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A model of the three-dimensional rotating compressible Euler equations on the cubed 
sphere is presented. The model uses a mixed mimetic spectral element discretization 
which allows for the exact exchanges of kinetic, internal and potential energy via the 
compatibility properties of the chosen function spaces. A Strang carryover dimensional 
splitting procedure is used, with the horizontal dynamics solved explicitly and the vertical 
dynamics solved implicitly so as to avoid the CFL restriction of the vertical sound waves. 
The function spaces used to represent the horizontal dynamics are discontinuous across 
vertical element boundaries, such that each horizontal layer is solved independently so 
as to avoid the need to invert a global 3D mass matrix, while the function spaces used 
to represent the vertical dynamics are similarly discontinuous across horizontal element 
boundaries, allowing for the serial solution of the vertical dynamics independently for 
each horizontal element. The model is validated against standard test cases for baroclinic 
instability within an otherwise hydrostatically and geostrophically balanced atmosphere, 
and a non-hydrostatic gravity wave as driven by a temperature perturbation.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Mimetic finite element families are an appealing choice for the discretization of geophysical flow problems. This is on 
account of their capacity to preserve both conservation laws and leading order balance relations in the discrete form [1–4], 
due to the compatibility properties of the chosen function spaces, as well as their ability to represent complex geometries 
such as the surface of the sphere [5–7].

The use of mimetic discretizations to represent the solution variables, and the adjoint properties of the differential 
operators implied by those spaces, allows for the conservation of energy via the exact balance of energetic exchanges, as 
well as the orthogonality of vorticity evolution to those exchanges [2–4]. By satisfying exactly the balance between energetic 
exchanges, it is hoped that these methods may improve the statistical behaviour of climate simulations over long time scales 
by mitigating against internal biases in the representation of dynamical processes.

Several mimetic finite volume models of the compressible Euler equations on the sphere have previously been presented 
[8–10], and the Raviart-Thomas family of compatible finite elements has been chosen to form the basis of the LFric atmo-
spheric model [11,12]. Collocated spectral element methods, which in contrast to the above methods represent all solution 
variables on the same function space, are a popular choice for the simulation of non-hydrostatic atmospheric flows using 
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both continuous [13] and discontinuous Galerkin [14,15] formulations. These models typically satisfy some mimetic proper-
ties, such as the divergence theorem and the adjoint property between the gradient and divergence operators [16], however 
the HOMME spectral element model [17,18] is capable of preserving a more complete set of mimetic properties so as to 
satisfy both the divergence and circulation theorems through the careful consideration and construction of the metric terms 
for the various differential operators.

In the present formulation we make use of the mixed mimetic spectral element method [19,20], a compatible family of 
function spaces with spectral error convergence. We use this method to build on previous work on the rotating shallow wa-
ter equations [3,5] in order to develop a solver for the three-dimensional rotating compressible Euler equations on the cubed 
sphere. In contrast to collocated methods, weak formulations using mixed function spaces provide a clearer mathematical 
formalism for the analysis and construction of schemes which preserve internal properties of the governing equations. Like 
other weak form mimetic discretizations such as mixed finite elements [1,2,7] and mimetic Galerkin differences [4], the 
mixed mimetic spectral element method satisfies by construction an exact mapping between function spaces via the var-
ious differential operators, as well as adjoint relationships between strong form mappings to higher function spaces, and 
weak form mappings to lower spaces, as defined within an appropriate Hilbert space.

The remainder of this article proceeds as follows: In Section 2 the rotating compressible Euler equations, and their 
energetic properties will be introduced in the continuous form. Section 3 will provide a brief introduction to the mixed 
mimetic spectral element method. Readers are referred to references therein for more detailed discussions. Section 4 will 
discuss the construction of discrete function spaces built off the mixed mimetic spectral element method required to solve 
the compressible Euler equations, as well as the use of those spaces to ensure consistent energetic exchanges in the discrete 
form and the associated metric transformations for these spaces. The details of the time stepping scheme, including the 
implicit vertical solver will be discussed in Section 5, and the results for a standard baroclinic instability test case and a 
high resolution gravity wave will be presented in Section 6. Section 7 will discuss the conclusions of this work and the 
future directions we intend to pursue.

2. The rotating compressible Euler equations

The compressible Euler equations for a shallow atmosphere may be expressed as [9,21]

∂u

∂t
+ (ω + f ) × u + ∇

(
1

2
‖u‖2 + gz

)
+ θ∇� = 0, (1a)

∂ρ

∂t
+ ∇ · (ρu) = 0, (1b)

∂ρθ

∂t
+ ∇ · (ρθu) = 0, (1c)

where u = ueλ + veϕ + wez are the zonal, meridional and vertical velocity components respectively, ρ is the density, 
f = f ez is the Coriolis term, g is the acceleration due to gravity, θ is the potential temperature, and � is the Exner pressure 
(including the specific heat at constant pressure). The last two are defined with respect to the standard thermodynamic 
variables of temperature, T , and pressure, p, as

� := cp

(
p

p0

) R
cp

, (2a)

θ := cp T

�
, (2b)

p = ρRT . (2c)

For these identities we used cp for the specific heat at constant pressure, p0 for the reference pressure, and R for the ideal 
gas constant. We may remove the direct dependence on pressure from the system by simply substituting expression (2c)
for pressure into (2a) and (2b), obtaining

� = cp

(
ρRθ�

p0cp

) R
cp

= cp

(
ρRθ

p0

) R
cv

, (3a)

θ = ρRT − cv
R

p0
, (3b)

where cv = cp − R is the specific heat at constant volume.
The potential temperature/Exner pressure form of the pressure gradient term, θ∇�, in (1a) is equivalent to the standard 

density/pressure form since
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1

ρ
∇p

(2c)= RT

p
∇p

(2a)+(2b)= Rθ

p

(
p

p0

) R
cp

∇p = Rθ

p
R/cp

0

pR/cp−1∇p = Rθ

p
R/cp

0

cp

R
∇pR/cp = cpθ∇

(
p

p0

) R
cp

(2a)+(2b)= θ∇�.

(4)

One advantage of the Exner pressure/potential temperature representation of the thermodynamics is the formulation of the 
temperature equation in flux form (1c), which allows us to exploit the adjoint relationship between gradient and divergence 
in the mimetic framework in order to preserve energetic exchanges.

To obtain a closed system for the solution of the compressible Euler equations, (1) and (3) must be supplemented by 
Dirichlet and Neumann boundary conditions. The following identities are imposed as Dirichlet boundary conditions on the 
z-component of velocity, w

w|z=0 = w|z=ztop = 0, (5)

where ztop corresponds to the z-coordinates of the top boundary of the domain. For Neumann boundary conditions the 
following identities are imposed

∂�

∂z

∣∣∣∣∣
z=0

= ∂�

∂z

∣∣∣∣∣
z=ztop

= 0. (6)

Note that in this formulation we have invoked the shallow atmosphere approximation, for which gravity is constant 
throughout the fluid column, the height of the fluid column is negligible with respect to the earth’s radius, and the hori-
zontal components of the Coriolis term are omitted [22].

2.1. Energetics

Before introducing the discrete form of the Euler equations, we analyse the energetics of the continuous system. This 
will help to guide our choice of function spaces for the various solution variables for the discrete form.

2.1.1. Kinetic, potential, and internal energy
The kinetic energy, K , is defined as

K := 1

2
〈u,ρu〉 = 1

2

∫
�

ρ‖u‖2, (7)

where ‖u‖ := 〈u, u〉, and 〈·, ·〉 is the L2 inner product given as usual as

〈 f , g〉 :=
∫
�

f g d�, (8)

for scalar fields, and as

〈u, v〉 :=
∫
�

u · v d�, (9)

for vector fields.
The time variation of kinetic energy is obtained by summing the L2 inner product, between the momentum equation, 

(1a), and ρu, and between the continuity equation, (1b), and 1
2 ‖u‖2

∂ K

∂t
= −〈g,ρw〉 − 〈ρu, θ∇�〉 , (10)

where again w is the z-component of the velocity field, u.
The potential energy, P , is given by

P := 〈ρ , gz〉 =
∫
�

ρgz d�, (11)

and its time derivative follows directly

∂ P =
〈

gz ,
∂ρ

〉
(1b)= −〈gz,∇ · (ρu)〉 = 〈g,ρw〉 , (12)
∂t ∂t
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where we have used integration by parts on the last identity and assumed periodic boundary conditions in the horizontal 
directions, together with homogeneous boundary conditions for the vertical component of the velocity field, (5).

The internal energy, I , is defined as

I :=
∫
�

cvρT d�
(2b)=

∫
�

cv

cp
ρθ�d�

(3a)=
∫
�

cvρθ

(
Rρθ

p0

) R
cv

d� =
∫
�

cv

(
R

p0

) R
cv

(ρθ)
cp
cv d�. (13)

After some manipulation, the time variation of internal energy is given by

∂ I

∂t
= −〈∇ · (ρθu) , �〉 = 〈ρu , θ∇�〉 , (14)

where integration by parts was used on the last identity, together with homogeneous boundary conditions for u and periodic 
boundary conditions on the horizontal directions.

2.1.2. Conservation of total energy
Following [9], the total energy of the system, H, is given as the sum of kinetic, K , potential, P , and internal, I , energy

H := K + P + I =
∫
�

1

2
ρu2 d� +

∫
�

ρgz d� +
∫
�

cv

cp
	�d�, (15)

where we used 	 := ρθ .
For the proof of conservation of total energy H, (15), first consider the column vectors

a := [
u ρ 	

]�
, (16)

and

h := [
U 
 �

]�
, (17)

where U := ρu, and 
 := 1
2 u2 + gz. Introducing the skew-symmetric operator

B :=
⎡
⎣ −q × (·) −∇(·) −θ∇(·)

−∇ · (·) 0 0
−∇ · (θ ·) 0 0

⎤
⎦ , (18)

where q = (ω + f )/ρ is the potential vorticity, the original prognostic equations, (1a)-(1c), may be rewritten as

∂a

∂t
= B h . (19)

Note now that the variational derivatives of H with respect to the prognostic variables u, ρ , and 	, are

δH
δu

= ρu = U ,
δH
δρ

= 1

2
u2 + gz = 
,

δH
δ	

= �, (20)

and therefore

h = δH
δa

. (21)

Substituting (21) into (19) yields

∂a

∂t
= B

δH
δa

. (22)

Conservation of total energy follows directly since [23]

∂H
∂t

= δH
δa

· ∂a

∂t
(22)= δH

δa
·
(

B
δH
δa

)
= 0, (23)

where the last identity follows from the skew-symmetry of B. Note that here the dot product involves not only a summation 
over the elements of the vectors but also an integration over �, e.g.

δH
δa

· ∂a

∂t
=

∫
�

3∑
i=1

δH
δai

∂ai

∂t
d�.
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3. Mimetic polynomial basis functions

3.1. 1D mimetic polynomial function spaces

The mixed mimetic spectral element method is built off two types of one-dimensional polynomials: one associated 
with nodal interpolation, and the other with integral interpolation (histopolation) [19,24]. Subsequently, these two types of 
polynomials will be combined to generate the family of three-dimensional basis functions used to discretize the system.

3.1.1. Nodal polynomial basis functions
Consider the canonical interval I = [−1, 1] ⊂ R and the Legendre polynomials, L p(ξ) of degree p with ξ ∈ I . The p + 1

roots, ξi , of the polynomial (1 − ξ2)
dLp
dξ

are called Gauss-Lobatto-Legendre (GLL) nodes and satisfy −1 = ξ0 < ξ1 < · · · <

ξp−1 < ξp = 1. Let lp
i (ξ) be the Lagrange polynomial of degree p through the GLL ξi , such that

lp
i (ξ j) = δi, j, i, j = 0, . . . , p , (24)

where δi, j is the Kronecker delta. The explicit form of these Lagrange polynomials is given by

lp
i (ξ) =

p∏
k=0
k 
=i

ξ − ξk

ξi − ξk
. (25)

Let qh(ξ) be a polynomial of degree p defined on I = [−1, 1] and qi = qh(ξi), then the expansion of qh(ξ) in terms of 
Lagrange polynomials is given by

qh(ξ) :=
p∑

i=0

qil
p
i (ξ) . (26)

Because the expansion coefficients in (26) are given by the value of qh in the nodes ξi , we refer to this interpolation as a 
nodal interpolation and we will denote the Lagrange polynomials in (25) by nodal polynomials.

3.1.2. Histopolant polynomial basis functions
In addition to the nodal basis functions defined above, a second set of basis functions is required in order to discretize 

integral based quantities across edges. Together these nodal and histopolant basis functions will then be used to construct 
a compatible family of finite element function spaces in multiple dimensions. Using the nodal polynomials we can define 
this set of basis polynomials, ep

i (ξ), as

ep
i (ξ) := −

i−1∑
k=0

dlp
k (ξ)

dξ
, i = 1, . . . , p . (27)

These polynomials ep
i (ξ) have polynomial degree p − 1 and satisfy,

ξ j∫
ξ j−1

ep
i (ξ)dξ = δi, j, i, j = 1, . . . , p . (28)

Using (27) the integral of ep
i (ξ) becomes [19,24]

ξ j∫
ξ j−1

ep
i (ξ)dξ = −

ξ j∫
ξ j−1

i−1∑
k=0

dlp
k (ξ)

dξ
= −

i−1∑
k=0

ξ j∫
ξ j−1

dlp
k (ξ)

dξ
= −

i−1∑
k=0

(
lp
k (ξ j) − lp

k (ξ j−1)
) = −

i−1∑
k=0

(
δk, j − δk, j−1

) = δi, j .

Let gh(ξ) be a polynomial of degree (p − 1) defined on I = [−1, 1] and gi = ∫ ξi
ξi−1

gh(ξ) dξ , then its expansion in terms 
of the polynomials ep

i (ξ) is given by

gh(ξ) :=
p∑

i=1

gie
p
i (ξ) . (29)

Because the expansion coefficients in (29) are the integral values of gh(ξ), we denote the polynomials in (27) by histopolant 
polynomials and refer to (29) as histopolation. It can be shown, [19,24], that if qh(ξ) is expanded in terms of nodal polyno-
mials, as in (26), then the expansion of its derivative dqh(ξ) in terms of histopolant, or edge polynomials is
dξ
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Fig. 1. Basis polynomials for nodal polynomials of degree p = 4. Left: nodal polynomials, lp
i (ξ j), right: edge polynomials, ep

i (ξ j).

(
dqh(ξ)

dξ

)
h

=
p∑

i=1

⎛
⎜⎝

ξi∫
ξi−1

dqh(ξ)

dξ
dξ

⎞
⎟⎠ ep

i (ξ) =
p∑

i=1

(qh(ξi) − qh(ξi−1)) ep
i (ξ)

=
p∑

i=1

(qi − qi−1) ep
i (ξ) =

p∑
i=1, j=0

E1,0
i, j q je

p
i (ξ) , (30)

where E1,0
i, j are the coefficients of the p × (p + 1) matrix E1,0 for the one dimensional case, hereafter referred to as an inci-

dence matrix (see Appendix A for details and [3,25,42] for an extensive discussion). The following identity holds (Commuting 
property)(

dq(ξ)

dξ

)
h

= dqh(ξ)

dξ
. (31)

For an example of the one-dimensional basis polynomials corresponding to p = 4, see Fig. 1.

3.2. 3D mimetic polynomial function spaces

A fundamental element in the proposed discretization for the compressible Euler equations, (1), is the de Rham sequence 
of function spaces in the domain � ⊂R3

R−→ H1(�)
∇−→ H(curl,�)

∇×−→ H(div,�)
∇·−→ L2(�) −→ 0 , (32)

where, as usual, the space H1(�) represents square integrable functions over � whose gradient is also square integrable, 
the function spaces H(curl, �) and H(div, �) contain square integrable vector fields over � with square integrable curl and 
divergence, respectively, and the function space L2(�) contains square integrable functions.

More specifically, this work relies on approximating polynomial spaces Ph(�) ⊂ H1(�), Wh(�) ⊂ H(curl, �), Uh(�) ⊂
H(div, �), and Qh(�) ⊂ L2(�) such that

R−→ Ph(�)
∇−→ Wh(�)

∇×−→ Uh(�)
∇·−→ Qh(�) −→ 0 . (33)

These 3-dimensional polynomial function spaces may be constructed from tensor products of the 1-dimensional function 
spaces presented in Section 3.1. Moreover, each of these polynomial function spaces has an associated finite set of basis 
functions εPi , εWi , εUi , and εQi , such that

Ph = span{εP1 , . . . , εPdP }, Wh = span{εW1 , . . . ,εWdW },
Uh = span{εU1 , . . . ,εUdU }, and Qh = span{εQ1 , . . . , εQdQ }. (34)

As previously discussed, e.g. [25], these basis functions are given by

εPm (ξ,η, ζ ; p) := lp
(ξ)lp

(η)lp
(ζ ), m = i + jp+ + kp2+, i, j,k = 0, · · · , p,
i j k
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εWm (ξ,η, ζ ; p) :=

⎧⎪⎪⎨
⎪⎪⎩

ep
i (ξ)lp

j (η)lp
k (ζ )eλ, m = i + jp + kpp+ − 1, i = 1, . . . , p, j,k = 0, · · · , p,

lp
i (ξ)ep

j (η)lp
k (ζ )eϕ, m = i + j−p+ + kpp+ + pp2+, i,k = 0, · · · , p, j = 1, . . . , p,

lp
i (ξ)lp

j (η)ep
k (ζ )ez, m = i + jp+ + k−p2+ + 2pp2+ + 1, i, j = 0, · · · , p, k = 1, . . . , p

εUm(ξ,η, ζ ; p) :=

⎧⎪⎪⎨
⎪⎪⎩

lp
i (ξ)ep

j (η)ep
k (ζ )eλ, m = i + j−p+ + k−pp+, i = 0, . . . , p, j,k = 1, · · · , p,

ep
i (ξ)lp

j (η)ep
k (ζ )eϕ, m = i− + jp + k−pp+ + p+p2, i,k = 1, · · · , p, j = 0, . . . , p,

ep
i (ξ)ep

j (η)lp
k (ζ )ez, m = i− + j−p + kp2 + 2p+p2, i, j = 1, · · · , p, k = 0, . . . , p

εQm (ξ,η, ζ ; p) := ep
i (ξ)ep

j (η)ep
k (ζ ), m = i + j−p + k−p2 − 1, i, j,k = 1, · · · , p,

where for compactness, the subscripts + and − mean addition and subtraction of 1, e.g. p+ := p + 1 and i− := i − 1.
Moreover, the basis functions satisfy the following identities, see for example [25]:

∇εPj =
dQ∑
k=0

E1,0
k, j ε

W
k , ∇ × εWj =

dU∑
k=0

E2,1
k, j ε

U
k , and ∇ · εUj =

dQ∑
k=0

E3,2
k, j ε

Q
k , (35)

where E1,0, E2,1, and E3,2 are the incidence matrices corresponding to the discrete versions of the differential operators 
grad, curl, and div, respectively (see Appendix for details).

4. Numerical discretization

4.1. Splitting into horizontal and vertical contributions

Consider the following splitting into the horizontal, u‖ , and vertical, u⊥ , components of the velocity field u = ueλ +
veϕ + wez

u‖ := ueλ + veϕ , u⊥ := wez . (36)

Moreover, let ∇‖ and ∇⊥ represent the horizontal and vertical components of the gradient operator of a scalar field ρ

∇‖ρ := ∂ρ

∂λ
eλ + ∂ρ

∂φ
eϕ , ∇⊥ρ := ∂ρ

∂z
ez . (37)

In a similar way, ∇‖× and ∇⊥× represent, respectively, the horizontal and vertical components of the curl of a vector field 
u = ueλ + veϕ + wez

∇‖ × u :=
(

∂ w

∂φ
− ∂v

∂z

)
eλ +

(
∂u

∂z
− 1

r cos(φ)

∂ w

∂λ

)
eϕ , ∇⊥ × u := 1

r cos(φ)

(
∂v

∂λ
− ∂(cos(φ)u)

∂φ

)
ez . (38)

Note that we have assumed the shallow atmosphere approximation of constant radius, r, in the above expressions. From 
(37) and (38) follows directly that

∇ρ = ∇‖ρ + ∇⊥ρ , and ∇ × u = ∇‖ × u + ∇⊥ × u .

With (36) and (38) it is possible to rewrite the definition of vorticity, ω := ∇ × u, as

ω =
ω‖,‖︷ ︸︸ ︷

∇‖ × u‖ +
ω‖,⊥︷ ︸︸ ︷

∇‖ × u⊥︸ ︷︷ ︸
ω‖

+∇⊥ × u‖︸ ︷︷ ︸
ω⊥

. (39)

Using (36), (37), (38), and (39), it is possible to split the compressible Euler equations, (1), into horizontal and vertical 
components

∂u‖
∂t

+ (ω⊥ + f ⊥) × u‖ + ω‖,‖ × u⊥ + 1

2
∇‖‖u‖‖2 + θ∇‖� = 0, (40a)

∂u⊥
∂t

+ ω‖,⊥ × u‖ + ∇⊥
(

1

2
‖u⊥‖2 + gz

)
+ θ∇⊥� = 0, (40b)

∂ρ

∂t
+ ∇ · (ρu‖

) + ∇ · (ρu⊥) = 0, (40c)

∂(ρθ)

∂t
+ ∇ · (ρθu‖

)+ ∇ · (ρθu⊥) = 0, (40d)

where, as in (39), ω‖,‖ := ∇‖ × u‖ and ω‖,⊥ := ∇‖ × u⊥ .
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The same splitting into horizontal and vertical components may be done for the basis functions, Section 3.2,

εWj =
(
εWj

)
‖ +

(
εWj

)
⊥ := ε

W‖
j + εW⊥

j , (41)

and

εUj =
(
εUj

)
‖ +

(
εUj

)
⊥ := ε

U‖
j + εU⊥

j . (42)

Recalling the definition of εWj and εUj , Section 3.2, we can explicitly write their horizontal and vertical components as

ε
W‖
m (ξ,η, ζ ; p) :=

{
ep

i (ξ)lp
j (η)lp

k (ζ )eλ, m = i + jp + kpp+ − 1, i = 1, . . . , p, j,k = 0, · · · , p,

lp
i (ξ)ep

j (η)lp
k (ζ )eϕ, m = i + j−p+ + kpp+ + pp2+, i,k = 0, · · · , p, j = 1, . . . , p,

εW⊥
m (ξ,η, ζ ; p) := lp

i (ξ)lp
j (η)ep

k (ζ )ez, m = i + jp+ + k−p2+, i, j = 0, · · · , p, k = 1, . . . , p

ε
U‖
m (ξ,η, ζ ; p) :=

{
lp
i (ξ)ep

j (η)ep
k (ζ )eλ, m = i + j−p+ + k−pp+, i = 0, . . . , p, j,k = 1, · · · , p,

ep
i (ξ)lp

j (η)ep
k (ζ )eϕ, m = i− + jp + k−pp+ + p+p2, i,k = 1, · · · , p, j = 0, . . . , p,

εU⊥
m (ξ,η, ζ ; p) := ep

i (ξ)ep
j (η)lp

k (ζ )ez, m = i− + j−p + kp2, i, j = 1, · · · , p, k = 0, . . . , p.

Using this splitting of the basis functions we can also split the discrete function spaces such that (34) becomes

Wh = W‖,h ⊕W⊥,h = span{εW‖
1 , . . . ,ε

W‖
dW‖

} ⊕ span{εW⊥
1 , . . . ,εW⊥

dW⊥
}, (43)

Uh = U‖,h ⊕ U⊥,h = span{εU‖
1 , . . . ,ε

U‖
dU‖

} ⊕ span{εU⊥
1 , . . . ,εU⊥

dU⊥
}, (44)

where

dW‖ := 2pp2+, dW⊥ := pp2+, dU‖ := 2p+p2, dU⊥ = p+p2. (45)

Remark 1. An important point relevant in the derivations that follow is that

ε
W‖
j = εWj , j = 0, . . . ,dW‖ − 1,

εW⊥
j = εWj+dW‖

, j = 0, . . . ,dW⊥ − 1,

ε
U‖
j = εUj , j = 0, . . . ,dU‖ − 1,

εU⊥
j = εUj+dU‖

, j = 0, . . . ,dU⊥ − 1.

4.2. Unsplit discretization

To discretize the unsplit form of the compressible Euler equations, (1), we first introduce the weak form: Given a domain 
� ⊂ R3 and a Coriolis term f = f ez ∈ H(curl, �), find u, U , F , P ∈ H(div, �), ω ∈ H(curl, �), and �, ρ, θ, 	 ∈ L2(�) for 
the prognostic equations〈

σ ,
∂u

∂t

〉
�

+ 〈σ , (ω + f ) × u〉� +
〈
∇ · σ ,

1

2
‖u‖2 + gz

〉
�

+
〈σ , θ P 〉� = 0, ∀σ ∈ H(div,�),

(46a)

〈
α ,

∂ρ

∂t

〉
�

+ 〈α , ∇ · U 〉� = 0, ∀α ∈ L2(�) (46b)〈
α ,

∂	

∂t

〉
�

+ 〈α , ∇ · F 〉� = 0, ∀α ∈ L2(�), (46c)

as well as the associated diagnostic equations
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〈∇ · σ , �〉� − 〈σ , P 〉� = 0, ∀σ ∈ H(div,�) (47a)

〈σ , ρu〉� − 〈σ , U 〉� = 0, ∀σ ∈ H(div,�), (47b)

〈σ , θU 〉� − 〈σ , F 〉� = 0, ∀σ ∈ H(div,�), (47c)

〈∇ × β , u〉� − 〈β , ω〉� = 0, ∀β ∈ H(curl,�), (47d)

〈α , 	〉� − 〈α , ρθ〉� = 0, ∀α ∈ L2(�), (47e)

〈α , �〉� − cp

(
R

p0

)R/cv 〈
α , 	R/cv

〉
�

= 0, ∀α ∈ L2(�). (47f)

Consider now the domain � ⊂ R3 and its tessellation T (�) consisting of M arbitrary quadrilaterals (curved), �m , with 
m = 1, . . . , M . We assume that all quadrilateral elements �m can be obtained from a map 
m : (ξ, η, ζ ) ∈ I3 �→ (λ, φ, z) ∈
�m . Then the pushforward 
m,∗ maps functions in the reference element I3 to functions in the physical element �m , 
see for example [26,27]. For this reason it suffices to explore the analysis on the reference domain I3. Additionally, the 
multi-element case follows the standard approach in finite elements.

Remark 2. If a differential geometry formulation was used, the physical quantities would be represented by differential 
k-forms and the map 
m : (ξ, η, ζ ) ∈ I3 �→ (λ, φ, z) ∈ �m would generate a pullback, 
∗

m , mapping k-forms in physical 
space, �m , to k-forms in the reference element, I3, [25].

The discrete weak formulation can be stated as: Given � = I3, the polynomial degree N and a Coriolis term f h ∈
Wh,⊥(�), for any time t ∈ (0, tF ] find uh, U h, F h, P h ∈ Uh(�), θh ∈ Uh,⊥(�), ωh ∈Wh(�), and �h, ρh, 	h ∈Qh(�) such that

〈
σ h ,

∂uh

∂t

〉
�

+ 〈
σ h , (ωh + f h) × uh

〉
�

+
〈
∇ · σ h ,

1

2
‖uh‖2 + gz

〉
�

+
〈σ h , θh P h〉� = 0, ∀σ h ∈ Uh(�),

(48a)

〈
αh ,

∂ρh

∂t

〉
�

+ 〈αh , ∇ · U h〉� = 0, ∀αh ∈ Qh(�) (48b)〈
αh ,

∂	h

∂t

〉
�

+ 〈αh , ∇ · F h〉� = 0, ∀αh ∈ Qh(�), (48c)

and

〈∇ · σ h , �h〉� − 〈σ h , P h〉� = 0, ∀σ h ∈ Uh(�) (49a)

〈σ h , ρhuh〉� − 〈σ h , U h〉� = 0, ∀σ h ∈ Uh(�), (49b)

〈σ h , θhU h〉� − 〈σ h , F h〉� = 0, ∀σ h ∈ Uh(�), (49c)〈∇ × βh , uh
〉
�

− 〈
βh , ωh

〉
�

= 0, ∀βh ∈ Wh(�), (49d)〈
σh,⊥ , 	h

〉
�

− 〈
σh,⊥ , ρhθh

〉
�

= 0, ∀αh ∈ Uh,⊥(�), (49e)

〈αh , �h〉� − cp

(
R

p0

)R/cv 〈
αh , 	

R/cv
h

〉
�

= 0, ∀αh ∈ Qh(�). (49f)

Using the expansions for all unknowns, (48), (49) may be written as: Find u, U, F, P ∈ RdU , θ ∈ RdU⊥ , ω ∈ RdW , and 
Π, ρ, Θ ∈RdQ such that

dU−1∑
i=0

〈
εUj , εUi

〉
�

dui

dt
+

dU−1∑
i=0

〈
εUj , (ωh + f h) × εUi

〉
�

ui+

dQ−1∑
i=0

〈
∇ · εUj ,

1

2
uh · εUi

〉
�

ui +
dQ−1∑

i=0

〈
∇ · εUj , g

〉
�

zi+

dU−1∑ 〈
εUj , θhε

U
i

〉
�

Pi = 0, j = 0, . . . ,dU − 1,

(50a)
i=0
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dQ−1∑
i=0

〈
εQj , εQi

〉
�

dρi

dt
+

dU−1∑
i=0

〈
εQj , ∇ · εUi

〉
�

Ui = 0, j = 0, . . . ,dQ − 1 (50b)

dQ−1∑
i=0

〈
εQj , εQi

〉
�

dΘi

dt
+

dU−1∑
j=0

〈
εQj , ∇ · εUi

〉
�

Fi = 0, j = 0, . . . ,dQ − 1, (50c)

and

dQ−1∑
i=0

〈
∇ · εUj , εQi

〉
�
Πi −

dU−1∑
i=0

〈
εUj , εUi

〉
�

Pi = 0, j = 0, . . . ,dU − 1 (51a)

dU∑
i=0

〈
εUj , ρhε

U
i

〉
�

ui −
dU∑
i=0

〈
εUj , εUi

〉
�

Ui = 0, j = 0, . . . ,dU − 1, (51b)

dU−1∑
i=0

〈
εUj , θhε

U
i

〉
�

Ui −
dU−1∑

i=0

〈
εUj , εUi

〉
�

Fi = 0, j = 0, . . . ,dU − 1, (51c)

dU−1∑
i=0

〈
∇ × εWj , εUi

〉
�

ui −
dW−1∑

i=0

〈
εWj , εWi

〉
�

ωi = 0, j = 0, . . . ,dW − 1, (51d)

dQ−1∑
i=0

〈
εU⊥

j , εQi

〉
�
Θi −

dU⊥−1∑
i=0

〈
εU⊥

j , ρhε
U⊥
i

〉
�

θi = 0, j = 0, . . . ,dU⊥ − 1, (51e)

cp

( R

p0

)R/cv
dU−1∑

i=0

〈
εQj , (εQi Θi)

R/cv
〉
�

−
dQ−1∑

i=0

〈
εQj , εQi

〉
�
Πi = 0, j = 0, . . . ,dQ − 1. (51f)

4.3. Split discretization

It is important to note that functions in W⊥,h and U‖,h are discontinuous across vertical element boundaries, while those 
in U⊥,h are discontinuous across horizontal boundaries. Similarly functions in Qh are discontinuous across both vertical and 
horizontal boundaries. These properties allow us to split the three dimensional problem presented in (50), (51) into separate 
horizontal and vertical problems, and in doing so avoid solving any global three dimensional implicit systems.

The split discretization is obtained by using (36), (37), (38), and (39), together with (41) and (42) in (50), (51) in order 
to obtain a discrete version of the split Euler equations (40). The horizontal discrete equations are given by

dU‖−1∑
i=0

〈
ε
U‖
j , ε

U‖
i

〉
�

dui,‖
dt

+
dU‖−1∑

i=0

〈
ε
U‖
j , (ωh,⊥ + f h,⊥) × ε

U‖
i

〉
�

ui,‖+

dU⊥−1∑
i=0

〈
ε
U‖
j , ωh,‖,‖ × εU⊥

i

〉
�

ui,⊥+

dQ−1,dQ−1∑
i,k=0

(
E3,2

‖
)�

j,k

〈
εQk ,

1

2
uh,‖ · εU‖

i

〉
�

ui,‖+

dU‖−1∑
i=0

〈
ε
U‖
j , θhε

U‖
i

〉
�

Pi,‖ = 0, j = 0, . . . ,dU‖ − 1,

(52a)

dQ−1,dQ−1∑
i,k=0

(
E3,2

‖
)�

j,k

〈
εQk , εQi

〉
�
Πi −

dU‖−1∑
i=0

〈
ε
U‖
j , ε

U‖
i

〉
�

Pi,‖ = 0, j = 0, . . . ,dU‖ − 1 (52b)

dU‖−1∑ 〈
ε
U‖
j , ρhε

U‖
i

〉
�

ui,‖ −
dU‖−1∑ 〈

ε
U‖
j , ε

U‖
i

〉
�

Ui,‖ = 0, j = 0, . . . ,dU‖ − 1, (52c)

i=0 i=0
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dU‖−1∑
i=0

〈
ε
U‖
j , θhε

U‖
i

〉
�

Ui,‖ −
dU‖−1∑

i=0

〈
ε
U‖
j , ε

U‖
i

〉
�

Fi,‖ = 0, j = 0, . . . ,dU‖ − 1, (52d)

dU‖−1,dU‖−1∑
i,k=0

(
E2,1

‖,‖
)�

j,k

〈
ε
U‖
k , ε

U‖
i

〉
�

ui,‖ −
dW‖−1∑

i=0

〈
ε
W‖
j , ε

W‖
i

〉
�

ωi,‖,‖ = 0, j = 0, . . . ,dW‖ − 1, (52e)

dU‖−1,dU‖−1∑
i,k=0

(
E2,1

‖,⊥
)�

j,k

〈
ε
U‖
k , ε

U‖
i

〉
�

ui,‖ −
dW⊥−1∑

i=0

〈
εW⊥

j , εW⊥
i

〉
�

ωi,⊥ = 0, j = 0, . . . ,dW⊥ − 1, (52f)

where we have introduced ωh,‖,‖ := ∑dW‖ −1

i=0 ωi,‖,‖ε
W‖
i , ωh,‖,⊥ := ∑dW‖ −1

i=0 ωi,‖,⊥ε
W‖
i . In the same way, the vertical discrete 

equations are

dU⊥−1∑
i=0

〈
εU⊥

j , εU⊥
i

〉
�

dui,⊥
dt

+
dU‖−1∑

i=0

〈
εU⊥

j , ωh,‖,⊥ × ε
U‖
i

〉
�

ui,‖+

dQ−1,dQ−1∑
i,k=0

(
E3,2

⊥
)�

j,k

〈
εQk ,

1

2
uh,⊥ · εU⊥

i

〉
�

ui,⊥+

dQ−1,dQ−1∑
i,k=0

g
(

E3,2
⊥

)�
j,k

〈
εQk , εQi

〉
�

zi +
dU⊥−1∑

i=0

〈
εU⊥

j , θhε
U⊥
i

〉
�

Pi,⊥ = 0, j = 0, . . . ,dU⊥ − 1,

(53a)

dQ−1,dQ−1∑
i,k=0

(
E3,2

⊥
)�

j,k

〈
εQj , εQi

〉
�
Πi −

dU⊥−1∑
i=0

〈
εU⊥

j , εU⊥
i

〉
�

Pi,⊥ = 0, j = 0, . . . ,dU⊥ − 1 (53b)

dU⊥−1∑
i=0

〈
εU⊥

j , ρhε
U⊥
i

〉
�

ui,⊥ −
dU⊥−1∑

i=0

〈
εU⊥

j , εU⊥
i

〉
�

Ui,⊥ = 0, j = 0, . . . ,dU⊥ − 1, (53c)

dU⊥−1∑
i=0

〈
εU⊥

j , θhε
U⊥
i

〉
�

Ui,⊥ −
dU⊥−1∑

i=0

〈
εU⊥

j , εU⊥
i

〉
�

Fi,⊥ = 0, j = 0, . . . ,dU⊥ − 1, (53d)

dU⊥−1,dU⊥−1∑
i,k=0

(
E2,1

⊥
)�

j,k

〈
εU⊥

k , εU⊥
i

〉
�

ui,⊥ −
dW‖−1∑

i=0

〈
ε
W‖
j , ε

W‖
i

〉
�

ωi,‖,⊥ = 0, j = 0, . . . ,dW‖ − 1, (53e)

where we have introduced ωh,⊥ := ∑dW⊥ −1
i=0 ωi,⊥εW⊥

i . Note that for efficiency we do not assemble the second term in 
(53a) for simulations at hydrostatic resolutions (and as such we do not apply the diagnostic equation (53e) for ωh,⊥). This 
term represents the horizontal advection of vertical velocity, and as such is not significant for hydrostatic motions where 
the vertical scales are small with respect to the horizontal scales, and so the horizontal gradients of vertical terms have 
minimal impact on the dynamics. While this term is also omitted for hydrostatic formulations [22], our motivation here is 
based on simple scale analysis. Additionally the rotational terms have no projection onto the energy of the system within 
the mimetic discretization [3] (though they do re-arrange kinetic energy). At non-hydrostatic resolutions however we do 
include this term, since the horizontal and vertical scales are closer to unity, and failure to incorporate this term means that 
vertical motions are not being properly transported with the horizontal flow, such that upstream vertical oscillations may 
be exaggerated.

The only equations in the above system that cannot be effectively split between the horizontal and vertical systems 
are (52e) and (53e), since these involve vertical gradients of a horizontally continuous field and vice versa. These terms 
are required for the vertical advection of horizontal velocity and the horizontal advection of vertical velocity respectively. 
However by employing a horizontal velocity space which is piecewise constant in the vertical, and a vertical velocity that 
is piecewise linear in the vertical, we can avoid the need to diagnose these terms through the use of global matrices by 
employing a direct differencing at the vertical layer interfaces.

Additionally, we also have the flux form equations for density and density weighted potential temperature transport that 
contain both vertical and horizontal components. While we have not included these in the split systems described in (52)
and (53), since doing so incurs a temporal splitting error, in practice these equations are also split between their horizontal 
and vertical components. For the Strang carryover scheme detailed in Section 5.3 this results in a second order temporal 
error for the full system. These equations are given as
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dQ−1∑
i=0

〈
εQj , εQi

〉
�

dρi

dt
+

dU‖−1,dQ−1∑
i,k=0

〈
εQj , εQk

〉
�

(
E3,2

‖
)

k,i
Ui,‖+

dU⊥−1,dQ−1∑
i,k=0

〈
εQj , εQk

〉
�

(
E3,2

⊥
)

k,i
Ui,⊥ = 0, j = 0, . . . ,dQ − 1

(54a)

dQ−1∑
i=0

〈
εQj , εQi

〉
�

dΘi

dt
+

dU‖−1,dQ−1∑
i,k=0

〈
εQj , εQk

〉
�

(
E3,2

‖
)

k,i
Fi,‖+

dU⊥−1,dQ−1∑
i,k=0

〈
εQj , εQk

〉
�

(
E3,2

⊥
)

k,i
Fi,⊥ = 0, j = 0, . . . ,dQ − 1,

(54b)

Note that the diagnostic equations for potential temperature (51e) and the equation of state (51f) are also included in 
both the horizontal and vertical systems. We also note that the mass matrices all cancel in (54), such that these flux form 
transport equations may effectively be solved in the strong form [3,5] for the point-wise conservation of mass and mass 
weighted potential temperature.

Remark 3. In (52), (53), and (54), we have used the fact that the incidence matrices can be written as

E1,0 =
⎡
⎣ E1,0

‖

E1,0
⊥

⎤
⎦ , E2,1 =

⎡
⎣ E2,1

‖,‖ E2,1
‖,⊥

E2,1
⊥ 0

⎤
⎦ , and E3,2 =

[
E3,2

‖ E3,2
⊥

]
, (55)

where E1,0
‖ is a dW‖ × dP matrix, E1,0

⊥ is a dW⊥ × dP matrix, E2,1
‖,‖ is a dU‖ × dW‖ matrix, E2,1

‖,⊥ is a dU‖ × dW⊥ matrix, E2,1
⊥

is a dU⊥ × dW‖ matrix, E3,2
‖ is a dQ × dU‖ matrix, and E3,2

⊥ is a dQ × dU⊥ matrix.

Remark 4. In (52), (53), and (54), two important points to note are

ui = ui,‖, i = 0, . . . ,dU‖ − 1 and ui+dU‖ = ui,⊥, i = 0, . . . ,dU⊥ − 1

and

ωh = ωh,‖,‖ + ωh,‖,⊥ + ωh,⊥ =
dW‖−1∑

i=0

ωi,‖,‖ε
W‖
i +

dW‖−1∑
i=0

ωi,‖,⊥ε
W‖
i +

dW⊥−1∑
i=0

ωi,⊥εW⊥
i .

In compact matrix notation we can write (52) as

MU‖ du‖

dt
+ R‖,‖u‖ + R‖,⊥u⊥ +

(
E3,2

‖
)�

TU‖u‖ + SU‖P‖ = 0, (56a)(
E3,2

‖
)�

MQΠΠΠ− MU‖P‖ = 0, (56b)

NU‖u‖ − MU‖U‖ = 0, (56c)

SU‖U‖ − MU‖F‖ = 0, (56d)(
E2,1

‖,‖
)�

MU‖u‖ − MW‖ω‖,‖ = 0, (56e)(
E2,1

⊥
)�

MU⊥u⊥ − MW‖ω‖,⊥ = 0, (56f)

with

M
U‖
i j :=

〈
ε
U‖
i , ε

U‖
j

〉
�

, R‖,‖
i j :=

〈
ε
U‖
i , (ωh,⊥ + f h,⊥) × ε

U‖
j

〉
�

, R‖,⊥
i j :=

〈
ε
U‖
i , ωh,‖,‖ × εU⊥

j

〉
�

,

MQ
i j :=

〈
εQi , εQj

〉
�

, S
U‖
i j :=

〈
ε
U‖
i , θhε

U‖
j

〉
�

, N
U‖
i j :=

〈
ε
U‖
i , ρhε

U‖
j

〉
�

,

M
W‖
i j :=

〈
ε
W‖
i , ε

W‖
j

〉
�

, MU⊥
i j :=

〈
εU⊥

i , εU⊥
j

〉
�

, T
U‖
i j :=

〈
εQi ,

1
uh,‖ · εU‖

j

〉
.

2 �
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In a similar manner, the vertical equations, (53), can be written in compact matrix notation as

MU⊥ du⊥

dt
+ R⊥,‖u‖ +

(
E3,2

⊥
)�

TU⊥u⊥ + g
(

E3,2
⊥

)�
MQz + SU⊥P⊥ = 0, (57a)(

E3,2
⊥

)�
MQΠΠΠ− MU⊥P⊥ = 0, (57b)

NU⊥u⊥ − MU⊥U⊥ = 0, (57c)

SU⊥U⊥ − MU⊥F⊥ = 0, (57d)(
E2,1

‖,⊥
)�

MU⊥u⊥ − MW⊥ω⊥ = 0, (57e)

with

R⊥,‖
i j :=

〈
εU⊥

i , (ωh,⊥ + f h,⊥) × ε
U‖
j

〉
�

, SU⊥
i j :=

〈
εU⊥

i , θhε
U⊥
j

〉
�

, NU⊥
i j :=

〈
εU⊥

i , ρhε
U⊥
j

〉
�

,

MW⊥
i j :=

〈
εW⊥

i , εW⊥
j

〉
�

, TU⊥
i j :=

〈
εQi ,

1

2
uh,⊥ · εU⊥

j

〉
�

.

In (57a) the vector z represents the discrete vertical coordinate projected onto Qh . While it may seem counter-intuitive 
to take a discrete vertical gradient of the vertical coordinate itself, rather than just representing this as unity, this weak 
representation is required in order to preserve the exact balance of kinetic and potential energy exchanges, as shown below 
in Section 4.4.

Finally, (54) may be written in compact matrix notation as

MQ dρ

dt
+ MQE3,2

‖ U‖ + MQE3,2
⊥ U⊥ = 0, (58a)

MQ dΘΘΘ
dt

+ MQE3,2
‖ F‖ + MQE3,2

⊥ F⊥ = 0, (58b)

LU⊥,QΘΘΘ− NU⊥θ = 0, (58c)

cp

( R

p0

)R/cv
dU−1∑

i=0

〈
εQj , (εQi Θi)

R/cv
〉
�

− MQΠΠΠ = 0, (58d)

with

LU⊥,Q
i j :=

〈
εU⊥

i , ρhε
Q
j

〉
�

.

4.4. Discrete energetics

The conservation of energy for the rotating shallow water equations via balanced kinetic-potential exchanges has pre-
viously been analysed [3] and experimentally verified [5] for the mixed mimetic spectral element method. In terms of 
energetics, the qualitative difference between the rotating shallow water equations and the compressible Euler equations is 
the presence of kinetic and internal energy exchanges. As such we here extend the previous analysis to demonstrate that 
these exchanges may be balanced in the discrete from.

As seen before, we have that the discrete velocity field, uh , density, ρh , and density weighted potential temperature, 	h , 
are

uh =
dU∑
i=0

uiε
U
i , ρh =

dQ∑
i=0

ρiε
Q
i , and 	h =

dQ∑
i=0

Θiε
Q
i . (59)

The discrete Hamiltonian Hh :=H[uh, ρh, 	h] is then given by

H[uh,ρh,	h] =
∫
�

1

2
ρh‖uh‖2 d� +

∫
�

ρh gzh d� +
∫
�

cv

(
R

p0

) R
cv

	

cp
cv
h d�. (60)

Using the definition of the variational derivative, see for example [28], we can compute the variational derivative of the 
Hamiltonian with respect to the velocity, δH

δuh

d

dε
H[uh + εvh,ρh,	h]

∣∣∣∣ =:
〈

vh ,
δH
δu

〉
, ∀vh ∈ Uh . (61)
ε=0 h
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The left hand side of this expression may be evaluated to yield〈
vh ,

δH
δuh

〉
= 〈vh , ρhuh〉 , ∀vh ∈ Uh . (62)

Since this expression is valid for all vh ∈ Uh , then〈
εUj ,

δH
δuh

〉
=

〈
εUj , ρhuh

〉
(20)=

〈
εUj , U h

〉
, j = 0, . . . ,dU . (63)

Following the same procedure we may obtain the weak equations for the variational derivative with respect to ρh〈
εQj ,

δH
δρh

〉
=

〈
εQj ,

1

2
‖uh‖2 + gzh

〉
(20)=

〈
εQj , 
h

〉
, j = 0, . . . ,dQ , (64)

and the variational derivative with respect to 	h

〈
εQj ,

δH
δ	h

〉
= cp

(
R

p0

)R/cv 〈
εQj , 	

R/cv
h

〉
(51f)=

〈
εQj , �h

〉
, j = 0, . . . ,dQ . (65)

The discrete compressible Euler equations (48), (49) may then be formulated as a skew-symmetric system for the discrete 
analogue of (16)-(19) as

⎡
⎣ MUu,t

MQρ,t

MQΘ,t

⎤
⎦ =

⎡
⎢⎣ −Rq

(
E3,2

)�
MQ SU (

MU )−1 (
E3,2

)�
MQ

−MQE3,2 0 0

−MQE3,2
(
MU )−1

SU 0 0

⎤
⎥⎦
⎡
⎣ U
Φ
Π

⎤
⎦ . (66)

Multiplying both sides by 
[

U� Φ� Π� ]
, gives

U�MU ∂u

∂t
+ u�(TU )� ∂ρ

∂t
+ gz�MQ ∂ρ

∂t
+ΠΠΠ�MQ ∂ΘΘΘ

∂t
= ∂ Kh

∂t
+ ∂ Ph

∂t
+ ∂ Ih

∂t
= 0, (67)

where

Kh = 1

2
U�MUu = u�(TU )�ρ, Ph = gz�MQρ, Ih = cv

cp
ΠΠΠ�MQΘΘΘ = cv

cp

(
R

p0

)R/cv ∫
�

	
cp/cv

h d�. (68)

Note that for Rq,i j :=
〈
εUi , qh × εUj

〉
�

, where qh is the potential vorticity [3], this is itself a skew-symmetric operator such 

that U�RqU = U�Ru = 0. As such neither Rq nor R projects onto the energy in the discrete form.
Note also that the pressure gradient diagnostic equation (51a) and the temperature flux diagnostic equation (51c) appear 

within the skew-symmetric operator in (66) within the top right and bottom left blocks respectively. The discrete energy 
exchanges are therefore given as

∂ Kh

∂t
= gU�(E3,2)�MQz + U�SU

(
MU

)−1
(E3,2)�MQΠΠΠ, (69)

∂ Ph

∂t
= −gz�MQE3,2U, (70)

∂ Ih

∂t
= −ΠΠΠ�MQE3,2

(
MU

)−1
SUU. (71)

The right hand side terms of (69) exactly balance those of (70) and (71), thus allowing for the exact balances of kinetic 
to potential and kinetic to internal energy respectively. This holds for both the horizontal and vertical discretisations pre-
sented above, assuming periodic boundary conditions in the horizontal, homogeneous Dirichlet boundary conditions for the 
vertical velocity (5) and Neumann conditions for the Exner pressure (6) in the vertical. As an aside we note that energetic 
consistency is satisfied independent of the choice of function space for θh , since this only appears within SU , thus justifying 
our choice to represent θh ∈ U⊥ .
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4.5. Metric terms

The Jacobian matrix between local element coordinates ξ := (ξ, η, ζ ) and global coordinates x := (λ, φ, z) is given as

J =
⎡
⎣cos(φ)λ,ξ cos(φ)λ,η 0

φ,ξ φ,η 0
0 0 z,ζ

⎤
⎦ , (72)

where the subscripts represent derivatives with respect to local element coordinates and we have assumed that all hori-
zontal layers are perfectly flat, such that the projection of vertical local coordinates onto horizontal global coordinates and 
horizontal local coordinates onto vertical global coordinates are zero. The H(curl, �), H(div, �) and L2(�) forms of the Piola 
transformation are given respectively as [11,12]

J−�,
1

J
J,

1

J
, (73)

where J is the determinant of the Jacobian matrix. The metric transformations for the respective mass matrices are therefore 
(J−�)�J−� , 1

J 2 J�J and 1
J 2 . Since the horizontal and vertical components of both the H(curl, �) and H(div, �) transforma-

tions are orthogonal, these metric transformations are further simplified for these spaces as

Wh,‖ : 1

(cos(φ)λ,ξ φ,η − cos(φ)λ,η φ,ξ )2

[
(cos(φ)λ,η )2 + (φ,η )2 − cos2(φ)λ,ξ λ,η −φ,ξ φ,η

− cos2(φ)λ,ξ λ,η −φ,ξ φ,η (cos(φ)λ,ξ )2 + (φ,ξ )2

]
, (74a)

Wh,⊥ : 1

(z,ζ )2
, (74b)

Uh,‖ : 1

J 2

[
(cos(φ)λ,ξ )2 + (φ,ξ )2 cos2(φ)λ,ξ λ,η +φ,ξ φ,η

cos2(φ)λ,ξ λ,η +φ,ξ φ,η (cos(φ)λ,η )2 + (φ,η )2

]
, (74c)

Uh,⊥ : 1

(cos(φ)λ,ξ φ,η − cos(φ)λ,η φ,ξ )2
, (74d)

Qh : 1

(z,ζ )2(cos(φ)λ,ξ φ,η − cos(φ)λ,η φ,ξ )2
. (74e)

As a special case, we also note that an inner product between basis functions in Uh,⊥ and functions in Qh has the metric 
term

z,ζ
J

· 1

J
= 1

z,ζ (cos(φ)λ,ξ φ,η − cos(φ)λ,η φ,ξ )2
. (75)

As stated these metric terms do not account for any projection of horizontal vector components onto vertical components 
and vice versa. As such we limit ourselves here to the case where the horizontal and vertical degrees of freedom are strictly 
orthogonal, and we are unable to account for the tilting of layers or bottom topography in the current implementation. We 
note however that the tilting of horizontal layers in order to represent topography is naturally incorporated into the finite 
element formulation via these cross terms, and these may be implemented at a later date with minimal disruption to the 
current formulation.

Note that the vorticity term 〈σ h, ωh,‖,‖ × uh,⊥〉 is alternatively formulated as 〈σ h, uh,⊥∇⊥uh,‖〉 (with the vertical deriva-
tive derived in the weak form). In this form the vertical velocity derivatives may be interpreted as being oriented normal to 
the edges, rather than tangent to them, and as such the H(div, �) form of the Piola transformation is used to construct the 
metric term for this operator as well as for (52e).

5. Time stepping

In this section we introduce the horizontally-explicit/vertically implicit (HEVI) time stepping scheme employed in the 
model. Such schemes are popular in non-hydrostatic atmospheric modelling since they negate the explicit time step restric-
tions associated with the fast time scales of the vertical gravity and acoustic waves [13,15,29–31]. These schemes are often 
constructed by perturbing the vertical dynamics around a leading order state of hydrostatic balance [13,15] and/or further 
splitting the vertical dynamics so as to only solve for the terms responsible for the fast dynamics implicitly [31]. Here we 
avoid these formulations due to our concern that they may break the skew-symmetric structure of the discrete system (66)
that is central to the conservation of energy in the spatial discretisation. Nevertheless we note that while our current im-
plicit scheme detailed below preserves the exact balance kinetic to potential energy exchanges, balance is not satisfied for 
the vertical kinetic to internal energy exchanges due to the formulation of the pressure gradient term. Restoring this bal-
ance within the implicit vertical scheme is a subject of ongoing research. We further emphasise that both our time splitting 
scheme as well as our individual implicit vertical and explicit horizontal time integration schemes will conserve energy only 
to truncation order in time.
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5.1. Directional splitting

We use a Strang carryover splitting scheme to partition the horizontal and vertical dynamics [29,30]. Consider the previ-
ously introduced splitting of the spatial operator (here denoted by L) into a vertical (Lv ) and horizontal (Lh) components: 
equations (56) (horizontal), and equations (57) together with equations (58) (vertical). With this splitting we can write the 
full system of equations as

db

dt
= L(b) = Lh(b) + Lv(b) , (76)

where b := [u, U , F , P , ω, ρ, θ, 	, �]. Then, the time stepping procedure to evolve from time step tn to tn+1 follows the 
sequence

db′

dt
= Lv(b′), t ∈ [tn, tn + �t

2
] (vertical half step)

b′(tn) = b(tn) (77)

db′′

dt
= Lh(b′′), t ∈ [tn, tn + �t] (horizontal full step)

b′′(tn) = b′(tn + �t

2
) (78)

db′′′

dt
= Lv(b′′′), t ∈ [tn + �t

2
, tn+1] (vertical half step)

b′′′(tn + �t

2
) = b′′(tn+1) (79)

bn+1 = b′′′(tn+1) (update) . (80)

This splitted time evolution procedure is then numerically integrated. The first vertical half time step (77) is explicitly 
integrated using a forward Euler scheme (carried over) as

b′ = bn + �t

2
Lv(bn) . (81)

The horizontal full time step (78) is numerically integrated using an explicit third order stiffly stable Runge-Kutta scheme, 
see Section 5.2 for more details. Finally, the second vertical half step (79) is integrated using an implicit Euler scheme. A 
nonlinear Picard iteration, m, is applied to solve this vertical system, which is assumed to converge once |bm+1(tn+1) −
bm(tn+1)|2/|bm+1(tn+1)|2 < 10.0−8, where | · |2 is the L2 norm. For a detailed discussion see Section 5.3. For the 30 models 
levels of the baroclinic test case described below in Section 6.1, 13 Picard iterations are required to reach convergence.

This scheme is formally second order accurate in time due to the Strang splitting, with the horizontal scheme being 
third order accurate, and the vertical scheme being equivalent to a second order trapezoidal scheme [30]. Our anecdotal 
experience is that if a first order horizontal-vertical splitting is used, as opposed to the second order splitting described 
here, then the horizontal-vertical coupling is too weak to allow for the correct transfer of potential and internal energy to 
vertical kinetic energy required to properly simulate the baroclinic instability described below in Section 6.1.

Since all the solution variables in b required to solve for the vertical dynamics are discontinuous across horizontal 
element boundaries, the inner linear system above is solved in serial for each horizontal element, via a direct LU solve 
using the PETSc library [33–35]. Similarly, since all the solution variables involved in the vertical dynamics are discretized 
on function spaces that are discontinuous across vertical element boundaries, this system may be solved independently, 
in parallel for each horizontal layer. The mass matrices are solved using the PETSc GMRES solver, with a block Jacobi 
preconditioner for each element, as was done for the shallow water equations in our previous work [5].

5.2. Explicit horizontal solve

The horizontal dynamics are solved using an explicit stiffly stable Runge-Kutta scheme of the form [29,32]

b(1) = b′(tn + �t

2
) + �tLh(b′(tn + �t

2
)), (82)

b(2) = 3
b′(tn + �t

) + 1
b(1) + �t

Lh(b(1)), (83)

4 2 4 4
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b′′
h(tn + �t) = 1

3
b′(tn + �t

2
) + 2

3
b(2) + 2�t

3
Lh(b(2)) , (84)

where b′(t) and b′′(t) are as defined in (77) and (78), respectively.

5.3. Implicit vertical solve

The implicit vertical solve involves a half step, 1
2 �t , from the state at the end of the horizontal solve, b′′(tn + �t), to the 

end of the time level bn+1. Following [9] we begin by taking the logarithm of the equation of state (3) as

ln(�) = R

cv

(
ln(ρθ) + ln

(
R

p0

))
+ ln(cp). (85)

Differentiating both sides with respect to time over a half step via the chain rule, while recalling that the second and third 
terms on the right hand side are simply constants then gives

�n+1 − �′′
1
2 �t�′′ = R

cv

(ρθ)n+1 − (ρθ)′′
1
2 �t(ρθ)′′

. (86)

Substituting in the potential temperature equation (1c), we then express the evolution of the Exner pressure as

(ρθ)′′�n+1 = (ρθ)′′�′′ − �t R

2cv
�′′∇ · (ρuθ)n+1. (87)

Note the similarity between (87) and the internal energy evolution equation (14). The vertical dynamics may then be 
discretized in time (with the vorticity components omitted, as discussed in Section 4.3) as

un+1
⊥ + �t

4
∇⊥(un+1

⊥ )2 + �t

2
θ∇⊥�n+1 = u′′⊥ − �t

2
g∇⊥z (88)

ρn+1 + �t

2
∇⊥ · (ρu⊥)n+1 = ρ ′′ (89)

	n+1 + �t

2
∇⊥ · (u⊥	)n+1 = 	′′ (90)

	n�n+1 = 	′′�′′ − �t R

2cv
�′′∇⊥ · (u⊥	)n+1 (91)

We define the additional matrix operators MQ
	 , MQ

� and MU⊥
	 , for which

MQ
	h,i j :=

〈
εQi , 	hε

Q
j

〉
�

, MQ
�h,i j :=

〈
εQi , �hε

Q
j

〉
�

, MU⊥
	h,i j :=

〈
εU

⊥
i , 	hε

U⊥
j

〉
�

.

Dropping the n + 1 superscripts for variables at the end of the vertical half step (but keeping those for variables at time 
level ′′), the discrete form of (87) is then given as:

MQ
	′′ΠΠΠ = MQ

	′′ΠΠΠ′′ − �t R

2cv
MQ

�′′E
3,2
⊥ (MU⊥)−1MU⊥

	 u⊥, (92)

and the discrete form of (88) as:

MU⊥u⊥ + �t

4
(E3,2

⊥ )�TU⊥u⊥ + �t

2
SU⊥(MU⊥)−1(E3,2

⊥ )�MQΠΠΠ = MU⊥u′′⊥ − �tg

2
(E3,2

⊥ )�MQz. (93)

Substituting (92) into (93) gives

MU⊥u⊥ + �t

4
(E3,2

⊥ )�TU⊥u⊥ + �t

2
SU⊥(MU⊥)−1(E3,2

⊥ )�MQ

(
ΠΠΠ′′ − �t R

2cv
(MQ

	′′)−1MQ
�′′E

3,2
⊥ (MU⊥)−1MU⊥

	 u⊥

)
= MU⊥u′′⊥ − �tg

2
(E⊥3,2)�MQz. (94)

Finally, rearranging gives an expression for the vertical velocity at each fixed point Picard iteration as:[
MU⊥ + �t

4
(E3,2

⊥ )�TU⊥ − �t2 R

4cv
SU⊥(MU⊥)−1(E3,2

⊥ )�MQ(MQ
	′′)−1MQ

�′′E
3,2
⊥ (MU⊥)−1MU⊥

	

]
u⊥ =

MU⊥u′′⊥ − �t

2

(
g(E3,2

⊥ )�MQz + SU⊥(MU⊥)−1(E3,2
⊥ )�MQΠΠΠ′′

)
. (95)
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In order to incorporate the pressure gradient term into the left hand side in (95) so as to ensure the stable implicit solution 
of vertical motions, we have sacrificed the energetically consistent formulation of the vertical pressure gradient term as 
presented in (53a), (53b) and (66). As such we do not expect the vertical kinetic and internal exchanges to exactly balance, 
as we do for the horizontal explicit discretization. However we note that unlike the perturbation and operator splitting 
approaches to HEVI discretisations discussed above, our current approach leaves open the possibility of recovering the 
exact balance of kinetic and internal energy exchanges. We are actively exploring preconditioning strategies to address this 
problem. We also note that our implicit vertical solve may potentially dampen the fast vertical motions for which the time 
scales are not resolved, in comparison to sub-cycled vertically explicit formulations.

The Exner pressure at the current Picard iteration is then derived from (92), and the corresponding Picard iteration solves 
for the other variables are then given (omitting the horizontal terms) as

NU⊥θ = LU⊥,QΘΘΘ (96)

U⊥ = (MU⊥)−1NU⊥u⊥ (97)

ρ = ρ ′′ − �t

2
E3,2

⊥ U⊥ (98)

ΘΘΘ= �′′ − �t

2
E3,2

⊥ (MU⊥)−1SU⊥U⊥. (99)

5.4. Dissipative terms

In order to stabilise the model we also include various dissipative terms. These include a biharmonic viscosity on both 
the horizontal momentum and temperature equations [5,36] with a value of 0.072�x3.2, where �x is the average spacing 
between GLL nodes. A Rayleigh friction term with a coefficient of 0.2 is also applied to the top layer of the vertical mo-
mentum equation, as is often used in atmospheric models to suppress orographically forced gravity waves [37]. This term 
is added to (53a) as 

∑dU⊥−1
i=0 0.2 

〈
εU⊥

j δ j,l , δi,kε
U⊥
i

〉
�

ui,⊥ , where k, l are degrees of freedom for the trial and test functions 
in the top layer only, and δi,k is the standard delta function. While this Rayleigh friction term is not strictly necessary for 
the stability of the simulation presented here, it greatly reduces the noise in the energetic profiles as the model adjusts to 
a state of hydrostatic balance from its initial conditions. No viscosity is required to stabilize the vertical solution, perhaps 
because this is only second order accurate, so the internal dissipation of this low order discretization is sufficient to prevent 
nonlinear instabilities.

We emphasise that these dissipative terms will necessarily remove energy from the system, and in the case of the 
horizontal viscous terms are necessary to stabilise the model by arresting the nonlinear cascades at the grid scale. While 
upwinding terms may be used instead of viscosity as a means of suppressing grid scale oscillations without dissipating 
energy, by systematically adding these to the skew-symmetric formulation [38], here we limit ourselves to a consideration 
only of the internal energetic processes, and not the external forcings.

6. Results

6.1. Baroclinic instability

We validate the model using a dry baroclinic instability test case [39] with the shallow atmosphere approximation. The 
appeal of this test case is that the initial condition is specified for a z−level vertical coordinate, whereas other such test 
cases that are defined on pressure level vertical coordinates require the solution of a nonlinear problem in order to compute 
the corresponding z−level configuration. The initial state is one of geostrophic horizontal and hydrostatic vertical balance, 
overlaid with a small, O(1 m/s), perturbation to the zonal and meridional velocity components.

The model was run with 24 × 24 elements of degree p = 3 on each face of the cubed sphere (and linear elements in 
the vertical), for an averaged resolution of �x ≈ 128 km and 30 vertical levels on 96 processors (42 = 16 per face of the 
cubed sphere) with a time step of �t = 120 s. While the vertical dynamics are all solved implicitly and so do not limit the 
time step size, the explicit horizontal dynamics present both diffusive and advective CFL restrictions due to the biharmonic 
viscosity and sound waves respectively.

Figs. 2 and 3 show the zonal averages of density ρ , Exner pressure �, potential temperature θ and zonal velocity u
at day 10 (solid lines), as well as the differences between the final and initial states. These profiles show little difference 
between the initial and final states, with the exception of the zonal velocity, which exhibits a small kink near the bottom 
boundary where the baroclinic instability occurs, demonstrating that the leading order geostrophic and hydrostatic balances 
in the horizontal and vertical are well satisfied. The potential temperature (Fig. 3), is approximately 15 K cooler in the top 
layer at day 10, which is outside the range of the colour bar. This is due to the hydrostatic adjustment of the mean state, 
as discussed below.

Figs. 4 and 5 show the evolution of the kinetic (horizontal and vertical), potential and internal energy with time, and 
the associated exchanges. These are shown on both logarithmic scales for their normalised absolute difference from initial 
value (Fig. 4), and as a direct difference between their current and initial value (Fig. 5).
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Fig. 2. Zonal averages of density, ρh in kg · m−3 (left) and Exner pressure, �h in m2 s−2 K−1 (right) at day 10. Contours represent absolute values, and 
shades represent differences from initial values. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Zonal averages of potential temperature, θh in K (left) and zonal velocity, uh in m · s−1 (right) at day 10. Contours represent absolute values, and 
shades represent differences from initial values.

Fig. 4. Left: normalised difference in energy with respect to initial values. Right: vertical kinetic energy.

The growth in the baroclinic instability is evident in the increase in kinetic energy, and the reduction in both potential 
and internal energy as isopycnals flatten in the region of the instability. Note that the total amounts of potential and internal 
energy are approximately 3.6 × 1023 and 9.2 × 1023 kg · m2s−2 respectively, and so are several orders of magnitude greater 
than the amounts of horizontal and vertical kinetic energy (approximately 4.0 ×1020 and 2.5 ×1013 kg ·m2s−2 respectively). 
As such the flattening of the density contours from which the baroclinic instability draws energy are barely evident in Fig. 2.

Fig. 5 also shows the normalised sum of the globally integrated kinetic to potential (69) and potential to kinetic (70) en-
ergy exchanges, as well as the (horizontal) globally integrated kinetic to internal (69) and internal to kinetic (71) exchanges. 
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Fig. 5. Left: difference in energy with respect to initial values. Right: normalised difference in (K )inetic to (P )otential energy, | ∫ K to P d� +∫
P to K d�|/| ∫ K to P d�|, and horizontal (K )inetic to (I)nternal energy, | ∫ K to Id� + ∫

I to K d�|/| ∫ K to Id�|.

Fig. 6. Bottom level pressure, ph (in hPa) day 8 (left) and 10 (right).

The kinetic to potential and potential to kinetic exchanges balance to machine precision, owing to the exact skew-symmetry 
of these operators, as shown in (66). The kinetic to internal exchanges balance only to approximately O(10−6), and are 
sometimes out by a factor of O(10−3). This is due to the fact that both terms involve the inverse of a H(div, �) mass 
matrix, the action of which is approximated via an iterative Krylov method. We therefore anticipate pointwise errors in 
these exchanges, which may be compounded by the fact that these inverses are approximated twice, once to determine 
the Exner pressure gradient (51a), and a second time to determine the density weighted potential temperature flux (51c). 
Nevertheless, these errors exhibit no systematic drift throughout the simulation. We do not show the vertical kinetic to 
internal balance errors, as our vertical implicit solve does not satisfy this balance.

The observation that potential energy is greater than its initial value for most of the simulation, while internal energy is 
smaller, as shown in Figs. 4 and 5, is explained by the fact that the initial condition is not precisely in hydrostatic balance. 
As such the initial adjustment process leads to a slight rise in the fluid, resulting in an increase in potential energy, and a 
corresponding reduction in pressure, leading to a reduction of internal energy via the equation of state. These changes are 
of O(10−4) compared to the total amounts of potential and internal energy in the system. The high frequency oscillation 
in the internal and potential energies observed over the first 24 hours of the simulation during this adjustment process is 
reduced by the application of the Rayleigh friction to the top layer of the vertical momentum equation.

We present the bottom level pressure p and temperature, T , and the vertical component of the relative vorticity, ω, at 
z ≈ 1.5 km at days 8 and 10 in Figs. 6, 7 and 8, as well as a meridional cross section of the pressure perturbation at 50◦N in 
Fig. 9. In the cases of the pressure and temperature, these are reconstructed from the model variables as p = p0(�/cp)cp/R

and T = θ�/cp . The pressure perturbation in Fig. 9 is derived by removing the average pressure at the corresponding 
vertical level at 50◦S. These results compare well with the previously published test case results [39] in both shape and 
magnitude, and clearly show the signal of the baroclinic instability.

For completeness we also show the results at days 8 and 10 for the original model variables of bottom level Exner 
pressure and potential temperature and relative vertical vorticity at z ≈ 1.5 km in Figs. 10, 11 and 12 respectively. These are 
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Fig. 7. Temperature, Th (in K) at z ≈ 1.5 km, day 8 (left) and 10 (right).

Fig. 8. Vertical component of the relative vorticity, ωh (in s−1) at z ≈ 1.5 km, day 8 (left) and 10 (right).

Fig. 9. Vertical cross section of the pressure perturbation, ph − p̄h (in hPa) at 50◦N, day 8 (left) and day 10 (right).

presented for the northern hemisphere only, looking down from the north pole. These results are perhaps slightly sharper 
than the reconstructed temperature and pressure fields since they are interpolated directly from the degrees of freedom.

6.2. Non-hydrostatic gravity wave

The baroclinic instability test case detailed above provides an excellent means of validating both the leading order 
balance relations and the horizontal and vertical coupling required to correctly simulate a secondary nonlinear three-
dimensional instability. However the limitation of this test case is that it is configured for spatial resolutions at which 
the non-hydrostatic dynamics are negligible. As such we also test the behaviour of the model for the propagation of a 
non-hydrostatic gravity wave driven by a potential temperature perturbation on a planet with a reduced radius 125 times 
smaller than that of the earth. This test was originally proposed as part of the 2012 DCMIP workshop, for which numerous 
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Fig. 10. Bottom level Exner pressure, �h (in m2 s−2 K−1) day 8 (left) and 10 (right).

Fig. 11. Potential temperature, θh (in K) at z ≈ 1.5 km, day 8 (left) and 10 (right).

Fig. 12. Vertical component of the relative vorticity, ωh (in s−1) at z ≈ 1.5 km, day 8 (left) and 10 (right). Results are the same as for Fig. 8, but with colour
bars set to exact range of the data.

hydrostatic and non-hydrostatic dynamical cores presented results [40]. Specific details of the initial configuration can be 
found within the DCMIP test case document on the web site.

As for the baroclinic instability test, we run the simulation with a resolution of 24 × 24 elements of degree p = 3 in 
each cubed sphere panel. We use 16 evenly spaced vertical levels over a total height of 10,000.0 m, and a time step of 
�t = 0.5 s for a total simulation time of 3600 s. No Rayleigh damping or viscosity is applied in the vertical, however we 
rescale the horizontal biharmonic viscosity by a factor of 2.0 for both the momentum and temperature equations for a value 
of 0.144�x3.2. Since the horizontal and vertical scales are of equal order in this configuration, we have also included the 
additional vorticity term in (53a) and the associated diagnostic term (53e), both of which were omitted from the baroclinic 
test case, where the vertical scales were O(10−3) with respect to the horizontal scales.
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Fig. 13. Longitude-height equatorial (φ = 0◦) cross section of the potential temperature perturbation, θ ′(λ, 0, z) = θ(λ, 0, z) − θ̄ (z) at times t = 30 minutes 
(left) and t = 60 minutes (right).

Fig. 14. Left: mass conservation error using second and third order Runge-Kutta integration in the horizontal. Right: power associated with the vertical and 
horizontal energetic exchanges, (in kg · m2s−3).

This test case is especially challenging for our higher order spectral element formulation, firstly since we have not applied 
any sort of upwinding or monotonicity preservation method to either the continuity or temperature equation, and secondly 
because unlike other models we formulate our energy equation as a flux form equation for the density weighted potential 
temperature, 	 = ρθ , from which the potential temperature, θ , is then diagnosed. This is in contrast to a material form of 
the potential temperature advection, in which upwinding is directly applied in the flux reconstruction [12]. For this reason 
we configure our model with slightly higher resolution than that specified [40].

Fig. 13 shows the longitude-height equatorial (φ = 0◦) cross section of the potential temperature perturbation, 
θ ′(λ, 0, z) = θ(λ, 0, z) − θ̄ (z), where θ̄ (z) is the mean potential temperature at a given height, after 30 minutes and 1 hour. 
While the structure and evolution of the perturbation qualitatively match the results presented for other non-hydrostatic 
models, the absence of a monotone upwinded advection scheme means that our results are slightly more oscillatory than 
those of other models. Moreover our results also show the ejection of a small hot bubble which rises to the top of the 
domain, which is also most likely an artefact of our non-monotone scheme. In future work we will investigate energetically 
consistent methods for stabilising the advective terms, as has previously been addressed for the shallow water equations 
[38], and hence recover less oscillatory solutions at non-hydrostatic scales. Fortunately the energetically consistent flux form 
of the potential temperature equation presented here (48c), (49c), matches with the formulation necessary to ensure that 
tracer concentration fluxes are consistent with respect to the mass flux in monotone schemes [41].

We also use this test to study the conservation properties of the model, as shown in Fig. 14. The third order Runge-Kutta 
scheme used for horizontal advection, as given in (82)-(84) involves a linear extrapolation from previous to current states. 
It would appear that this convex operation leads to a small loss of mass that grows linearly with time. If we replace the 
third order scheme with a second order scheme of the form b(1) = b′ + �tLh(bn); b′′ = b′ + �t(Lh(bn) + Lh(b(1)))/2, which 
does not involve a linear extrapolation, then exact energy conservation is recovered.

Fig. 14 also shows the power (in units of kg · m2s−3) associated with the horizontal and vertical energetic exchanges, 
and the sum of vertical exchanges. Since the vertical gravity wave oscillates at a high frequency compared to the horizontal 
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dynamics, we only show these results for the first 12 minutes of the simulation. The gravity wave is expressed through 
the periodic exchange of potential to internal energy, via vertical motions. The power associated with these exchanges is 
of O(1013 kg · m2s−3), which is approximately O(104) times as large as both the sum of these exchanges, as well as the 
horizontal kinetic to internal exchanges, which are observed to occur on a longer time scale than the gravity wave.

7. Conclusions

A model of the rotating compressible Euler equations on the cubed sphere using the mixed mimetic spectral element 
method is presented. The model uses a Strang carryover directional splitting scheme with an implicit Picard solver for the 
vertical dynamics in order to negate the CFL condition of the vertical acoustic and gravity waves. The discontinuities in 
the discrete function spaces are exploited so as to solve for each horizontal layer and each vertical element independently 
in order to avoid the need to invert a global 3D mass matrix. The forcing and flux terms are constructed so as to take 
advantage of the adjoint relations between the discrete gradient and divergence operators and balance the exchanges of 
kinetic, potential and internal energy. The exception to this is the construction of the vertical pressure gradient operator, 
which violates this principal in order to allow for a stable implicit solve of the vertical dynamics, with the consequence that 
the vertical kinetic to internal energy exchanges do not exactly balance.

In future work we will explore fully implicit formulations so as to avoid the horizontal vertical splitting and restore the 
balance of vertical kinetic internal energy exchanges to the discrete system. We will also explore energetically consistent 
flux reconstructions so as to recover less oscillatory solutions at non-hydrostatic scales.

We also intend to optimise the parallel formulation of the code as part of additional future work. For the baroclinic 
instability simulation presented here at a resolution of 128 km on 30 vertical levels over 96 processors on a set of Dell 
PowerEdge M630 servers, the model only runs approximately 4.5 times faster than real time. By re-formulating the parallel 
decomposition of the different function spaces on the cubed sphere we hope to better align these decompositions with the 
native PETSc decompositions of vectors and matrices so as to reduce parallel communication.
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Appendix A. Incident matrix

A.1. Discrete gradient (2D)

The continuous equation

∇φ = u , (A.1)

can be represented on the mesh depicted on Fig. A.15 by the following algebraic system of equations

E1,0φ = u , (A.2)

where the incidence matrix E1,0 is given by

E1,0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1

−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.3)
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Fig. A.15. Mesh with orientations. All nodes oriented as positive and all edges positive in the direction of the arrows.

We note that we can easily split into a vertical component (z-direction) and a parallel component (x-direction). Therefore 
we can rewrite (A.1) as

∇φ = ∇‖φ + ∇⊥φ = u‖ + u⊥ . (A.4)

In the same way, we can rewrite the discrete counterpart of this equation, (A.2), as⎡
⎣ E1,0

‖
E1,0

⊥

⎤
⎦φ =

[
u‖
u⊥

]
, (A.5)

where

E1,0
‖ =

⎡
⎢⎢⎢⎢⎢⎣

−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , E1,0

⊥ =

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦ ,

(A.6)

and

E1,0 =
⎡
⎣ E1,0

‖
E1,0

⊥

⎤
⎦ . (A.7)

A.2. Discrete curl (2D)

The continuous equation

∇ × u = ω , (A.8)

can be represented on the mesh depicted on Fig. A.16 by the following system of equations

E2,1u = w , (A.9)

where the incidence matrix E2,1 is given by

E2,1 =

⎡
⎢⎢⎣

1 −1 0 0 0 0 −1 0 1 0 0 0
0 1 −1 0 0 0 0 −1 0 1 0 0
0 0 0 1 −1 0 0 0 −1 0 1 0
0 0 0 0 1 −1 0 0 0 −1 0 1

⎤
⎥⎥⎦ . (A.10)

We note that, as done before, it is possible to split the curl operator into a vertical component (z-direction) and a parallel 
component (x-direction). Therefore we can rewrite (A.8) as
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Fig. A.16. Mesh with orientations. All edges positive in the direction of the arrows and surfaces positive in the direction of the rotations indicated.

ω =
ω‖,‖︷ ︸︸ ︷

∇‖ × u‖ +
ω‖,⊥︷ ︸︸ ︷

∇‖ × u⊥︸ ︷︷ ︸
ω‖

+∇⊥ × u‖︸ ︷︷ ︸
ω⊥

. (A.11)

Similarly, we can rewrite the discrete counterpart of this equation, (A.9), as⎡
⎣ E2,1

‖,‖ E2,1
‖,⊥

E2,1
⊥ 0

⎤
⎦[

u‖
u⊥

]
=

[
w‖
w⊥

]
. (A.12)

Note that since the mesh under consideration, Fig. A.16, is a two dimensional mesh, ω will only have a component in the 
y-direction. For this reason, E2,1

⊥ = 0, and for compactness we suppress this term (for three dimensional meshes this term 
must be included)[

E2,1
‖,‖ E2,1

‖,⊥
][ u‖

u⊥

]
= w‖ , (A.13)

where

E2,1
‖,‖ =

⎡
⎢⎢⎣

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

⎤
⎥⎥⎦ , E2,1

‖,⊥ =

⎡
⎢⎢⎣

−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1

⎤
⎥⎥⎦ , (A.14)

and

E2,1 =
[

E2,1
‖,‖ E2,1

‖,⊥
]

. (A.15)

A.3. Discrete divergence (2D)

For the divergence operator, the continuous equation

∇ · u = σ , (A.16)

can be expressed on the mesh depicted on Fig. A.17 by the following system of equations

E3,2u = σ , (A.17)

where the incidence matrix is given by

E3,2 =

⎡
⎢⎢⎣

−1 0 1 0 0 0 −1 1 0 0 0 0
0 −1 0 1 0 0 0 −1 1 0 0 0
0 0 −1 0 1 0 0 0 0 −1 1 0
0 0 0 −1 0 1 0 0 0 0 −1 1

⎤
⎥⎥⎦ . (A.18)

As discussed previously, it is possible to split the divergence operator into a vertical component (z-direction) and a parallel 
component (x-direction). Therefore we can rewrite (A.16) as

∇ · u‖ + ∇ · u⊥ = σ . (A.19)
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Fig. A.17. Mesh with orientations. All fluxes positive in the direction of the arrows and volumes positive for sources (net outflux).

In the same fashion, we can rewrite the discrete version of this equation, (A.17), as[
E3,2

‖ E3,2
⊥

][ u‖
u⊥

]
= σ , (A.20)

where

E3,2
‖ =

⎡
⎢⎢⎣

−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1

⎤
⎥⎥⎦ , E3,2

⊥ =

⎡
⎢⎢⎣

−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

⎤
⎥⎥⎦ , (A.21)

and

E3,2 =
[

E3,2
‖ E3,2

⊥
]

. (A.22)
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