in fewer iterations and require less 
omputing time thanICCG. Due to the zero starting ve
tor in the �rst 10 iterations, one 
an observe apeak in the ICCG 
ost around these �rst iterations, whereas this phenomenon 
annotbe 
learly seen for DICCG and BoxMG-CG. Moreover, BoxMG-CG shows better per-forman
e than DICCG. We remark that both methods behave smoothly in time and
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(a) l = 0 (t = 0 se
). (b) l = 100 (t = 0:013 se
). (
) l = 200 (t = 0:022 se
).
(d) l = 300 (t = 0:032 se
). (e) l = 400 (t = 0:050 se
). (f) l = 500 (t = 0:064 se
).Figure 10.1: Evolution of a rising bubble in water. Parameters l and t denote the time step and a
tualtime, respe
tively.
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(b) CPU time versus time step.Figure 10.2: Results for ICCG, DICCG�203 and BoxMG-CG for the pressure solves during the real-lifesimulation with a rising air bubble in water.



182 Chapter 10. Bubbly Flow Simulationsseem to be more-or-less independent of the (sometimes 
ompli
ated) geometry of thedensity �eld. This is in 
ontrast to ICCG, whose 
onvergen
e is rather errati
. Onlysome small outliers 
an be observed in the 
onvergen
e of DICCG and BoxMG. Forexample, a small peak 
an be seen around l = 325 in DICCG, and around l = 390 andl = 410 in BoxMG-CG. This is likely related to parti
ular 
hanges in the density �eldat these time steps, but it is di�
ult to pinpoint the 
ause, due to the 
ompli
atedsurfa
e dynami
s at these time steps. Moreover, it 
an be seen that, for l 2 [150; 350℄,more iterations are required espe
ially for DICCG, be
ause the geometry is most 
om-pli
ated in this period, due to the intera
tion of the bubble with the interfa
e and theappearan
e of many droplets, as 
an be observed in Figure 10.1.10.3.2 Falling Water Droplet in AirIn the next simulation, we 
onsider a 1 
m3 
ube �lled with water to a height of 0.45
m. At the initial time step, l = 0, a spheri
al water droplet with radius 0.125 
mis lo
ated in the middle of the domain at a height of 0.6 
m. The same material
onstants and 
onditions are used as in Se
tion 10.3.1. The evolution of the geometryduring the 500 time steps is depi
ted in Figure 10.3. Again, the grid resolution isn = 1003 and the optimal number of proje
tion ve
tors is k = 203.
(a) l = 0 (t = 0 se
). (b) l = 100 (t = 0:013 se
). (
) l = 200 (t = 0:027 se
).

(d) l = 300 (t = 0:044 se
). (e) l = 400 (t = 0:050 se
). (f) l = 500 (t = 0:059 se
).Figure 10.3: Evolution of a falling droplet in air.The results of the experiment 
an be found in Figure 10.4. It 
an again be noti
edthat ICCG performs worse than both DICCG and BoxMG-CG. BoxMG-CG is alwaysfaster than DICCG, although the di�eren
es are small in this experiment; the numberof iterations and 
omputing time per time step are approximately the same for both



10.3. Bubbly Flow Simulations 183methods. We observe a very smooth behavior of the 
orresponding performan
e 
urves,be
ause very few additional bubbles or droplets appear during the simulation. In thisexperiment, BoxMG and DICCG are more-or-less insensitive to the geometry of thedensity �eld, while it 
an be readily observed that the performan
e of ICCG does dependon it.
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(b) CPU time versus time step.Figure 10.4: Results for ICCG, DICCG�203 and BoxMG-CG for the pressure solves during the real-lifesimulation of a falling water droplet in air.10.3.3 Two Rising and Merging Air Bubbles in WaterIn the �nal simulation, we 
onsider a test problem where a 1 
m3 
ube is �lled withwater to a height of 0.65 
m. At the initial time step, l = 0, two air bubbles of radius0.1 
m are lo
ated with 
enters at 
oordinates (0:5; 0:5; 0:37) and (0:5; 0:3; 0:15).The evolution of the geometry during 2500 time steps 
an be found in Figure 10.5.This test problem is, obviously, harder to solve than the previous two test problems,sin
e there is intera
tion between the two bubbles at the same time as they intera
twith the water interfa
e. In addition, we now 
onsider a re�ned grid with n = 2003,resulting in a strongly ill-
onditioned 
oe�
ient matrix and making the problem very
ompli
ated to solve. DICCG�k with k = 253 appears to be optimal in terms of therequired CPU time for all possible k.Results are presented in Figure 10.6. ICCG is omitted in these results, sin
e itis extremely slow in this di�
ult test 
ase, requiring, on average, over 700 iterationsand 500 se
onds of CPU time per time step during the �rst 100 time steps, whi
hhave relatively simple dynami
s. It 
an be observed that the number of iterations, and,therefore, also the 
omputing time, in
reases gradually during the simulation for bothmethods, but espe
ially for DICCG�253. This is due to the fa
t that the geometryof the problem be
omes progressively more sophisti
ated as the simulation pro
eeds.Apparently, the in�uen
e of the proje
tion ve
tors depends heavily on the time step.This even holds if we in
rease k. Obviously, BoxMG is always faster than DICCG(espe
ially for l 2 [1000; 2500℄), both with respe
t to the number of iterations and the
omputing time.
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(a) l = 0 (t = 0 se
). (b) l = 500 (t = 0:025 se
). (
) l = 1000 (t = 0:035 se
).
(d) l = 1500 (t = 0:045 se
). (e) l = 2000 (t = 0:056 se
). (f) l = 2500 (t = 0:066 se
).Figure 10.5: Evolution of two rising air bubbles in water.
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(b) CPU time versus time step.Figure 10.6: Results for DICCG�253 and BoxMG-CG for the pressure solve during the real-life simula-tion with two rising air bubbles in water. ICCG is omitted in these results, be
ause it is not 
ompetitivewith the other two methods.
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luding Remarks 18510.4 Con
luding RemarksIn previous 
hapters, we have seen that some de�ation (DICCG) and multigrid (BoxMG)methods are e�e
tive to solve stationary bubbly �ow problems. In this 
hapter, thesu

ess of DICCG is emphasized in realisti
 bubbly �ow simulations. Compared toICCG, the bene�t of the de�ation method is obviously observed in terms of both thenumber of iterations and the CPU time. Moreover, we 
on
lude that BoxMG-CG per-forms better than DICCG, espe
ially for relatively large grid sizes. BoxMG-CG is mores
alable, and requires fewer iterations and less 
omputing time in all experiments, forall time steps.BoxMG seems to have a low sensitivity to the density �elds, gives a

urate solutionsand is very robust in all 
ases. Improvement of DICCG to give performan
e 
omparableto BoxMG-CG is a subje
t for future resear
h. The relatively large 
oarse grids requiredby DICCG to a
hieve good 
onvergen
e properties suggest that there is a need for abetter solver for the 
oarse linear systems in DICCG in order to make the method moree�
ient and s
alable. Overall, we demonstrate that solution of the pressure-
orre
tionequation within bubbly �ow simulations 
an be signi�
antly a

elerated using two-levelPCG methods.
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Chapter 11Con
lusionsThe fo
us of this thesis is on the analysis of two-level pre
onditioned Conjugate Gra-dient (PCG) methods in whi
h the de�ation method (DPCG or DEF) plays a 
entralrole. Most of the performed numeri
al experiments are based on the Poisson equationwith a dis
ontinuous 
oe�
ient derived from bubbly �ow problems.11.1 Con
lusionsFor linear systems with a nonsingular 
oe�
ient matrix, it is known that DEF 
anbe very e�e
tive and e�
ient. We show that most of this theory is generalizable tosingular 
oe�
ient matri
es. Three variants of the de�ation methods that 
an dealwith these matri
es are dis
ussed, where we prove that all of these variants 
orrespondto almost the same de�ated-pre
onditioned 
oe�
ient matri
es. In fa
t, these variantsare equivalent to the original de�ation method, so that DEF is expe
ted to be e�e
tiveand e�
ient when it is applied to linear systems with a singular 
oe�
ient matrix.In ea
h iteration of DEF, 
oarse linear systems, based on the Galerkin matrix, mustbe solved. We show that this 
an be done with a dire
t or iterative method, so that itinvolves an inner-outer iteration pro
ess in the latter 
ase. We examine their e�
ien
yand derive their theoreti
al properties. The optimal approa
h depends on the problemsetting and grid size. For problems with highly re�ned grids or many proje
tion ve
tors,DEF based on inner-outer iterations is the most attra
tive 
hoi
e.The de�ation method with �xed subdomain ve
tors as proje
tion ve
tors is well-understood if the underlying PDEs use 
onstant 
oe�
ients. However, the density
oe�
ient is often varying in time, su
h as in our bubbly �ow simulations. We showthat DEF with �xed subdomain proje
tion ve
tors is still the method of 
hoi
e for this
ase, although level-set and level-set-subdomain proje
tion ve
tors, whi
h depend onthe density �eld and have di�erent implementation properties, 
ould also be attra
tivein pra
ti
e. In addition, we show that the proje
tion ve
tors should always be good ap-proximations of eigenve
tors asso
iated with unfavorable eigenvalues of the 
oe�
ientmatrix. We demonstrate that our 
hoi
es of proje
tion ve
tors (subdomain, level-setor level-set-subdomain ve
tors) are, indeed, good approximations for these eigenve
-187
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lusionstors in our bubbly �ow problems. It depends on the implementation, the geometryof problem, and the maximum number of allowed proje
tion ve
tors, whi
h of thesevariants is the most suitable one in pra
ti
e.The e�e
tiveness and e�
ien
y of the de�ation method are also emphasized innumeri
al experiments for both stationary and time-dependent bubbly �ows. Comparedwith PCG, DEF signi�
antly redu
es the 
omputational 
ost for most of the test 
ases,espe
ially for problems with many bubbles or a highly re�ned grid. Additionally, thede�ation method is less sensitive to the 
ontrasts between the phases, and is s
alablein terms of iterations and CPU time, as long as the number of proje
tion ve
tors is
hosen to be proportional to the grid size.In addition to the de�ation method, several other two-level PCG methods arewell-known in the literature, among them are methods based on additive 
oarse-grid
orre
tion (AD), balan
ing Neumann-Neumann (BNN), redu
ed variants of balan
-ing Neumann-Neumann (R-BNN), and multigrid V(1,0)-, V(0,1)- and V(1,1)-
y
les.The abstra
t forms of these methods are 
ompared theoreti
ally and numeri
ally. For
ertain 
hoi
es, we obtain the remarkable result that some of these methods are math-emati
ally equivalent. Most of these methods 
an be divided into two 
lasses, ea
hhaving the same spe
tral properties. The di�eren
es between the two 
lasses are small,so that similar 
onvergen
e behaviors are expe
ted. Moreover, we show both theoret-i
ally and numeri
ally that the se
ond 
lass (
onsisting of the two-level PCG methodsbased on BNN and multigrid V(1,0)-, V(0,1)-
y
les) is more robust than the �rst 
lass(
onsisting of DEF and R-BNN), although some of the methods from these 
lassesare mathemati
ally equivalent.We derive that the two-level PCG method with the multigrid V(1,0)-
y
le pre
on-ditioner is the same as an adapted variant of both DEF and R-BNN. In addition, weadvo
ate that this method is the best method with respe
t to e�e
tiveness, e�
ien
yand robustness for a 
lass of problems. Additionally, when simple 
hoi
es are made forthe algorithmi
 
omponents, ea
h iteration of the two-level PCG method based on amultigrid V(1,1)-
y
le (MG) is more expensive than a DEF iteration. At �rst glan
e,we would expe
t MG to be the most e�e
tive method; however, we show that thereexist some parameters su
h that DEF is expe
ted to 
onverge more rapidly than MG.But, for more realisti
 
hoi
e of parameters, MG is expe
ted to be faster than bothDEF and the other 2L-PCG methods given above, although the work per iteration ofMG may remain more than for the other methods. For typi
al 
hoi
es of parameters,we derive that BNN, DEF and MG require the same amount of work per iteration,and their spe
tra are almost the same. Hen
e, these methods are expe
ted to show a
omparable 
onvergen
e behavior while the 
orresponding 
ost is similar.A 
omparison between DEF and MG is also performed, where the pre
onditionersare based on their own typi
al and optimized set of parameters. For the multigridalgorithms, we 
onsider a range of approa
hes, in
luding standard geometri
, robustgeometri
 and algebrai
 multigrid variants. The solvers are 
ompared on a series of sta-tionary problems in three dimensions, where we demonstrate that DEF and MG basedon the Dendy's bla
kbox multigrid pre
onditioner (BoxMG-CG) are the most robust
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h 189and e�
ient 2L-PCG methods. Large time-dependent bubbly �ow simulations are alsoperformed, showing e�
ient and s
alable solution of the pressure-
orre
tion equationusing these methods. BoxMG-CG is more s
alable, and requires fewer iterations andless 
omputing time than DEF.Overall, we demonstrate that solving the Poisson equation with a dis
ontinuous
oe�
ient within bubbly �ow appli
ations 
an be done more e�
iently using some ofthe two-level PCG methods studied in this thesis.11.2 Future Resear
hAs shown in this thesis, the de�ation method is a fast and e�
ient method. However,it should be improved to give performan
e 
omparable to BoxMG-CG for very largeproblems. The relatively large 
oarse grids, required by the de�ation method to a
hievegood 
onvergen
e properties, suggest that there is a need for a better solver for thelinear systems asso
iated with the Galerkin matrix. This is required to make the methodmore e�
ient and s
alable. An alternative is to use the multilevel (proje
tion-based)Krylov method as proposed in [48℄, where the Galerkin systems are solved re
ursively,so that the resulting approa
h is 
lose to typi
al multigrid methods.Moreover, the 
hoi
e of the traditional pre
onditioner and the proje
tion ve
tors
ould be further improved in the de�ation method. Currently, we use the in
ompleteCholesky pre
onditioner, but it might be more favorable to use operator-based pre
on-ditioners, based on ideas des
ribed in [32℄. In addition, we use subdomain proje
tionve
tors that are 
hosen independently of the dis
ontinuous 
oe�
ient. We have an-alyzed that this is an e�
ient approa
h, but 
oe�
ient-dependent proje
tion ve
tors(su
h as the level-set or level-set-subdomain ve
tors, whi
h are des
ribed in this thesis)might be advantageous for relatively large and 
ompli
ated bubbly �ow problems.Another important issue for future resear
h is the parallelization of the de�ationmethod (and its adapted variant) in this thesis, following the guidelines given in [56℄.This is required to 
ope with very large 3-D bubbly �ows problems. A fast traditionalpre
onditioner based on blo
k in
omplete Cholesky fa
torization and �rst steps toparallelize the de�ation operator have already been 
arried out. In addition, parallelasyn
hronous iterative methods exhibit properties that are highly favorable in the 
on-text of large heterogeneous networks of 
omputers. By 
ombining these methods withde�ation�type te
hniques, sophisti
ated parallel pre
onditioners may be 
onstru
tedthat are both e�
ient and robust. This approa
h is 
urrently under investigation byTijmen Collignon with promising preliminary results.
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Appendix ABasi
 Theoreti
al ResultsIn this 
hapter, we present some fairly basi
 results related to linear algebra, whi
h areused in this thesis.Lemma A.1. Let B;C 2 Rn�n be arbitrary matri
es. Then, the following equationshold:(a) �(BC) = �(CB);(b) �(B + I) = �(B) + �(I);(
) �(B) = �(BT ).Proof. (a) Let � 2 C and v 2 Cn be an eigenvalue and 
orresponding eigenve
tor ofBC, respe
tively. We 
onsider two 
ases:� � 6= 0: the 
orresponding v satis�es BCv 6= 0n; so, in parti
ular, we haveCv 6= 0n: Then, the following equations are equivalent:




BCv = �v ;CBCv = �Cv ;CBw = �w;where w := Cv 6= 0n.� � = 0: we have det(BC) = det(CB) = 0;and, hen
e, if � is a zero eigenvalue of BC, then it is also a zero eigenvalue ofCB.In other words, � is an eigenvalue of both BC and CB.(b) Let � 2 C and v 2 Cn be an eigenvalue and 
orresponding eigenve
tor of B+I,191
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al Resultsrespe
tively. Then, the following equations are equivalent




(B + I)v = �v ;Bv = (�� 1)v ;Bv = �v;where � := � � 1. In other words, � is an eigenvalue of B + I if and only if �� 1 isan eigenvalue of B.(
) By de�nition of determinants, det(B��I) = det(BT ��I) holds for all � 2 C,so that �(B) = �(BT ).Lemma A.2. Let B 2 Rn�n be an SPSD matrix. Let C 2 Rn�n be any matrix. Then,B̃ := CTBC is SPSD.Proof. Matrix B̃ is symmetri
, sin
eB̃T = (CTBC)T = CTBTC = CTBC = B̃:Moreover, by de�nition, uTBu � 0; 8u 2 Rn:If we 
hoose, in parti
ular, u := Cv , we obtain(Cv)TB(Cv) = vTCTBCvT = vT B̃vT � 0;whi
h proves that B̃ is SPSD.Lemma A.3. Let S 2 Rn�n satisfy S2 = S. Let R 2 Rn�n be an SPD matrix su
hthat SR is symmetri
. Then, SR is SPD.Proof. Note �rst thatSR = S2R = S(SR)T = SRTST = SRST ;be
ause SR is symmetri
 and S is a proje
tion matrix. Then, the lemma follows fromLemma A.2 by taking C := ST and B := R.Next, for two symmetri
 matri
es, B and C, we write B � C if B � C is PSD.Lemma A.4 (Thm. 4.3.1 of [73℄). Let B;C 2 Rn�n be SPD matri
es with the propertythat B � C. Then, �i(B) � �i(C); i = 1; 2; : : : ; n:Lemma A.5 (Thm. 4.3.6 of [73℄). Let B;C 2 Rn�n be symmetri
 and suppose thatB has at most rank s. Then,�i(B) � �i+k(B + C); i = 1; 2; : : : ; n � s:Subsequently, Lemma A.6 is presented, whi
h is from the perturbation theory forthe symmetri
 eigenvalue problem (see also [179℄ and [63, Thm. 8.1.8℄).



193Lemma A.6. Suppose B = C + �

T where B 2 Rn�n is symmetri
, 
 2 Rn has unit2-norm and � > 0. Then,�i(C) � �i(B) � �i+1(C); i = 1; 2; : : : ; n � 1: (A.1)Moreover, there exist m1;m2; : : : ;mn � 0 su
h that�i(B) = �i(C) +mi�; i = 1; 2; : : : ; n; (A.2)with m1 +m2 + : : :+mn = 1.The next lemma is known as the interla
ing property or the interla
ing eigenvaluestheorem for bordered matri
es (see, e.g., [63, Thm. 8.1.7℄).Lemma A.7 (Interla
ing Property). If B 2 Rn�n is symmetri
 and Bs = B(1 : s; 1 : s),then�1(Bs+1) � �1(Bs) � �2(Bs+1) � : : : � �s(Bs+1) � �s(Bs) � �s+1(Bs+1);for 1 � s � n � 1.Next, given an SPSD matrix F 2 Rn�n and an SPD matrix G 2 Rn�n, we 
onsiderthe eigenproblem, G�1Fy = �y;whi
h 
an be rewritten as (F � �G)y = 0;where � and y are an eigenvalue and 
orresponding eigenve
tor of G�1F , respe
tively.The latter problem is known as the symmetri
-de�nite generalized eigenproblem, andF ��G is 
alled a pen
il, see, e.g., [63, Se
t. 8.7℄. In this 
ase, � and y are known asa generalized eigenvalue and generalized eigenve
tor of the pen
il F ��G, respe
tively.Moreover, the Crawford number, 
(F;G), of the pen
il F � �G is de�ned as
(F;G) := minjjy jj2=1 (yTFy)2 + (yTGy)2 > 0: (A.3)The following lemma gives information about the eigenvalues after perturbing matrix G.This lemma is a simpli�ed variant of the original theorem given in [127℄, see also [63,Se
t. 8.7℄.Lemma A.8. Let F 2 Rn�n be an SPSD matrix and G 2 Rn�n be an SPD matrix. LetF ��iG be the symmetri
-de�nite n�n pen
il with �1 � �2 � : : : � �n. Suppose RGis a symmetri
 n � n matrix that satis�es jjRG jj22 < 
(F;G). Then, F � �i(G + RG)is symmetri
-de�nite with �1 � �2 � : : : � �n, satisfyingj ar
tan (�i)� ar
tan (�i) j � ar
tan( jjRG jj2
(F;G)) ; i = 1; 2; : : : ; n: (A.4)
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 Theoreti
al ResultsA matrix, B = [bi ;j ℄ 2 Rn�n, is irredu
ibly diagonally dominant if B is irredu
ibleand jbj j j �∑i 6=j jbi ;j j; j = 1; : : : ; n;with stri
t inequality for at least one j . Now, the following lemma, whi
h is [120,Corollary 4.8℄, 
an be proven.Lemma A.9. If a matrix B is irredu
ibly diagonal dominant, then it is nonsingular.Next, we give some results that 
hara
terize eigenvalues in a variational way, seealso [73, Se
tion 4.2℄. Most of them use the so-
alled Rayleigh-Ritz ratio given byyTByyT y ; B 2 Rn�n; y 2 Rn:Theorem A.1 (Rayleigh-Ritz Theorem). Let B 2 Rn�n be a symmetri
 matrix. Then,�1yT y � yTBy � �nyT y; 8y 2 Rn;and 


�max = �n = maxy 6=0n yTByyT y = maxyT y=1 yTBy ;�min = �n = miny 6=0n yTByyT y = minyT y=1 yTBy:Theorem A.2 (Courant-Fis
her Minimax Theorem). Let B 2 Rn�n be a symmetri
matrix. Suppose that r is a given integer with 1 � r � n. Then, for y 6= 0n, we have




minw1;:::;wn�r2Rn�n maxy?w1;:::;wn�r yTAyyT y = �r ;maxw1;:::;wr�12Rn�n miny?w1;:::;wr�1 yTAyyT y = �r : (A.5)We remark that if we take r = n and r = 1 in the �rst and se
ond expression of (A.5),respe
tively, the assertions redu
e to Theorem A.1.Subsequently, the Frobenius norm and p-norm for matri
es are de�ned asjjBjjF :=√√√√ n∑i ;j=1 b2i ;j ; jjBjjp := supy 6=0 jjBy jjpjjy jjp ; (A.6)respe
tively. In parti
ular, the 2-norm for symmetri
 matri
es is de�ned asjjBjj2 := supy 6=0 jjBy jj2jjy jj2 = max f j�1(B)j; j�n(B)j g ; (A.7)where �1 � : : : � �n. Moreover, we mention well-known properties of the eigenvaluesof symmetri
 matri
es, whi
h 
an be found in [63, Se
t. 8.1.2℄.Lemma A.10. Let B;G 2 Rn�n be symmetri
 matri
es. Then,(i) ∑ni=1 [ �i(B + G)� �i(B) ℄2 � jjGjj2F ;



195(ii) �i(B) + �1(G) � �i(B + G) � �i(B) + �n(G); i = 1; 2; : : : ; n;(iii) j�i(B + G)� �i(B)j � jjGjj2; i = 1; 2; : : : ; n.Lemma A.10(ii) is known as the Wielandt-Ho�man theorem.If an invertible matrix satis�es some 
onditions, then some entries of the inverseare known a priori, see the next lemma.Lemma A.11. Let C = [
i ;j ℄ 2 Rn�n be a symmetri
 and invertible matrix with theproperty that C1n = 
e(n)n ; 
 6= 0: (A.8)Then, the entries of the last row and last 
olumn of C�1 = [
�1i ;j ℄ have the same value,1
 , i.e., 
�1n;j = 
�1i ;n = 1
 8 i ; j: (A.9)Proof. From Eq. (A.8), we obtain 
C�1e(n)n = 1n. This yields

�1i ;1 = 1 ! 
�1i ;1 = 1
 ;for all i = 1; 2; : : : ; n. Due to the symmetry of C, its inverse is also symmetri
 andEq. (A.9) follows.Lemma A.12. Suppose that u = [ui ℄ 2 Rn and v = [vi ℄ 2 Rn. Then, rank uvT = 1.Proof. Sin
e uvT = [u1 � � � un℄T [v1 � � � vn℄ = [v1u v2u � � � vnu℄;the 
olumns are multiples of ea
h other, so that rank uvT = 1.Lemma A.13. Let matri
es B 2 Rn�s1, D 2 Rn�s2 and an invertible matrix, C 2 Rn�n,be given. If R(B) � R(D), then R(CB) � R(CD) holds.Proof. Denote B = [b1 � � � bs1℄ and D = [d1 � � � ds2 ℄, where fbig and fdig are setsof ve
tors. Sin
e R(B) � R(D) holds, we 
an writebi = 
1d1 + � � � 
s2ds2; 
j 2 R;for all i = 1; : : : ; s1. So, we also haveCbi = 
1Cd1 + � � � 
s2Cds2 ; 
j 2 R;giving us R(CB) � R(CD).Subsequently, we present two well-known theorems in the linear algebra (see,e.g., [128℄), followed by a 
onsequen
e of these theorems.
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 Theoreti
al ResultsTheorem A.3 (Fundamental Theorem of Linear Algebra). Let B be a symmetri
 ma-trix. Then, N (B) = R(B)?; R(B) = N (B)?:Theorem A.4 (Rank-Nullity Theorem). For any B 2 Rn�n, we haverankB + dimN (B) = n:Lemma A.14. Suppose that S := I � RB and S� := I � RTB, where B 2 Rn�n isSPD and R 2 Rn�n is any matrix. Then,dimN (S) = dimN (S�) :Proof. Note �rst that S� is similar to ST , sin
e S� = B�1STB: Hen
e, the eigenvaluesof S� and ST are the same (in
luding multipli
ity), so thatdimN (S�) = dimN (ST ) :Lemma A.4 says that dimR (S) + dimN (S) = n:On the other hand, Theorem A.3 gives an orthogonal de
omposition ofRn = R (S)�N (ST ) ; (A.10)implying that dimN (ST ) = n � dimR (S) = dimN (S) :The following standard de�nitions are related to orthogonal 
omplements and dire
tsums.De�nition A.1. Let H be a ve
tor spa
e with an arbitrary inner produ
t, h�; �i, and letZ be a 
losed subspa
e of H. Then, the orthogonal 
omplement Y of Z, also denotedby Z?, is de�ned as Y = fy 2 H j hz; yi = 0 8z 2 Zg ; (A.11)so that Z is the subspa
e orthogonal to Y.De�nition A.2. Let X be a ve
tor spa
e. Suppose that Y and Z are subspa
es of X .Then, X is said to be the dire
t sum of Y and Z, written asX = Y � Z; (A.12)if ea
h x 2 X has a unique representation,x = y + z; (A.13)



197where y 2 Y and z 2 Z.In other words, the dire
t sum of two subspa
es, Y and Z, is the sum of subspa
es inwhi
h Y and Z have only the zero element in 
ommon. Using De�nitions A.1 and A.2,we 
an derive Lemma A.15, whi
h is well-known and states that the union of thesubspa
es Y and Z is exa
tly H (see, e.g., [83, pp. 146�147℄).Lemma A.15. Let H;Y and Z be de�ned as in De�nition A.1. Then,H = Y � Z: (A.14)Note that dim Y + dim Z = n for H := Rn. This means that Y = Rn�s holds asZ = Rs with s < n is given.
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Appendix BDetermination of Bubbles from theLevel-Set Fun
tionThe level-set approa
h [102, 110℄ 
an be adopted to des
ribe the density �eld, �,impli
itly in many appli
ations, su
h as two-phase bubbly �ow appli
ations, see [143,154, 156℄. In this approa
h, the interfa
es of the bubbles are de�ned by the zerolevel-set of a marker fun
tion 	(x; t) that is de�ned as follows:




	 = 0; at the interfa
e;	 > 0; inside the high-density phase;	 < 0; elsewhere:The interfa
e is impli
itly adve
ted, by adve
ting	 as if it would be a material property:�	�t + u � r	 = 0;where u is the velo
ity ve
tor in 
. Therefore, � 
an be determined at ea
h time step,without having the exa
t 
oordinates of the bubbles. For 
hoosing de�ation ve
tors inthe de�ation method, an extra pro
edure for determining the bubbles from 	 shouldbe 
arried out. For example, Algorithm 9 gives the pseudo-
ode of an algorithm fordetermining bubbles from a given level-set fun
tion, whi
h 
an be used for 2-D problemson an equidistant grid 1 2. In this algorithm, x̂i denotes an adja
ent grid point of gridpoint xi .In Algorithm 9, three loops are needed to distinguish the bubbles from the rest ofthe domain and to in
lude their adja
ent grid points, requiring O(n) �ops. Note that,in the 
ase of de
iding whether a grid point is in a bubble, we simply look at the signof the 
orresponding element of 	. If the value is positive, the grid point is in theinterior of the bubble, if it is negative, then it is outside the bubble, and, otherwise,1John Brus
he has 
ontributed to the realization of this algorithm.2If the 
omputations are performed on an unstru
tured grid, similar algorithms as Algorithm 9 
anbe applied using reordering strategies, su
h as Cuthill M
Kee's algorithm [33℄.199



200 Appendix B. Determination of Bubbles from the Level-Set Fun
tionAlgorithm 9 Determination of bubbles from the level-set fun
tion in 2-D1: Set j = 1 and f = 0n;2: for x1 to xn (from left to right and from bottom to top) do3: if xi 2 �h1 then4: if left and/or bottom x̂i =2 �h1 then5: fi = j ;6: j = j + 1;7: else8: fi = minx̂i f ;9: end if10: end if11: end for12: for xn to x1(from right to the left and from top to bottom) do13: if xi 2 �h1 then14: if right and/or top x̂i =2 �h1 then15: fi = j ;16: j = j + 1;17: else18: fi = minx̂i f ;19: end if20: end if21: end for22: Renumber all fi 6= 0;23: for x1 to xn do24: if xi 2 �h1 and x̂i =2 �h1 then25: fx̂i = fi ;26: end if27: end forit is on the interfa
e. In this way, it is straightforward to determine the bubbles fromthe level-set fun
tion, and to obtain a 
ode where ea
h de�ation ve
tor 
orrespondsto exa
tly one bubble. The algorithm is further explained in Example B.1.Example B.1. A 2-D bubbly �ow problem with m = 3 bubbles is 
onsidered, seeFigure B.1. In ea
h of the subplots, one 
an see the intermediate and �nal results ofapplying Algorithm 9 to determine ea
h bubble.
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(a) After the �rst loop (Line 11).
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(b) After the se
ond loop (Line 21).
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(
) After renumbering (Line 22).
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(d) After the algorithm (Line 27).Figure B.1: A 2-D bubbly �ow problem with m = 3 showing the appli
ation of Algorithm 9. Thenumbers given in the plots are the 
orresponding nonzero entries of ve
tor f .
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Appendix CMore Insights into De�ation applied toSingular Coe�
ient Matri
esIn addition to Chapter 5, we give some more results and insights into the appli
ationof the de�ation method applied to linear systems with singular 
oe�
ient matri
es 1.The main fo
us of this appendix is on proving Theorem 5.5.The following de�nition holds throughout this appendix.De�nition C.1. Suppose that an SPD 
oe�
ient matrix, A 2 Rn�n, is given. LetZ 2 Rn�k be a de�ation-subspa
e matrix with full rank and k < n. Let Za 2 Rn�ka bea de�ation-subspa
e matrix with full rank and ka � k satisfying N (A) \ R(Za) = ;.Then, we de�ne
{ P := I � AQ; Q := ZE+ZT ; E := ZTAZ;Pa := I � AQa; Qa := ZaE�1a ZTa ; Ea := ZTa AZa:Note that E 
an be singular, while Ea is obviously nonsingular (see Se
tion 3.2). Inaddition, if there does not exist a ve
tor, y , su
h that y � R(Z) for y 2 N (A), thenP = Pa.C.1 Theoreti
al ResultsWe show that a de�ation matrix based on a singular Galerkin matrix 
an always beredu
ed to a de�ation matrix based on a nonsingular Galerkin matrix.Theorem C.1. Let A 2 Rn�n and Z 2 Rn�k be as given in De�nition C.1. Then,there exists a matrix Za 2 Rn�ka with ka � k su
h that Ea is invertible andQ = Qa; P = Pa: (C.1)1This appendix is based on resear
h that is still ongoing, see [85℄.203



204 Appendix C. More Insights into De�ation applied to Singular Coe�
ient Matri
esProof. Sin
e E is SPSD, there exists an orthogonal matrix, U 2 Rk�k, su
h thatUTEU = [ D1 0ka;(k�ka)0(k�ka);ka 0(k�ka);(k�ka) ] ;where D1 2 Rka�ka with ka � k is a nonsingular diagonal matrix. Now, letU = [U1; U2℄; U1 2 Rk�ka; U2 2 Rk�(k�ka):Then, ZU = [ZU1; ZU2℄; (ZU)T = [ UT1 ZTUT2 ZT ] : (C.2)Moreover, note that Q = ZE+ZT = ZU(UTEU)+UTZT ; (C.3)for ea
h orthogonal matrix, U 2 Rk�k. Combining Eqs. (C.2) and (C.3) yieldsQ = ZE+ZT = ZU(UTEU)+UTZT= ZU ([ UT1 ZTUT2 ZT ]E[ZU1; ZU2℄)+ UTZT= [ZU1; ZU2℄[ D�11 0ka;(k�ka)0(k�ka);ka 0(k�ka);(k�ka) ][ UT1 ZTUT2 ZT ] ;= ZU1D�11 UT1 ZT= ZU1(UT1 EU1)�1UT1 ZT :Therefore, for Za := ZU1 2 Rk�ka, we haveQ = ZE+ZT = Za(ZTa AZa)�1ZTa = Qa;so that the theorem follows immediately.Theorem C.1 shows that, for ea
h SPSD 
oe�
ient matrix, A, and de�ation-subspa
ematrix, Z, there exists a redu
ed de�ation-subspa
e matrix, Za, su
h that Ea is non-singular and de�ation matri
es P and Pa are equal.Furthermore, the proof of Theorem C.1 also provides a te
hnique to 
onstru
tZa: 
hoose Za := ZU1 with U1 
onsisting of eigenve
tors of E 
orresponding to thenonzero eigenvalues. Note that these eigenve
tors are orthogonal to the eigenve
torsasso
iated with the zero eigenvalues, so that N (A) * R(U1) and Za has full rank.Therefore, if N (E) is known, a basis of its orthogonal 
omplement, say W , 
an be
onstru
ted su
h that R(U1) = R(W ). Hen
e,R(ZU1) = R(ZW ):



C.2. Proof of Theorem 5.5 205Thus, by using Theorem 3.2, ZW 
an also be applied as a redu
ed de�ation-subspa
ematrix, resulting in Theorem C.2.Theorem C.2. Let A 2 Rn�n and Z 2 Rn�k be as given in De�nition C.1. Supposethat E has rank ka. Let Zs := ZW and Za be de�ned as in the proof of Theorem C.1.Suppose that W 
onsists of basis ve
tors of the orthogonal 
omplement of N (E).Then, ZTs AZs is nonsingular andQ = Qa = Zs(ZTs AZs)�1ZTs :C.2 Proof of Theorem 5.5Using the results of the previous se
tion, we 
an prove Theorem 5.5 (that is equal toTheorem C.3), see below.Theorem C.3. Let A 2 Rn�n, Z 2 Rn�k and E 2 Rk�k be as given in De�nition C.1.Suppose that A1n = 0n; (C.4)Z1k = 1n; (C.5)dimR (E) = k � 1; (C.6)and Zk�1 = [z1; : : : ; zk�1℄. Let Ek�1, Qk�1 and Pk�1 be as de�ned in De�nition 5.3.Then, Ek�1 is nonsingular and AQA = AQk�1A:Hen
e, (see Eq. (5.27)) M�1PA = M�1Pk�1A:Proof. From Eqs. (C.4) and (C.5), we obtain E1k = 0k , so that N (E) = R(1k).Next, we 
hoose a basis W of the orthogonal 
omplement of R(1k). We take theve
tors fwi 2 Rk : i = 1; : : : ; k � 1g, where




w1 = [1; �1k�1 ; : : : ; �1k�1]T ;w2 = [ �1k�1 ; 1; �1k�1 ; : : : ; �1k�1]T ;...wk�1 = [ �1k�1 ; : : : ; �1k�1 ; 1]T :Eq. (C.5) gives us z1 = 1n � k∑j=2 zj ;



206 Appendix C. More Insights into De�ation applied to Singular Coe�
ient Matri
eswhi
h 
an be rewritten as 1k � 1z1 = 1k � 1 1n � k∑j=2 zj : (C.7)On the other hand, we obtain Zw1 = z1 � k∑j=2 1k � 1zj : (C.8)Combining Eqs. (C.8) and (C.7) yieldsZw1 = (1 + 1k � 1) z1 + 1k � 11n:Similarly, we obtainZwi = (1 + 1k � 1) zi + 1k � 11n; i = 1; : : : ; k � 1:Hen
e, ZW = [�z1; : : : ; �zk�1℄ + 1k � 11n1Tn�1; � := 1 + 1k � 1 : (C.9)Suppose now that �Z := [�z1; : : : ; �zk�1℄:Then, with Eq. (C.4), we obtain W TEW = �ZTA �Z;while Theorem C.2 implies that �ZTA �Z is nonsingular. Using Eqs. (C.4) and (C.9), weobtain AZW = A �Z, so thatAZW (W TEW )�1W TZTA = A �Z( �ZTA �Z)�1 �ZTA:Sin
e R( �Z) = R(Zk�1), Theorem 3.2 yieldsAZW (W TEW )�1W TZTA = AZk�1E�1k�1ZTk�1A: (C.10)On the other hand, we haveAQA = AZW (W TEW )�1W TZTA (C.11)from Theorem C.2. Combining Eqs. (C.10) and (C.11) yieldsAQA = AQk�1A;



C.2. Proof of Theorem 5.5 207whi
h also implies M�1PA = M�1Pk�1A:Remark C.1.� From the proof of Theorem C.3, it is important to note that the following in-equalities hold: Q 6= Qk�1; AQ 6= AQk�1; QA 6= Qk�1A;while these would be equalities if E is nonsingular.� Several other interesting theoreti
al results for the de�ation te
hnique based ona singular Galerkin matrix 
an be found in [85℄.
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Appendix DE�
ient Implementation of De�ationOperationsIn this appendix, we demonstrate the e�
ient 
omputation of AZ and E, so that they
an be easily in
orporated in the de�ation method. One 
an 
onsult [140℄ for moredetails. Re
all that A 2 Rn�n is a 
oe�
ient matrix, Z 2 Rn�k is the de�ation-subspa
e matrix, and E := ZTAZ 2 Rk�k is the Galerkin matrix. As dis
ussed inChapter 8, the nonzeros of these matri
es are stored in the matri
es SAZ and SE,respe
tively, whose exa
t forms are explained below. Moreover, Assumption D.1 holdsthroughout this appendix (see Assumption 8.1).Assumption D.1.� A is derived after dis
retization of the Poisson problem that is originated frombubbly �ow problems (see Se
tion 1.3) and 
onsists of 5 and 7 nonzero diagonalsin the 2-D and 3-D 
ase, respe
tively;� Z 
onsists of subdomain de�ation ve
tors (see Se
tion 4.2.3), where the subdo-mains are squares and 
ubes in the 2-D and 3-D 
ase, respe
tively. In addition,the number of subdomains and de�ation ve
tors is assumed to be equal.D.1 E�
ient Constru
tion of SAZ and SE in 2-DMatrix SAZ 2 R
�3 
an be dedu
ed from AZ, where 
 is the number of nonzeroentries of AZ. The �rst and se
ond 
olumns of SAZ are the row and 
olumn indi
esof the nonzero entries of AZ, respe
tively. The third 
olumn of SAZ stores their
orresponding values.Ea
h de�ation ve
tor in Z 
orresponds to one subdomain in 
. If we assume 
to be a square, then these subdomains 
an be divided into nine di�erent groups asdepi
ted in Figure D.1. Note that all groups (ex
ept the 
orner groups 1, 3, 7, 9) may
onsist of more subdomains. For instan
e, for k = 25, Group 5 
onsists of exa
tly 16subdomains, while ea
h of Group 2, 4, 6 and 8 
onsists of 4 subdomains. Moreover,209



210 Appendix D. E�
ient Implementation of De�ation Operationsin Figure D.2, we 
an see the di�erent 
ases and the grid points that are involved inthe 
omputation of SAZ. In addition, the variables used in this se
tion are explainedin the Table D.1.
�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

1

5 6

987

4

32Figure D.1: Domain 
 divided into nine subdomains (k = 9), so that ea
h subdomain 
orresponds toexa
tly one group.

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ���� �� �� ����

�� �� ������ �� ����

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� �� ����

�� �� ������ �� ������ �� ����

�� �� ���� �� �� ����

��

��

��

��

�� �� ����

�� �� ����

�� �� ����

�� �� ����

21 3

4 5 6

987

4U

1R

3LU

3LD

1R

3LU

1L

3RD

2U

2D 2D 2D

2U 2U

2D 2D 2D

2U 2U2U

1L

4D

4D 3RD

1R 1L

4U3LU 3LU

3RU

1M

1M 1M

1M

1M 1MFigure D.2: Cases of grid points involved in the groups of SAZ .D.1.1 Number of Nonzero Entries in AZThe number of nonzeros of AZ, 
, 
an be 
omputed by 
ounting the number ofnonzeros for the di�erent kinds of subdomains.� Corner Subdomains (Group 1, 3, 7, 9). Ea
h 
orner subdomain has nonzero
ontributions of 4nb � 1 grid points, so that 

 = 4(4nb � 1).



D.1. E�
ient Constru
tion of SAZ and SE in 2-D 211Variable Meaningk Number of subdomainskx Number of subdomains in one dire
tion (= pk in the 2-D 
ase)nb Number of grid points in one dire
tion of a subdomain
 Total number of nonzeros in AZ

 Number of nonzeros in AZ from all 
orner subdomains
b Number of nonzeros in AZ from all boundary subdomains
i Number of nonzeros in AZ from all interior subdomainsTable D.1: Explanation of the variables.� Boundary Subdomains (Group 2, 4, 6, 8). Ea
h boundary subdomain 
onsists of6nb � 2 involving grid points. Be
ause we have 4(kx � 2) boundary subdomains,
b = 8(3nb � 1)(kx � 2) holds.� Interior Subdomains (Group 5). 8nb � 4 grid points are involved per interiorsubdomain. Sin
e there are (kx � 2)2 interior subdomains, this yields 
i =4(2nb � 1)(kx � 2)2.Now, 
 is given by
 = 

 + 
b + 
i= 4(4nb � 1) + 8(3nb � 1)(kx � 2) + 4(2nb � 1)(kx � 2)2: (D.1)Obviously, if k is large, then 
i is the dominant term in Eq. (D.1).D.1.2 Treatment of the Di�erent CasesThe di�erent 
ases as presented in Figure D.2 are 
onsidered separately.Case 1 (1R, 1L, 1M)We distinguish the 
ases `left' (L), `right' (R) and `middle' (M) variant in Case 1,where we note that the work is twi
e as mu
h 
ompared to `left' or `right' for variant`middle'. For ea
h row of the domain, we add the values of A 
orresponding to theinvolved grid points to SAZ, where it is sometimes e�
ient to use�ai ;j =∑k 6=j ai ;k ; (D.2)sin
e A1n = 0n holds from Assumption 1.2. For instan
e, for the 
ase 'left', we addtwo values of A to SAZ in ea
h row: for the �rst entry, y , we add the negative valueof the 
orresponding right entry of A, and we add the 
orresponding left entry of A toSAZ for the se
ond entry, y + 1.



212 Appendix D. E�
ient Implementation of De�ation OperationsCase 2 (2U, 2D)Two variants `up' (U) and `down' (D) are distinguished for this 
ase. The 
orrespondingentries of SAZ 
an be easily 
omputed: we add the 
orresponding bottom entry of Afor `up', while the top entry of A is added to SAZ in the 
ase of `down'.Case 3 (3LU, 3LD, 3RU, 3RD, 3MU, 3MD)This 
ase 
onsists of six di�erent variants. Ea
h variant requires a sequen
e of opera-tions, sin
e the `
orner' points have to be treated di�erently 
ompared to the `boundary'points. For instan
e, Variant `3LU' requires the 
omputations of the boundary points,followed by two 
orner points that should be treated separately, both using again (D.2).Case 4 (4D, 4U)We distinguish the variants `4D' and `4U', whose treatment is analogous to the pro
e-dure of the variants in Case 3. Instead of two 
orner points, we now have four 
ornerpoints that should be handled separately.D.1.3 Constru
tion of SAZThe 
omputation of SAZ is straightforward by using the 
ases as des
ribed above.Ea
h subdomain is handled by determining the entries 
orresponding to ea
h 
ase. Ifk = 4, then four subdomains should be 
onsidered with three 
ases ea
h. In the 
aseof k > 4, Group 2 (or 4, 6, 8) in Figure 2 
onsists of kx �2 subdomains, while Group 5
onsists of (kx � 2)2 subdomains.Moreover, re
all that if the singular 
oe�
ient matrix, A, is made invertible a
-
ording to De�nition 5.2, then SAZ 
onsists of an extra row. Combining the fa
ts(AZ)n;n = �an;n and ~an;n = (1 + �)an;n, we obtain(AZ)n;n = �1 + � ~an;n:D.1.4 Constru
tion of SEThe Galerkin matrix, E, is a relatively small and sparse SPD matrix with the samenonzero pattern as A. The di�erent 
ases in the 
omputations of SAZ 
an also beapplied to 
onstru
t SE. Obviously, ea
h nonzero entry of AZ is used on
e in orderto 
ompute SE. The geometry of the pro
edure is given in Figure D.3, where thefollowing remarks 
an be made.� E is symmetri
, so that only a limited number of nonzero entries of AZ is requiredto 
ompute SE.� SE is stored e�
iently as SE := [e1 e2 e3℄ 2 Rk�3, where e1 is the maindiagonal of E, and e2 and e3 are the se
ond and third nonzero subdiagonalsof E, respe
tively. All indi
ated interior grid points 
ontribute to e1, while all



D.2. E�
ient Constru
tion of SAZ and SE in 3-D 213right and top grid points next to the interior grid points 
ontribute to e2 and e3,respe
tively. Later on, zero 
olumns 
an be added between e2 and e3, whi
h 
anbe �lled with entries 
oming from the Cholesky de
omposition.� The 
onstru
tion of SE 
an be easily implemented in the existing 
ode of the
omputation of SAZ.
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Figure D.3: Cases of grid points involved in E := ZTAZ, denoted by E1, E2 and E3, whose values inAZ 
ontribute to e1; e2 and e3, respe
tively.D.2 E�
ient Constru
tion of SAZ and SE in 3-DThe results from the previous se
tion 
an be generalized to the 3-D 
ase. Ea
hsubdomain of Figure D.2 takes the form of a blo
k in this 
ase. These blo
ks arenumbered lexi
ographi
ally. We demonstrate the e�
ient 
omputation of SAZ andSE, where the analysis is based on 9 subdomains followed by 27 and more subdomains.D.2.1 Number of Nonzero Entries in AZSimilarly to the 2-D 
ase, the number of nonzero entries of AZ, 
, 
an be easily
omputed, see below.� Corner Blo
ks. It is easy to see that 6n2b � 3nb + 1 nonzero entries are involvedfor ea
h of the eight 
orner blo
ks, so that 

 = 8(6n2b � 3nb + 1):� Interior Blo
ks. 12n2b � 12nb + 8 nonzero entries are involved for ea
h interiorblo
k. This implies 
i = (kx � 2)3(12n2b � 12nb +8); be
ause we have (kx � 2)3interior blo
ks.



214 Appendix D. E�
ient Implementation of De�ation Operations� Boundary Blo
ks. We divide the boundary blo
ks into `real-boundary' blo
ksand `boundary-interior' blo
ks. Ea
h of the 12(kx � 2) real-boundary blo
ks has8n2b � 5nb +2 nonzero entries, whereas ea
h of the 6(kx � 2)2 boundary-interiorblo
ks requires 10n2b � 8nb + 4 entries. Hen
e, 
b = 12(kx � 2)8n2b � 5nb + 2+60(kx � 2)2n2b � 8nb + 4:The total number 
 
an now again be 
omputed using 
 = 

 + 
i + 
b: As in the2-D 
ase, one extra row is required for SAZ, if A is for
ed to be invertible usingDe�nition 5.2.D.2.2 Matrix SAZ for Eight Blo
ksIn the 
ase of eight subdomains, we only need Groups 1, 3, 7 and 9 of Figure D.2,whi
h are se
tions of 
orresponding blo
ks in 3-D. We treat Blo
k 1 extensively. Theremaining blo
ks 
an be analyzed in a similar way.Blo
k 1Blo
k 1 is arti�
ially divided into layers, where ea
h layer 
orresponds to one positionon the z-axis. Note that the layers of z = 1; : : : ; nb � 1 are identi
al, see Figure D.4.As a 
onsequen
e, they are the same as Blo
k 1 in the 2-D 
ase. For layer z = nb,ea
h grid point of the blo
k a

ounts for an extra entry (at z = nb+1). This requiresthe introdu
tion of `Case 6' that en
ounters for these entries. In addition, Cases 1and 3 are not required anymore. Finally, for layer z = nb + 1, ea
h interior grid pointof the blo
k has a 
ontribution that is treated in Case 5.
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Figure D.4: Treatment of Blo
k 1.Other Blo
ksThe remaining blo
ks 
an be treated in the same way as Blo
k 1. In Table D.2, wesummarize the involved 
ases for ea
h of these blo
ks.D.2.3 Matrix SAZ for 27 Blo
ksFor k = 27, the eight blo
ks from the previous subse
tion are the eight 
orner blo
ks.The remaining 19 blo
ks 
an be 
onstru
ted in a straightforward way. The di�erent
ases for ea
h blo
k are 
onsidered below.



D.2. E�
ient Constru
tion of SAZ and SE in 3-D 215z-position Blo
k 1 Blo
k 2 Blo
k 3 Blo
k 41; : : : ; nb � 1 1R, 3LU, 2U 1L, 3RU, 2U 2U, 3LD, 1R 2D, 3RD, 1Lnb 6LUp, 2U 6RUp, 2U 2U, 6LDp 2D, 6RDpnb + 1 5D 5D 5D 5Dz-position Blo
k 5 Blo
k 6 Blo
k 7 Blo
k 81; : : : ; nb � 1 5U 5U 5U 5Unb 6RUn, 2U 6RUn, 2U 2D 2D, 6RDnnb + 1 1L, 3RU, 2U 1L, 3RU, 2U 6LDn 2D, 3RD, 1LTable D.2: Cases involved in the blo
ks for eight subdomains in 3-D.Blo
ks 1�9The treatment of Blo
ks 1�9 is presented in Table D.3.z-position Blo
k 1 Blo
k 2 Blo
k 31; : : : ; nb � 1 1R, 3LU, 2U 1M, 4U, 2U 2U, 3LD, 1Rnb 6LUp, 2U 6MUp, 2U 2U, 6LDpnb + 1 5D 5D 5Dz-position Blo
k 4 Blo
k 5 Blo
k 61; : : : ; nb � 1 2D, 3LD, 1R, 3LU, 2U 2D, 4D, 1M, 4U, 2U 2D, 3RD, 1L, 3RU, 2Unb 2D, 6LMp, 2U 2D, 6MMp, 2U 2D, 6MMp, 2Unb + 1 5D 5D 5Dz-position Blo
k 7 Blo
k 8 Blo
k 91; : : : ; nb � 1 2U, 3LD, 1R 2D, 4D, 1M 2D, 3RD, 1Lnb 2U, 6LDp 2D, 6MDp 2D, 6RDPnb + 1 5D 5D 5DTable D.3: Cases involved in Blo
ks 1�9 for k = 27 in the 3-D 
ase.Blo
ks 10�18Blo
ks 10�18 
an be 
onstru
ted from Blo
ks 1�9. Instead of three, we obviously have�ve di�erent layers. The last three layers are the same as the blo
k on the bottomof these layers, while the �rst two blo
ks follow immediately from the last two blo
ks.For example, Blo
k 10 
onsists ofz =  nb : 5U;nb + 1 : 6LUn;nb + 2; : : : ; 2nb � 1 : 1R, 3LU, 2U;2nb : 6LUp, 2U;2nb + 1 : 5D:



216 Appendix D. E�
ient Implementation of De�ation OperationsTherefore, the 
ases for the last three layers with respe
t to the z-position (i.e.,z = nb + 2; : : : ; 2nb + 1) are exa
tly the same as given for Blo
k 1. In addition, the
ases asso
iated with the �rst two layers (i.e., z = nb; nb + 1) are almost identi
al tothe 
ases 
orresponding to the last two 
ases (i.e., z = 2nb; 2nb + 1), where `p' isrepla
ed by `n' in Case 6. A similar pattern of 
ases 
an be derived for Blo
ks 10�18.Blo
ks 19�27Blo
ks 19�27 also follow immediately from Blo
ks 1�9. The di�erent layers of Blo
ks 1�9 should be reversed and, moreover, `p' should be repla
ed by `n' in Case 6, while `D'should be repla
ed by `U' in Case 5. For instan
e, Blo
k 20 
onsists ofz = 2nb : 5U;2nb + 1 : 6MUn; 2U;2nb + 2; : : : ; 3nb : 1M, 4U, 2U;This is exa
tly the reverse pro
edure of Blo
k 2, where 5D and 6LUp are now 5U and6LUn, respe
tively. In a similar way, the other blo
ks 
an be analyzed.D.2.4 Matrix SAZ with Variable Number of Blo
ksThe determination of matrix SAZ with a variable number of blo
ks is a straightforwardgeneralization of the 
ase with 27 blo
ks as des
ribed above. Ea
h of the 27 blo
ksshould now be 
onsidered as di�erent 
lasses, whi
h 
over all new blo
ks.D.2.5 Constru
tion of SEMatrix SE is 
onstru
ted in the same way as the 2-D 
ase. Instead of SE = [e1 e2 e3℄,we now have SE = [e1 e2 e3 e4℄, where e4 
an be 
omputed similarly to e2 and e3.



Appendix EFlop Counts for the De�ation MethodIn this appendix, we 
ompare the �oating-point operations (�ops) of ICCG and DICCGin more detail. The DICCG1 and DICCG2 methods (see Se
tion 8.3), whi
h only di�erin the inner-iteration solver, are examined. We restri
t ourselves to the 3-D 
ase; athorough 2-D analysis 
an be found in [140℄. Moreover, the following assumption holdsthroughout this appendix.Assumption E.1.� A 2 Rn�n 
onsists of 7 nonzero diagonals;� M�1 is the IC(0) pre
onditioner (see Se
tion 2.5.1), so that the resulting de�a-tion method is DICCG;� Z 2 Rn�k 
onsists of subdomain de�ation ve
tors (see Se
tion 4.2.3) wherek � n;� AZ is 
omputed and stored e�
iently as SAZ (see Appendix D.2);� E 2 Rk�k has bandwidth k2x + kx = k 23 + k 13 , and it is 
omputed and storede�
iently as SE (see Appendix D.2).Assumption E.1 leads to fairly standard results as given in Table E.1, where F� denotesthe number of �ops required for a spe
i�
 operation �, and 
hol(A) is the Choleskyfa
tor, C, that satis�es A = CCT .Notation Operation # FlopsF(y1;y2) (y1; y2) 2nFy1+y2 y1 + y2 nFAy Ay 13nF
hol(A) 
onstru
t C from A 12nFAy2=y1 solve y2 from CCT y2 = y1 15nTable E.1: Results of �op 
ounts for standard operations.217



218 Appendix E. Flop Counts for the De�ation MethodE.1 De�ation OperationsThe �op 
ounts for some operations in the de�ation method are presented below.Computation of SAZ and SEA

ording to Appendix D, the number of rows of SAZ in the 3-D 
ase is given by
 = 

 + 
i + 
b; where






 = 8(6n2b � 3nb + 1);
i = (kx � 2)3(12n2b � 12nb + 8);
b = 76(kx � 2)n2b � 5nb + 2 + 60(kx � 2)2n2b � 8nb + 4: (E.1)Substituting nb = 3√ nk and kx = 3pk into (E.1) and rearranging some terms, we obtain






 � 48 (nk ) 23 ;
i � 12n 23 k 13 + 8k;
b � 60n 23 ;resulting in 
 � 12n 23k 13 + 60n 23 + 48(nk ) 23 + 8k:Re
all from Appendix D that SAZ and SE 
an be 
onstru
ted with the same 
ost. Thenumber of �ops to 
reate AZ and E, denoted by FAZ and FE, isFE � FAZ � 12n 23 k 13 + 60n 23 + 48(nk ) 23 + 8k � O(n 23 k 13 ):This latter expression 
an also be obtained by observing that 
i � 
b+

 for su�
ientlylarge k, so that the 
ontributions of 
b and 

 
ould be negle
ted. Moreover, the
onstru
tion of SAZ and SE in the 3-D 
ase (O(n 23 k 13 ) �ops) is 
learly more expensivethan in the 2-D 
ase (O(n 13 ) �ops).Computation of (AZ)T y1, ZT y1, (AZ)y2 and Zy2We easily derive FAZy2 = F(AZ)T y1 = 2
 � O(n 23k 13 );and FZy2 = FZT y1 = n = O(n):In 
ontrast to the 2-D 
ase, the di�eren
e of 
ost between the 
omputations of (AZ)y1and Zy1 is relatively small.



E.1. De�ation Operations 219Computation of Solving Ey2 = y1The Galerkin system, Ey2 = y1, is solved di�erently in DICCG1 and DICCG2, seebelow.� DICCG1: Solving Ey2 = y1 dire
tly. The fa
tor, L, of band-Cholesky de
ompo-sition is 
onstru
ted from E, followed by solving y2 from LLT y2 = y1. Sin
e thebandwidth of E is k 23 + k 13 , we obtain (
f. [137, Appendix B℄)F
hol(E) = k ((k 23 + k 13 )2 + 3(k 23 + k 13 ))+ k � O(k 73 );and FEy2=y1;DICCG1 = k (2(k 23 + k 13 ) + 1) � O(k 53 ):� DICCG2: Solving Ey2 = y1 iteratively. If Ey2 = y1 is solved using ICCG, it 
anbe easily shown that FEy2=y1;DICCG2 = 31k + 36kIICCG;where IICCG is the number of inner iterations of ICCG.Clearly, it depends on k and IICCG whether DICCG1 or DICCG2 is the most e�
ientmethod.Computations of Py and PAyObviously, FPy and FPAy depend on the 
hoi
e of DICCG1 or DICCG2. We obtainFPy;DICCG1 = FZT y1 + FEy2=y1;DICCG1 + F(AZ)y2 + Fy�y3= n + 2k 53 + 2k 43 + k + 24n 23 k 13 + 120n 23 + 96 (nk ) 23 + 16k + n;and FPy;DICCG2 = FZT y1 + FEy2=y1;DICCG2 + F(AZ)y2 + Fy�y3= n + 31k + 36kIICCG + 24n 23 k 13 :Moreover, we haveFPAy;DICCG1 = FPy;DICCG1 + FAy= 15n + 24n 23 k 13 + 120n 23 + 96 (nk ) 23 + 2k 53 + 2k 43 + 17k;and FPAy;DICCG2 = FPy;DICCG2 + FAy= 15n+ 24n 23 k 13 + 120n 23 + 47k + 36kIICCG + 96 (nk ) 23 :Hen
e, both FPy and FPAy for DICCG1 and DICCG2 require O(n) �ops.



220 Appendix E. Flop Counts for the De�ation MethodE.2 ICCG, DICCG1 and DICCG2In this se
tion, we �rst determine the number of �ops required before and after theiteration pro
ess of ICCG, DICCG1 and DICCG2. Thereafter, we 
ompute the numberof �ops required within the iteration pro
ess. Finally, the total �ops of the methodsare determined.Computations outside the Iteration Pro
essCompared to ICCG, both DICCG1 and DICCG2 methods need some additional workbefore and after the iteration pro
ess, whose number of �ops is determined below.Fprior, DICCG1 and Fprior, DICCG2 denote the extra �ops for DICCG1 and DICCG2 prior to theiteration pro
ess, whereas Fafter, DICCG1 and Fafter, DICCG2 denote the extra �ops for DICCG1and DICCG2 required after the iteration pro
ess, respe
tively. We obtain the followingresults:Fprior, DICCG1 = FAZ + FE + F
hol(E)= 24n 23k 13 + 120n 23 + 96 (nk ) 23 + 16k + k 73 + 2k2 + 4k 53 + 3k 43 + k;and Fprior, DICCG2 = FAZ + FE= 24n 23 k 13 + 120n 23 + 96 (nk ) 23 + 16k:Subsequently, in order to 
ompute Fafter, DICCG1 and Fafter, DICCG2, we determine the numberof �ops for the 
omputation of Qy :FQy;DICCG1 = FZT y1 + FEy2=y1;DICCG1 + FZy2= 2n + 2k 53 + 2k 43 + k;FQy;DICCG2 = FZT y1 + FEy2=y1;DICCG2 + FZy2= 2n + 31k + 36kIICCG:Hen
e, this yieldsFafter, DICCG1 = FQy;DICCG1 + FP T y ;DICCG1 + Fy1+y2= 2n + 2k 53 + 2k 43 + k + 2n + 24n 23 k 13 + 120n 23+96 (nk ) 23 + 2k 53 + 2k 43 + 17k;Fafter, DICCG2 = FQy;DICCG2 + FP T y ;DICCG2 + Fy1+y2= 2n + 31k + 36kIICCG + 16n + 24n 23 k 13 + 120n 23+47k + 36kIICCG + 96 (nk ) 23 :As a result, Fprior is O(n 23 k 13 ), whereas Fafter is O(n) for both DICCG1 and DICCG2.Furthermore, ICCG, DICCG1 and DICCG2 have several 
omputations in 
ommon,



E.2. ICCG, DICCG1 and DICCG2 221whose number of �ops is denoted by F
ommon-out. It is easy to see thatF
ommon-out = 39n:Computations within the Iteration Pro
essWe 
ompute the number of �ops that is involved in the iteration pro
ess of ICCG,DICCG1 and DICCG2. The �ops of their 
ommon operations,F
ommon-in = 31n;
an be easily derived. Next, the di�eren
e between ICCG and DICCG1/DICCG2 withinthe iteration pro
ess is 
omputing wj := Apj and �wj := PApj (
f. Algorithms 3 and 6).Combining the fa
tsFPAp;DICCG1 = FPAy;DICCG1= 15n + 24n 23 k 13 + 120n 23 + 96 (nk ) 23 + 2k 53 + 2k 43 + 17k;and FPAp;DICCG2 = FPAy;DICCG2= 15n + 24n 23 k 13 + 120n 23 + 47k + 36kIICCG + 96 ( nk ) 23 ;with FAp;ICCG = FAy;ICCG = 13n;we dedu
e that both FPAp and FAp are O(n).Total Number of Flops for ICCG, DICCG1 and DICCG2Using the above results, the total number of �ops for ICCG isFICCG = F
ommon-out + (F
ommon-in + FAp)IICCG= 39n + (31n + 13n)IICCG= 39n + 44nIICCG;while, for DICCG1 and DICCG2, we obtainFDICCG1 = Fprior, DICCG1 + F
ommon-in + Fafter, DICCG1 + (F
ommon-in + FPAp;DICCG1) IDICCG1= 43n + 47n 23k 13 + 240n 23 + 192 (nk ) 23 + k 73 + 2k2 + 8k 53 + 7k 43 + 25k+(46n + 24n 23 k 13 + 120n 23 + 96 ( nk ) 23 + 2k 53 + 2k 43 + 17k) IDICCG1;andFDICCG2 = Fprior, DICCG2 + F
ommon-in + Fafter, DICCG2 + (F
ommon-in + FPAp;DICCG2) IDICCG2= 57n + 58k + 48n 23 k 13 + 240n 23 + 192 (nk ) 23 + 16k + 72kIDICCG2+(46n + 24n 23k 13 + 120n 23 + 47k + 36kIICCG + 96 ( nk ) 23) IDICCG2:



222 Appendix E. Flop Counts for the De�ation MethodObviously, it depends on the exa
t values of k and n, and the number of inner/outeriterations whi
h of the ICCG, DICCG1 and DICCG2 methods is the most e�
ient one.



Appendix FParallel Version of the De�ationMethodParallel 
omputing is fast be
oming an inexpensive alternative to the standard super-
omputer approa
h for solving large linear systems, see, e.g., [4,36,44,120℄. The mainoperations to be parallelized for Krylov iterative methods, in parti
ular the de�ationmethod, are:(a) matrix-ve
tor multipli
ations;(b) ve
tor updates;(
) dot produ
ts;(d) pre
onditioning setup and operations;(e) de�ation setup and operations.The potential bottlene
ks are setting up the pre
onditioner and solving linear systemswith the pre
onditioner (Operation (d)). On the other hand, de�ation setup andoperations (Operation (e)) 
an be easily parallelized if subdomain de�ation ve
tors areused, whi
h is explained in Se
tion F.2. In addition, we note that the dot-produ
toperation (
) might be troublesome in 
omputational appli
ations, sin
e all pro
essorsmust syn
hronize and perform 
ommuni
ation before 
omputations 
an be 
ontinued(at least for parallel syn
hronous iterative methods).Sin
e Operation (d) might be rather 
ompli
ated in the parallel approa
h, we treatthis in more detail. Pre
onditioners are 
onsidered based on S
hur-
omplement andnonoverlapping additive-S
hwarz (also known as additive S
hwarz with minimum over-lap) methods. Equivalently, instead of the traditional DICCG method, we 
onsiderthe De�ated PCG method with a blo
k-Ja
obi pre
onditioner, M�1BJ , or a blo
k-IC(0)pre
onditioner, M�1BIC , see Se
tion F.1 and also [137℄.223



224 Appendix F. Parallel Version of the De�ation MethodF.1 Traditional Parallel Pre
onditionersRe
all that (see Se
tion 2.5.1)MBJ =  A1 ?A2 . . .? Ap  ; (F.1)where Ai denotes the i-th diagonal blo
k of the 
oe�
ient matrix, A. It 
an be shownthat solving MBJy2 = y1 a

urately is equivalent to the S
hur-
omplement approa
h.In pra
ti
e, ea
h submatrix, Ai , 
an be relatively large, so that it might be attra
tiveto solve ea
h subsystem of MBJy2 = y1 ina

urately. This latter approa
h is equivalentto solving linear systems with the additive-S
hwarz pre
onditioner, see also [126℄.On the other hand, the in
omplete Cholesky (IC(0)) de
omposition of the blo
ks ofMBJ 
an also be used to 
onstru
t an e�
ient parallel pre
onditioner. The resultingpre
onditioner is 
alled the blo
k-IC pre
onditioner, denoted by M�1BIC . Sin
e thereis no overlap between the blo
ks in any of the above des
ribed pre
onditioners, the
orresponding pre
onditioning steps are well-parallelizable.F.2 Parallel De�ationIn this se
tion, we des
ribe 
on
isely in whi
h way Operation (e) 
an be 
arried oute�
iently in a parallel environment, see [56℄ for more details. We restri
t ourselvesto subdomain de�ation, where ea
h available pro
essor 
orresponds to one subdomainand a �xed number of unknowns. For 
onvenien
e, one subdomain per pro
essor isassumed. The 
oupling with neighboring subdomains is realized by the use of virtualgrid points added to the lo
al grids. In this way, a blo
k-row of the linear system,Ax = b, 
orresponding to the subdomain orderingA =  A11 � � � A1p... ...Ap1 � � � App  ;
an be represented lo
ally on one pro
essor: the diagonal blo
k, Ai i , represents 
ouplingbetween lo
al unknowns of subdomain 
i , and the o�-diagonal blo
ks of 
i represent
oupling between lo
al unknowns and the virtual grid points.For the de�ation operations in parallel, we �rst 
ompute and store su

essively thematri
es E and E�1 on ea
h pro
essor, whereas AZ is 
omputed and stored lo
ally.The use of P within the de�ation method involves the operation y2 = PAy1, whi
h
onsists of the following operations:� the matrix-ve
tor multipli
ation x1 := Ay1, requiring nearest neighbor 
ommuni-
ations;
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al 
ontribution to the restri
tion x2 := ZT x1, whi
h should be distributedto all pro
essors;� a 
oarse-grid operation, x3 := E�1x2, that is lo
ally determined;� y2 := I � AZx3, whi
h is also determined lo
ally.The total 
ommuni
ation involved in y2 = PAy1 is a nearest neighbor 
ommuni
ationof the length of the interfa
e.For a �ve-point dis
retization of PDEs (i.e., standard 2-D problems), it 
an beveri�ed that the added iteration expense of de�ation is less expensive than an IC(0)fa
torization, and the resulting parallel method 
an be implemented e�
iently on a dis-tributed memory 
omputer, see [56, Se
t. 5℄. More resear
h is required to investigatethis issue for more-points dis
retization and 3-D problems.It is well-known that the overlapping of subdomains in the traditional pre
onditionermakes the parallel iterative method more-or-less independent of the subdomain gridsize, but overlapping is not always easy to implement on top of an existing softwarepa
kage. In order to make a parallel iterative method more robust, one 
ould applythe de�ation te
hnique as suggested above. In [56℄, it is shown that only a slowin
rease of the number of iterations 
an be observed when the subdomain grid size is
onstant and the number of (de�ation) subdomains in
reases. Additionally, for a �xedglobal grid, the number of iterations even de
reases if the number of pro
essors grows,see [56,137℄.Finally, in order to improve the parallel de�ation method, one 
an also apply thede�ation te
hnique on the lo
al level. If the blo
k-Ja
obi pre
onditioner is used, thensolving MBJy2 = y1 
onsists of solving subsystems of the formAi(y2)i = (y1)i ; i = 1; 2; : : : ; p: (F.2)If this is done iteratively, the 
onvergen
e 
ould be improved by solving the de�atedsubsystems of the form PiAi(y2)i = Pi(y1)i ; i = 1; 2; : : : ; p;instead of (F.2), where ea
h smaller lo
al de�ation matrix, Pi , is based on the gridpoints of the spe
i�
 subdomain. The overall de�ation method 
an then be interpretedas a twofold de�ation method, whi
h is still a topi
 of 
urrent resear
h.
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Appendix GTwo-Level PCG Methods applied toPorous-Media FlowsAs an extension of Se
tion 6.4, a numeri
al 
omparison of two-level PCG methodsfor 2-D porous-media �ows is performed in this appendix. This is a 
ontinuation ofSe
tion 6.4, where the same 
omparison has been done for 2-D bubbly �ows.G.1 Problem SettingWe solve the linear system, Ax = b, whi
h is derived after dis
retization of the Poissonequation with a dis
ontinuous 
oe�
ient,�r � (�(x)rp(x)) = 0; x = (x; y) 2 
 = (0; 1)2; (G.1)where p denotes the pressure, and � is the permeability of the porous-media �ow.Ex
ept for the dis
ontinuous 
oe�
ient, Eq. (G.1) is the same as the Poisson equationin bubbly �ow problems (
f. Eq. (1.3)). The exa
t des
ription of the test problem andthe 
orresponding 
hoi
e for proje
tion ve
tors are given below. In addition, the furthersetup and pro
edure of the experiment are taken to be the same as in Se
tion 6.4.1.In the porous-media �ow problem, 
 
onsists of equal shale (� = 10�6) andsandstone (� = 1) layers with uniform thi
kness, see Figure G.1(a). We impose aDiri
hlet 
ondition on the boundary y = 1 and homogeneous Neumann 
onditions onthe other boundaries. The layers are denoted by the disjoint set, f
j ; j = 1; 2; : : : ; kg,su
h that 
 = [kj=1
j . The dis
retized domain and layers are denoted by 
h and 
hj ,respe
tively.We 
hoose as pre
onditioner, M�1, the IC(0) fa
torization of A. In 
ontrast tothe proje
tion ve
tors used in bubbly �ows (see Se
tion 6.4), the proje
tion ve
torsare now 
hosen to be strongly related to the geometry of the problem. For ea
h 
hj ,227
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tors.Figure G.1: Geometry of the proje
tion ve
tors and pie
ewise-
onstant 
oe�
ient in the porous-media�ow.a proje
tion ve
tor, zj , is de�ned as follows:(zj)i := { 0; xi 2 
h n
hj ;1; xi 2 
hj ; (G.2)where xi is a grid point of 
h. In this 
ase, ea
h proje
tion ve
tor 
orresponds to aunique layer, see also Figure G.1(b). Then, we de�ne Z := [z1 z2 � � � zk ℄.G.2 Experiment using Standard ParametersIn the �rst numeri
al experiment, standard parameters are used with stopping toleran
eÆ = 10�10, an exa
t Galerkin matrix inverse, E�1, and an unperturbed starting ve
tor,Vstart.The results of the experiment are presented in Table G.1 and Figure G.2. Therelative errors are omitted, be
ause they are approximately the same. The �gurepresents only one test 
ase, sin
e a similar behavior is seen for the other test 
ases.Moreover, for the sake of a better view, the results for PREC are omitted in Figure G.2.From Table G.1, we observe that PREC needs more iterations to 
onverge whenn or k is in
reased. This only holds partly for the two-level PCG methods. The
onvergen
e of the other methods is less sensitive to the number of layers, sin
e thenumber of proje
tion ve
tors is 
hosen to be equal to the number of layers. PREC isobviously the slowest method, and the two-level PCG methods, ex
ept for A-DEF1,show approximately the same performan
e, whi
h 
on�rms the theory (
f. Theorem 6.1and 6.3). Noti
e that even AD shows 
omparable results with the other two-level PCGmethods (ex
ept A-DEF1), but it 
an be observed in Figure G.2 that AD shows a veryerrati
 behavior with respe
t to the errors in the 2�norm (whi
h has not been seenin the bubbly �ow experiments). In other words, although AD requires approximately



G.2. Experiment using Standard Parameters 229k = 5 k = 7Method n = 292 n = 542 n = 412 n = 552PREC 102 174 184 222AD 59 95 74 90DEF1 58 94 75 90DEF2 68 94 75 90A-DEF1 58 95 86 103A-DEF2 58 94 75 90BNN 58 94 75 90R-BNN1 58 94 75 90R-BNN2 58 94 75 90Table G.1: Number of required iterations for 
onvergen
e of all proposed methods, for the porous-media problem with `standard' parameters. The 2�norm of the relative error is approximately thesame for all methods in ea
h test 
ase, and, hen
e, they are omitted in the table.the same number of iterations, the errors measured in the 2�norm are larger, andthe iterated solution is less reliable. Furthermore, A-DEF1 is somewhat slower in
onvergen
e, espe
ially if the test 
ase be
omes more 
ompli
ated.Subsequently, we present the same results in terms of 
omputational 
ost. Werestri
t ourselves to the test 
ase with n = 552 and k = 7, see Table G.2. Analogousresults are obtained for the other test 
ases. The total 
omputational 
ost withinthe iterations is given, following the analysis 
arried out in Se
tion 6.2.4. Due to thesparsity of Z, both Z and AZ 
an be stored as approximately two ve
tors, resulting inthe fa
t that there is no need to perform extra matrix-ve
tor multipli
ations in additionto those required by PREC. It depends on the exa
t implementation of the methods(su
h as the storage and 
omputation with Z, AZ and E) to determine whi
h two-level PCG method requires the lowest 
omputational 
ost. For example, if both IP, VUand GSS require the same amount of 
omputing time, then it 
an be dedu
ed fromTable G.2 that BNN is the most expensive method, whereas AD, following by DEF1,DEF2 and R-BNN2, has the lowest 
omputational 
ost per iteration.Method IP VU GSS PRPREC 222 666 0 222AD 270 270 90 90DEF1 270 360 90 90DEF2 270 360 90 90A-DEF1 412 412 103 103A-DEF2 450 360 180 90BNN 540 450 180 90R-BNN1 450 450 180 90R-BNN2 270 360 90 90Table G.2: Total 
omputational 
ost within the iterations in terms of number of inner produ
ts (`IP'),ve
tor updates (`VU'), Galerkin system solves (`GSS'), pre
onditioning step with M�1 (`PR'), for theporous-media problem with n = 552, k = 7, and `standard' parameters.
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(b) Relative errors in the 2�norm.Figure G.2: Relative errors during the iterative pro
ess, for the porous-media problem with n = 552,k = 7, and `standard' parameters.G.3 Experiment using Ina

urate Coarse SolvesIn the next experiment, we solve Ey2 = y1 inexa
tly. In this 
ase, ~y2 
an be interpretedas Ẽ�1y1, where Ẽ�1 is de�ned as (see Eq. (6.16))Ẽ�1 := (I +  R)E�1(I +  R);  > 0; (G.3)



G.4. Experiment using Severe Termination Toleran
es 231where R 2 Rk�k is a symmetri
 random matrix with entries from the interval [�0:5; 0:5℄.The sensitivity of the two-level PCG methods to this ina

urate solve with various val-ues of  are investigated, and the results are related to Theorem G.3.The results of the experiment 
an be found in Table G.3 and Figure G.3. Weobserve that the most robust two-level PCG methods are AD, BNN and A-DEF2,sin
e they are largely sensitive to perturbations in E�1. On the other hand, DEF1,DEF2, R-BNN1 and R-BNN2 are obviously the worst methods, as expe
ted, sin
e thezero eigenvalues of the 
orresponding two-level pre
onditioned matri
es be
ome nearlyzero eigenvalues due to the perturbation,  (
f. Se
tion 6.3.1). In addition, it 
an beobserved that the errors diverge or stagnate for all test 
ases with DEF2 and R-BNN2,whereas they remain bounded and tend to 
onverge in the 
ase of DEF1 and R-BNN1. = 10�12  = 10�8  = 10�4Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 222 2:6� 10�8 222 2:6� 10�8 222 2:6� 10�8AD 90 1:0� 10�7 90 1:4� 10�7 92 1:2� 10�7DEF1 90 2:6� 10�6 NC 6:8� 10�7 178 1:4� 10�3DEF2 90 2:6� 10�6 NC 1:6� 10+2 NC 2:0� 10+4A-DEF1 103 2:0� 10�8 103 2:2� 10�8 120 2:6� 10�7A-DEF2 90 2:2� 10�8 90 2:6� 10�8 90 2:5� 10�7BNN 90 2:3� 10�8 90 2:8� 10�8 90 7:1� 10�8R-BNN1 90 6:8� 10�7 159 2:2� 10�8 213 6:9� 10�5R-BNN2 90 2:6� 10�6 NC 2:6� 10�2 NC 1:8� 10+2Table G.3: Number of required iterations for 
onvergen
e and the 2�norm of the relative errors ofall methods, for the porous-media problem with parameters n = 552 and k = 7. A perturbed Galerkinmatrix inverse, eE�1, is used with a varying perturbation,  .
G.4 Experiment using Severe Termination Toleran
esIn this se
tion, we perform a numeri
al experiment with various values of the termina-tion toleran
e, Æ.The results of the experiment are presented in Table G.4 and Figure G.4. It 
an beseen that all methods perform well, even in the 
ase of a relatively stri
t termination
riterion (i.e., Æ = 10�12). PREC also 
onverges in all 
ases, but not within 250iterations. Note, moreover, that it does not give an a

urate solution if Æ is 
hosentoo large, see [173℄. For Æ < 10�12, DEF1, DEF2, R-BNN1 and R-BNN2, showdi�
ulties, sin
e they do not 
onverge appropriately and may even diverge. This isin 
ontrast to PREC, AD, BNN, A-DEF1 and A-DEF2, whi
h give good 
onvergen
eresults for Æ = 10�16. Therefore, these two-level PCG methods 
an be 
hara
terizedas robust methods with respe
t to several termination 
riteria.
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(b) Relative errors in the 2�norm.Figure G.3: Relative errors during the iterative pro
ess for the porous-media problem with n = 552; k =7 and eE�1, where a perturbation  = 10�8 is taken.
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(b) Relative errors in the 2�norm.Figure G.4: Relative errors during the iterative pro
ess for the porous-media problem with n = 552; k =7, and termination toleran
e Æ = 10�16.



234 Appendix G. Two-Level PCG Methods applied to Porous-Media FlowsÆ = 10�8 Æ = 10�12 Æ = 10�16Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2PREC 134 3:7� 10�1 > 250 2:4� 10�8 > 250 2:4� 10�8AD 80 5:2� 10�6 123 2:4� 10�8 139 2:4� 10�8DEF1 80 7:5� 10�8 121 2:0� 10�8 NC 4:4� 10�7DEF2 80 7:5� 10�8 144 1:9� 10�8 NC 6:6� 10+1A-DEF1 80 9:4� 10�8 121 2:5� 10�8 190 2:5� 10�8A-DEF2 80 7:7� 10�8 121 2:5� 10�8 138 2:5� 10�8BNN 80 7:7� 10�8 121 2:4� 10�9 138 2:4� 10�8R-BNN1 80 7:6� 10�8 121 2:3� 10�8 NC 2:3� 10�8R-BNN2 80 7:5� 10�8 121 1:9� 10�8 NC 1:9� 10�8Table G.4: Number of required iterations for 
onvergen
e and the 2�norm of the relative errors ofall methods, for the porous-media problem with parameters n = 552 and k = 7. Various terminationtoleran
es, Æ, are tested.G.5 Experiment using Perturbed Starting Ve
torsIn Se
tion 6.3.2, we have proven that BNN with Vstart = Qb + P T �x gives exa
tlythe same iterates as DEF2, A-DEF2, R-BNN1 and R-BNN2, in exa
t arithmeti
. Inour next experiment, we perturb Vstart in DEF2, A-DEF2, R-BNN1 and R-BNN2, andexamine whether this in�uen
es the 
onvergen
e results. The perturbed Vstart, denotedby Wstart, is de�ned as a 
omponentwise multipli
ation of a random ve
tor and Vstart,i.e., ea
h entry of Wstart is de�ned as (see Eq. (6.17))(Wstart)i := (1 + 
(v0)i) (Vstart)i ; i = 1; 2; : : : ; n;where 
 � 0 gives 
ontrol over the a

ura
y of the starting ve
tor, and ve
tor v0 is arandom ve
tor with entries from the interval [�0:5; 0:5℄, taken to give ea
h entry ofVstart a di�erent perturbation.We perform the numeri
al experiment using Wstart for di�erent 
. The results 
anbe found in Table G.5 and Figure G.5. Here, we use asterisks to stress that an extrauniqueness step is applied in the spe
i�
 method. Moreover, noti
e that PREC, AD,DEF1 and BNN are not in
luded in this experiment, sin
e they apply an arbitrary ve
tor,Vstart = �x, by de�nition.
 = 10�10 
 = 10�5 
 = 100Method # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2 # It. jjxit�x jj2jjx jj2DEF2 90 2:2� 10�8 NC 2:1� 10+11 NC 3:5� 10+18A-DEF2 90 2:5� 10�8 90 2:5� 10�8 90 2:4� 10�8R-BNN1 90 2:5� 10�8 NC 2:5� 10�8* NC 1:3� 10�5*R-BNN2 90 2:0� 10�8 NC 2:9� 10�6* NC 2:5� 10�1*Table G.5: Number of required iterations for 
onvergen
e and the 2�norm of the relative errors ofsome methods, for the porous-media problem with parameters n = 552; k = 7, and perturbed startingve
tors. An asterisk (*) means that an extra uniqueness step is applied in that test 
ase.From the results, it 
an be noti
ed that all involved methods 
onverge appropriately
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Figure G.5: Relative errors in the A�norm during the iterative pro
ess for the porous-media problemwith n = 552; k = 72, and perturbed starting ve
tors with 
 = 10�5. The plot of the relative errors inthe 2�norm is omitted, sin
e the two plots are approximately the same.for 
 = 10�10. For 
 � 10�5, DEF2, R-BNN1 and R-BNN2 fail to 
onverge. Themost robust method is, obviously, A-DEF2. This method seems to be 
ompletelyinsensitive to the perturbation, 
. This experiment shows that the `redu
ed' variantsof BNN have di�erent robustness properties with respe
t to perturbations in startingve
tors.
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Appendix HDICCG Variants applied to Bubbly FlowSimulationsWe perform two 3-D simulations of l = 250 time steps in order to test the DICCG1(�k)and DICCG2(�k) methods as given in De�nition 8.1. Re
all that the di�eren
e be-tween the two de�ation methods is the inner solver for the Galerkin systems: this isdone in a dire
t way in DICCG1, while ICCG is applied within DICCG2. In this ap-pendix, we show that both de�ation variants are appli
able to bubbly �ow simulations,and the performan
e of these methods is 
omparable for relatively small problems.In the �rst simulation, an air bubble is rising in water, whereas a water dropletis falling in the air in the se
ond simulation. We do not in
lude surfa
e tension inthe simulations in order to obtain 
ompli
ated density geometries. We refer to [154,Se
t. 8.3.4℄ for more details. Similarly to Se
tion 10.3, we 
on
entrate on solving thelinear system (10.6) derived from a Poisson problem (10.5) at ea
h time step. Weadopt ICCG, DICCG1 and DICCG2 to solve (10.5). We take de�ation variant 5.1 inDICCG1 and de�ation variant 5.3 in DICCG2 (
f. Table 5.1).H.1 Simulation 1: Rising Air Bubble in WaterFor the �rst simulation, the starting position of the bubble in the domain and theevolution of its movement for l 2 [0; 250℄ 
an be found in Figure H.1.In [154℄, the Poisson solver is based on ICCG. Here, we 
ompare this method toboth DICCG1�103 and DICCG2�203 for n = 1003. It turns out that these de�ationmethods are optimal in the sense that they need the lowest 
omputational time toperform the simulation 
ompared to DICCG1 and DICCG2 with di�erent k (
f. Fig-ure 8.4). The results are presented in Figure H.2.From Figure H.2(a), we noti
e that the number of iterations is strongly redu
ed bythe de�ation method. DICCG1�103 and DICCG2�203 require at most 60 iterations,while ICCG 
onverges in between 200 and 300 iterations for most time steps. For ea
hl , DICCG2�203 requires fewer iterations than DICCG1�103, whi
h is in agreement237
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(a) l = 0. (b) l = 50. (
) l = 100.

(d) l = 150. (e) l = 200. (f) l = 250.Figure H.1: Evolution of the rising bubble in water in the �rst 250 time steps.with Theorem 3.3. Moreover, we observe the errati
 behavior of ICCG, whereas thede�ation methods are less sensitive to the geometries of the bubbles, during the evo-lution of the simulation. Considering CPU time, DICCG1�103 and DICCG2�203 alsoshow very good performan
e, see Figure H.2(b). For most time steps, ICCG requires25�45 se
onds to 
onverge, whereas both de�ation methods are 
omparable and onlyneed around 9�14 se
onds. Moreover, in Figure H.2(
), one 
an �nd the gain fa
torsfor both the ratios of the iterations and the CPU time between ICCG and the twode�ation methods, respe
tively. From this �gure, we 
on
lude that DICCG1�103 orDICCG2�203 need approximately 4�8 times fewer iterations, depending on the timestep. More importantly, both de�ation methods 
onverge approximately 2�4 timesfaster than ICCG at all time steps.We end this subse
tion with the remark that similar results 
an be found for other
hoi
es of grid sizes. For problems with larger grid sizes, the de�ation methods be
omemore favorable, when 
ompared to ICCG.H.2 Simulation 2: Falling Water Droplet in AirFor the se
ond simulation, the starting position of the droplet in the domain and theevolution of its movement 
an be found in Figure H.3. The results are presented inFigure H.4, where again DICCG1�103 and DICCG2�203 are adopted.Similar observations as those from the previous subse
tion 
an be drawn fromFigure H.4. Obviously, the de�ation methods are more e�
ient, when 
ompared withICCG, in terms of both number of iterations and required CPU time. We observe that
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(
) Gain fa
tors of DICCG1�103 andDICCG2�203 with respe
t to ICCG.Figure H.2: Results for ICCG, DICCG1�103 and DICCG2�203 for the simulation with a rising airbubble in water.both DICCG1�103 and DICCG2�203 need approximately 3�5 times fewer iterationsand they 
onverge more-or-less 2�4 times faster than ICCG. In this test problem, it
an be observed that DICCG2�202 performs somewhat better than DICCG1�103.Finally, a small jump in the DICCG1�103 performan
e 
an be noti
ed around the205-th time step in Figure H.4. This might be the result of the appearan
e of a risingdroplet, whi
h 
an be observed in Figures H.3(e) and (f) as well. This jump is notsigni�
ant in DICCG2�203. Apparently, a larger set of de�ation ve
tors e�e
tivelytreats that droplet.
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(a) l = 0. (b) l = 50. (
) l = 100.
(d) l = 150. (e) l = 200. (f) l = 250.Figure H.3: Evolution of the falling droplet in air in the �rst 250 time steps.



H.2. Simulation 2: Falling Water Droplet in Air 241

0 50 100 150 200 250
0

50

100

150

200

250

300

Time Step

N
um

be
r 

of
 It

er
at

io
ns

ICCG
DICCG1−103

DICCG2−203

(a) Number of iterations versus time step. 0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

Time Step

C
P

U
 T

im
e 

(s
ec

)

ICCG
DICCG1−103

DICCG2−203

(b) CPU time versus time step.

0 50 100 150 200 250
0

2

4

6

8

10

12

Time Step

G
ai

n 
F

ac
to

r

Iterations ICCG / Iterations DICCG1−103

Iterations ICCG / Iterations DICCG2−203

CPU Time ICCG / CPU Time DICCG1−103

CPU Time ICCG / CPU Time DICCG2−203

(
) Gain fa
tors of DICCG1�103 andDICCG2�203 with respe
t to ICC G.Figure H.4: Results for ICCG, DICCG1�103 and DICCG2�203 for the simulation with a falling waterdroplet in air.
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Appendix I
Comparison of De�ation and Multigridfor a Spe
ial Case
We 
onsider the two-level PCG methods (DEF and MG) based on the following two-level pre
onditioners (see Eqs. (7.1) and (7.4)):

{ PDEF = M�1P ;PMG = �M�TP + P T �M�1 +Q� �M�TPA �M�1:We show that abstra
t pre
onditioners in the MG framework do not always lead tobetter 
onditioned two-level 
oe�
ient matri
es 
ompared to DEF. Su
h problems 
aneven be found in the 
ase of M�1 = �M�1 = I.We assume that Z = [v1 � � � vk ℄, where fvig is the set of orthonormal eigenve
tors
orresponding to the in
reasing set of eigenvalues of A, f�ig. Then, we know fromExample 7.1 that the MG operator is only SPD if �i < 2. Similar to Example 7.1, weobtain PMGAvi = 2Avi � 2ZZTAvi + Z��1ZTAvi � A2vi + ZZTA2vi= 2�ivi � 2�iZZT vi + �iZ��1ZT vi � �2i vi + �2i ZZT vi ;where � = diag(�1; : : : ; �k). This impliesPMGAvi = { 2�ivi � 2�ivi + vi � �2i vi + �2i vi = vi ; for i = 1; : : : ; k;2�ivi � �2i vi ; = �i(2� �i)vi ; for i = k + 1; : : : ; n:Hen
e, if A has eigenvalues f�ig, then the spe
trum of PMGA is given byf1; : : : ; 1; �k+1(2� �k+1); : : : ; �n(2� �n)g: (I.1)We note that �i(2 � �i) � 1 for all i = k + 1; : : : ; n, be
ause of 0 < �i < 2, see243
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ial CaseFigure I.1. A

ordingly, the 
ondition number of PMGA is given by�MG = 1minf�k+1(2� �k+1); �n(2� �n)g :On the other hand, for DEF, we know that (see Se
tion 3.5)PDEFAvi = { 0; for i = 1; : : : ; k;�ivi ; for i = k + 1; : : : ; n: (I.2)Therefore, (
f. Eq. (3.2)) �DEF = �n�k+1 :It depends on eigenvalues �k+1 and �n of A whether �MG or �DEF is more favorable.If �k+1; : : : ; �n ! 2, then obviously �DEF < �MG. In other words, M�1 and Z 
an be
hosen in su
h a way that MG with an SPD operator is expe
ted to 
onverge slowerthan DEF, see also Example I.1.
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Figure I.1: Fun
tion �i (2� �i ) for �i 2 [0; 2℄.Example I.1. We 
onstru
t a simple example to show that �MG < �DEF does not holdin general, even if PMG is SPD.Let A be an SPD diagonal matrix given byA = diag(1; 1:25; 1:5; 1:75):Then, the spe
trum of A is � = (1; 1:25; 1:5; 1:75), where the 
orresponding eigen-ve
tors are 
olumns of I: I = [v1 v2 v3 v4℄. Hen
e, PMG is SPD.Choose now Z = [v1 v2℄ and M�1 = I. Then, the eigenvalues of PMGA are givenby Eq. (I.1): �MG = f1; 1; �3(2� �3); �4(2� �4)g = f1; 1; 0:4375; 0:75g;



245whereas (
f. Eq. (I.2))�DEF = f0; 0; �3; �4g = f0; 0; 1:5; 1:75g:This leads immediately to the 
ondition numbers�MG = 1minf�k+1(2� �k+1); �n(2� �n)g = 10:4375 = 2:2857;and �DEF = �n�k+1 = 1:751:5 = 1:1667;so that �MG > �DEF obviously holds in this 
ase.Example I.2. It is easy to 
onstru
t examples showing that �MG < �DEF. For instan
e,take A = diag(0:5; 0:75; 1:0; 1:25);with the same setting of the parameters of MG and DEF as in Example I.1. Then,�MG = f1; 1; 1; 0:9375g; �DEF = f0; 0; 1:0; 1:25g;giving us �MG = 10:9375 = 1:0667; �DEF = 1:251:0 = 1:25;so that �MG < �DEF holds in this 
ase.
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