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ABSTRACT

End-to-end Automatic Speech Recognition (ASR) systems improved drastically in recent
years and they work extremely well on many large datasets. However, research shows
that these models failed to capture the variability in speech production and have biases
against the variant caused by the regional accented speech. Moreover, ASR research on
regional accents is primarily done in languages used by a large population, like English
and Arabic, and the effect of regional accented speech on E2E ASR systems in non-popular
languages is still unknown. It is important to know the effect of regional accented speech
on E2E ASR systems as it helps researchers to build an inclusive E2E ASR system. In this
project, I aim to mitigate the biases against regional accented speech. I select standard
speech and regional accented speech from CommonVoice’s French and German datasets. I
combine the state-of-the-art Conformer Recurrent Neural Network Transducer model with
Multi-Domain Adversarial Training (MDAT) to boost the performance of regional accented
speech while not hurting the performance of the standard speech. Moreover, since the
regional accented speech is typically low-resourced, I study the amount of data required
for effective MDAT, as well as the effect of different domain classifiers on the performance
of Multi-Domain Adversarial Training. Experimental results show that MDAT can mitigate
the biases against regional accented speech in both French and German. The best model
in French reduces the bias by around 12% and the best model in German reduces the bias
by around 7%. Additionally, MDAT is an effective method for bias mitigation as it can
achieve similar performance as the MDAT model trained with the full dataset using only a
small amount (e.g. 30 minutes) of untranscribed regional accented speech. Finally, different
domain classifier architectures were found to have similar effects on the results of MDAT,
thus there is no significant differences among the domain classifier in this project.
Index Terms: bias mitigation, automatic speech recognition, regional accented speech,
domain adversarial training
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INTRODUCTION

1.1 MOTIVATION

Automatic Speech Recognition (ASR) is a technology that automatically translates human
speech to text. Traditionally, an ASR system is composed of two components that are
trained separately, a language model (LM) and an acoustic model (AM). Nowadays, end-
to-end (E2E) ASR has gained great popularity, where an E2E ASR system learns the LM
and the AM jointly. Modern E2E ASR systems perform extremely well on standard speech.
However, there is a large variability in speech production, e.g. due to regional accents [1].
To accurately recognize speech produced by different people with different regional accents,
the ASR systems have to model the variability in accents effectively. However, modern
ASR systems fail to capture the variability and thus have biases against regional accents [2].
One of the definitions of bias in ASR systems is the performance differences between
standard speech and some variations of the standard speech [2, 3]. Possible causes of
bias include age [4, 5], gender [6, 7], accents [8—10], and human-made biases in data
collection and problem formation [2]. The reason E2E ASR systems have biases against
regional accents is that they are trained largely on standard speech, and insufficiently
model regional accented speech. For example, the well-known Librispeech dataset [11]
contains only standard speech with only little regional accented speech, as it was derived
from audiobooks. However, it serves as a primary benchmark! of modern ASR systems.
To build an inclusive ASR system, for which the performance on non-standard speech
is similar to the performance on standard speech, the effect of accents on ASR systems
should be studied and the bias against accents should be mitigated. There are many causes
of different accents, such as region, social class, and non-native. The majority of the
studies [8—10] is done from a broad view of accents, where they do not care about the cause
of the accents. In the predecessor work of this project, Zhang et al. [3] study the effect
of non-native accents on end-to-end ASR systems. However, research on the impact of
regional accents on ASR systems is limited. So far, there have only been a few studies [12-
15] on the impact of regional accented speech on ASR systems, and these studies focus on
languages that are used by a large population, like English [12, 14], Mandarin Chinese [15],

!See Benchmark in https://paperswithcode.com/dataset/librispeech
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and Arabic [13]. For other languages that are used by a smaller population, the effect of
their regional accents is still unknown. Although from a qualitative view, regional accented
speech has inferior performance than the standard speech, quantifying the bias will help
the researcher to compare different techniques and choose the optimal techniques for bias
mitigation. In this project, I would like to see the impact of French and German regional
accents on an end-to-end ASR system, as French and German are less popular languages
compared to English, Mandarin Chinese, and Arabic but still have datasets that are enough
for training E2E ASR systems.

One of the difficulties in accurately recognizing regional accented speech is that re-
gional accented speech is typically low-resourced [16, 17]. This gives insufficient data for
model training, and thus the performance of regional accented speech is inferior to the
performance of standard speech. Therefore, the model mainly trained on standard speech
will perform badly on unseen accents. To tackle this issue, our system should be effective
with limited hours of data, and our system should be generalized to unseen accents.

The aforementioned problem could potentially be solved by Domain Adversarial Train-
ing (DAT) [18], which is a technique that removes domain-related information through an
adversarial game between the feature extractor and the domain classifier. One benefit of
DAT is that it does not require the label of target domain data, which fits with the fact that
regional accented speech is typically low-resourced. Therefore, DAT can achieve domain
adaptation under low-resourced settings [19] and can potentially be generalized to unseen
domains [18].

DAT has already been applied to various speech processing tasks recently, including
ASR [3, 8, 20], speech enhancement [21], and speech conversion [22]. In all, the wide
application of DAT demonstrates itself as a reliable domain adaptation technique in the
area of speech processing and inspires us to use DAT in the bias mitigation of regional
speech. In the area of ASR, [8] uses DAT for accent speech recognition in Mandarin Chinese,
[20] uses DAT for recognizing non-native speech in American English and Britain English,
and [3] uses DAT for mitigating non-native biases in Dutch. These methods regard standard
speech as one domain and non-standard speech as the other domain. For convenience, I
will refer to their methods as Binary Domain Adversarial Training (BDAT). In this project,
I would like to explore whether different accents can be treated as different domains since
differences also exist among different regional accents. I will refer to this as Multi-Domain
Adversarial Training (MDAT) in the rest of this thesis.

Furthermore, these methods all use accent classification as the auxiliary domain classi-
fication task, but they use different domain classifier architectures for classification. For
example, in [8, 20], they use recurrent neural network + linear architecture for accent
classification, while in [3], they are using a classifier that is purely composed of linear
layers and non-linear activations for accent classification. Since these papers train DAT
using different datasets and even for different tasks, it is difficult to compare them directly.
This lead to the question that how different domain classifier architectures affect the per-
formance of DAT. In this project, the effect of the aforementioned two classifiers on DAT
performance is studied. It can serve as a guideline for choosing domain classifiers when
applying DAT.
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1.2 Aim AND RESEARCH QUESTIONS
The project aims to mitigate the bias against regional accented speech compared to standard
speech. This should be achieved by boosting the performance of regional accents speech
while not degrading the performance on the standard speech. Moreover, our system should
treat different regional accents as different classes instead of treating them as one class
and should be able to generalize to unseen regional accents. In this way, I can build an
unbiased ASR system for any regional accents. Additionally, the regional accented speech
is low-resourced, therefore I would also like to study how different amounts of training
data influence the performance of bias mitigation. This will act as a reference to estimate
what performance the bias mitigation can achieve using the available data.

Based on the motivation and the aim of this project, the research questions for this
project are as follows:

« RQ1: Will Multi-Domain Adversarial Training boost the performance of seen and
unseen regional accented speech, especially under low-resource settings?

« RQ2: Is Multi-Domain Adversarial Training better than Binary Domain Adversarial
Training?

« RQ3: How much data is needed to make Multi-Domain Adversarial Training effec-
tive?

« RQ4: How do different domain classifiers affect the performance of the Domain
Adversarial Training?

1.3 OUTLINE

The thesis is organized as follows: Chapter 2 is going to introduce the background knowl-
edge for this work. Chapter 3 explains the dataset, experimental setup, methods, and
different implementations of DAT. Chapter 4 gives the results of all experiments. Finally, in
Chapter 5, I will answer the RQs and reach conclusions, and give the direction for future
work.
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BACKGROUND

In this chapter, I give a brief review of the background knowledge related to this project. First,
the experiments in this project are conducted as follows: the acoustic features are extracted
from the speech, and data augmentation is applied to them. The tokenization technique is
used to break the text into tokens. Then both the acoustic features and the token sequence are
used to train the model.

I start with the introduction to speech accents in Section 2.1. In Section 2.2, I introduce some
basics of deep learning. In Section 2.3, I introduce the data augmentation technique used in
this project. Then I introduce tokenization techniques in Section 2.4. Three building blocks,
the Conformer, the RNN Transducer, and the Domain Adversarial Training are reviewed in

Sections 2.5, 2.6, and 2.7 respectively. Finally, in Section 2.8, the metrics used in this project are
shown.
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2.1 SPEECH ACCENTS

According to [23], an accent is a way of pronouncing a certain language that is different
from the standard way, because of the speaker’s area of origin, social class, and other
factors. From the perspective of speech production, accents are marked by variations in
prosody, rate, and fluency when producing sounds [24]. These variations are produced by
the muscles that control the speech production system. Specifically, because of the impact
of dialects or the first language, the muscle will move differently when trying to produce
the standard speech, thus the regional accented speech was produced.

In this study, I focus on regional accents. Based on the previous definition, a regional
accent is a way of pronouncing a certain language differently because of the speaker’s area
of origin. A regional accent starts to develop as human beings spread out into isolated
communities, and stresses! and peculiarities develop?.

2.2 BAsics oF DEEP LEARNING

End-to-End ASR systems are built based on deep learning. Before I discuss an E2E ASR
system, I give a brief introduction to the foundation of deep learning.

2.2.1 FuLLY-CONNECTED NEURAL NETWORK

The fully-connected neural network is the simplest neural architecture. It is also called a
Feed-forward neural network (FFN). A fully-connected neural network consists of one or
multiple fully connected layers that connect every neuron in this layer to every neuron in
the next layer. Figure 2.1 illustrates this.

L L L_J

Input Layer Fully Conrected Layer Cutput Layer
Figure 2.1: A fully-connected neural network with a single hidden layer.

In each layer, a linear transformation is applied to the incoming data, as shown in
Equation 2.1. Therefore, every layer in a fully-connected neural network is called a linear

'https://en.wikipedia.org/wiki/Stress_(linguistics)
’https://en.wikipedia.org/w/index.php?title=Accent%20(sociolinguistics)
&01did=1142713099
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layer.

y= Wl +b (2.1)
where x is the input for this layer, which could either be the input of the network if this
layer is the first layer of the network or the output of the previous layer. W is the weight
matrix, and b is the bias. The output y of this layer could be the input for the next layer, or
the final output of the network if this is the last layer of the network.

2.2.2 CONVOLUTIONAL NEURAL NETWORK

The convolutional neural network (CNN) is initially proposed in [25]. An intuitive view
of the convolution operation is that the convolution kernel slides over the inputs and
computes the inner product between the kernel and the subregion of the inputs that the
kernel currently covered. Compared to the fully-connected neural network, CNN can
capture local features (e.g. edges in images, or peaks in speech signals) with the position-
invariant property, a property that ensures the feature will be captured regardless of the
position of the feature. Moreover, CNN is weight-sharing, the weight of the convolutional
kernel is shared for all locations in the input signals. Therefore, CNN has fewer parameters
than a fully-connected neural network when dealing with high-dimensional input and it is
more efficient than the fully-connected neural network in terms of memory, complexity,
and optimization, thus can achieve better performance.

Input signal
1D
Convolution

1D
Convolution

Output

.

Figure 2.2: 1-dimensional convolution [26]. The input signal has length n and channel 1. Here a kernel with size 3
and channel 5 is used for convolution. Since each channel in the kernel is a 1-dimensional array, it is called a
1-dimensional convolution. It takes the inner product of every adjacent three elements in each channel and sums
up the inner product of all channels for one position of the output.

Speech signals are generally represented as (T,n.), where T is the duration of the signal
and n, is the channel of the signal (e.g. 32 for 32-dimensional MFCC). The duration T of the
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speech could be too large so it is inefficient for subsequent computation, therefore we use 1-
dimensional convolution to reduce T and learn different feature representations in different
output channels. Figure 2.2 visualizes the computation of 1-dimensional convolution and
Equation 2.2 formulates the computation,

ne—=1 p
Ynj =bnj+ Z Z Xe, j—kWnk (2.2)
=0 k=—p

where y, ; is the output of j-th index at output channel n, by ; is the bias of j-th index
at channel n, which is similar to b in Equation 2.1. n, is the number of channels in the input
signal. x; j_ is the input value at input channel c, index j—k. wy is the weight in output
channel n index k.

Recently, two advanced convolution operations are proposed, namely Depthwise Con-
volution, and Pointwise Convolution [27]. Compared to the regular convolution operation
shown in Equation 2.2, the Depthwise Convolution does not reduce over the channel
dimension (Z;‘;(_)l in Equation 2.2). For the Pointwise Convolution, it is the same as regular
convolution with kernel size 1. Therefore, it only combines information from different
channels.

2.2.3 RECURRENT NEURAL NETWORK
Recurrent Neural Networks (RNNs) were initially proposed in [28]. This is also called as a
vanilla RNN as it is the basis of other advanced RNNs, such as Long short-term memory [29]
and Gated Recurrent Unit [30]. RNN is commonly used for modeling long-term dependency
in sequence, such as speech, natural language, and time series.

For a sequence X; with ¢ € [0,T), the RNN is formulated as Equation 2.3 and Equa-
tion 2.4. Equation 2.3 computes the hidden representation H; at timestep ¢, and Equation 2.4
computes the output O; at timestep ¢.

H¢ = ¢ (X¢Wxh + Hi-1Whn +bn)., (2.3)

Ot = HiWhq +bq (2.9)
I explain all notations in the above two equations as follows:
« H; : Hidden state at current time step ¢
« ¢ : A non-linear function
« X; : Input at time ¢
« Wy, : Learned weights for input at time ¢
« H;_4 : Activation at previous time step t —1
« Wy, : Learned weights: how to use the previous information at t — 1

+ Wy, : Learned weights for output at time ¢
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* by, bq : Learned bias terms

In this project, I use an advanced RNN architecture called Gated Recurrent Unit (GRU)
proposed in [30]. This advanced RNN improves the ability to capture the long-range rela-
tionship and mitigates the gradient vanishes/explodes problem in vanilla RNN. Moreover,
it has fewer parameters than the LSTM, thus is more computationally efficient.

GRU computes two gates, the reset gate Ry, and the update gate Z; at each timestep
using the equations in 2.5. o(-) is the Sigmoid function that limits the output within range

(0,1).

Ri=0o (thxr +Hi 1 Wh, + br)

(2.5)
Z; = 0 (XtWyx; + Hi—1 Wy, +b;)
GRU also computes a candidate state H; using Equation 2.6.
H; = tanh (X¢Wy, + (Rt © Hy_1) Wi +bp,) (2.6)
Finally, the hidden state H; at timestep ¢ is computed in Equation 2.7.
H=H 1 0Z+(1-Z)H, (2.7)

2.2.4 ACTIVATION FUNCTIONS

Activation functions sometimes are called non-linearity mappings. It is used to bring
non-linearity to the network so that the network could approximate any functions. From
an intuitive point of view, it decides whether a neuron should be activated or not. This
represents the importance of a particular neuron to the next layer. There are many different
activation functions used in deep learning as they are different in physical meaning,
performance, and computational efficiency.

RELU

The ReLU, or Rectified Linear Unit [31] is one of the most commonly used activation
functions in deep learning. It only keeps positive values and zeros out all negative values.
Therefore only a limited number of neurons will be activated and thus it is computationally
efficient. The formula for ReLU is shown in Equation 2.8.

f(x) = max{0,x} (2.8)

TaNH

Tanh is a widely-used activation function [32]. It scales the input value to the range (—1,1),
which means it zero-centered the data so that the learning will become easier for the next
layer. It is formulated as Equation 2.9. The output value of Tanh activation always lies in
the range of (—1,1).

eX—e ™

eX+e X

fx)= (2.9)
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SigmoI1D

Sigmoid is another widely-used activation function [32]. It scales the input value to
the range (0, 1), which is ideal for an output distribution or a filter. It is formulated as
Equation 2.10. The output value of Sigmoid activation always lies in the range of (0,1).
Sometimes, the symbol ¢ is used to denote the Sigmoid function.

1

fe) = (1+exp(—x))

(2.10)

GLU

The full name of GLU is Gated Linear Unit [33]. I show the formula of GLU in Equation 2.11.
Since the Sigmoid function limits the value within the range (0,1), o(b) will be the gate
that decides how much information in a will remain in the output.

GLU(a,b) =a®o(b) (2.11)

SwisH

The Swish activation function is first proposed in [34] to improve ReLU activation by
keeping the small negative values, since these values may still be relevant for capturing
patterns underlying the data. It is formulated as Equation 2.12.

f(x)=x-0(fx) (2.12)

2.2.5 DroPOUT

Dropout is an effective technique to prevent neural networks from overfitting. It was
originally proposed in [35]. The idea of dropout is straightforward. During training, for
each entry in the input signal, the Dropout layer randomly set the entry’s value to zero with
probability p. This is the same as dropping some connections between two consecutive
layers. In this way, neurons will not be optimized too much.

2.2.6 MULTI-HEAD SELF ATTENTION

Multi-Head Self Attention, or MHSA, is used to efficiently capture long-term depen-
dency [36], the interaction between elements on different positions. The computation is
shown in Equation 2.13. Although both RNN and MHSA can capture long-term dependency,
MHSA is more efficient than RNN as it can be parallelized [36] as MHSA is all about matrix
multiplication while the computation of one RNN state relies on the computation of the
previous state.

MultiHead(Q,K,V) = [head;,...,head;, | W, (2.13)

where

head ; = Attention (QW?KW,K VWY) (2.14)

The Attention function is defined in Equation 2.15.
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. OKT
Attention (Q,K,V) = softmax| =— |V (2.15)

N

2.3 DATA AUGMENTATION - SPECAUG

SpecAug is a widely-used data augmentation technique in E2E ASR for speech data. It
was proposed in [37]. The SpecAug warps the time dimension and masks some values to
prevent the neural network from overfitting. The SpecAug is composed of three steps:

1. Time warping. The SpecAug modifies the log mel spectrogram by warping it in the
time dimension.

2. Frequency masking. After time warping, a random number of consecutive frequency
channels will be masked.

3. Time masking. Finally, a random number of consecutive timesteps will be masked.

2.4 TOKENIZATION

Tokenizers break the sentence into smaller pieces called tokens. It is used for the token
inputs to an E2E system, computing the recognition loss, and evaluating the recognition
results. Different tokenizers generate different sets of tokens, therefore affecting the
recognition results. I introduce two commonly used tokenizers in this section. Byte Pair
Encoding (BPE) generates tokens based on the frequency of the subwords, while Unigram
Encoding (Unigram) generates tokens based on the probability of the subwords.

2.4.1 BYTE PAIR ENCODING

Byte Pair Encoding, or BPE in short, was first used as a tokenizer in [38]. To train a BPE
model, a hyperparameter n needs to be set, which denotes the desired vocabulary size.
Then BPE training algorithm does the following things:

1. Calculate the word frequency and break words into characters. Add all characters to
the vocabulary as initial tokens.

2. Search for the most frequent pair of existing tokens in the vocabulary. The term pair
here denotes two adjacent tokens in a word. Merge the pair into a new token, and
add the new token to the vocabulary.

3. If the current vocabulary size reaches n, end the training process; otherwise, continue
step 2.

When tokenizing text using a trained BPE model, the text will be broken down into
characters, then the characters will be greedily merged according to the learned model. If
a character is not present in the vocabulary, then a special token <UNK> will be used to
handle the unknown character.




12 2 BACKGROUND

2.4.2 UN1GRAM ENCODING

Unigram Encoding, or Unigram for short, was initially proposed in [39]. Hyperparameter n
for the desired vocabulary size also needs to be specified. Different from BPE tokenization,
Unigram starts from a large vocabulary and then removes tokens until reaches the desired
vocabulary size. The training procedure of a Unigram tokenizer is as follows:

1. Break each word in the corpus into every possible substring. The initial vocabulary
consists of all possible tokens. Calculate the probability of each token.

2. At each step of the training, a specific loss, shown in Equation 2.16, is computed
over the training corpus based on the current vocabulary, where x; represents word
i, S(x;) represents all possible tokenizations of word x;.

3. Compute the difference between the loss before and after removing a specific token
from the vocabulary. The token that leads to the smallest difference will be removed.

4. If the current vocabulary size reaches n, end the training process; otherwise, continue
step 2.

When tokenizing text using a trained Unigram model, the probability of every possible
tokenization result is calculated by multiplying the probability of each token, and the most
probable tokenization result is chosen.

N
L= —Zlog( >, p(x)> (2.16)
i=1

x€S(x;)

2.5 CONFORMER

The conformer [40] model is a recently proposed speech encoder for ASR that achieves state-
of-the-art performance on many public datasets [41]. By integrating convolution with the
Transformer architecture, the Conformer can capture both local and global dependencies
while being a relatively size-efficient neural net architecture. The Conformer encoder
consists of a stack of Conformer encoder layers. By stacking these layers, Conformer can
learn hierarchical features from the speech.

N 1
X, =Xx;+ E FFN(X,)
x] = % + MHSA (x;)

/
X

’ = x{+ Conv (x{) (2.17)

1
y; = Layernorm (xi” + 2 FFN (x;’))

The forward pass of one Conformer encoder layer is shown in Equation 2.17. x;
represents the input of the i-th layer. FFN is called the Feed-Forward Network module.
MHSA is the Multi-Head Self-Attention module, and Conv is the Convolution module.
Usually, we call the dimension of input x; as the model dimension, and we call the hidden
dimension of the FFN the feed-forward dimension. The architectures of the FFN and Conv
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modules are shown in Figure 2.3 and Figure 2.4, and the MHSA module is similar to I
introduced in Section 2.2.6.

i i i N
LLaysrnorm—» Linear Swish Dropout > LMear Ll pono (4 2
Layer Activation Layer W,

Figure 2.3: Feed-Forward Network module in a Conformer encoder layer [40]. The inputs will be normalized by
the Layernorm, then a linear layer will map it from the model dimension to the feed-forward dimension. After
the Swish activation and the dropout, a second linear layer will project it back to the model dimension and the
dropout will be applied. The final output will be the sum of the input and the output after the second dropout.

Pointwise Glu Swish Pointwise l\
Layernorm —»| Conv Dept(:}xse}—bﬁatchNorm S —> Dropout —><+/‘

Figure 2.4: Convolution module in a Conformer encoder layer [40]. The inputs will be normalized by the
Layernorm, the Pointwise convolution, the GLU activation, and the Depthwise convolution will be applied. Then
Batchnorm is used to normalize the intermediate results, followed by a Swish activation. Another Pointwise
convolution is applied followed by a dropout. The final output will be the sum of the input and the output after
the dropout.

2.6 RNN TRANSDUCER

RNN Transducer (RNN-T) [42] is a sequence-to-sequence model (convert a fixed-length
input with a fixed-length output where the length of the input and output may differ.)
that gains serious attention recently. It achieves state-of-the-art performance on many
ASR datasets [43-45]. It does not assume the output is conditionally independent of each
other [46], which is a common simplification in ASR. I will introduce the architecture of
this model in Section 2.6.1 and then show the computation of the transducer loss in Section
2.6.2.

2.6.1 ARCHITECTURE
An RNN-T model is composed of four parts, an encoder, a predictor network, a joint
network, and a linear classifier with a softmax layer. The architecture of RNN-T is shown
in Figure 2.5.

It is worth mentioning that the output y;, € SU®, where S is the vocabulary and @
is the blank symbol. @ is used to indicate the alignment between the speech frames X;
(t € [1,T]) and tokens y, (u € [1,U]).

Given an speech audio X, the output y could be generated greedily as follows:

1. Initialized witht = 1,u =0 and y_; =< BOS >, where < BOS > means Begin of sentence.

2. Compute h; using x; and P, using y,_;.
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Figure 2.5: RNN Transducer architecture. The speech encoder encodes the speech feature X; to speech hidden
representation ;. For the predictor network, it consumes the token embedding of y,—; and outputs P,, where
Yu—1 is the token output at the previous token timestep and P, is the token hidden representation. The joint
network takes both h; and P, and joins these two hidden representations by adding these two tensors. Finally, a
linear layer with softmax is used to recognize y;,, the token output at speech timestep ¢ and token timestep u.

3. Compute Y;, using h; and P,,.

4. If the argmax of V; ,, is a valid token, set y, to it. Then set u =u+1 and feed y,—;
back into the predictor.

If the argmax of ¥}, is @, set t =t + 1 (move to the next speech timestep and output
nothing).

5. Go back to step 2 unless t =T + 1.

2.6.2 TRANSDUCER Loss
To train the RNN-T models, we need to compute the RNN Transducer loss. For a pair
of (X,y) where X is the speech frames and y is the corresponding token sequence, the
transducer loss is computed by summing the probability of all possible alignments between
X and y. The alignments are usually represented as a lattice, as shown in Figure 2.6.

To simplify notations, we define

J’(t, u) = PY(J/u-H | £ u)

o(t,u) =Pr(d | t,u) (2.18)

To calculate the sum of all possible alignment efficiently using dynamic programming,
a forward variable a(t,u) is defined as the probability of outputting y[;.,) during x[; ..
a(t,u) can be computed recursively as Equation 2.19 with «(1,0) = 1.
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Figure 2.6: An output lattice of RNN Transducer [42]. The horizontal axis is the speech timestep t and the vertical
axis is the token timestep u. One possible alignment starts at state (f = 1,u = 0) and ends at the final state on the
top right of the lattice. When moving up in the lattice, it means that one token at position u has emitted at frame
t. On the other hand, when moving right, it means that the current frame is done and the next frame is input to
the network.

alt,u) = a(t —1,u)0(t —1,u)

+a(t,u—1y(tu—1) (2.19)

Similar to the purpose of forward variable a(t,u), a backward variable S(t,u) is defined
as the probability of outputting yj,.1.¢] during xj;.77. f(t,u) can be computed recursively
as Equation 2.20 with §(T,U) = @(T,U).

B(t,u) = i+ 1,w)0(t,u) + p(t,u+ 1)yt u) (2.20)
The transducer loss is computed as Equation 2.21,
L =-logPr(y” | x) (2.21)
where
Pr(y" | x) = a(TUX(T.U)= Y.  a(tu)p(t,u) (2.22)
(tu) :t+u=n

2.7 DOMAIN ADVERSARIAL TRAINING

Before talking about Domain Adversarial Training (DAT), I would like to first explain two
terminologies: the source domain and the target domain. In DAT, the source domain is the
domain that all other domains will be adapted to, and the target domain is the domain that
needs adaptation.

DAT [18] is one of the commonly used methods for domain adaptation. Domain
adaptation is the technology for a model trained in one or more source domains to achieve
similar performance in different but related target domains. For DAT, the adaptation is
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achieved by generating domain-invariant features, the features are not distinguishable
among different domains.

— —
aL, ) aL,
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Figure 2.7: An illustration of the DAT forward computation and backpropagation. DAT contains three parts, a
feature extractor G, a label predictor y, and a domain classifier D. GRL represents Gradient Reverse Layer. A is a
coefficient used to balance two losses.

The framework of DAT is shown in Figure 2.7. In the forward computation of DAT,
both data from the source domain and the target domain(s) will be sent to the feature
extractor G to generate the corresponding features. Then only the features of the source
domain will be sent to the label predictor y to train the label predictor. On the other hand,
features from both the source and target domains will pass through the Gradient Reverse
Layer (GRL) and the domain classifier D. The Gradient Reverse Layer (GRL) keeps the
inputs untouched during the forward pass but reverses the upstream gradients during the
backward pass. The domain classifier will try to classify the domain of each feature. Two
losses, the label loss L, and the domain loss Ly are computed.

In the backpropagation, the gradient of the label loss L, will be propagated normally.
On the contrary, the gradient of the domain loss L; will be backpropagated normally in
the domain classifier, and it will be negated in GRL. Therefore, the gradient received by
the feature extractor G is not in the direction of minimizing the loss but rather maximizing
the loss. In this way, the feature extractor will generate features that are indistinguishable
to the domain classifier, and features for all domains look similar to each other.

2.7.1 UN1FORM TARGET DAT
One limitation of DAT is that the domain classifier D will converge earlier than the feature
extractor G [47], therefore no gradient will be received from D, and D will reach early
convergence as well. Applying a small coefficient A could alleviate this, which introduces
an extra hyperparameter for tuning. Since deep neural networks are computationally
expensive, this is not an ideal solution.

I apply a Uniform Target DAT similar to [47]. The diagram for Uniform Target DAT is
shown in Figure 2.8. Instead of using GRL to reverse the gradient, a uniformly distributed
vector is used as the domain label to prevent early convergence. The uniformly distributed
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Figure 2.8: An illustration of the Uniform Target DAT forward computation and backpropagation. The architecture
is similar to Figure 2.7, only the GRL is removed. The forward computation is the same as Figure 2.7. The domain
loss Ly is computed between the domain prediction and a uniformly distributed vector. The backpropagation is
the same as a normal neural network.

vector has the maximum information entropy, thus leading to the maximum confusion
among different domains. A cross-entropy loss is computed between the uniformly dis-
tributed vector and the prediction of the domain classifier. In this way, the gradient from
the classifier will continuously improve the feature extractor to generate domain-invariant
features, and no early convergence will be reached.

2.8 METRICS
In this section, I introduce the metrics for evaluating E2E ASR and bias mitigation.

2.8.1 WORD ERROR RATE

Word Error Rate (WER) is a commonly-used metric for evaluating an ASR system. This
metric is calculated based on the Levenshtein distance [48] between the prediction and the
reference. When calculating the metric, three kinds of error are considered:

« Insertions (I): The prediction contains additional words/characters that are not
present in the transcript;

« Deletions (D): The prediction does not contain words/characters that are present in
the transcript;

« Substitutions (S): The prediction contains words/characters that replace words/char-
acters in the transcript;

The WER is calculated as Equation 2.23,

S+D+1
N
where N is the number of words in the transcript.

WER/CER = (2.23)
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2.8.2 SPEECH Bias

The definition of bias in this project follows the definition in [2], which is defined as the
performance difference (e.g. Word Error Rate) between standard and non-standard speech.
In [2], every studied property is divided into two domains with one standard domain
and one non-standard domain. To accommodate the multi-domain scenario, where there
are one standard speech (standard domain) and multiple regional accents (non-standard
domain), I adapt the definition to Equation 2.24,

N .
Bias = 72"=1l\1]’erﬁ — perfua (2.24)

where N is the number of regional accents, per f; is the performance on the non-standard
domain i, and per f, is the performance on the standard speech. This means the bias in
this project is defined as the difference between the average performance of all regional
accents and the performance on the standard speech.
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METHODOLOGY

In this chapter, I introduce the dataset, experimental setup, Domain Adversarial Training,
and the domain classifier architecture used in this project in detail. In Section 3.1, a detailed
description of the dataset in the project is given, including how and why these accents are
chosen. Furthermore, the experimental plan is shown in Section 3.2 so that the setup of different
experiments and the corresponding research question are shown. In Section 3.3, I introduce
the baseline. Two different types of Domain Adversarial Training methods are introduced in
Section 3.4. Finally, I present the different domain classifier architectures used in this project
in Section 3.5. All the experiments are implemented using SpeechBrain [49] toolkit.



20 3 METHODOLOGY

3.1 DATASET

The dataset used in this project is selected from Mozzila CommonVoice’s [50] French and
German datasets. CommonVoice [50] is a large open-source dataset for read speech. The
dataset not only contains speech and its transcripts, but also other metadata like the gender,
age, and most importantly the accent region of the speech. All its data is contributed to
and validated by its community. Contributors contribute to the dataset by reading words
on the screen or by validating the correctness of other contributors’ speech. The accent of
a particular speech is decided by its contributor, as the contributor can decide its accent in
his/her user profile from predefined categories.

One thing about the CommonVoice dataset is that it is a read-speech dataset, and
contributors were assigned random sentences to read regardless of their accents. Therefore
it can be assumed that the transcripts over all accents have identical text distributions.
Therefore, for this project, I further assume that regional accents only lead to articulation
differences that affect the acoustic model, while the language model is indifferent to the
accents.

In this project, the selected regional accents should have at least a total duration that is
enough for testing. Based on this criterion, the standard speech and the six most frequent
regional accents from the corresponding language constitute the dataset. The details of
French and German datasets are shown in Table 3.1 and Table 3.2 respectively.

For the French dataset, the reasons to choose these accents are as follows: Belgique,
Suisse, and France, Sud Ouest are traditional French-speaking areas. The Quebec area in
Canada uses French as the official language, therefore I also regard Canada accent as a
regional accent for French. For La Réunion and Bénin, they were French colonies and they
use French as their official language, so the corresponding accents are viewed as regional
accents as well.

For the German dataset, all accents belong to different sub-regions of modern Germany,
except for Osterreichisches. However, Osterreichisches is a German-speaking country in the
past and present, so it is also a regional accent of German.

The data of a particular accent is decided whether or not to be split into train, dev, and
test sets based on its total duration. For accents that are split into the train, dev, and test
sets, the ratio for splitting is 0.75 : 0.125 : 0.125. For accents that are not split, they are
used as the test set to test the generalizability to the unseen accents.

Hours
Accents Train Dev  Test
France (standard) | 431.50 72.05 71.87
Canada 10.53 1.74 1.76
Belgique 978 160  1.62
Suisse 4.69 0.79 0.78
La Réunion - - 1.57
Bénin - - 1.48
France, Sud Ouest - - 0.48

Table 3.1: The size of the train, dev, and test set of each French accent in the French dataset.
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Hours
Accents Train Dev  Test
Deutsch (standard) | 452.82 753 755
Nordrhein Westfalen | 72.62  12.07 12.08
Osterreichisches 24.54 408  4.15

Alemanischer - - 1.10
Niederrhein - - 1.06
Ruhrpott Deutsch - - 0.74
Saarland Deutsch - - 0.45

Table 3.2: The size of the train, development, and test set of each German accent in the German dataset.

In Table 3.1 and Table 3.2, the accent with red text represents the standard speech
(std for short), and the accents with green color represent regional accents that are split
into train, development, and test set (seen_acc for short). The blue set contains accents
that are only in the test set (unseen_acc for short), and they are used to test the model’s
generalizability to unseen accents.

All transcripts are processed using the CommonVoice preparation scripts® in the GitHub
repo of SpeechBrain [49]. This script will normalize the transcripts by removing all symbols
and capitalizing all characters for both the French and German datasets.

3.1.1 SUBSETS OF THE SEEN_ACC TRAINING SETS

To answer RQ3: How much data is needed to make Multi-Domain Adversarial
Training effective, I sample subsets of different total duration from the seen_acc training
set of each accent in each language. Specifically, the sampled duration starts at 0.5 hours
and ends at 4.0 hours with a step size of 0.5 hours. I sample each accent in the seen_acc
set with the target duration.

3.2 EXPERIMENTAL SET-UP

3.2.1 TOKENIZER

For all experiments introduced in this section, the tokenizer used in each experiment is
trained using only the transcripts of the standard speech. The consideration behind this is
that the regional accented speech is used unsupervised for training the speech recognizer
in experiments, therefore the predictor network that RNN-T used for token processing

cannot receive any information regarding the transcripts of the regional accented speech.

3.2.2 BASELINE
The baseline model is a Conformer-RNN-T model similar to the model in [40]. The baseline
model is trained on:

« The std training set

and evaluate on

Thttps://github.com/speechbrain/speechbrain/blob/develop/recipes/
CommonVoice/common_voice_prepare.py


https://github.com/speechbrain/speechbrain/blob/develop/recipes/CommonVoice/common_voice_prepare.py
https://github.com/speechbrain/speechbrain/blob/develop/recipes/CommonVoice/common_voice_prepare.py
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. std, seen_acc, and unseen_acc test sets using WER as the metric

to see how much bias a model only trained on standard speech have.

To obtain a solid baseline for both French and German datasets, experiments will be
carried out with both BPE and Unigram tokenizers with different vocabulary sizes for both
languages. The best model in each language will be used as the baseline model for the
corresponding language.

3.2.3 RESEARCH QUESTIONS 1, 2
To answer the following research questions:

« RQ1: Will Multi-Domain Adversarial Training boost the performance of seen and
unseen regional accented speech, especially under low-resource settings?

« RQ2: s Multi-Domain Adversarial Training better than Binary Domain Adversarial
Training?

BDAT, MDAT, and MDAT with Uniform Target models are trained:

« The std training set (with transcripts),

« The seen_acc training set (without transcripts),

and evaluate on

- std, seen_acc, and unseen_acc test sets using WER as the metric.

When training BDAT models, I treat standard speech as one domain and combine
Belgique, Canada, and Suisse as the other domain. In the German case, I similarly treat
standard speech as one domain and combine Nordrhein Westfalen and Osterreichisches as
the other domain.

The performance comparison between two MDAT models and baseline on std and
seen_acc test set answers research question 1. For research question 2, the performance
of two MDAT models on unseen_acc test sets can answer. The performance comparison
between two MDAT models and BDAT answers research question 3.

3.2.4 RESEARCH QUESTION 3

To answer RQ3: How much data is needed to make Multi-Domain Adversarial
Training effective, the best DAT model of each language from the previous step is trained
using:

« The std training set (with transcripts),

- sampled subsets of the seen_acc training set (without transcripts) mentioned in
Section 3.1.1.

and evaluate on
« std, seen_acc, and unseen_acc test sets using WER as the metric.

The comparison among the best model trained with the full dataset in section 3.2.3
and sampled datasets with different total durations on WER gives the answer to research
question 3.
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3.2.5 RESEARCH QUESTION 4
To answer RQ4: How do different domain classifiers affect the performance of
the Domain Adversarial Training, I train MDAT models using the following domain

classifier architectures:

« DC1: RNN + Linear layer

« DC2: Average over the time dimension + Linear layer
on

« The std training set (with transcripts),

+ The seen_acc training set (without transcripts).

and evaluate on
. std, seen_acc, and unseen_acc test sets using WER as the metric.

Specifically, the best DAT model, which is the DAT model with DC1, in section 3.2.3 for
each language is selected and trained with a domain classifier using DC2. The performance
comparison between the model using DC1 and the model using DC2 answers research

question 5.

3.3 THE BASELINE MODEL
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Figure 3.1: The baseline model. X; is the speech feature at speech timestep t. y,—; is the token embedding
of the output at token timestep u — 1. h; is the latent representation of speech feature X;, and P, is the latent
representation of token embedding y,—;. Y;, is the output token distribution at speech timestep ¢ and token
timestep u. The CNN frontend and the Conformer encoder consume X; and transform them into #;. GRU consumes
Yu—1 and generates P,. h; and P, are added together and passed to the linear layer to obtain the prediction Y; ,,.

The Conformer-RNN-T [40] baseline model is shown in Figure 3.1, which consists
of five modules, a CNN frontend, a Conformer Encoder for speech features, a Predictor
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network for token inputs, a joint network to combine the latent speech representations and
the token latent representations, and the Linear + Softmax layer for the final recognition.

The CNN frontend is a 3-layer CNN. Each layer has an output channel of 32. The kernel
sizes for these three layers are 5, 5, and 1 respectively. The strides of these layers are 2, 2,
and 1 respectively. The frontend consumes speech features with shape (B, T, 80), where B
is the batch size, T is the duration of the speech, and 80 is the dimension of MFCC features.
It produces an output of (B, T,20,32) and then be reshaped to (B, T, 640). Finally, a linear
layer is used to map the dimension from 640 to the model dimension of the Conformer
encoder.

The Conformer Encoder [ am using is composed of 17 Conformer layers. Each layer has
amodel dimension of 512 and a feed-forward dimension of 2048. I apply Relative Positional
Encoding [51] for the self-attention mechanism. The output shape of the Conformer
Encoder is (B,T,512).

The Predictor network is a single layer of the GRU network. Its hidden size is 640. For
the Transducer Joint Network, I simply use the Additive Joint. The joint dimension is 640.
The final classifier takes a 640-dimensional input and maps the output to the number of
tokens.

A combination of a single linear layer with a dropout layer is used between the Con-
former Encoder and the Joint Network, as well as between the Predictor Network and the
Joint Network, to make the dimension compatible between these modules.

3.4 DOMAIN ADVERSARIAL TRAINING

In this section, I introduce the implementations of different Domain Adversarial Training
techniques. For all DAT implementations, the accent classification is the auxiliary task and
the output of the Conformer encoder is used as the feature for accent classification since
only the acoustic features need to be adapted.

3.4.1 BINARY DOMAIN ADVERSARIAL TRAINING AND MULTI-DOMAIN
ADVERSARIAL TRAINING

The architecture of BDAT and MDAT is shown in Figure 3.2. Additionally from Figure 3.1,
the GRL and the accent classifier are used to classifier the domain of X;. The auxiliary
task I use is accent classification. From an architectural perspective, there is no difference
between these two methods. However, from the data perspective, BDAT treats standard
speech as one domain and all other non-standard speech as the other domain. Thus the
accent classifier only has outputs of shape (B,2) where B is the batch size and the two
values in each row represent the probability of the two classes. For MDAT, each accent
in the training set is a unique domain. Therefore, the number of outputs depends on the
number of accents in the training set.



3.4 DOMAIN ADVERSARIAL TRAINING 25

v (]
‘ Linear + Softmax | ‘ Accent Classifier ‘
5
‘ Additive Joint | GRL
i
TR
trt

PDDDDDDD 17-layer
trrrt tt Conformer Encoder

prt et

ot 1 —

el 1T
Token inputs: y,.; .
Speech features: X,

Figure 3.2: The BDAT/MDAT model. X; is the speech feature at speech timestep . y,_; is the token embedding
of the output at token timestep u — 1. h; is the latent representation of speech feature X;, and P, is the latent
representation of token embedding y,—;. Y;, is the output token distribution at speech timestep ¢ and token
timestep u. Ay is a one-hot vector for the accent label, with the kth position equal to 1. For BDAT, k € {0,1}, and
for MDAT, k € {0, ...,num_accent — 1}. In addition to the computation mentioned in Figure 3.1, ; is also passed to
the accent classifier, which includes the GRL layer, to obtain the domain prediction A.
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Figure 3.3: The Uniform Target DAT model. X; is the speech feature at speech timestep t. y,; is the token
embedding of the output at token timestep u — 1. h; is the latent representation of speech feature X;, and P, is
the latent representation of token embedding y,_;. ;, is the output token distribution at speech timestep ¢ and
token timestep u. Uni_Vec is a uniformly distributed vector of size k, where k is the number of domains in the
dataset. Each element in the Uni_Vec has the value of % Different from the computation mentioned in Figure 3.2,
there is no GRL here, the accent classifier directly consumes A;, and the domain classification loss is computed
between the domain prediction and the uniform vector.

Uniform Target Domain Adversarial Training in this project is proposed by [47]. The
architecture for Uniform Target Domain Adversarial Training is shown in Figure 3.3.
Different from Figure 3.2, there is no GRL in Figure 3.3 and the domain target is a uniformly
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distributed vector. Uniform Target DAT directly fits the output with a uniformly distributed
vector, so that the maximum entropy or the maximum confusion could be reached [47].
Thus, the trained encoder will generate uniformly distributed features across the feature
space, and the accent-dependent information is not distinguishable [47].

3.5 DIFFERENT DOMAIN CLASSIFIER ARCHITECTURES
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Figure 3.4: The DC1 classifier. The two-layer bidirectional GRU classifier consumes inputs h; with shape (B,T,640),
and the hidden size is 640. The final states of both ends of each GRU layer, which are (hg,h10, hor, hir) in the
figure, are concatenated as the classification features. The features are input to a two-layer linear classifier with
the first linear layer having a dimension of 2560 and the second having a dimension of 640. Ay, is a one-hot vector
for the accent label, with the kth (k € {0,....,num_accent — 1}) position equal to 1.
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Figure 3.5: The DC2 classifier. The classifier consumes inputs h; with shape (B,T,640). The acoustic features
are first averaged over the time dimension and transform the inputs &, to feature fy,; with shape (B,640). Then
a two-layer linear classifier takes the averaged feature for classification, with the dimension of the first linear
layer being 640, the dimension of the hidden layer being 640, and the dimension of the output is the number of
domains in the dataset.
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The architecture for the DC1 and DC2 domain classifiers mentioned in section 3.2.5
is plotted in Figure 3.4 and Figure 3.5 respectively. DC1 in Figure 3.4 is an RNN-based
classifier. The speech hidden representation h; is passed to a two-layer bidirectional GRU
and the final states of both directions of both layers are concatenated as the feature for
domain classification. DC2 in Figure 3.5 takes h; of shape (B, T, 640), averaging the time
dimension, and transforms the feature to shape (B, 640). It directly passes the averaged
feature to a two-layer linear network for accent classification.
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RESULTS

This chapter presents the results of the experiments. Section 4.1 presents the results of the
baseline experiments. Section 4.2 shows the results of the DAT experiments. In Section 4.3, the
results of how much data is needed for DAT are shown. Finally, I will show the results of DAT
with different domain classifiers.
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4.1 BASELINE MODEL RESULTS

The model with the best performance in terms of the average WER over all accents is
selected as the baseline. Separate baseline models for French and German are created.

4.1.1 FRENCH

Details Accents
#

Tokenizer tokzxfls standard Belgique Canada Suisse Bénin LaRéunion Sud Ouest | Avg Bias
BPE 1000 9.36 23.21 29.90 24.40 34.28 24.44 24.09 24.24 17.36
BPE 2000 9.82 23.47 30.30 24.22 34.17 25.42 25.94 24.76 17.43
BPE 4000 10.49 23.78 31.16 24.57 34.56 24.88 24.92 2491 16.82
BPE 5000 10.71 23.77 31.60 24.74 34.74 24.98 25.94 25.21 16.92

Unigram 1000 9.51 23.26 29.89 23.69 34.16 25.16 24.52 24.31 17.27

Unigram 2000 9.74 23.46 29.66 24.52 34.70 24.41 24.77 24.47 17.18

Table 4.1: %WER of the baseline on French standard and accented test set.

The results of French baseline are shown in Table 4.1, the first two columns denote
the tokenizer and the number of tokens used by the model. The test WER of the standard
speech and six regional accents are shown in the following seven columns. The average
WER over all accents and the bias are shown in the last two columns.

For Table 4.1, we can observe that BPE tokenization with 1000 tokens performs the
best in 4 out of 7 accents, including the standard speech. It has the lowest average WER
across all accents in the French dataset. If the tokenizer is changed to Unigram, or the
number of tokens is increased, the overall performance degrades. Therefore, I choose the
BPE tokenizer with 1000 tokens as our baseline for French, and all our French experiments
in the following sections will be configured in the same way.

Additionally, in Table 4.1, Canada and Bénin perform worse than other regional ac-
cents, with the WER for Canada and Bénin is about 5% and 10% worse than other accents
respectively. The bias is around 17%, and it is similar across all models.

4.1.2 GERMAN

Details Accents
Tokenizer to#k(e)rfls standard I\\I)&Zi??leel 1111 ?;flelf; Alf:ﬁ:“ I\Irll:ienr Ruhrpott ~ Saarland | Avg Bias
BPE 1000 5.81 18.28 18.88 15.87 17.96 14.50 18.43 15.68 11.51
BPE 2000 6.18 19.54 19.44 17.54 18.56 15.20 18.27 16.39 11.91
BPE 4000 6.97 20.25 20.33 18.28 19.86 16.25 18.43 17.20 11.93
BPE 5000 7.14 20.75 20.45 18.80 19.68 16.59 19.55 17.57  12.16
Unigram 1000 5.72 18.05 18.88 16.05 18.13 14.72 18.23 15.68 11.62
Unigram 2000 6.16 18.97 19.16 16.45 18.76 15.79 18.27 16.22 11.74

Table 4.2: %WER of the baseline on German standard and accented test set.

For the German baseline in Table 4.2, we observe that as the number of tokens increases,
the performance degrades, which is similar to the French baseline results. Both the BPE
with 1000 tokens and Unigram with 1000 tokens perform equally well on the average WER
of all accents. The Unigram with 1000 tokens performs slightly better on the standard
speech. However, the BPE with 1000 tokens performs better on regional accents, where 4
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out of 6 regional accents achieve the best performance. Based on the better results on the
accented speech, the BPE tokenizer with 1000 tokens was used as the baseline for German.

In Table 4.2, except that Alemanischer and Ruhrpott have a WER of around 15%, all
other regional accents perform similarly with a WER of 18%. The bias is around 12% for all
models.

4.2 DAT

The results of Domain Adversarial Training (DAT) are shown in Table 4.3 and Table 4.4.
The first two columns of the table indicate the model and the domain classifier that the
model uses. The WER on the standard speech and the six regional accents are shown in
the next seven columns. The last two columns show the average WER and the bias.

4.2.1 FRENCH

Details Accents
Model ~ domain cls | standard Belgique Canada Suisse Bénin LaRéunion Sud Ouest | Avg  Bias
Baseline - 9.36 23.21 29.90 24.40 34.28 24.44 24.09 24.24 1736
BDAT DC1 9.45 9.82 17.76 9.58 21.37 9.26 10.91 12.59  3.67
MDAT DC1 9.57 9.77 17.38 9.33 20.82 9.13 10.04 12.29 3.18
MDAT DC1_Uni 9.43 10.12 17.02 9.86 21.30 9.38 10.44 12.51 3.59
MDAT DC2 9.59 10.06 17.41 9.44 21.34 9.35 10.19 12.48  3.38
Best Abs Impv -0.07 13.44 12.88 15.07 13.46 15.31 14.05

Table 4.3: %WER of the Multi-Domain Adversarial Training on French standard and accented test set. DC1 denotes
the RNN + Linear layer domain classifier. DC1_Uni has the same domain classifier with DC1 but implements
Uniform Target DAT. DC2 is the domain classifier that Averaging over the time dimension + Linear layer.

In Table 4.3, compared with the Baseline row, all DAT models greatly improve the
WER of all accents, though the performance on the standard speech slightly deteriorates.
MDAT with DC1 performs the best. It achieves the best WER on 5 out of 7 accents and
reaches the lowest average WER over all models in Table 4.3.

For our implementation of the MDAT model with DC1_Uni, its performance is worse
than the regular MDAT model with DC1. It only exceeds the performance of the regular
implementation in Standard and Canada. From the perspective of the overall average WER,
it is worse than the regular DAT by about 0.22%.

It is worth noticing that both of the MDAT models outperform the BDAT model. This
fits with the expectation, as I believe MDAT provides better modeling of the variability of
the regional accents. However, from the perspective of bias, although MDAT with DC1
has the lowest bias among all MDAT models, this comes at the cost of the standard speech.

4.2.2 GERMAN

In Table 4.4, all DAT models achieve huge improvement on WER and all MDAT models
outperform the BDAT model, which is consistent with the results of the French experiments.
Additionally, similar to the French experiments, the MDAT model with DC1 performs the
best among all models. However, all DAT models have a higher WER on standard speech
than the baseline, as the WER for the baseline on standard speech is 5.81% and the WER of
the standard speech for all DAT models is above 6%.
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Details Accents
Model  domain cls | standard I\\i;erthg:lee 1: (C)}:TS;T;; Afcrﬁgill_ N:}Tgienr_ Ruhrpott  Saarland | Avg  Bias
Baseline - 5.81 18.28 18.88 15.87 17.96 14.50 18.43 15.67 11.51
BDAT DC1 6.03 10.47 10.35 7.64 10.03 6.97 11.12 8.94 3.40
MDAT DC1 6.02 10.01 10.42 7.71 9.39 6.88 10.54 8.71 3.14
MDAT DC1_Uni 6.05 9.84 10.72 7.61 9.45 7.12 10.27 8.72 3.12
MDAT DC2 6.09 10.01 10.55 7.67 9.77 7.01 10.41 8.79 3.15
Best Abs Impv -0.21 8.44 8.53 8.26 8.57 7.62 8.16

Table 4.4: %ZWER of the Multi-Domain Adversarial Training on German standard and accented test set. DC1
denotes the RNN + Linear layer domain classifier. DC1_Uni has the same domain classifier with DC1 but
implements Uniform Target DAT. DC2 is the domain classifier that Averaging over the time dimension + Linear
layer.

From the view of bias, the MDAT model with DC1 performs the best, as it achieves the
lowest bias of 3.12% among all models in Table 4.4. However, this is achieved through a
higher WER on standard speech. For the MDAT model with DC1, the WER on standard
speech is 0.03% lower than the MDAT model with DC1_Uni, while its bias is only 0.02%
higher than its counterpart. Therefore, we believe the MDAT model with DC1 is the best
model in Table 4.4.

Based on Table 4.3 and Table 4.4, I decide to use MDAT with DC1 for experiments in
Section 4.3, as this is the best model for both languages.

4.3 RQ3: How MUCH DATA IS NEEDED?

The WER of the MDAT model trained with different sizes of the dataset is shown in this
section. The first column of each table represents the size of the dataset. The WER of each
accent is given in the following columns. Finally, the average WER and the bias are given
in the last two columns.

4.3.1 FRENCH

Details Accents
Du(r}?rt)lon standard ~ Belgique = Canada  Suisse =~ Bénin  LaRéunion  Sud Ouest Avg Bias
full 9.57 9.77 17.38 9.33 20.82 9.13 10.04 12.29 3.18
0.5 9.51 10.23 17.11 9.77 20.79 9.09 11.00 12.50 3.49
1.0 9.34 9.93 17.61 9.50 20.75 8.90 10.75 12.40 3.57
15 9.44 10.27 16.90 9.45 20.58 9.59 9.52 12.25 3.28
2.0 9.41 10.11 16.96 9.94 20.53 9.37 10.35 12.38 3.47
2.5 9.38 9.98 16.61 10.11 20.45 9.20 10.38 12.30 3.41
3.0 9.47 10.07 17.03 9.79 21.33 9.07 9.89 12.38 3.39
3.5 9.51 9.84 17.38 9.17 21.50 8.84 9.43 12.24 3.18
4.0 9.50 10.52 17.67 10.20 22.00 9.63 10.35 12.84 3.90

Table 4.5: %WER when different amounts of hours of accented speech are used for training the French model.

The results for French are shown in Table 4.5. In Table 4.5, We can see that with only
half an hour’s untranscribed regional accent data, the model can achieve a performance
that is comparable to when using all available accented speech data, with some accents
even outperforming the full dataset condition. Moreover, our model achieves the lowest
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average WER with 3.5 hours of data. However, the differences in average WER and bias
are insignificant among all models.

4.3.2 GERMAN

Details Accents
Du(r}?rt; on standard I\\iloerjglfe 1: ?li:::}llcels Alsccrlrjl'::u I\?}igfnr Ruhrpott  Saarland Avg Bias
full 6.23 9.63 10.68 7.67 9.85 6.93 10.12 8.73 2.92
0.5 5.86 9.22 10.34 7.15 9.59 6.79 10.04 8.43 3.00
1.0 5.71 9.44 9.94 7.01 8.94 7.19 10.27 8.36 3.09
1.5 5.78 9.45 10.02 7.02 9.91 7.08 9.81 8.44 3.10
2.0 5.86 9.37 10.01 6.94 9.39 6.49 9.84 8.27 2.81
2.5 5.75 9.35 9.91 6.89 9.03 6.21 9.77 8.13 2.78
3.0 5.80 9.43 10.00 7.37 9.34 6.79 9.96 8.38 3.02
3.5 5.81 9.51 10.32 7.46 9.69 7.14 10.04 8.57 3.22
4.0 5.70 8.99 10.00 7.40 9.66 6.47 10.62 8.41 3.16

Table 4.6: ZWER of the different hours of accent training set in German.

The results for German are shown in Table 4.6. In Table 4.6, with only half an hour’s
untranscribed regional accent data, the model also achieves a performance that is better
than the full data, all accents have achieved better performance than the full dataset.
Moreover, with 2.5 hours of data, our model achieves the best average WER of 8.13%. On
the other hand, the differences in average WER and bias are insignificant among all models,
similar to the French results.

4.4 DIFFERENT DOMAIN CLASSIFIERS
In this section, I discuss the impact of different domain classifiers on DAT performance.
The results for each language are shown in Table 4.3 and Table 4.4. Specifically, I compare
the row using domain classifier DC1 with the row DC2.

For the French experiments, the domain classifier DC2 yields worse performance than
the MDAT model with DC1. It has an average WER of 12.48%, which is 0.19% higher than
the DC1 implementation.

Similarly, in German experiments, the domain classifier DC2 yields the worst perfor-
mance among all MDAT models. It has an average WER of 8.79%, which is 0.08% higher
than the DC1 implementation.
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DiscussioNs AND CONCLUSIONS

In this chapter, I will discuss the results listed in Chapter 4. Through the discussion in Section
5.1, the answers to our research questions will be derived. In Section 5.2, the conclusions are
drawn. Finally, in Section 5.3, I will point out the future direction of this research.
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5.1 DISCUSSION

For our RQ1: Will Multi-Domain Adversarial Training boosts the performance of
seen and unseen regional accented speech, especially under low-resource settings,
by comparing the baseline row and the row with MDAT and DC1, we can tell for both
French and German, DAT greatly boosts the performance of seen and unseen regional
accented speech but brings a slight deterioration on the standard speech, regardless of
different DAT implementations. For French, the results in Table 4.3 show that DAT brings
a huge absolute improvement on WER ranging from 12.8% to 15.3% for all regional accents.
DAT clearly works well under low-resourced settings in French, as Suisse only has 4.7 hours
of data while achieving the lowest WER of 9.33% and a maximum absolute improvement of
15.07%. For German, the results in Table 4.4 also show a considerable improvement over all
accents. The best absolute improvement on WER of all regional accents is around 7.6% to
around 8.5%. We cannot tell whether DAT can work under low-resourced settings from the
German experiment, as the German training set has sufficient data as shown in Table 3.2.

However, we see a small deterioration in both the standard French and the standard
German, as all DAT models obtain worse results than the baseline model on standard
speech. For French, the degree of deterioration varies from 0.09% to 0.23%, while for
German, the degree of deterioration is around 0.25% for all DAT models. This indicates that
bias mitigation using DAT may cause a small deterioration of performance on standard
speech.

For our RQ2: Is Multi-Domain Adversarial Training better than Binary Domain
Adversarial Training?, we can compare BDAT using DC1 with MDAT using DC1 in
Table 4.3 and Table 4.4. In Table 4.3, we can see that MDAT performs better than BDAT in
French. MDAT has better performance over 6 out of 7 accents, except on standard speech.
Similarly, in Table 4.4, we see MDAT outperforms BDAT on 5 out of 7 accents, and MDAT
has a better average WER. Combining the results of both French and German, we can see
that MDAT is better than BDAT, although the performance gap between MDAT and BDAT
is small.

For our RQ3: How much data is needed to make Multi-Domain Adversarial
Training effective, we can see Table 4.5 and Table 4.6. These tables show that with untran-
scribed speech data of only 0.5 hours of total duration, MDAT can achieve a considerable
improvement compared to the baseline and yields an average performance that approaches
the average performance trained with the full dataset. However, the differences in the
performance among different models are trivial and an increasing amount of data does not
necessarily improve the performance in this project.

To further explore the pattern between the amount of training data and the performance
of the DAT model, the CER tables for French and German are shown in Section 6.1. Through
the CER tables, the conclusion remains the same as the amount of training data has an
insignificant impact on the performance of DAT in this project.

For our final RQ4: How do different auxiliary classifiers affect the performance
of the Domain Adversarial Training, we can tell from Table 4.3 and Table 4.4, where
we can compare the row starting with DC1 with the row with DC2 in each table. For
French in Table 4.3, we see that the model with DC1 outperforms the model with DC2 on
all accents. Besides, the model with DC1 trivially outperforms the model with DC2 on
average WER by 0.19%. Similarly, for German, the model with DC1 outperforms the model
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with DC2 on 4 out of 7 accents. It has a trivial 0.08% average WER higher than the model
with DC2. The results for the French and the German experiments show that different
auxiliary classifiers have little impact on the performance of DAT.

Compare with our predecessor’s work [3], our DAT boosts the performance of regional
accent speech, while DAT in [3] improves the WER of read speech while worsening the
WER of conversational speech. Since our experiments are only carried out based on read
speech data, combined with the results in [3], we can tell that DAT can mitigate bias in
read speech.

Finally, I would like to discuss the bias metric I am using in this project. From Table 4.1
to Table 4.6, there are two things about the bias metric that are worth noticing. First, the
reduction in the bias is brought by two aspects. One is the improvement in WER/CER of
regional accented speech and the other is the deteriorated WER/CER of standard speech.
For the second aspect, this is not the expected behavior of bias mitigation. Therefore,
the bias metric is only valid when the performance on the standard domain does not
deteriorate.

5.2 CONCLUSIONS

In this project, I aim to mitigate the bias against regional accented speech in a state-of-
the-art ASR system. I show that Multi-Domain Adversarial Training can reduce the bias
against regional accented speech, and that also works for unseen accents. Moreover, I show
that Multi-Domain Adversarial Training has a better performance than Binary Domain
Adversarial Training used in [3]. Furthermore, for French and German, with enough
transcripted standard speech, half an hour of untranscribed accent speech can achieve
a good result. Finally, I see that different domain classifiers have similar impacts on the
performance of Domain Adversarial Training. Domain classifiers used in this project have
no significant impact on the performance of DAT.

5.3 FUTURE WORK
Based on the contents of this project, I can point out some future directions to further
develop this work.

To start with, all models in this project are tested without utilizing external language
models. Although RNN Transducer is an end-to-end model that does not require an external
language model, using an external language model usually improves performance. More-
over, to better incorporate the external language model, the internal language model [52] of
the RNN Transducer should be suppressed. Otherwise, there could be a domain mismatch
between the internal language model and the external language model, which leads to
the degradation of the performance. The internal language model is learned through the
training of the prediction network. To suppress the internal language model, I could use
the Internal Language Model Estimation [53] and the Internal Language Model Train-
ing [54, 55] to remove or adapt the internal language model so that no domain mismatch
between the internal language model and the external language model.

Finally, I would like to see the performance of more auxiliary classifiers, since only
two domain classifiers are studied in this project. Neural architectures like 1-dimensional
convolution and Quasi RNN [56] could be used to build the auxiliary classifiers.
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APPENDIX

6.1 RQ3: How MUCH DATA 1S NEEDED? - CER PERSPEC-

TIVE
Details Accents
Durati . .
u(l::rt)lon standard ~ Belgique = Canada  Suisse =~ Bénin  LaRéunion  Sud Ouest | Avg  Bias
full 3.34 3.58 7.26 3.53 8.72 3.12 3.46 4.72 1.61
0.5 3.31 3.77 7.32 3.72 8.76 3.19 3.73 483 177
1.0 3.23 3.55 7.55 3.48 8.71 3.06 3.64 4.75 1.77
15 3.27 3.71 7.32 3.53 8.58 3.28 3.10 4.68 1.65
2.0 3.28 3.67 7.26 3.57 8.49 3.25 3.21 4.68 1.63
2.5 3.28 3.56 7.02 3.76 8.45 3.23 3.36 4.67 1.62
3.0 3.27 3.59 7.19 3.56 8.79 3.21 3.23 4.69 1.66
3.5 3.29 3.57 7.39 3.39 9.06 3.14 3.20 4.72 1.67
4.0 3.28 3.81 7.58 3.76 9.36 3.36 3.49 4.95 1.95

Table 6.1: %CER of the different hours of accent training set in French.

Details Accents
Duration Nordrhein ~ Osterrei-  Alemani-  Nieder- .
(hr) standard Westfalen  chisches scher rhein Rubrpott  Saarland | Avg  Bias
full 1.76 2.58 3.34 2.00 2.70 1.76 2.81 2.42 0.77
0.5 1.63 2.42 3.22 1.87 2.60 1.65 2.76 2.31 0.79
1.0 1.60 2.52 3.13 1.75 2.36 1.74 2.78 2.27 0.78
1.5 1.63 2.54 3.08 1.78 2.70 1.69 2.82 2.32 0.81
2.0 1.65 2.53 3.07 1.74 2.58 1.67 2.65 2.27 0.72
2.5 1.62 2.54 3.04 1.85 2.42 1.51 2.59 2.22 0.71
3.0 1.63 2.69 3.06 2.00 2.61 1.61 2.68 2.33 0.81
3.5 1.66 2.77 3.31 1.98 2.62 1.92 2.87 2.45 0.92
4.0 1.59 2.34 3.11 1.90 2.63 1.64 2.93 2.31 0.84

Table 6.2: %CER of the different hours of accent training set in German.

The CER tables of the French and the German when training with different amount of
data are shown in Table 6.1 and Table 6.2. Similar to the WER tables in Section 4.3, the
differences in CER among different models are insignificant. Therefore, the amount of
training data has an insignificant impact on the performance of DAT in this project.
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6.2 FEATURE MAPS

To see how the distribution of the accent data changes before and after applying DAT, the
feature maps of the baseline model and all DAT models are shown in Table 4.3 and Table 4.4.
The output from the linear layer that consumes the output of the Conformer encoder is
used as the feature for all plots. To reduce the dimension, we use the Multicore-TSNE [57],
which is a fast implementation of the TSNE algorithm [58], to reduce the dimension from
640 to 2. We use default parameters to run TSNE, except the perplexity is set to 5. Figure 6.1
to Figure 6.10 shows the feature maps we generated.

baseline on fr dataset baseline on de dataset

Accents
® standard
Alemanischer
Niederrhein
@ Osterreichisches

Ruhrpott
Saarland
Nordrhein_Westfalen

Accents
standard 5
Belgique

® Bénin

Canada 0

La_Réunion

Sud_Ouest

Suisse 5

Figure 6.1: Baseline model trained with French dataset. Figure 6.2: Baseline model trained with German
dataset.

BDAT with GRL and RNN classifier in FR BDAT with GRL and RNN classifier in DE

Accents
® standard
Alemanischer
Niederrhein
Osterreichisches

o Ruhrpott

Saarland
Nordrhein_Westfalen

Accents
standard
Belgique
Bénin
canada 4
La_Réunion
sud_ouest  _g
Suisse

Figure 6.3: BDAT trained with French dataset. Figure 6.4: BDAT trained with German dataset.

In Figure 6.1 and Figure 6.2, we see that the features for different accented speech are
rotations of the standard speech. For each accent, figures are narrowly scattered. After
applying different DAT methods, the features from different accents either mixed (e.g.
Figure 6.3, Figure 6.5, and Figure 6.10) or lie as the concentrated rotation of the standard
speech (e.g. Figure 6.6, Figure 6.8, and Figure 6.9).

It is interesting to see that whether the features from different accents are visually
indistinguishable does not imply the performance of different models. For example, MDAT
with DC1 achieves the best performance over all models in German experiments, while
MDAT with DC2 performs the worst. However, when we compare Figure 6.6 and Fig-
ure 6.10, MDAT with DC2 generates indistinguishable features while features generated
by MDAT with DC1 are clearly distinguishable
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MDAT with GRL and RNN classifier in FR

10
5
Accents
® standard
Belgique
o ® Bénin
e canada
La_Réunion
5 ©  sud Ouest
Suisse
-10

MDAT with GRL and RNN classifier in DE

Accents
standard
Alemanischer
Niederrhein
Osterreichisches
Ruhrpott
Saarland
Nordrhein_Westfalen

Figure 6.5: MDAT with GRL+RNN trained with French Figure 6.6: MDAT with GRL+RNN trained with Ger-
man dataset.

dataset.
MDAT with Uniform Vec and RNN classifier in FR
15
10
Accents
5 ® standard
Belgique
o] = ® Bénin
® Canada
La_Réunion
-5 ®  sud Ouest
Suisse
-10
=1
-15 -10 -5 0 5 10 15

MDAT with Uniform Vec and RNN classifier in DE

-15 -10 -5 o 5 10 15

Accents
standard
Alemanischer
Niederrhein
Osterreichisches
Ruhrpott
saarland
Nordrhein_Westfalen

Figure 6.7: MDAT with Uniform Vec trained with Figure 6.8: MDAT with Uniform Vec trained with Ger-
man dataset.

French dataset.

MDAT with GRL and Linear classifier in FR

20
15
3 Accents
5 ® standard
Belgique
0 ® Bénin
® Ccanada
5 La_Réunion
®  sud Ouest
B Suisse
-15
-20

MDAT with GRL and Linear classifier in DE

Accents
standard
Alemanischer
Niederrhein
Osterreichisches
Ruhrpott
saarland
Nordrhein_Westfalen

Figure 6.9: MDAT with GRL + Avg trained with French Figure 6.10: MDAT with GRL + Avg trained with Ger-
man dataset.

dataset.
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6.3 ERROR ANALYSIS: BENIN AND CANADA AS EXAMPLES

38 -> les ==> la

31 -> a ==> <eps>
28 -> sur ==> sous
28 -> d ==> de

est ==> <eps>

OO U WN P
oo
o))
|
\Y%

24 -> et ==> <eps>
24 -> <eps> ==>1
23 -> aux ==> au
20 -> dans ==> d
10: 18 -> est ==> a
11: 12 -> 1 ==> <eps>
12: 12 -> de ==> du
13: 12 -> des ==>d
14: 11 -> 1 ==> les
15: 9 -> leur ==> la
16: 8 -> un ==> <eps>
17: 8 -> <eps> ==> qu
18: 8 -> ces ==> ses
19: 8 -> d ==> <eps>
20: 7 -> de ==> <eps>

Table 6.3: The top-20 confusion pairs in the Bénin accent of the baseline.

We have observed a higher WER for Bénin and Canada in Table 4.3, before and after
the application of DAT. Therefore, we use the SCTK toolkit [59] to analyze the recognition
results of these two accents in the baseline and DAT experiments. The error analysis
will provide a better insight into what DAT improves and what hampers the further
improvement of a specific accented speech.

1: 26 -> du ==> de

2: 24 -> de ==> <eps>
3: 21 -> le ==> la

4: 19 -> ils ==> il
5: 18 -> de ==> des
6: 16 -> a ==> <eps>
7: 15 -> et ==> <eps>
8: 14 -> le ==> les
9: 12 -> de ==>d

10: 12 -> la ==>1

11: 11 -> un ==> <eps>
12: 10 -> le ==> <eps>
13: 9 -> un ==> le
14: 9 -> au ==> aux
15: 9 -> en ==> <eps>
16: 8 -> 1 ==> <eps>
17: 8 -> ses ==> ces
18: 8 -> en ==> un
19: 8 -> il ==> ils
20: 8 -> aux ==> au

Table 6.4: The top-20 Confusion pairs in the Canada accent of the baseline.

In Table 6.3 and Table 6.4, one of the major errors is that both the references (left side
of the arrow) and the hypotheses (right side of the arrow) have the same starting substring,
but the subsequent substrings are different. This fits the common sense of regional accented
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speech, as words with the same starting substring are likely to have similar pronunciations
and the regional accented speech will make these words indistinguishable.

1: 24 -> les ==> la

2: 13 -> est ==> <eps>
3: 12 -> et ==> <eps>
4: 8 -> d ==> de

5: 8 -> a ==> <eps>
6: 7 -> 1 ==> <eps>
7: 7 -> un ==> <eps>
8: 6 -> aux ==> au

9: 6 -> 1il ==> elle
10: 6 -> la ==>1

11: 6 -> sur ==> sous
12: 5 -> de ==> <eps>
13: 5 -> des ==>4d

14: 5 -> ses ==> ces
15: 5 -> sur ==> <eps>
16: 4 -> <eps> ==> en
17: 4 -> <eps> ==> et
18: 4 -> <eps> ==> le
19: 4 -> au ==> <eps>
20: 4 -> au ==> aux

Table 6.5: The top-20 Confusion pairs in the Bénin accent of the MDAT model with GRL+RNN.

1: 15 -> de ==> <eps>
2: 10 -> ces ==> ses
3: 10 -> de ==> des
4: 10 -> le ==> la

5: 9 -> le ==> les
6: 8 -> et ==> <eps>
7: 8 -> la ==>1

8: 8 -> un ==> <eps>
9: 8 -> a ==> <eps>
10: 7 -> <eps> ==> a
11: 7 -> 1ils ==> il
12: 7 -> le ==> <eps>
13: 6 -> d ==> de

14: 6 -> du ==> <eps>
15: 5 -> au ==> aux
16: 5 -> du ==> de
17: 5 -> est ==> <eps>
18: 5 -> la ==> les
19: 5 -> les ==> des
20: 5 -> ses ==> ces

Table 6.6: The top-20 Confusion pairs in the Canada accent of the MDAT model with GRL+RNN.

We show the confusion pairs of Bénin and Canada after training the MDAT model
with GRL+RNN in Table 6.5 and Table 6.6. We can tell that after training with DAT, the
misrecognition of the words that have the same starting substring is greatly mitigated. The
number of such misrecognition in the top-20 confusion pairs has reduced significantly for
both of the accents. This demonstrates the effectiveness of the DAT.

However, both of these two accents still suffer from higher WER than other accents.
This is caused by the misrecognition of the empty symbol <eps>. This leads to the majority
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of confusion pairs. Some words are aligned as empty symbols, while some positions that
should be aligned to empty symbols are actually aligned as words. I believe this is related to
the ineffective internal language model and can be alleviated by incorporating an external
language model.



