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Abstract

As the amount of information available in the world grows, Information Retrieval
(IR) systems have become an integral part of day to day life. They determine what
subset of the large pool of information is shown to people. IR algorithms determine
which items should be returned in response to a query and rank the results in a
ranked list.

Recently, concerns about the fairness of IR algorithms have surfaced. In par-
ticular, research is being done into whether IR algorithms are fair to producers,
people or organizations that provide the items that are retrieved by IR algorithms.
The higher an item is in the ranked list, the more attention it receives from users.
This attention translates to benefits for the producers, e.g. fame or financial com-
pensation.

In this thesis we investigate the fairness of IR algorithms in terms of a specific
measure for provider fairness: the Expected Exposure Loss (EEL). This measure
measures whether the providers of equally relevant items receive the same amount
of attention in expectation. EEL was first proposed as part of the 2020 TREC Fair
Ranking track (FAIR-TREC), which also provided a matching dataset. We investigate
for two IR systems whether they achieve fairness on this dataset. We conduct a
failure analysis and propose improvements for both systems.

We find that for a system that always returns the same ranking it is not useful
to improve its accuracy, but rather that it benefits most from fairness-aware post-
processing. By contrast, a fairness-aware system does benefit from more emphasis
on accuracy. We note that the generalizability of our investigation is limited due to
the small size of the FAIR-TREC 2020 dataset and recommend that a larger dataset
be made available.
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1
Introduction

Information Retrieval (IR) systems are an indispensable part our day-to-day lives.
IR algorithms are at the core of our access to information: they determine the
results we get on Google, the songs we see on Spotify, the videos we get recom-
mended on YouTube, and so on. The ubiquity of IR systems has motivated a recent
increase in attention for the socio-technical dimensions of IR algorithms, such as
fairness, accountability, and transparency, as evidenced by the establishment of
the FACTS-IR workshop at SIGIR 20191, the acceptance of multiple IR-oriented pa-
pers at FAccT2 from 2018 onward, and a growing body of literature on the topic in
general.

Most people are familiar with IR and related systems from the point of view of the
user. A user is a person who has a certain information need, such as “I wonder if it is
going to rain today?”, and who interacts with an IR system to meet their information
need. However, IR and related systems often have further stakeholders. Burke [12]
first identified these stakeholders in the context of recommender systems. Aside
from the users3 there are the providers and the platform itself.

Providers are people or organizations that create or otherwise supply the sub-
jects that are ranked and presented to users, for example an artist who makes their
songs available on a streaming platform where they are returned in response to a
user’s query. Providers can also themselves be subjects, for example on job search
or networking platforms such as LinkedIn. On such websites a person makes a pro-
file representing themselves, which then is returned in response to a query from
someone looking for job applicants.

The platform is the interface between the user and the provider. It comprises
amongst other things a collection of subjects, the IR algorithm that selects subjects
1fate-events.github.io/facts-ir/
2facctconference.org
3Burke [12] talks about consumers rather than users. We use the term users to signify that we are not
only talking about commercial platforms.

1

fate-events.github.io/facts-ir/
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2

Figure 1.1: Interaction between user, platform, and provider.

for rankings, and the means of entering queries and inspecting results. Figure 1.1
illustrates the relationship between user, platform, and providers.

Each stakeholder derives benefits from participating in the system. For the
user, the benefit is to receive useful information and satisfy their information need.
For providers the benefit is to receive e.g. financial compensation, acclaim, or
opportunities [12]. For platforms, the benefit is usually financial, e.g. ad revenue or
subscriptions, but it can also be more esoteric as in the case of non-profit academic
search engines that exist to facilitate further research4.

Historically, the focus of IR has been to optimize ranking algorithms for the
benefit of users. The benefit is most commonly measured in terms of a system’s
effectiveness (also called utility); its ability to retrieve the right subjects in response
to a query [17]. Effectiveness can be measured in different ways depending on the
underlying beliefs about the user’s behavior. For example, a user may be looking
for a specific website, say “YouTube”. In that case, they only need to receive one
result, namely “youtube.com”, and preferably it should be the top result. A suit-
able measure for this scenario would be Mean Reciprocal Rank (MRR) [48], which
is higher if a relevant subject occurs at a better rank. At their core, most IR algo-
rithms optimize rankings by predicting a score for each subject that represents the
probability of relevance to the user, and then ordering the subjects by decreasing
score [42]. This approach is seated in the Probability Ranking Principle (PRP) [31].
It has been shown that ranking according to PRP optimizes most commonly used
effectiveness measures [32], given that the relevance criterion is binary and the
relevance judgments of subjects within a ranking are independent of each other
[37].

Although PRP can be suitable to optimize for effectiveness, it has been shown
that optimizing rankings for effectiveness alone can lead to unfair outcomes for
providers. Providers only receive benefits when their subjects receive the users’
4E.g. arxiv.org.

arxiv.org
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attention [4]: a user has to listen to your song on a streaming platform before you
get royalties; a user has to read your academic paper for you to gain acclaim. The
expected amount of attention subjects receive is called exposure [51]. For most
applications, attention and exposure can be used interchangeably. In this thesis we
do not make the distinction unless necessary. In addition, we do not distinguish
between exposure for a subject and benefit for its provider unless needed.

The reason not all subjects in a ranking receive the same amount of exposure is
due to position bias. It has been shown that users tend to pay the most attention to
the subjects at the top of the ranking, even when those subjects are not the most
relevant [16]. In addition, most modern search systems do not display multiple
subjects per rank, even when both subjects are equally relevant. Instead, one is
always ranked better than the other and thus receives more attention.

To illustrate the position bias consider the following function for the amount of
exposure a subject 𝑑 receives in ranking 𝜋:

exposure(𝑑, 𝜋) = 1/𝜋(𝑑), (1.1)

where 𝜋(𝑑) is the rank of the document. Now let’s say we have 𝑑1 and 𝑑2
with 𝑟𝑒𝑙(𝑑1) = 1 and 𝑟𝑒𝑙(𝑑1) = 0.99. The difference in relevance is 0.01, but the
difference in exposure is 0.5.

The impact of the position bias effect is exacerbated when the same ranking
is returned multiple times, for instance with common queries like covid 195,
queries repeated over time [4] like activities near me today , or when
using Learning-to-Rank (LtR) algorithms that propagate biases embedded in their
training data [41].

The recent attention on fairness in IR has given rise to a multitude of fairness
measures and fair IR algorithms. Different attempts have already been made at
bringing structure to this emerging field of research. For example, Zehlike, Yang,
and Stoyanovich [51] provide a taxonomy of different notions of provider fairness.
In addition, in 2019 the first TREC Fair Ranking track (FAIR-TREC) was organized6

with the goal of developing a benchmark to jointly evaluate IR systems in terms of
fairness and effectiveness [5]. Since FAIR-TREC is the only existing benchmark for
fair IR we use it as the benchmark for this thesis.

Subsequent editions of FAIR-TREC have expanded the task, datasets, and mea-
sures under consideration. In this thesis we focus primarily on fairness as it is
defined in FAIR-TREC 2020. We go deeper into the precise fairness definition in
Section 2.3.4. For now it is important to know that FAIR-TREC 2020 is concerned
with amortized meritocratic group fairness. We go into the meaning of each of
these terms further in Section 2.3.1, but in short:

• Amortized fairness refers to the fact that the fairness is measured across
multiple rankings.

• Meritocratic fairness refers to the notion that providers should receive atten-
tion proportional to the relevance of their subjects to a query [42, 4].

5Or whichever plague is most topical for the reader.
6https://fair-trec.github.io/2019/index.html
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• Group fairness means that rankings should be fair towards groups of providers.

At the time of starting this thesis, the only editions of FAIR-TREC that were
complete and had been published were FAIR-TREC 2019 and 2020. The reason we
focus on the 2020 edition is that since it resolves small issues that were present
during FAIR-TREC 2019, such as a smaller corpus or missing documents in the
training and evaluation data. By 2020 the track had also started receiving more
submissions. All in all, FAIR-TREC is a more refined benchmark.

1.1. Research objective
The goal of this thesis is to contribute to the developing field of fair IR in two ways.
The first way is to contribute directly by improving existing algorithms. We select
two submissions to FAIR-TREC 2020 and identify a number of ways in which we
can enhance their performance.

The other way is to contribute on a meta-level. One of the core tools in the IR
research toolbox is robust evaluation of IR systems [17, Section 8.1]. We contribute
to the practice of robust evaluation by identifying strengths and weaknesses of the
FAIR-TREC 2020 track in particular.

To summarize, we address the following research question:

RQ: Which factors affect the fairness of amortized rankers in the context of FAIR-
TREC 2020?

1.2. Scientific contributions
We analyze two IR systems with the FAIR-TREC 2020 benchmark. We identify
flaws of both the rankers and the FAIR-TREC benchmark, propose and implement
improvements, and determine significant influences on fairness. Further contribu-
tions include:

• Adapted failure analysis method for amortized fair rankers

• Insights into the strenghts and weaknesses of the FAIR-TREC 2020 benchmark

• Improvements to two amortized fair rankers

• Codebase for reproducibility purposes7

1.3. Toy example: Ranking in an academic search
engine

Throughout this thesis we use the following toy example to illustrate the different
rankers. The toy example is based on FAIR-TREC 2019 and 2020 [5, 6].

Consider an academic search engine that returns documents in response to a
user query. Each document has one or more authors. Table 1.1a shows a dataset
7github.com/pilmus/thesis

github.com/pilmus/thesis
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Doc 𝑟𝑒𝑙 𝜌 Authors

𝑑1 1 1.0 𝑎1, 𝑎3
𝑑2 1 0.75 𝑎2, 𝑎4
𝑑3 0 0.5 𝑎3
𝑑4 0 0.25 𝑎4, 𝑎5

(a) A dataset 𝒟 of 4 documents. Each
document has one or more authors;
each author has a value for the

h-index and econ level attributes. 𝑟𝑒𝑙
is the true relevance label of each
document, 𝜌 is the estimated
probability of relevance.

𝜋∗1 𝜋∗2 𝜋∗3 𝜋∗4
𝑑1 𝑑1 𝑑2 𝑑2
𝑑2 𝑑1 𝑑1 𝑑1
𝑑3 𝑑4 𝑑3 𝑑4
𝑑4 𝑑3 𝑑4 𝑑3

(b) All optimal (all
relevant documents
before all non-relevant
documents) rankings of

the dataset.

Author H-level Econ-level

𝑎1 High Advanced
𝑎2 High Developing
𝑎3 Low Advanced
𝑎4 Low Developing
𝑎5 High Advanced

(c) Group membership of each author.

Table 1.1: A toy example to illustrate various concepts in this thesis.

of documents and their authors. Each author has two grouping attributes: h-index
and level of economic development of the country of affiliation. Each document
has a true binary relevance label 𝑟𝑒𝑙(𝑑) and an estimated probability of relevance
𝜌(𝑑) relative to a query.

Table 1.1b shows all optimal rankings, that is all rankings that have all relevant
documents before all non-relevant documents. 𝜋1 and 𝜋2 give all of the exposure to
a single h-index based group, namely h-level=High, but they divide the exposure
equally among the econ-level groups econ=High and econ=Low.

1.4. Outline
This thesis is structured as follows. We give background information about the
FAIR-TREC 2019 and 2020 benchmarks in Chapter 2. We select two rankers to
analyze in depth. We describe the selection process and the selected rankers in
Chapter 3. We conduct a failure analysis of the rankers in Chapter 4 and propose
improvements to remedy detected failures in Chapter 5. We finish with a conclusion
and recommendations for future work in Chapter 6.



2
The TREC Fair Ranking Track

We analyze fair IR algorithms with the help of the benchmark developed the TREC
Fair Ranking track. The goal of this track is to help with the development of al-
gorithms that are fair to different groups of providers [5]. The providers in this
specific scenario are the authors of each document. From this moment on, we
use providers and authors interchangeably. FAIR-TREC was first organized in 2019
and every year since. Every edition has a corpus, fairness measures, and a task
definition.

We use the corpus, measures, and task of FAIR-TREC 2020 in particular. FAIR-
TREC 2020 was one of the two editions of the track to have been completed and
published at the time of writing this thesis. Compared to the 2019 edition, it resolves
small issues such as missing documents in the corpus. By 2020 the track had also
gained more recognition, resulting in a larger number of submissions. Even so, we
also describe the components of FAIR-TREC 2019 to give the reader insight into
how the benchmark evolved and to give them the full background required for the
next chapter.

This chapter is organized as follows. In Section 2.1 we describe the specific tasks
participants were asked to carry out. We describe the corpus in Section 2.2 and in
particular the annotation process of the training and test data in Section 2.2.1. In
Section 2.3 we go into great detail into the evaluation measures for both tracks. We
describe the underlying browsing model and explain how we go from the browsing
model to the measures themselves. We describe the evaluation measure for FAIR-
TREC 2019 in Section 2.3.3 and the measure for FAIR-TREC 2020 in Section 2.3.4.

2.1. Task
FAIR-TREC 2019 and 2020 had two tasks: a retrieval task and a reranking task.
The goal of the retrieval task is to select, rank, and return documents from the full
corpus. The goal of the reranking task is to take a smaller set of documents for each
query and put those in the optimal order. Retrieval typically is more computationally

6
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intensive than reranking. In this thesis we focus on the reranking task.
The aim of the reranking task was to simulate an academic search engine. The

task was to rerank documents that had been retrieved in response to queries that
were submitted to a production academic search engine. The goal was to rerank
each document in such a way that exposure would be fairly distributed across dif-
ferent groups of authors while maintaining a certain level of relevance towards
consumers. However, the exact grouping of authors was unknown at system sub-
mission time. The idea then was to create IR systems that are robust to unknown
groupings [5].

Unknown groupings can occur in real life for a number of reasons. The attribute
on which we want to group could be unknown or unknowable, e.g. if we want to
group people by gender but this information is not disclosed. We may also want
to be fair to all groupings, in which case there is not a single attribute to base the
grouping on. Fair ranking that is robust to unknown groupings is a way to remedy
these issues.

2.2. Corpus
The corpora for FAIR-TREC 2019 and FAIR-TREC 2020 are snapshots of the Seman-
tic Scholar Open Corpus (SSOC) from the Allen Institute for Artificial Intelligence [1].
The documents in the corpus consist of abstracts and associated metadata for aca-
demic articles. In addition, a portion of the documents were annotated to be used
as training and test data. Listing 2.1c show the different pieces of information that
come together to form a sin

We use the versions of the corpus as they were available at the time the submis-
sions to the respective tracks were produced. For FAIR-TREC 2019 this is the version
from 16-08-2019; for FAIR-TREC 2020 this is the version from 27-05-2020. We re-
trieve the corpora by following the official track instructions 1 with some changes
where necessary, see Appendix A.1. Table 2.1 contains details on the corpora. As
we can see, corp2020 is roughly 4 times larger than corp2019. This solidifies
our choice to focus on the reranking task, since the larger a corpus is the harder
the retrieval task becomes.

We indexed the corpora into Elasticsearch2 with the standard analyzer and tok-
enizer. The fields we indexed are listed in Table 2.2.

2.2.1. Annotated training and test sets
Recall that the goal of FAIR-TREC 2019 and 2020 is to provide fairness for arbitrary
groups of providers. To facilitate developing algorithms that are fair in this way parts
of the corpora were annotated with two pieces of information: relevance labels that
indicate how relevant a document is to a query, and a group label that indicates
which group the document belongs to.

The queries whose documents were annotated were selected from real query
1github.com/fair-trec/fair-trec-tools
2elastic.co/guide/index.html

github.com/fair-trec/fair-trec-tools
elastic.co/guide/index.html
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{
”qid”: 68960,
”query”: ”arteterapia”,
”frequency”: 1.27e-05,
”documents”:

[
{

”doc_id”: ”
f5ec283a31ae68e07ca520771308947846608988
”, ”relevance”: 0

},
...

]
}

(a) The query text and frequence of query 68960 as well as the relevance of a document to this query.

{
”id”: ”f5ec283a31ae68e07ca520771308947846608988”,
”title”: ”Trabajar con las Emociones en arteterapia”,
”paperAbstract”: ”Emotions have a fundamental importance

in human development ...”,
”entities”: [],
”author_names”: [”Norman Duncan”],
”author_ids”: [”78317264”],
”inCitations”: 2,
”outCitations”: 0,
”year”: 2007,
”venue”: ””,
”journalName”: ””,
”journalVolume”: ”2”,
”sources”: [],
”doi”: ”10.5209/rev_ARTE.2007.v2.9757”,
”fields_of_study”: [”Psychology”]

}

(b) The indexed fields of the document in Elasticsearch.

{
”id”: ”f5ec283a31ae68e07ca520771308947846608988”,
”HLevel”: ”None”,
”EconLevel”: ”Advanced”

}

(c) The group annotations for the document.

Listing 2.1: Three pieces of information making up a fully annotated document: the relevance to a
query, the indexed fields, and the group annotations.
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Name Year Number
of documents

Number
of queries

corp2019 2019 46 947 044
corp2019train 2019 4490 652
corp2019test 2019 4027 635

corp2020 2020 186 723 411
corp2020train 2020 4649 200
corp2020train_split 2020 4187 180
corp2020val_split 2020 495 20
corp2020test 2020 4693 200

Table 2.1: The sizes of the corpora, training sets, and test sets for FAIR-TREC 2019 and 2020.

logs of queries submitted to the Semantic Scholar search engine3. The logs con-
tained queries that were issued to the search engine in an undisclosed period for
FAIR-TREC 2019 [5] and between February 14 2020 and April 27 2020 for FAIR-
TREC 2020 [6]. Because each query had to be annotated manually, a number of
filtering steps were used to select the most useful queries.

The documents for each selected query were annotated with two pieces of in-
formation: the relevance label and the country of operation of its authors [5, 6].
The relevance labels were derived from the number of clicks logged in the query
log. The click data was converted to binary relevance based on a threshold selected
by the track organizers. The country of operation of each author was determined
manually by NIST assessors.

The annotated training and test sets contain roughly the same number of doc-
uments, 4000 to 4500 documents each. However, in 2019 those documents were
divided over around 630 to 650 queries while in 2020 the number of queries was
200. To aid with training and evaluation in later parts of this thesis we further split
corp2020train into a 90/10 training/validation.

2.2.2. Example groupings
While the goal of FAIR-TREC 2019 and 2020 was to provide fairness to arbitrary
groups, the evaluation measures for both editions are computed across a specific
grouping as we will see in Sections 2.3.3 and 2.3.4. As such, to aid participants
in developing their rankers each edition of the track provided a sample grouping.
After submissions had been closed, the organizers of each edition also released a
second grouping which was used to evaluate the submissions.

The attributes for the groupings were the same for each year: there was a group
based on the h-index of the authors of each document, and a group based on the
economic development level of the country of origin. The economic development
level was derived from the country of affiliation as determined by the NIST assessors
3semanticscholar.org

semanticscholar.org
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Field Type 2019 2020

author_ids text x x
author_names text x x
doi text x x
entities text x
inCitations numerical x x
outCitations numerical x x
journalName text x x
journalVolume text x x
paperAbstract text x x
sources text x x
title text x x
venue text x x
year numerical x x
fieldsOfStudy text x

Table 2.2: The fields for the Elasticsearch indices of corp2019 and corp2020.

combined with information from the International Monetary Fund 4. We refer to the
h-index-based grouping as the H-level grouping 𝒢ℎ and to the economic-level based
grouping as the Econ-level grouping 𝒢𝑒.

In 2019, the H-level group had five levels: ℎ < 5, 5 ≤ ℎ < 15, 15 ≤ ℎ < 30,
ℎ ≥ 30, and None. The Econ-level group had three levels: Advanced, Developing,
and None. In 2019, a paper could belong to multiple groups if its authors belonged
to different groups. E.g.: if a paper has one author from an Advanced country and
one from a Developing country, the paper would be annotated with both Developing
and Advanced.

In 2020, the H-level group had four levels: High, Mixed, Low, and None. The
Econ-level group also had four levels: Advanced, Mixed, Developing, and None.

As we see later, FAIR-TREC 2019 and 2020 use different evaluation measures,
but both measures take a grouping as an input. We assume that the grouping of
the respective year is always used with the measure of the respective year, e.g. we
do not distinguish between 𝒢𝑒,2019 and 𝒢𝑒,2020 because 𝒢𝑒,2019 is only used with the
Unf measure and 𝒢𝑒,2020 is only used with the EEL measure.

The groupings are summarized in Table 2.3.

2.3. Evaluation
Measuring the performance of systems is an integral part of IR research; without
evaluation it is impossible to improve systems in a targeted and systematic manner
[17, Ch. 8]. As such, an integral part of the FAIR-TREC benchmark is the evaluation
measure.

IR measures are based on some underlying perception of the behavior of the
4imf.org

imf.org
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Attribute Level Count

H-index ℎ < 5 1062
5 ≤ ℎ < 15 1667
15 ≤ ℎ < 30 1295
ℎ ≥ 30 1065
None 140

Economic level Advanced 2502
Developing 445
None 57

(a) FAIR-TREC 2019.

Attribute Level Count

H-index High 774
Low 426
Mixed 849
None 2777

Economic level Advanced 3374
Mixed 543
Developing 243
None 533

(b) FAIR-TREC 2020.

Table 2.3: Number of documents in each of the groups based on h-index and economic development
level of the country of origin for FAIR-TREC 2019 and 2020.

user, as well as an idea of what constitutes good performance by the system. For
example, the Expected Reciprocal Rank (ERR) measure assumes that users are less
likely to inspect documents lower in a ranking if they are satisfied with documents
higher in the ranking [14]. Correspondingly, for a good performance in terms of
ERR the most relevant documents need to be at the top of a ranking. This is in
contrast to a measure like precision (P), which simply measures which fraction of
retrieved documents is relevant without regard of the relative position of relevant
and non-relevant documents [30, Eq. 8.1].

ERR and P only look at the utility of a ranking to the user. Fairness measures
additionally are based on a particular notion of fairness. Zehlike, Yang, and Stoy-
anovich [51] created a taxonomy of types of fairness which includes such distinc-
tions as group versus individual fairness. However, as the field of fair IR is still
developing no universal agreement on the types of fairness has of yet been reached.

In this section we describe the evaluation measures used in FAIR-TREC 2019
and 2020. We first go into the notion of fairness underpinning each measure in
Section 2.3.1. We continue in Section 2.3.2 with a description of the ERR browsing
model which forms the basis for the fairness measures in FAIR-TREC 2019 and
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2020. Then we describe the particular fairness measures for FAIR-TREC 2019 and
FAIR-TREC 2020 in Section 2.3.3 and Section 2.3.4 respectively.

2.3.1. Amortized meritocratic group fairness
As mentioned in Chapter 1, FAIR-TREC 2019 and 2020 aim to achieve amortized
meritocratic group fairness. We now go deeper into what each of these terms
means.

Amortized fairness One of the ways in which fairness can arise is through the
position bias effect. Recall from Chapter 1 that position bias arises from the fact
that users tend to pay more attention to highly ranked documents, even when those
documents are not the most relevant [16].

Biega, Gummadi, and Weikum [4] were the first to note that it is not possible to
combat the position bias effect within a single ranking, at least not when each rank
can only contain one document. As a solution they propose to amortize the fairness
measure across multiple rankings. Or in other words: each document should be
treated fairly on average.

Meritocratic fairness There are different ways in views on what constitutes fair
treatment. We could require that all groups are treated the same regardless of
attributes like group size, an approach called statistical parity (see e.g. [33]). We
could distribute exposure proportionally to the size of a group to achieve demo-
graphic parity (see e.g. [42, Sec. 4.1]). Or we could require that the amount of
exposure a document or group of documents receives is proportional to how rele-
vant those documents are to users, a concept we’ll call meritocratic fairness [42,
4].

Group fairness Providers can be assigned to groups according to any possible
attribute, e.g. gender, race, country of origin, eye color, etc. Attributes can be
defined to determine a protected group [41], e.g. gender if having a particular
gender would be penalized as happened with an algorithm Amazon used for a time
to select candidates for job interviews [18]. It is also possible to not define a
protected group, in which the goal is simply to be fair to each of the groups [52].

2.3.2. Browsing model: Extended Expected Reciprocal Rank
FAIR-TREC 2019 and FAIR-TREC 2020 use the Extended Expected Reciprocal Rank
(e-ERR) browsing model [14, sec. 7.2] to determine the amount of exposure a
document receives at a rank. Under e-ERR, the exposure received by the document
at rank 𝑗 is equal to the probability that the user did not stop browsing before
reaching the current document. A user may stop browsing either because they have
found a relevant document or because they got frustrated and stopped looking.
Therefore, the probability the user has already stopped browsing in turn depends
on how relevant the earlier documents were to the query.
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Document exposure The exposure on a document 𝑑 at rank 𝑗 in a ranking 𝜋
for query 𝑞 is given by

e-ERR(𝑑, 𝜋, 𝑞) = 𝛾𝜋(𝑑)−1
𝜋(𝑑)−1

∏
𝑗=1

1 − 𝑓(𝑟𝑒𝑙(𝜋𝑗 , 𝑞))) (2.1)

where 𝛾 is the so-called patience parameter that represents how likely the user
is to give up if they do not find a result they like, 𝑓(𝑥) = 𝜅𝑥 is a function that
converts the relevance 𝑥 to a probability of stopping at this document, 𝑟𝑒𝑙(𝑑, 𝑞)
is the relevance of a document to query 𝑞, and 𝜋(𝑑) is the rank of document 𝑑
ranking 𝜋 and 𝜋𝑗 is the document at rank 𝑗.

Table 2.4 shows for each document in 𝜋∗1 in Table 1.1b the amount of exposure
it receives under e-ERR with 𝛾 = 0.5 and 𝑓(𝑥) = 0.5 ⋅ 𝑥.

Document rank 𝑟𝑒𝑙 e-ERR

𝑑1 1 1 1.0
𝑑2 2 1 0.25
𝑑3 3 0 0.125
𝑑4 4 0 0.0625

Table 2.4: The amount of exposure each document in 𝜋∗1 of the toy example in Table 1.1b receives
under e-ERR with 𝛾 = 0.5 and 𝑓(𝑥) = 0.5 ⋅ 𝑥.

Author exposure FAIR-TREC 2019 and 2020 are concerned with fairness to-
wards groups of authors. Authors receive exposure from each document that they
have written. Therefore, the exposure for a single author 𝑎 over a ranking 𝜋 is

e-ERR𝑎(𝑎, 𝜋, 𝑞) =
|𝜋|

∑
𝑗=1
[e-ERR(𝜋𝑗 , 𝜋, 𝑞)] 𝕀 (𝜋𝑗 ∈ 𝒟(𝑎)) , (2.2)

where 𝒟(𝑎) are the documents in the corpus 𝒟 that were written by 𝑎.
Table 2.5 shows for each author how much exposure they receive from 𝜋∗1 in

Table 1.1b under e-ERR𝑎 with 𝛾 = 0.5 and 𝑓(𝑥) = 0.5 ⋅ 𝑥. We see that because 𝑎3
and 𝑎4 contributed to multiple documents, they receive more exposure than 𝑎1 and
𝑎2.

Group exposure Authors can further be grouped together based on certain at-
tributes such as their country of affiliation. The group exposure is the first point of
divergence between the fairness measures used for FAIR-TREC 2019 and 2020.

We first go into the group exposure for FAIR-TREC 2019. For FAIR-TREC 2019,
the group exposure over a single ranking is given by
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Author e-ERR𝑎
𝑎1 1.0
𝑎2 0.25
𝑎3 1.125
𝑎4 0.3125
𝑎5 0.0625

Table 2.5: The amount of exposure each author receives in 𝜋∗1 of the toy example in Table 1.1b
under e-ERR with 𝛾 = 0.5 and 𝑓(𝑥) = 0.5 ⋅ 𝑥.

e-ERR2019𝑔 (𝑔, 𝜋, 𝑞) =
∑𝑎∈𝒜(𝑔) e-ERR𝑎(𝑎, 𝜋, 𝑞)

∑𝑔′∈𝒢 ∑𝑎∈𝒜(𝑔′) e-ERR𝑎(𝑎, 𝜋, 𝑞)
. (2.3)

Here 𝒜(𝑔) are all of the authors that belong to group 𝑔. e-ERR2019𝑔 defines the
exposure for a single group 𝑔 as a fraction of the total exposure received by all
groups.

For FAIR-TREC 2020, the group exposure over a single ranking is given by

e-ERR2020𝑔 (𝑔, 𝜋, 𝑞) = ∑
𝑎∈𝒜(𝑔)

e-ERR𝑎(𝑎, 𝜋, 𝑞). (2.4)

Note the difference with e-ERR2020𝑔 : the exposure is no longer a fraction of the
total amount available.

Table 2.6 shows for each group how much exposure it receives from 𝜋∗1 in Ta-
ble 1.1b under e-ERR𝑔 using either the H-level or the Econ-level grouping. The
group memberships of each author are shown in Table 1.1c. Like in the previous
examples, 𝛾 = 0.5 and 𝑓(𝑥) = 0.5 ⋅ 𝑥. We see that the group membership makes
a difference in how even the distribution of exposure across groups seems; when
measuring with e-ERR2019𝑔 for the H-level group the difference between the High
and the Low level is 0.04 while the difference for Econ-level group is 0.63.

We also note that while the values for e-ERR2019𝑔 and e-ERR2020𝑔 are different,
since each value of e-ERR2019𝑔 is scaled by the same constant, the ratio between
the amount of exposure on each group remains the same.

Group Level e-ERR2019𝑔 e-ERR2020𝑔

H-level High 0.48 1.3
Low 0.52 1.4

Econ-level Advanced 0.83 2.3
Developing 0.20 0.56

Table 2.6: The amount of exposure each group receives in 𝜋∗1 of the toy example in Table 1.1b under
e-ERR with 𝛾 = 0.5 and 𝑓(𝑥) = 0.5 ⋅ 𝑥. Group membership is as in Table 1.1c.
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Exposure over a sequence of rankings Since we want to measure amortized
fairness we need to be able to compute exposure over a sequence of rankings in
addition to over a single ranking. For each of the measures of exposure covered
thus far, the exposure over a sequence of rankings Π is simply the sum of the
exposure over each individual ranking.

The ranking sequence equivalents of each of the previous measures are:

e-ERR(𝑑, Π) = ∑
𝜋∈Π

e-ERR(𝑑, 𝜋, 𝑄(𝜋)) (2.5)

e-ERR𝑎(𝑎, Π) = ∑
𝜋∈Π

e-ERR𝑎(𝑎, 𝜋, 𝑄(𝜋)) (2.6)

e-ERR2019𝑔 (𝑔, Π) = ∑
𝜋∈Π

e-ERR2019𝑔 (𝑔, 𝜋, 𝑄(𝜋)) (2.7)

e-ERR2020𝑔 (𝑔, Π) = ∑
𝜋∈Π

e-ERR2020𝑔 (𝑔, 𝜋, 𝑄(𝜋)) (2.8)

Here 𝑄 is the set of all queries and 𝑄(𝜋) is the particular query in response to
which 𝜋 was returned. We make this distinction clear because Π can be created in
response to the same or in response to different queries. However, whenever it is
clear that all rankings in Π were returned in response to the same query, we omit
the 𝑄(𝜋) term or simply use 𝑞.

2.3.3. FAIR-TREC2019: Unf
The fairness measure for FAIR-TREC 2019 is based on the concept of Equity of
Attention [4]. The idea is that each group of documents should receive exposure
proportional to its relevance across a sequence of rankings. The rankings can be
in response to different information needs, that is: different queries, different time
points, different users, etc.

The exposure across a sequence Π is computed as in Equation (2.7). Addition-
ally, we need to compute the relevance of documents, groups, and authors. The
relevance of an 𝑎 for a single ranking 𝜋 depends on the relevance of each of the
documents the author has written and on the query 𝑞 in response to which the
ranking was returned.

ℛ𝑎(𝑎, 𝜋, 𝑞) = ∑
𝑑∈𝒟(𝑎)

𝑓(𝑟𝑒𝑙(𝑑, 𝑞)), (2.9)

Here again 𝒟(𝑎) is the set of documents written by 𝑎. The relevance 𝑟𝑒𝑙 can
be computed in different ways; for now it is assumed to be known.

Table 2.7 shows for each author how relevant they are based on the relevances
and the rankings in Table 1.1. As before, 𝑓(𝑥) = 0.5 ⋅ 𝑥.

The relevance of a group of authors is defined similarly as the exposure, namely
as a fraction of the total amount of relevance of all documents:
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Author ℛ𝑎
𝑎1 0.5
𝑎2 0.5
𝑎3 0.5
𝑎4 0.5
𝑎5 0.0

Table 2.7: The relevance of each author computed as in Equation (2.9) based on 𝜋∗1 of the toy
example in Table 1.1b and the relevance labels in Table 1.1a.

ℛ𝑔(𝑔, 𝜋, 𝑞) =
∑𝑎∈𝒜(𝑔)ℛ𝑎(𝑎, 𝜋, 𝑞)

∑𝑔′∈𝒢 ∑𝑎∈𝒜(𝑔′)ℛ𝑎(𝑎, 𝜋, 𝑞)
. (2.10)

Table 2.8 shows for each group how relevant they based on the relevances and
the rankings in Table 1.1. As before, 𝑓(𝑥) = 0.5 ⋅ 𝑥. We see that each group has
the same relevance, even though High for the H-level group and Advanced for the
Econ-level group have one more member. This is because the document written by
𝑎5 is not relevant.

Group Level ℛ𝑔
H-level High 0.5

Low 0.5
Econ-level Advanced 0.5

Developing 0.5

Table 2.8: The relevance of each group computed as in Equation (2.10) based on 𝜋∗1 of the toy
example in Table 1.1.

As with exposure, the relevance of a group of authors across a sequence of
rankings is simply the sum of the relevance of each individual ranking:

ℛ𝑔(𝑔, Π) = ∑
𝜋∈Π

ℛ𝑔(𝑔, 𝜋, 𝑄(𝜋)). (2.11)

The fairness measure used is the difference between e-ERR𝑔 and ℛ𝑔. It does
not have an official name, but here we call it Unf:

Unf(𝑔, Π) = e-ERR𝑔(𝑔, Π) − ℛ𝑔(𝑔, Π) (2.12)

The difference between exposure and relevance for all groups is the 𝑙2-norm of
the Unf for each individual group:

Unf(𝒢, Π) = √∑
𝑔∈𝒢

Unf(𝑔, Π)2. (2.13)
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Because we take the 𝑙2 norm Unf penalizes both over and under exposure, ie.
the value grows both when a group gets too much exposure relative to its relevance
and when it gets too little. This is suitable for a scenario where we do not know the
groupings in advance; the safest bet is to allocate the perfect amount of exposure
instead of over-exposing some groups. Intuitively, Unf corresponds to a realistic
browsing scenario where a single user issues queries for multiple topics [19].

Table 2.9 shows the value of Unf as defined in Equation (2.12) for each group
in Table 1.1 across all the rankings in Table 1.1b, as well as the overall Unf as
defined in Equation (2.13). Where relevant, 𝛾 = 0.5 and 𝑓(𝑥) = 0.5 ⋅ 𝑥. We see
that although for both the H-level group and the Econ-level group the sum of the
unfairness is close to 0 the overall Unf for the H-level grouping is smaller because
the magnitude of the Unf for each group is smaller.

Group Level Unf(𝑔, Π)
H-level High −0.023

Low 0.023
Unf(𝒢ℎ , Π) 0.032

Econ-level Advanced 0.33
Developing −0.3
Unf(𝒢𝑒 , Π) 0.044

Table 2.9: The Unf for each group in Table 1.1 separately as well as together.

2.3.4. FAIR-TREC2020: EEL
The fairness measure for FAIR-TREC 2020 is based on the concept of expected
exposure [20]. Understanding this measure requires us to understand a number of
concepts: stochastic rankers, target expected exposure, actual expected exposure,
and finally the measure itself, Expected Exposure Loss (EEL). We go through these
concepts in order.

Stochastic and deterministic rankers Most IR systems are based around a
deterministic ranker. A deterministic ranker learns a single function which it uses
to predict scores for each document. As a result, a deterministic ranking always
returns the same result in response to each query. A ranker is deterministic even
if it includes e.g. random swapping of results to introduce variation, because at its
core it still computes results from a single function.

By contrast, a stochastic ranker learns a probability distribution over the docu-
ments for a query; for each document the ranker learns the probability it will appear
at a certain rank for a certain query. Each time a specific query is issued to the
system, it draws a sample from the learned distribution. The sample is then shown
to the user.
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Equal expected exposure Diaz et al. [20] note that it is impossible for deter-
ministic rankers to achieve perfect fairness. They create a single ranking for each
query, and as we have seen before a single ranking cannot be perfectly fair due to
the position bias effect [4]. What’s more, if a query is repeated more than once
any discrepancy in exposure accumulates and the unfairness is exacerbated.

Take for example 𝜋∗1 from Table 1.1b. Let’s say we create a sequence where
we repeat this ranking 4 times, so Π = [𝜋∗1, 𝜋∗1, 𝜋∗1, 𝜋∗1]. We compute the exposure
as in Equation (2.5) with 𝛾 = 0.5 and 𝑓(𝑥) = 0.5 ⋅ 𝑥. Assuming that each ranking
was returned after the other, we can say that each ranking was returned at a time
𝑡. The accumulated exposure for each document at time 𝑡 is shown in Table 2.10.
We see that at time 𝑡 = 1, the difference in exposure between 𝑑1 and 𝑑4 is 0.9375.
However, by 𝑡 = 4 it has grown to 3.75.

It may seem reasonable for the difference in exposure between 𝑑1 and 𝑑4 to
grow over time. After all, 𝑟𝑒𝑙(𝑑1) = 1 and 𝑟𝑒𝑙(𝑑4) = 0. However, the difference in
exposure between the two relevant documents in the toy example, 𝑑1 and 𝑑2, has
also grown, from 0.75 to 3.0.

Document 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4
𝑑1 1.0 2.0 3.0 4.0
𝑑2 0.25 0.5 0.75 1.0
𝑑3 0.125 0.25 0.375 0.5
𝑑4 0.0625 0.125 0.1875 0.25

Table 2.10: The accumulated exposure on each document over repetitions of 𝜋∗1 from Table 1.1b.

The principle of equal expected exposure states that in expectation all equally
relevant documents should receive equal exposure. In other words, across infinitely
many rankings, each relevant document should receive equally as much exposure
as each other relevant document, and the same for each non-relevant document.

For stochastic rankers the expected amount of exposure is simply the expected
value of the learned probability distribution. However, for deterministic rankers no
such distribution is available. In that case, we can simulate a stochastic ranker
by returning a large number of rankings for the same query and computing the
expected exposure over those.

Target and actual expected exposure Under the equal expected exposure
framework, unfairness is measured as the difference between the target expected
exposure ℰ∗ and the actual expected exposure ℰ.

The target expected exposure ℰ∗ is determined as follows. Consider the rankings
in Table 1.1b. In each ranking, each relevant document comes before each non-
relevant document; all of these rankings are optimal. Now consider a stochastic
oracle ranker that returns each of the rankings in Table 1.1b with equal probability
or equivalently, a deterministic oracle that returns each of the rankings in order.
Then the expected exposure on each of the relevant documents is the same and
the expected exposure on each of the non-relevant documents is the same.
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The actual expected exposure ℰ is the amount of exposure each document actu-
ally receives. For example, if a stochastic ranker returns 𝜋∗1 and 𝜋∗2 in Table 1.1b with
probability 0.5, and 𝜋∗3 and 𝜋∗4 with probability 0, 𝑑1 has a higher actual expected
exposure than 𝑑2 and 𝑑3 has a higher actual expected exposure than 𝑑4.

Expected exposure with e-ERR. The concrete values that ℰ∗ and ℰ take de-
pend on the underlying browsing model. We now show how to compute ℰ∗ and ℰ
with the browsing model used in FAIR-TREC 2020, e-ERR.

The documents in the FAIR-TREC 2020 corpus are annotated with binary rele-
vance grades. Therefore we need to compute only two values for ℰ∗, one for each
relevance grade. Starting with the relevant documents, assume there are 𝑠 relevant
documents in the ranking. In an ideal scenario, each of the 𝑠 relevant documents
should occupy each of the 𝑠 highest positions equally often. We compute ℰ∗ for
relevant documents as

ℰ∗𝑟𝑒𝑙(𝑠) =
1
𝑠

𝑠

∑
𝑘=1

𝛾𝑘−1
𝑘−1

∏
𝑗=1

(1 − 𝑓(1)) (2.14)

= 1
𝑠

𝑠

∑
𝑗=1
𝛾𝑘−1

𝑘−1

∏
𝑗=1

(1 − 𝜅) (2.15)

= 1
𝑠

𝑠

∑
𝑗=1
(𝛾 (1 − 𝜅))𝑘−1 (2.16)

= 1 − (𝛾 (1 − 𝜅))𝑠

𝑠 (1 − 𝛾 (1 − 𝜅)) (2.17)

This expression computes the amount of exposure that would be on each rank
𝑗 ∈ [1..𝑠] considering each document in the top 𝑠 positions has a relevance of 1 and
then take the average value.

For non-relevant documents, we need to take into account that the amount of
exposure they receive is diminished by the fact that there are 𝑠 relevant documents
preceding them. Let the total number of documents in the optimal ranking be 𝑁.
Then the ℰ∗ on each of the 𝑁 − 𝑠 documents in the 𝑁 − 𝑠 bottom positions is
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ℰ∗𝑛𝑜𝑛−𝑟𝑒𝑙(𝑠, 𝑁) =
1

𝑁 − 𝑠

𝑁−𝑠

∑
𝑘=𝑠+1

𝛾𝑘−1
𝑘−1

∏
𝑗=1

(1 − 𝑓(𝑟𝑒𝑙(𝜋𝑗 , 𝜋∗)) (2.18)

= 1
𝑁 − 𝑠

𝑁−𝑠

∑
𝑘=𝑠+1

𝛾𝑘−1 (1 − 𝜅)𝑠 (2.19)

= 1
𝑁 − 𝑠

𝑁−𝑠

∑
𝑘=𝑠+1

𝛾𝑘−1 (1 − 𝜅)𝑠 (2.20)

= (1 − 𝜅)𝑠(𝛾𝑠 − 𝛾𝑁)
(𝑁 − 𝑠)(1 − 𝛾) (2.21)

The target expected exposure for an arbitrary document 𝑑 for query 𝑞 is then

ℰ∗𝑑𝑜𝑐(𝑑, 𝑞) = {
ℰ∗𝑟𝑒𝑙(𝑠) 𝑟𝑒𝑙(𝑑, 𝑞) = 1
ℰ∗𝑛𝑜𝑛−𝑟𝑒𝑙(𝑁 − 𝑠) 𝑟𝑒𝑙(𝑑, 𝑞) = 0 (2.22)

To make this concrete, consider the toy example. The rankings in Table 1.1b
are all optimal rankings because they put each relevant before each non-relevant
document. In these rankings, 𝑠 = 2 and 𝑁 = 4. If we set 𝛾 = 0.5 and 𝜅 = 0.5, then

ℰ∗𝑟𝑒𝑙(2) =
1 − (𝛾 (1 − 𝜅))𝑠

𝑠 (1 − 𝛾 (1 − 𝜅)) (2.23)

= 1 − (0.5 (1 − 0.5))2

2 (1 − 0.5 (1 − 0.5)) (2.24)

= 0.625 (2.25)

and

ℰ∗𝑛𝑜𝑛−𝑟𝑒𝑙(2, 4) =
(1 − 𝜅)𝑠(𝛾𝑠 − 𝛾𝑁)
(𝑁 − 𝑠)(1 − 𝛾) (2.26)

= (1 − 0.5)2(0.52 − 0.54)
2(1 − 0.5) (2.27)

= 0.046875 (2.28)
(2.29)

The actual expected exposure ℰ depends on the particular ranker. Let Π∗𝑞 be
every possible ranking a ranker can generate in response to query 𝑞 and let 𝜎(𝜋) be
the probability that the ranker generated the ranking 𝜋. Then the actual expected
exposure on document 𝑑 is simply the expectation over all the rankings in Π∗𝑞:
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ℰ(𝑑, Π∗𝑞) = ∑
𝜋∈Π∗𝑞

𝜎(𝜋)e-ERR(𝑑, 𝜋, 𝑞). (2.30)

For deterministic rankers with a randomization component 𝜎 is not actually
known, but we can approximate it by generating a large number of rankings and
empirically finding the distribution that way.

To illustrate the difference between ℰ∗ and ℰ consider a deterministic ranker
that always returns 𝜋∗1 in Table 1.1b. In other words, for this ranker 𝜎(𝜋∗1) = 1 and
𝜎 = 0 for all other possible rankings. Then the ℰ of 𝑑1 is the same as in Table 2.4:

ℰ(𝑑1, Π∗𝑞) = ∑
𝜋∈Π∗𝑞

𝜎(𝜋)e-ERR(𝑑1, 𝜋, 𝑞) (2.31)

= 𝜎(𝜋∗1)e-ERR(𝑑1, 𝜋∗1, 𝑞) (2.32)
= e-ERR(𝑑1, 𝜋∗1, 𝑞) (2.33)
= 1.0. (2.34)

If we used a ranker that has 𝜎(𝜋∗1) = 1 for 𝜋∗2 and 𝜎 = 0 for all other rankers,
ℰ(Π∗𝑞 , 𝑑1) = 0.25. However, ℰ∗𝑑𝑜𝑐(𝑑1, 𝑞) remains the same, namely 0.625 as we
computed earlier.

The expected exposure is propagated from documents to authors and groups
of authors in the same way as we did for exposure in Section 2.3.2. For a ranking
of length 𝑁 with 𝑠 relevant documents, the target expected exposure of an author
𝑎 is given by

ℰ∗𝑎(𝑎, 𝜋, 𝑞) = ℰ∗𝑟𝑒𝑙(𝑠) |{𝜋𝑗 ∈ 𝒟(𝑎) ∧ 𝑟𝑒𝑙(𝜋𝑗 , 𝑞) = 1}| (2.35)

+ ℰ∗𝑛𝑜𝑛−𝑟𝑒𝑙(𝑁 − 𝑠) |{𝜋𝑗 ∈ 𝒟(𝑎) ∧ 𝑟𝑒𝑙(𝜋𝑗 , 𝑞) = 1}| , (2.36)

and the target expected exposure for a group is given by

ℰ∗𝑔(𝑔, 𝜋, 𝑞) = ∑
𝑎∈𝒜(𝑔)

ℰ∗𝑎(𝑎, 𝜋, 𝑞). (2.37)

Recall that here, 𝒜(𝑔) is the set of authors in group 𝑔.
The actual expected exposure for authors and groups are given by

ℰ𝑎(𝑎, Π∗) =
𝑁

∑
𝑗=1
[ℰ(𝜋𝑗 , Π∗)] (𝐼) (𝜋𝑗 ∈ 𝒟(𝑎)) (2.38)

and

ℰ𝑔(𝑔, Π∗) = ∑
𝑎∈𝒜(𝑔)

ℰ𝑎(𝑎, Π∗) (2.39)
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Fairness in FAIR-TREC 2020: Expected Exposure Loss In practise, it is dif-
ficult to use ℰ directly. Most common rankers are deterministic rather than stochas-
tic. For the deterministic rankers, it is not always feasible to generate a the number
of rankings that is required to empirically determine the probability distribution 𝜎.
For instance, many rankers used in production environments update their ranking
function based on feedback by users, meaning that 𝜎 would change over time.
Therefore, it can be more useful to look at the difference between target expected
exposure and actual realized (so not expected) exposure.

This idea is the basis of the fairness measure used in FAIR-TREC 2020: Expected
Exposure Loss (EEL). EEL measures the 𝑙2-norm between the target exposure and
actual exposure received by groups of authors across a sequence of queries. The
idea is that rather than determining in advance what the actual expected exposure
of will be, we let a ranker generate a sequence of rankings and for each realized
ranking compare how much the resulting exposure differs from the target expected
exposure.

To make this concrete, consider the following example. Say we have a ranker 𝑅.
We do not know the associated value of 𝜎, but we can let 𝑅 generate rankings. At
time 𝑡 = 1, 𝑅 generates a ranking 𝜋1 of length 𝑁 in response to query 𝑞. Assume
for now we know that there are 𝑠 relevant documents in 𝜋1. Then the Expected Ex-
posure Loss is the 𝑙2 norm of the difference between the target expected exposure
(Equation (2.37)) and the actual exposure (Equation (2.4)):

EEL(𝒢, 𝜋) = √∑
𝑔∈𝒢

(e-ERR2020𝑔 (𝑔, 𝜋, 𝑞) − ℰ∗𝑔(𝑔, 𝜋, 𝑞))
2
. (2.40)

If we let 𝑅 generate a whole sequence Π of rankings, we can measure the loss
as

EEL(𝒢, Π) = √∑
𝑔∈𝒢

(e-ERR2020𝑔 (𝑔, Π, 𝑞) − ℰ∗𝑔(𝑔, Π, 𝑞))
2
. (2.41)

This is the measure of unfairness as it is used in FAIR-TREC 2020. Note that
EEL is computed over a specific grouping 𝒢.

The only remaining unknown component here is the target expected exposure
over a sequence of rankings ℰ∗𝑔(𝑔, Π, 𝑞). Since the target expected exposure is
independent from the particular ranking, to get the ℰ∗ over a sequence of rankings
we simply multiply the ℰ∗ by the length of the sequence:

ℰ∗𝑔(𝑔, Π, 𝑞) = |Π| ⋅ ∑
𝑎∈𝒜(𝑔)

ℰ∗𝑎(𝑎, 𝜋, 𝑞). (2.42)

The interpretation of EEL is as follows. We can decompose the term

(e-ERR2020𝑔 (𝑔, Π, 𝑞) − ℰ∗𝑔(𝑔, Π, 𝑞))
2
in Equation (2.41) into three parts:
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∑
𝑔∈𝒢

e-ERR2020𝑔 (𝑔, Π, 𝑞)2
⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

disparity EEL-D

−2 ∑
𝑔∈𝒢

e-ERR2020𝑔 (𝑔, Π, 𝑞)ℰ∗𝑔,Π,𝑞(𝑔, Π)
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

relevance EEL-R

+ ∑
𝑔∈𝒢

ℰ∗𝑔(𝑔, Π, 𝑞)2
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

information need constant

(2.43)
The disparity EEL-D has an intuitive interpretation: for a fixed amount of expo-

sure, it is smallest when the exposure is distributed uniformly over relevant docu-
ments [19]. The relevance EEL-R is not one-to-one interpretable as user utility[19]
but it reflects how much of the exposure is on relevant documents [6]. From this
decomposition we can see that EEL is smallest when (i) the exposure is distributed
equally over documents of equal relevance, and (ii) most of the exposure is on
relevant documents. Overall, the intuition behind EEL is that it corresponds the be-
havior of either a stochastic ranker for a single query, or a topic for which queries
are issued often [19].

Similarly to Unf, EEL is defined as the 𝑙2 norm of a difference, meaning both
over- and under-exposure is punished equally. In contrast to Unf however, EEL is
only suitable for comparing rankings that were generated in response to the same
query. This is due to the ℰ∗𝑔 term. The target expected exposure changes depending
on the number of relevant and non-relevant documents for a query. This means
that if Π contained rankings for different queries, the value of EEL would be skewed.

2.4. Summary
In this chapter we described different components of FAIR-TREC 2019 and 2020.
We described the tasks, the corpora, and the evaluation measures.

The corpora for FAIR-TREC 2019 and 2020 are snapshots of the Semantic Scholar
Open Corpus from the Allen Institute for Artificial Intelligence. Each document in
the corpus consists of a number of metadata fields of an academic article, such
as the title, abstract, and year. Each corpus is accompanied by annotated training
and evaluation data. The training and evaluation data consists of a set of queries
and corresponding documents. The documents for each query are annotated with
binary relevance labels as well as different group labels, based on the h-index or
the country of origin of the paper’s authors.

The evaluation measures for FAIR-TREC 2019 and FAIR-TREC 2020 are the Un-
fairness Unf and the Expected Exposure Loss EEL respectively. Both measures are
based on the e-ERR browsing model. This browsing model favors documents in the
top positions and assumes that attention decreases as users inspect documents
further down. Additionally, e-ERR incorporates the possibility that a user gives up
completely if they do not find a satisfying result quickly enough.

Unf and EEL diverge in how exactly they compute unfairness. Unf measures
the difference between the amount of exposure each group of documents receives
across multiple rankings, and how relevant thos documents are to a user. The
magnitude of the unfairness Unf is straightforwardly defined the 𝑙2 norm of the
difference between this group exposure and relevance.
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EEL measures the difference in the expected exposure on documents, ie. the
amount of exposure documents receive across a large number of rankings for the
same query. The magnitude of EEL is the 𝑙2 norm of the difference between the
target expected exposure and the exposure documents have actually received.

The main difference between the measures lies in the fact that Unf is suitable for
measuring fairness across rankings for different queries, while EEL is more suitable
for measuring fairness across multiple rankings for the same query. Unf corresponds
to how a single user’s browsing behavior, looking for multiple topics in the same
session. By contrast, EEL corresponds to the behavior of either a stochastic ranker
on a single topic, or a common topic for which queries are issued often.



3
Rankers

The goal of this thesis is to discover which factors affect the fairness of rankers as
measured in terms of the fairness measure associated with the FAIR-TREC 2020
benchmark, the EEL (see Equation (2.41)). There were 15 submissions from 4
teams to FAIR-TREC 2019 and 28 submissions by 6 teams to FAIR-TREC 2020. In
the interest of time, we are unable to analyze every single ranker underlying each
submission. Instead, we select two rankers we think are interesting and suitable.
We implement these rankers ourselves and verify the correctness of our implemen-
tations relative to the official submissions.

This chapter is organized as follows. We first explain how we came to select
the rankers we analyze in this thesis in Section 3.1 and explain which papers we
selected. Then in Section 3.2 we describe how we verified the correctness of our
implementations of each selected ranker. the process of reproducing submissions.
In sections Section 3.3 and Section 3.4 we describe the rankers we selected.

3.1. Selection process
To select rankers to analyze we looked at a number of characteristics of each sub-
mission. We looked at the following characteristics:

• Approach. We wanted to select rankers with a different approach (e.g. Learning-
to-Rank, term weighting) to gain a broader insight.

• Performance. We looked at the performance of rankers in terms of the fairness
measures. We favored rankers that performed better because we felt any
improvements made to those rankers would be more useful.

• Tools. Some submissions used the same tools, e.g. many of the submissions
were based on the Elasticsearch1 engine. We aimed to select rankers that
used the same underlying tools to simplify the implementation process.

1elastic.co/

25

elastic.co/
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• Codebase. For the sake of reproducibility, we favored rankers with a publicly
available codebase.

• Communication with the authors. We reached out to the authors of all of the
submissions to FAIR-TREC 2019 and FAIR-TREC 2020 with questions about
their submissions. Communication with the authors greatly helped with re-
producing their submissions.

• Level of detail of companion paper. As we explain in more detail in the next
section, we wanted to reproduce the results of the official submissions to
verify the correctness of our own implementations. The more detailed the
companion paper for a particular submission the easier it is to reproduce.

In the end, we selected one submission to FAIR-TREC 2019 and one submission
to FAIR-TREC 2020. The submissions and underlying rankers are fair_LambdaMART
with LambdaMART [7] and NLE_META_9_1 with Advantage Controller [27] respec-
tively. We selected these submissions for the following reasons.

The algorithm used to generate the first submission, fair_LambdaMART ,is Lamb-
daMART (LM) [11]. LM is a LtR algorithm commonly used in IR. When it was first
conceived, LM won the Yahoo! learning-to-rank challenge [10]. A cross-benchmark
comparison of 87 LtR methods confirms that LM is among the top performers [44].
In addition to LM’s status as a well-performing LtR algorithm, the codebase used to
generate the fair_LambdaMART submission is publicly available2.

Other points in favor of LM were the detailed companion paper with informa-
tion on e.g. the features and tools. We were also able to get into contact with
the authors and ask for clarification on numerous occasions. The one area where
LM lags behind other submissions is performance. LM achieved fairness scores of
Unf(𝒢ℎ , Π) = 0.0741 and Unf(𝒢𝑒 , Π) = 0.0855, the 3rd and 7th worst performance
of all submissions to FAIR-TREC 2019 respectively. Even so, its ubiquity in IR ap-
plications makes it a suitable baseline implementation in our eyes.

the downsThe algorithm used to generate the second submission, NLE_META_9_1,
is Advantage Controller (AC) [27]. AC is a controller-based re-ranking algorithm,
ie. it creates multiple rankings for the same query but re-computes the score for
the documents at each iteration based on some error term. NLE_META_9_1 was
the top submission to FAIR-TREC 2020 with EEL(𝒢𝑒 , Π) = 0.428. Controller-based
algorithms are uncommon in fair IR. Morik et al. [32] use a controller-based mech-
anism for unbiased ranking, but they do this for online rather than offline LtR. Since
the controller approach is uncommon, we expect we may be able to to contribute
more significantly than if we analyzed an approach that has been investigated in
detail before. The companion paper for AC is detailed, but some information is
obfuscated or assumed to be known in advance. However, this leads us to another
point in favor of AC, namely that the authors were able and willing to answer any
remaining questions. A downside of analyzing AC was that no open source code
was available, meaning we had to put in more effort to implement it from scratch.
2github.com/irgroup/fair-trec

github.com/irgroup/fair-trec
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Submission Measure Published score Reproduced score

fair_LambdaMART Unf(𝒢𝑒 , Π) 0.0741 0.0771
NLE_META_9_1 EEL(𝒢𝑒 , Π) 0.428 0.429

Table 3.1: The published and reproduced scores for the selected submissions to FAIR-TREC 2019 and
2020. Submission names and published scores are from Biega et al. [5, 6].

3.2. Verifying implementation correctness
To analyze LM and AC in detail we had to implement both algorithms ourselves. We
verified the correctness of our implementations by creating runs on the test data of
the corresponding benchmark and computing either Unf or EEL. We then compared
these values to the published values for fair_LambdaMART and NLE_META_9_1.
Once the values for our submissions were within 10% of the published submissions
we considered our implementation to be correct. The values we achieved for LM
and AC, as well as the published values, are shown in Table 3.1.

Aside from reproducing the results for fair_LambdaMART and NLE_META_9_1
we also attempted to reproduce results for 6 other submissions: fair_random [7] for
FAIR-TREC 2019, and Deltr-gammas [25], umd_relfair_ltr [40], and NLE_META_99_1,
NLE_TEXT_99_1, and NLE_TEXT_9_1 [27] for FAIR-TREC 2020. Of these, we were
able to verify the correctness of fair_random and NLE_META_99_1, NLE_TEXT_99_1,
and NLE_TEXT_9_1. NLE_META_99_1, NLE_TEXT_99_1, and NLE_TEXT_9_1 share
the underlying ranker of NLE_META_9_1. fair_random is a random re-ranking of
each document for each query, making it less interesting to investigate. All sub-
missions starting with NLE are variations of the AC algorithm. The submissions we
attempted but were not able to reproduce failed due to a combination of missing
details in the accompanying papers, lack of available code, and a lack of time on
our part.

3.3. LambdaMart
LM is a pairwise LtR algorithm. What this means is that it learns the relative order
two documents should have to each other in response to a query. This is in contrast
to pointwise algorithms, which learn to predict the individual relevance grades of
documents, and listwise algorithms which learn to predict the order of all documents
for a query [29].

LM itself is based on the LambdaRank algorithm. LambdaRank is also a pairwise
algorithm. It minimizes the loss caused by documents being in the wrong order,
ie. a more relevant document occurring below a less relevant document. A key
characteristic of LambdaRank is that it approximates the cost-gradients with so-
called 𝜆-gradients. The 𝜆-gradient for each document represents the loss that would
be caused by swapping this document with any other document.

Consider the visualization in Figure 3.1. The blue bars represent relevant doc-
uments while the gray bar represent non-relevant documents. The arrows show
the direction and magnitude of the 𝜆-gradients of the relevant documents; because
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Figure 3.1: Visualization of the optimization process of LambdaMART. The blue bars represent
relevant documents, the gray bars represent non-relevant documents. The arrows indicate in which
direction the relevant documents should move to improve the ranking. Figure adapted from Burges

[11, Fig. 1].

they are pushed up in the ranking the number of pairwise errors diminishes and
the quality of the ranking increases overall.

The main downside of LM is that it does not allow for a way to include fairness,
especially not the kind of fairness used expressed by Unf or EEL. While it is possible
to adapt LM to optimize different objectives [10], it still produces only a single
ranking for each query. Unf and EEL are both amortized fairness metrics and since
LM cannot vary the ranking for a query it will inevitably achieve a low score.

Multiple open source implementations of LM are available. Bonart [7]’s imple-
mentation3 is based on pyltr4. We train LM with the features and hyperparame-
ters also used by Bonart [7]. These are listed in Tables 3.2 and 3.3 respectively.

3.4. Advantage Controller
The AC algorithm is based on the concept of a proportional controller. [3]. Note that
the algorithm is originally unnamed but that here we call it Advantage Controller.
3github.com/irgroup/fair-trec
4github.com/jma127/pyltr

github.com/irgroup/fair-trec
github.com/jma127/pyltr
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Level Feature

query-document (BM25) title
abstract
entities
venue
journal
author’s names

document year
number of out-citations
number of in-citations

query query length in characters

Table 3.2: Features used to train LambdaMart.

The idea of AC is that for each query we iteratively create 𝑁 rankings that when
assessed together give a low value for EEL. The scores for each document for each
ranking are computed based on the exposure the documents have received over
previous rankings.

The scoring function ℎ for query 𝑞, document 𝑑, and ranking 𝑡 < 𝑁 is given by

ℎ(𝑑, 𝑡, 𝑞) = 𝜃𝜌(𝑑, 𝑞) − (1 − 𝜃)𝐴𝑑(𝑑, 𝑡). (3.1)

Here 𝜌(𝑑, 𝑞) is the estimated probability of relevance of 𝑑 for 𝑞 and 𝐴𝑑𝑜𝑐(𝑑, 𝑡)
is the accumulated advantage of 𝑑 over the rankings up to the 𝑡th ranking.

The estimated probability of relevance of a document 𝜌(𝑑, 𝑞) indicates how likely
it is that a document is relevant for a query. Kletti and Renders [27] use estimated
rather than absolute relevance values to make the method suitable both for scenar-
ios where the relevance labels are available and where they are not. The details on
how the 𝜌-values are generated are not fully clear, but the process involves train-
ing a LtR ranker with features based on a number of fields, predicting scores for
each document, and normalizing those scores to lie in the [0, 1]-range with Isotonic
Regression [50] so they can be used as probabilities [36].

We were unable to reproduce the exact process of generating estimated prob-
abilities of relevance. However, Kletti and Renders [27] generously shared with us
two sets of estimated probabilities of relevance. We refer to these as 𝜌𝐴 and 𝜌𝐵.

The advantage 𝐴𝑑𝑜𝑐 is based on the concept of expected exposure that EEL is
also based on. It tracks how much the actual expected exposure for a document
has thus far deviated from its target expected exposure. As Kletti and Renders [27]
note, at ranking time we do not typically have access to the true relevance of a
document and as such cannot calculate its true ℰ∗ and ℰ.

To circumvent this problem, Kletti and Renders [27] model the true relevance
of a document for a query as a realization of a Bernoulli random variable with the
estimated relevance of the document for a query as its parameter. Using this, we
can compute the expected value of the ℰ∗ of document 𝑑 for query 𝑞 as
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Hyperparameter Value

metric NDCG
learning_rate 0.02
n_estimators 1000
query_subsample 0.5
subsample 1.0
min_samples_split 2
min_samples_leaf 64
max_depth 3
random_state 0
max_features None
max_leaf_nodes 10
warm_start true

Table 3.3: Hyperparameter settings used with our implementation of LM. Settings are identical to
those used by Bonart [7].

ℰ̂∗(𝑑, 𝑞) = 𝔼 [ℰ∗𝑑𝑜𝑐(𝑑, 𝑞)] (3.2)

=
𝑁−1

∑
𝑠=0

𝑃𝐵(𝑠|𝜌𝜌𝜌 − 𝜌(𝑑, 𝑞))(𝜌(𝑑, 𝑞)ℰ∗𝑟𝑒𝑙(𝑠 + 1) + (1 − 𝜌(𝑑)ℰ∗𝑛𝑜𝑛−𝑟𝑒𝑙(𝑁 − 𝑠))

(3.3)

(3.4)

Here ℰ∗𝑟𝑒𝑙 and ℰ∗𝑛𝑜𝑛−𝑟𝑒𝑙 are computed as in Equations (2.14) and (2.18), 𝜌(𝑑, 𝑞) is
the estimated relevance of 𝑑 and 𝜌𝜌𝜌−𝜌(𝑑, 𝑞) is the vector of the estimated probability
of relevant of each document for 𝑞, except for 𝜌(𝑑, 𝑞). PB is the Poisson-Binomial
distribution5.

The expected ℰ∗ of a group 𝑔 of documents is the sum of the expected ℰ∗ of
the documents in the group:

ℰ̂∗𝑔𝑟𝑜𝑢𝑝(𝑔) = ∑
𝑑∈𝑔

ℰ̂∗𝑑𝑜𝑐(𝑑) (3.5)

The target expected exposure does not change over time, so the expected target
exposure for group 𝑔 by the 𝑡-th ranking is given by

ℰ̂∗𝑔(𝑔, 𝑡) = 𝑡 ∗ ℰ̂∗𝑔(𝑔) (3.6)

The expected actual expected exposure of a document 𝑑 in a ranking 𝜋 is given
by using the estimated relevance 𝜌(𝑑, 𝑞) in Equation (2.1):
5The specific implementation is found here github.com/tsakim/poibin

github.com/tsakim/poibin
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ℰ̂𝑑(𝑑, 𝜋) = 𝔼 [ℰ𝑑|𝜋] (3.7)

= 𝛾1−𝜋(𝑑)
𝜋(𝑑)−1

∏
𝑗=1

(1 − 𝑓(𝜌(𝜋(𝑗), 𝑞))) (3.8)

The expected actual expected exposure of a group 𝑔 is the sum of the ℰ̂ of each
document in the:

ℰ̂𝑔(𝑔, 𝜋) = ∑
𝑑∈𝑔

ℰ̂∗𝑑(𝑑, 𝜋) (3.9)

The expected actual expected exposure of a group 𝑔 by the 𝑡th ranking is

ℰ̂𝑔(𝑔, 𝑡) =
𝑡

∑
𝑡′=1

ℰ̂𝑔(𝑔, 𝜋𝑡′) (3.10)

We can now properly define the advantage from Equation (3.1). The advantage
of a document is defined as the arithmetic mean of the advantage of the group it
belongs to, 𝐴𝑔. The advantage of a single group 𝑔 over the rankings up to ranking
𝑡 is given by

𝐴𝑔(𝑔, 𝑡) = (ℰ̂𝑔(𝑔, 𝑡 − 1) − ℰ̂∗𝑔(𝑔, 𝑡 − 1))
2
sign (ℰ̂𝑔(𝑔, 𝑡 − 1) − ℰ̂∗𝑔(𝑔, 𝑡 − 1)) (3.11)

and finally the advantage of a document 𝑑 at time 𝑡 is

𝐴𝑑(𝑑, 𝑡) =
1

|𝒢(𝑑)| ∑
𝑔∈𝒢(𝑑)

𝐴𝑔(𝑔, 𝑡), (3.12)

where 𝒢(𝑑) is the set of groups 𝑑 belongs to.
To make the re-ranking process executed by AC more intuitive, consider the

dataset in Table 1.1. If we generate 5 rankings of these documents, the ℎ-scores
and the advantages for each document change as shown in Table 3.4a. We see
that the ℎ-score of 𝑑1 is brought down in each iteration while the score for 𝑑4
increases. Once we reach 𝑡 = 5, the advantage for 𝑑1 has grown so large that the
overall ℎ-score dips below that of 𝑑2. Since the ℎ-scores determine the rankings,
this means that 𝑑2 is now shown before 𝑑1, meaning it receives more exposure,
see also Table 3.4b. In this way, AC balances the exposure and the relevance.

The main advantage of AC over an algorithm like LM is that it creates multiple
rankings for each query and that it explicitly controls for the fairness across those
rankings. A weakness is that it depends on the estimated probabilities of relevance.
If the 𝜌-values are of poor quality, AC cannot compensate for that.
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ℎ(𝑑, 𝑡) 𝐴𝑑(𝑑, 𝑡 − 1)
Document 𝑡 = 1 𝑡 = 2 … 𝑡 = 5 𝑡 = 1 𝑡 = 2 … 𝑡 = 5
𝑑1 0.9 0.88 … 0.63 0.0 0.16 … 1.5
𝑑2 0.68 0.68 … 0.78 0.0 −0.063 … −0.56
𝑑3 0.45 0.44 … 0.30 0.0 0.093 … 0.83
𝑑4 0.23 0.23 … 0.30 0.0 −0.048 … −0.43
(a) The values of h−𝑠𝑐𝑜𝑟𝑒(𝑑, 𝑞) (Equation (3.1)) and 𝐴𝑑(𝑑, 𝑡) (Equation (3.12)) over multiple rankings. The best

ℎ-score at each time 𝑡 is bolded.

𝜋4
𝑑1
𝑑2
𝑑3
𝑑4

𝜋5
𝑑2
𝑑1
𝑑4
𝑑3

(b) The change in the ranking caused by the change in h−𝑠𝑐𝑜𝑟𝑒 as show in Table 3.4a.

Table 3.4: Re-ranking by AC of the documents in Table 1.1.

3.5. Summary
In this chapter we described the process of selecting and validating the rankers we
analyze in depth in the rest of this thesis. We selected the rankers based on a com-
bination of ease of reproduction (open source code available, detailed companion
paper, communication with authors), availability of the used tools (open source,
easy to use), performance in terms of Unf or EEL, and variety in approaches.

In the end we selected two rankers: LM and AC. LM is a pairwise LtR algorithm
that is used widely in IR research. Since it does not include a fairness component
it will act as a baseline ranker. AC is a controller-based re-ranker that explicitly
incorporates fairness.

We validated the correctness of our implementation of each ranker by comparing
their performance in terms of Unf(𝒢𝑒 , Π) for LM and in terms of EEL(𝒢𝑒 , Π) for AC
with the performance of the runs published in Biega et al. [5, 6].



4
Failure analysis

Evaluation is an indispensable component of IR research. Without evaluation we
cannot say whether an improvement to our systems actually works, or only feels
like it works [17]. An important step in the evaluation process is the failure analysis
[9, 2]. The goal of the failure analysis is to determine on which topics rankers fail,
and more importantly, why.

The goal of this chapter is twofold. We adapt an existing method for failure
analysis described by Buckley [9] for the context of FAIR-TREC 2020. Then, we use
our adapted method to conduct a failure analysis of the two rankers described in
Chapter 3 and identify potential errors. In the next chapter, Chapter 5, we propose
improvements to remedy these errors.

This chapter is organized as follows. In Section 4.1 we describe an existing
method for failure analysis. Then, in Section 4.2 we describe the ways in which we
modify the existing failure analysis method to suit the context of FAIR-TREC 2020.
We conduct a failure analysis with our modified method and identify errors for LM
in Section 4.4 and AC in Section 4.5. We finish the chapter with a discussion and
summary in Section 4.7.

4.1. Failure analysis
Our method for failure analysis is based on the method developed by Buckley [9]
during the Reliable Information Access workshop (RIA) workshop of 2004. Their
method consists of four steps:

1. Create representative runs for each system.

2. Select queries to investigate.

3. Fill in a failure analysis template and detect patterns in representative runs.

4. Identify errors.
The failure analysis process is represented visually in Figure 4.1. We now de-

scribe each step in more detail.

33
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Figure 4.1: The steps in the failure analysis process.

Create representative runs A run is a set of ranked lists for each query in a
validation or testing subset of the corpus. The runs are created automatically, ie.
without help or intervention from a human. Runs from different systems should
be made on the same dataset for comparability purposes. The purpose of the
representative runs is to accurately reflect the performance of the systems so that
the failure analysis can be expected to generalize to the system’s performance in
different circumstances.

Select queries Failure analysis is a labor intensive task; during the RIA re-
searchers spent around 12 hours per topic. As such, it is generally not possible
to investigate every query in a dataset. Buckley [9] prioritize the queries that are
most likely to yield information on system-dependent failures. It is difficult to say
beforehand which queries will be the most worthwhile to investigate; finding out
on which queries the systems fail is part of the purpose of the failure analysis after
all. To select queries Buckley [9] use a combination of the following criteria:

• High query difficulty. Difficult queries are those queries for which the mean
system effectiveness in terms of Mean Average Precision (MAP) [47, Ch. 3]
is lower than mean MAP across all queries. The idea is that difficult queries
may more readily uncover system failings.

• Large variance in MAP between systems. If some systems perform well on a
query and others do not, this can point in the direction of specific failures of
the system that do not perform as well.

• Queries for which any individual researcher feels that it may yield interesting
information on system failures.

Fill in failure analysis template During the RIA workshop, Buckley [9] devel-
oped a template to help researchers detect patterns in runs in a structured manner.
This template is reproduced in Template 4.2.

The questions fall into five categories:

• Behavior on the system on the top positions in the rankings. Which rele-
vant documents are ranked highly? Which non-relevant documents? Which
relevant documents are missing from the top positions?



4.2. Failure analysis of amortized rankers 35

• Behavior of the system with respect to the query. Which query terms were
important to the system?

• Other failures of the system, e.g. due to stemming or tokenization.

• Failures in assessment. Were there documents ranked as relevant when they
were non-relevant and vice-versa?

• Potential improvements.

Identify errors During the process of filling in the failure analysis template the
person conducting the failure analysis will likely already detect some patterns in the
runs they are analysing. Indeed, Buckley [9] do not mention explaining patterns and
identifying errors as a separate step. Rather, it is subsumed into the failure analysis
template as the question “What should the system do to improve performance?”,
see Template 4.2. However, it is the implicit end goal of the failure analysis to
identify the points of failure of each system, which is why we list it as a separate
step.

4.2. Failure analysis of amortized rankers
Buckley [9]’s method was designed for rankers that (i) optimize rankings for ef-
fectiveness in terms of MAP, and (ii) return a single ranking per query. However,
the rankers for FAIR-TREC 2020 optimize for EEL and return multiple rankings per
query. Therefore, we need to modify the process slightly.

The steps of the failure analysis process remain the same as outlined in Fig-
ure 4.1, but we make changes to Steps 1 and 3, the way we select queries to
inspect and the template with questions.

Step 2: Select queries Buckley [9] select queries for which the MAP is lower
than the average across systems, for which there is a large variance in the MAP
scores across systems, and queries that seem interesting to individual researchers.
There are two changes we make.

Buckley [9] use MAP as a way to determine the difficulty of queries. However,
the goal the submissions to FAIR-TREC 2020 is not to reach the highest MAP, but to
reach the highest fairness in terms of EEL (Equation (2.41)). We follow the example
set by [39] and adapt the measure of difficulty to our specific research context by
measuring the difficulty of queries in terms of EEL.

7 systems with similar approaches were analyzed during the RIA workshop [9],
which means it is possible to make meaningful statements about average perfor-
mance in terms of MAP across systems and about varienace between systems. By
contrast, we investigate two systems with different approaches, so it is less mean-
ingful to say something about the average performance and performance variance.
Therefore, we rely solely on the difficulty score in terms of EEL to determine which
queries we investigate.

As mentioned in Section 2.3.4, EEL is computed over a specific grouping. We
use two different groupings: the H-level grouping and an individual grouping.
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The H-level grouping is as described in Section 2.2.2; authors are divided into 4
groups based on their h-index, documents are labeled according to the group of
their authors. If a document’s authors belong to different groups, the document’s
group is Mixed. The H-level grouping was provided as an example grouping with
corp2020train when FAIR-TREC 2020 was running. We use it here to determine
whether there is an interaction between the grouping and the performance of the
rankers.

The individual grouping was not a part of FAIR-TREC 2020. Instead, it is based
on the concept of a singleton grouping [45]. The idea is that each document is
placed in its own group, ie. each document belongs to one group and each group
has one document. We use the individual grouping to find errors that may otherwise
be obfuscated by the interaction between a particular grouping and the rankers.

Throughout this document, if we measure EEL with the H-level group we will
use the expression EEL(𝒢ℎ , Π), if we measure with the singleton group we use
EEL(𝒢𝑖 , Π).

Step 3: Fill in template As mentioned by Buckley [9], the failure analysis tem-
plate is meant to function as a tool for researchers to systematically uncover failures
of the system. Therefore, we tailor the template to the FAIR-TREC 2020 context.
We make three changes: add new questions, remove superfluous questions, and
redefine necessary concepts. We hope that in describing this process in detail we
will inspire others to make similar changes. The adapted template is given in Tem-
plate 4.3. We now describe each of the changes in more detail.

First, we add a question. As shown in Equation (2.43), EEL can be split into
three terms. Of these, EEL-D and EEL-R represent the disparity and the relevance
of a ranking respectively. Since each of these terms gives information about a
different aspect of EEL it is important to look at the balance between them. For
example, if EEL is high, this may be due either to low relevance or high disparity, and
this informs the type of errors and improvements. Therefore we add the following
question: “Is the performance of the system in terms of EEL(𝒢𝑖 , Π) or EEL(𝒢ℎ , Π)
mostly due to high disparity, low relevance, or both?”.

The second change is to remove superfluous questions. The original template
contained questions about query expansion, which our systems do not do. It also
contained a question specifically about how to improve the systems. We answer this
question in depth in Chapter 5. Lastly, the original template contained a question
about Beadplot1 observations. Beadplot is a ranking visualization tool, but it does
not work with multiple rankings per query and was not found to be indispensible
during the RIA workshop [9, Section 3.4] so we do not use it.

Lastly, we redefine the concept of top positions. The first category of questions
on the original template concerns documents at the top of rankings. This makes
sense for the task for the RIA workshop which was the Question Answering (QA)
task, where users are most likely to look at the top documents as is implied by the
choice of MRR, a measure that favors relevant documents towards the top of the
ranking, as a measure for the original QA track [48].
1www-nlpir.nist.gov/projects/beadplot/

www-nlpir.nist.gov/projects/beadplot/
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𝜋∗1
𝑑1
𝑑2
𝑑3
𝑑4

𝜋∗2
𝑑1
𝑑2
𝑑4
𝑑3

𝜋∗3
𝑑2
𝑑1
𝑑3
𝑑4

𝜋∗4
𝑑2
𝑑1
𝑑4
𝑑3

Table 4.1: The top positions of the rankings of the dataset in Table 1.1a.

The task for FAIR-TREC 2020 is an academic search task and the EEL measure
is built on the ERR measure which also favors good results towards the top of the
ranking. Therefore it still makes sense to look at documents at the top of the
ranking. However, we redefine what exactly it means for a document to be at
the top of a ranking. Each ranker returns 150 rankings per query; it is infeasible
to inspect each ranking for each query and detect patterns in the occurrence of
documents in the top positions that way, especially since the 150 rankings is an
arbitrary choice and it could also be 1000. Additionally, the cutoff point for a top
document is given [9].

Instead we aggregate the occurrence of documents in top positions as follows.
Recall from Section 2.3.4 that EEL is minimized by a policy that (i) puts all relevant
documents before all non-relevant documents, and (ii) does so at random [20].
The positions of interest then are all those positions in the ranking where relevant
documents should appear. Since no relevant document should occur higher than
any other relevant document more often, the number of top documents per query
equals the number of relevant documents for that query. More formally, given a
query 𝑞 with documents 𝒟𝑞, we define as the top positions those first 𝑘 positions
such that 𝑘 = |{𝑑|𝑑 ∈ 𝒟1and𝑟𝑒𝑙(𝑑) = 1}|, where 𝑟𝑒𝑙(𝑑) is the relevance grade of
the document 𝑑.

We illustrate this concept with the toy example defined in Table 1.1. Table 1.1b
shows all of the optimal rankings of the dataset in Table 1.1a. We see that in each
of the optimal rankings, 𝑑1 and 𝑑2 are in the first two positions. The top positions
for the rankings for dummy query 𝑞𝑑𝑢𝑚𝑚𝑦 are 𝑗 = 1 and 𝑗 = 2 as visualized in
Table 4.1.

Methodological limitations We note two methodological limitations of our ap-
proach. Firstly, for AC we make use of estimated relevance probabilities provided
to us by its authors. It is unclear what portion of the training data was used to
predict these values, so it is likely that there is some information leakage between
our training and validation split for AC in particular.

Secondly, early on in the failure analysis we made a methodological error. We
performed the failure analysis on the true test set corp2020test rather than on
corp2020train, which helped us detect certain patterns in the data. Since these
patterns also show up in the training data however we do include them in our
analysis.
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4.3. Failure analysis
We conduct a failure analysis of the two rankers described in Chapter 3, Lamb-
daMART and Advantage Controller. We go through each of the steps in Section 4.1.

Step 1: Create representative runs We create representative runs of LM and
AC on corp2020val_split, the validation dataset.

We create one run for LM, lm. We use our implementation as described in
Section 3.3. We train LM on corp2020train using the same features and hy-
perparameter settings as when validating our implementation as given in Table 5.2
and Table 3.3.

For AC we have the choice of four runs: one for each combination of set of
estimated probabilities of relevance and value for 𝜃. As noted by Buckley [9], failure
analysis is a time-intensive activity. In addition, during preliminary investigations
we noticed that investigating each combination of relevance sets and 𝜃-values was
more confusing than informative because it is difficult to determine whether the
observed effects are due to failures of the system or expected differences due to
different parameters. For these reasons we focus on the run that performed best
in the original submission by Kletti and Renders [27]: rel_set_A and 𝜃 = 0.9.

Step 2: Select queries We compute the EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) for each
query for each run and select the 10 most difficult queries, ie. the queries with the
highest EEL(𝒢𝑖 , Π) or EEL(𝒢ℎ , Π).

Step 3: Fill in failure analysis template For each configuration we answer
the questions in our modified template. For sake of brevity we do not reproduce
the answers here, but instead refer to specific insights gained during the process
of filling in the template when necessary.

Step 4: Identify causes of failure Lastly, we identify causes of failure. The
causes and the reasoning behind them are described in the following two sections,
Section 4.4 and Section 4.5. For the sake of completeness and to prevent other
from doing double work, we also mention a number of things we thought in advance
might cause failures but for which we were unable to find evidence.

𝒢𝑖 𝒢ℎ
Run EEL EEL-D EEL-R EEL EEL-D EEL-R

LM 1.378 1.239 0.208 0.762 2.154 1.243
AC 0.515 0.238 0.139 0.498 1.653 1.124

Table 4.2: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) achieved by LM and AC on dataset
corp2020val_split.
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4.4. LambdaMart
We see in Table 4.2 that LM performs roughly 2.5 times worse than AC in terms
of EEL(𝒢𝑖 , Π) and almost 1.5 times worse in terms of EEL(𝒢ℎ , Π). We identify a
number of causes for the high value of EEL. We group the causes into three groups:
(i) causes affecting the disparity EEL-D, (ii) causes affecting the relevance EEL-R,
and (iii) causes related to the design of the EEL measure overall. The causes are
summarized in Table 4.3a. We now explain each cause in more detail.

Ranker Cause Description

LM CLM_single LM produces a single ranking for each query, leading
to a high disparity.

CLM_size The dataset is small, likely causing overfitting.
CLM_noisy The relevance labels for the documents are not al-

ways accurate, making it harder for LM to be trained
properly.

CLM_ambiguous Many queries are short or can be interpreted in mul-
tiple ways.

CLM_features Certain features affect the performance of the ranker
negatively.

CLM_measure Optimizing for NDCG may negatively affect the rele-
vance.

AC CAC_no_author Some non-relevant documents do not have author
information, causing them to be over-represented in
the rankings.

CAC_rel Some relevant documents have low estimated rele-
vances, causing them to be under-represented in the
rankings.

(a) Causes of failures of LM and AC. Improvements addressing some of these causes are listed in Table 5.1.

Cause Description

C_complex Unable to detect complex interactions with the
modified failure analysis method.

C_eel_constant Due to the EEL-C-component, EEL is a sub-optimal
difficulty measure.

C_eel_grouping Evaluating rankings with the H-level grouping did
not yield useful information.

(b) Flaws in the modified failure analysis method.

Table 4.3: Causes of failure for LM and AC as well as flaws with the modified failure analysis.
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4.4.1. Causes affecting EEL-D
We find that the main reason that LM performs worse than AC is because of a high
disparity value EEL-D(𝒢𝑖 , Π) or EEL-D(𝒢ℎ , Π). LM’s EEL-D(𝒢𝑖 , Π) is 5 times worse than
the worst EEL-D(𝒢𝑖 , Π) for AC; for EEL-D(𝒢ℎ , Π) the difference is a factor 1.2. We
know the issue is not the relevance EEL-R(𝒢𝑖 , Π) or EEL-R(𝒢ℎ , Π): the EEL-R(𝒢𝑖 , Π)
of LM is 1.4 higher than that of the next best value for AC; for EEL-R(𝒢ℎ , Π) the
difference is smaller with 1.1 times the value.

Single ranking By design LM returns a single ranking for each query. However,
the goal of FAIR-TREC 2020 is to create amortized rankers. To meet this require-
ment, the single ranking created by LM is repeated 150 times. As we know, a single
ranking cannot be perfectly fair [4], so there is by definition some disparity in the
ranking, which then is exacerbated by the ranking being repeated so many times.

Recall the example we showed in Table 2.10. Here we saw clearly that repeating
the same ranking over and over leads to a discrepancy in exposure not only between
relevant and non-relevant documents, but between equally relevant documents as
well.

We refer to this cause as CLM_single.

4.4.2. Causes affecting EEL-R
As we see in Table 4.2, the value of both EEL-R(𝒢𝑖 , Π) as well as EEL-R(𝒢ℎ , Π) is
better for LM than for the next best option for AC. However, it may be possible to
boost EEL-R even further. We remind the reader at this point that EEL-R is not an
effectiveness measure in the same sense as e.g. NDCG or ERR. It does not measure
the ability of the system to retrieve the most useful documents for the user. Instead,
EEL-R measure how much of the exposure is given to relevant documents.

Even so, for relevant documents to receive more exposure, they have to be
ranked more highly, which is more likely to happen if LM is more effective. There-
fore, we identify some errors that may cause a lower effectiveness of the system.

Noisy data To answer questions 1-3 in Template 4.3 we inspected every relevant
and non-relevant document in the top of the rankings, as well as every relevant
document in the bottom of the rankings. A recurring observation is that many
documents that are marked as relevant we would judge to be non-relevant and
vice-versa. This makes it difficult for LM to be trained well.

The noisiness of the dataset is most likely due to the process through which it
was created. As explained in Section 2.2.1, the relevance labels are derived from
logged queries and clicks. As the organizers themselves note, click data is biased
because users may click on things that are not relevant but grab their attention for
another reason [5].

Another factor is that the queries were mined from a short period, February 14
2020 to April 27 2020. This was around the start of the COVID-19 pandemic [28]. It
is likely that the intense need for information on this topic influenced users’ search
and click behavior. We see for example that a number of the queries pertaining
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to specific aspects COVID-19 have general documents on COVID-19 marked as
relevant as well.

Ambiguous queries When answering questions 1-3 in Template 4.3 we also
found that there are many queries that are ambiguous. For example, some queries
are so short that they can apply to many documents, e.g. “beauty”, or they are
open for multiple interpretations, e.g. “dover beach” could be the poem by Mathhew
Arnold or a place. Query ambiguity is a known challenge for IR systems [30, Ch.
9]. We refer to this cause as CLM_ambiguous.

Choice of features When answering question 3 in Template 4.3 we noticed that
many of the relevant documents that were not ranked in the top positions had low
values for either the inCitations or outCitations field. inCitations is the
number of documents that cite the document, and outCitations is the number
of other documents this document cites. Intuitively, it makes sense that a document
with fewer incoming citations could seem less relevant, but it is possible that the
inCitations and outCitations fields are weighed too heavily. We refer to
this error as CLM_features.

Small dataset The causes CLM_noisy and CLM_ambiguous are likely exacer-
bated by the small size of the dataset; corp2020train consists of 200 queries
with a total of 4000 documents. A known risk for small datasets is that the model
will underfit, leading to low predictive power. Especially in combination with noisy
labels, the size of the dataset likely makes it difficult for LM to be trained properly.
We refer to this cause as CLM_size.

Optimizing for NDCG The goal of training LM is to optimize for a particular
effectiveness measure. As explained in Chapter 3, this is done by scaling the loss
at each training step by the difference in effectiveness resulting from swapping two
items [11]. The standard choice of effectiveness measure is NDCG, but it has been
shown that LM can also optimize for, inter alia, MAP, MRR [22].

In filling in Template 4.3 we were not able to find evidence that optimizing for
NDCG has a detrimental effect on EEL. However, previous literature shows that it
can be more effective to optimize for the same measure you evaluate the system
with [22]. Therefore, it is possible that the fact we optimize for NDCG is a source
of failure. We refer to this cause as CLM_measure.

4.5. Advantage Controller
As we see in Table 4.2, AC performs better than LM both when using an individual
grouping and when using an h-level grouping. The improved performance is mostly
due to a lower disparity: the EEL-D(𝒢𝑖 , Π) is 5 times lower for AC than for LM; for
EEL-D(𝒢ℎ , Π) the difference is a factor 1.3. On the other hand, both the EEL-R(𝒢𝑖 , Π)
and EEL-R(𝒢ℎ , Π) are higher than for LM.
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Figure 4.4: The number of times each document appears in a top position for query 31412 when
ranked by baseline AC. Hatched documents do not have an author.

It was challenging to identify causes for AC with the failure analysis method we
use. In the end, we identified a two causes cause. In this section we describe the
causes we identified. In the next section we go deeper into the limitations of our
failure analysis method .

Susceptibility to missing author information When filling in questions 1-3
in Template 4.3 we noticed that some non-relevant documents occurred in a top
position noticeably more often than other documents. Figure 4.4 shows one such
example: we see that the document that occurs the most often (i) is non-relevant
and (ii) does not have an author. The authorless document also occurs much more
often than any other document, almost 5 times more often than the next most
frequent document.

This behavior only occurs for non-relevant documents. As we see in Table 4.4,
8.3% of non-relevant documents in the top positions of the rankings for the most
difficult queries (according to EEL(𝒢𝑖 , Π)) do not have an author, while this number
is 0% for relevant documents in either top or bottom positions. The same pattern
occurs when we measure difficulty in EEL(𝒢ℎ , Π).

This effect is due to the way AC introduces fairness into a sequence of rankings.
Recall the re-scoring function Equation (3.1) for a document 𝑑 for query 𝑞 at time
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Measurement Relevant/
non-relevant

Top/
bottom

Difficulty measure
EEL(𝒢ℎ , Π) EEL(𝒢𝑖 , Π)

Avg. % Relevant Top 17 14
Avg. # of authors Relevant Top 2.3 1.9

Non-relevant Top 2.8 3.2
Relevant Bottom 2.5 4.9

Avg. # of documents/author Relevant Top 1.1 1.0
Non-relevant Top 1.0 1.1
Relevant Bottom 1.2 1.0

# without author Relevant Top 0 0
Non-relevant Top 4 5
Relevant Bottom 0 0

% without author Relevant Top 0.0 0.0
Non-relevant Top 4.5 8.3
Relevant Bottom 0.0 0.0

Avg. estimated probability of
relevance

Relevant Top 0.18 0.20
Non-relevant Top 0.16 0.19
Relevant Bottom 0.18 0.17

Avg. relative position based on
estimated probability of
relevance

Relevant Top 10 3.6
Non-relevant Top 14 5.4
Relevant Bottom 9.1 7.4

Avg. difference between
estimated probability of
relevance and true relevance

Relevant Top 0.50 0.56
Non-relevant Top 0.020 0.029
Relevant Bottom 0.35 0.58

Table 4.4: Various statistics over the rankings for the 10 most difficult queries according to baseline
AC. The estimated probabilities of relevance are taken from rel_set_A. Relative position is computed

as in Equation (4.2).

𝑡:

ℎ(𝑑, 𝑡, 𝑞) = 𝜃𝜌(𝑑, 𝑞) − (1 − 𝜃)𝐴(𝑑, 𝑡), (4.1)

where 𝜌(𝑑, 𝑞) is the estimated relevance probability of 𝑑 for 𝑞 and 𝐴(𝑑, 𝑡) is the
advantage of 𝑑 at time 𝑡 as defined in Equation (3.12).

The advantage indicates whether a document has received more or less of its
fair share of exposure at time 𝑡; ℎ boosts documents that thus far have received
too little exposure and hinders documents that have received too much. Each
document’s advantage at time 𝑡 𝐴(𝑑, 𝑡) is defined as the arithmetic mean of the
advantage of its authors. If a document has no authors, 𝐴(𝑑, 𝑡) = 0∀𝑡.

Because the advantage is a core element of AC’s ranking strategy and documents
without an author are treated differently, we can expect AC to be sensitive to missing
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authors. Documents without an author cannot be advantaged, but crucially, they
are also never hindered, resulting in the observed spiking behavior.

The over-representation of authorless documents is detrimental to the EEL value
both in terms of relevance and disparity. The disparity grows because a single
document receives most of the attention, and the relevance decreases because
most of the authorless documents in the validation set in reality are non-relevant.

We refer to the failure cause of missing author information as CAC_no_author.

Low estimated relevances We see a number of of patterns specific to the rel-
evant documents in bottom positions. As we see in Table 4.4, when we measure
difficulty in EEL(𝒢𝑖 , Π) the non-relevant documents in bottom positions on aver-
age have an estimated relevance value of 0.17 versus a value of 0.20 and 0.18 for
relevant and non-relevant documents in top positions respectively.

Additionally, if we were to rank the documents by predicted relevances alone,
the relevant documents in bottom-positions would end up at higher (and therefore
worse) relative positions. We compute the relative position of a document in ranking
𝜋 as

relative position(𝑑) = 𝜋(𝑑)
|𝜋| . (4.2)

For the relevant documents in bottom positions, the mean relative position(𝑑)
is 7.4 versus 3.6 and 5.4 for relevant and non-relevant documents in top positions
respectively.

Lastly, we see that the non-relevant documents in bottom positions have a
higher difference with the true relevance values than the relevant documents in
top positions. In other words, the predicted relevances are less accurate for the
relevant documents in bottom positions.

The low and inaccurate estimated relevances of the relevant documents in bot-
tom positions in particular are detrimental to the EEL. The overall relevance goes
down because less exposure is on relevant documents, and the disparity goes up
because not all relevant documents get equal exposure. We refer to this cause of
failure as CAC_rel.

4.6. Limitations of the modified failure analysis
The modified failure analysis method we use in this chapter was designed for the
purposes of this thesis and has not been used before. As such, during the the
process of analyzing LM and AC we ran into a number of limitations in our chosen
method. These are not failure causes in the same sense as the ones we identified
for the rankers but they do affect the outcome of the failure analysis. We detected
three flaws: (i) limited ability to detect complex interactions, (ii) limited utility of EEL
as a measure of difficulty, and (iii) superfluous questions. The flaws are summarized
in Table 4.3b.
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4.6.1. Detecting complex interactions
It was more challenging to identify causes for failures for AC than for LM. From the
point of view of fairness, LM is a simpler ranker since it does not try to take into
account fairness.

AC on the other hand has numerous components that affect the final score.
There is the scoring function ℎ, the way of computing advantage for documents
from the advantage of their authors, the way of computing the expected exposure
terms for the advantage, and the input relevance sets. This multitude of factors
made it difficult to distinguish which observed effect was due to which cause.

One of the challenges was to determine to which extent the choice of grouping
by authors in computing advantage affects the overall score. For example, we ex-
pected to see some difference in the number of authors of relevant and non-relevant
documents in top and bottom positions. We also expected to see a difference in
the number of documents each author had contributed to the ranking. We see in
Table 4.4 that the relevant documents in the bottom positions indeed have more
authors than the relevant and non-relevant documents in top positions, 4.9 on av-
erage versus 1.9 and 3.2 respectively. However, those authors then all on average
contribute around 1.0 document to the ranking, meaning that even if a document
has many authors they are not affected by other documents in the ranking.

We were unable to determine the cause of this kind of interaction effects by
using our modified failure analysis because it depends not only on the frequency of
occurrence in top or bottom positions of certain documents and their characteristics,
but also on the behavior of all other documents in the ranking.

4.6.2. EEL as a measure of difficulty
During the failure analysis we ran into two issues that were due to our choice of EEL
as the measure of difficulty: the sub-measure EEL-C and measuring over multiple
groupings.

Constant component of EEL Recall that EEL can be split into three components
(see Equation (2.43)):

EEL = EEL-D− EEL-R+ EEL-C. (4.3)

To answer question 5 in Template 4.3 we plotted EEL versus EEL-D − EEL-R for
queries of decreasing difficulty for both LM and AC and for EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π).
The plots are shown in Figure 4.5.

As we see, the decrease in EEL is not directly related to the decrease in EEL-D−
EEL-R. This points at the influence of the third component, EEL-C.

EEL-C depends completely on ℰ∗𝑔 and as such is the same for queries that have
the same number of relevant and non-relevant documents. However, as a result its
value is inherently higher or lower for different queries. As a result, if we use EEL
as a measure for difficulty, some queries will seem inherently more or less difficult
than other queries.

As long as we evaluate rankers on the same sets of queries this is not nec-
essarily an issue since in that case the EEL-C components add the same value to
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the evaluation of each ranker. However, it means that EEL is flawed as a difficulty
measure, since we cannot compare the difficulty of two queries without accounting
for the EEL-C component. We refer to this flaw as C_eel_constant.

Evaluation with different groupings We computed the EEL of the rankings
with two different groupings, 𝒢𝑖𝑛𝑑 which places each document in its own group,
and 𝒢ℎ which groups documents by the H-index of authors.

The goal of using the H-level grouping in particular was to detect interactions
between the behavior of the rankers and the chosen grouping. We used this par-
ticular grouping because it was available to participants of FAIR-TREC2020 when
it was ongoing. However, we found that it was difficult to pinpoint the reactions
that occurred with our failure analysis method. We do detect some effect: As we
see in Table 4.2, the EEL(𝒢ℎ , Π) is lower than the EEL(𝒢𝑖 , Π) for both LM and AC,
particularly due to a higher relevance EEL-R. However, we were unable to de-
termine what characteristic of the H-level grouping is responsible for this effect.
Additionally, since we use a single grouping, it is unclear whether the observed ef-
fect would generalize to other groupings such as the Econ-level grouping provided
with corp2020test.

The latter point points at a limitation of EEL as a measure for fairness overall.
The goal of EEL is to measure fairness with respect to arbitrary groupings. However,
computing EEL requires a group definition, meaning any conclusions drawn from
values of EEL will be applicable to that grouping only. It is of yet unclear whether a
good performance with respect to one grouping generalizes to a good performance
on arbitrary groupings.

We refer to this flaw as C_eel_grouping.

4.7. Summary
In this chapter we defined a modified failure analysis method based on the method
defined by Buckley [9]. We then performed a failure analysis of two rankers, the
baseline configuration of LM as described in Section 3.3 and AC with rel_set_A
and 𝜃 = 0.9. All identified causes are summarized in Table 4.3a.

For LM, we found the following causes of failure:

• CLM_single: LM generates a single ranking per query, resulting in high
disparity EEL-D.

• CLM_noisy, CLM_size, and CLM_ambiguous: The training set corp2020train
is small and the relevance labels are noisy, making it hard for LM to be trained
properly. Additionally, many of the queries in corp2020train are ambigu-
ous, making it hard for LM to distinguish between relevant and non-relevant
documents.

• CLM_features: Some features impact the the score of LM in unexpected or
undesirable ways.

• CLM_measure: LM is optimized for NDCG but EEL is based on ERR.
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For AC we found the following causes of failure:

• CAC_no_author: AC is susceptible to missing author information. Docu-
ments without authors are disproportionately advantaged.

• CAC_rel: Some relevant documents have disproportionately low estimated
relevance values 𝜌, hurting their position in the final ranking.

Finally, we identified a number of limitations of our chosen failure analysis
method. These are listed in Table 4.3b. The limitations are:

• C_complex: Our failure analysis method was insufficient to uncover complex
causes of failure.

• C_eel_constant and C_eel_grouping: EEL is flawed as a measure of
query difficulty due to the influence of sub-measure EEL-C and the influence
of the chosen grouping.
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1. Behavior on top non-relevant documents [Why were the top non-relevant
documents retrieved?]

2. Behavior on unretrieved relevant documents [Why weren’t these relevant
document retrieved within the top 1000?]

3. Beadplot observations [How does the ranking (especially among the top
50 documents) of this system compare to all other systems?]

4. Base Query observations [What did the system think were the important
terms of the original query, and were they good?]

5. Expanded Query observations [If the system expanded the query (4 out
of 6 systems did), what were the important terms of the expansion, and
were they helpful?]

6. Blunders of system [What obvious mistakes did the system make that it
could have easily avoided? Examples might be bad stemming of words
or bad handling of hyphenation]

7. Other features of note [Anything else.]

8. What should system to do improve performance? [The individual’s con-
clusion as to why the system did not retrieve well, and recommendations
as to what would have made a better retrieval.]

9. What added information would help performance? How can system get
that information? [Is there implicit information in the query, that a hu-
man would understand but the system didn’t? Examples might be world
knowledge (like Germany is part of Europe).]

10. Assessing agreement (were there major issues? was relevance deter-
mined by “Desc”?) [The NIST assessor who originally judged relevance
of documents might have a different idea of what was relevant than the
text of the description indicates or than the workshop participant thinks
should be relevant. It also may be unclear where and why the NIST as-
sessor drew the line between marginally relevant and non-relevant doc-
uments.]

Template 4.2: Topic Failure Analysis Template for Individual System. Caption and template from
Buckley [9, Figure 1].
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1. How often were top positions occupied by relevant documents? Can these
documents be categorized and distinguished from other documents?

2. How often were top positions occupied by non-relevant documents? Can
these documents be categorized and distinguished from other docu-
ments?

3. Which relevant documents appear rarely or not at all in the top positions?
Why did these documents not appear in the top positions more often?

4. What did the system think were the important terms of the original query,
and were they good?

5. Is the performance of the system in terms of EEL(𝒢𝑖 , Π) or EEL(𝒢ℎ , Π)
mostly due to high disparity, low relevance, or both?

6. What obvious mistakes did the system make that it could have easily
avoided? (E.g. stemming or hyphenation issues.)

7. Other features of note

8. What information is there in the query that the system does not under-
stand (e.g.: Germany is part of Europe)? How can the system get that
information?

9. Assessing agreement. Do the relevance labels seem accurate?

Template 4.3: Topic failure analysis template for a single amortized ranking system.
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(a) Ranker: LM.

(b) Ranker: AC.

Figure 4.5: EEL versus EEL-D − EEL-R for queries in corp2020val_split. Queries are ordered by
decreasing difficulty.



5
Improvements

We propose improvements to remedy some of the causes we identified in Chapter 4.
We implement the proposed improvements and assess whether they remedy the
causes. All proposed improvements are listed in Table 5.1.

The structure of this chapter is as follows. In Section 5.1 we describe our ap-
proach to proposing, implementing, and evaluating the improvements. In Sec-
tions 5.2 and 5.3 we describe the improvements in detail and assess whether they
remedy the causes. We close the chapter with a summary in Section 5.4.

51
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Ran-
ker

Improvement Variations Description Addressed cause

LM ILM_post none
ac
rfre

Apply post-
processing on the
rankings produced
by LM.

CLM_single

ILM_fsm none
mpt
msd

Select the best fea-
tures for LM with a
feature selection al-
gorithm.

CLM_features

ILM_measure ndcg
err

Optimize LM for a
different effective-
ness measure.

CLM_measure

AC IAC_dummy none
ind
one

Add dummy authors
to documents with-
out authors.

CAC_no_author

IAC_hfunc linear
min
max

Equalize the amount
of advantage for
each document with
a different scoring
function.

CAC_rel

IAC_rels rel_set_A
rel_set_lm

Use a more accu-
rate set of estimated
probabilities of rele-
vance.

CAC_rel

Table 5.1: The proposed improvements for LM and AC. The causes are listed in Table 4.3a.

5.1. Approach
To improve each ranker we perform the same actions. We select causes to im-
prove, propose and implement propose and implement improvements, create runs
on and evaluate performance on corp2020val_split, select improvements that
work on corp2020val_split, and create runs and evaluate performance on
corp2020test.

Causes and improvements In the interest of time we are unable to investigate
solutions to every cause in Table 4.3a. Additionally, sometimes we lack certain
resources that would enable us to propose a solution. For causes where we are
unable to propose an improvement we explain why.

We propose a solution for each of the selected causes. All solutions and the
causes they target are listed in Table 5.1. Throughout this chapter we provide
implementation details where necessary.
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Runs Much like in Step 1 of the failure analysis, we create representative runs
of each improved ranker. The runs are generated automatically, that is, without
intervention from our side after starting the training and ranking process. The runs
are assumed to reflect the performance of the system at large.

To determine which improvements perform significantly better than the base-
lines we create the runs on the same data that we used for the failure analysis,
namely corp2020val_split. To assess whether improvements generalize well
we use the test data corp2020test.

We compare the performance of each improvement relative to that of the un-
altered ranker upon which it is meant to improve. We refer to the runs with the
unaltered rankers as the baseline runs. These runs are the same as described in
Section 4.3 with the same hyperparameter settings and random seeds as described
in Table 3.3. Table 4.2 shows each baseline run and the performance it achieved
on corp2020val_split.

Evaluating the performance We measure the performance of the runs with
EEL. We use three different groupings: the singleton document grouping, the H-
level grouping, and the Econ-level grouping.

As mentioned in Section 4.2, we use the individual-level grouping EEL(𝒢𝑖 , Π) be-
cause it allows us to more directly compare the results on corp2020val_split
and corp2020test, since there is no interference from the grouping. In addi-
tion, we use the H-level grouping with corp2020val_split and EEL(𝒢𝑒 , Π) with
corp2020test since the H-level grouping and the Econ-level grouping were pro-
vided with the corp2020train and corp2020test respectively. While using
different groupings for the training and testing data makes it more difficult to draw
a direct comparison it may provide insight in the influence of different groupings
on performance.

We investigate whether the difference in performance is significant with the
procedure given by Sakai [38]. For the sake of legibility all statistical test results
are collected in Appendix B.

Sakai [38] describes two procedures: (i) a procedure for comparing two sys-
tems, and (ii) a procedure for comparing more than two systems. Under system
we understand any configuration of a ranker, be it a completely different approach,
e.g. LM versus AC, or a difference within the same ranker, e.g. a different ℎ-score
function within AC.

We assess the significance of the difference in performance between two sys-
tems with a two-sided paired t-test [43]. The samples for the paired test are the
scores on each topic achieved by each system. We use the scipy.stats imple-
mentation to compute the test statistic1.

We use a two-sided rather than a one-sided comparison because we want to
know whether the performance of the improved system is different from that of the
baseline system rather than whether the improved system is better than the base-
line system. This is to cover the case that the improved system actually performs
1docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html.

docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html
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worse than the baseline, which we would not be able to detect with a one-sided
t-test.

We assess the significance of the difference in performance between three or
more systems with a two-way ANOVA. In particular, we use the statsmodels
implementation2. The factors for the ANOVA are the system and the query iden-
tifier qid. The system factor in this cases encompasses both different systems,
e.g. LM or AC, and configurations of the same system, e.g. LM with different post-
processing methods applied. Since we assess the influence of different improve-
ments, within each ANOVA we rename the system to a more descriptive name,
e.g. post when we assess the influence of different post-processing methods.

It is possible that some topics are inherently more difficult than others. By
treating qid as a factor we can separate the variance due to query difficulty from
that due to the systems themselves.

Since we fixed all random seeds to 0, we have a single measurement per sys-
tem/qid-pair. As such, we perform ANOVA without replication, which means we
cannot say anything about the interaction between qid and system [38].

A statistically significant difference does not necessarily imply that there is a
practical difference in performance [13]. To give insight into the magnitude of the
observed effects we must also provide the effect size and 95% Confidence Interval
(CI) Sakai [38]. For ANOVA, we report the effect size in terms of (partial) 𝜔2 [34,
Table 10]:

𝜔2 =
𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡 (𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡 −𝑀𝑆𝑒𝑟𝑟𝑜𝑟)

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
and

𝜔2𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =
𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡 (𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡 −𝑀𝑆𝑒𝑟𝑟𝑜𝑟)

𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡 + (𝑁 − 𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡𝑀𝑆𝑒𝑟𝑟𝑜𝑟)
.

Here 𝑑𝑓 is degrees of freedom, 𝑀𝑆 is the mean squared error, 𝑆𝑆 is the sum of
squares, and 𝑁 is the total number of observations.

For the t-test, we report the effect size as in Sakai [38, Eq. 2]:

𝐸𝑆𝑡 = �̄�/√𝑉,
where �̄� is the mean of the sample and 𝑉 is the unbiased variance of the sample.

The mean is given by

�̄� =
𝑛

∑
𝑗=1
𝑑𝑗/𝑛

and
2statsmodels.org/dev/generated/statsmodels.stats.anova.anova_lm.html

statsmodels.org/dev/generated/statsmodels.stats.anova.anova_lm.html
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𝑉 = 1
𝑛 − 1

𝑛

∑
𝑗=1
(𝑑𝑗 − �̄�)

2

where 𝑑𝑗 is the difference between the score on the 𝑗th topic achieved by the
first and the second configuration and 𝑛 is the total number of topics.

For ANOVA we compute the CI as

𝐶𝐼 = [�̄�𝑖 −𝑀𝐸𝑎 , �̄�𝑖 +𝑀𝐸𝑎] (5.1)

where �̄�𝑖 is the mean of the 𝑖th group and

𝑀𝐸𝑎 = 𝑡(𝑑𝑓𝑒𝑟𝑟𝑜𝑟; 0.05)√𝑀𝑆𝑒𝑟𝑟𝑜𝑟/𝑛𝑒𝑓𝑓𝑒𝑐𝑡 . (5.2)

For the t-test we compute it as

𝐶𝐼 = [�̄� − 𝑀𝐸𝑡 , �̄� + 𝑀𝐸𝑡] (5.3)

where 𝑀𝐸𝑡 = 𝑡(𝑛 − 1; 0.05)√𝑉/𝑛 and 𝑡(𝑑𝑓; 𝛼) is the Student t-distribution.
Because we have a single measurement per sytem/qid-combination, our ex-

periments violate the assumptions of homoscedacity and normality underlying the
t-test and ANOVA. However, both tests have been shown to be robust to these vio-
lations [38, 46], and the t-test in particular has been shown to be more appropriate
than non-parameteric alternatives for the task of comparing performance [46].

We find the significant differences between levels within a factor with a Tukey
HSD test3. We report the effect size in terms of Cohen’s 𝑑 [15, ch. 2]:

𝑑𝑐 =
|�̄�𝑖 − �̄�𝑗|
√𝑀𝑆𝑒𝑟𝑟𝑜𝑟

.

Again, �̄�𝑖 and �̄�𝑗 are the means of the 𝑖th and the 𝑗th groups, and 𝑀𝑆𝑒𝑟𝑟𝑜𝑟 are
the mean squares of the error terms. It should be noted that we do not perform
Tukey tests for the qid factor even when it is significant, because knowing which
topics yields significantly better or worse performance does not yield actionable
information in this scenario.

5.2. Improvements to LambdaMart
In this section we propose and evaluate improvements for the causes of failure for
LM listed in Table 4.3a. All improvements are listed in Table 5.1. We now discuss
each improvement in more detail.
3statsmodels.org/dev/generated/statsmodels.stats.multicomp.pairwise_
tukeyhsd.html

statsmodels.org/dev/generated/statsmodels.stats.multicomp.pairwise_tukeyhsd.html
statsmodels.org/dev/generated/statsmodels.stats.multicomp.pairwise_tukeyhsd.html
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5.2.1. Improving disparity with post-processing
We identified one cause affecting the disparity EEL-D, CLM_single. In short:
because LM returns a single ranking for each query rather than a series of different
rankings, any unfairness that exists in the single ranking accumulates over time.

There are two ways in which a ranker could yield different rankings in response
to a single query. the first way is if the ranker is a stochastic ranker. Stochastic
rankers learn a distribution over the documents and sample from this distribution
to create a ranking [8]. Since the ranking is sampled it is different each time. A
stochastic version of LM has been proposed by Wang et al. [49]. However, no
implementation of this method is available for the library we used for LM, pyltr.
Therefore, in the interest of time, we do not investigate this further here.

The second way to generate multiple rankings with LM is by using post-processing.
Post-processing is one of the three ways of introducing fairness to existing algo-
rithms identified by i.a. Zehlike, Yang, and Stoyanovich [51]. Post-processing meth-
ods are all those methods that re-rank the output from a ranker to introduce more
fairness. By re-ranking the output from LM differently 150 times we can create a
fairer sequence of rankings.

Post-processing methods are usually implemented as separate modules that
take the output from one ranker as input and generate new rankings from it. This
makes it easy to swap out and test different post-processing modules.

We refer to this improvement as ILM_post. We implement two post-processors,
each of which we describe in more detail now.

Advantage Controller The first post-processor at this point should be familiar
to the reader: the Advantage Controller. AC takes in a set of estimated probabilities
of relevance and based on those generates as many different rankings as needed
while balancing exposure.

To use AC as a post-processor we only need to change the estimated probability
of relevance set so that it is generated by LM. LM returns both positive and negative
scores for documents, but AC needs scores that are in the [0, 1]-range because they
are used as parameters for the Poisson-Binomial distribution (see Equation (3.2)).

We use the baseline version of AC as the re-ranker. We use ℎ as defined in
Equation (3.1) and set 𝐴𝑑(𝑑, 𝑡) to 0 if the author information for 𝑑 is missing. It
is hard to say whether we should use 𝜃 = 0.9 or 𝜃 = 0.99 as a baseline version,
since Kletti and Renders [27] evaluate both and neither option is necessarily better
than the other. However, 𝜃 = 0.9 gives slightly more weight to the component of ℎ
balancing the disparity. The goal is to improve the disparity of LM so therefore we
set 𝜃 = 0.99.

Robust Fair Rankingwith Expected Exposure Loss The second post-processor
is based on the Multi-grouping Robust Fair Ranking (MRFR) algorithm [45]. The goal
of MRFR is to achieve fairness across multiple rankings for a single query with re-
spect to an unknown evaluation grouping, much like is the case for the FAIR-TREC
2020 benchmark.
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In words, the approach of MRFR is to: (i) compute a pre-ordering score and
order the documents, (ii) create candidate rankings by permuting the top 𝐾 docu-
ments of the pre-ordered list of documents, (iii) select the best candidate ranking
according to a second scoring function. We summarize the approach in Algorithm 1.
In the pseudocode,

𝜙(𝑑, 𝑡) = 𝜌𝑑 − 𝛽 𝛿(𝑑, 𝑡) (5.4)

with

𝛿(𝑑, 𝑡) = ∑
𝑔∈𝒢

[E(𝑔, 𝑡) − R(𝑔, 𝑡)] , (5.5)

and

𝜓(𝜋𝑐 , 𝑡) = U(Π<𝑡 ∪ 𝜋𝑐) − 𝜆Unf(Π<𝑡 ∪ 𝜋𝑐). (5.6)

Here 𝜌(𝑑) is the (predicted) relevance of document 𝑑 and E, R, U and Unf are
exposure, relevance, utility and unfairness respectively as used in FAIR-TREC 2019
[5]. Π<𝑡 is the set of rankings created up to time 𝑡. 𝒢 is a particular grouping, e.g.
an H-level or Econ-level grouping.

Algorithm 1 Outline of the MRFR re-ranking procedure for a single query 𝑞. 𝒟(𝑞)
is the set of documents for the query.

1: procedure MRFR
2: for t=1 to t=n do
3: ∀𝑑 ∈ 𝒟(𝑞) compute 𝜙(𝑑, 𝑡) � Compute pre-ordering score with
Equation (5.4).

4: 𝜋𝑝𝑟𝑒 ← (𝜙(𝑑1, 𝑡), 𝜙(𝑑2, 𝑡), … , 𝜙(𝑑𝑁 , 𝑡)) � (Order documents by
pre-ordering score)

5: Create candidate ranking 𝜋𝑐 for each permutation of the top 𝐾 docu-
ments of 𝜋𝑝𝑟𝑒

6: ∀𝜋𝑐 compute 𝜓(𝜋𝑐 , 𝑡) � Compute candidate ranking score with
Equation (5.6).

7: Return 𝜋 = 𝜋𝑐
argmax

𝜓(𝜋𝑐) � Return the ranking for this time 𝑡
8: end for
9: end procedure

Thonet and Renders [45] evaluate the performance of MRFR in terms of the
fairness metric used in FAIR-TREC 2019, Unf (see Equation (2.12)). As explained
in Section 2.3, while Unf and EEL are similar in some ways, they do not target the
exact same kind of fairness. Therefore, we alter MRFR to work with the setting of
FAIR-TREC 2020. We call our adapted method Robust Fair Ranking with Expected
Exposure Loss (RFRE).

We make the following changes. We adapt Equations (5.4) to (5.6) to work with
EEL as follows:
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𝜙𝐸𝐸𝐿(𝑑, 𝑡) = 𝜌(𝑑) − 𝛽 𝛿𝐸𝐸𝐿(𝑑, 𝑡), (5.7)

𝛿𝐸𝐸𝐿(𝑖, 𝑡) = ∑
𝑔∈𝒢(𝑑)

(e-ERR2020𝑔 (𝑔, Π<𝑡) − ℰ∗𝑔(𝑔, Π<𝑡)) , (5.8)

and

𝜓𝐸𝐸𝐿(𝑝𝑖𝑐 , 𝑡) = U(Π<𝑡 ∪ 𝜋𝑐) − 𝜆 EEL(𝒢, Π<𝑡). (5.9)

In the above, e-ERR2020𝑔 is computed as in Equation (2.8) and ℰ∗𝑔 is computed as
in Equation (2.42). U is the utility as defined in [5], the same to the original MRFR
formulation. Even thoughEELcan be decomposed into a disparity and a relevance
component, the relevance component can not be directly interpreted as a utility
metric [19]. Additionally, because relevance is subsumed intoEEL, it is difficult
to explicitly make a trade-off between fairness and utility. Therefore we explicitly
include utility as part of 𝜓𝐸𝐸𝐿.

As in the original description of MRFR, 𝛿 is computed over a particular group-
ing 𝒢. In their work, Thonet and Renders [45] assessed how well their method
performed using different groupings. To best compare the performance of AC and
RFRE as post-processing methods, we use the same grouping for both, namely the
grouping used in the baseline version of AC: a grouping by author that ignores
missing author information. Similar to how it is for AC, if a document does not have
a group (defined by author in this case), we set 𝛿EEL to 0.

A note on estimated probability of relevance Both AC and RFRE need a
set of estimated probabilities of relevance 𝜌 to compute their scoring functions.
Since we want to use AC and RFRE as post-processing methods for LM, we want
to use the scores LM computes for each document as their estimated probabilities
of relevance. For both AC as well as RFRE the values of 𝜌 are, inter alia, used
as the parameters of a Poisson-Binomial distribution. These parameters should
lie between [0, 1] However, LM can predict both positive and negative scores for
a document. To make the scores from LM suitable for use as parameters for the
Poisson-Binomial distribution we normalize the predictions for each document for
each query to lie in the range [0, 1].

Results
We evaluate the performance of AC and RFRE as post-processors. The levels
of the post factor are none, ac, and rfre. We create runs for each level on
corp2020val_split. The performance of each level is summarized in Table B.1.

Since we compare three or more systems we use the ANOVA test. We perform
two ANOVAs, one for EEL(𝒢𝑖 , Π) and one for EEL(𝒢ℎ , Π) as dependent variable. The
results of the ANOVAs are given in Table B.3. Since post is significant for both
dependent variables, we perform additional Tukey’s HSD test, the results of which
are shown in Table B.4.
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Finally, Figure B.1 shows the mean performances of the three systems with 95%
CI using the 𝑀𝑆𝑒𝑟𝑟𝑜𝑟 from Table B.3.

We see from Table B.4 that both ac and rfre perform significantly better than
none in terms of EEL(𝒢𝑖 , Π), although not significantly better than each other. Al-
though we do not see the same significance results when using EEL(𝒢ℎ , Π) as a DV,
the result on EEL(𝒢𝑖 , Π) prompts us to evaluate the performance of ac and rfre
on corp2020test.

We create runs of none, ac, and rfre on corp2020test. The performance
of each run is summarized in Table B.2.

To assess whether the performance of post-processing with AC or RFRE is better
than that of LM alone, we perform two-sided paired t-tests between none and ac
and none and rfre with DV EEL(𝒢𝑖 , Π) and EEL(𝒢𝑒 , Π). The results of the t-tests
are given in Table B.5.

Discussion
The goal of the improvement ILM_post was to improve the EEL-D of rankings
produced by LM by applying post-processing.

We applied two post-processing methods, AC and RFRE. We see that both meth-
ods significantly decrease the EEL(𝒢𝑖 , Π) on corp2020val_split; the value for
either set of post-processed rankings is around 3 times smaller than for baseline LM.
As we hoped, the improvement is mostly due to a decrease in disparity: EEL-D(𝒢𝑖 , Π)
goes from 1.378 to 0.459 for AC and from 1.378 to 0.554 for RFRE. The EEL-R(𝒢𝑖 , Π)
also goes down, but ends up being only around 1.3 times smaller for the post-
processed rankings than for the baseline. In other words: post-processing with
AC or LM improves the EEL(𝒢𝑖 , Π) by reducing the disparity at a small cost to the
relevance.

The positive effect of post-processing on EEL(𝒢𝑖 , Π) generalizes to corp2020test.
The effect is somewhat less pronounced with a factor of around 2.5, but the reduc-
tion is still significant. We also see that the effect again is mainly due to a reduction
in EEL-D(𝒢𝑖 , Π).

When we evaluate the performance with different groupings the effect of the
post-processing is less pronounced. For EEL(𝒢ℎ , Π) on corp2020val_split nei-
ther post-processing method has a significant effect. Interestingly, the effect size
for the comparison between baseline and either ac or rfre is large. For EEL(𝒢𝑒 , Π)
on corp2020test the difference between the baseline and either AC or RFRE is
significant, but the effect size 𝐸𝑆𝑡 is about 3 times smaller than for EEL(𝒢𝑖 , Π). It is
hard to say whether the difference in significance between corp2020val_split
and corp2020test is due to the chosen grouping or due to the fact that corp2020test
is much larger than corp2020val_split. In any case it seems that performance
on an arbitrary grouping on training data does not necessarily translate to similar
performance on test data.

We note that there is no significant difference in the performance of AC and
RFRE as post-processors. This may be due to the fact that both methods work
in a similar way. Both post-processors compute a kind of accumulated advantage
across multiple rankings that is then used to advantage or penalize documents in
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the next ranker. Additionally, we chose to adapt the original Multi-grouping Robust
Fair Ranking algorithm in such a way that made the resulting RFRE algorithm even
more similar to AC by including the term ℰ𝑔(𝑡) in Equation (5.8) and computing it
in the same way as we did for AC.

5.2.2. Improving relevance with feature selection
One of the causes affecting the relevance of LM is CLM_features. It was at times
unclear whether all features used for the baseline were equally useful.

For any learned ranker to achieve good accuracy it is important to select the
correct features [26]. Feature selection can remove noisy and redundant features
resulting in a smaller featureset, which in turn reduces the chance of overfitting.
This is especially useful for situations in which we have limited training data, such
as is the case for us.

It is difficult to select good features by hand; even with a small number of fea-
tures the number of possible combinations rapidly grows too large to try manually.
A possible solution to this problem is to use a feature selection algorithm. There
are three kinds of feature selection algorithms: filter algorithms which select fea-
tures before training, wrapper algorithms which test sets of features at a time, and
embedded algorithms which test features during the training process [26].

Since wrapper and embedded feature selection algorithms require altering the
ranker itself, we focus on a filter approach. Djafari Naini and Altingovde [21] com-
pare five filter-based feature selection algorithms: Top-K Relevant (Top-K), Greedy
search Algorithm for feature Selection (GAS), Maximal Marginal Relevance (MMR),
MaxSum Dispersion (MSD), and Modern Portfolio Theory (MPT). The goal of each of
these select those features that maximize an effectiveness measure such as NDCG
when used to rank a set of training samples. In the case of GAS, MMR, MSD, and
MPT, the goal is also to select features that are as diverse as possible.

[21] evaluate the performance of the aforementioned algorithms on the OHSUMED,
MQ2008, and Yahoo! SET2 datasets. Of these sets, OHSUMED and MQ2008 are the
closest to our dataset in terms of number of queries and number of samples. The
algorithms that perform best on OHSUMED and MQ2008 are MSD and MPT, so we
investigate for these feature selection methods whether they improve LambdaMart’s
performance in terms of accuracy.

Since MSD and MPT combine a focus on diversity and a good performance on the
most similar dataset we assess whether these feature selection algorithms improve
the performance of LM. We refer to the improvement of applying a feature selection
algorithm as ILM_fsm for feature selection method.

Both selected methods allow us to specify the number of selected features and
a balancing factor. The number of selected features speaks for itself. We set it to
10 to match the number of features used for baseline LM. The balancing factor is a
value between [0, 1] which determines whether the feature selection should favor
effectiveness or diversity. We set the balancing factor to 0.5.

We devise a number of new features for the feature selection algorithms to
choose from. We combine the features used for baseline LM with applicable features
for LETOR 4.0 [35]. LETOR is a set benchmark datasets for LtR that are widely used.
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In the interest of time, we add only those features that can be computed with the
Elasticsearch LtR plugin and features that can be computed from the queries. The
full list of features is given in Table 5.2. The tables should be read as follows:
Table 5.2a lists the number for each feature. The fields column shows which fields
can be used with each feature. The fields themselves are shown in Table 5.2b and
should be read in order. For example: feature 1 is the BM25 score of the title field;
feature 7 is the BM25 score of fields of study.

The functions listed in the column function of Table 5.2a are BM25, TF, IDF, and
TF*IDF, sections 11.4.3, 6.2, 6.2.1, 6.2.2 respectively in Manning, Raghavan, and
Schuetze [30].

Finally, Table 5.2c lists the features selected by MPT and MSD.

Results
We evaluate the performance of each feature selection method on corp2020val_split.
The levels of the feature selection method factor fs are none, msd, and mpt. We
create runs for each level on corp2020val_split and compute the EEL(𝒢𝑖 , Π)
and EEL(𝒢ℎ , Π). The mean performance of each level is given in Table B.6.

Since we compare three or more systems we use the ANOVA test. We perform
two ANOVAs, one for EEL(𝒢𝑖 , Π) and one for EEL(𝒢ℎ , Π) as dependent variable. The
results of the ANOVAs are given in Table B.7. Since fs is not significant for either
DV we do not perform additional Tukey’s HSD test.

Finally, Figure B.2 shows the mean performances of the three systems with
95%CI using the 𝑀𝑆𝑒𝑟𝑟𝑜𝑟 values from Table B.7.

Because the effects of using a feature selection method were not significant we
do not assess the performance on corp2020test.

Discussion
The goal of the improvement ILM_fsm was to improve the relevance of LM by
selecting better features.

We used two feature selection methods, MPT and MSD. We see that neither
method has a significant effect on the EEL on corp2020val_split. There are a
number of possible reasons for this.

The first reason is that while we gave the feature selection methods a lot of
features to choose from, some of the features were simply variations on each other.
For example, there is likely a relationship between field length in terms of characters
and tokens and between TF and IDF and TF*IDF. It is possible that including many
similar features limited the ability of the feature selection methods to distinguish
useful features from each other.

Another issue is that the feature selection algorithms we chose are learned al-
gorithms just like LM. We trained and tested MPT and MSD on corp2020train.
We used corp2020train_split as the training set and corp2020val_split
as the test set. However, as we identified in Table 4.3a, the dataset is noisy, with
some relevant documents being labeled as non-relevant and vice-versa. This nois-
iness makes it more difficult for MPT and MSD to select good features. In addition,
corp2020train consists of only 200 queries, so just like with LM at large it is
possible that MPT and MSD suffer from underfitting.
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All-in-all, using feature selection algorithms did not remedy CLM_features. It
would be interesting to see whether a larger or cleaner dataset would allow MPT
or MSD to select better features. It may also be useful to add more information to
the dataset to provide more features for the algorithms to choose from, e.g. in the
form of inferred gender or country of affiliation as done for another submission to
FAIR-TREC 2020 [24]. With the dataset being as it is, a more fruitful approach may
be to manually construct or select more effective features.

5.2.3. Improving relevance through choice of effectivenessmea-
sure

LM can optimize for different effectiveness measures. The standard option is NDCG,
which may be a sub-optimal choice for our context. We identified this as cause
CLM_measure.

As we see in Section 2.3.2, our target measure EEL is built upon ERR. We use
ERR to measure how much exposure a document receives, which we then use to
determine whether the exposure is distributed fairly. The relevance EEL-R in turn
is derived from EEL. Burges et al. [10] show that it is possible to optimize LM for
ERR as well. Since the two metrics are related, by optimizing for ERR we may be
able to improve EEL-R.

pyltr implements ERR as one of its optimization measure out of the box. We
refer to the improvement of using ERR as the optimization measure as ILM_measure.

Results
We evaluate the performance when using ERR as the optimization measure on
corp2020val_split. The levels of the factor measure are ndcg and err. The
mean performance of each system is given in Table B.8. We compare the per-
formance of the systems with two paired two-sided t-test with DV EEL(𝒢𝑖 , Π) and
EEL(𝒢ℎ , Π). The results of the t-tests are given in Table B.9. Finally, Figure B.3
shows the mean performances of ndcg and err with 95%CI computed as in Equa-
tion (5.3).

The effects of using ERR as the effectiveness metric are not significant. There-
fore, we do not assess the performance on corp2020test.

Discussion
The goal of ILM_measure was to improve the relevance of LM by using a more
appropriate effectiveness measure for optimization.

We compared the baseline optimization measure NDCG with the performance
of ERR. We see that the base version performs better on both EEL(𝒢𝑖 , Π) and
EEL(𝒢ℎ , Π) as well as the sub-measures for relevance and disparity, although the
difference is not statistically significant.

We note two possible reasons for the lack of improvement due to using ERR.
Firstly, the version of ERR as it is used in the library we use for LM, pyltr, is not
fully compatible with the implementation of ERR in the evaluation tools of FAIR-
TREC 2020. There are two parts to the ERR measure that can be changed: the
utility at rank 𝑗 𝜙(𝑗) and the probability of the user being satisfied by the document
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𝑑 at 𝑗, 𝑅(𝑑) Chapelle et al. [14]. pyltr and trec_eval_tools differ both in
how they define 𝜙 and how they define 𝑅(𝑗).

In pyltr 𝜙 is defined as described in Chapelle et al. [14, Sec. 4],

𝜙(𝑗) = 1
𝑗 , (5.10)

and 𝑅(𝑗) is given by

𝑅(𝑑) =max(0, 𝑒𝑟𝑒𝑙(𝑑) − 12)
4. (5.11)

However, in the FAIR-TREC 2020 evaluation tools, 𝜙 is as in Chapelle et al. [14,
Sec. 7.2]:

𝜙(𝑗) = 𝛾1−𝑗 , (5.12)

where 𝛾 is a patience parameter indicating how long the user searches before
giving up, and

𝑅(𝑗) = 𝜅 ⋅ 𝑟𝑒𝑙(𝑑), (5.13)

where 𝜅 determines how heavily the relevance grade of the document should
weigh.

The result of this difference is that LM is not optimized for the form of ERR
underpinning EEL and as such does not increase relevance.

Additionally, Burges [11] find that on their specific dataset training LM for ERR
results in a lower ERR on the test data, although they do not report whether their
results are statistically significant or not. They find that optimizing for NDCG yields
a better ERR instead. It is unclear why this effect occurs, but it is possible that by
optimizing for ERR we are harming relevance rather helping it. Although the results
from our t-tests were not significant, we do see in Figure B.3 that disparity is higher
for err than for ndcg, while relevance is roughly the same, supporting this idea.

All-in-all, optimizing for ERR rather than NDCG does not seem likely to yield
better results, even if we used the same versions of ERR to optimize and to measure.
However, it would be interesting to see if it is possible to optimize for EEL directly.

5.2.4. Unaddressed causes
We identified three causes relating to the dataset, CLM_noisy, CLM_ambiguous,
and CLM_size. We were unable to address these in this thesis, for the following
reasons.

Noisy data CLM_noisy is caused by the process by which the data was gath-
ered. We neither have access to the original click data from which the relevance
labels were derived, nor does the time allotted for this thesis permit us to re-assess
4pyltr/pyltr/metrics/err.py at https://github.com/jma127/pyltr

https://github.com/jma127/pyltr
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all annotated documents manually. As such, we do not address CLM_noisy our-
selves. Later editions of FAIR-TREC use datasets annotated by NIST assessors,
see e.g. Ekstrand et al. [23, Sec. 3.4]. It would be interesting to see if a similar
treatment of the dataset for FAIR-TREC 2020 would improve the usefulness of the
dataset.

Ambiguous queries The ambiguity of queries we identified in CLM_ambiguous
is a well known challenge in IR. Numerous techniques to combat this have been
proposed over time. One of the most successful techniques is that of relevance
feedback. In this process, users provide feedback on an initial set of results. The
system then uses this feedback to update its knowledge of the relevance of docu-
ments and return better results. This process can be repeated a number of times
[30, Sec. 9.1].

We did not investigate relevance feedback or related techniques both because
of the high amount of resources it requires and because we wanted to focus on
fairness rather than relevance. It would be interesting to see whether relevance
feedback can be adapted in such a way that users can contribute feedback not only
on the effectiveness of results, but on the perceived fairness as well. We leave this
as a recommendation for future work.

Small dataset The last unaddressed cause is CLM_size. The small number of
queries and annotated documents, especially in combination with the noisyness
of the labels, makes it hard for LtR-based systems to be trained effectively. A
larger number of annotated documents and queries would make it easier to improve
rankers for the FAIR-TREC 2020 setting.

5.2.5. A note on query difficulty
Throughout the preceding experiments, we note that the qid factor is consis-
tently significant and that the effect size is large compared to that of any of the
stand-ins for the system factor. This is most likely due to the small sample size.
corp2020val_split contains only 20 queries so if any one of the queries is
more difficult than another this impacts the overall score. As such, it is difficult to
say whether any significant effects we detected will generalize to larger datasets.
Conversely, effects that were not significant on corp2020val_split might be
significant on a larger dataset.

5.3. Improvements to Advantage Controller
We propose and evaluate improvements for the causes of failure of AC listed in
Table 4.3a. Both failure causes affect all aspects of EEL. We propose three reme-
dies for CAC_no_author: (i) adding dummy author information, and (ii) using a
different scoring function ℎ. We propose one remedy for CAC_rel: using a better
set of estimated probability of relevance values.

We list the improvements in Table 5.1. We now describe each improvement in
more detail.
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5.3.1. Remedying missing data with dummy authors
The first point of intervention for CAC_no_author is the data itself. Documents
without authors are advantaged by AC because for these documents 𝐴𝑑(𝑑, 𝑡) =
0. If we can add author information to documents that lack it, this removes the
disproportional advantage authorless documents receive.

One way in which we could add author information is by supplementing the data
retrieved through the official instructions for FAIR-TREC 2020 with data from other
sources. For example, Feng et al. [24] supplement corp2020with information on
the country of origin of each author by searching for authors on Google Scholar. We
could do something similar by looking for the titles of documents and retrieving the
authors for each document. However, there are two limitations to this approach.

Firstly, AC works by looking at the author id rather than the author name to
determine advantage. This is because the author name can be ambiguous, e.g.
multiple people can have the same name, while the id is unique. However, the id
is particular to the SSOC dataset and as such cannot be retrieved from a different
source. We could re-generate ids for all authors, but then we would be unable to
distinguish between authors sharing the same name.

Secondly, some documents do not have an author simply because the author
is unknown or anonymous. There is no way to remedy this by looking in external
sources.

Since we cannot retrieve the author information from external sources we gen-
erate dummy authors instead. There are two options: Either we treat all authorless
documents as if they have the same author, or we treat all authorless documents
as if they have different authors. In the first case, we assign all documents to the
same dummy author. In the second case, we use the document id as a proxy for
the author id. In both cases, we assume a document has one author.

We refer to this improvement as IAC_dummy.

Results
We evaluate the performance of AC with dummy author information. The levels of
the dummy factor are none for the baseline, one for a single dummy author for
all authorless documents, and ind for a different dummy author for each augh-
orless document. We create runs for each level on corp2020val_split. The
performance of each level is summarized in Table B.10.

We perform two ANOVAs, one for EEL(𝒢𝑖 , Π) and one for EEL(𝒢ℎ , Π) as depen-
dent variable. The results of the ANOVAs are given in Table B.11. Since dummy is
significant for both dependent variables, we perform additional Tukey’s HSD test,
the results of which are shown in Table B.12.

Finally, Figure B.4 shows the mean performances of the three systems with 95%
CI using the 𝑀𝑆𝑒𝑟𝑟𝑜𝑟 from Table B.11.

We see from Table B.12 that the effects of using dummy authors are not signif-
icant. As such, we do not assess the performance on corp2020test.

Discussion
The goal of IAC_dummy was to prevent AC from unfairly advantaging documents
without an author by assigning dummy authors to authorless documents. We see
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that neither of our strategies for assigning dummy authors yields a significant dif-
ference in performance. Even so, if we look at Figure B.4, we do see that both
ind and one lead to a lower EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) due to a lower disparity.
This indicates that assigning dummy information may help combat the unfair ad-
vantaging of documents without authors after all. This is confirmed if we again
plot the occurrences of each document for query 31412. Compare Figure 5.1 with
Figure 4.4. We see that for both one and ind the document that previously spiked
above the other documents no longer does so.

One reason that the effect does not show up as significant may be due to the
small size of corp2020val_split. Due to this small size the differences in perfor-
mance need to be larger for them to be significant. As such, it would be interesting
to see whether this effect is more pronounced on a larger dataset.

5.3.2. Remedying unequal advantages with the scoring func-
tion

The second point of intervention is the scoring function ℎ. Recall the formula for ℎ
as written in equation Equation (3.1):

ℎ(𝑑, 𝑡, 𝑞) = 𝜃𝜌(𝑑, 𝑞) − (1 − 𝜃)𝐴(𝑑, 𝑡).
The value of ℎ is smaller for documents with a larger 𝐴, e.g. documents that

previously have received more exposure than other documents, and vice versa
for documents that previously have received less exposure than other documents.
Since for authorless documents 𝐴 = 0 at all times, the value of ℎ only depends on
the 𝜌(𝑑, 𝑞).

To equalize the influence of 𝐴 between documents with and without authors
we adapt ℎ. We want to make sure that the documents are treated the same
regardless of whether they have an author or not. One way to do so is to make sure
that documents with authors cannot receive positive 𝐴 values, just like authorless
documents. In other words, the final score can only be larger than their estimated
probability of relevance, not smaller. To this end, we define a new scoring function:

ℎ𝑚𝑖𝑛(𝑑, 𝑡, 𝑞) = 𝜃𝜌(𝑑, 𝑞) − (1 − 𝜃)min(0, 𝐴(𝑑, 𝑡)). (5.14)

The term min(0, 𝐴(𝑑, 𝑡)) makes it so that each document has an advantage of
0 or less.

We also try a second variation. Since 𝐴(𝑑, 𝑡) = 0 for authorless documents and
𝜌 ≥ 0, ℎ cannot be below 0 for documents without authors. To make this the same
for documents with authors, we define a second variation on ℎ:

ℎ𝑚𝑎𝑥(𝑑, 𝑡, 𝑞) =max(0, 𝜃𝜌(𝑑, 𝑞) − (1 − 𝜃)𝐴(𝑑, 𝑡)). (5.15)

We refer to the full improvement as IAC_hfunc.

Results
We evaluate the performance of AC with different scoring functions. The levels of
the hfunc factor are linear for the baseline with ℎ, max for scoring with ℎ𝑚𝑎𝑥, and
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min for scoring with ℎ𝑚𝑖𝑛. We create runs for each level on corp2020val_split.
The performance of each level is summarized in Table B.13.

We perform two ANOVAs, one for EEL(𝒢𝑖 , Π) and one for EEL(𝒢ℎ , Π) as depen-
dent variable. The results of the ANOVAs are given in Table B.14.

Since hfunc is significant for both EEL(𝒢𝑖 , Π) we perform an additional Tukey’s
HSD test, the results of which is shown in Table B.12.

Finally, Figure B.5 shows the mean performances of the three systems with 95%
CI using the 𝑀𝑆𝑒𝑟𝑟𝑜𝑟 from Table B.14.

Although we see from Tables B.14 and B.15 that the effects of using in particular
ℎ𝑚𝑖𝑛 is significant, the performance is worse than for the baseline option of ℎ. As
such, we do not assess the performance on corp2020test.

Discussion
The goal of IAC_hfunc was to equalize the influence of authorless documents
receiving 0 advantage at all times by adapting the scoring function so that either
(i) the maximum advantage any document can receive is 0, or (ii) the minimum
overall score any document can receive is 0. We see that in terms of EEL(𝒢𝑖 , Π), ℎ𝑚𝑖𝑛
performs significantly worse on corp2020val_split than either other option.
There is no significant in performance between the baseline scoring function ℎ and
ℎ𝑚𝑎𝑥.

Figure 5.2 confirms that ℎ𝑚𝑎𝑥 does not remedy CAC_no_author. We see that
the authorless document is still over-represented. This is probably because there
were few documents that received a negative score in the first place, so using ℎ𝑚𝑎𝑥
caused little difference in the behavior.

Interestingly, ℎ𝑚𝑖𝑛 does seem to resolve the issue of the over-represented au-
thorless documents. If we look at the occurrences in top positions for the doc-
uments for query 31412 in Figure 5.2b, we see that there is no longer a docu-
ment without an author that occurs disproportionately often. However, the prob-
lem seems to have shifted to a new non-relevant document. This document has
the highest 𝜌 out of all documents for the query. In other words: while setting the
maximum advantage for all documents to 0 prevents the over-representation of au-
thorless documents, ℎ𝑚𝑖𝑛 over-emphasizes the estimated probability of relevance
𝜌.

Overall we can say that using ℎ𝑚𝑖𝑛 successfully addresses the specific cause of
CAC_no_author, but at the cost of introducing a new flaw. In that sense it is less
promising than the previous point of intervention.

5.3.3. Improving performance with more accurate relevance
predictions

The second cause we identified for AC, CAC_rel, is the relatively low estimated
probabilities of relevance for some of the relevant documents. Higher or more
accurate estimated probabilities of relevance may improve the performance of AC.

The sets of estimated probability of relevance probabilities rel_set_A and
rel_set_B were generously provided to us by the authors of the original AC paper.
Since we did not reproduce the process through which these relevance probabilities
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were generated, we cannot affect them. However, just as we used AC as a post-
processing method for LM in Section 5.2.1, we can use LM to generate predict
probabilities of relevance for AC.

We train LM with the features and hyper-parameter settings as described in
Tables 3.2 and 3.3. In the prediction phase, LM computes a score for each document
for each query. These scores can be positive or negative. To use the predicted
scores with AC they need to lie in the range [0, 1] so they can be used as parameters
for a Poisson-Binomial distribution. Kletti and Renders [27] use Isotonic Regression
for normalizing classification probabilities [50] to generate their estimated relevance
probabilities, although the process is are unclear. For the sake of simplicity we
simply normalize the predicted scores from LM to lie between 0 and 1.

We see in Table 4.2 that baseline LM achieves an EEL(𝒢𝑖 , Π) of 1.378 and an
EEL(𝒢ℎ , Π) of 0.762 on corp2020val_split. By contrast, if we create a ranking
based solely on the estimated probabilities of relevance in rel_set_A, we achieve
a score of EEL(𝒢𝑖 , Π) = 1.438 and EEL(𝒢ℎ , Π) = 0.862. We see that LM performs
better, implying that the relevance scores are more accurate. We refer to the im-
provement of using LM to generate estimated relevance values as IAC_rels.

Results
We evaluate the performance of AC with different sets of estimated probabilities
of relevance. The levels of the rels factor are rel_set_A for the baseline and
rel_set_lm for the normalized scores predicted by LM. We create runs for each
level on corp2020val_split. The performance of each level is summarized in
Table B.16.

We compare the performance of the systems with two paired two-sided t-test
with DV EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π). The results of the t-tests are given in Table B.18.

Finally, Figure B.6 shows the mean performances of rel_set_A and rel_set_lm
with 95%CI computed as in Equation (5.3).

Because the performance of AC with the estimated probabilities of relevance
from LM is significantly better in terms of EEL(𝒢𝑖 , Π) on corp2020val_split we
create additional runs of rel_set_A and rel_set_lm on corp2020test. The
performance of each run is summarized in Table B.17.

To assess whether the performance with rel_set_A or rel_set_lm is better
we perform two-sided paired t-tests between rel_set_A and rel_set_lm with
DV EEL(𝒢𝑖 , Π) and EEL(𝒢𝑒 , Π). The results of the t-tests are given in Table B.19.

Discussion
The goal of the improvement IAC_rels was to improve the performance of AC
by providing more accurate estimated relevance probabilities as input. We see that
on both corp2020val_split and corp2020test this method yielded signif-
icant improvement for one or both groupings, mainly due to an increase in rel-
evance on corp2020val_split and both an increase in relevance and a de-
crease in disparity on corp2020test. However, this is not due to rel_set_lm
being more accurate, indeed the mean difference between true and estimated
probability of relevance is 0.03 for rel_set_A versus 0.30 for rel_set_lm for
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corp2020val_split. On corp2020test those values are 0.01 and 0.36 re-
spectively.

Instead, the effect can be explained by the fact that the estimated probabilities
of relevance in rel_set_lm are simply higher than those for rel_set_A. The av-
erage estimated probability of relevance in rel_set_lm is 0.48 on corp2020val_split
and 0.51 on corp2020test. For rel_set_A it is 0.16 on corp2020val_split
and 0.16 on corp2020test. Higher overall estimated probabilities of relevance
cause more emphasis on relevance in computing ℎ-score. This indicates that AC
currently over-emphasizes fairness to the detriment of relevance. A more balanced
approach could lead to a lower overall EEL.

5.4. Summary
In this chapter, we proposed and evaluated improvements to LM and AC. We pro-
pose the following improvements:

• LM

– ILM_post: LM generates a single ranking for each query, leading to
a high EEL-D. We applied fairness-aware post-processing methods to
generate different rankings. We tried two post-processing methods, both
of which significantly improved the performance.

– ILM_fsm: Selecting the correct features to use with a LtR algorithm
like LM can improve the performance. We designed a number of new
features for LM and used two feature selection algorithms to select the
best features. We found that neither set of selected features yielded a
significant improvement relative to the original features. Since we have
a small dataset, using feature selection algorithms was likely an overly
complicated solution for our problem in this case.

– ILM_measure: LM is most commonly optimized for NDCG, but our fair-
ness metric EEL is based on the ERR model. We optimized LM for ERR
instead. We found that using ERR does not significantly improve the
performance and in fact that there is an indication that it decreases the
performance. This may be due to a mismatch in the specific form of ERR
used in the the implementation of LM and the form used in FAIR-TREC
2020.

• AC

– IAC_dummy: Some non-relevant documents did not have an author.
These documents were unfairly advantaged because their advantage in
Equation (3.12) was always set to 0. We tried two strategies of assigning
dummy authors to these documents. Neither strategy yielded a signif-
icantly better performance than the baseline, but there is an indication
that on a larger dataset the effect may be more pronounced.
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– IAC_hfunc: The other remedy to the unfair advantage of documents
without authors was to use different scoring functions that counteract
the effect of some documents consistently receiving an advantage of 0.
We tried two alternative scoring functions. Of these, one had a signifi-
cant impact, but the effect was to make the overall performance worse.
Documents without authors were no longer overly favored, but instead
documents with a higer estimated probability of relevance became over-
represented.

– IAC_rels: The estimated probability of relevance was too low for some
relevant documents, leading them to be ranked worse than they should.
We trained LM and used it to predict scores for each document. We
then normalized the scores to lie in the range [0, 1] and used them as if
they were estimated relevance probabilities. The probabilities generated
in this way were higher on average than those in rel_set_A which
we received from Kletti and Renders [27]. The performance with the
LM probabilities was significantly better than with rel_set_A for the
individual grouping, indicating that AC benefits from increased focus on
relevance.

There were a number of causes we did not address because they required us
to alter corp2020 itself, e.g. in the form of re-assessing relevance labels.

While implementing improvements we encountered three limitations of the FAIR-
TREC 2020 benchmark:

• Limited usefulness of groupings.
We evaluated each improvement both with an individual grouping and either
an H-level grouping on corp2020val_split or an Econ-level grouping on
corp2020test. The goal was to gain insight into the effect of the chosen
grouping on performance. However, we found that using groupings mostly
confounded the analysis because it was hard to reason about why the group-
ings caused the observed effects. Additionally, the stated goal of using EEL
as a fairness measure is to created rankers that are fair towards arbitrary
groupings. We are unable to assess whether this goal is met by using specific
groupings in our evaluation.

• Limited ability to improve specific aspects of a ranker in a targeted manner
The EEL metric consists of sub-metric EEL-D, EEL-R, and EEL-C representing
disparity, relevance, and a per-query constant value respectively. There is
no one-to-one correspondence between these sub-metrics and traditional ef-
fectiveness measures such as NDCG. This makes it hard to gauge what the
tradeoff is between achieving greater fairness and the effectiveness of a sys-
tem.

• Limited analysis due to small sample size
Some queries are inherently more difficult than others, e.g. an ambigu-
ous query is inherently harder than a specific query. To separate the ef-
fect of query difficulty from that of the improvements, we treat query id as
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a factor in our ANOVA analyses. We found that qid is consistently a sig-
nificant factor with a large effect size. This is most likely due to the small
size of the dataset we performed the analysis on, corp2020val_split.
corp2020val_split consists of only 20 queries, meaning that any differ-
ence in difficulty has a large impact. As such, our analysis are less conclusive
than they would have been with a larger dataset.
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Number Level Function Fields

1 - 7 query-document BM25 fields_text
8 - 14 TF
15 - 21 IDF
22 - 28 TF*IDF

29 - 35 document # chars fields_text
36 - 42 # tokens

43 - 45 document numerical value fields_numerical

46 query # chars
47 # tokens

(a) Features for use with the feature selection algorithms for ILM_fsm.

fields_text fields_numerical
Numbers Field Numbers Field

1,8,15,22,29,36 title 43 year
2,9,16,23,30,37 abstract 44 inCitations
3,10,17,24,31,38 venue 45 outCitations
4,11,18,25,32,39 journal
5,12,19,26,33,40 author names
6,13,20,27,34,41 sources
7,14,21,28,35,42 fields of study

(b) Fields for features 1-45.

MPT MSD
Number Feature Number Feature

1 BM25 title 1 BM25 title
2 BM25 abstract 2 BM25 abstract
30 # chars abstract 8 TF title
33 # chars author names 23 TF*IDF abstract
35 # chars fields of study 29 # chars title
36 # tokens title 30 # chars abstract
39 # tokens journal 37 # tokens abstract
40 # tokens author names 43 year
43 year 44 # inCitations
44 # inCitations 45 # outCitations

(c) Features selected by MPT and MSD.

Table 5.2: The features for use with ILM_fsm. The features themselves are listed in the table on the
left. The fields for features 1-42 are listed in the upper table on the right, the fields for features 43

table to the right.
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(a) IAC_dummy variation: ind

(b) IAC_dummy variation: one

Figure 5.1: The number of times each document appears in a top position for query 31312 when
ranked by AC with rel_set_A and 𝜃 = 0.9 and two different approaches to assigning dummy authors

to documents.
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(a) IAC_hfunc variation: max

(b) IAC_hfunc variation: min

Figure 5.2: The number of times each document appears in a top position for query 31312 when
ranked by AC with rel_set_A and 𝜃 = 0.9 and two different scoring functions.



6
Conclusion

The goal of this thesis was to contribute to the developing field of fair IR by im-
proving existing rankers and identifying strength and limitations of the FAIR-TREC
benchmark, in particular the 2020 edition. We present our conclusions pertaining
to the factors affecting the fairness of our rankers in Section 6.1 and the conclu-
sions pertaining to FAIR-TREC 2020 in Section 6.2. We summarize the limitations
of our approach in Section 6.3 and finish with recommendations for future work in
Section 6.4.

6.1. Factors affecting the fairness of amortized fair
rankers

We analyzed the performance of two rankers, LM and AC in terms of the fairness
measure EEL. These rankers represent two radically different approaches. LM has
been a highly effective and popular LtR method since its invention in 2011 and is
commonly used as a baseline. However, LM does not mediate disparity in any way.

AC was the top-performing submission to the FAIR-TREC 2020 track. It explic-
itly takes into account the amount of exposure different documents have received
across rankings and balances the amount of exposure each document receives.
While AC does take relevance into account, reranking documents in a way that
decreases disparity inevitably decreases relevance as well.

For each ranker, we found one factor that significantly affected the fairness.
For LM, we found that the most successful intervention was to apply a fairness-

oriented post-processing method. We tried two post-processing methods, AC and
RFRE. Both methods reduced disparity by around a factor 5 on validation data and
by a factor 4 on test data. AC was the most successful overall, reducing EEL by a
factor 3 on validation data and a factor 2.5 on test data.

AC takes a set of estimated probabilities of relevance for each document for each
query as input. We found that the most successful intervention was to increase the
magnitude of the estimated probabilities of relevance. This allowed AC to more

75
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strongly favor accuracy over fairness which in this case led to a lower overall EEL.
Improving the accuracy of the estimated probabilities of relevance improved the
fairness by a factor 1.1 on validation data and a factor 1.1 on test data.

Interestingly, the factors that significantly affect the performance of each ranker
are complementary to the focus of the rankers themselves, ie. LM focuses on
relevance and the significant factor is to reduce disparity, AC focuses on disparity
and the significant factor is to improve relevance. In other words, it seems as if the
most significant factors are those that target the main weak point of the ranker.

We conclude the following. The main factor affecting relevance-based rankers
such as LM is a lack of re-ranking. Applying a post-processing method is an easy
way to improve the fairness. We hope that our work encourages future work into
post-processing in combination with common baselines like LM.

The main factor affecting the fairness-oriented AC ranker is the relevance of its
input probabilities. This shows that while AC can significantly improve fairness of
relevance-based rankers, it is affected strongly by the output of those rankers. It
would be interesting to see whether other post-processing methods are similarly
affected.

6.2. Strengths and limitations of the FAIR-TREC 2020
benchmark

The FAIR-TREC 2020 benchmark is an important first step in providing a solid
groundwork for fair IR research. The availability of a corpus, annotated training
and evaluation data, and a predefined fairness measure makes it possible to com-
pare different rankers with each other while eliminating the variance that comes
from everyone choosing their own datasets and defining their own measures. This
unification makes results more comparable and scientifically sound [51].

Even so, we encountered a number of limitations of the FAIR-TREC 2020 bench-
mark. We found limitations of the corpus and of the fairness measure.

The corpus is gathered semi-automatically from click logs. As a result, the
relevance labels are noisy. This affects the performance of LtR rankers as they
are unable to be trained properly. More thorough annotation of documents could
improve the usefulness of the benchmark. Later versions of FAIR-TREC use other
datasets, but the SSOC should not be forgotten.

Another downside is the size of the training and test sets corp2020train
and corp2020test. There were a number of improvements we applied to the
rankers that did not yield a significant effect even though we expected they would.
For example, we saw that missing authors caused some documents to be severely
over-exposed. While adding missing author information remedied this problem, the
effect on the overall performance was not significant. While it is possible that the
improvement truly did not affect the performance in a meaningful way, another
potential reason is that the dataset was not large enough properly distinguish any
variance caused by the difficulty of the querys from the variance caused by the
improvements.

The fairness measure EEL has some limitations. Firstly, EEL combines both
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disparity and relevance into a single measure. This makes it difficult to target
either disparity or relevance since any intervention will invariably affect each aspect
of the measure. Additionally, this makes it difficult to optimize for EEL directly. A
combination between a fairness measure and an explicit effectiveness measure may
be more useful here.

Using a separate effectiveness measure also makes it easier to gauge what
the trade-off is between fairness and effectiveness. The sub-measure EEL-R does
not translate one-to-one to utility for the user, so it is hard to say whether any
intervention negatively affects the user experience.

Lastly, EEL is computed over a particular grouping. But the stated goal of FAIR-
TREC 2020 is to achieve fairness to arbitrary groupings. It is not possible to measure
this with EEL and a single grouping alone.

6.3. Limitations of our approach
Any approach to fairness can inherently only cover a small part of this wide field
of research. Since we focus specifically on fairness as it is defined for FAIR-TREC
2020 our conclusions are not necessarily applicable to other forms of fairness. In
addition, we analyzed only 2 out of 20 algorithms for which submissions were made
to FAIR-TREC 2019 or 2020. While we endeavored to choose interesting algorithms,
we cannot say for sure that our conclusions generalize to other algorithms as well.

Aside from this, the main limitation we encountered is with our modified failure
analysis method. We ran into a number of issues we did not foresee in advance.
Most important among these are the limited use of EEL as a measure of difficulty
and the limited ability of our method to detect complex causes of failure.

Following the failure analysis method from Buckley [9], we ranked queries by
their difficulty to determine which queries would be most interesting to analyse.
We chose EEL as our measure of difficulty. However, because EEL includes the
component EEL-C we cannot compare the performance of two queries with each
other one to one, since EEL-C changes per query. Therefore, saying that a query
with a higher EEL is inherently more difficult than a query with a lower EEL is not
necessarily true. As a result, it is possible that we missed failures that we could
otherwise have detected.

The complexity issue is that the questions in the modified failure analysis tem-
plate focus on the number of occurrences in top and bottom positions of (non)-
relevant documents. These questions do not allow us to detect failures that depend
on the interaction between different documents. For example, the advantage term
in Equation (3.1) depends on all documents in a ranking that share an author. It
is possible that there were failures related to the interaction between document
position and shared authorship. We were unable to find any such failures, but we
also could also not exclude the possibility of such failures with any certainty.

Even with these limitations, we hope that our modified method can function as
a point of departure for other people who want to rigorously investigate their fair
rankers, and that our approach may help others design improved failure analysis
methods for amortized rankers.
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6.4. Future work
There are a number of ideas we were unable to explore further in the interest of
time.

Firstly, in the interest of time we investigated only two rankers. However, there
were many interesting submissions to FAIR-TREC 2020 with different approaches.
We cannot say for certain that the factors we identified are applicable to those
rankers as well.

For LM, we only investigate a small number of potential accuracy improvements.
There has been a lot of research throughout the years on improving the accuracy
of LtR algorithms like LM. Since the focus on this thesis is on fairness, we only
investigated a couple to see if accuracy improvements would increase the overall
EEL. But one other obvious accuracy improvement would be to apply stemming
and tokenization; the standard Elasticsearch analyzer doesn’t do stemming and
only basic tokenization.

Additionally, we saw that the improvements we tried did not improve the EEL-R,
but we did not evaluate LM’s performance in terms of traditional evaluation mea-
sures such as NDCG. We did not look at NDCG since we wanted to improve EEL,
and there is no one-to-one interpretation of EEL-R as a user utility measure. Even
so, it would be interesting to see whether a higher score on a user utility measure
yields a better EEL as well.

Lastly, the post-processing methods we applied are similar to each other in
their approach. They both re-compute a score for each document that balances
expected exposure based on estimated probabilities of relevance with relevance or
utility to the user. This allows us to compare them more easily, but it also means
that we cannot see how they compare to a method that takes a different approach.
Additionally, they are sensitive to the same issues.

One option for another post-processing method to investigate is Equity of Atten-
tion [4]. This method also looks at fairness across multiple rankings, in this case on
an individual level. Their method is solving a linear programming problem that op-
timizes a certain fairness measure under utility constraints. It would be interesting
to see how this method performs with rankings from LM as input.

For AC, when computing the expected target expected exposure ℰ̂∗ (Equa-
tion (3.2)), Kletti and Renders [27] assume that each true relevance for a document
𝑟𝑒𝑙(𝑑) is the realization of a draw from a Bernouilli distribution with as its parameter
𝜌(𝑑), the estimated probability of relevance. It would be interesting to investigate
how well this assumption holds up, and whether other ways of computing the ex-
pected target expected exposure would yield better results.

As mentioned before, EEL is computed with respect to a specific grouping. The
exact influence of the groups’ composition is not fully clear. Different queries may
be difficult according to different groupings. A more rigorous investigation of the
influence of grouping on the outcome of EEL is left for future work. One option
would be to generate many different random groupings and compute the perfor-
mance over all of those [45].

The last point of future work pertains to our modified failure analysis. As men-
tioned in Section 6.3, our method is unable to detect more complex classes of
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failures. One possible remedy may be to look at rankings from a more probabilistic
point of view. Rather than assessing which documents end up in top positions most
often in the absolute sense, it may be more useful to determine which factors in-
crease the probability of documents to be ranked highly. This matches better with
the kind of fairness measured by EEL.
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A
Changes relative to the offical

FAIR-TREC instructions

A.1. A note on retrieving the 2019 corpus
The corpora for FAIR-TREC2019 and FAIR-TREC2020 are both snapshots of the
Semantic Scholar (S2) Open Corpus from the Allen Institute for Artificial Intelligence
[1]. Versions of the corpus can be downloaded through api.semanticscholar.
org/corpus/download. However, at the time of writing the version of the corpus
as it must have been at the time that FAIR-TREC2019 was running was no longer
available on that site.

To obtain the corpus snapshot, we used the Wayback Machine1 to go back to
the snapshot of 16 Aug 2019. Then we ran

aws s3 cp --no-sign-request --recursive s3://ai2-s2-research
↪ -public/open-corpus/<date>/manifest.txt .

for each date counting back from 16-08-2019 until a download resolved. This
meant that we had found the most recently available version at the time of the 2019
track, which was the version of the corpus on 31-01-2019. We then downloaded
the rest of the files with

aws s3 cp --no-sign-request --recursive s3://ai2-s2-research
↪ -public/open-corpus/2019-01-31/ .

A.2. Changes to evaluation procedure
FAIR-TREC2020 was accompanied by a repository with tools to evaluate system
runs 2. To reproduce the values as reported in [6] we make a number of changes
with respect to the provided code and instructions.
1archive.org/web/
2github.com/fair-trec/fair-trec-tools/tree/master/eval
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• The evaluation script requires each document to be mapped to a numeri-
cal group identifier. We originally interpreted this to mean that a ”Mixed”
document should have two group identifiers, one for ”Developing” and one
for ”Advanced”. However, we found that to reproduce the reported results,
”Mixed” papers had to be mapped to a separate group identifier altogether.
We created the group mapping based on merged-annotations.json3 as
indicated by the organisers4.

• Wemodified the last line in expeval.sh from ./expeval.py -I runfile.tsv -
R qrels.tsv -G -C to ./expeval.py qrels.tsv runfile.tsv -
G -C -U.

• We set sqrt=False in the distance method.

3Click ”TREC 2020 Fair Ranking Track evaluation data” on fair-trec.github.io/2020/
4groups.google.com/g/fair-trec/c/OQPkqXxKiIw

fair-trec.github.io/2020/
groups.google.com/g/fair-trec/c/OQPkqXxKiIw


B
Statistical significance test

results

In this appendix we give the results for the various statistical significant tests we
performed to assess the performance of the improvements in in Chapter 5. The
structure of this chapter follows that of Chapter 5.

B.1. Improvements to LambdaMART
B.1.1. Improving disparity with post-processing

𝒢𝑖 𝒢ℎ
Level EEL EEL-D EEL-R EEL EEL-D EEL-R

none∗ 1.378 1.239 0.208 0.762 2.154 1.243
ac 0.459 0.233 0.165 0.409 1.615 1.150
rfre 0.554 0.301 0.151 0.495 1.656 1.127

Table B.1: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor post corresponding to LM
improvement ILM_post on corp2020val_split. Best performances are bolded. The baseline level

is marked with ∗.
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𝒢𝑖 𝒢𝑒
Level EEL EEL-D EEL-R EEL EEL-D EEL-R

none∗ 1.422 1.248 0.215 0.855 2.209 1.297
ac 0.577 0.336 0.181 0.437 1.863 1.334
rfre 0.612 0.336 0.164 0.450 1.872 1.332

Table B.2: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢𝑒 , Π) of each level of factor post corresponding to LM
improvement ILM_post on corp2020test. Best performances are bolded. The baseline level is

marked with ∗.

Factor 𝑑𝑓 𝑆𝑆 𝑀𝑆 𝐹 𝑝 𝜔2 𝜔2𝑝𝑎𝑟𝑡𝑖𝑎𝑙
post† 2 10 5.1 53 0.0 0.54 0.84
qid† 19 4.7 0.25 2.6 0.0059 0.16 0.91
error 38 3.6 0.095 - - - -

(a) DV: EEL(𝒢𝑖 , Π)

Factor 𝑑𝑓 𝑆𝑆 𝑀𝑆 𝐹 𝑝 𝜔2 𝜔2𝑝𝑎𝑟𝑡𝑖𝑎𝑙
post† 2 1.35 0.68 9.56 0.0 0.05 0.46
qid† 19 18.16 0.96 13.49 0.0 0.76 0.99
error 38 2.69 0.07 - - - -

(b) DV: EEL(𝒢ℎ , Π)

Table B.3: Results of a two-way ANOVA with factors post (corresponding to LM improvement
ILM_post) and qid, dependent variables EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π), and dataset

corp2020val_split. Factors marked with † are statistically significant.
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Level 1 Level 2 �̄� 𝑝 𝑑𝑐
none∗ ac −0.92 0.0† 3.0
none∗ rfre −0.82 0.0† 2.7
ac rfre 0.095 0.71 0.31

(a) DV: EEL(𝒢𝑖 , Π)

Level 1 Level 2 �̄� 𝑝 𝑑𝑐
none∗ ac −0.35 0.16 1.3
none∗ rfre −0.27 0.35 1.0
ac rfre 0.086 0.89 0.32

(b) DV: EEL(𝒢ℎ , Π)

Table B.4: Results of a Tukey’s HSD test for the levels of factor post corresponding to LM
improvement ILM_post, dependent variables EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π), and dataset

corp2020val_split. 𝑝-values marked with † are statistically significant. The baseline level is
marked with ∗.

Level 𝐷𝑉 𝑑𝑓 �̄� 𝑉 𝑇 𝑝 𝐶𝐼 𝐸𝑆𝑡
ac EEL(𝒢𝑖 , Π) 199 −0.85 0.22 25 0.0† [−0.91, −0.78] 1.79

EEL(𝒢𝑒 , Π) 199 −0.42 0.53 8.1 0.0† [−0.52, −0.32] 0.57
rfre EEL(𝒢𝑖 , Π) 199 −0.81 0.27 22 0.0† [−0.88, −0.74] 1.55

EEL(𝒢𝑒 , Π) 199 −0.41 0.70 6.9 0.0† [−0.52, −0.29] 0.49

Table B.5: Results of t-tests between levels ac and rfre of factor post (corresponding to LM
improvement ILM_post) and baseline level none with dependent variables EEL(𝒢𝑖 , Π) and EEL(𝒢𝑒 , Π)

and dataset corp2020test. 𝑝-values marked with † are statistically significant.
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(a) DV: EEL(𝒢𝑖 , Π)

(b) DV: EEL(𝒢ℎ , Π)

Figure B.1: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor post corresponding to LM
improvement ILM_post on corp2020val_split. Error bars are computed as in Equation (5.1).

B.1.2. Improving relevance with feature selection

𝒢𝑖 𝒢ℎ
Level EEL EEL-D EEL-R EEL EEL-D EEL-R

none∗ 1.378 1.239 0.208 0.762 2.154 1.243
mpt 1.286 1.234 0.252 0.696 1.902 1.149
msd 1.371 1.251 0.218 0.840 2.287 1.270

Table B.6: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor fsm corresponding to LM
improvement ILM_fsm on corp2020val_split. Best performances are bolded. The baseline level

is marked with ∗.
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Factor 𝑑𝑓 𝑆𝑆 𝑀𝑆 𝐹 𝑝 𝜔2 𝜔2𝑝𝑎𝑟𝑡𝑖𝑎𝑙
fs 2 0.11 0.05 0.28 0.76 −0.02 −0.08
qid† 19 9.7 0.51 2.7 0.0 0.36 0.91
error 38 7.2 0.19 - - - -

(a) DV: EEL(𝒢𝑖 , Π)

Factor 𝑑𝑓 𝑆𝑆 𝑀𝑆 𝐹 𝑝 𝜔2 𝜔2𝑝𝑎𝑟𝑡𝑖𝑎𝑙
fs 2 0.21 0.10 0.36 0.70 −0.01 −0.07
qid† 19 16 0.86 3.0 0.0 0.4 0.93
error 38 11 0.29 - - - -

(b) DV: EEL(𝒢ℎ , Π)

Table B.7: Results of a two-way ANOVA with factors fs (corresponding to LM improvement
ILM_fsm) and qid, dependent variables EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π), and dataset

corp2020val_split. Factors marked with † are statistically significant.
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(a) DV: EEL(𝒢𝑖 , Π)

(b) DV: EEL(𝒢ℎ , Π)

Figure B.2: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor fs corresponding to improvement
ILM_fsm on corp2020val_split. Error bars are computed as in Equation (5.1).

B.1.3. Improving relevance through choice of effectivenessmea-
sure

𝒢𝑖 𝒢ℎ
Level EEL EEL-D EEL-R EEL EEL-D EEL-R

ndcg∗ 1.378 1.239 0.208 0.762 2.154 1.243
err 1.440 1.259 0.187 0.901 2.313 1.253

Table B.8: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor measure corresponding to LM
improvement ILM_measure on corp2020val_split. Best performances are bolded. The baseline

level is marked with ∗.
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𝐷𝑉 𝑑𝑓 �̄� 𝑉 𝑇 𝑝 𝐶𝐼 𝐸𝑆𝑡
EEL(𝒢𝑖 , Π) 19 0.062 0.090 −0.92 0.37 [−0.08, 0.20] 0.21
EEL(𝒢ℎ , Π) 19 0.14 0.16 −1.5 0.14 [−0.05, 0.33] 0.34

Table B.9: Results of t-tests between levels ndcg (baseline) and err of factor measure
corresponding to LM improvement ILM_measure with dependent variables EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π)

and dataset corp2020val_split. 𝑝-values marked with † are statistically significant.

(a) DV: EEL(𝒢𝑖 , Π)

(b) DV: EEL(𝒢ℎ , Π)

Figure B.3: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor measure corresponding to LM
improvement ILM_measure on corp2020val_split. Error bars are computed as in Equation (5.3).
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B.2. Improvements to Advantage Controller
B.2.1. Remedying missing data with dummy authors

𝒢𝑖 𝒢ℎ
Level EEL EEL-D EEL-R EEL EEL-D EEL-R

none∗ 0.515 0.238 0.139 0.498 1.653 1.124
ind 0.449 0.186 0.146 0.423 1.569 1.120
one 0.448 0.187 0.147 0.418 1.565 1.120

Table B.10: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor dummy corresponding to AC
improvement IAC_dummy on corp2020val_split. Best performances are bolded. The baseline

level is marked with ∗.

Factor 𝑑𝑓 𝑆𝑆 𝑀𝑆 𝐹 𝑝 𝜔2 𝜔2𝑝𝑎𝑟𝑡𝑖𝑎𝑙
dummy† 2 0.060 0.030 7.3 0.0 0.020 0.39
qid† 19 2.9 0.15 38 0.0 0.91 1.0
error 38 0.15 0.0 - - - -

(a) DV: EEL(𝒢𝑖 , Π)

Factor 𝑑𝑓 𝑆𝑆 𝑀𝑆 𝐹 𝑝 𝜔2 𝜔2𝑝𝑎𝑟𝑡𝑖𝑎𝑙
dummy† 2 0.080 0.040 4.2 0.020 0.0 0.24
qid† 19 17 0.87 91 0.0 0.96 1.0
error 38 0.36 0.010 - - - -

(b) DV: EEL(𝒢ℎ , Π)

Table B.11: Results of a two-way ANOVA with factors dummy (corresponding to AC improvement
IAC_dummy) and qid, dependent variables EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π), and dataset

corp2020val_split. Factors marked with † are statistically significant.
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Level 1 Level 2 �̄� 𝑝 𝑑𝑐
none∗ ind −0.066 0.64 0.68
none∗ one −0.0665 0.64 0.68
ind one −0.00040 1.0 0.0044

(a) DV: EEL(𝒢𝑖 , Π)

Level 1 Level 2 �̄� 𝑝 𝑑𝑐
none∗ ind −0.075 0.90 0.82
none∗ one −0.080 0.89 0.77
ind one −0.0045 1.00 0.046

(b) DV: EEL(𝒢ℎ , Π)

Table B.12: Results of a Tukey’s HSD test for the levels of factor dummy corresponding to AC
improvement IAC_dummy, dependent variables EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π), and dataset

corp2020val_split. 𝑝-values marked with † are statistically significant. The baseline level is
marked with ∗.
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(a) DV: EEL(𝒢𝑖 , Π)

(b) DV: EEL(𝒢ℎ , Π)

Figure B.4: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor dummy corresponding to AC
improvement IAC_dummy on corp2020val_split. Error bars are computed as in Equation (5.1).

B.2.2. Remedying unequal advantages with the scoring func-
tion

𝒢𝑖 𝒢ℎ
Level EEL EEL-D EEL-R EEL EEL-D EEL-R

linear∗ 0.515 0.238 0.139 0.498 1.653 1.124
max 0.555 0.282 0.141 0.505 1.690 1.140
min 0.788 0.561 0.164 0.590 1.685 1.094

Table B.13: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor hfunc corresponding to AC
improvement IAC_hfunc on corp2020val_split. Best performances are bolded. The baseline

level is marked with ∗.
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Factor 𝑑𝑓 𝑆𝑆 𝑀𝑆 𝐹 𝑝 𝜔2 𝜔2𝑝𝑎𝑟𝑡𝑖𝑎𝑙
hfunc† 2 0.87 0.43 24 0.0 0.15 0.70
qid† 19 4.1 0.21 12 0.0 0.66 0.99
error 38 0.69 0.020 - - - -

(a) DV: EEL(𝒢𝑖 , Π)

Factor 𝑑𝑓 𝑆𝑆 𝑀𝑆 𝐹 𝑝 𝜔2 𝜔2𝑝𝑎𝑟𝑡𝑖𝑎𝑙
hfunc 2 0.11 0.050 1.2 0.31 0.0 0.020
qid† 19 18 1.0 22 0.0 0.87 0.99
error 38 1.7 0.040 - - - -

(b) DV: EEL(𝒢ℎ , Π)

Table B.14: Results of a two-way ANOVA with factors hfunc (corresponding to AC improvement
IAC_hfunc) and qid, dependent variables EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π), and dataset

corp2020val_split. Factors marked with † are statistically significant.

Level 1 Level 2 �̄� 𝑝 𝑑𝑐
linear∗ max 0.040 0.90 0.30
linear∗ min 0.27 0.011† 2.0
max min 0.23 0.036† 1.7

Table B.15: Results of a Tukey’s HSD test for the levels of factor hfunc corresponding to AC
improvement IAC_hfunc, dependent variables EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π), and dataset

corp2020val_split. 𝑝-values marked with † are statistically significant. The baseline level is
marked with ∗.
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(a) DV: EEL(𝒢𝑖 , Π)

(b) DV: EEL(𝒢ℎ , Π)

Figure B.5: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor hfunc corresponding to AC
improvement IAC_hfunc on corp2020val_split. Error bars are computed as in Equation (5.1).

B.2.3. Improving performance with more accurate relevance
predictions

𝒢𝑖 𝒢ℎ
Level EEL EEL-D EEL-R EEL EEL-D EEL-R

rel_set_A∗ 0.515 0.238 0.139 0.498 1.653 1.124
rel_set_lm 0.459 0.233 0.165 0.409 1.615 1.150

Table B.16: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor rels corresponding to AC
improvement IAC_rels on corp2020val_split. Best performances are bolded. The baseline level

is marked with ∗.
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𝒢𝑖 𝒢𝑒
Level EEL EEL-D EEL-R EEL EEL-D EEL-R

rel_set_A∗ 0.572 0.270 0.151 0.429 1.901 1.356
rel_set_lm 0.531 0.266 0.170 0.412 1.835 1.332

Table B.17: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢𝑒 , Π) of each level of factor rels corresponding to AC
improvement IAC_rels on corp2020test. Best performances are bolded. The baseline level is

marked with ∗.

𝐷𝑉 𝑑𝑓 �̄� 𝑉 𝑇 𝑝 𝐶𝐼 𝐸𝑆𝑡
EEL(𝒢𝑖 , Π) 19 −0.056 0.013 2.2 0.042† [−0.11, 0.0] 0.49
EEL(𝒢ℎ , Π) 19 −0.089 0.085 1.4 0.19 [−0.22, 0.050] 0.31

Table B.18: Results of t-tests between levels rel_set_A (baseline) and rel_set_lm of factor
rels corresponding to AC improvement IAC_rels with dependent variables EEL(𝒢𝑖 , Π) and

EEL(𝒢ℎ , Π) and dataset corp2020val_split. 𝑝-values marked with † are statistically significant.

𝐷𝑉 𝑑𝑓 �̄� 𝑉 𝑇 𝑝 𝐶𝐼 𝐸𝑆𝑡
EEL(𝒢𝑖 , Π) 199 −0.85 0.22 25 0.0† [−0.91, −0.78] 1.8
EEL(𝒢𝑒 , Π) 199 −0.42 0.54 8.0 0.0† [−0.52, −0.32] 0.57

Table B.19: Results of t-tests between levels rel_set_A (baseline) and rel_set_lm of factor
rels corresponding to AC improvement IAC_rels with dependent variables EEL(𝒢𝑖 , Π) and
EEL(𝒢ℎ , Π) and dataset corp2020test. 𝑝-values marked with † are statistically significant.
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(a) DV: EEL(𝒢𝑖 , Π)

(b) DV: EEL(𝒢ℎ , Π)

Figure B.6: Mean EEL(𝒢𝑖 , Π) and EEL(𝒢ℎ , Π) of each level of factor rels corresponding to
improvement IAC_rels on corp2020val_split. Error bars are computed as in Equation (5.3).
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