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Abstract

Themaritime sector faces mounting pressure to decarbonise in alignment with global climate objectives
and regional frameworks such as the EU Fit-for-55 package and the IMO net-zero targets. For fleet
operators such as the Port of Rotterdam, which aims to reduce Scope 1 and 2 emissions by 90% in 2030
and sail emissions-free from 2035, this involves navigating complex trade-offs between sustainability,
cost-efficiency, and operational readiness. This thesis investigates how the PoR can optimise its fleet
renewal strategy to minimise total polluting emissions and transition costs while maintaining functional
capacity.

To address this challenge, a hybrid decision-support framework was developed, combining multi -
objective optimisation with multi-criteria decision analysis. The optimisation model produced Pareto-
optimal strategies, using the ε-constraint method, that balance lifecycle CO2 emissions, total cost of
ownership, and local air pollution. Multi-criteria decision analysis, using TOPSIS, enabled inclusion of
stakeholder preferences in the classification of different transition schedules under varying assumptions
about fuel types, material choice, and production location. Scenario analyses were performed to as-
sess the robustness of the combined framework against various economic outlooks and environmental
choices, such as fuel type, hull material, and production location.

The results show that lifecycle emissions are largely shaped by design decisions such as material and
energy source, whereas local pollutants are very sensitive to the replacement schedule. The total cost
of ownership shows limited sensitivity to scheduling (1–2% variation), while battery production and
dismantling emerge as the dominant drivers of greenhouse gas emissions and financial impact. The
inclusion of CO2 emission depreciation significantly altered the schedules of optimal results, raising
ethical and policy considerations. Certain vessel classes demonstrated robust scheduling behaviour,
in various strategic choices and economic scenarios, identifying them as low regret alternatives. Other
classes were more sensitive to changes in the strategic choices or stakeholder preferences.

The framework successfully supported trade-off navigation, revealing how rankings changed under
varying stakeholder preferences and scenario assumptions. However, several simplifications remain.
The decoupled class structure limited the ability to model shared infrastructure and battery packs. The
cost structures did not reflect strategic procurement differences, and the lifecycle assessment focused
solely on CO2-equivalent emissions, excluding other impact categories such as toxicity or resource de-
pletion. These limitations suggest that future extensions should integrate infrastructure co-optimisation,
procurement variation, and broader environmental metrics to fully capture the system-level implications
of fleet renewal.

This research contributes a replicable, stakeholder-aligned methodology for sustainable fleet transition
planning. It provides the Port of Rotterdam with a transparent and data-driven tool to align its environ-
mental commitments with long-term operational and financial viability, providing critical insights for fleet
operators pursuing low-emission transitions.
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1
Introduction

The maritime industry faces increasing pressure to reduce greenhouse gas (GHG) emissions in accor-
dance with international climate objectives and regional policy instruments. This is driving fleet oper-
ators to transition toward more sustainable fleets. One such operator is the Port of Rotterdam (PoR),
which must navigate complex trade-offs between decarbonisation, local pollution (LP) reduction, cost
efficiency, and operational continuity.

This thesis investigates how fleet operators can gain strategic insight intomultidimensional fleet renewal
through a case study conducted at the PoR. This chapter introduces the broader context of the problem,
outlines the research objective and questions, defines the scope, and provides an overview of the thesis
structure.

1.1. Background and motivation
The impact of GHG emissions on climate change is undeniable (Stocker et al., 2014), and the devas-
tating consequences of global warming are becoming increasingly evident (Intergovernmental Panel
on Climate Change, 2022). This drives the urgency to reduce polluting emissions globally, in all indus-
tries. In 2015, the United Nations (UN) formulated the Sustainable Development Goals (SDGs), as
a blueprint for a peaceful and prosperous future (United Nations, 2015). Goal 13 aims to take action
against climate change and mitigate its impact. To do so, 107 countries have adopted net zero pledges
for their GHG emissions and more than 9000 companies are part of The Race to Zero, to achieve an
emission reduction of more than 50% by 2030 (United Nations, 2024). Furthermore, different regula-
tory bodies have developed strategies, such as the International Maritime Organization (IMO), which
aims to reduce CO2 emissions by 40% in 2030, compared to 2008 (International Maritime Organization,
2023). In addition, it has approved net zero regulations for global shipping, pricing emissions above a
certain threshold, of which the proceeds are used to support innovation on low-emission shipping (Inter-
national Maritime Organization, 2025). The European Union (EU) strives to be the first climate-neutral
continent, for which it has developed The Green Deal (European Commision, 2019), implemented in
legislation with Fit for 55 (European Commision, 2023).

To be able to reach these emission reduction goals, many changes are needed within society. The
distribution of GHG emissions in the EU showed that in 2019, 25.8% of the CO2 emissions were emitted
by the transport sector, which predominantly uses fossil fuels as an energy carrier (Eurostat, 2019). For
the maritime sector, an investigation into the configuration of the power plant onboard ships worldwide
by Eirik Ovrum et al. (2024) showed that 98% were still sailing on conventional fuels in 2024. With
the average age of the international fleet being 12.6 years in 2023 (Clarksons, 2024), a large part
of the current fleet will either need to be replaced before they reach their technical end-of-life (EOL),
or undergo an expensive refit to be able to achieve the targeted emission reductions on time. The
conventional drivetrain systems will need to be replaced by systems using non-conventional energy
carriers or include emission capturing technologies to fulfil the pledged reductions. These technologies
remain relatively unproven and include additional technical and financial challenges, leading to a difficult
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situation where fleet owners must navigate the trade-off between fulfilling sustainability pledges and
ensuring that the fleet can operate economically viable. In this transition, battery-electric vessels are
gaining increasing interest, resulting in a growing need for shore power (SP) infrastructure to enable
regular battery charging. In operational contexts where continuous service is required and charging
time must be minimised, battery swapping modules (BSMs) offer a practical solution by allowing rapid
replacement of depleted battery packs.

Beyond emissions produced during vessel operation, a significant portion of the environmental impact
of the maritime sector is derived from the production and salvaging of vessels. These upstream and
downstream phases can contribute substantially to the total environmental footprint of a vessel. Mate-
rial choices play a key role in this, as the production of metals such as steel and aluminium is energy
intensive. There is growing interest in the use of scrap steel and recycled aluminium, reflecting broader
efforts to reduce embedded emissions within industrial supply chains. This extended lifecycle perspec-
tive aligns with Goal 12 of the SDGs, which promotes sustainable consumption and production patterns
(United Nations, 2015). Moreover, technological innovation in manufacturing and recycling processes
is expected to reduce the carbon intensity of materials over time. This raises the question whether all
lifecycle emissions should be treated equally across time horizons or whether future emissions can be
discounted in light of expected efficiency improvements.

In addition to the global environmental impact, there is also a significant local impact, with shipping
contributing LP in the form of NOx and particulate matter (PM) emissions. These pollutants are directly
associated with adverse health effects (Aardenne et al., 2013; World Health Organization, 2016). Re-
ducing local ship air pollution aligns with Goal 3 of the SDGs, ensuring healthy lives and strengthening
well-being, while at the same time promoting sustainable cities and communities (Goal 11), highlighting
the multifaceted nature and importance of transitioning to a sustainable fleet.

To support fleet owners in the decision making process for fleet renewal, the modelling of ideal fleet
compositions has been an area of research for more than 50 years (Pantuso et al., 2014). Within the
modelling of maritime fleets, two types of problem are distinguished. The Maritime Fleet Size and Mix
Problem (MFSMP) consists of problems focused on determining the optimal fleet composition for a
single time step. It typically involves strategic decisions related to the optimal fleet composition and the
optimal deployment of individual vessels, in a static operational environment for a single time step. The
Maritime Fleet Renewal Problem (MFRP) extends the MFSMP by introducing a multi-period planning
horizon, where the fleet evolves dynamically over time in response to market changes, technological
advancements, or policy changes. Instead of optimising the composition of the fleet for a single period,
MFRP models consider the timing of acquisitions and retirements to maintain long-term profitability,
while also fulfilling demand in the multiple single time steps.

The transition of the PoR fleet falls under the MFRP. The PoR wants to become more sustainable and
has increased its efforts to reduce polluting emissions. Specifically, the company aims to reduce its
emissions in scope 1 and 2 by 90% in 2030 and sail emissions-free in 2035, compared to the emissions
of 2019. Approximately 70% of the emissions in scope 1 that year were due to the fleet of the company
(Port of Rotterdam, 2023). According to regional emissions data, PoR-operated vessels are among
the 500 most polluting ships operating within city borders (Scholten et al., 2022). The fleet consists of
multiple classes: Patrol vessels (PVs), small patrol vessels (sPVs), incident response vessels (IRVs),
surveyors (SVs), rigid hull inflatable boats (RHIBs) and a presentation yacht called the Nieuwe Maze
(NM), which will be replaced by a new yacht called the Groene Maze (GM), these two yachts fall under
the NM class (VesselFinder, 2024). The PVs and IRVs are not completely homogeneous but consist
of multiple series of vessels within the two classes. To be able to achieve the mentioned emission
reduction goals in 2030 and 2035, a renewal programmewas considered necessary for the current fleet.
This programme was set up by the PoR and is currently working on determining suitable replacement
vessels. By transitioning to a cleaner fleet, the PoR is actively working on SDGs 3, 11, 12 and 13.

To ensure that the fleet renewal programme is effective and aligned with the sustainability and opera-
tional goals of the company in a cost-effective manner, a deeper understanding of the key factors that
influence the decision-making process of the fleet renewal problem is required. This includes identifying
the relevant operational factors and evaluating the economic and environmental impact that influence
the timing of the fleet renewal process. These challenges frame the objective of this research.
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1.2. Objective
The objective of this research is to generate insight into how fleet operators, specifically the PoR, can
strategically schedule the replacement of their vessels to reduce both the emissions of GHG and LP,
while minimising the transition cost and maintaining operational capabilities.

To meet this objective, this study explores current MFRP practices, as well as multi-objective optimisa-
tion (MOO) and multi-criteria decision analysis (MCDA) methodologies, and sets up a decision support
framework to generate the insight needed for fleet operators.

1.3. Research questions
To achieve the objective, the following main research question has been defined:

How can the Port of Rotterdam optimise the fleet renewal process to minimise the total polluting emis-
sions and transition cost, while ensuring that operational capacity is maintained?

Themain research question can be divided into four keywords: optimise, emissions, costs, and process.
For each of these keywords, a sub-question has been defined.

For process, the following sub-question has been defined:

What are the key decision factors and fleet operator’s interests that influence the timing of vessel re-
placement?

This explores the main aspects of the fleet renewal decision-making process, identified in part through
the literature review and in part by interpreting the results of various scenarios that are simulated within
the decision support framework.

For costs, the following research question has been defined:

What is the total cost of ownership (TCO) of the vessels in the fleet?

This covers capital expenditure (CAPEX) and operational expenditure (OPEX) over the lifetime of the
vessel. Costs are determined through PoR stakeholder interviews and included within the framework
based on common practices identified in the literature review. This results in the evaluation of the
economic impact of fleet transition being included within the framework.

For emissions, the following research question has been defined:

What is the life cycle impact (LCI) of the vessels on the environment?

This considers the environmental impact of fleet and infrastructure emissions, including global CO2-
equivalent emissions across all lifecycle phases and local pollutants such as NOx and PM during opera-
tion. The most suitable methods identified in literature will be incorporated for the emission assessment
in the framework.

For the word optimise, the following question has been defined:

How can the economic, operational and sustainability factors be combined in a decision support frame-
work?

This addresses the integration of multiple decision criteria into a suitable structure for the PoR case
study. Existing fleet renewal modelling approaches are reviewed to select and adapt an appropriate
structure.

By answering these sub-questions, the framework integrates relevant aspects of fleet renewal and is
applied to simulate alternative economic and strategic environmental scenarios. Strategic pathways
reflect different assumptions about fuel types, material use, and production practices, while economic
scenarios vary key financial parameters. Together, these explore the sensitivity and robustness of fleet
renewal strategies under varying long-term conditions.
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1.4. Scope
This study focusses on providing strategic decision support for the fleet renewal programme at the PoR.
Its primary objective is to generate insight into the driving factors of the fleet renewal process under
multiple objectives, including minimising lifecycle emissions, ensuring cost efficiency, and maintaining
operational continuity. The analysis excludes detailed vessel design, as the focus is on operational
replacement rather than technical development. Workforce planning is also excluded, as it is assumed
that crew size and composition remain constant across the old and new fleets. Replacement vessels
are assumed to fall within existing operational class categories and serve functions equivalent to those
of their predecessors.

The analysis adopts a strategic horizon of 25 years, corresponding to the expected life expectancy of
the vessel, beginning in 2026. Within this horizon, operational ageing and scheduled replacements are
considered. Vessel usage intensity, degradation rates, and unexpected failure events are not modelled.
These exclusions are intended to maintain a high-level strategic focus and avoid introducing short-term
operational variability that is outside the scope of this research.

The configuration of the new fleet is based on the choices made by the PoR fleet renewal team. It
includes a fixed number of vessels and a predetermined number of charging locations. In accordance
with these choices, the new vessels are assumed to be battery-electric, with the exception of the RHIB,
which is assumed to sail on hydrotreated vegetable oil (HVO), due to range and speed restrictions. The
IRV, PV, and NM vessel classes are assumed to operate using BSMs, to enable continuous service.
The new vessels for the sPV and SV classes are assumed to charge overnight using SP infrastructure.
These infrastructural and technological choices were made by the PoR and are treated as fixed inputs
in the analysis. CAPEX and OPEX are included for the vessels, the batteries, and the supporting
infrastructure. Fuel costs are considered separately from general OPEX to distinguish between actively
operating vessels and those in reserve. The design and construction times for the vessels, battery
systems, and infrastructure are excluded to maintain a narrow focus on strategic replacement decisions.

The environmental analysis is based on a life-cycle assessment (LCA) perspective. CO2-equivalent
emissions from the processing, production and dismantling stages of batteries, vessels, and infrastruc-
ture are included. The emissions resulting from the production of BSM cranes are taken into account,
while the emissions associated with the preparatory work at the infrastructure sites are excluded. During
the operational phase, NOx and PM emissions are also considered to capture local air quality impacts.
Other environmental impact categories such as toxicity, resource depletion, and noise pollution are
excluded due to limited availability of reliable data and to avoid excessive uncertainty that could hinder
the interpretation of the results. The environmental inputs assume the use of both new and recycled
steel and aluminium, reflecting current industrial production processes. However, the broader concept
of circularity, defined as systematic reuse, remanufacturing, or closed-loop material tracking, is not
explicitly modelled. Environmental assessment is limited to emission-based indicators and does not
account for resource recovery or EOL reuse scenarios.

To evaluate the implications of different strategic decisions, a series of scenario simulations is con-
ducted. These include five strategic pathways, each representing different assumptions about material
choices, fuel types, and production locations. Within each pathway, the CAPEX and OPEX values
are kept constant to isolate the effects of strategic environmental decisions. One pathway also fig-
ures as the standard economic scenario, and two other economic scenarios are defined by varying the
costs, the inflation, and depreciation rates, while the same strategic configuration is maintained. Fi-
nally, a separate scenario includes the depreciation of CO2 emissions during the cradle-to-gate (CTG)
and grave-to-cradle (GTC) phases. This scenario captures the effects of technological advancement
and grid decarbonisation on the processing, production, and dismantling stages by discounting future
CTG and GTC emissions over time. All scenarios are evaluated using the proposed decision support
framework to determine their influence on the optimal fleet replacement strategy.
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1.5. Thesis outline
The thesis is structured into two main parts. Part I consists of the review of the existing literature,
to establish the conceptual and methodological basis for the decision support framework. First, the
methodology of the literature review is discussed, as well as the identified literature gaps and a de-
tailed description of the focus area of the performed literature review in chapter 2. In chapter 3 the
relevant factors of the fleet renewal problem in current studies are discussed in depth, divided into the
operational aspect of fleet renewal, the sustainability aspect, and the economic aspect, to support an-
swering the first three sub-questions. In chapter 4 different fleet renewal modelling methodologies and
decision support frameworks of current MFRP research are explored, to support answering the fourth
sub-question and determine a suitable framework for the case study at the PoR. In conclusion Part I,
chapter 5 describes the proposed framework and how the various aspects of the MFRP are integrated.
This sets the foundation for the implementation described in the next part.

Part II, details the architecture of the decision support framework in chapter 6. The input parameters
of the framework are established in chapter 7. The results of the application of the framework for the
case study at the PoR are provided in chapter 8. Chapter 9 interprets the results and addresses the
sub-questions, along with the framework’s limitations and recommendations for future studies. The
thesis concludes by answering the main research question in chapter 10.



Part I

Literature review
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2
Literature review methodology

This chapter outlines the methodology used to conduct a systematic and comprehensive review of
existing research on fleet renewal. The objective is to identify and classify relevant studies that address
the various dimensions of the MFRP, as well as the modelling methodologies used to support decision
making. The chapter explains the structured approach adopted to collect and analyse the literature,
highlights the depth and focus of existing research, and identifies the research gaps this thesis aims to
address.

The literature collection and screening strategy is presented in section 2.1, followed by the classifica-
tion of studies and the identification of research gaps in section 2.2. The structure of the subsequent
literature review chapters is described in section 2.3. The chapter concludes with a brief summary in
section 2.4.

2.1. Approach
SCOPUS was selected as the primary database for this literature review due to its extensive repository
of scientific publications. Known for its comprehensive inclusion of peer-reviewed journals, conference
proceedings, and books, SCOPUS serves as an excellent resource for collecting a diverse array of
scientific research on fleet renewal. Its sophisticated search functionalities facilitated a comprehensive
and efficient search (TU Delft, n.d.). Although Web of Science and Google Scholar were considered,
they were excluded because of a significant overlap with SCOPUS. To find relevant studies that are
not available on SCOPUS, a backward check was performed on the articles that were deemed useful
from SCOPUS.

Seven distinct queries were formulated, each targeting a specific aspect of the MFRP. Query A focused
on modelling and decision-making processes. Query B addressed economic considerations. Query
C captured stakeholder-related and non-economic factors. Queries D and E aimed to identify studies
in which operational capacity was required to be maintained during the renewal process. Query F
addressed maintenance considerations, while Query G incorporated the sustainability dimension.

The term fleet replacement was used as a synonym for fleet renewal in all queries. Furthermore, for
Query A, decision-making was used as a synonym for decision analysis.

The SCOPUS queries are summarised in Table 2.1.
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Query Search term

A ”fleet renewal” AND multi-objective OR multi-criteria OR ”decision analysis”
B ”fleet renewal” AND economic* OR cost*
C ”fleet renewal” AND stakeholder* OR factor*
D ”fleet renewal” AND availability
E ”fleet renewal” AND operational AND capacity OR requirement
F ”fleet renewal” AND maintenance
G ”fleet renewal” AND emission*

Table 2.1: Used search terms in SCOPUS.

The resulting papers from the queries entered into SCOPUS were screened in three steps. First, du-
plicate results were removed from the total results of subsequent queries. This was followed by the
initial screening. In the initial screening, the titles and abstracts of the articles were reviewed to exclude
non-relevant studies. Articles that were not focused on fleet renewal or were not scientific in nature
were removed at this stage.

Secondary screening involved a more detailed examination of the abstract and a quick scan of the full
text of the articles. During this stage, the relevance of the articles was assessed to the key aspects
of fleet renewal, such as decision analysis processes, economic factors, sustainability considerations,
and operational factors. Articles that focused solely on new technology aspects without addressing the
broader renewal process were excluded. This screening process ensured that only the most relevant
studies were included in the literature review.

In addition to the articles identified through the initial search queries, 19 additional articles were discov-
ered by backward checking the articles that passed the secondary screening. The distribution of the
articles found with each query in the screening process is given in Table 2.2.

Query Total results New results After title & abstract screening Final selection

A 36 36 20 8
B 187 161 48 17
C 80 35 10 3
D 16 5 1 0
E 8 2 0 0
F 38 5 0 0
G 139 43 4 2
Added - - - 19

Total 504 287 83 49

Table 2.2: Search hit distribution.

The 49 resulting articles were categorised to provide a structured overview of the current research
landscape in fleet renewal. This categorisation is based on the main focus of each article, allowing a
systematic analysis of key themes and trends in the literature. The 49 articles are shown in Appendix A,
as well as the source article of the 19 articles that were found by backward checking. The final set of
49 articles provides a structured and broad foundation on which this literature review is built to identify
methodological directions and research gaps.
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2.2. Research gap
The literature was categorised into four distinct categories based on the main focus of the research:
Decision analysis, economic, sustainability, and operational capacity. This categorisation, performed
during the secondary screening phase, enabled a systematic review of the current research landscape
and revealed the depth of exploration in each domain. The results of this classification are presented
in Table 2.3.

Category Description Number of papers

Decision analysis All articles that provide decision analysis support
by comparative analysis or objective optimisation

39

Economic All articles that include an economic objective or
analysis for fleet renewal

37

Sustainability All articles that include sustainability objectives or
impact analysis

13

Operational All articles that focus on maintaining or improving
the operational availability during the fleet renewal
process

4

Table 2.3: Research categories.

The findings show that 25 of the articles focused solely on economic evaluations as the main objective
or optimisation criteria, using either the TCO or the net present value (NPV) methodology. In 13 of
these articles, operational aspects were included by including a forecasted demand or a one-on-one
replacement strategy for the vessels. In seven articles, environmental constraints were also used
to restrict the solution space, either by using emission limits (Loennechen et al., 2024; Martin et al.,
2024; Patricksson et al., 2015; Sønnervik et al., 2024; Zhao et al., 2021, 2024) or determining a yearly
electrification target (Pelletier et al., 2019). Only three studies also included maintenance downtime
to determine optimal strategies, excluding vessels undergoing maintenance from the operational fleet
that needed to meet a predetermined demand (Meng & Wang, 2010; Meng et al., 2015; Patricksson
et al., 2015).

Coppola et al. (2023), Du and Kommalapati (2021), and Giordano et al. (2018) combined economic and
environmental evaluations as the main objectives to optimise, all three using the LCA methodology for
CO2 emissions. For the economic evaluation, the former used NPV and the latter two used TCO. The
studies evaluated different strategies on both objectives and compared them using MCDA. Castillo and
Álvarez (2023) used the classification of emission scopes, combined with TCO in a MOO framework.
Aiello et al. (2024) and Moreno Sader et al. (2025) both used MCDA to compare the environmental im-
pact, assessed with the well-to-wake (WTW) framework, together with the economic impact, assessed
using TCO. These studies did not adequately account for operational factors such as fleet availability,
maintenance schedules, or infrastructure capacity during the transition phases.

For Ali et al. (2023), Fee et al. (2019), and Turan et al. (2020, 2022), the main objective was operational
availability, accounting for unavailability due to maintenance downtime, as well as the availability of
the supporting infrastructure and the sufficient staff to crew the ships. The final article used MOO to
evaluate various fleet combinations. The first three articles used simulation to simulate the workforce
transition, with the fleet replacement optimised using MOO and evaluated with MCDA.

The categorisation of the reviewed literature reveals several notable research gaps. First, LP emis-
sions are almost entirely absent as an optimisation criterion, despite its relevance for direct health and
urban impact. Second, while some operational constraints, such as maintenance downtime or crew
availability, were considered in a handful of studies, they are rarely integrated into models that also
account for environmental performance. Likewise, environmental factors are often missing from opera-
tionally focused models. LCA focused solely on CO2-equivalent emissions, not including other impact
categories.
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This thesis seeks to address these gaps by developing an integrated decision support framework that
incorporates economic, environmental, and operational dimensions. Inspired by the boundary defini-
tions of the existing literature, new variables are introduced to expand the relevance and realism of
the framework. These include explicit modelling of LP emissions, specifically NOx and PM emissions,
maintenance-related unavailability, and supporting infrastructure. In addition, the framework introduces
future-orientated considerations such as the discounting of CO2 emissions to reflect expected techno-
logical improvements in material production. The structure of this framework and the methodological
steps leading to its development are described in the following section.

2.3. Structure
To fill the research gap, the operational, economic, and environmental aspects of fleet renewal are
first reviewed separately in chapter 3. This chapter is focussed on providing insights for answering the
first three sub-questions. This is done by first going over how operational aspects were included in
previous research, both as a key variable and as a way to limit the solution space. This is followed by
a detailed investigation on how the environmental impact is quantified in previous studies and incorpo-
rated together with economic considerations. After that, the different economic frameworks to assess
the economic impact of fleet renewal are discussed. Finally, the findings of this chapter are used to
determine the way forward to include these factors in the case study.

This is followed by chapter 4, focussing on the fourth sub-question, by evaluating the different modelling
methodologies used for the MFRP, particularly the integration of multiple objectives or criteria. This is
done by first detailing the historical development of (maritime) fleet renewal modelling, followed by
the discussion of the different methods that were used to combine multiple objectives or criteria in
previous studies. By providing a comparative analysis of these methods, the appropriate structure of
the framework is determined.

Finally, chapter 5 summarises the key findings and limitations identified in the literature.

2.4. Conclusion
The literature reviewmethodology provides a systematic and structured exploration of existing research
in the domain of fleet renewal. Through a targeted SCOPUS-based search strategy and a classification
between the different focusses of the articles, the review identifies the main foundations of the literature
on fleet renewal, as well as aspects where research is still lacking.

In particular, while many studies have been optimised for economic return, there is a visible research
gap in incorporating operational factors, especially outside of the military domain, together with sustain-
ability objectives in a unified framework. This literature gap, especially the lack of integrated approaches
that combine economic objectives with environmental and operational dimensions, underscores the
novelty and relevance of this thesis. By addressing this gap, the proposed research aims to provide a
more comprehensive and balanced approach to modern fleet renewal decision making.

The findings of this literature review lay the groundwork for future research and practical applications
in fleet renewal. By filling the identified research gap, this study has the potential to significantly ad-
vance the field, offering new insights and methodologies that can be applied to real-world fleet renewal
strategies.



3
Fleet renewal

A successful fleet renewal programme requires careful consideration of multiple interdependent factors.
First, it is essential that the fleet is able to meet its functional objectives throughout the transition period,
which can be to transport cargo, patrol, provide emergency response, or perform other specific duties.
section 3.1 details how current research ensures that fleet capacity is sufficient to perform required
tasks, for the duration of the transition period.

In addition, sustainability commitments and regulations have become a major factor in fleet renewal.
The environmental impact of both old and new fleets must be carefully considered, along with com-
pliance with current and future regulations. The different methods used in current studies to ensure
compliance with emission regulation and account for their negative impact are explored in section 3.2.
Not only is the polluting effect of the fleet during its operational usage of relevance for the environment
but also the impact of the construction and decommissioning of the fleet.

Lastly, fleet renewal is a costly process that requires significant investments from the fleet operator.
Therefore, an economic analysis is necessary to recognise the associated expenses. The ways in
which these analyses have been performed in previous studies are detailed in section 3.3.

A summary of the findings of this chapter and the way forward to include these three different aspects
within the framework for the PoR are discussed in section 3.4.

3.1. Operational factors
To ensure that the fleet can meet its objective, several operational factors come into play. The various
operational factors that have been employed in the researched articles have been identified and divided
into four main categories, which are discussed individually. First, operational capacity is discussed,
detailing how previous research has ensured that the fleet has enough capacity to perform its task.
This is followed by infrastructure, which focusses on the how the required infrastructure changes are
included, inherent in switching to new energy carriers, so that fleet operators can support the operation
of new vessels. Maintenance includes the various manners in which fleet maintenance requirements
have been taken into account, which is necessary if fleet operators want to perform their tasks for any
significant amount of time. Finally, crew details how previous studies simulated the need for manned
vessels.

3.1.1. Operational capacity
Operational capacity is a critical aspect of fleet renewal, ensuring that the fleet has the capacity to
perform its tasks. Various methods are used to include and optimise operational capacity, each with its
own benefits and disadvantages.

The most convenient way to maintain the same level of operational capacity during fleet renewal is to
use a one-on-one replacement strategy for the vessels, as demonstrated by Sadeghpour et al. (2019).
This approach involves replacing each old vessel one-on-one with a new vessel, ensuring that the size
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of the fleet remains constant throughout the planning horizon. The simplicity of this method makes
it easy to implement, as it avoids the need for adjustments to the size or composition of the fleet
and allows the decision maker to focus solely on determining the best moment of replacement for the
individual vessels. However, this strategy lacks the flexibility to adapt to changing demand or the new
vessels having a different operational capacity than the old vessels. This makes the strategy primarily
suitable for fleet owners that know with a high degree of certainty that their future fleet composition
should remain exactly the same and changes in the vessel design do not significantly influence the
operational abilities with regard to the fleet’s task.

One common method to include different future scenarios is the use of demand satisfaction constraints,
which ensure that the total capacity of the fleet can meet the predetermined demand for every time
period. This method is typically expressed through mathematical models that include constraints to
ensure that demand is satisfied (Castillo Campo & Álvarez Fernández, 2023; Pantuso et al., 2014;
Winkelmann et al., 2024). The benefits of this approach include its simplicity and reliability in ensuring
that the fleet can meet demand. In addition, future changes in demand are accounted for by specifying
the demand per time step. However, unexpected changes in demand can greatly disrupt the accuracy
of the model, making it important to take into account the uncertainty. This method is most applicable
to fleet owners who want to model their fleet composition based on the future outlook of demand.

Another method is to employ route-based demand constraints, where vessels are linked to certain
routes to model liner fleets. Constraints are used to ensure that enough vessels are assigned to spe-
cific routes to meet the specified demand for that route (Meng & Wang, 2010; Meng et al., 2015). This
approach optimises the use of vessels by allocating them to specific routes, which allows the fleet
owner to specify the types of vessel that sail on the different routes. This allows for the incorporation
of restrictions on vessel requirements on certain routes, such as Zhao et al. (2024) employed on the
power requirements of vessels in a certain operating area and Zhao et al. (2021) on sulphur emis-
sion requirements, to model low-emission zones. This grants the fleet owner the ability to optimise
the fleet renewal process for multiple routes simultaneously, as well as to optimise the usage of non-
homogenous vessels in the fleet. However, this comes with the need to accurately predict not only the
total demand but also specify the demand over the different routes. Also, the non-homogenous vessels
may not be able to sail other routes, which can lead to a fleet composition that is optimised for a certain
scenario but would perform poorly in other scenarios. This methodology is mainly suited to liner fleet
operators, where demand on different routes can be predicted with a high degree of certainty. It is also
suited to be applied to public transit buses, as Pelletier et al. (2019) has done.

Penalty functions introduce a penalty cost for solutions that fall below a minimum availability threshold,
encouraging the operational capacity to be above that threshold. Fee et al. (2019) and Turan et al.
(2022) used penalty functions to encourage high availability for military vessels. The main advantage
is that the importance of operational capacity can be balanced with other penalty functions that contain
factors such as the cost or duration of replacement. By choosing the different penalty costs, the prefer-
ence of the fleet owner can be included to optimise the fleet renewal to the owners’ wishes. Because
this approach requires the assignment of subjective penalty weights, its applicability depends on the
decision maker’s ability to quantify trade-offs. This method is mostly useful for fleet owners that want
to make a balanced trade-off between different objectives based on their own preferences.

Availability maximisation defines the availability of the fleet as the main objective and aims to maximise
it over time. Turan et al. (2020) applied this to a military fleet to account for the different maintenance
schedules and the limited resources. Ali et al. (2023) employed the same method, but added an addi-
tional step of dividing the availability with the planning horizon, resulting in a deployment score. The
benefit of this method is that the average availability is maximised, making effective use of the current
asset pool and their various states during the fleet renewal process. However, this does not make it
the most cost-effective option, since it does not account for excess capacity. Furthermore, while the
total availability might be maximised, that does not necessarily mean that there is sufficient capacity
at all single timesteps. For certain fleet owners, a certain minimum capacity might be more important.
This method is most applicable to fleet owners with vessels in multiple stages of their life and limited
resources, aiming to have maximum availability, such as navies. It might be necessary to combine this
with additional limits on a minimum availability to reach a desirable solution for every time step.
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3.1.2. Infrastructure
With the transition of vessels to new non-fossil energy carriers, the energy infrastructure must be ad-
justed to support fleet renewal. This adjustment is critical to ensure that the new fleet can operate
efficiently and carry out its tasks. Various methods are used in the literature, each with its own benefits
and disadvantages.

One of the key considerations in the adjustment of the supporting infrastructure is the different tech-
nical capabilities. Aiello et al. (2024) included the range and refuelling time as performance criteria
for an evaluation of three different technologies for fleet renewal, namely conventional, electric, and
hydrogen vehicles. Besides the range and refuel time, the cost and emissions are also included as
performance criteria for the decision analysis. This approach ensures that the infrastructure limitations
of various technologies are included in the considerations for different technologies. This method is
mainly of importance for fleet owners that want to compare different energy carrier technologies and
their subsequent requirements with the supporting infrastructure.

The acquisition cost of the necessary infrastructure is another critical consideration in evaluating the
total cost of fleet renewal. Coppola et al. (2023), Moreno Sader et al. (2025), and Winkelmann et al.
(2024) accounted for the acquisition cost of the necessary infrastructure in their studies. This provides
additional information on the total cost of the fleet renewal programme for the vessels and the necessary
infrastructure. For fleet owners who provide their own infrastructure for their fleet, these costs are
necessary to include to assess the cost of switching to another energy carrier. In addition to acquisition
costs, the operating and maintenance (O&M) costs of the infrastructure can be included to provide
more accurate overviews of the investments required over the planning horizon. Islam and Lownes
(2019) employed this for a public transit bus fleet renewal programme. To fully account for infrastructure
costs, Alp et al. (2022), Castillo and Álvarez (2023), and Castillo Campo and Álvarez Fernández (2023)
included it in the TCO analysis, where besides the acquisition and O&M costs, also the residual value
is also included at the end of the planning horizon. This comprehensive view spans the entire asset
lifecycle, but requires robust cost projections and salvage value estimates, which may be uncertain for
emerging technologies and long-term planning horizons. This highlights the need to consider not only
the vessels themselves, but also the surrounding system in which they operate.

3.1.3. Maintenance
The maintenance of vessels is vitally important to ensure viable operations during their lifetime. How-
ever, it is difficult to predict the specific amount of maintenance that vessels need, as certain compo-
nents will fail unexpectedly. Maintenance costs are included in the O&M cost of the vessel. These
costs are often based on historical data, the technology employed, the acquisition cost, and the type of
vessel. This amount scales with time, making it more expensive to maintain older vessels than newer
ones. This creates a trade-off between when it is more economically beneficial to purchase a new ves-
sel with a high acquisition cost but lower O&M costs. This approach has been used by Castillo Campo
and Álvarez Fernández (2023), Coppola et al. (2023), Pantuso et al. (2015), Pelletier et al. (2019),
and Sønnervik et al. (2024). Often, a maximum service life is determined, with vessels needing to be
removed from the fleet at the latest at the EOL. After the EOL, life-extending maintenance is required,
increasing the associated cost and introducing additional uncertainty in the total amount of O&M cost.

Although scaling the O&M cost with age is a simple way to make a base assumption about the O&M
cost and accounting for the ageing effects, it does not account for the actual usage of the asset. Castillo
and Álvarez (2023) andWinkelmann et al. (2024) determined that maintenance costs depend on the cu-
mulative use of the asset. This ensures that the state of the asset is taken into account more accurately.
However, it also requires tracking of the usage of different assets over time, which can bring additional
difficulties, especially for large fleet owners. Aiello et al. (2024) combined both age and mileage as
factors for the growing O&M costs, providing a more complete view of maintenance needs.
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Meng and Wang (2010), Meng et al. (2015), and Zhao et al. (2021) went further than accounting for the
cost, including the unavailability of the vessels while maintenance is performed on them. This was done
by determining an age-dependent maintenance time that the vessels were required to undergo period-
ically. This causes the size of the fleet to grow to still have the operational capacity available to fulfil its
at all times. This is a more realistic method, since SOLAS requirements state that merchant vessels
must undergo a comprehensive study of the hull in a dry dock twice in a five-year period (International
Maritime Organization, 1974).

Fee et al. (2019), Patricksson et al. (2015), Sønnervik et al. (2024), and Turan et al. (2020) not only
accounted for maintenance cost and downtime, but also for maintenance facility workload, assuming
only a limited number of ships could be maintained at the facility at any time, ensuring that fleet main-
tenance is spread over the planning horizon. This is most relevant for fleet owners that perform their
own maintenance.

3.1.4. Crew
Vessels (still) need to be manned, as this crew is needed to operate the vessels. The cost associated
with the crewing of the vessels is included in the O&M costs. Several studies have separately included
the importance of crew management in maintaining operational efficiency. Fee et al. (2019) penalised
the number of crew outside a predefined range, emphasising the need to maintain an optimal crew
size to ensure that the fleet composition matches the crew composition. Turan et al. (2020) included
the availability of the crew as a constraint, ensuring that the fleet renewal process can be sustained by
the available crew. Turan et al. (2022) introduced an additional cost for not having enough personnel,
ensuring that the crew is maintained at optimal levels to reduce the risk of operational disruption.

3.2. Sustainability
Since climate change and related regulations are the main drivers of the transition to cleaner technolo-
gies during the fleet renewal process, environmental factors are often included in the latest research.
There are multiple ways to assess the impact of the environmental impact. In this section, first, the
ways to monetise the environmental impact are discussed, followed by an individual discussion of the
different quantification methods of emissions that have been employed in previous research.

3.2.1. External cost
External costs are costs that fall outside of the market price of the goods or services that cause the cost
and are imposed on a third party (CE Delft, 2019). There are several types of external costs, with the
cost of climate change the most frequently included. The exact cost may be difficult to quantify since
it is difficult to determine the cost of emissions. To approximate the external cost of climate change,
studies often use the carbon price in emission trading systems as a proxy for market valuation, ranging
between 50-100 € per ton of equivalent CO2 over the last three years for the emission trading system
of the EU (Trading Economics, 2025). The cost of removing a ton of CO2 using direct air capture is
estimated to be between 100 - 1300 $ per ton of CO2 equivalent (Young et al., 2023). These wide
ranges in estimates illustrate the uncertainty fleet operators face when attempting to internalise climate
costs into decision making.

Alp et al. (2022) andWinkelmann et al. (2024) accounted for the external cost of global warming, caused
by the emissions of GHG by the fleet. These costs are penalised by a carbon tax; this internalises the
external costs and combines them with the market price, providing incentives for companies to move
to cleaner alternatives in order to minimise the costs. Coppola et al. (2023) and Zhou et al. (2023)
included the external cost due to air pollution. Since the air pollution causes negative health effects for
the local population. Islam and Lownes (2019) included the external social cost, which is composed of
the external cost of global warming, air pollution, and noise pollution.
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3.2.2. Scope 1, 2, and 3 emissions
For an company to internalise the external cost of emissions, a companymust first knowwhat emissions
occur. These emissions can be divided into three scopes. Scope 1 covers direct GHG emissions by
assets controlled or owned by the company, such as the combustion of fuel by company cars and
vessels. Scope 2 covers indirect GHG emissions associated with the purchase of electricity, steam,
cooling, and heating for the use of the company. Scope 3 covers indirect GHG emissions due to
activities from assets not owned by the company but affected by its value chain. Figure 3.1 provides
a structured overview of scope 1, 2, and 3 emissions across the value chain of a company, helping
to visualise the direct and indirect impacts of fleet operations. Scope 3 includes 16 distinct categories.
Their relevance depends on the structure and activities of the company’s value chain.

Figure 3.1: Overview GHG Protocol scopes and emissions (GHG Protocol, 2013).

Alp et al. (2022), combined an electrification target for the fleet with a carbon tax on emissions in
scope 1, accounting for the fuel consumption of the fleet. Loennechen et al. (2024) and Zhao et al.
(2024) included emission limits for scope 1, to model regulated emission limits, but did not include any
external cost. Filák et al. (2021) and Sønnervik et al. (2024) used the scope 1 emission limits, but added
a carbon tax, providing an additional economic incentive to switch to cleaner fuels. Winkelmann et al.
(2024) used both emission limits and carbon pricing in all three scopes, accounting for fleet emissions
throughout the value chain. Castillo and Álvarez (2023) accounted for the emissions in the three scopes
and set the model objective to minimise the sum of the emissions in the three scopes.

Themain benefit of measuring the emissions in the different scopes is to generate insight for a company,
where the emissions in their value chain take place and whether they fall under their direct control or
if they should work with upstream and downstream partners to mitigate them, but to gain more insight
into the composition of the direct and indirect emissions, other methods are needed. These include
LCA andWTW assessments, both of which provide greater resolution with respect to emission sources
and timing.
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3.2.3. Well-to-wake
The well-to-wake or well-to-wheel framework allows the fleet operator to gain insight into emissions
with respect to fuel consumption. It consists of two segments: Well-to-tank (WTT) and tank-to-wake
(TTW). The WTT accounts for the GHG emissions emitted to produce, transport, and refine a primary
fuel to the fuel bunkered on board. For conventional vessels, this consists of the crude oil extraction,
refinement, and transportation of the end-product, which is bunkered on board. For electric vessels, it
consists of the production and transportation of the required electricity (WWF, 2017). The TTW phase
accounts for emissions released during the actual use of the fuel to propel the vessel. For an electric
vessel, these are zero, but for conventional vessels, these are the emissions coming out of the exhaust.

The emissions coming from the exhaust of a vessel fall under scope 1 emissions, while the emissions
from the use of electricity fall under scope 2. The emissions from the extraction, refinement and trans-
port of the energy carrier fall under the scope 3, category 3, fuel and energy related activities. Figure
3.2 shows the WTW emission pathway, distinguishing between fuel sourcing (WTT) and fuel usage
(TTW).

WTW assessments isolate emissions related to the sourcing and use of fuels, providing fleet operators
with clarity in comparing energy carriers.

Figure 3.2: Well-to-wheel emissions (European Commision, 2016).

The WTW emissions have been used by Aiello et al. (2024) as an objective to minimise and by Zhou
et al. (2023) to account for the external cost of global warming and air pollution.

3.2.4. Life Cycle Assessment
LCA evaluates the impact of a product throughout its life cycle. It consists of five stages: extraction
of raw materials, production and processing of the product, transportation of the product, use of the
product, and finally disposal of the product (Liu et al., 2024). Assessment can be performed at multiple
levels, from cradle-to-gate, focused solely on the production emissions, to cradle-to-cradle, which in-
cludes production, transportation, and use phase emissions, as well as emissions from the conversion
of waste products back into useful resources that are used in the manufacturing process, creating a
closed-loop resource cycle. Figure 3.3 illustrates the main lifecycle stages, offering a complete view of
potential emissions boundaries.
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Figure 3.3: Life cycle assessment stages (Ecochain, 2025).

The LCA consists of two main stages. The first is inventory analysis, which captures data on material
and energy flows throughout all phases of the product life cycle, including extraction, manufacturing,
transportation, use, and end-of-life processing. This is followed by impact assessment, in which these
flows are evaluated in up to 16 standardised environmental impact categories (European Commission,
n.d.).

Desantes et al. (2020), Du and Kommalapati (2021), and Giordano et al. (2018) incorporated lifecycle
emissions for vehicle fleets. They used the GREET tool, developed by the US Department of Energy,
which estimates vehicle emissions per mile. Coppola et al. (2023) included both lifecycle GHG emis-
sions and direct local polluting emissions as criteria to analyse different fleet renewal options. To de-
termine the emissions per kilometre, values were used from Nordelöf et al. (2019) and complemented
by reduction factors for battery recycling, which was estimated to save 21 kg of CO2 per kWh of the
recycled battery pack.

For fleet renewal decisions, the most critical impact categories include climate change, driven by the
global warming potential of GHG emissions. The formation of PM, due to its adverse effects on human
health. The use of resources, which accounts for the depletion of finite natural materials. Although
advanced technologies can reduce environmental impacts in one category, they can simultaneously
increase burdens in another or shift impacts geographically. For example, electric powertrains do not
produce direct fuel-related emissions during operation, thus improving local air quality. However, the
electricity used may originate from fossil fuel-based sources, such as coal, resulting in upstream emis-
sions in a different region. In addition, battery production relies on materials such as lithium, cobalt,
and nickel, whose extraction and processing can result in substantial local emissions and raise ethical
concerns about poor labour conditions and environmental degradation (Nature, 2021). This results in
difficult ethical considerations, where trade-offs between different benefits and harmful consequences
need to be made.

The LCA assessment is mainly useful to gain insight into the total emissions related to the use of a
certain product, allowing for the comparison of different materials and recycle procedures, as well as
emission benefits or penalties in emissions to extend the technical life of products.
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3.3. Economic analysis
Economic viability remains a decisive factor in fleet renewal, and profitability is of vital importance for
companies. There are two main methods that have been used in previous studies to evaluate the
economic aspect: the TCO framework and the NPV methodology. The TCO framework is the most
dominant, being used by 31 out of the 37 papers that make use of an economic evaluation, and the
other papers mainly using the NPV methodology.

3.3.1. Total cost of ownership
The TCO framework is a comprehensive financial metric that captures the full cost profile of a vessel
throughout its entire operational life. It encompasses CAPEX, associated with asset acquisition and
disposal expenses and profits, and OPEX, encompassing the running costs of assets, such as crew
wages, fuel cost, maintenance cost, and insurance cost. The residual value that would be gained if the
asset is sold at that moment in time can be included in the CAPEX at the end of the planning horizon,
to account for the value of the assets at the end of the timeline. External costs can also be included by
accounting for the cost of emissions.

TCO is often used as a basis for comparing different fleet configurations or technologies in a cost-
minimising framework. For example, Castillo Campo and Álvarez Fernández (2023) evaluated the
TCO of three types of electric vans with conventional vans in an MOO model to determine the most
economically optimal transition pathway under emission constraints. Similarly, Aiello et al. (2024) used
TCO in an MCDA framework to assess trade-offs between cost, sustainability, and technical capacity
for road transport.

In total, 14 articles used the TCO standard evaluation, while 17 articles discounted the TCO. This was
done by discounting the future cost based on a set discount rate, to include the time value of money.
This was done using various discount rates, with the minimum annual rate of 2% being used by Castillo
Campo and Álvarez Fernández (2023) and the maximum annual rate of 10% by Alp et al. (2022) and
Giordano et al. (2018), highlighting the uncertainty of what should be used as the discount rate.

By discounting the cost, the time value of money is included in the total cost. This also provides the
foundation for the NPV, which is discussed in the next section.

3.3.2. Net present value
NPV is a financial evaluation method that evaluates the profitability of an investment by discounting all
future costs and revenues to their present value. The standard formulation of NPV aggregates annual
net cash flows over a planning horizon, each adjusted by a chosen discount rate that reflects the cost
of capital or the required rate of return.

In the context of maritime fleet optimisation, NPV is often used to determine the optimal replacement
schedule for ageing vessels. A positive NPV indicates that the investment yields net financial benefits
over its lifetime, while a negative NPV suggests that the strategy is unable to meet the required rate of
return on the investment. Meng andWang (2011) and Zhao et al. (2024) used the NPV to determine the
optimal fleet renewal strategy, with the goal of maximising profits over time. Compared to TCO, NPV
integrates the return on investment. However, future revenues might be difficult to predict, and not all
vessels have a direct earning capacity, such as those at the PoR, where the vessels do not transport
any cargo or people. If no revenues are generated, it results in the NPV having a value below zero.
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3.4. Conclusion
This chapter has outlined the diverse nature of the fleet renewal problem, highlighting the operational,
environmental, and economic drivers that shape long-term strategic decisions. Operational continuity
is essential during the transition, which requires careful scheduling of vessel availability and accounting
for maintenance downtime. Maintenance strategies and crew availability have been incorporated into
fleet planning models, although primarily in military contexts, showing potential for broader adoption
in civilian settings. Infrastructure constraints, especially those related to alternative energy carriers,
introduce additional planning complexities and costs.

Environmental sustainability has increasingly shaped fleet renewal, with emissions classified in scopes
for company-wide assessments, WTW assessments for fuel-related research, and LCA for product-
related assessments. Although external costs may be internalised, the cost is difficult to quantify and
can be very different from themarket price of emissions. Certain technologiesmay change the locations
of emissions or introduce additional consequences, such as pour labour conditions for the miners of
the needed materials for batteries. This introduces ethical dilemmas where choices for one technology
benefit the environment in one area at the cost of another.

From an economic perspective, the TCO provides a widely used and comprehensive metric that cap-
tures capital and operating expenses and can include environmental externalities such as carbon pric-
ing. The NPV methodology is particularly suited for long-term financial planning, with assets that gen-
erate direct revenue, allowing for comparisons of investment strategies across a multi-period horizon
under uncertainty.

For the PoR, the different operational factors are used to constrain the solution space. The operational
capacity is included in three different ways. For the PV and IRV classes, which have 24/7 availability,
a minimum operational and reserve amount of vessels is always required. For the SV, NM and RHIB
class, a minimum operational availability is defined per year, since there is flexibility in when the vessels
are deployed to perform their task. Maintenance is included in the form of using the current maintenance
schedule for the existing vessels and assuming a periodic maintenance interval for the new vessels,
accounting for both maintenance downtime and cost. The required infrastructure is included in the cost
estimations, with each unit of infrastructure able to support a limited number of vessels, enabling a
match of infrastructure capacity with the fleet configuration. The crewing situation is assumed constant
and is not included in the framework, as crew configurations are determined by the PoR and fall outside
the scope of this thesis.

With global and local emission reduction of the fleet being two of the main drivers behind the research,
both are defined as the main objectives within the framework. For global emissions, the LCA method is
used to determine CTG and GTC emissions for vessels, batteries, and infrastructure, including WTW
CO2 emissions. The LP of NOx and PM emissions is assessed separately with the WTW method. By
doing so, the origin of the emissions becomes clearer and the impact of different scenarios can be
better assessed.

For economic analysis, since vessels do not generate direct revenues, the TCOmethod is incorporated
as an objective in the optimisation framework. This includes capital expenditures such as acquisition
and salvage costs, as well as operational costs associated with vessels, batteries, and infrastructure,
including insurance and maintenance. Fuel costs are modelled separately and excluded from the gen-
eral OPEX category to allow for the differentiation between vessels that are in reserve and vessels that
are operational and sailing.

Costs are not discounted in this analysis to retain a time-neutral comparison between strategies. In
the absence of revenue streams or financial return calculations, the primary objective is to minimise
the absolute lifecycle cost rather than to perform a financial valuation. Therefore, the TCO approach
provides a straightforward and consistent means of comparing cost outcomes over time without the
influence of a discount factor.

The LCA, TCO, and LP indicators are intended to be optimised, while operational constraints and
infrastructure limitations define the feasible solution space. These components inform the design of
a decision-support framework that balances operational feasibility, environmental sustainability, and
economic viability, a balance further guided by the modelling strategies reviewed in the next chapter.
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Fleet renewal modelling

Fleet renewal plays a crucial role in maritime operations by maintaining vessel efficiency, cost effective-
ness, and compliance with evolving regulatory and operational standards. This chapter describes the
different methodologies that have been used in previous studies to model the maritime fleet renewal
problem and provide decision support to fleet operators. First, the historical development of maritime
fleet renewal modelling is described in section 4.1. The different methods used to combine multiple
objectives or criteria for decision support are discussed in section 4.2. These methods are analysed
comparatively in section 4.3 to determine the most suitable method for PoR. The chapter concludes
with a synthesis of the insights in section 4.4.

4.1. Development of fleet renewal modelling
Fleet renewal represents a specialised subset of the broader equipment replacement problem, a topic
extensively studied within Operations Research for more than a century. The foundations were laid
by Taylor (1923) and Hotelling (1925), who illustrated how depreciation can be statistically accounted
for in the economic evaluations of machines. These studies assumed fixed costs, static operational
conditions, and no technological innovation in their replacements. Bellman (1955) used the concept of
depreciation to create a mathematical formulation of the equipment replacement problem. The math-
ematical formulation was dependent on the price of a new machine and the output, maintenance, and
resale value of the old machine. The old and new machines were assumed to be exactly the same, ex-
cept for their respective age. In order to solve the problem, Bellman introduced the concept of dynamic
programming (DP), a methodology in which a complex problem is broken down into simpler subprob-
lems. Dreyfus (1960) continued on the formulation of Bellman, but instead of assuming the replacement
equipment was equal, he added the effect of technological innovation to the equipment replacement
problem, making the assumption that the revenue a future machine will be able to generate shall be
greater than the revenue of current machines.

Nicholson and Pullen (1971) were the first to adapt the generalised equipment replacement model to the
maritime industry, formulating a two-stage DP model that optimised vessel replacement decisions over
time, applied to a shipping company that wanted to reduce its number of vessels, based on a ten-year
future outlook. In order to save computation time, a heuristic calculation was performed to determine
the priority replacement order of the ships in the first stage of the model. In the second stage, DP
was used to determine the optimal level of chartering corresponding to the priority replacement order.
One of the imperfections of this method was the assumption of one-to-one replacement of vessels,
according to Wijsmuller and Beumee (1979), who stated that future ships shall be larger in size and
capable of carrying more cargo. To account for this, they developed a linear programming (LiP) model
with the objective of maximising the NPV of the assets of a company at the end of the planning horizon.

20
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A key limitation of LiP is its inability to enforce discrete outputs, which can be problematic in real-world
fleet planning where decisions such as vessel counts must be integers. To account for this, Cho and
Perakis (1996) developed a mixed-integer linear programming (MILP) model, where they combined
MFSMP with MFRP for a liner fleet. The objective was to minimise the total cost of the necessary
operations while meeting current and future demand. The model decided which routes the ships should
sail, which ships should be laid up, and which ships should be purchased to achieve this objective.

Although MILP allows for integer outputs, the computation time, however, also grows. In order to
mitigate the issues of using LiP or MILP, Xie et al. (2000) proposed a hybrid model, where LiP was
combined with DP to balance computational efficiency and include realistic constraints. The solutions
to the fleet deployment problems were solved for a single time step using LiP and fleet development
across multiple time steps was addressed using DP. Their approach provided a structured way to make
fleet renewal decisions while considering operational dependencies across multiple time periods.

Until now, the discussed articles all assumed set values for their parameters, with no room for uncer-
tainty, Alvarez et al. (2011) changed that by accounting for the uncertainty in the purchase and selling
prices of dry bulk ships, by designing an MILP model combined with robust optimisation, for a multi-
period fleet sizing and deployment problem. This allowed for the evaluation of varying degrees of risk
tolerance with regard to the decisions in selling and purchasing ships, by choosing conservative values
for the purchase and selling prices of ships. Meng and Wang (2010) proposed another way to deal
with uncertainty, this time with uncertainty in the demand for cargo shipments during a single time step.
Upon assuming that the demand is normally distributed, an integer linear programming (ILP) model
with chance constraints is developed, where the demand constraint must be met with a set probability.
Continuing on this, Meng and Wang (2011) included a hybrid structure similar to that used by Xie et al.
(2000). They developed a DP-ILP model for a multi-period liner fleet planning problem. The uncertainty
is captured by determining multiple possible scenarios which were solved using DP with the shortest
path algorithm. This was built upon multiple ILPs that capture the fleet deployment problem that is
solved for each time step. Sønnervik et al. (2024) minimised the total operational and renewal cost,
while complying with the emission targets of the Norwegian fishing fleet, to determine the optimal de-
carbonisation strategy. This was done by introducing low- and zero-emission propulsion systems. The
impact of changes in energy cost and emission taxes was included through a sensitivity analysis.

With increased computational power, more advanced approaches tomodelling theMFRP have emerged.
For example, Bakkehaug et al. (2014) accounted for uncertainty in vessel prices, freight rates, and de-
mand by formulating a multistage stochastic programming (StP) model aimed at minimising total cost.
Scenarios were used to represent market volatility, offering a structured basis for planning under uncer-
tainty.Meng et al. (2015) focused on the multi-period fleet renewal problem of liner ships, incorporating
the stochastic dependence of the demand for random and period-dependent container shipment. It is
formulated as a multistage StP, with different demand scenarios in multiple stages. The uncertainty in
demand was assumed to depend on the previous demand. A two-stage model determined the fleet
deployment based on expected demand, with the objective of maximising profit. In the second stage,
the demand became known, depending on the demand of the previous stage and a random probability.
This was used to optimise the number of containers each ship carried, since the deployment itself was
already set. After calculating the expected earnings for the different scenarios, dual relaxation and the
Lagrangian method were used to find the optimal path over the multiple scenarios. Pantuso et al. (2015)
investigated the effect of including uncertainty on the quality of the results, comparing it to a determin-
istic model using expected values. Both models were applied to the case of a liner shipping company,
with the StP model showing substantial benefits compared to the deterministic model. Patricksson et al.
(2015) applied StP to the MFRP faced by a liner shipping company, including regional limitations in the
form of emission control areas. The objective of the study was to minimise the total expected cost of
servicing the given demand, with the vessels generating a negative cost (income). The uncertainty of
fuel prices was taken into account in the stochastic model.

Arslan and Papageorgiou (2017) were the first to apply StP to bulk ship fleet renewal, accounting
for uncertainty in demand, time charter cost, and voyage charter rate. The objective of the research
was to minimise the total cost over the planning horizon. Zhao et al. (2021) applied StP with robust
optimisation to formulate a decision plan for a liner fleet on three sulphur reduction technologies, namely
fuel-switching, scrubber, and duel fuel engines. The uncertainty of freight demand, charter rate, and
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fuel price was included, and also the retrofit time was assumed to follow demand, assuming that a
higher demand equals greater economic output, resulting in faster retrofit times. Zhao et al. (2024)
integrated a two-stage StP model for the renewal of the short-sea liner fleet with conditional value at
risk. This model was the first to integrate the financial risks associated with investments in carbon
reduction technologies into the StP model. This allowed the model to be used as a framework that
balances risk with profitability and environmental compliance. Loennechen et al. (2024) studied the
MFRP in a fleet of Supramax bulk carriers, using StP to account for uncertain fuel and carbon prices.
Based on different scenarios for emission reduction targets, the favourable power system changes.
These findings highlight the importance of well-defined policy trajectories to enable effective long-term
planning.

Turan et al. (2020) developed a simulation optimisation framework tailored to address the issue of the
mix of military fleets, with the aim of transitioning older vessels while keeping costs low and maintain-
ing operational readiness. The study integrated an improved genetic algorithm (GA) with a capability
simulation model to enable a more dynamic assessment of fleet modernisation strategies. Turan et al.
(2022) combined the optimisation of strategic workforce planning with fleet renewal, also using a hybrid
model combination of GA and system dynamics to generate solutions. The objective function included
both total cost and an unavailability penalty to incentivise high fleet availability.

Fee et al. (2019) applied MOO, where GA was used to generate solutions that were evaluated on op-
erational capacity, maintenance availability, crew availability, and ship age. This was applied to five
different transition scenarios for the replacement of a frigate class. Turan et al. (2021) developed a
hybrid model of MOO and MCDA, including risk assessment. The following objectives were integrated
and optimised using MOO: Workforce cost, capability gap, and capital & sustainment cost. To solve
this complex problem, the study introduces a hybrid approach that combines a non-dominated sorting
genetic algorithm (NSGA) with a system dynamics simulation model. This framework allows for an
iterative evaluation of fleet transition strategies. In addition, conditional value at risk was applied to
consider different levels of risk tolerance. The generated solutions of the MOO were evaluated us-
ing MCDA, ranking the selection of Pareto-optimal solutions, offering a more comprehensive decision
support framework.

Ali et al. (2023) expanded fleet renewal modelling to incorporate a more comprehensive framework
that integrates planning, scheduling, and operational feasibility, capturing long-term uncertainties in
fleet reliability, mission readiness, and budget fluctuations. To manage complexity and long-term un-
certainty in mission readiness and budgets, approximate dynamic programming (ADP) was proposed.
By approximating near-optimal solutions rather than exact optima, ADP enables a broader exploration
of feasible strategies.

The fleet renewal problem is not specifically applied to ships, but is also of importance to other groups
of transport assets such as, but not limited to, buses, aircraft, and vehicles. These assets are often
economically interdependent and operate in parallel, which means that replacement decisions cannot
be determined independently, a challenge known as the parallel replacement problem (Hartman & Tan,
2014). Hsu et al. (2011) studied the impact of stochastic demand on airline replacement strategies,
using probabilistic dynamic programming (PDP), to incorporate different scenarios and certain prob-
abilities for each scenario being reached. Parthanadee et al. (2012) studied the commonly applied
replacement rules for parallel fleet replacement. Concluding that purchasing only new vehicles was
found to be highly cost-inefficient, where as other widely used rules such as the one-purchase choice for
each period, older-vehicles-selling first and no-splitting-in-selling are cost-effective rules even though
they are not optimal. Fan et al. (2014) applied PDP to optimise the replacement of the vehicle fleet of
the Texas Department of Transportation, with stochastically modelled vehicle usage, defining multiple
vehicle usage scenarios.

Pelletier et al. (2019) modelled the fleet replacement model as an ILP for a bus fleet. They introduced
the cost of installing and using chargers to the objective function, accounting for the cost of the en-
tire transition, including infrastructure investments. Islam and Lownes (2019) combined the economic
and environmental factors in a single MILP that minimises life cycle cost, including the social cost of
CO2 emissions. Alp et al. (2022) investigated the effect of congestion at charging stations, taking
into account the loss of productivity and costs due to the additional waiting time. For this, they used
ILP. Castillo Campo and Álvarez Fernández (2023) applied MILP to compare different electric power-
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train technologies for delivery vans, including battery electric, fuel cell electric, and hybrid technologies.
These options were evaluated based on their operational limitations, such as range, recharge time, and
infrastructure requirements, as well as the maturity of the technique and economic feasibility. Zhou et
al. (2023) applied ILP to determine when to purchase or salvage a bus and when to deploy a charger,
depending on travel demand, charger demand, budget requirements, and cost involved, which included
external cost and external health cost, as well as battery recycling costs/profits. Martin et al. (2024)
looked into the effect of sustainability commitments by determining the cost-optimal investments using
MILP in fossil and renewable fuel technologies for Norwegian transport operators. The findings show
that for truck operators, the sustainability commitments incur minimal additional cost, however for the
ship and air plane operators, significant additional cost are due to the sustainability commitments. This
showed the need for additional policies on fuel cost and carbon pricing.

Sadeghpour et al. (2019) used ADP, solving the problem using GA. The use of ADP allows for relatively
quick coverage of a large feasible region to find a near-optimal solution. Winkelmann et al. (2024)
formulated fleet renewal as a sequential optimisation problem, considering multiple technologies and
operational clusters. APD was proposed to calculate fleet renewal policies to achieve emission goals
while optimising TCO.

Giordano et al. (2018) applied MCDA to compare diesel and battery electric delivery vans on emis-
sions and economic performance, assessing the total cost and total emissions over the lifecycle of a
van. Du and Kommalapati (2021) looked at the replacement of the public transport fleet, shifting from
conventional to electric and diesel-electric powered buses. These technologies were compared using
MCDA in terms of lifecycle emissions and TCO. Coppola et al. (2023) focussed on the economic and
ecological transformation of the local public transport bus fleets. An LCA of cost and environmental
impacts is proposed to identify pathways for the renewal of existing buses, which are compared using
a multi-criteria decision matrix.

Aiello et al. (2024) created a MCDA framework that combines TCO with WTW emissions for a fleet of
zero-emission vehicles. Moreno Sader et al. (2025) used the same methodology to perform a costing
and emission analysis for long-haul battery electric trucks, with overnight charging in the USA. With
the current electricity grids composition, the study showed no emission benefit by switching to electric
compared to diesel. This showcases the importance of the underlying infrastructure for the energy
transition. Castillo and Álvarez (2023) used MOO to optimise the TCO and cumulative emissions in all
three scopes, for the replacement of conventional vans with certain types of electric vans.

As summarised in Table 4.1, fleet renewal modelling has progressed markedly over time, evolving from
deterministic, single-objective optimisation approaches toward more sophisticated stochastic, approx-
imate, and multi-objective frameworks. Earlier models primarily emphasised economic optimisation
using techniques such as LiP, DP, and MILP under fixed input assumptions. However, increasing
sustainability expectations, volatile regulatory conditions, infrastructure dependencies, and complex
operational interrelations have necessitated more adaptable and integrated modelling strategies.

In light of these growing complexities, recent studies have increasingly adopted MCDA and MOO ap-
proaches to address the inherently multi-criteria nature of fleet renewal decisions. These methodolo-
gies offer structured frameworks for navigating trade-offs between competing objectives, particularly
economic performance, environmental impact, and operational feasibility. For example, Aiello et al.
(2024), Coppola et al. (2023), and Moreno Sader et al. (2025) employed MCDA to evaluate alterna-
tive transport technology based on financial and environmental indicators, while Castillo and Álvarez
(2023) and Turan et al. (2021) used MOO frameworks to identify Pareto-optimal fleet transition strate-
gies across multiple objectives.

Within the context of the PoR, where strategic fleet renewal requires balancing economic viability,
emissions reductions, and operational resilience, MCDA and MOO emerge as particularly well-suited
methodologies. Their capacity to support scenario-based decision making under uncertainty, while
incorporating stakeholder preferences and multiple performance dimensions, forms a strong basis for
the proposed framework. The next section outlines the fundamental structure, advantages, and appli-
cation considerations of MCDA and MOO techniques as used in fleet renewal literature. This general
overview provides the methodological foundation upon which the subsequent comparative analysis for
the PoR case is built.
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Table 4.1: Overview of reviewed literature on fleet renewal modelling.

Algorithm Design
Reference Uncertainty Approach Accuracy
Nicholson and Pullen (1971) determ. DP exact
Wijsmuller and Beumee (1979) determ. LiP exact
Cho and Perakis (1996) determ. MILP exact
Xie et al. (2000) determ. LiP + DP exact
Meng and Wang (2010) determ. ILP + CCP exact
Meng and Wang (2011) stoch. ILP + PDP exact
Alvarez et al. (2011) determ. MILP + RO exact
Hsu et al. (2011) stoch. PDP exact
Parthanadee et al. (2012) determ. ILP exact
Bakkehaug et al. (2014) stoch. StP exact
Fan et al. (2014) stoch. PDP exact
Meng et al. (2015) stoch. StP exact
Pantuso et al. (2015) stoch. StP exact
Patricksson et al. (2015) stoch. StP exact
Arslan and Papageorgiou (2017) stoch. StP exact
Giordano et al. (2018) determ. MCDA exact
Pelletier et al. (2019) determ. ILP exact
Sadeghpour et al. (2019) stoch. ADP approx.
Islam and Lownes (2019) determ. MILP exact
Fee et al. (2019) stoch. MOO approx.
Turan et al. (2020) stoch. MH approx.
Turan et al. (2021) stoch. MOO + MCDA approx.
Zhao et al. (2021) stoch. StP approx.
Du and Kommalapati (2021) determ. MCDA exact
Turan et al. (2022) stoch. MH approx.
Alp et al. (2022) determ. ILP exact
Castillo and Álvarez (2023) determ. MOO exact
Ali et al. (2023) stoch. ADP approx.
Coppola et al. (2023) determ. MCDA exact
Castillo Campo and Álvarez Fernández (2023) determ. MILP exact
Zhou et al. (2023) determ. MILP exact
Zhao et al. (2024) stoch. StP exact
Aiello et al. (2024) determ. MCDA exact
Winkelmann et al. (2024) stoch. ADP approx.
Sønnervik et al. (2024) determ. ILP exact
Martin et al. (2024) determ. MILP exact
Loennechen et al. (2024) stoch. StP approx.
Moreno Sader et al. (2025) determ. MCDA exact

DP - Dynamic programming, LiP - Linear programming, MILP - Mixed integer linear programming,
ILP - Integer linear programming, CCP - Chance Constrained Programming, PDP - Probabilistic

dynamic programming, RO - Robust Optimisation, StP - Stochastic programming, MCDA -
Multi-Criteria Decision Analysis, ADP - Approximate dynamic programming, MOO - Multi-objective

optimisation MH - Metaheuristics.
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4.2. Multi-criteria and multi-objective optimisation techniques
Historically, fleet renewal programmes have focused mainly on reducing costs or maximising profits.
However, as outlined in chapter 1, many organisations now also commit to minimise their environ-
mental impact. Consequently, fleet renewal strategies must increasingly be assessed through multiple
criteria or optimised across multiple, often conflicting, objectives. The evaluation under multiple criteria
falls under the MCDA approach, to provide a framework for the decision maker to make informed deci-
sions. Different methods for employing this are elaborated in subsection 4.2.1. Optimisation of multiple
objectives falls under the MOO approach, where the problem is solved mathematically. The methods
for employing MOO are discussed in subsection 4.2.2.

4.2.1. Multi-criteria decision analysis
MCDA is a branch of decision analysis designed to support rational decision making in contexts with
multiple, often conflicting, criteria and significant uncertainty (Hillier & Lieberman, 2021). Unlike stan-
dard decision analysis, which evaluates options based on a single pay-off function, MCDA requires
weighing and combining several objectives, such as cost, emissions, and operational availability, to
arrive at a preferred choice. A key step in MCDA is determining the relative importance of the criteria,
often through stakeholder input or expert elicitation.

Different methodologies were examined to apply MCDA to identify the approaches most suitable for the
context of fleet renewal. TOPSIS emerged directly from previous fleet renewal studies, where it was
successfully applied to classify technology or policy alternatives under multiple criteria. Other relevant
MCDA methods were selected for consideration based on their prevalence in the decision science
literature, as reported in the article by Taherdoost and Madanchian (2023b).

This selection ensures that the MCDA methodology aligns both with practices in fleet management
literature and with broader trends in multi-criteria decision support.

Analytic Hierarchy Process
The Analytic Hierarchy Process (AHP) is designed to assign weights to different criteria. It consists of
three stages: Complexity structuring, measurement, and synthesis. In the first stage, the hierarchical
structure of the problem is displayed, with the overall goal at the top level, the criteria at the second level,
and the alternative decisions at the final level. An overview of the hierarchical structure of AHP is given
in Figure 4.1. In the measurement stage, the relative importance of the different criteria is assessed,
as well as the performance of each alternative to meet the different criteria. This is done using pairwise
comparisons between each of the different (sub)criteria (Kana, 2024). The different alternatives are
also compared pairwise for each of the criteria. Comparisons are often made by multiple people and
the mean result is taken. In the synthesis stage, the results of pairwise comparisons are combined in
matrices, depending on the comparison that was performed. By calculating the eigenvector of these
matrices, the weights of the criteria and the performance of the solutions for each criterion are deter-
mined. Combining these two leads to the optimal alternative (Hillier & Lieberman, 2021). The benefits
of AHP include its structured approach, which provides a clear hierarchical framework to evaluate com-
plex decisions with multiple criteria and alternatives. It allows for the integration of both quantitative
and qualitative criteria, making it versatile for various decision-making scenarios. In addition, the hierar-
chical structure and pairwise comparisons make the decision-making process transparent and easy to
understand. However, AHP can be time-consuming and labour intensive due to the process of setting
up the hierarchy and performing pairwise comparisons. The results are also sensitive to subjective
judgments from decision makers, which can introduce bias. Furthermore, AHP may not be suitable for
very large or very small decision problems due to the complexity involved.
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Figure 4.1: Analytical Hierarchy Process structure (Watróbski et al., 2016).

Analytic Network Process
The Analytic Network Process (ANP) is an extended version of AHP that enables feedback and in-
teraction between clusters, making it more comprehensive. The structure follows the structure of an
AHP, with the problem represented as a network in the first stage. In the second stage, the same
comparisons are carried out; however, the interdependencies are also examined, so the impact from
one element on another can be displayed by an eigenvector. In the third step, everything is composed
in a super-matrix which is then weighted and raised to exponential powers until the elements of the
super-matrix are identical. Finally, the different elements’ priorities are determined by normalising the
clusters of the final matrix. Using the alternatives column in the normalised super-matrix, the priority
weights are found, and the alternative with the highest weight is the optimal decision (Taherdoost &
Madanchian, 2023c). The benefits of ANP include its ability to capture the interdependencies between
criteria and alternatives, providing a more comprehensive analysis compared to AHP. It is useful for
complex decision making scenarios with interdependent factors. However, ANP is more complex and
time-consuming than AHP due to the additional steps involved in capturing interdependencies. It re-
quires more computational effort and expertise to implement and may be overkill for simpler decision
making problems where interdependencies are not significant.

TOPSIS
TOPSIS stands for Technique for Order Preference by Similarity to Ideal Solution, and is a highly
adopted method in the field of MCDA (Chakraborty, 2022). The main concept of TOPSIS is that the op-
timal solution is closest to the ideal solution and farthest from the negative ideal solution. It is applied to
a decision matrix in six steps. The decision matrix consists of alternatives and criteria. In the first step,
the decision matrix is normalised. In the second step, the weighted normalised matrix is calculated. In
the third step, the ideal positive and negative solutions are determined. The fourth step calculates the
distance of the alternatives from the positive and negative ideal solutions, often using the Euclidean
distance. The fifth step calculates the relative proximity factor to these points. Finally, the relative prox-
imity factors are ranked from best to worst in the final step to find the optimal solution (Madanchian &
Taherdoost, 2023). The benefits of TOPSIS include its simplicity and straightforward implementation,
making it accessible to decision makers with varying levels of expertise. It produces a clear ranking
of alternatives based on their proximity to the ideal and non-ideal solution, enhancing interpretability.
Moreover, TOPSIS is a versatile tool, suitable for decision-making scenarios involving numerous crite-
ria and alternatives. However, the results of TOPSIS are sensitive to the normalisation method used,
which can affect the ranking of alternatives. It does not provide insight into the relative importance of
criteria, which may be crucial for some decision making scenarios. Furthermore, TOPSIS may not be
suitable for very large or very small decision problems due to its simplicity.
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ELECTRE
ELECTRE stands for Elimination Et Choix Traduisant la Reality, which allows for the direct comparison
of alternatives based on criteria and accounts for the preference and importance of decision makers,
generating a ranking of relative strengths and weaknesses. This is done by first creating a decision
matrix and determining the weights of the criteria. The decision matrix is then normalised, followed by
creating a weighted normalised matrix. The alternatives are compared pairwise into two separate sub-
sets, Concordance and Discordance, noting which of the alternatives performs better on which criteria.
In the next step, the concordance matrix is built, taking the sum values of the weights associated with
the concordance of each alternative. The discordance matrix is built by taking the max discordance
between two alternatives and dividing this by the max discordance over all criteria. The higher this
value, the less favourable the alternative. These matrices are indexed by taking a threshold value, of-
ten 0.7 for concordance and 0.3 for discordance. The matrices are combined element-wise to form the
aggregate dominance matrix. If there is one in the column, it shows that the alternative is dominated by
another and that the alternative can be discarded (Taherdoost & Madanchian, 2023d). The benefits of
ELECTRE include its ability to provide a clear ranking of alternatives based on concordance and discor-
dance, making it easy to interpret. It is useful for decision making scenarios with multiple criteria and
alternatives and accounts for the preferences and importance of decision makers. However, ELECTRE
is more complex and time-consuming than TOPSIS due to the additional steps involved in calculating
concordance and discordance. It requires more computational effort and expertise to implement and
may not be suitable for very large or very small decision problems due to its complexity.

PROMETHEE
PROMETHEE is short for Preference Ranking Organisation Method for Enrichment of Evaluations and
consists of two stages (Brans et al., 1986). In the first stage, a general decision matrix of alternatives
and criteria is developed and the weights between the different criteria are determined. In the second
stage, the decision matrix is used to calculate the outranking relation of the alternatives, where the
preference of one alternative over another is given by a number between zero and one. With zero
corresponding to non-preference and one corresponding to a strict preference. This is followed by
determining the aggregated preference by taking the sum of the outranking relations between differ-
ent alternatives over all weighted criteria. This leads to a global preference for one alternative over
another, which is then used to determine the out-ranking flows. The second stage of the method con-
sists of taking the positive and negative outranking flows for a certain alternative by taking the sum
of the global preferences over all other alternatives, divided by the number of compared alternatives.
By comparing the out-ranking flows, the different alternatives are ranked (Taherdoost & Madanchian,
2023a). The benefits of PROMETHEE include its ability to provide a clear ranking of alternatives based
on out-ranking flows, which makes it easy to interpret. It allows for a detailed evaluation of alternatives
based on multiple criteria and accounts for the preferences and importance of decision makers. How-
ever, PROMETHEE is more complex and time-consuming than other MCDA methods because of the
additional steps involved in calculating out-ranking flows. It requires more computational effort and
expertise to implement and may not be suitable for very large or very small decision problems due to
its complexity.

Data Envelopment Analysis
Data Envelopment Analysis (DEA) is a non-parametric technique used to assess the relative effi-
ciency of alternatives, treating each as a decision-making unit (DMU) that converts inputs into outputs
(Charnes et al., 1978). It constructs an empirical efficiency frontier and assigns efficiency scores from
0 to 1, with fully efficient units scoring 1. DEA optimises the input and output weights for each DMU
individually, ensuring the most favourable efficiency score under the constraint that no DMU exceeds
an efficiency of 1. The advantages of DEA include its ability to handle multiple inputs and outputs
simultaneously without assuming a pre-defined trade-off between them. It is particularly useful for
benchmarking and identifying best-practice frontiers. However, DEA does not incorporate stakeholder
preferences or subjective criteria, which limits its use in value-sensitive decision making.

While MCDA supports structured evaluation of predefined alternatives, MOO methods mathematically
generate optimal solutions by modelling multiple objectives. The next subsection details commonMOO
techniques.
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4.2.2. Multi-objective optimisation
Multi-objective programming extends traditional single-objective programming by optimising multiple
objectives. Traditionally, different methods can be classified into three categories. In the first category,
preferences are made a priori, so they can be incorporated into the model. The second category
consists of interactive methods in which preferences are progressively articulated. In the third category,
preferences are not included in the model and added a posteriori by the decision maker after finding
the set of solutions (Antunes et al., 2016).

In contrast to single-objective programming, where a single optimal solution is sought, multi-objective
programming seeks a set of non-dominated (Pareto-optimal) solutions that represent trade-offs be-
tween objectives. The solutions in this set cannot be improved for an objective without worsening the
result for another objective. The decision space of the problem is mapped in a p-dimensional space,
corresponding to the p-number of objectives, called the objective function space. Each potential solu-
tion is represented by a vector in this space, the components of which are the values of each objective
function.

The general MOLP problem is formulated as follows (Antunes et al., 2016):

max


z1 = f1(x) = c1x
...
zp = fp(x) = cpx

”Max” z = f(x) = Cx

subject to x ∈ X = {x ∈ Rn : Ax = b,x ≥ 0}

(4.1)

A is the matrix of technological coefficients corresponding to the left-hand side of the constraints, b is
the vector containing the right-hand side values of the constraints. C contains the row vectors c1, · · · , cp,
corresponding to the coefficients of the objective functions.

The non-dominated solutions are placed together in the Pareto front. The ideal solution or utopia point
is the hypothetical solution in which each objective reaches its optimal value without considering the
trade-off and constraints due to the other objectives (Hillier & Lieberman, 2021). The objective function
space for a two-dimensional problem is shown in Figure 4.2.

Figure 4.2: Objective function space (Bre & Fachinotti, 2017).

The most common method to compute the non-dominated solutions is by using a scalarization tech-
nique, which transforms the multi-objective problem into a single-objective problem that may be solved
repeatedly with different parameters. These functions are called scalarization functions. The parame-
ters in these functions depend on the preference of the decision maker, making it a priori techniques.
The benefit of these techniques is that the computational effort should not be too demanding. There are
three main scalarization techniques employed, namely, weighted sum, ϵ-constraint & reference point
(Antunes et al., 2016).
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Weighted sum
The weighted sum method is a commonly used approach to solve the multi-objective optimisation prob-
lem. A weight is assigned to all objective functions and the sum of the assigned weights must be one. A
single objective function is defined to maximise or minimise the sum of the individual objective functions
multiplied by their weight. By using additional constraints in the form of the objective functions, any non-
dominated solution can be reached for a (mixed) integer linear programming model. For this method,
the preference of the different objectives should be known in order to assign the weights correspond-
ingly (Antunes et al., 2016). The scalarization function is shown in Equation 4.2. This formulation is
straightforward to implement and computationally efficient, allowing it to be solved as a single-objective
(integer) linear programme. It has been used by Castillo and Álvarez (2023) to combine the objectives
of minimising the TCO and lifecycle emissions of the fleet. The benefits of the weighted sum method
include its simplicity and straightforward implementation. Provides a clear objective function that com-
bines multiple objectives into a single optimisation problem. In addition, it allows for the integration of
preferences by assigning weights to different objectives. However, the weighted sum method is only
suitable for problems with convex Pareto fronts, as it cannot find non-convex Pareto optimal solutions.
It requires pre-defined weights for each objective, which may not always be available or easy to de-
termine. Furthermore, it does not allow for interactive feedback from the decision maker during the
optimisation process.

max

p∑
k=1

λkfk(x)

s.t. fk(x) ≥ ek, k = 1, . . . , p

x ∈ X

(4.2)

ϵ-constraint
The ϵ-constraint method selects one of the objective functions to optimise and considers the other objec-
tive functions as constraints. This is done similarly to the weighted summethod by assigning a weight of
one to the primary objective function and zero or a very small value to the other functions. By changing
the value ϵk for the constraint, the objective region is scanned (Antunes et al., 2016). The scalarization
function is shown in Equation 4.3. The benefits include its flexibility in allowing for the exploration of the
Pareto front by adjusting the ϵ values. Provides a clear objective function that focusses on one primary
objective while considering others as constraints. In addition, it enables a comprehensive evaluation
of the trade-offs between the objectives. However, the method is more complex and time-consuming
than the weighted summethod because of the need to solve multiple optimisation problems. It requires
more computational effort and expertise to implement. Furthermore, it requires pre-defined ϵ values
for the constraints, which may not always be available or easy to determine.

max fi(x) + ρ

p∑
k=1,
k ̸=i

fk(x)

s.t. fk(x) ≥ ek, k = 1, . . . , p, k ̸= i

x ∈ X

(4.3)

Reference point
In the reference point method, the ideal solution is used as a reference point. The distance between
the solution and the ideal solution can be calculated in multiple ways, for example, using the city block,
Euclidean, or Chebyshev distance. The distance to the ideal point is multiplied by the weight of the
objective (Antunes et al., 2016). The scalarization function is given in Equation 4.4. The benefits of the
reference point method include its flexibility in allowing for the use of different reference points, providing
flexibility in the optimisation process. Provides a clear objective function that minimises the distance
to the ideal solution. In addition, it enables a comprehensive evaluation of the trade-offs between the
objectives. However, the reference point method is more complex and time-consuming than other
scalarization techniques due to the need to define and calculate distances to the reference point. It
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requires more computational effort and expertise to implement. Furthermore, it requires pre-defined
reference points, which may not always be available or easy to determine.

min

(
max

k=1,...,p

{
λk

(
z+k − fk(x)

)})
s.t. x ∈ X

(4.4)

Another way to determine the optimal solutions is by generating solutions and keeping track of their per-
formance. This can be categorised into two main classes: evolutionary and swarm-based techniques.
These techniques fall into the a posteriori methods. Where swarm-based techniques are mainly fo-
cused on continuous variables, evolutionary algorithms can handle both (Clerc, 2006). For this study,
due to the discrete nature of fleet renewal, the focus will continue on evolutionary algorithms.

Evolutionary algorithms
Make use of the concept of natural evolution to find the optimal set of solutions. There are three types
of algorithms: dominance-based algorithms, indicator-based algorithms, and decomposition-based al-
gorithms. Dominance-based algorithms assign fitness based on Pareto dominance of the solution.
Indicator-based algorithms use indicators to determine the selection of individuals. Decomposition-
based algorithms decompose the problem into smaller sub-problems using scalarization, and these
are solved collaboratively. Whereas the first type mainly deals with fewer objectives, the latter two
types are more suitable for problems with a higher number of objectives (Sharma & Kumar, 2022).

Evolutionary algorithms face significant challenges when dealing with constraints, so in order to ensure
that the solutions are feasible, the use of constraint handling techniques, such as penalty functions,
constraint dominance, and feasibility rules, is employed. These techniques can increase the complexity
and computational effort required, as the algorithm must repeatedly check the feasibility of solutions
and apply constraint handling techniques.

Fitness functions are applied to evaluate the generated solutions and play a crucial role to guide the
selection process. In the context of constrained optimisation, fitness functions must not only evaluate
the objective functions but also account for the feasibility of solutions. Penalty-based fitness functions,
for example, add a penalty to the fitness value of infeasible solutions, making them less likely to be
selected. Constraint dominance prioritises feasible solutions over infeasible ones, ensuring that the
algorithm focusses on finding feasible solutions before optimising the objective functions. Adaptive
fitness functions can dynamically adjust the evaluation criteria during the optimisation process, allowing
the algorithm to adapt to the changing landscape of the solution space.

General form
Evolutionary algorithms work by defining a population consisting of individuals. The individual repre-
sents a potential solution. The initial population is generated at random. This population is then ex-
posed to natural selection, where the individuals are evaluated on their fitness. Individuals with a high
fitness are selected to become parents, who develop offspring called children. Parents and children
become the new population, and the other individuals are removed to maintain a constant population
size. To ensure that there is variation in the solutions, two concepts are applied. Crossover ensures
that part of the properties of the parents are represented in the children, while mutation is applied prob-
abilistically to individuals, introducing random changes that diversify the offspring beyond the direct
traits of their parents. This ensures that the algorithm is spread over the objective function space. Af-
ter the new population has been generated, the fitness is again assessed, and the process continues
until the termination criteria are met. The benefits of evolutionary algorithms include their flexibility in
handling both continuous and discrete variables, making them suitable for a wide range of problems.
They provide robust solutions by exploring a large solution space and are adaptable to changes in the
problem formulation or objectives. However, evolutionary algorithms require significant computational
effort and expertise to implement. They are more complex and time-consuming than other optimisation
methods. In addition, the results are sensitive to the choice of parameters, which can affect the quality
of the solutions (Selçuklu, 2023).
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Non-Dominated Sorting Genetic Algorithm-II
NSGA-II, developed by Deb et al. (2000), is one of the most influential and widely adopted multi-
objective evolutionary algorithms. NSGA-II introduces an efficient non-dominated sorting procedure
and a crowding distance mechanism to ensure diversity in the population. Individuals are ranked ac-
cording to Pareto dominance in successive fronts, with the best front assigned the highest rank. Within
each front, a crowding distance is computed based on the relative spacing between neighbouring so-
lutions in the objective space. This helps guide the selection toward both convergence and diversity.
The algorithm implements elitism by combining the parent and offspring populations before sorting and
selecting, thereby ensuring the survival of the best individuals. NSGA-II is particularly effective for
problems with two or three objectives and is computationally efficient with a complexity of O(M ∗N2),
where M is the number of objectives and N the size of the population. Its main disadvantages are
the reduced performance in problems with many objectives (often more than three), where dominance-
based methods tend to lose resolution and diversity. Nevertheless, its simplicity, robustness, and wide
availability in software libraries make it a default choice for many real-world multi-objective optimisation
problems.

Strength Pareto Evolutionary Algorithm 2
The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is an advanced multi-objective evolutionary al-
gorithm introduced by Zitzler et al. (2001) as an improvement over the original SPEA. It addresses two
critical limitations of its predecessor: lack of elitism and insufficient preservation of diversity. SPEA2
maintains an external archive of non-dominated solutions, which directly contributes to elitism and
supports convergence to the Pareto front. Each individual in the combined population (archive + cur-
rent generation) is evaluated using a fitness function that combines two components: Strength, which
quantifies how many individuals are dominated by a given solution, and a density estimate based on
the distance to the k-th nearest neighbour in objective space. This dual mechanism allows SPEA2 to
achieve both convergence and diversity among solutions. However, SPEA2 can be computationally
more expensive than other evolutionary algorithms due to archive management and distance-based
calculations. Furthermore, the quality of the results depends on the choice of archive size and neigh-
bourhood size k. Despite these challenges, SPEA2 has been shown to outperform earlier algorithms
in maintaining a well-distributed Pareto front across a wide range of test problems and is widely used
in engineering and operations research contexts.

Conclusion
Within the fields of MOO and MCDA, various methods have been developed to address complex de-
cision problems involving multiple, often conflicting objectives. MOO focusses on identifying a set of
efficient solutions that represent optimal trade-offs across objectives, while MCDA provides a structured
framework to evaluate these solutions in light of context-specific preferences and qualitative consider-
ations.

Together, they offer complementary capabilities: MOO generates the technical trade-off space and
MCDA translates that space into actionable priorities for decision makers. This complementarity under-
pins the comparative analysis that follows, which evaluates their suitability to guide sustainable fleet
renewal decisions in the PoR context.
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4.3. Comparative analysis
This section presents a comparative evaluation of modelling approaches relevant to strategic fleet re-
newal under sustainability constraints. Two methodological domains are considered: MOO techniques,
which are used to generate a range of trade-off solutions, and MCDA techniques, which are used to
evaluate and prioritise these solutions in line with stakeholder preferences. The comparison aims to
identify the strengths and limitations of each method in relation to criteria such as transparency, ease of
use, constraint handling, trade-off exploration, and stakeholder alignment. The goal of this comparison
is to critically assess the methods and identify those most appropriate for the fleet renewal case study.

4.3.1. Multi-objective optimisation comparison
Within the context of MOO, three scalarization methods and two evolutionary algorithms have been
reviewed for their applicability to the fleet renewal problem: the weighted sum method, the ε-constraint
method, the reference point method, NSGA-II and SPEA2. These methods are compared according
to four grouped criteria: usability, technical capability, decision relevance, and operational factors. The
comparison results are presented in Table 4.2.

Criterion Weighted Sum Reference Point ε-Constraint NSGA-II / SPEA2
Usability
Ease of use High Medium High Medium
Transparency High Medium High Low

Technical capability
Constraint handling High High High Low
Trade-off exploration Low Medium High High
Decision relevance
Preference inclusion Yes Yes No No

Operational
Computation time Low Medium High High
Result reproducibility High High High Low

Table 4.2: Comparison of multi-objective optimisation methods.

The ε-constraint method aligns most closely with the specific requirements of the PoR case study. It
systematically explores the Pareto front by optimising one objective while treating the others as con-
straints. This provides a high level of transparency and ensures constraints satisfaction, which is crucial
for operational planning. One drawback is the increased computational burden, due to repeated single-
objective solves.

The weighted-sum method offers simplicity and fast computation, but is limited in its ability to fully
explore trade-offs. The predetermined weights introduce subjectivity and limit the discovery of non-
convex portions of the Pareto front. The reference point method addresses this by using aspiration
levels for each objective, though it requires a priori input and may not generate full front coverage.

NSGA-II and SPEA2, two evolutionary algorithms, perform well in generating well-distributed Pareto
fronts and are widely used in academic research. NSGA-II applies non-dominated sorting and crowding-
distance metrics, while SPEA2 enhances convergence through elitism and strength ranking. However,
both methods rely on stochastic mechanisms, resulting in non-deterministic outputs, and have limited
capability to strictly enforce constraints. These drawbacks, combined with their lower transparency
and high computational load, make them less suitable for stakeholder-facing, policy-constrained appli-
cations such as the PoR fleet renewal challenge.

In conclusion, while each MOO method offers valuable features, the ε-constraint method strikes the
most effective balance between transparency, reproducibility, and technical robustness for the case
study.
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4.3.2. Multi-criteria decision analysis comparison
To evaluate and rank the non-dominated alternatives obtained from the optimisation stage, a range
of MCDA techniques are considered. These methods serve to help decision makers translate multidi-
mensional outcomes into actionable priorities under different stakeholder views. The following methods
are evaluated: AHP, ANP, TOPSIS, PROMETHEE, ELECTRE, and DEA. Each method is assessed
according to four core criteria: transparency, ease of use, dependency handling, and inclusion of pref-
erences. These results are summarised in Table 4.3.

Criterion AHP ANP TOPSIS PROMETHEE ELECTRE DEA
Transparency Medium Low High Medium Low Medium
Ease of Use Medium Low High Medium Medium Medium
Dependency Handling No Yes No Limited No Implicit
Preference Inclusion Yes Yes Yes Yes Yes No

Table 4.3: Comparison of multi-criteria decision analysis methods.

AHP is a structured method widely used in MCDA applications, particularly when transparency is im-
portant and the number of criteria is moderate. However, it becomes less tractable as the number
of criteria and alternatives grows due to the exponential increase in pairwise comparisons. ANP ex-
tends AHP by incorporating interdependencies among criteria, improving expressiveness but reducing
interpretability and ease of use.

While PROMETHEE enables nuanced preference modelling and detailed ranking, the interpretability
of its results may pose challenges for non-technical stakeholders. ELECTRE is suitable for eliminat-
ing dominated alternatives, but does not yield a full ranking and requires subjective concordance and
discordance thresholds.

DEA represents a distinct approach among the MCDA methods discussed. It evaluates relative effi-
ciency by comparing alternatives as decision-making units that transform multiple quantitative inputs
into multiple outputs. DEA avoids subjective weighting by constructing an empirical efficiency frontier.
However, this strength is also a limitation: DEA cannot reflect explicit stakeholder preferences and as-
sumes consistent quantitative data structures across all alternatives. Its applicability is strongest when
the inputs and outputs are strictly numerical and directly comparable, which may not hold in complex
multi-dimensional trade-off scenarios like public-sector fleet renewal.

In general, the choice of the MCDA method involves a trade-off between interpretability, analytical
robustness, and preference expressiveness. TOPSIS was ultimately selected for this thesis due to
its intuitive structure, computational efficiency, and suitability for transparent stakeholder engagement
within the PoR context.

4.3.3. Synthesis of comparative results
The comparative analysis of MOO and MCDA techniques reveals complementary strengths that can
be strategically combined to support sustainable fleet renewal decisions at the PoR. The ε-constraint
method demonstrated the highest alignment with case-specific requirements among MOO techniques,
due to its transparency, strong constraint handling capacity, and suitability for systematic trade-off ex-
ploration. It enables decision makers to construct a Pareto front without requiring a priori weighting of
objectives, thus maintaining neutrality in the exploration of conflicting goals such as life-cycle emissions
and cost.

Among the MCDA methods, TOPSIS was identified as particularly suitable for evaluating the non-
dominated solutions generated by MOO. Its conceptual simplicity, visual interpretability, and low com-
putational burden make it accessible to a wide range of stakeholders. In contrast to efficiency-based
techniques like DEA, which evaluate performance based on objective input-output relationships, TOP-
SIS enables ranking alternatives based on explicitly defined stakeholder preferences, which is essential
in this value-sensitive context.
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The combination of the ε-constraint method for solution generation and TOPSIS for solution selection
allows for a transparent and modular two-stage decision support framework. This hybrid structure
aligns with the operational and strategic needs of the PoR by enabling a clear separation between
technical optimisation and stakeholder-driven decision making. It supports both exploratory insight
and actionable guidance and forms the basis for the modelling approach proposed in the next chapter.

4.4. Conclusion
Fleet renewal modelling has evolved significantly from deterministic linear optimisation approaches to
more advanced techniques, including stochastic optimisation, MOO, and approximate methods. This
evolution reflects the increasing complexity of decision making in fleet management, where multiple
objectives, such as cost minimisation and sustainability, must be balanced against various constraints,
including budget limitations, regulatory compliance, and operational feasibility.

LiP andMILP remain fundamental in deterministic formulations, offering high accuracy and interpretabil-
ity. However, these methods often struggle with real-world complexities, such as uncertainty and non-
linear relationships. To address these challenges, extensions such as chance-constrained program-
ming and robust optimisation have been developed, enabling models to account for risk sensitivity and
uncertainty margins.

StP has emerged as a powerful tool for capturing uncertainty over time by defining multiple scenarios,
allowing for the identification of optimal solutions that perform best on average under uncertain condi-
tions. ADP further enhances decision making by finding near-optimal solutions, reducing computation
time while covering a broad feasible region. These advances are particularly valuable in complex,
real-world applications where traditional methods fall short.

Building on deterministic methods such as LiP and MILP, MOO has emerged as a robust framework for
navigating trade-offs inherent in fleet renewal strategies. MOO methods aim to generate a diverse set
of non-dominated solutions, offering a comprehensive view of the solution space. Two common families
of MOO techniques are scalarization methods, such as the weighted sum or ϵ-constraint, which convert
the multi-objective problem into a series of single-objective ones; and evolutionary algorithms, such as
NSGA-II or SPEA2, which simulate natural selection processes to iteratively improve solution sets.

MCDA has gained prominence as a means to formalise and integrate stakeholder preferences within
multi-criteria decision environments. Methods like AHP, TOPSIS, and ELECTRE offer structured ap-
proaches to evaluating alternatives based on multiple criteria, incorporating subjective preferences and
uncertainties into the decision-making process.

Although there is a wide range of methods for addressing problemswithmultiple objectives and decision
criteria, each comes with trade-offs in complexity, transparency, and alignment with stakeholder en-
gagement. In the context of the PoR, where transparency, traceability, and ease of use are paramount,
the selected hybrid approach offers a balanced solution. The use of MOO enables the generation of
Pareto-optimal solutions without requiring predefined preferences. To do so, the ϵ-constraint method is
employed, which allows one primary objective to be optimised while the other is transformed into a con-
straint. By changing the bounds of this constraint, the trade-offs are explored throughout the solution
space.

Once a diverse set of Pareto-optimal solutions is generated, MCDA is applied a posteriori to guide the
selection of preferred alternatives. The chosen technique, TOPSIS, ranks alternatives based on their
geometric proximity to an ideal and anti-ideal point across all criteria. This method is well-suited to con-
texts where decision makers wish to balance conflicting objectives and require intuitive, interpretable
outputs. The combination of ε-constraint optimisation and TOPSIS-guided evaluation results in a deci-
sion support framework that is both operationally viable and methodologically transparent. This hybrid
structure forms the foundation for the framework introduced in chapter 6.



5
Conclusion

This chapter concludes the literature review by summarising the key insights and limitations identified
in the literature on fleet renewal. Although substantial work has been done in areas such as cost
modelling and emissions evaluation, existing approaches often treat these aspects in isolation and
lack mechanisms for balancing trade-offs transparently, especially in combination with a focus on the
operational capacity during the fleet renewal.

The reviewed literature also reveals significant blind spots in the inclusion of operational capacity. Op-
erational aspects such as maintenance-induced downtime and recertification requirements are often
omitted, despite their real-world relevance in determining vessel availability and long-term planning
feasibility, as well as the inclusion of sufficient skilled personnel and facilities to support fleet renewal.
Likewise, while many models assign a monetary cost to emissions through carbon pricing or taxation,
the correct amount to fully internalise the external cost is difficult to determine, with market prices for
CO2 emissions far below the estimated cost of removing CO2 from the air. Different frameworks are
detailed for determining the amount of emissions, together with multiple impact categories.

Beyond technical and operational factors, this review also acknowledges the ethical complexities asso-
ciated with emerging fleet technologies. The sourcing of battery materials, such as lithium, cobalt, and
nickel, raises issues related to labour rights, environmental degradation, and geopolitical dependencies.
Mining activities may also cause significant pollution emissions in the local area. The trade-off between
less pollution in one location, at the cost of more pollution and poor labour conditions at another loca-
tion, raises serious ethical questions. This underlines the importance of a transparent module, where
trade-offs can be mapped, to provide the needed decision support to the decision maker.

For decision support, mathematical optimisation has been used to generate optimal solutions or MCDA
to compare different alternatives based on multiple criteria. These findings collectively justify the de-
velopment of a two-stage decision support model, combining MOO with MCDA. This structure allows
the exploration of trade-offs via non-dominated solution sets and the incorporation of stakeholder pref-
erences a posteriori. The main objectives to optimise are the global CO2 emissions, assessed by the
LCA method for the CTG and GTC stages, together with LP in terms of CO2, NOx and PM, assessed
with the WTW framework. The economic objective is the minimisation of the TCO. By analysing dif-
ferent scenarios and strategic pathways, multiple future perspectives can be investigated in terms of
pricing and emission consequences. The next chapter outlines the detailed methodology of this frame-
work, structured to address the complex, multi-dimensional nature of fleet renewal in a transparent and
adaptable way.
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6
Framework implementation

To support the PoR in its goal of renewing its fleet in an environmentally and economically sustainable
manner, a decision support framework has been developed. This chapter presents the architecture and
methodology of the framework in section 6.1, which encompasses its layered structure, mathematical
formulation, and decision support mechanisms. By integrating economic and environmental criteria
within a hybrid MOO and MCDA framework, the framework generates renewal schedules that balance
TCO, lifecycle CO2 and LP emissions under realistic operational constraints. The verification of the
framework is discussed in section 6.2. A range of strategic sustainability pathways and economic sce-
narios are defined to provide information on possible policy and investment choices, the development
of these pathways and scenarios is discussed in section 6.3 and section 6.4. The chapter is concluded
with a summary in section 6.5.

6.1. Architecture
The framework is structured into three integrated layers. As discussed in chapter 4, a combination
of ε-constraint and TOPSIS allows the generation of non-dominated alternatives, which can then be
evaluated based on the preferences of the stakeholders. Before the generation of alternatives, the
raw input data is consolidated. This is done in the first layer, referred to as the preprocessing layer,
translating the data into structured economic and environmental indicators relevant to the selected
strategic pathway or scenario. These indicators include both economic (e.g., fuel cost, CAPEX and
OPEX) and environmental indicators (e.g., CTG, GTC and WTW). The second layer contains of the
MOOmodel, which solves the problem using the data provided by the preprocessing layer. It evaluates
strategies that simultaneously minimise TCO, lifecycle CO2 emissions and LP NOx emissions, using
the ε-constraint method to generate the Pareto front of non-dominated solutions. Finally, the third layer
comprises the decision support system, which applies the TOPSIS method to rank Pareto-optimal
solutions based on stakeholder-defined preferences. This supports transparent and strategic selection
among trade-off solutions. An overview of the complete framework is visualised in Figure B.1.

6.1.1. Preprocessing layer
The preprocessing layer is responsible for aggregating, transforming and structuring technical, envi-
ronmental, and economic input data into a suitable form for optimisation. This is done for the various
assets simultaneously.

Figure 6.1 presents the internal architecture of this layer. The blue components represent scenario-
specific input for the case study. The input for the different assets is derived from the PoR data. The
green components reflect emission factors drawn from empirical data and literature. These are used
to calculate the emissions and fuel cost per asset (dark blue). The resulting outputs (orange) form
the left-hand side input for the MOO model. For these assets, costs are assumed to be exogenous to
strategic choices such as production location or material composition.
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Figure 6.1: Preprocessing layer architecture.

Within this layer, parameters are calculated for vessels, infrastructure, batteries, and energy carriers.
Two types of infrastructure are distinguished, BSM and SP. Emissions from BSM infrastructure include
crane CTG emissions, whereas emissions from the preparation of the infrastructure location are not
included. The associated cost of constructing the charging locations is included. The battery cost
parameters apply exclusively to external battery packs used in the IRV, PV, and NM classes. For
the sPV and SV vessel classes, internal batteries are considered part of the overall vessel cost, with
embedded emissions allocated to the vessel’s CTG and GTC emissions.

Lifecycle emissions are assessed in three stages, processing, production, and dismantling. Processing
emissions result from the extraction and refinement of raw materials. Production emissions reflect the
transformation of these materials into final components, and dismantling emissions account for the
controlled breakdown of assets to enable material recovery. Each stage includes both direct emissions
from physical operations and indirect emissions from electricity consumption, which depends on the
regional grid mix. Emissions are calculated separately for vessels, batteries, and BSM infrastructure.
The GTC emissions of the BSM are excluded, as its EOL lies beyond the planning horizon. The stages
are visualised in Figure 6.2.
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Figure 6.2: Lifecycle emission phases: Processing, production, and dismantling.

Transport emissions are assessed in three stages, the transport of materials to production sites, delivery
of finished products to Rotterdam, and post-decommissioning transport of dismantled assets to material
recovery locations. The dismantled materials are assumed to be reused locally without further transport.
These emissions are calculated based on asset weight, origin-destination distances, and fuel-specific
emission factors. The cost of fuel consumption is calculated using vessel-specific fuel consumption
and the type of fuel used. This can be conventional marine diesel oil (MDO), HVO, or electricity (grey
or green). These processes are represented in Figure 6.3.
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Figure 6.3: Transport emissions and fuel cost estimation.

Emissions are categorised into three key lifecycle metrics. CTG emissions are calculated by aggre-
gating the emissions from processing, production, and upstream transport. GTC emissions include
dismantling emissions and any post-use transport. WTW emissions cover operational emissions from
fuel combustion or electricity consumption and are influenced by the type of fuel and the vessel-specific
exhaust gas treatment systems. The respective categories are depicted in Figure 6.4.
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Figure 6.4: Life cycle emission categories.

The economic components of the preprocessing layer consist of calculating CAPEX and OPEX for all
assets. The CAPEX consists of the sum of all purchases and salvages of the assets at each time
step. The OPEX consists of the sum of the insurance cost of the vessels, the operating cost of the
various assets, and the large maintenance of the vessels at each time step. The values are derived
from internal historical data and expert assumptions provided by the PoR Asset Management team,
responsible for the maintenance of the current fleet. Costs are adjusted for inflation using a cumulative
quarterly rate to account for higher prices if purchases occur at later timesteps. The residual value of
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the company asset at the moment of salvage is determined by depreciating the current book value over
time, using the prime-cost method. The cost architecture is shown in Figure 6.5. The fuel cost is kept
separate of the OPEX, to differentiate between vessels that are in reserve or operational at different
timesteps.
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(b) Operational expenditure factors.

Figure 6.5: Economic indicators: Capital and operational expenditures.

By consolidating technical specifications, economic parameters, and environmental performance met-
rics, the preprocessing layer produces a consistent dataset that supports multi-criteria analysis. This
ensures that cost and emissions are assessed with full lifecycle awareness and remain comparable
across scenarios. The preprocessing layer serves as the foundation of the decision support model. It
is responsible for gathering all the required input data and translating it into the economic and envi-
ronmental indicators necessary for the optimisation layer. This involves a structured transformation of
scenario inputs into numerical outputs that represent capital and operational costs, as well as life cycle
emissions associated with each asset configuration.

The code of the preprocessing layer is divided into four parts, corresponding to the colours of the blocks.
The code is included in Appendix C.

6.1.2. Multi-objective optimisation layer
The MOO layer determines the optimal fleet renewal strategy, constrained by the inputs and param-
eters generated in the preprocessing layer. To reduce computational complexity, the optimisation is
performed separately for each vessel class. Although this class-wise separation limits the ability to
capture infrastructure synergies between vessel types, it offers significant gains in the required compu-
tation time. The inputs provided by the preprocessor layer are illustrated in Figure 6.6a.

To address the conflicting objectives, the ε-constraint method is applied. In this formulation, TCO is
optimised as the primary objective, while LCA emissions and LP are incorporated as constraints. The
LCA component includes CO2 emissions in the CTG, GTC and WTW stages. In contrast, the LP
criterion reflects the impacts of NOx and PM. By systematically varying the admissible values of LCA
and LP, using thresholds obtained from single-objective baseline runs, the model constructs a Pareto
frontier. This frontier captures the trade-offs between economic and environmental performance and
enables the identification of efficient, non-dominated solutions for further analysis.

The model formulation incorporates several categories of constraints to ensure that the optimisation
reflects operational and technical realities. Vessel state transition constraints govern how vessels age,
are maintained, and eventually replaced. Fleet composition logic enforces the exclusivity rules and
guarantees adequate coverage of operational needs. Demand fulfilment constraints match the avail-
able fleet capacity with service requirements, while battery composition constraints ensure that suffi-
cient battery packs are available for uninterrupted operation. Finally, infrastructure composition con-
straints capture the charging requirements for the different vessel classes. The structured input and
interaction of these constraints are visualised in Figure 6.6b, illustrating how they collectively define the
feasible solution space for the model.

The mathematical implementation of the MOO model is carried out in Python using the Gurobi, as
shown in Figure 6.7. Gurobi was selected for its robust performance in the implementation of large-
scale MILPs. Gurobi’s advanced branch-and-bound algorithms, presolve and warm-start techniques,
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and multithreaded optimisation capabilities make it well suited to handle the computational demands
of the ε-constraint approach, which requires repeated solves under the varying ε-constraint thresholds.
Its Python API further facilitates seamless integration with the pre- and post-processing layers of the
decision support framework. By looping through the various ε-constraints, each optimisation run deliv-
ers a set of class-specific Pareto-optimal solutions, which are then combined and are passed on to the
decision support layer for MCDA.

The MOO layer code consists of five scripts as documented in Appendix D. One script sets the correct
model configuration depending on the class, a second script determines the class-specific parameters
such as the required demand and batteries. The third script builds the Gurobi model. The fourth script
combines the previous three scripts and employs them to use the ϵ-constraint method. The final scripts
run all the previous scripts and extract the data from the various runs. For the data extraction and
visualisation, three support scripts are used, which are documented in Appendix E.

WTW 
Emissions

CTG Emissions

GTC Emissions LCA

CO2

LP
NOX/PM

CAPEX

OPEX

TCO

Fuel CostFuel Cost

(a) Preprocessed input.
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Transition
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(b) Multi-objective optimisation constraints.

Figure 6.6: Overview of preprocessed input and constraint structures for the multi-objective optimisation layer.

TCO

Decision
variables

Objective Function

(a) Objective definition.
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(b) Solver integration.

Figure 6.7: Implementation of the multi-objective model and solver.
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Mathematical notation
The mathematical notation of the MOO problem, consisting of the used sets, parameters, and decision
variables, is provided in Table 6.1.

Symbol Description
Sets

A Set of vessels
J Set of possible ages (in quarters)
T Set of discrete time periods (in quarters)
E Set of emission types (CO2, NOx, PM)
H Set of infrastructure types (BSM & SP)

Parameters
beol_a End-of-life age for batteries
bacq_c Acquisition cost of battery in time t
bres_c Residual value of battery at end-of-life
bom_c Operation and maintenance cost of battery in time t
bctg_e Cradle-to-gate GHG emissions of battery asset in time t
bgtc_e Grave-to-cradle GHG emissions of battery asset in time t
bd Battery demand per vessel
dreq Required number of operational vessels per time period
dres Required number of reserve vessels per time period
fc Fuel cost for vessel i in time t
fe Emission vector per unit fuel for vessel i in time t: [CO2,NOx,PM]

iacq_c Infrastructure acquisition cost of type h in time t
iom_c Infrastructure maintenance cost of type h in time t
ires_c Residual value of infrastructure of type h at end-of-horizon
ictg_e Cradle-to-gate GHG emissions of infrastructure asset of type h in time t
id Amount of vessels supported by a single infrastructure asset of type h
vi_a Initial age of current vessel a
veol_a End-of-life age for each vessel a
vacq_c Acquisition cost of vessel a in time t
vmaint_c Maintenance cost for vessel a at age j in time t
vres_c Residual value of vessel a at age j
vom_c Operation cost of vessel a in time t
vins_c Insurance cost of vessel a in time t
vctg_e Cradle-to-gate GHG emissions of vessel a in time t
vgtc_e Grave-to-cradle GHG emissions of vessel a in time t

Decision variables
Oajt 1 if vessel a operates at age j in time t
Rajt 1 if vessel a is in reserve at age j in time t
Uajt 1 if vessel a is under maintenance at age j in time t
Sajt 1 if vessel a is decommissioned at age j in time t
Pat 1 if vessel a is purchased in time t
Qt Number of new batteries acquired in time t
Wjt Number of batteries used at age j and time t
Vjt Number of batteries in reserve at age j and time t
Xjt Number of salvaged batteries at end-of-life age j in time t
Yht Number of infrastructure units of type h acquired in time t
Zhjt Number of infrastructure units of type h installed of age j in time t

Table 6.1: Model sets, parameters, and decision variables.
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Objective functions
The fleet renewal model incorporates three objectives that represent economic and environmental con-
cerns. These are evaluated using the ε-constraint method, with the TCO as the primary objective and
the LCA and LP as bounded constraints.

To ensure cost realism, insurance costs are considered annually regardless of vessel operational status,
including reserve and maintenance. Similarly, operating expenses are applied to all vessels that are
active, in service or in reserve, reflecting ongoing maintenance and other fixed annual costs.

Total cost of ownership: The TCO includes the CAPEX and OPEX for vessels, batteries, and infras-
tructure, as well as fuel costs.

min f1(x) =
∑
a,t

Pat · vacq_cat −
∑
a,j,t

Sajt · vres_ca,t−j,t︸ ︷︷ ︸
Vessel CAPEX

+
∑
a,j,t

Oajt ·
(
vom_cat + vins_ca,t−j,t + vmaint_cajt

)
︸ ︷︷ ︸

Vessel OPEX (Operational)

+
∑
a,j,t

Rajt ·
(
vom_cat + vins_ca,t−j,t + vmaint_cajt

)
︸ ︷︷ ︸

Vessel OPEX (Reserve)

+
∑
a,j,t

Uajt ·
(
vom_cat + vins_ca,t−j,t + vmaint_cajt

)
︸ ︷︷ ︸

Vessel OPEX (Maintenance)

+
∑
t

Qt · bacq_ct −
∑
j,t

Xjt · bres_ct−j,j︸ ︷︷ ︸
Battery CAPEX

+
∑
j,t

Wjt · bom_ct︸ ︷︷ ︸
Battery OPEX

+
∑
h,t

Yht · iacq_ct︸ ︷︷ ︸
Infrastructure CAPEX

+
∑
h,t

Zhjt · iom_ct︸ ︷︷ ︸
Infrastructure OPEX

+
∑
a,t

Osjt · f cst︸ ︷︷ ︸
Fuel Costs

(6.1)

Life cycle emissions: The LCA objective aggregates CO2 equivalent emissions from the CTG, GTC,
and WTW perspectives for all assets:

min f2(x) =
∑
a,t

Pat · vctg_eit︸ ︷︷ ︸
Vessel CTG emissions

+
∑
a,t

Sajt · vgtc_eit︸ ︷︷ ︸
Vessel GTC emissions

+
∑
a,t

Oajt · fei,CO2,t︸ ︷︷ ︸
Operational WTW emissions

+
∑
h,t

Yht · ictg_et︸ ︷︷ ︸
Infrastructure CTG emissions

+
∑
t

Qt · bctg_et︸ ︷︷ ︸
Battery CTG emissions

+
∑
t

Xjt · bgtc_et︸ ︷︷ ︸
Battery GTC emissions

(6.2)

Local pollution: The third objective minimises NOx emissions, which are correlated with PM. Only
operational vessels contribute to these emissions:

min f3(x) =
∑
a,t

Oajt · fea,NOx︸ ︷︷ ︸
Operational NOx emissions

(6.3)
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Constraints
The optimisation model is governed by a comprehensive set of constraints that ensure logical con-
sistency, physical feasibility, and operational feasibility throughout the vessel fleet, batteries, and in-
frastructure components. These constraints are grouped into five functional categories: Vessel state
transition, fleet composition logic, demand fulfilment, battery composition, and infrastructure composi-
tion.

Vessel state transition The fleet evolves through four mutually exclusive operational states: opera-
tional (O), reserve (R), maintenance (U ), or salvaged (S). Existing vessels are assigned exactly one
state in the initial period (Equation 6.4), and all vessels can only be in one state per time step (Equa-
tion 6.5). As vessels age, their state transitions across periods (Equation 6.6). New vessels enter at
zero age one period after purchase (Equation 6.7).

Oivia0 +Rivia0 + Uivia0 + Sivia0 = 1 ∀i with via known (6.4)
Oijt +Rijt + Uijt + Sijt ≤ 1 ∀i, j, t (6.5)

Oi,j+1,t+1 +Ri,j+1,t+1 + Ui,j+1,t+1 + Si,j+1,t+1 = Oijt +Rijt + Uijt + Sijt − Sijt ∀i, j, t (6.6)
Oi,0,t+1 +Ri,0,t+1 + Ui,0,t+1 + Si,0,t+1 = Pit ∀i ∈ Inew, t (6.7)

Fleet composition logic Each vessel may be purchased at most once (Equation 6.8) andmust be sal-
vaged at most once (Equation 6.9). A new vessel may only be active after its purchase (Equation 6.10).
If a vessel reaches a defined maintenance age, it must be maintained or have been salvaged before
(Equation 6.11, Equation 6.12). Salvage is enforced when the EOL threshold is reached (Equation 6.13,
Equation 6.14).

In these constraints, the symbol τ denotes an index over the set of time periods. It is used as a
reference period in the summations, relative to t. τ < t indicates the summation of all periods prior to t
Expressions such as τ include the current period as well. When τ appears as a free index, it indicates
that the constraint is applied for each possible purchase period.

∑
t

Pit ≤ 1 ∀i ∈ Inew (6.8)∑
j,t

Sijt ≤ 1 ∀i (6.9)

Oijt +Rijt + Uijt + Sijt ≤
∑
τ<t

Piτ ∀i ∈ Inew, j, t (6.10)

Sijt +
∑

τ∈T :τ≤t

Uijτ = 1 for maintainable j, t, ∀i ∈ Iexisting (6.11)

∑
t∈T :t≤τ

Uijt = Piτ for maintainable j, ∀i ∈ Inew, τ (6.12)

∑
j,t

t≤T eol
i

Sijt = 1 ∀i ∈ Iexisting (6.13)

∑
j,t

t≤T eol
i,τ

Sijt = Piτ ∀i ∈ Inew, τ (6.14)

Demand fulfilment To ensure minimum system availability, a minimum number of operational and
reserve vessels is required in each period. These constraints can be applied quarterly or annually.
In the quarterly form shown below, the operational vessels must exceed dreq (Equation 6.15) and the
reserve vessels must exceed dres (Equation 6.16).
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∑
i,j

Oijt ≥ dreq ∀t (6.15)

∑
i,j

Rijt ≥ dres ∀t (6.16)

Battery composition Batteries enter the system at zero age upon purchase (Equation 6.17) and
age incrementally over time (Equation 6.18). Battery usage is tied to vessel operations: Operational
vessels require two sets of battery packs, as they need to be changed during their shifts. Reserve
vessels require one set, because if they become operational and another vessel goes in reserve, the
second set of that vessel will be taken over (Equation 6.19). At the EOL, the salvage of battery units is
enforced (Equation 6.20).

V0t +W0t = Qt ∀t (6.17)
Vjt +Wjt = Vj−1,t−1 +Wj−1,t−1 ∀j ≥ 1, t ≥ 1 (6.18)∑

j

Wjt =
∑

i∈Inew,j

(2bd ·Oijt + bd ·Rijt) ∀t (6.19)

Xbeol,t = Qt−beol ∀t ≥ beol (6.20)

Infrastructure composition The cumulative installed infrastructure must be equal to the sum of pre-
vious purchases (Equation 6.21), and must be sufficient to serve operational vessels (Equation 6.22).
The ageing of infrastructure is modelled in (Equation 6.23).

∑
j

Zhjt =
∑
τ≤t

Yhτ ∀t (6.21)

∑
j

Zhjt ≥ id ·
∑

i∈Inew,j

Oijt ∀t (6.22)

Zhjt = Zh,j−1,t−1 ∀j ≥ 1, t ≥ 1 (6.23)

6.1.3. Decision Support Layer
The decision support layer constitutes the final analytical component of the fleet renewal decision sup-
port framework. It interprets the set of non-dominated solutions produced by the MOO layer and selects
a recommended strategy that aligns with stakeholder preferences.

Given the trade-off nature of MOO, the results consist of a Pareto front comprising multiple equally
optimal solutions. However, from a strategic planning perspective, decision makers require a single
actionable recommendation. To bridge this gap, an MCDA framework is employed, as shown in Fig-
ure 6.8. This framework enables stakeholders to articulate their relative preferences by assigning
weights to each criterion, which are then used to rank and select the most desirable solution from the
Pareto front. The script used to perform TOPSIS is supplied in Appendix F.

Pareto Solutions

Stakeholder
Preferences

TOPSIS Ideal Solution

Figure 6.8: Illustration of the TOPSIS decision framework.
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TOPSIS methodology
TOPSIS ranks alternatives based on their geometric proximity to an ideal (best-case) solution and their
distance from a nadir (worst-case) solution. In this context, each Pareto-optimal solution is evaluated
on three criteria: The TCO, the LCA and the LP, all of which need to be minimised.

The layer performs the following steps:

Let S be the set of Pareto optimal solutions, and let each solution s ∈ S have an associated performance
vector:

ys = (f1(s), f2(s), f3(s))

where f1, f2, and f3 correspond to LCA, TCOres, and LP, respectively.

Normalisation: Each criterion is normalised using Min-Max scaling to ensure comparability.

f̂j(s) =
fmaxj − fj(s)

fmaxj − fminj

, j ∈ {1, 2, 3}

This transformation reverses the scale, since all criteria are to be minimised. After normalisation, all
values are in the interval [0, 1], where higher values are preferred.

Ideal and Nadir solutions: Define the ideal solution as follows:

y+ =

(
max
s∈S

f̂1(s),max
s∈S

f̂2(s),max
s∈S

f̂3(s)

)
and the nadir solution as:

y− =

(
min
s∈S

f̂1(s),min
s∈S

f̂2(s),min
s∈S

f̂3(s)

)
Distance calculation: For each solution s, compute the weighted Euclidean distance to the ideal and
the nadir:

D+
s =

√√√√ 3∑
j=1

wj ·
(
f̂j(s)− f̂+

j

)2

(6.24)

D−
s =

√√√√ 3∑
j=1

wj ·
(
f̂j(s)− f̂−

j

)2

(6.25)

where wj denotes the relative importance (weight) of criterion j, such that:

3∑
j=1

wj = 1 and wj ≥ 0

TOPSIS score: The relative proximity to the ideal solution is calculated as follows:

Cs =
D−

s

D+
s +D−

s

A higher Cs indicates a better compromise solution.

Recommendation: The final decision is the solution with the highest TOPSIS score:

s∗ = argmax
s∈S

Cs

This selection represents the strategy that best aligns with the preferences provided by the decision
maker in terms of climate, economic, and local environmental objectives. The TOPSIS approach pro-
vides transparency and repeatability in how these trade-offs are operationalised.
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6.2. Model verification
To verify the logical correctness, internal consistency, and reliability of the proposed fleet renewal deci-
sion support model, the verification process evaluates all three key layers of the model architecture. In
addition, several targeted constraint relaxation tests were conducted to validate the operational integrity
and realism of the internal mechanics of the model.

6.2.1. Pre-processing
The preprocessing layer is responsible for translating technical, economic and environmental input
data into structured model-ready parameters. To verify this process, emission pathways were cross-
validated to ensure that CTG emissions consistently equalled the sum of processing, production, and
transport-related emissions. Likewise, GTC emissions were verified to include dismantling emissions
and EOL transport impacts. The consistency of WTW emissions was checked with the type of fuel and
the energy source of each vessel, adjusting for country-specific electricity grid mixes where appropriate.
Unit consistency across emissions, energy, mass, and cost was systematically verified. A verification
run was performed for the PV fleet, where the cost and emissions of the assets in the first two timesteps
were confirmed by hand calculations. The fleet schedule and asset allocation for this run are provided
in Figure G.1 and Figure G.2. The cost verification calculations are provided in Figure G.3 and the
emission verification calculations in Figure G.4.

6.2.2. Multi-objective optimisation
The MOO layer was tested by observing the model’s behaviour under different fleet compositions, ac-
quisition timings, and emissions profiles. The exclusivity of the states of the vessels was confirmed,
ensuring that a vessel could occupy only one state, operational, reserve, under maintenance, or sal-
vaged, at any point in time. Temporal transitions between vessel ages followed the expected logic, with
vessels progressing through their lifecycle unless salvaged. No vessel was operated prior to acquisition
and no salvaged vessel was reactivated in subsequent time periods.

Demand satisfaction was verified by ensuring that the required number of operational and reserve
vessels was maintained consistently throughout the planning horizon. The availability of batteries and
infrastructure was always consistent with acquisition schedules. The number of batteries in use never
exceeded those acquired and the usage of infrastructure never exceeded the cumulative installations.

The shape of the Pareto front was examined to confirm the existence of trade-offs between TCO, LCA,
and LP. As expected, solutions with lower emissions generally involved higher costs, producing a con-
vex Pareto front.

To verify the functionality of the constraints, selected constraints were temporarily disabled or relaxed
and compared to a baseline, shown in Figures G.5, G.6, G.7 and G.8, where all constraints were
activated. When demand constraints were turned off, the model opted to immediately sell all vessels
(Figure G.9), and not acquire new assets. This also resulted in negative costs (Figure G.10) confirming
that these constraints governed the size of the fleet.

By disabling battery and infrastructure constraints, no infrastructure or batteries were acquired (Fig-
ure G.12). Since battery salvage also no longer is coupled to the acquisition, the maximum battery
salvage occurs, limited by variable bounds. Resulting in negative TCO (Figure G.13). This also makes
the transition to new vessels more economical, leading to a faster transition (Figure G.11). By disabling
salvage and maintenance constraints, fewer vessels are acquired. Furthermore, more vessels are ac-
quired at the the same time steps, as they no longer need to undergo maintenance in the same period
(Figure G.14. This also reduces the cost by €100 million (Figure G.15). Finally, disabling ageing con-
straints shows that the old vessels are no longer in a state at each time-step, while the new vessels
can be salvaged continuously at age zero (Figure G.16). The old vessels still maintain the correct ages,
while there are gaps in some cases, because the state variables are only defined for realistic time and
age combinations, restricting their ageing process (Figure G.17).
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6.2.3. Decision support
The decision support layer uses a TOPSIS-based approach to evaluate the set of Pareto-optimal so-
lutions. Verification focused on accuracy scoring and ranking consistency. For test cases, the scoring
equation was manually implemented using normalised values in all three objectives. The resulting
scores matched those produced by the model, confirming the correct implementation. Figure G.18
shows the hand calculation of the TOPSIS score of two runs with equal weights, with the resulting
scores from the Python script provided in Figure G.19.

All calculated scores were limited within the expected range between 0 and 1. When stakeholder weight-
ings were adjusted to favour a particular objective, such as lifecycle emissions, the model responded
by selecting cleaner but more expensive fleet configurations. In contrast, assigning 100 percent weight
to TCO consistently led the model to select the most cost-effective solution, validating the sensitivity
and responsiveness of the ranking mechanism.

6.3. Strategic pathways
To evaluate the influence of upstream and downstream supply chain decisions on fleet sustainabil-
ity, five strategic pathways are defined. Each pathway represents a coherent scenario composed
of interconnected choices regarding geographic locations, hull materials, fuel sources, and circularity
strategies. These pathways allow the model to examine the trade-offs between global versus local
supply chains, primary versus secondary materials, linear versus circular asset lifecycles, and steel or
aluminium vessel hulls.

The first pathway represents a globally distributed configuration with a conventional supply chain. Hull
materials are processed in the EU, produced in Vietnam, and dismantled in Turkey. Batteries are
produced and dismantled in China. The hull material is basic-oxygen furnace (BOF) steel. Electric ves-
sels use the Dutch mixed grid composition, and conventional vessels use MDO as fuel. This pathway
assumes a full linear economy.

The second pathway explores regional manufacturing and dismantling, using primary aluminium as the
hull material. The electrical mix for the use phase remains unchanged, while conventional vessels use
HVO as fuel. This pathway also assumes a full linear economy.

The third pathway represents a high-sustainability scenario with a local supply chain, clean energy dur-
ing the use phase, and clean energy during the processing, production, and dismantling of the assets.
Secondary aluminium is used for the hull, and batteries are made from new materials. Conventional
vessels use HVO as fuel. This pathway assumes a partly circular economy using recycled materials.

The fourth and fifth pathways represent medium-sustainability scenarios with a regional supply chain,
where all processes are carried out within Europe. The fourth pathway uses secondary aluminium for
the hull, while the fifth pathway uses recycled steel processed by electric arc furnaces (EAF). Vessels
use HVO and clean energy, and batteries are produced from new materials.

By evaluating each configuration through the multi-objective model, the analysis offers insights into
how strategic design choices impact both economic costs and environmental outcomes.
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6.4. Scenario development
To account for financial uncertainty and sensitivity to macroeconomic variables, the model incorporates
three economic scenarios: conservative, standard, and optimistic. These scenarios reflect plausible
ranges in acquisition costs, residual values, maintenance costs, operating costs, insurance premiums,
energy prices, inflation rates, and depreciation rates. Their inclusion enables a robustness analysis of
the results under varying economic outlooks, ensuring that recommendations are not overly sensitive
to optimistic or pessimistic cost assumptions. The price fluctuations are based on the range that PoR
uses in their own cost estimations of 40%.

The standard scenario, corresponding to Pathway 4, applies baseline economic parameters that reflect
current cost levels and inflation expectations at the time of model development. It assumes a yearly
inflation rate of 2% and depreciation rates of 3% for vessels, 8% for batteries, and 2.5% for infrastructure.
Fuel and electricity prices are anchored to historical data for 2024.

In the conservative scenario, economic conditions are assumed to deteriorate. The cost of new assets
and fuel increases by 40%. Inflation is set at 3% annually. The depreciation rates increase by 50%,
reflecting a higher asset devaluation.

In contrast, the optimistic scenario assumes favourable cost trends. New asset and energy costs
are reduced by 40%, and inflation is lowered to 1% annually, indicating a stable price environment.
Depreciation rates are halved, reflecting slower asset devaluation and extended economic life.

All adjustments are implemented proportionally to the baseline values for all assets and energy sources.
Importantly, economic scenarios do not affect environmental performance assumptions, allowing a
decoupled analysis of financial risk versus environmental gain. This enables the model to quantify
the trade-offs and co-benefits of pathway selection under realistic financial volatility, offering actionable
insights for risk-aware policy and procurement strategy.

In addition to these economic cost variants, a final scenario is introduced to account for environmental
discounting practices observed in climate economics and political decision making. The CO2 depreci-
ation retains the economic parameters of the standard case but applies a 4% annual depreciation to
CTG and GTC CO2 emissions. This reflects an emerging approach in literature and policy debates
where future emissions are weighted less heavily than the present ones, allowing for differentiated
analysis based on time preference in environmental valuation. By including both cost and emission
discounting schemes, the model enables consistent sensitivity analysis across perspectives found in
both economic planning and climate governance.

6.5. Conclusion
This chapter presented the methodology and implementation of a modular decision support framework
tailored for sustainable fleet renewal in the PoR. The model integrates data processing, MOO, and
MCDA into a coherent three-layer architecture. The preprocessing layer systematically transforms
scenario-specific input into structured economic and environmental indicators, ensuring consistency
and comparability across strategic pathways. The optimisation layer applies the ε-constraint method to
balance the total cost of ownership, lifecycle CO2 emissions, and local pollutants, generating a diverse
set of non-dominated fleet transition strategies. Gurobi was selected as the solver because of its ro-
bustness in handling large-scale MILPs with time-coupled constraints, enabling efficient exploration of
the Pareto frontier across multiple vessel classes. Finally, the decision support layer employs the TOP-
SIS method to translate stakeholder preferences into actionable recommendations, operationalising
complex trade-offs into ranked strategies.

By combining rigorous mathematical formulation with transparent decision analysis, the framework
provides a practical tool for long-term planning under uncertainty. Its modularity allows for the incor-
poration of updated data, evolving policy targets, and diverse stakeholder priorities. In addition, the
integration of economic scenarios and environmental discounting enables a nuanced assessment of
the robustness of different alternatives and preference for time in sustainability decision-making.

In sum, the developed methodology offers a robust platform for structured decision support, enabling
the PoR to explore decarbonisation trajectories with both technical precision and strategic flexibility.
This foundation supports the input configuration and empirical analysis detailed in chapter 7.
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Input data

This chapter presents a complete set of quantitative input parameters that underpin the fleet renewal
optimisation model. These inputs include technical characteristics, economic assumptions, and envi-
ronmental factors, all of which influence the outcomes in the strategic and economic scenarios. The in-
put framework adopts a bottom-up approach, incorporating class-differentiated data on vessels, battery
systems, infrastructure, and fuel types, to reflect variations in function, size, and energy consumption.
Data were sourced from PoR documentation and validated secondary references.

Environmental impacts are evaluated throughout the lifecycle, using emission factors associated with
material production, manufacturing, dismantling, and logistics, applied in relation to the mass of the
assets and the geographic context. Economic parameters such as CAPEX, OPEX, fuel cost, depre-
ciation, and inflation are included as fixed values and scenario variables, allowing simulation under
changing market conditions.

The characteristics and cost assumptions used for the vessels, batteries, infrastructure, and fuel are
detailed in section 7.1. The emission factors applied throughout the lifecycle assessment are described
in section 7.2. Parameters reflecting long-term strategic planning and macroeconomic uncertainty are
provided in section 7.3 and section 7.4.

7.1. Asset characteristics and costs
This section describes the technical and operational parameters used to model the various assets
throughout the fleet renewal horizon. It includes both existing and new vessel types across multiple
classes, as well as the two types of charging infrastructure, the battery and the fuel aspects.

Vessel class Battery capacity (MWh) Battery weight [ton] Battery demand
IRV 1 5.9 4
PV 1 5.9 4
sPV 2 11.8 1
SV 2 11.8 1
NM 1 5.9 2
RHIB - - -

Table 7.1: Battery capacity and weight per vessel class.

In line with the PoR directives, the new vessels are required to be battery-electric, with the exception of
the RHIB. For the sPVs and SVs, the batteries will be placed internally, with the vessels being too small
to support the BSM battery packs on deck. For the IRV, PV and NM classes, modular battery packs
are used. The weight and capacity of the battery packs for the different vessels class are provided
in Table 7.1, as well as the demand in the number of battery packs, depending on the operational

50
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requirements. The weight of the battery was estimated on the basis of the total capacity and a specific
energy assumption of 170 Wh/kg (Ampherr, n.d.; Fagorederbatt, n.d.). Using the GREET tool, the
weight is calculated to be 5.9 tons per MWh (GREET, 2024).

The economic parameters of the vessels, including acquisition cost, book value, operating cost, and
insurance premiums, are summarised in Table 7.2. For new vessels, book values are included accord-
ing to current PoR practice: At the time of purchase, the book value is set at 75% of the acquisition
price and then depreciated at 3% per year, reaching zero after 25 years, which corresponds to the
technical EOL. The 25% difference between acquisition price and the book value reflects the premium
associated with the highly specific requirements of the PoR, which exceed typical market specifications.
The book value of the asset is depreciated over time, to determine the residual value cash flow at the
moment of salvage, if occurs within the planning horizon. Annual insurance costs are set at 1% of
the acquisition price, consistent with current insurance premiums. Acquisition prices are estimated by
the company (Port of Rotterdam, 2024c), while operational costs are based on historical data for the
current fleet (Port of Rotterdam, 2024b).

Name Class Acquisition cost Book value Operational cost Insurance cost
[€1000] [€1000] [€1000/quarter] [€1000/quarter]

RPA 10 IRV - 1500 20 11
RPA 11 IRV - 1500 18 11
RPA 12 IRV - 850 18 8
RPA 13 IRV - 950 15 8
RPA 14 IRV - 650 15 7
RPA 15 IRV - 850 20 8
RPA 16 IRV - 1250 17 10
RPA 30-35 IRV 24600 18400 15 61
RPA 6 PV - 900 14 3
RPA 7 PV - 875 16 3
RPA 8 PV - 3500 16 16
RPA 22-24 PV 21200 15900 14 53
RPA 1 sPV - 450 12 4
RPA 2 sPV - 500 13 4
RPA 21 sPV 11200 8430 10 28
SV 1 SV - 350 11 3
SV 2 SV - 350 10 3
SV 41-42 SV 10700 8050 10 27
NM NM - 2500 33 16
GM NM 23400 17500 25 59
RPA 5 RHIB - 250 6 1.5
RPA 25-26 RHIB 600 450 4 1.5

Table 7.2: Vessel economic parameters.

The acquisition cost, book value, and OPEX of the battery system are summarised in Table 7.3. Each
battery pack has a book value of €570,000, corresponding to 85% of its acquisition price, the difference
reflecting the design for integration with the BSM infrastructure. Battery packs are assumed to have a
technical lifetime of 10 years, depreciated at 8% per year, leaving a residual value equal to 5% of the
acquisition cost at EOL due to the high content of recoverable materials. The annual OPEX is set at
2.5% of CAPEX, based on data from (National Renewable Energy Laboratory, 2025). The acquisition
prices were provided by SHIFTR, the developer of the BSM infrastructure (“SHIFTR”, n.d.). The acqui-
sition cost for the infrastructure is based on estimates from the PoR (Port of Rotterdam, 2024c). Given
the specific operational requirements at the PoR, the book value is set at 75% of the acquisition price at
the time of purchase, consistent with the approach used for the vessels. The infrastructure is assumed
to have a useful life of 30 years, depreciated at 2.5% per year. As the EOL falls beyond the planning
horizon, no residual value cash flow is included at the moment of salvage within the framework. The
annual OPEX is assumed to be 2.5% of CAPEX, as summarised in Table 7.3.



7.1. Asset characteristics and costs 52

Component Acquisition cost (€1000) Book value (€1000) OPEX (€1000/quarter)
Battery System
Battery Pack 670 570 4

Infrastructure Types
BSM 8110 6082 51
Shore Power 3800 2850 24

Table 7.3: Cost parameters for batteries and infrastructure.

The fuel prices are displayed in Table 7.4. These prices follow from the average bunkering cost that
the PoR paid last year for HVO and MDO (Port of Rotterdam, 2024a). The electricity price is derived
from Eurostat data for non-household consumers in the Netherlands (Eurostat, 2025).

Fuel Type Price (€1000 per ton or MWh)
MDO 0.92
HVO 1.27
Electricity 0.24

Table 7.4: Fuel prices.

The transport distances used in the CTG and GTC assessments are provided in Table 7.5. For the
transport emissions, a factor of 7.9 grammes CO2-eq per tonne-km is used, corresponding to data from
(Sustainable Ships, 2025). Romania and Vietnam are taken as locations, because of the presence of
one of the main Dutch shipbuilders in those countries, namely Damen Shipyards, which has also built
part of the current fleet. Turkey is chosen as the location because of its abundance of demolition yards,
and Norway has many of the resources and facilities required for the production of batteries.

Route Distance (km)
Romania–Vietnam–Rotterdam 31,800
China–Rotterdam 19,500
Romania–Rotterdam 6,300
Norway–Rotterdam 1,000
Rotterdam–Turkey 6,000

Table 7.5: Transport distances.

Maintenance parameters were established based on technical service schedules. For new vessels,
a large maintenance service is assumed every 10 quarters (2.5 years), in accordance with industry
norms and current maintenance intervals. During these services, certifications are also renewed. The
RHIB undergoes annual maintenance during its scheduled winter downtime. For the current fleet, the
PoR has made a future outlook, depending on the current status of the vessels. For new vessels, it is
assumed that the vessels undergo a certification service and a conservation service every five years.
The average costs of these two services are taken (Port of Rotterdam, 2025). The maintenance interval
and the service cost for the new vessels are summarised per class in Table 7.6, while the ages when the
current vessels need to be maintained, together with the corresponding cost, are provided in Table 7.7.
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Vessel Name Class Maintenance interval (quarters) Cost (€1000)
RPA 30-35 IRV 10 500
RPA 22-24 PV 10 400
RPA 21 sPV 10 275
SV 41-42 SV 10 275
GM NM 10 400
RPA 25-26 RHIB 4 50

Table 7.6: Maintenance overview new vessels.

Vessel Name Class Vessel age [quarters] Maintenance cost [€1000]
RPA 10 IRV 98, 107, 120 865, 700, 740
RPA 11 IRV 99, 108, 119, 127 865, 700, 740, 525
RPA 12 IRV 107, 117, 127, 136 825, 540, 650, 615
RPA 13 IRV 109, 119 675, 590
RPA 14 IRV 168, 177 1000, 650
RPA 15 IRV 172, 182 1000, 525
RPA 16 IRV 101, 110, 121, 131 765, 900, 615, 650
RPA 6 PV 81, 91, 99 465, 650, 465
RPA 7 PV 91, 101, 111 650, 465, 650
RPA 8 PV 46, 56, 64, 72 75, 200, 75, 200
RPA 1 sPV 101, 111 750, 465
RPA 2 sPV 98, 110, 123 750, 350, 350
SV 1 SV 88 450
SV 2 SV 85, 95 525, 200
NM NM 130, 134, 138, 142, 146 450, 450, 450, 450, 450
RPA 5 RHIB 27, 31, 35, 39 50, 50, 50, 50

Table 7.7: Maintenance overview current vessels.

Each vessel is characterised by its name, class, initial age, EOL age, hull weight by material, specific
fuel consumption (SFC) and pollutant emissions (NOx, PM). These are summarised in Table 7.8. The
material composition is used to calculate the CTG and GTC emissions, while operational emissions are
calculated from the specific fuel usage and pollutant emission factors. For the existing fleet, the hull
weights are derived from the lightship weight and the hull composition. The hull weight is assumed to
be 40% of the lightship weight for full aluminium vessels, 45% for mixed steel-aluminium configurations
and 50% for full steel constructions. For new constructions, weight estimates were provided directly by
the PoR.

Fuel consumption for the existing fleet is based on empirical measurements from a TNO study con-
ducted on the operational PoR fleet (TNO, 2020). The reported daily energy consumption (in GJ/day)
was converted to MWh using the diesel energy content (43 MJ/kg) and an assumed conventional driv-
etrain efficiency of 40%. For future battery-electric vessels, an electric drivetrain efficiency of 90% was
assumed. The final energy requirement per vessel was then scaled proportionally to the size and mis-
sion profile of each class and is given per quarter. NOx and PM emissions are calculated based on the
exhaust gas treatment system, corresponding to the CCR0, CCRI, CCRII and stage V diesel engines
(Hulskotte, 2018).

Finally, Table 7.9 defines the different rates that are used to adjust some of the cost and emission
parameters over time. The CAPEX, OPEX and fuel cost are adjusted using a fixed quarterly inflation
rate. This is done over the full planning horizon, except for the book value and the insurance cost.
The book value and insurance cost are no longer adjusted for inflation from the moment of acquisition,
therefore, in the case of current assets, it stays completely free of inflation. This is because both costs
are dependant on the acquisition price.



7.1. Asset characteristics and costs 54

Name Class Age EOL Steel Alu SFC NOx PM
[quarters] [quarters] [ton] [ton] [ton/MWh] [kg/MWh] [kg/MWh]

RPA 10 IRV 95 130 104 – 28.6 4.57 0.186
RPA 11 IRV 95 134 104 – 28.6 4.57 0.186
RPA 12 IRV 99 146 104 – 28.6 12.6 0.6
RPA 13 IRV 99 126 104 – 28.6 12.6 0.6
RPA 14 IRV 163 186 170 – 44.4 12.6 0.6
RPA 15 IRV 163 190 170 – 44.4 12.6 0.6
RPA 16 IRV 95 138 110 – 28.6 12.6 0.6
RPA 30-35 IRV New 99 210 105 152/240 – –
RPA 6 PV 79 106 34 4 22.2 10.05 0.54
RPA 7 PV 83 118 34 4 22.2 10.05 0.54
RPA 8 PV 35 82 – 20 14 4.57 0.186
RPA 22-24 PV New 99 190 95 143/227 – –
RPA 1 sPV 95 118 20 2.5 17.5 12.6 0.6
RPA 2 sPV 95 134 20 2.5 17.5 12.6 0.6
RPA 21 sPV New 99 70 35 110/174 – –
SV 1 SV 79 98 30 3.8 9.4 7.26 0.23
SV 2 SV 79 102 30 3.8 9.4 7.26 0.23
SV 41-42 SV New 99 70 35 51/80 – –
NM NM 127 146 – 60 25 7.26 0.23
GM NM New 99 – 60 135 – –
RPA 5 RHIB 27 42 – 1.6 1.6 7.26 0.23
RPA 25-26 RHIB New 42 – 1.6 1.6 4.57 0.186

Table 7.8: Vessel characteristics and specific emissions.

The book value of active company assets is depreciated over time using straight-line depreciation rates.
Depreciation is applied linearly over an assumed economic lifetime of 25 years for vessels, 10 years
for battery systems, and 30 years for infrastructure assets. Depreciation rates are used to determine
future residual value cash flows if the asset needs to be salvaged within the planning horizon. Since
the EOL of the infrastructure is beyond the planning horizon, no residual value of the infrastructure is
included in the TCO. It is however, used to determine the book value of all the active assets at the end
of the planning horizon.

CO2 emissions are assumed to remain constant over time, with the exception of one scenario in which a
4% annual CO2 depreciation is introduced to reflect time-discounting of emissions, due to technological
advancement and grid decarbonisation. This is applied to the CTG and GTC emissions. The inherent
emissions due to the combustion process are not depreciated.

Parameter Rate
Depreciation Rates (per quarter)
Vessels 0.0075
Batteries 0.0200
Infrastructure 0.00625
CO2 0

Inflation Adjustment (per quarter)
Inflation Rate 0.005

Table 7.9: Standard quarterly depreciation and inflation rates.
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7.2. Emission Factors
To assess lifecycle emissions, the model incorporates a detailed set of emission factors related to
material processing, manufacturing, transport, fuel consumption, and dismantling. These values are
used in all stages of the CTG, WTW and GTC lifecycle to estimate the total environmental impact of
each renewal pathway of the fleet.

Processing emissions vary by material and production method. Steel is modelled using either the BOF
or EAF process, with EAF emissions differentiated by feedstock: recycled scrap or direct reduced iron
(DRI). Aluminium inputs are categorised as primary (new) or secondary (recycled). These production
routes directly affect both the direct CO2-equivalent emissions and associated indirect energy use, as
shown in Table 7.10.

Steel data is based on global production statistics (Fact Sheet: The facts about steelmaking, 2022).
The emissions for primary aluminium are taken from Kvande et al. (2022), and for secondary aluminium
from Shen and Zhang (2024).

Production-phase emissions, associated with the transformation of raw metals into functional hull com-
ponents, are assumed to be consistent between materials. The main contributors to energy demand
are welding processes and overhead yard systems such as cranes and lighting, following the analysis
by Hadžić et al. (2025). These same overhead demands are assumed during dismantling, with energy
comparable to that required for reverse welding operations. Emissions from blasting, coating, cutting,
and grinding are excluded for dismantling.

Material Type Direct CO2-eq emissions (ton/ton) Energy (MWh/ton)
Metal processing
Steel BOF 1.20 2.22
Steel DRI–EAF 1.00 0.89
Steel Scrap–EAF 0.04 0.58
Aluminium Primary 6.00 14.27
Aluminium Secondary 0.23 0.03

Metal production
Steel & Aluminium — 0.000771 0.566

Metal dismantling
Steel & Aluminium — - 0.518

Table 7.10: Metal emission and energy factors across lifecycle phases.

Battery lifecycle emissions are derived from three primary components. The first is the upstream impact
of material sourcing, which is highly dependent on geographic location and mining method. Recycling
significantly reduces these material emissions by reusing valuable metals such as lithium and nickel.
The second source is the production energy required for the assembly of cells and the integration of
modules. These processes are energy-intensive and are assumed to remain constant regardless of
the source of raw materials. For both categories, values are based on Kallitsis et al. (2024).

Lastly, EOL emissions arise from dismantling and material separation, which is necessary for battery
recycling. This value comes from the results of Li et al. (2023).

Lifecycle Step Material Source CO2 (t/MWh) Energy
Material contribution new 56.00 —
Production (assembly) all — 60.00 [MWh/MWh]
Dismantling (recycling) all — 22.98 [MWh/t]

Table 7.11: Battery lifecycle emissions and energy demand.
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Fuel combustion during vessel operation is assessed using static emission factors per tonne of fuel
consumed. MDO and HVO are modelled with fixed CO2-equivalent intensities, while electricity-based
emissions vary according to the composition of the regional grid. The applied values are shown in
Table 7.12. The emission data for MDO and HVO are based on fuel LCAs, assuming a standard
density of 850 kg/L for both fuels (Brandstoffen voertuigen, 2024).

Fuel Type CO2 (t/ton)
MDO 4.04
HVO 0.41
Electricity N/A

Table 7.12: Fuel emission factors.

Electricity-based emissions are computed using region-specific grid factors that reflect both direct and
upstream emissions associated with power generation. These factors, summarised in Table 7.13, in-
clude CO2, NOx, and PM. The values of the Dutch grid (grey and mixed) are derived from the national
inventory of greenhouse gases (Emissies naar lucht op Nederlands grondgebied, 2024) and the energy
statistics on total power generation (Hernieuwbare energie in Nederland 2023, 2024). The global ref-
erence values are based on the regional electricity profiles compiled in (Carbon intensity of electricity
generation, 2000 to 2024, n.d.), corresponding to the locations mentioned in Table 7.5.

Region CO2 (t) NOx (kg) PM (kg)
Clean Energy 0.000 0.000 0.000
Netherlands (Grey) 0.536 0.250 0.0056
Netherlands (Mix) 0.328 0.150 0.0034
Worldwide Average 0.473 — —
EU Average 0.237 — —
China 0.560 — —
Turkey 0.470 — —
Vietnam 0.472 — —

Table 7.13: Electricity grid emission factors (per MWh).

These emission coefficients allow for a consistent assessment of operational and indirect energy-
related emissions throughout all phases of the lifecycle. Their integration into the model ensures that
both direct fuel combustion and upstream electricity emissions are aligned with regional energy char-
acteristics and fuel sourcing assumptions. Combined with material and production emissions, they
support scenario-based evaluations that are grounded in realistic and regionally differentiated environ-
mental data.
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7.3. Strategic pathway input
Each strategic pathway represents a distinct configuration of global sourcing, energy provision, and
circularity strategies. The five different pathways are shown in Table 7.14.

Path Vessel Sites Battery Sites Hull material Energy source

1
Romania processing,
Vietnam production,
Turkey dismantling

China production,
China dismantling BOF steel Mixed electricity /

Diesel

2
Romania processing,
Romania production,
Turkey dismantling

Norway production,
Norway Dismantling

Primary
aluminium

Mixed electricity /
HVO

3

Rotterdam processing,
Rotterdam production,

Rotterdam
dismantling

Norway production,
Norway dismantling

Secondary
aluminium

Green electricity /
HVO

4

Romania processing,
Rotterdam production,

Rotterdam
dismantling

Norway production,
Norway dismantling

Secondary
aluminium

Green electricity /
HVO

5

Romania processing,
Rotterdam production,

Rotterdam
dismantling

Norway production,
Norway dismantling Scrap iron EAF Green electricity /

HVO

Table 7.14: Strategic pathways comparing materials, locations and energy source.

Pathway-specific values are assigned for material sourcing, production, dismantling, electricity mix,
and transport logistics. Material emissions differ by both type and production method: BOF steel, EAF
steel with scrap iron as input, and primary versus secondary aluminium. These are applied to the hull
weights of the vessel provided in Table 7.8 and used to calculate the emissions of CTG and GTC.

Transport emissions are the distances determined provided in Table 7.5, which reflect the international
flow of raw materials, finished vessels, and dismantled components.

Electricity-related emissions are applied regionally. During vessel operation, the composition of the
electricity grid of the Netherlands is used, for either a mixed grid composition or solely clean electricity.
In the CTG and GTC phases, emissions are calculated using the grid mix of the relevant country for
manufacturing or dismantling. These emission factors are summarised in Table 7.13.

EOL strategies are also integrated per pathway. These include recycling of vessel and battery compo-
nents. Recycling benefits are modelled by closing the material loop between dismantling and produc-
tion. This generates a recycling credit in the CTG phase, accounting for avoided emissions from virgin
material production.

All economic cost values are kept the same on the strategic pathways. This allows environmental
impacts to be isolated and compared on a consistent financial basis. Variations in environmental out-
comes arise from differences in the origin of the material, the mix of electricity, and the transport con-
figuration, rather than from changes in expenditure.

Strategic pathways, as defined by these combined settings, provide a structured means to assess
how design and supply chain decisions influence lifecycle emissions. They enable a scenario-based
evaluation that is grounded in engineering realism and spatially differentiated emission data.
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7.4. Scenario Input
In addition to the structural differences captured by the strategic pathways, the model incorporates a
set of economic scenarios to evaluate how changes in market conditions affect the financial viability of
fleet renewal strategies. These scenarios allow the model to explore a range of inflation trends, capital
costs, depreciation assumptions, and energy prices over time.

The standard scenario corresponds to the fourth strategic pathway, reflecting current market expecta-
tions. It uses acquisition and operating costs based on the 2024 values and assumes a yearly inflation
rate of 2%. Depreciation is applied linearly using the prime cost method, with rates determined by the
expected lifetime of each asset class: 25 years for vessels, 10 years for battery systems, and 30 years
for infrastructure. These values are listed in Table 7.9.

The conservative scenario assumes adverse financial conditions. Acquisition costs, operating ex-
penses, and insurance premiums increase by 40%, while fuel and electricity prices increase by 40%.
Inflation and depreciation rates increase by 50% compared to the standard scenario.

The optimistic scenario explores the opposite end of the spectrum. Here, capital and operating costs
are reduced by 40%, energy prices are decreased by 40%, and the inflation and depreciation rates are
decreased by 50% compared to the standard scenario.

Finally, a scenario maintains all standard financial inputs but introduces a 4% annual CO2 depreciation.
This adjustment reflects a time preference for emissions, placing greater value on early reductions in
line with climate science and emerging policy approaches.

The input values for the different scenarios are provided in Table 7.15.

Parameter Conservative Standard Optimistic CO2 depreciation
Vessel acquisition cost +40% Base value -40% Base value
Residual value +40% Base value -40% Base value
Operating cost +40% Base value -40% Base value
Maintenance cost +40% Base value -40% Base value
Insurance cost +40% Base value -40% Base value
Energy prices +40% Base value -40% Base value
Inflation rate (annual) 3% 2% 1% 2%
Vessel depreciation (annual) 4.5% 3% 1.5% 3%
Battery depreciation (annual) 12% 8% 4% 8%
Infra. depreciation (annual) 3.75% 2.5% 1.25% 2.5%
CO2 Depreciation (annual) 0% 0% 0% 4%

Table 7.15: Economic and CO2 scenario assumptions.

Each of these scenarios is applied by making proportional adjustments to the baseline inputs found in
Table 7.2, Table 7.3, and Table 7.4. By applying these financial variations to a stable environmental
baseline, the model supports a robust sensitivity analysis. The combination of strategic and economic
scenarios ensures that both the environmental and financial dimensions of fleet renewal are assessed
under a wide range of plausible futures.
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7.5. Conclusion
This chapter defined the full set of quantitative inputs that underpin the fleet renewal optimisation model,
spanning technical, economic, and environmental domains. Data were compiled through a combina-
tion of PoR sources, expert consultation, and literature-based approximations, ensuring contextual
relevance and engineering realism.

Emissions are accounted for throughout the CTG, WTW, and GTC stages, allowing the model to reflect
embedded carbon, operational emissions, and EOL recovery in a consistent framework. Technical
asset characteristics, such as battery configuration, vessel hull composition, and infrastructure typology,
are defined at a high resolution, supporting both class-specific modelling and full-system accounting.

In addition to static parameters, a set of five strategic pathways and four economic scenarios was
defined. Strategic pathways explore how material sourcing, production locations, and energy mixes
influence environmental performance. In contrast, economic scenarios isolate the effects of market
volatility, financial risk, and time-discounting of emissions. Together, they allow the model to simulate
a broad and plausible range of future configurations.

By capturing both spatial differentiation and temporal uncertainty, the input layer ensures that the op-
timisation results are not only technically sound but also responsive to long-term strategic planning
and sustainability goals. These foundations now support the transition from parameter definition to
multi-objective trade-off analysis, presented in chapter 8.



8
Results and interpretation

This chapter presents and interprets the results of the fleet renewal framework for five transition path-
ways, the economic and CO2 depreciation scenarios, resulting from the input provided in chapter 7. The
Pareto fronts for the eight resulting configurations are first individually analysed to explore trade-offs
between TCO, lifecycle CO2-equivalent (LCA) emissions, and NOx (LP) emissions. For each configura-
tion, the TOPSIS preferred alternative is identified using equal weights ([1,1, 1]), giving each objective
the same relative importance. The effect of each configuration on its preferred alternative is then as-
sessed by examining the corresponding fleet transition schedule, emission and cost breakdowns, and
the allocation of battery packs and charging infrastructure.

Following the individual analyses, the objective values of all generated alternatives for the various
pathways are combined in a single figure, with the same being done to all generated alternatives for the
different scenarios. In doing so, general trends between the different configurations can be highlighted
and the overall impact of the configurations can be assessed. The pathway results are presented in
section 8.1, followed by the scenario results in section 8.2, with general conclusions in section 8.3.

In all Pareto front figures within this chapter, both emission categories are plotted on the axes, with
alternative solutions colour-coded by relative TCO. Additional Pareto fronts showing TCO versus LCA
or LP are included in Appendix I. The top five TOPSIS-ranked alternatives for each configuration
are provided in Appendix J. The fleet transition schedules and cumulative TCO and LCA curves for
each TOPSIS preferred alternative are presented within the chapter, while detailed emission and cost
breakdowns, as well as battery and infrastructure allocations, are shown in Appendix K.

8.1. Pathway results and analysis
First the Pareto front and TOPSIS preferred alternative of the five pathways are discussed separately,
before discussing the combined Pareto fronts of the pathways. The TOPSIS method ranks alternatives
by their relative proximity to an ideal solution and distance from a worst-case (nadir) solution. These
ideal points are derived from the minimum and maximum observed values across all objectives: The
lowest TCO, LCA, and LP form the ideal solution, while the highest values define the nadir solution. A
TOPSIS score between 0 and 1 is then calculated using the weighted Euclidean distances between
each alternative and both the ideal and the nadir solutions. A TOPSIS score of 1 corresponds to the
ideal solution and 0 to the nadir solution. The higher the score that an alternative receives, the higher
the overall performance of that alternative under the given weights.

8.1.1. Pathway 1 – Global BOF steel
This subsection presents the results for the first pathway, which represents a globally distributed con-
figuration with a conventional supply chain. In this pathway, the hull materials are processed in the
EU, the hull production takes place in Vietnam, and the dismantling of the hull in Turkey. Batteries are
produced and dismantled in China. The hull material used is BOF steel. Electric vessels use electricity
from the Dutch mixed electricity grid, whereas conventional vessels use MDO as fuel.
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The Pareto front in Figure 8.1 shows all non-dominated solutions for the first pathway. The solutions
range between TCO values of € 708–726million, LCA values of 89,000–97,000 t CO2-eq and LP values
of 14,400–140,000 kg NOx. The Pareto front exhibits a convex shape near the origin, illustrating the
trade-off between the LCA and LP objectives. The convex shape shows that it not possible to minimise
both objectives simultaneously. The most economical alternatives, coloured green, are located farther
away from the convex front, highlighting that there is also a trade-off between minimising emissions or
cost. This is also seen if the TCO is placed on the y axis of the Pareto front plot, as a convex Pareto
front is displayed between both TCO–LCA and TCO–LP in Figure I.1 & Figure I.2.

89000 90000 91000 92000 93000 94000 95000 96000 97000
LCA (t CO -eq)

20000

40000

60000

80000

100000

120000

140000

NO
 (k

g)

Pathway 1 Pareto front
TOPSIS run 131

710000

712000

714000

716000

718000

720000

722000

724000

TC
O 

(×
10

00
 

)

Figure 8.1: Pathway 1: Pareto front.

The TOPSIS preferred alternative is run 131 (Table J.1), with a score of 0.586. The alternative has a
TCO of € 715 million, an LCA value of 91,500 t CO2-eq and a LP value of 79,100 kg NOx. This places
the alternative at the lower end of the LCA emissions, and around mid-way in the TCO and LP ranges.
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RPA 10 (Class IRV)
RPA 11 (Class IRV)
RPA 12 (Class IRV)
RPA 13 (Class IRV)
RPA 14 (Class IRV)
RPA 15 (Class IRV)
RPA 16 (Class IRV)
RPA 30 (Class IRV)
RPA 31 (Class IRV)
RPA 32 (Class IRV)
RPA 33 (Class IRV)
RPA 34 (Class IRV)
RPA 35 (Class IRV)

RPA 6 (Class PV)
RPA 7 (Class PV)
RPA 8 (Class PV)

RPA 22 (Class PV)
RPA 23 (Class PV)
RPA 24 (Class PV)
RPA 1 (Class sPV)
RPA 2 (Class sPV)
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SV 1 (Class SV)
SV 2 (Class SV)

SV 41 (Class SV)
SV 42 (Class SV)

NM (Class NM)
GM (Class NM)

RPA 5 (Class RHIB)
RPA 25 (Class RHIB)
RPA 26 (Class RHIB)

Pathway 1 run 131  Fleet transition schedule 
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Purchased
Operational
Reserve
Maintained
Salvaged

Figure 8.2: Pathway 1 run 131: Fleet schedule.
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The fleet transition schedule in Figure 8.2 reveals several key operational dynamics. Conventional
vessels of both the IRV and PV class remain operational for the next five years, while new vessels
are acquired and placed in reserve. The vessels that are not needed to meet operational demand are
salvaged immediately (RPA 6, 13 & 15) The conventional vessels of the sPV and SV class are retired
either directly at the start (RPA 1, 2 & SV 1), in the second quarter (RPA 1) or in the first quarter of 2027
(SV 2). The NM is also retired immediately, while the RPA 5 is replaced in Q3 of 2028.

The behaviour of the IRV and PV class vessels is mainly emission driven. For the IRV class, the RPA
14 & 15 have the highest emissions. The CO2 emissions of the other vessels are the same, but the LP
of the RPA 10 & 11 is lower. For the PV class, the RPA 8 is the least polluting vessel, while the other
two vessels are equally polluting. The decision to retire the RPA 6 instead of the RPA 7 is due to the
higher maintenance cost for the former. For IRVs, the decision to retire the RPA 13 instead of the RPA
12 or RPA 16 is due to the maintenance timing. The RPA 13 has the lowest OPEX of the three vessels,
but at the time maintenance is scheduled (Q3 2028) there are no battery packs available (Figure K.1),
therefore the benefit of the lower OPEX is offset by the impact of additional battery packs that would
be necessary. The new vessels are purchased relatively early, before they are all needed in operation.
This is done due to the inflated acquisition prices, which outweigh the extra OPEX from early vessel
operation. The acquisition is spread out, to ensure that the requirement maintenance is also spread
out, and demand can always be met.

For the IRV, PV and NM class, there is a trade-off for the lifecycle CO2-eq emissions on switching to
the battery electric vessels. Switching to battery electric vessels reduces WTW emissions (Figure K.2),
however, the battery packs have a high impact on the impact of CTG and GTC emissions (Figure K.4),
this leads to conventional vessels still being used in the first five years, after which only two full cycles of
batteries are needed, instead of three. The sPV and SV class have internal batteries that do not need
to be replaced over the lifetime of the vessel. Therefore, rapid electrification provides huge benefits
for emission reduction, both for LP and lifecycle CO2-eq emissions. The conventional vessels of these
two classes have the same emission profile, making the decision which vessel to retire first solely
economical. The SV 1 and sPV 2 have higher OPEX than their class counterparts, therefore they are
retired first. For the NM class, the decision to retire the NM is mainly driven due to the high OPEX, as
well as the LP reduction. Early salvage leads to the requirement of additional battery packs, which has
a negative impact on the LCA and also carries an additional cost. However, these costs are lower than
the OPEX benefits. The decision to acquire new RHIBs in 2028 and 2039 is driven by economics and
depends on the age and technical EOL, since the new RHIBs will still be conventional and only provide
minor benefits in the reduction of LP.
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Figure 8.3: Pathway 1 run 131: Cumulative TCO and LCA.
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The acquisition of new vessels, as well as battery packs and infrastructure (Figure K.1) results in almost
half of the total cost accumulated in the first two years (Figure 8.3). The spikes in the TCO and LCA
curves in 2030 and 2040 are due to the acquisition and CTG emissions of new battery packs, with more
than 50 batteries being acquired in both of those years, resulting in a total acquisition of 168 battery
packs over the planning horizon. The spikes in the LCA and the small drop in the TCO in 2035 are
due to the salvage of old battery packs, which still represent a small value at their EOL, resulting in a
negative battery CAPEX at that time step (Figure K.3). Other large salvage moments of battery packs
between 2040 and 2050 also cause an increase in the LCA, but the total cost at those moments is
still positive, which is why there is no visible dip. The constant increase in both LCA and TCO during
2031–2035, 2036–2040, and 2041–2050 is due to the absence of CAPEX and CTG or GTC emissions
in these periods. Figure K.2 shows that local pollution for NOx and PM goes down to zero in 2030, while
CO2 emissions decrease from approximately 800 to 600 t CO2-eq, showing the benefits of switching
from MDO to electric vessels using mixed electricity. At the end of the planning horizon, the book value
of the company assets is almost € 89 million (Figure K.3).

8.1.2. Pathway 2 – Regional aluminium and HVO
The second pathway explores regional manufacturing and dismantling, with the hulls manufactured in
Romania and dismantled in Turkey. The batteries are produced and dismantled in Norway. For the new
vessels, primary aluminium is used as the hull material. The electrical mix for the use phase remains
unchanged from the first pathway, while conventional vessels use HVO as fuel.

The Pareto front (Figure 8.4) spans TCO values of € 692-–723 million, LCA values of 52,700-–67,800 t
CO2-eq, and LP values of 14,400-–312,000 kg NOx. The alternatives still display a convex Pareto front.
However, the alternatives are clustered closer to this Pareto front compared to the first pathway, where
the TCO dominant alternatives moved further from the Pareto front. This is also visible in Figure I.3
for the TCO–LCA trade-off and in Figure I.4 for the TCO–LP trade-off, where the Pareto front shows a
convex front near the origin, but after a certain point a correlation is seen between an increase in both
cost and emissions. Although the TCO range has decreased slightly compared to the first pathway, the
spread between alternatives has increased. The LCA spread has also grown, but the absolute values
have dropped significantly. The LP objective shows a significantly higher upper bound, while the lower
bound remains consistent with Pathway 1.
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Figure 8.4: Pathway 2: Pareto Front.

Run 385, the preferred alternative (Table J.2), lies at the high end of the LCA range but at the low end
of both LP and TCO. Run 385 has a TCO of € 693 million, an LCA of 62,800 t CO2-eq and a LP of
81,600 kg NOx, resulting in a score of 0.646. The solution is placed in the lower half of the LP range,
above the midrange for the LCA objective, and the lower end of the TCO range.
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The difference in the Pareto fronts becomes clear when examining the WTW emissions and the fleet
transition schedule. After the fleet has switched to electric vessels Figure 8.5, the WTWCO2 emissions
increase, while the NOx and PM emissions go to zero Figure K.6. This is due to conventional vessels
using HVO rather than MDO as in Pathway 1. In Pathway 1, the trade-off between the reduction of
WTW and increase of CTG and GTC led to a switch to battery electric vessels within the first five years,
the LCA dominant solutions, continuing sailing with the conventional vessels until the EOL. This results
in the upper bound of the LP emissions doubling and the increased spread in the TCO and LCA, as
seen in the Pareto front figures.
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Figure 8.5: Pathway 2 run 385: Fleet schedule.

Figure 8.5 indicates a transition schedule that closely mirrors that of Pathway 1, with only minor devia-
tions. The RPA 8 and RPA 1 are retired slightly earlier, which reduces LP, OPEX and provides a higher
salvage value. The conventional IRVs have a higher utilisation rate, while they are retired at the same
moment. Battery pack acquisition is unchanged, with 168 packs acquired (Figure K.5).

The cumulative TCO and LCA curves (Figure 8.6) are also similar to those of Pathway 1, with the same
heavy CAPEX in the first two years, and the acquisition and salvage moments of the battery packs
seen clearly in both curves in 2030, 2035, 2040 and 2050. At the end of the planning horizon, the
assets represent a book value of €88 million (Figure K.7). The decrease in book value compared to
the first pathway is mainly due to the infrastructure being purchased at earlier time steps, resulting in
an additional depreciation of the book value. This results from the earlier retirement of the RPA 1 & 8
which results in the infrastructure being required earlier. Figure K.6 shows that the WTW emissions of
the electric fleet are lower compared to Pathway 1, due to the use of lighter aluminium vessels requiring
less electricity. This also reduces the fuel cost (Figure K.7), and explains the decreased lower TCO
bound. The CTG impact of the vessels has, however, increased because the production process of
primary aluminium is more energy intensive (Figure K.8).
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Figure 8.6: Pathway 2 run 385: Cumulative TCO and LCA.

8.1.3. Pathway 3 – Local supply chain and decarbonised electricity grid
Pathway 3 represents a high-sustainability scenario. This pathway features a local supply chain and
the use of clean energy throughout the asset lifecycle (processing, production, use, and dismantling).
Secondary (recycled) aluminium is used for the hull, while batteries are made from new materials.
Conventional vessels use HVO as fuel.
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Figure 8.7: Pathway 3: Pareto Front.

The Pareto front (Figure 8.7) shows a highly compact set of solutions for the LCA objective, with values
narrowly ranging between 10,700–11,500 t CO2-eq. This tight clustering reflects the clean energy used
in the production, use, and dismantling phases. In contrast, NOx emissions still span a wide range
(14,400-–139,000 kg NOx), similar to Pathway 1, due to ongoing combustion-related emissions from
conventional vessels early in the timeline. TCO values in Pathway 3 range from € 692–699 million.
The lower bound aligns with Pathway 2, attributable to aluminium hulls, which reduce energy demand
and fuel costs. However, unlike Pathway 2, the upper bound is significantly lower, since extended use
of the conventional fleet no longer yields LCA benefits, making such alternatives non-Pareto-optimal.
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The preferred alternative, run 67 (Table J.3), has a TCO of € 694 million, an LCA of 10,700 t CO2-eq
and LP of 68,400 kg NOx, resulting in a score of 0.709. The alternative is placed at the bottom of the
LCA range and slightly below the midrange for the LP and TCO objectives.

The fleet transition schedule (Figure 8.8) shows three main differences. The RPA 10 and RPA 11
undergo additional service to extend their service by a year, while the RPA 12 is retired earlier. At the
same time RPA 30, 31 & 32 are acquired earlier and used more heavily in the first years. The salvage
of the NM is delayed until 2028. However, longer use of the RPA 10, 11 & NM is not cost-effective
in terms of vessel OPEX, due to high maintenance costs. It also causes additional WTW emissions.
Extending RPA 10, RPA 11, and NM reduces battery pack demand, creating net cost benefits despite
higher OPEX and WTW emissions. Conversely, earlier RPA 30, 31, & 32 deployment improves LCA
and LP outcomes but increases battery pack needs. In total, these changes cause a slight decrease
in the number of battery packs acquired (166) (Figure K.9).
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Figure 8.8: Pathway 3 run 67: Fleet schedule.

With indirect CTG and GTC emissions being zero due to the clean energy that is used, the main LCA
driver is direct battery CTG emissions, as shown in Figure K.12. The three large steps in the LCA curve
coincide with battery acquisition in 2026, 2030 and 2040 (Figure 8.9). The increase in LCA between
2026–2030 is attributable to WTW emissions of the conventional fleet (Figure K.10), which reach zero
in 2030. After 2030, LCA emissions remain flat between 2030–2039 and 2041–2050, as there are
no WTW emissions and no direct CTG or GTC emissions in that period. The TCO curves show the
heavy investments in the first two years due to the CAPEX for the various assets (Figure K.11). In
2028–2030, the TCO is increasing by various amounts due to the salvage of conventional vessels in
some quarters offsetting the OPEX and fuel cost. After 2030, the TCO grows steadily driven solely by
OPEX and fuel cost, with the exception of the salvage of battery packs in 2036 and 2050, as well as
the combination of salvage and acquisition of battery packs in 2040. At the end of the planning horizon,
the assets represent a value of € 83 million (Figure K.11). The lower value of the assets is due to the
earlier acquisition of the three IRVs, which increases depreciation and results in a lower book value.



8.1. Pathway results and analysis 67

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
Year

0

100000

200000

300000

400000

500000

600000

700000
Cu

m
ul

at
iv

e 
TC

O 
(x

10
00

)
Pathway 3 run 67  Cumulative TCO & LCA

Cumulative TCO
Cumulative LCA (CO )

0

2000

4000

6000

8000

10000

Cu
m

ul
at

iv
e 

LC
A 

(t 
CO

-e
q)

Figure 8.9: Pathway 3 run 67: Cumulative TCO and LCA.

8.1.4. Pathway 4 – Regional Recycled Aluminium
The fourth pathway represents a medium-sustainability scenario with a regional supply chain, where
all processes are carried out within the EU. This pathway uses secondary aluminium for the hull and
the vessels are sailing on HVO and clean energy. Batteries are produced from new materials. This
pathway is also used as the standard scenario for comparison with the economic scenarios in the next
section.

In Pathway 2, switching to electric vessels did not benefit the LCA objective, while in Pathway 3 it was
highly beneficial due to the use of clean energy throughout the lifecycle. In Pathway 4, switching from
HVO to clean electricity reduces WTW emissions but increases CTG and GTC impacts, creating a
trade-off similar to that in Pathway 1. This is reflected in the similarity between the Pareto fronts of
pathways 4 and 1. This also shows itself in the similarity between the Pareto fronts of Pathway 4 and
Pathway 1. The Pareto front (Figure 8.10) shows alternatives ranging between a TCO value of € 692–
709 million, an LCA value between 17,100–21,100 t CO2-eq. and a LP value between 14,400–139,000
kg NOx.
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Figure 8.10: Pathway 4: Pareto Front.
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Run 87 is the preferred solution (Table J.4), having a TCO of € 700 million, an LCA of 17,900 t CO2-eq
and a LP of 69,000 kg NOx, with a score of 0.617. The solution lies at the lower end of the LCA range
and about midrange for TCO and LP, similar to Pathway 1.

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
Year

RPA 10 (Class IRV)
RPA 11 (Class IRV)
RPA 12 (Class IRV)
RPA 13 (Class IRV)
RPA 14 (Class IRV)
RPA 15 (Class IRV)
RPA 16 (Class IRV)
RPA 30 (Class IRV)
RPA 31 (Class IRV)
RPA 32 (Class IRV)
RPA 33 (Class IRV)
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Figure 8.11: Pathway 4 run 87: Fleet schedule.

The transition schedule (Figure 8.11) is similar to the preferred alternative of Pathway 3. The RPA 33
is acquired one quarter earlier and RPA 10 is retired one quarter later, while all other vessel timings
remain unchanged. With a similar transition schedule, the total number of battery packs is also the
same (166) Figure K.13.
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Figure 8.12: Pathway 4 run 87: Cumulative TCO and LCA.
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Since the transition schedule and asset allocation are very similar to the previous pathway, cumulative
TCO and LCA also behave the same Figure 8.12. Due to the higher impact of CTG and GTC emissions
(Figure K.16), the LCA curve steps are larger, while the WTW driven increase in the first four years is
less steep due to its lower relative contribution. Salvage events for battery packs are again visible in
2035, 2040, and 2050, now the impact of the GTC emissions has increased. At the end of the horizon,
the book value is equal to €83 million (Figure K.15).

8.1.5. Pathway 5 – Regional recycled EAF steel
The fifth pathway uses recycled (scrap) steel processed by EAF for the hull. The other factors are the
same as in Pathway 4, with vessels using HVO and clean energy, and batteries are produced from new
materials.

This pathway shows the same trade-off between reduced WTW emissions and increased CTG/GTC
emissions, producing a Pareto front similar to Pathways 1 and 4 (Figure 8.13). The TCO ranges be-
tween € 709–726 million, the LCA between 17,400–21,400 t CO2-eq and the LP between 14,400–
142,000 kg NOx. The increased TCO range compared to Pathway 4 is mainly due to heavier steel
vessels, which consume more electricity and therefore cause an increase in fuel cost. The slight in-
crease in the LCA emissions range is due to the higher carbon footprint of the EAF steel hulls compared
to the secondary aluminium hulls of the previous pathway. Since new vessels are more expensive to
sail, some alternatives operate the conventional fleet slightly longer, raising the upper limit of LP.
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Figure 8.13: Pathway 5: Pareto front.

The preferred alternative is run 153 (Table J.5). Run 153 has a TCO of € 715 million, an LCA of 18,900
t CO2-eq and a LP of 71,100 kg NOx, placing the alternative slightly lower than midrange on all three
objectives. The resulting TOPSIS score is 0.615.

The fleet transition schedule of run 153 (Figure 8.14) shows a combination of aspects seen in the
previous four pathways. The behaviour of the IRV class is similar to the first two pathways, with the
RPA 10 & 11 only receiving one service job and retiring a year earlier compared to the third and fourth
pathways. In addition, conventional IRVs are used more until their moment of salvage. This behaviour
also leads to the later acquisition of the new IRVs. However, the PV class is similar to the third and
fourth pathway with earlier salvage than in Pathway 1. The sPV class shows the same behaviour as
in Pathway 1 with the later retirement of RPA 1. The SV shows the same behaviour as in all previous
four pathways, just as the RHIB. The NM displays the same schedule as in the last two pathways,
with salvage happening in 2028. This configuration keeps the total number of battery packs acquired
unchanged from the previous two pathways at 166 (Figure K.17).
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Figure 8.14: Pathway 5 run 153: Fleet schedule.

Figure 8.15 shows a TCO curve similar to the first two pathways, being dominated by IRV CAPEX in
the first two years (Figure K.19) and later on by the acquisition and salvage of the battery packs in 2030,
2035, 2040 and 2050 (Figure K.17). The LCA curve mirrors Pathway 4, with minor differences due to
slight shifts in the timing of the battery packs. WTW emissions are visible (Figure K.18), after which the
LCA remains flat except at battery acquisition and salvage events. By the end of the planning horizon,
the assets represent a value of € 84 million (Figure K.19).
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Figure 8.15: Pathway 5 run 153: Cumulative TCO and LCA.
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8.1.6. Pathway comparison
The Pareto fronts of all five pathways are shown together in Figure 8.16. Based on this figure and the
previous pathway-specific analyses, several key insights emerge.

20000 40000 60000 80000 100000
LCA (t CO -eq)

0

50000

100000

150000

200000

250000

300000

NO
 (k

g)
Combined Pareto front pathways

Pathway 1
Pathway 2
Pathway 3
Pathway 4
Pathway 5

695000

700000

705000

710000

715000

720000

725000

TC
O 

(×
10

00
 

)

Figure 8.16: Combined Pareto front pathways.

In pathways 1, 3, 4, and 5, electrification leads to a clear net reduction in WTW emissions. Conse-
quently, LP emissions remain within a similar lower range, and a fleet transition occurs well before
conventional vessels reach their EOL. In contrast, Pathway 2 minimises LCA by delaying electrifica-
tion, driven by the high environmental burden of battery production and the increase of WTW emissions
after the fleet transition. This delay results in markedly higher LP emissions and a wider spread of TCO
outcomes.

Comparison of pathways 4 and 5 highlights the effect of material choice. The use of heavier steel ves-
sels in Pathway 5 increases the upper limit of TCO by approximately € 18 million. Across all pathways,
LP varies widely, while LCA remains tightly clustered within each scenario. This suggests that the
timing of fleet transitions primarily affects LP, whereas LCA is more strongly influenced by upstream
factors.

Despite variations in the configurations, optimisation often produces transition plans that share core
structural elements with the preferred alternatives from other pathways. In all scenarios, the RHIB
and SV classes follow identical replacement schedules, while the main differences appear in the BSM
classes, where the replacement timing shifts in response to material choice, production location, and
energy sourcing. Although the transition schedules of the preferred alternatives in the five pathways
share these core components, the resulting performance is strongly influenced by the individual path-
way configurations.

Finally, differences in LCA ranges reinforce that the largest lifecycle emission reductions come from
strategic choices in asset materials, regional production characteristics, and the use of green electricity
in manufacturing and dismantling. Given the ten-year lifetime of a battery pack, there is an optimal
timing for electrification. This is evident in several pathways where conventional vessels remain in
operation after new vessels have been acquired, allowing battery replacements to be minimised.



8.2. Scenario results and analysis 72

8.2. Scenario results and analysis
This section evaluates the robustness of fleet renewal in three economic and CO2 depreciation sce-
narios. Pathway 4 is used as the reference standard economic scenario. It uses the baseline costs
described in chapter 7, with a 2% yearly inflation rate and depreciation rates of 3% for vessels, 8% for
batteries, and 2.5% for infrastructure. The conservative scenario assumes higher fuel costs, increased
OPEX and CAPEX for new assets, and higher depreciation and inflation rates, while the optimistic sce-
nario assumes the opposite. The CO2 depreciation scenario applies the same economic parameters
as the standard scenario but includes a discount rate on CTG and GTC emissions.

8.2.1. Conservative scenario
The conservative economic scenario assumes worsening economic conditions, with the CAPEX and
OPEX of the new assets, as well as fuel prices increasing by 40%. Inflation is set at a 3% yearly rate and
the depreciation rates increase by 50%. This subsection presents the results under these economic
conditions, offering insights into the financial resilience of the fleet and the impact of higher costs and
inflation on sustainability outcomes.

The Pareto front (Figure 8.17) shows more alternatives at the higher end of the LP range compared to
the standard scenario (Figure 8.10). These alternatives correspond to the longer use of the conven-
tional fleet, as conventional vessels are the drivers behind LP emissions. These alternatives are also
relatively more economical. This is explained by the increasing cost of the new assets, which makes it
economically more favourable to continue sailing with the conventional fleet. This is also clearly seen
if the TCO is plotted separately against the individual emission objectives. Figure I.12 shows a convex
Pareto front between LP and TCO, while Figure I.11 only shows a minor relationship between TCO and
LCA. The increased cost is also shown in the TCO range, which has increased by over € 360 million
and now ranges between €1,066–1,082 million. The LCA range (17,300–-21,200 t CO2-eq) and LP
range (14,400-–138,000 kg NOx) remain similar to the standard scenario.
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Figure 8.17: Conservative scenario: Pareto front.

The preferred alternative is run 85 (Table J.6). The alternative has a TCO of € 1,071 million, an LCA of
17,900 t CO2-eq and a LP of 56,500 kg NOx, resulting in a TOPSIS score of 0.706. The alternative is
located at the lower end of the three objectives.

Figure 8.18 shows for the RHIB, NM, SV, sPV, and PV classes mainly the same schedule as in the
standard scenario Figure 8.11. For the IRV class, there are two main changes. The RPA 16 is retired
immediately, instead of in 2029, and the purchase of the RPA 33 & 34 has been moved forward by
three quarters. The earlier retirement of the RPA 16 is most beneficial to reducing LP emissions, which
is also noted in the differences between the two preferred alternatives of both scenarios.
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The current configuration leads to 56,500 kg of NOx emissions and the preferred alternative of the
standard scenario of 69,000 kg of NOx. However, due to the earlier retirement of RPA 16 four additional
battery packs are needed. Therefore, the total number of battery pack acquisitions has increased to
170 over the 25-year period (Figure K.21).

In the standard scenario, extending the NM reduced LCA impacts by avoiding additional battery packs.
Under current economic conditions, where both battery packs and GM are more expensive, this exten-
sion remains favourable. The same holds true for the earlier acquisition of the IRVs, which would be
more expensive due to the increased inflation rate to delay.

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
Year

RPA 10 (Class IRV)
RPA 11 (Class IRV)
RPA 12 (Class IRV)
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Figure 8.18: Conservative scenario run 85: Fleet schedule.

The cumulative TCO and LCA curves (Figure 8.19) largely mirror those of the standard scenario (Fig-
ure 8.12). The earlier IRV purchases shift more CAPEX in the first year, increasing the initial cost share
(Figure K.23). Higher depreciation rates lower the residual value of battery packs at EOL, eliminating
the TCO drop seen in 2035 under the standard scenario. As a result, the book value of the end of the
horizon falls to € 21 million (Figure K.23).

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
Year

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

TC
O 

(x
10

00
)

1e6 Conservative scenario run 85  Cumulative TCO & LCA
Cumulative TCO
Cumulative LCA (CO )

0

2500

5000

7500

10000

12500

15000

17500

Cu
m

ul
at

iv
e 

LC
A 

(t 
CO

-e
q)

Figure 8.19: Conservative scenario run 85: Cumulative TCO and LCA.



8.2. Scenario results and analysis 74

8.2.2. Optimistic scenario
In contrast to the conservative scenario, the optimistic economic scenario assumes favourable cost
dynamics. All costs related to new assets and energy prices are reduced by 40%. Inflation is set at
1% per year and the depreciation rates are reduced by 50%. The results presented in this subsection
highlight the financial benefits and sustainability gains achievable under optimistic economic conditions,
providing a best-case scenario for fleet performance.

Here, Figure 8.20 shows the opposite pattern to the conservative scenario. With more alternatives
located at the upper end of the LCA range, and a reduction of the upper bound of the LP range, dropping
by 40,000 kg NOx to 95,000 kg NOx. This indicates a reduction in alternatives heavily favouring the
conventional fleet, and a shift toward earlier electrification, options that occupy the upper end of the LCA
range. These alternatives are nowmore attractive economically, since the reduction in new-asset costs
disproportionately benefits strategies that favour a rapid transition. This is also seen in the individual
plots between the TCO and emission objectives, with a clear relationship between the TCO and LCA
shown in Figure I.13, and almost no correlation between LP and TCO (Figure I.14).
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Figure 8.20: Optimistic scenario: Pareto front.

Due to the reduction in costs of new assets, the TCO range has dropped by € 320 million to € 372–393
million. The lower bound of the LP range has remained the same, as in the conservative scenario, at
14,300 kg NOx. Also the LCA range has remained similar, ranging between 17,200–21,200 t CO2-eq
respectively. With equal TOPSIS weights, run 242 is the preferred alternative (Table J.7), with a TCO of
€ 378 million, an LCA of 19,700 t CO2-eq, an LP of 21,700 kg NOx, and a TOPSIS score of 0.629. This
alternative sits above the midrange for LCA while remaining low in both the LP and the TCO ranges.

The fleet transition schedule (Figure 8.21) shows the fastest adoption of new electric vessels among
all preferred alternatives. For the NM class, the NM is salvaged in the first quarter instead of in 2028.
In the PV class, the RPA 7 is also salvaged in the first year, with only the RPA 8 retained in service until
2030, although it is increasingly placed in reserve. For the IRV class, all vessels except the RPA 12 are
salvaged at the earliest possible time. With reduced asset costs, the early transition becomes econom-
ically more attractive. This approach delivers substantial reductions in LP but requires more battery
packs, increasing CTG and GTC emissions. In total, 184 battery packs are acquired (Figure K.25),
raising the LCA from 17,900 to 19,700 t CO2-eq compared to the preferred alternative of the standard
scenario. In contrast, LP drops sharply from 69,000 to 21,700 kg of NOx, illustrating the potential for
rapid electrification to minimise local pollution.
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Figure 8.21: Optimistic scenario run 242: Fleet schedule.

Figure 8.22 shows a higher relative share of investment in the first year, driven by the larger number
of battery packs acquired (Figure K.25). Combined with the higher residual value of these packs, due
to the lower depreciation rate, this amplifies the TCO reductions observed during battery pack salvage
events in 2035, 2040, and 2050. Rapid electrification reduces WTW emissions to zero from 2027,
except for the three quarters in which the RPA 12 remains operational in 2028–2030 (Figure K.26).
The lower depreciation rate also increases the book value of the assets at the end of the horizon,
which reaches € 100 million.
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Figure 8.22: Optimistic scenario run 242: Cumulative TCO and LCA.
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8.2.3. CO2 depreciation scenario
This subsection introduces a third scenario that accounts for environmental discounting, reflecting the
anticipated effects of grid decarbonisation and technological advancements in reducing CTG and GTC
emissions. The CO2 depreciation scenario retains the economic parameters of the standard case but
applies a 4% annual depreciation to the CTG and GTC emissions. This mirrors the emerging practice
of assigning less weight to future emissions than to present ones.

The Pareto front (Figure 8.23) takes on a distinctly different shape from the other scenarios. Although
most similar to the standard scenario, it is shifted toward the origin along the LCA axis, with LCA values
reduced to 9,600–13,600 t CO2-eq due to the applied depreciation. LP ranges from 14,400–134,000 kg
NOx, and TCO ranges from € 692-–749 million, giving a higher upper limit than in the standard scenario.
With equal TOPSIS weights, the preferred alternative is run 122 (Table J.8), which has a TCO of € 711
million, an LCA of 10,900 t CO2-eq, and an LP of 27,100 kg NOx, resulting in a TOPSIS score of 0.739.
This alternative is at the lower end of all three objectives.
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Figure 8.23: CO2 depreciation scenario: Pareto front.

The fleet schedule (Figure 8.24) shows markedly different behaviour from the standard scenario for
most vessel classes, with only the RHIB following the same pattern. The NM and PV classes behave
similarly to the standard case, with early retirement of the NM, RPA 6, and RPA 7. The sPV and SV
classes also favour early retirement, but the salvage of conventional vessels is delayed. This delay
reduces the GTC emissions, but incurs significant additional costs.

For the IRV class, the two least polluting vessels (RPA 10 and RPA 11) remain in service until 2030,
while the others are salvaged at the beginning of the process. In general, the schedule favours the early
adoption of electric vessels, resulting in the acquisition of 180 battery packs (Figure K.29). Because the
CTG andGTC impacts of the battery packs acquired later in the horizon are reduced by the depreciation
factor, these early transition schedules now represent the LCA-optimal alternatives. However, since
economic parameters remain unchanged, the extra battery packs and the added OPEX from delaying
the salvage of the sPV and SV classes make the ideal solution € 10 million more expensive than in the
standard scenario. In exchange, LCA is reduced from 17,900 to 10,900 t CO2-eq, and LP from 69,000
to 27,100 kg NOx.
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Figure 8.24: CO2 depreciation scenario run 122: Fleet schedule.

Although in the standard scenario, a large number of battery packs were acquired within the same
quarter (Figure K.13), the depreciation of CTG emissions leads to a more staggered acquisition pattern
and, consequently, to more staggered salvage events (Figure K.29). This results in the smoother
TCO and LCA curves shown in Figure 8.25. The effect of depreciation is also visible in the emission
breakdown plot (Figure K.32). WTW emissions drop dramatically in the first year and fall to zero after
the salvage of RPA 11 at the beginning of 2030 (Figure K.30). Because battery packs are acquired
later in the planning horizon, they retain a higher book value, with the total book value at the end of the
horizon reaching € 95 million (Figure K.31).
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Figure 8.25: CO2 depreciation scenario run 122: Cumulative TCO and LCA.
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8.2.4. Scenario comparison
Figure 8.26 overlays the Pareto fronts of the scenarios discussed above alongside that of Pathway
4. All scenarios contain alternatives within a similar LP range, although in the optimistic scenario they
are concentrated slightly lower. This reflects a trend toward faster fleet transitions driven by reduced
new-asset costs. The opposite occurs in the conservative scenario, where higher costs make later
transitions more attractive, resulting in slightly higher NOx emissions.

Optimistic alternatives also show slightly higher LCA emissions, a consequence of faster transitions
that require more battery acquisitions and, therefore, more CTG and GTC emissions. For optimistic
and conservative scenarios, the variation between the alternatives primarily affects LP emissions, with
only a reduced effect on LCA. In contrast, the CO2 depreciation scenario demonstrates that alternative
choices can also substantially influence total LCA emissions.

The relative impact of the alternative choice on TCO within a given scenario is small compared to the
effect of the broader economic outlook, as evidenced by the limited colour variation within the points
of each scenario. This highlights the dominant role of future economic conditions in shaping cost
outcomes.
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Figure 8.26: Combined Pareto fronts across scenarios.
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8.3. Conclusion
This chapter has evaluated a variety of fleet renewal strategies in five transition pathways and four
economic scenarios, each representing different assumptions on supply chains, energy mixes, and
market conditions. The results reveal a fundamental asymmetry in the way renewal strategies affect
the three main objectives.

Across all configurations, LP emissions are primarily driven by the timing of fleet transitions. Earlier
adoption of electric vessels consistently reduces NOx emissions, while delays increase them. In con-
trast, LCA outcomes are dominated by upstream factors, material choice, energy source, and manu-
facturing location, and show much narrower ranges within each pathway. This asymmetry means that
operational measures can achieve substantial reductions in local pollutants, but significant reductions
in lifecycle CO2 require the decarbonisation of materials and supply chains upstream. With the ex-
ception of Pathway 2, the WTW emission reductions from electrification must be balanced against the
CTG and GTC impact of additional battery packs, which vary with fuel type and production/dismantling
processes.

The CO2 depreciation scenario introduced a different dynamic. If future emissions are depreciated,
earlier electrification is favoured. Since the environmental impact of the many battery packs that are
required is reduced. This benefits both the LP and lifecycle CO2 emissions. The salvage was also
delayed, since future GTC emissions would be lower. This can result in inaction and underscores the
importance of scrutinising time-related assumptions in policy and modelling, as they can shift what is
deemed optimal.

Across pathways and under equal objective weights, the preferred alternatives consistently show similar
components, even when market conditions and upstream parameters vary. Replacement schedules
for certain classes, such as the RHIB and SV, remain identical across all scenarios, while variation is
mainly concentrated in the BSM classes, where replacement timing shifts in response tomaterial choice,
production location, and energy sourcing. This robustness in the overall transition structure contrasts
with the variation in performance scores, which remain highly sensitive to upstream configurations.
Regardless of the pathway, all strategies require substantial early investment, underscoring the need
for financing mechanisms that support rapid capital deployment to achieve long-term sustainability
gains.

Although preferred alternatives often share similar transition structures, their TOPSIS scores, and thus
their relative desirability, vary considerably between pathways and scenarios. These differences are
driven less by operational timing than by upstream factors such as material type, production geogra-
phy, and energy mix, which influence the LCA and TCO outcomes. This highlights that even when
operational strategies converge, upstream configuration choices can substantially alter how desirable
a given alternative is in a multi-objective decision context.

The three performance criteria are driven by distinct factors. TCO is primarily determined by acquisition
prices, inflation, and vessel maintenance costs. LP results are shaped by vessel-specific emission pro-
files and fuel type, influencing whether replacements are delayed or prioritised for early electrification.
LCA results are governed by both direct and indirect sources. Namely, the number of battery packs,
with their carbon-intensive production, and the WTW emissions from fuel use, which depend on the
carbon intensity of the electricity mix or marine fuels. These interdependencies make the identification
of Pareto optimal strategies inherently complex, highlighting the need to balance costs, air quality, and
climate goals.

This modelling framework makes explicit the cost and emission impacts of different technical and eco-
nomic configurations, providing a transparent decision support tool. It enables stakeholders to explore
trade-offs and design resilient fleet renewal strategies that are evidence-based and adaptable to future
uncertainties.
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Discussion

This chapter reflects on the results of the fleet renewal framework developed in this research, placing
the findings in the context of the study objectives. It begins by interpreting the main results of the
optimisation and decision support process for the PoR case study. The discussion then relates these
outcomes to the research sub-questions, as these form the building blocks to answer the main research
question and achieve the overall objective of the study. This is followed by a critical review of the
limitations and their implications for interpreting the results. Finally, the chapter offers recommendations
for methodological refinement, future research, and practical application.

This thesis examined how the PoR could strategically renew its fleet while balancing the conflicting
objectives of minimising environmental impact, the TCO, and maintaining operational readiness. Al-
though maritime fleet renewal has been studied extensively, earlier approaches often treat environ-
mental and economic dimensions in isolation and rarely integrate decision-making under uncertainty
in a stakeholder-sensitive manner. By developing a two-layer MOO and MCDA framework, combining
the ε-constraint method with TOPSIS, this research offers a structured way to evaluate trade-offs and
align technical feasibility with stakeholder priorities in complex fleet transitions.

The results reveal a distinct asymmetry in the sensitivities of the three modelled objectives. LP emis-
sions are highly sensitive to transition timing. Earlier replacement of conventional vessels significantly
reduces LP. In contrast, LCA emissions are more strongly influenced by upstream and embedded fac-
tors, such as the location of production, the hull material, the type of fuel, and the battery manufacturing
processes. These emissions respond less to operational schedules and more to technological choices,
challenging assumptions that operational electrification alone guarantees sustainability. Meanwhile,
TCO outcomes are closely related to early capital investments. The more aggressive transition alter-
natives show a higher sensitivity to changing economic scenarios but do not significantly impact the
relative cost difference between the economic and expensive alternatives.

Some results diverge from initial expectations and merit closer scrutiny. In the CO2 depreciation sce-
nario, under the assumption that due to technological advancement and electricity grid decarbonisation
the CTG and GTC decrease over time, the fleet transition schedules diverged from standard expec-
tations. For some classes, it delayed replacement to avoid present emissions. This raises ethical
concerns about potentially rewarding inaction at the expense of long-term climate ambition.

These insights have important implications for fleet management. The framework highlights the value
of structuring investments early in the transition to achieve long-term environmental gains, even at the
expense of a higher short-term capital outlay. An operationally important finding is the differentiation
between vessel classes with robust replacement schedules (RHIB, SV, sPV) and thosewith high context
sensitivity (NM, PV, IRV). The ability to identify low-regret actions versus those that require careful trade-
off evaluation is a central contribution of the framework.

80
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Building on these findings, the following sections directly address each research sub-question. This
step is essential to connect the detailed results of the scenario to the broader objective of understand-
ing how the PoR can optimise its fleet renewal to minimise emissions, control costs, and maintain
operational capability.

What are the key decision factors and fleet operator’s interests that influence the timing of vessel re-
placement? The results of the different configurations show that the timing of replacement is shaped by
a combination of operational, economic, and environmental factors. Operationally, the framework re-
sults demonstrate that the various classes have different sensitivities. The RHIB, SV, and sPV classes
follow near-identical schedules in all scenarios, confirming their robustness as low-regret options. In
contrast, the NM, PV and IRV classes display highly variable schedules depending on the upstream con-
figurations and cost assumptions, which requires careful case-by-case evaluation. Economically, the
framework results demonstrate that differences in acquisition cost, inflation, and maintenance expendi-
ture directly influenced the timing of replacement. Environmentally, the framework results demonstrate
that the different energy carriers, the hull materials, and the vessel-specific emission profile strongly
affected the relative benefits of replacement. Together, these results indicate that timing decisions
emerge from the interplay of these factors and that the framework can clearly separate strategies that
are robust under uncertainty from those that are sensitive to specific assumptions.

What is the total cost of ownership of the vessels in the fleet? Across all economic and strategic
scenarios, the modelling results confirm that the largest share of TCO occurs in the early years due
to front-loaded CAPEX for vessels, infrastructure, and battery packs. The absolute TCO range shifts
heavily between the conservative and optimistic scenarios, with the median TCO for the optimistic
scenario being around € 380million, raising to over € 1060million for the conservative scenario. For the
standard scenario themedian value is € 700million, within the individual scenarios differences around 1-
2% are seen between the highest and lowest TCO alternatives. This narrow spread suggests that TCO
alone is insufficient to discriminate between competing strategies, especially when environmental and
operational outcomes diverge significantly. The TCO component of the framework therefore functions
best when used alongside the LCA and LP objectives, enabling a balanced assessment that reflects
both cost control and sustainability performance.

What is the life cycle impact of the vessels on the environment? The LCA results show that lifecycle
CO2-equivalent emissions are dominated by the upstream choices, such as the hull material, production
location, and the carbon intensity of the manufacturing energy, rather than the operational timing. This
explains why the LCA ranges are narrow within each scenario, but differ substantially between the
different configurations, ranging between 10,000 - 100,000 t CO2-eq. The LP emissions, in contrast,
are strongly driven by transition timing, with early replacement of conventional high-emission vessels
consistently producing large NOx reductions. For the scenarios where the WTW emissions go down
after the transition, it ranges between 14,000-140,000 kg NOx. If the WTW emissions do increase and
the current fleet would remain operational until EOL, the upper bound increases to 310,000 kg NOx

How can the economic, operational and sustainability factors be combined in a decision support frame-
work? The integrated MOO–MCDA structure proved effective in combining cost, environmental, and
operational objectives within a single decision support tool. The Pareto front analysis revealed the
trade-off space between the objectives, while TOPSIS translated that space into ranked alternatives
based on user-defined weights. This approach allows for the exploration of how changes in upstream
configurations or cost conditions shift the set of preferred schedules and to identify replacement actions
that are universally robust or scenario-dependent. The results of the case study confirm that the frame-
work supports transparent evaluation under uncertainty, providing decision makers with both flexibility
and clarity in prioritising objectives.

At the same time, several limitations should be considered when interpreting these findings. The frame-
work does not cost-differentiate between strategic choices for production location or material, even
though these factors influence actual CAPEX. This simplification could lead to an under- or overesti-
mation of the economic performance of certain pathways, particularly when upstream choices differ
significantly in cost. Technological improvements in battery production, vessel design, or charging
systems, are likely to reduce both costs and emissions in the future. With the exception of the CO2 de-
preciation scenario, this was not included. As a result, the framework may underestimate the long-term
performance of strategies that delay electrification in anticipation of cleaner, cheaper technology. Sim-
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ilarly, the static assumption for electricity grid composition ignores projected decarbonisation trends;
this could bias results against later transitions that would benefit from a lower carbon grid.

For environmental modelling, only the hull was included in CTG and GTC emissions. Excluding other
vessel components and maintenance-related emissions likely underestimates the lifecycle footprint, po-
tentially skewing comparisons between early and delayed replacement strategies. The environmental
scope was also limited to global warming potential, NOx and PM emissions, omitting categories such as
toxicity, acidification, and noise. Furthermore, only the local impact during the use phase was included.
The local impact, such as air pollution and pour labour conditions, during the other stages of the prod-
uct lifecycle was not included. These exclusions reduce the comprehensiveness of the environmental
assessment and may influence the environmental performance of different alternatives.

Finally, while the TCO calculation incorporates the residual value cash flow of the salvaged assets, it
does not account for the value of the active company assets at the end of the horizon. This omission
may disadvantage late acquisitions in the optimisation, as their remaining value is not reflected in the
objective function of the optimisationmodel. Including themarket or book value at the end of the horizon
in future studies would offset the disadvantage of late acquisitions and improve the comparability of
strategies with different timing profiles.

These limitations point to clear directions for future research. Incorporating a dynamic cost function
would improve the realism of the model and enhance the relevance of the decision support it provides.
Expanding the range of environmental categories would also increase the depth of the sustainability
assessment. Explicit modelling of technological advancements, such as improvements in battery pro-
duction, technical lifetime, and expected grid decarbonisation trajectories, could substantially alter the
trade-offs between LCA, LP, and TCO over time. By capturing how cleaner electricity grids and more
efficient manufacturing processes reduce the impacts of CTG and GTC in the future, the framework
could provide more forward-looking guidance and help identify transition strategies that remain opti-
mal under evolving conditions of technological and energy systems. The decision support structure
developed here, linking MOO with MCDA, also has potential applications beyond maritime contexts,
including heavy-duty vehicle transitions and road fleet renewal.

In summary, this thesis provides a methodological and practical framework for planning sustainable
fleet renewal, directly addressing the research objective of helping the Port of Rotterdam strategically
schedule vessel replacements to reduce greenhouse gas and local pollutant emissions, minimise tran-
sition costs, and maintain operational capability. By combining lifecycle emissions analysis, detailed
cost modelling, and stakeholder-driven preferences within an integrated optimisation-decision analy-
sis structure, the framework makes the trade-offs that shape renewal decisions explicit. It identifies
low-regret actions that are robust across scenarios, as well as context-sensitive strategies whose per-
formance depends on upstream assumptions and economic conditions. This dual capability provides
both the strategic clarity and the flexibility needed for decision making under uncertainty. Beyond the
case study, the framework offers a transparent, transferable decision support tool that can be adapted
to other fleets facing similar sustainability, cost, and operational challenges.
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Conclusion

This thesis addressed the question: How can the Port of Rotterdam optimise the fleet renewal process
to minimise total polluting emissions and transition costs, while ensuring that operational capacity is
maintained? The results show that this can be achieved through a scenario-based, multi-objective
decision framework, combining the ε-constraint method with TOPSIS. With lifecycle CO2 emissions,
local pollution, total cost of ownership, operational constraints, and stakeholder preferences included
within the framework.

This approach enables the development and ranking of replacement schedules that minimise both local
and global emissions, control the total cost of ownership, and maintain service capacity while remaining
adaptable to future conditions.

The results reveal different sensitivities of the three objectives to the fleet transition schedule. Local
pollutant emissions are strongly driven by the timing of conventional vessel replacement, which makes
scheduling a powerful lever for improving air quality. Lifecycle greenhouse gas emissions are less
influenced by operational timing and instead depend heavily on upstream choices such as hull material,
production location, and energy source. The total cost of ownership is more affected by the broader
economic outlook than by scheduling decisions.

In all scenarios, low-regret actions, such as the early replacement of RHIB, surveyor vessels, and small
patrol vessels, remain optimal, while incident response and larger patrol vessels show greater sensi-
tivity to upstream and market conditions. The performance of each strategy is shaped by interlinked
drivers: Acquisition prices, inflation, and maintenance costs determine the economic feasibility. The
vessel-specific emission profiles and the fuel type dictate the local pollution outcome. The number
and production footprint of battery packs, along with the carbon intensity of fuels or electricity, drive
life-cycle greenhouse gas emissions.

By combining multi-objective optimisation with multi-criteria decision analysis, the framework moves
beyond single-solution approaches. It allows decision-makers to explore how different priorities and
external conditions affect optimal schedules and to identify strategies that remain robust under uncer-
tainty.

In conclusion, the Port of Rotterdam can optimise its fleet renewal by applying this flexible, scenario-
based framework to evaluate trade-offs between cost, emissions, and operational capacity. Its strate-
gic value lies not in prescribing one universal plan, but in identifying the conditions under which certain
actions are consistently preferable. The methodology is transferable to other fleets facing similar sus-
tainability, economic, and operational challenges, offering a structured, evidence-based foundation for
the sector’s transition.
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A
Overview researched literature

Table A.1: Reviewed articles on fleet renewal.

Title Year Author Label Origin

Green transport fleet renewal using approximate
dynamic programming: A case study in German
heavy-duty road transportation

2024 Winkelmann A01 Query
A

A risk-based decision-making scheme for short-
sea liner fleet renewal to achieve carbon reduction
targets

2024 Zhao A02 Query
A

A Multi-Criteria Decision-Making Framework for
Zero Emission Vehicle Fleet Renewal Considering
Lifecycle and Scenario Uncertainty

2024 Aiello A04 Query
A

Electrification of Last-Mile Delivery: A Fleet Man-
agement Approach with a Sustainability Perspec-
tive

2023 Castillo A05 Query
A

Multi-Criteria Life-Cycle Assessment of bus fleet re-
newal: A methodology with a case study from Italy

2023 Copolla A06 Query
A

Integrating decision maker preferences to a risk-
averse multi-objective simulation-based optimiza-
tion for a military workforce planning, asset man-
agement and fleet management problem

2021 Turan A07 Query
A

A long-term fleet renewal problem under uncer-
tainty: A simulation-based optimization approach

2020 Turan A08 Query
A

The electric bus fleet transition problem 2019 Pelletier A09 Query
A

A scenario-based dynamic programming model for
multi-period liner ship fleet planning

2011 Meng AA01 AA10

Optimal liner fleet routeing strategies 1996 Cho and Perakis AA03 AA10
Investment And Replacement Analysis in Shipping 1979 Wijsmuller and

Beumee
AA04 AA10

Dynamic Programming Applied to Ship Fleet man-
agement

1971 Nicholson and Pullen AA05 AA10

Robust Fleet Sizing and Deployment for Industrial
and Independent Bulk Ocean Shipping Companies

2011 Alvarez AA06 AA10

A general Mathematical Theory of Depreciation 1925 Hotelling AA08 AA17
A statistical Theory of Depreciation 1923 Taylor AA09 AA17
A survey on maritime fleet and size and mix prob-
lems

2014 Pantuso AA10 A11

Uncertainty in fleet renewal: a case from maritime
transportation

2015 Pantuso AA11 A10

Continued on next page
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Table A.1: Reviewed Literature on Fleet Renewal and Strategic Replacement (continued)

Title Year Author Label Origin

Multi-period liner ship fleet planning with depen-
dent uncertain container shipment demand

2015 Meng AA12 A10

A dynamic model and algorithm for fleet planning 2000 Xie et al. AA13 AA10
A chance constrained programming model for
short-term liner ship fleet planning problems

2010 Meng AA14 A10

A stochastic programming formulation for strategic
fleet renewal in shipping

2014 Bakkehaug AA16 B21

Equipment Replacement Analysis: A literature Re-
view

2014 Hartman AA17 Search

Transitioning to sustainable freight transportation
by integrating fleet replacement and charging in-
frastructure decisions

2022 Alp AA20 A01

A Stochastic Dynamic Programming Approach for
the Equipment Replacement Optimization under
Uncertainty

2014 Fan AA23 A01

Aircraft replacement scheduling: A dynamic pro-
gramming approach

2011 Hsu AA24 A01

Amilitary fleet mix problem for high-valued defense
assets: A simulation-based optimization approach

2023 Ali AA25 A01

A novel approximate dynamic programming ap-
proach for constrained equipment replacement
problems: A case study

2019 Sadeghpour AA26 A01

Battery electric long-haul trucking with overnight
charging in the United States: A comprehensive
costing and emissions analysis

2025 Sader B01 Query
B

Maritime fleet composition under future green-
house gas emission restrictions and uncertain fuel
prices

2024 Loennechen B03 Query
B

Decarbonizing the Norwegian fishery fleet – strate-
gic fleet renewal with environmental considerations

2024 Sonnervik B04 Query
B

Modeling cost-optimal fuel choices for truck, ship,
and airplane fleets: The impact of sustainability
commitments

2024 Martin B05 Query
B

Electric mobility toward sustainable cities and road-
freight logistics: A systematic review and future re-
search directions

2023 Alarcón B06 Query
B

Economic optimization analysis of different elec-
tric powertrain technologies for vans applied to last
mile delivery fleets

2023 Castillo Campo B07 Query
B

The road to electrification: Bus fleet replacement
strategies

2023 Zhou B09 Query
B

A joint problem of strategic workforce planning and
fleet renewal: With an application in defense

2022 Turan B10 Query
B

Environmental sustainability of public transporta-
tion fleet replacement with electric buses in Hous-
ton, a megacity in the USA

2021 DU B11 Query
B

Container fleet renewal considering multiple sul-
fur reduction technologies and uncertain markets
amidst COVID-19

2021 Zhao B12 Query
B

The short-term cost of greening the global fleet 2021 Schinas B13 Query
B

When to go electric? A parallel bus fleet replace-
ment study

2019 Islam B17 Query
B

Environmental and economic comparison of diesel
and battery electric delivery vans to inform city lo-
gistics fleet replacement strategies

2018 Giordano B18 Query
B

Continued on next page
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Table A.1: Reviewed Literature on Fleet Renewal and Strategic Replacement (continued)

Title Year Author Label Origin

Bulk ship fleet renewal and deployment under un-
certainty: A multi-stage stochastic programming
approach

2017 Arslan B21 Query
B

Simulation of the impacts on carbon dioxide emis-
sions from replacement of a conventional Brazilian
taxi fleet by electric vehicles

2016 Teixeira B24 Query
B

A study of replacement rules for a parallel fleet re-
placement problem based on user preference uti-
lization pattern and alternative fuel considerations

2012 Parthanadee B26 Query
B

Fleet replacement under technological shocks 2012 Res B27 Query
B

Environmental sustainability of the vehicle fleet
change in public city transport of selected city in
central Europe

2020 Konecny C03 Query
C

Genetic Algorithm for Optimization of the Replace-
ment Schedules for Major Surface Combatants

2019 Fee C04 Query
C

Electric and plug-in hybrid vehicles influence on
CO2 and water vapour emissions

2011 Silva C05 Query
C

Comparative global warming impact and NOX
emissions of conventional and hydrogen automo-
tive propulsion systems

2020 Desantes G02 Query
G

The fleet renewal problem with regional emission
limitations: Case study from Roll-on/Roll-off ship-
ping

2015 Patricksson G03 Query
G
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Figure B.1: Overview of the decision support model architecture.



C
Preprocessing layer code

Preprocessing_input.py
1 """
2 Input parameters for fleet renewal model – Port of Rotterdam
3 Structured for the preprocessing layer of the decision support tool.
4 Author: Jelmer Pentinga
5 """
6 # === Vessel Characteristics ===
7 def vessel_characteristics():
8 """
9 Return vessel-specific characteristics including age, weight, emissions, and material type.
10

11 Returns:
12 dict: Vessel parameters by ID.
13 """
14

15 return {
16 # IRV vessels
17 0: {"name": "RPA␣10", "class": "IRV", "initial_age": 91, "eol": 132, "materials":

{"steel_tons": 104, "aluminium_tons": 0, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 28.6, "NOX": 4.57, "PM
": 0.186, "fuel_type": "HVO"}},

18 1: {"name": "RPA␣11", "class": "IRV", "initial_age": 91, "eol": 136, "materials":
{"steel_tons": 104, "aluminium_tons": 0, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 28.6, "NOX": 4.57, "PM
": 0.186, "fuel_type": "HVO"}},

19 2: {"name": "RPA␣12", "class": "IRV", "initial_age": 95, "eol": 148, "materials":
{"steel_tons": 104, "aluminium_tons": 0, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 28.6, "NOX": 12.6, "PM
": 0.6, "fuel_type": "HVO"}},

20 3: {"name": "RPA␣13", "class": "IRV", "initial_age": 95, "eol": 128, "materials":
{"steel_tons": 104, "aluminium_tons": 0, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 28.6, "NOX": 12.6, "PM
": 0.6, "fuel_type": "HVO"}},

21 4: {"name": "RPA␣14", "class": "IRV", "initial_age": 159, "eol": 188, "materials":
{"steel_tons": 170, "aluminium_tons": 0, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 44.4, "NOX": 12.6, "PM
": 0.6, "fuel_type": "HVO"}},

22 5: {"name": "RPA␣15", "class": "IRV", "initial_age": 159, "eol": 192, "materials":
{"steel_tons": 170, "aluminium_tons": 0, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 44.4, "NOX": 12.6, "PM
": 0.6, "fuel_type": "HVO"}},

23 6: {"name": "RPA␣16", "class": "IRV", "initial_age": 91, "eol": 140, "materials":
{"steel_tons": 110, "aluminium_tons": 0, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 28.6, "NOX": 12.6, "PM
": 0.6, "fuel_type": "HVO"}},

24 7: {"name": "RPA␣30", "class": "IRV", "initial_age": None, "eol": 100, "materials":
{"steel_tons": 0, "aluminium_tons": 105, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 152, "NOX": 0.0, "PM":
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0.0, "fuel_type": "Electricity"}},
25 8: {"name": "RPA␣31", "class": "IRV", "initial_age": None, "eol": 100, "materials":

{"steel_tons": 0, "aluminium_tons": 105, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 152, "NOX": 0.0, "PM":
0.0, "fuel_type": "Electricity"}},

26 9: {"name": "RPA␣32", "class": "IRV", "initial_age": None, "eol": 100, "materials":
{"steel_tons": 0, "aluminium_tons": 105, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 152, "NOX": 0.0, "PM":
0.0, "fuel_type": "Electricity"}},

27 10: {"name": "RPA␣33", "class": "IRV", "initial_age": None, "eol": 100, "materials":
{"steel_tons": 0, "aluminium_tons": 105, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 152, "NOX": 0.0, "PM":
0.0, "fuel_type": "Electricity"}},

28 11: {"name": "RPA␣34", "class": "IRV", "initial_age": None, "eol": 100, "materials":
{"steel_tons": 0, "aluminium_tons": 105, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 152, "NOX": 0.0, "PM":
0.0, "fuel_type": "Electricity"}},

29 12: {"name": "RPA␣35", "class": "IRV", "initial_age": None, "eol": 100, "materials":
{"steel_tons": 0, "aluminium_tons": 105, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 152, "NOX": 0.0, "PM":
0.0, "fuel_type": "Electricity"}},

30 # PV vessels
31 13: {"name": "RPA␣6", "class": "PV", "initial_age": 75, "eol": 108, "materials": {

"steel_tons": 34, "aluminium_tons": 4, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 22.2, "NOX": 10.05, "
PM": 0.54, "fuel_type": "HVO"}},

32 14: {"name": "RPA␣7", "class": "PV", "initial_age": 79, "eol": 120, "materials": {
"steel_tons": 34, "aluminium_tons": 4, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 22.2, "NOX": 10.05, "
PM": 0.54, "fuel_type": "HVO"}},

33 15: {"name": "RPA␣8", "class": "PV", "initial_age": 31, "eol": 84, "materials": {
"steel_tons": 0, "aluminium_tons": 20, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 14, "NOX": 4.57, "PM":
0.186, "fuel_type": "HVO"}},

34 16: {"name": "RPA␣22", "class": "PV", "initial_age": None, "eol": 100, "materials": {
"steel_tons": 0, "aluminium_tons": 95, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 143, "NOX": 0, "PM": 0,
"fuel_type": "Electricity"}},

35 17: {"name": "RPA␣23", "class": "PV", "initial_age": None, "eol": 100, "materials": {
"steel_tons": 0, "aluminium_tons": 95, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 143, "NOX": 0, "PM": 0,
"fuel_type": "Electricity"}},

36 18: {"name": "RPA␣24", "class": "PV", "initial_age": None, "eol": 100, "materials": {
"steel_tons": 0, "aluminium_tons": 95, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 143, "NOX": 0, "PM": 0,
"fuel_type": "Electricity"}},

37 # sPV vessels
38 19: {"name": "RPA␣1", "class": "sPV", "initial_age": 91, "eol": 120, "materials": {

"steel_tons": 20, "aluminium_tons": 2.5, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 17.5, "NOX": 12.6, "PM":
0.6, "fuel_type": "HVO"}},

39 20: {"name": "RPA␣2", "class": "sPV", "initial_age": 91, "eol": 136, "materials": {
"steel_tons": 20, "aluminium_tons": 2.5, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 17.5, "NOX": 12.6, "PM":
0.6, "fuel_type": "HVO"}},

40 21: {"name": "RPA␣21", "class": "sPV", "initial_age": None,"eol": 100, "materials": {
"steel_tons": 0, "aluminium_tons": 35, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 110, "NOX": 0, "PM": 0,
"fuel_type": "Electricity"}},

41

42 # SV vessels
43 22: {"name": "SV␣1", "class": "SV", "initial_age": 75, "eol": 100, "materials":

{"steel_tons": 30, "aluminium_tons": 3.8, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 9.4, "NOX": 7.26, "PM":
0.23, "fuel_type": "HVO"}},

44 23: {"name": "SV␣2", "class": "SV", "initial_age": 75, "eol": 104, "materials":
{"steel_tons": 30, "aluminium_tons": 3.8, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 9.4, "NOX": 7.26, "PM":
0.23, "fuel_type": "HVO"}},

45 24: {"name": "SV␣41", "class": "SV", "initial_age": None, "eol": 100, "materials":
{"steel_tons": 0, "aluminium_tons": 35, "steel_type": "EAF", "al_type": "



97

secondary"}, "specific_emissions": {"fuel_consumption": 51, "NOX": 0, "PM": 0,
"fuel_type": "Electricity"}},

46 25: {"name": "SV␣42", "class": "SV", "initial_age": None, "eol": 100, "materials":
{"steel_tons": 0, "aluminium_tons": 35, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 51, "NOX": 0, "PM": 0,
"fuel_type": "Electricity"}},

47 # NM vessels
48 26: {"name": "NM", "class": "NM", "initial_age": 123, "eol": 148, "materials":

{"steel_tons": 0, "aluminium_tons": 60, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 25, "NOX": 7.26, "PM":
0.23, "fuel_type": "HVO"}},

49 27: {"name": "GM", "class": "NM", "initial_age": None, "eol": 100, "materials":
{"steel_tons": 0, "aluminium_tons": 60, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 135, "NOX": 0, "PM": 0,
"fuel_type": "Electricity"}},

50 # RHIB vessels
51 28: {"name": "RPA␣5", "class": "RHIB", "initial_age": 23, "eol": 44, "materials":

{"steel_tons": 0, "aluminium_tons": 1.6, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 1.6, "NOX": 7.26, "PM":
0.23, "fuel_type": "HVO"}},

52 29: {"name": "RPA␣25", "class": "RHIB", "initial_age": None, "eol": 44, "materials":
{"steel_tons": 0, "aluminium_tons": 1.6, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 1.6, "NOX": 4.57, "PM":
0.186, "fuel_type": "HVO"}},

53 30: {"name": "RPA␣26", "class": "RHIB", "initial_age": None, "eol": 44, "materials":
{"steel_tons": 0, "aluminium_tons": 1.6, "steel_type": "EAF", "al_type": "
secondary"}, "specific_emissions": {"fuel_consumption": 1.6, "NOX": 4.57, "PM":
0.186, "fuel_type": "HVO"}}

54 }
55 def vessel_costs():
56 """
57 Return vessel cost estimates (CAPEX/OPEX/residual) in €1000.
58

59 Returns:
60 dict: Cost components per vessel ID.
61 """
62 return {
63 0: {"acquisition": 0, "residual": 1500, "operating": 20, "insurance": 11}, #

RPA 10
64 1: {"acquisition": 0, "residual": 1500, "operating": 18, "insurance": 11}, #

RPA 11
65 2: {"acquisition": 0, "residual": 850, "operating": 18, "insurance": 8}, #

RPA 12
66 3: {"acquisition": 0, "residual": 950, "operating": 15, "insurance": 8}, #

RPA 13
67 4: {"acquisition": 0, "residual": 650, "operating": 15, "insurance": 7}, #

RPA 14
68 5: {"acquisition": 0, "residual": 850, "operating": 20, "insurance": 8}, #

RPA 15
69 6: {"acquisition": 0, "residual": 1250, "operating": 17, "insurance": 10}, #

RPA 16
70 7: {"acquisition": 24600, "residual": 18400, "operating": 15, "insurance": 61}, #

RPA 30
71 8: {"acquisition": 24600, "residual": 18400, "operating": 15, "insurance": 61}, #

RPA 31
72 9: {"acquisition": 24600, "residual": 18400, "operating": 15, "insurance": 61}, #

RPA 32
73 10: {"acquisition": 24600, "residual": 18400, "operating": 15, "insurance": 61}, #

RPA 33
74 11: {"acquisition": 24600, "residual": 18400, "operating": 15, "insurance": 61}, #

RPA 34
75 12: {"acquisition": 24600, "residual": 18400, "operating": 15, "insurance": 61}, #

RPA 35
76 13: {"acquisition": 0, "residual": 900, "operating": 14, "insurance": 3}, #

RPA 6
77 14: {"acquisition": 0, "residual": 875, "operating": 16, "insurance": 3}, #

RPA 7
78 15: {"acquisition": 0, "residual": 3500, "operating": 16, "insurance": 16}, #

RPA 8
79 16: {"acquisition": 21200, "residual": 15900, "operating": 14, "insurance": 53}, #

RPA 22
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80 17: {"acquisition": 21200, "residual": 15900, "operating": 14, "insurance": 53}, #
RPA 23

81 18: {"acquisition": 21200, "residual": 15900, "operating": 14, "insurance": 53}, #
RPA 24

82 19: {"acquisition": 0, "residual": 450, "operating": 12, "insurance": 4}, #
RPA 1

83 20: {"acquisition": 0, "residual": 500, "operating": 13, "insurance": 4}, #
RPA 2

84 21: {"acquisition": 11200, "residual": 8430, "operating": 10, "insurance": 28}, #
RPA 21

85 22: {"acquisition": 0, "residual": 350, "operating": 11, "insurance": 3}, # SV
1

86 23: {"acquisition": 0, "residual": 350, "operating": 10, "insurance": 3}, # SV
2

87 24: {"acquisition": 10700, "residual": 8050, "operating": 10, "insurance": 27}, # SV
41

88 25: {"acquisition": 10700, "residual": 8050, "operating": 10, "insurance": 27}, # SV
42

89 26: {"acquisition": 0, "residual": 2500, "operating": 33, "insurance": 16}, # NM
90 27: {"acquisition": 23400, "residual": 17500, "operating": 25, "insurance": 59}, # GM
91 28: {"acquisition": 0, "residual": 250, "operating": 6, "insurance": 1.5}, #

RPA 5
92 29: {"acquisition": 600, "residual": 450.0, "operating": 4, "insurance": 1.5},

# RPA 25
93 30: {"acquisition": 600, "residual": 450.0, "operating": 4, "insurance": 1.5}

# RPA 26
94 }
95

96 def maintenance(): #(age,cost)
97 """
98 Return quarterly maintenance schedule and associated cost per vessel.
99

100 Returns:
101 dict: Keys are vessel IDs, values are lists of (quarter, €1000) tuples.
102 """
103 maintenance = {
104 0: [(99, 865), (109, 700), (120, 740)], # IRV 10
105 1: [(101, 865), (111, 700), (121, 740), (131, 525)], # IRV 11
106 2: [(98, 465), (108, 825), (118, 540), (128, 650), (138, 615)], # IRV 12
107 3: [(111, 675), (121, 590)], # IRV 13
108 4: [(168, 1000), (178, 650)], # IRV 14
109 5: [(172, 525), (182, 1000)], # IRV 15
110 6: [(102, 765), (112, 900), (122, 615), (132, 650)], # IRV 16
111 7: [(10, 500), (20, 500), (30, 500), (40, 500), (50, 500), (60, 500), (70, 500), (80,

500), (90, 500), (100, 500), (110, 500), (120, 250)], # IRV 30
112 8: [(10, 500), (20, 500), (30, 500), (40, 500), (50, 500), (60, 500), (70, 500), (80,

500), (90, 500), (100, 500), (110, 500), (120, 500)], # IRV 31
113 9: [(10, 500), (20, 500), (30, 500), (40, 500), (50, 500), (60, 500), (70, 500), (80,

500), (90, 500), (100, 500), (110, 500), (120, 500)], # IRV 32
114 10: [(10, 500), (20, 500), (30, 500), (40, 500), (50, 500), (60, 500), (70, 500),

(80, 500), (90, 500), (100, 500), (110, 500), (120, 500)], # IRV 33
115 11: [(10, 500), (20, 500), (30, 500), (40, 500), (50, 500), (60, 500), (70, 500),

(80, 500), (90, 500), (100, 500), (110, 500), (120, 500)], # IRV 34
116 12: [(10, 500), (20, 500), (30, 500), (40, 500), (50, 500), (60, 500), (70, 500),

(80, 500), (90, 500), (100, 500), (110, 500), (120, 500)], # IRV 35
117 13: [(81, 465), (90, 650), (100, 465)], # PV 6
118 14: [(80, 465), (90, 650), (99, 465), (108, 650)], # PV 7
119 15: [(44, 75), (56, 200), (64, 75), (72, 200)], # PV 8
120 16: [(10, 400), (20, 400), (30, 400), (40, 400), (50, 400), (60, 400), (70, 400),

(80, 400), (90, 400), (100, 400), (110, 400), (120, 400)], # PV 22
121 17: [(10, 400), (20, 400), (30, 400), (40, 400), (50, 400), (60, 400), (70, 400),

(80, 400), (90, 400), (100, 400), (110, 400), (120, 400)], # PV 23
122 18: [(10, 400), (20, 400), (30, 400), (40, 400), (50, 400), (60, 400), (70, 400),

(80, 400), (90, 400), (100, 400), (110, 400), (120, 400)], # PV 24
123 19: [(100, 750), (110, 465)], # PV 1
124 20: [(99, 750), (111, 350), (124, 350)], # PV 2
125 21: [(10, 275), (20, 275), (30, 275), (40, 275), (50, 275), (60, 275), (70, 275),

(80, 275), (90, 275), (100, 275), (110, 275), (120, 275)], # sPV 21
126 22: [(75, 275), (85, 450)], # SV 1
127 23: [(84, 525), (94, 275)], # SV 2
128 24: [(10, 275), (20, 275), (30, 275), (40, 275), (50, 275), (60, 275), (70, 275),
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(80, 275), (90, 275), (100, 275), (110, 275), (120, 275)], # SV 41
129 25: [(10, 275), (20, 275), (30, 275), (40, 275), (50, 275), (60, 275), (70, 275),

(80, 275), (90, 275), (100, 275), (110, 275), (120, 275)], # SV 42
130 26: [(123, 450), (127, 450), (131, 450), (135, 450), (139, 450), (143, 450), (147,

450)], # NM
131 27: [(10, 400), (20, 400), (30, 400), (40, 400), (50, 400), (60, 400), (70, 400),

(80, 400), (90, 400), (100, 400), (110, 400), (120, 400)], # GM
132 28: [(23, 50), (27, 50), (31, 50), (35, 50), (39, 50), (43, 50), (47, 50)], # RHIB 5
133 29: [(3, 50), (7, 50), (11, 50), (15, 50), (19, 50), (23, 50), (27, 50), (31, 50),

(35, 50), (39, 50), (43, 50), (47, 50), (51, 50), (55, 50), (59, 50)], # RHIB 25
134 30: [(3, 50), (7, 50), (11, 50), (15, 50), (19, 50), (23, 50), (27, 50), (31, 50),

(35, 50), (39, 50), (43, 50), (47, 50), (51, 50), (55, 50), (59, 50)] # RHIB 55
135 }
136 return maintenance
137

138 # === Battery Specifications ===
139 def battery_characteristics():
140 """
141 Return capacity and weight of batteries used by vessel class.
142

143 Returns:
144 dict: Battery capacity (MWh) and weight (tons/MWh).
145 """
146 capacity = {
147 "IRV": 1,
148 "PV": 1,
149 "sPV": 2,
150 "SV": 2,
151 "RHIB": 0,
152 "NM": 1}
153 weight = 5.9 # in ton per MWh
154 return{
155 "capacity": capacity,
156 "weight": weight
157 }
158

159 def battery_costs():
160 """
161 Return economic parameters for battery acquisition, residual value, and OPEX in €1000.
162

163 Returns:
164 dict
165 """
166 return {
167 "acquisition": 670,
168 "residual": 570,
169 "operating": 4
170 }
171

172 # === Infrastructure Parameters ===
173 def infrastructure_characteristics():
174 """
175 Return infrastructure asset material compositions and types.
176

177 Returns:
178 dict
179 """
180 return {"BSM":
181 {"steel_tons": 4, "steel_type": "SCRAP", "aluminium_tons": 0,"al_type": "

secondary"}
182 }
183

184 def infrastructure_costs():
185 """
186 Return CAPEX, OPEX, and residual value of infrastructure assets in €1000.
187

188 Returns:
189 dict
190 """
191 acquisition = {
192 "BSM": 8110,
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193 "Shorepower": 3800
194 }
195 residual = {
196 "BSM": 6082,
197 "Shorepower": 2850
198 }
199 operating = {
200 "BSM": 51,
201 "Shorepower": 24
202 }
203 return {
204 "acquisition": acquisition,
205 "residual": residual,
206 "operating": operating
207 }
208

209 # === Fuel and Transport ===
210 def fuel_type_cost():
211 """
212 Return fuel prices per energy unit €(1000 per ton or MWh).
213

214 Returns:
215 dict
216 """
217 return {
218 "MDO": 0.92,
219 "HVO": 1.27,
220 "Electricity": 0.24
221 }
222

223 def transport_distances():
224 """
225 Return relevant transport distances in km used in emission calculation.
226

227 Returns:
228 dict:
229 """
230 return {
231 "romania_vietnam_rotterdam": 31800,
232 "china_rotterdam": 19500,
233 "romania_rotterdam": 6300,
234 "norway_rotterdam": 1000,
235 "rotterdam_antalya": 6000,
236 "local": 0
237 }
238 # === Economic Adjustment Factors ===
239 def depreciation_factors():
240 """
241 Return quarterly depreciation factors for economic components.
242

243 Returns:
244 dict
245 """
246 return {
247 "vessels": 0.0075,
248 "batteries": 0.02,
249 "infrastructure": 0.00625,
250 "CO2": 0.00
251 }
252

253 def inflation_factor():
254 """
255 Return quarterly inflation factor for price adjustment.
256

257 Returns:
258 float
259 """
260 return 0.005
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Emission_factors.py Code
1 """
2 Emission factors for fleet renewal model – Port of Rotterdam
3 Structured for the preprocessing layer of the decision support tool.
4 Author: Jelmer Pentinga
5 """
6

7 # === Material Processing Emissions (CTG: Cradle-to-Gate) ===
8

9 def processing_emission_factors():
10 """
11 Emissions from raw material processing for steel and aluminium.
12

13 Returns:
14 dict: Emission factors per material type (in tCO2-eq or MWh/ton).
15 """
16 return {
17 "steel": {
18 "BOF": {
19 "direct": {"CO2": 1.2},
20 "indirect": {"MWh": 2.22}
21 },
22 "EAF": {
23 "direct": {"CO2": 1.0},
24 "indirect": {"MWh": 0.89}
25 },
26 "SCRAP": {
27 "direct": {"CO2": 0.04},
28 "indirect": {"MWh": 0.58}
29 }
30 },
31 "aluminium": {
32 "primary": {
33 "direct": {"CO2": 6.0},
34 "indirect": {"MWh": 14.27}
35 },
36 "secondary": {
37 "direct": {"CO2": 0.23},
38 "indirect": {"MWh": 0.03}
39 }
40 }
41 }
42

43 # === Manufacturing Emissions ===
44

45 def production_emission_factors():
46 """
47 Emissions from production of components (batteries and metals).
48

49 Returns:
50 dict: Direct and indirect emissions per ton produced.
51 """
52 return {
53 "metals": {
54 "direct_emissions": {"CO2": 0.000771},
55 "indirect_emissions": {"MWh": 0.566}
56 },
57 "battery": {
58 "direct_emissions": {"CO2": 56}, #per MWH battery
59 "indirect_emissions": {"MWh": 60.0} # per MWH battery
60 }
61 }
62

63 # === Dismantling Emissions (GTC: Grave-to-Cradle) ===
64

65 def dismantling_emission_factors():
66 """
67 Emissions from dismantling and recycling of vessel and battery materials.
68

69 Returns:
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70 dict: Indirect emissions per ton.
71 """
72 return {
73 "metals": {
74 "indirect_emissions": {"MWh": 0.518}
75 },
76 "battery": {
77 "indirect_emissions": {"MWh": 22.98}
78 }
79 }
80

81 # === Transport Emissions (in gCO2-eq / ton·km) ===
82

83 def transport_emission_factors():
84 """
85 Emission factor for maritime transport of materials.
86

87 Returns:
88 float: gCO2-eq per ton·km (converted in model to tCO2).
89 """
90 return 7.9
91

92

93 # === Fuel Emissions (WTW: Well-to-Wheel) ===
94

95 def fuel_emission_factors():
96 """
97 Emissions per ton of fuel combusted.
98

99 Returns:
100 dict: Fuel type mapped to tCO2-eq/ton.
101 """
102 return {
103 "MDO": {"CO2": 4.04},
104 "HVO": {"CO2": 0.41},
105 "Electricity": None # Handled separately via grid emissions
106 }
107

108 # === Electricity Grid Emissions ===
109

110 def energy_grid_emission_factors():
111 """
112 Emission factors per MWh based on source of electricity.
113

114 Returns:
115 dict: Grid composition mapped to tCO2-eq/MWh and local pollutant emissions.
116 """
117 return {
118 "grid_composition": {
119 "clean_energy": {"CO2": 0.0, "NOX": 0.0, "PM": 0.0},
120 "netherlands_grey": {"CO2": 0.536, "NOX": 0.00025, "PM": 0.0000056},
121 "netherlands_mix": {"CO2": 0.328, "NOX": 0.00015, "PM": 0.0000034},
122 "worldwide": {"CO2": 0.473, "NOX": 0.0, "PM": 0.0},
123 "EU": {"CO2": 0.237, "NOX": 0.0, "PM": 0.0},
124 "china": {"CO2": 0.56, "NOX": 0.0, "PM": 0.0},
125 "turkey": {"CO2": 0.47, "NOX": 0.0, "PM": 0.0},
126 "vietnam": {"CO2": 0.472, "NOX": 0.0, "PM": 0.0}
127 }
128 }

Intermediate_calculations.py Code
1 """
2 Intermediate calculations for fleet renewal model – Port of Rotterdam
3 Structured for the preprocessing layer of the decision support tool.
4 Author: Jelmer Pentinga
5 """
6

7 # === MATERIAL STAGE EMISSIONS ===
8
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9 def processing_emissions(materials, processing_factors, grid_emission):
10 """
11 Computes cradle-to-gate (CTG) emissions from steel and aluminium processing.
12

13 Parameters:
14 materials (dict): {steel_tons, aluminium_tons, steel_type, al_type}
15 processing_factors (dict): Output of processing_emission_factors()
16 grid_emission (dict): CO2 per MWh from selected electricity mix
17

18 Returns:
19 float: Total processing emissions in tons �CO-equivalent
20 """
21 steel = materials["steel_tons"]
22 aluminium = materials["aluminium_tons"]
23 steel_type = materials["steel_type"]
24 al_type = materials["al_type"]
25

26 steel_direct = steel * processing_factors["steel"][steel_type]["direct"]["CO2"]
27 steel_indirect = steel * processing_factors["steel"][steel_type]["indirect"]["MWh"] *

grid_emission["CO2"]
28 al_direct = aluminium * processing_factors["aluminium"][al_type]["direct"]["CO2"]
29 al_indirect = aluminium * processing_factors["aluminium"][al_type]["indirect"]["MWh"] *

grid_emission["CO2"]
30

31 return steel_direct + steel_indirect + al_direct + al_indirect
32

33

34 def metal_production_emissions(materials, production_factors, grid_emission):
35 """
36 Computes emissions from vessel metal part production.
37

38 Parameters:
39 materials (dict)
40 production_factors (dict): Output of production_emission_factors()
41 grid_emission (dict)
42

43 Returns:
44 float: Total emissions in tons �CO-equivalent
45 """
46 indirect_energy = production_factors["metals"]["indirect_emissions"]["MWh"]
47 direct_emissions = production_factors["metals"]["direct_emissions"]["CO2"]
48 total_tons = materials["steel_tons"] + materials["aluminium_tons"]
49

50 indirect = total_tons * indirect_energy * grid_emission["CO2"]
51 direct = total_tons * direct_emissions
52 return indirect + direct
53

54

55 def metal_dismantling_emissions(materials, dismantling_factors, grid_emission):
56 """
57 Computes dismantling emissions for vessel metals.
58

59 Returns:
60 float: �CO-equivalent emissions from dismantling (tons)
61 """
62 steel = materials["steel_tons"]
63 aluminium = materials["aluminium_tons"]
64 total_energy = (steel + aluminium) * dismantling_factors["metals"]["indirect_emissions"][

"MWh"]
65 return total_energy * grid_emission["CO2"]
66

67

68

69 # === BATTERY EMISSIONS ===
70

71 def battery_production_emissions(vessel_class, production_factors, grid_emission,
battery_characteristics):

72 """
73 Computes �CO emissions from battery production by vessel class.
74

75 Returns:
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76 float: Total �CO-equivalent emissions (tons)
77 """
78 capacity_dict = battery_characteristics["capacity"]
79 capacity_mwh = capacity_dict.get(vessel_class, 0)
80

81 indirect = capacity_mwh * production_factors["battery"]["indirect_emissions"]["MWh"] *
grid_emission["CO2"]

82 direct = capacity_mwh * production_factors["battery"]["direct_emissions"]["CO2"]
83 return indirect + direct
84

85

86 def battery_dismantling_emissions(vessel_class, dismantling_factors , grid_emission,
battery_characteristics):

87 """
88 Computes �CO emissions from battery dismantling by vessel class.
89

90 Returns:
91 float: Total �CO-equivalent emissions (tons)
92 """
93 capacity_dict = battery_characteristics["capacity"]
94 weight_per_mwh = battery_characteristics["weight"]
95 capacity_mwh = capacity_dict.get(vessel_class, 0)
96 battery_weight = capacity_mwh * weight_per_mwh
97

98 total_energy = battery_weight * dismantling_factors["battery"]["indirect_emissions"]["MWh
"]

99 return total_energy * grid_emission["CO2"]
100

101

102 # === TRANSPORT EMISSIONS ===
103

104 def transport_emissions(materials, distance_km, transport_factor):
105 """
106 Computes emissions from transporting materials by sea/land.
107

108 Returns:
109 float: Emissions in tons �CO-equivalent
110 """
111 total_tons = materials["steel_tons"] + materials["aluminium_tons"]
112 emissions_grams = total_tons * distance_km * transport_factor
113 return emissions_grams / 1e6 # grams to tons
114

115

116 # === OPERATIONAL PHASE ===
117

118 def fuel_cost(fuel_type, fuel_consumption, fuel_type_costs):
119 """
120 Compute operating fuel cost per quarter.
121

122 Returns:
123 float: Cost in €1000
124 """
125 return fuel_type_costs.get(fuel_type, 0) * fuel_consumption
126

127

128 def wtw_emissions(fuel_type, fuel_consumption, fuel_emission_factors , nox_factor, pm_factor,
energy_grid_mix):

129 """
130 Computes well-to-wake (WTW) emissions from vessel operation.
131

132 Returns:
133 dict: {CO2: ton, NOX: ton, PM: ton}
134 """
135 emissions = {"CO2": 0, "NOX": 0, "PM": 0}
136 grid_emission = energy_grid_mix()["grid_composition"]["clean_energy"]
137 fuel_factors = fuel_emission_factors
138

139 # Lower Heating Value for liquid fuels
140 LHV_MWh = 43 / 3.6 # MWh/ton
141 efficiency = 0.4
142
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143 if fuel_type == "Electricity":
144 emissions["CO2"] = fuel_consumption * grid_emission["CO2"]
145 emissions["NOX"] = fuel_consumption * grid_emission["NOX"]
146 emissions["PM"] = fuel_consumption * grid_emission["PM"]
147 else:
148 co2_factor = fuel_factors[fuel_type]["CO2"]
149 emissions["CO2"] = fuel_consumption * co2_factor
150 emissions["NOX"] = fuel_consumption * LHV_MWh * nox_factor * efficiency
151 emissions["PM"] = fuel_consumption * LHV_MWh * pm_factor * efficiency
152

153 return emissions
154

155

156 # === ECONOMIC MODELING ===
157

158 def inflation(value, periods, inflation_rate):
159 """
160 Calculate inflation-adjusted value across time.
161

162 Returns:
163 dict: {quarter: value}
164 """
165 return {q: value * ((1 + inflation_rate) ** q) for q in range(periods)}
166

167

168 def depreciation(value, periods, depreciation_rate):
169 """
170 Calculate linear depreciation across quarters.
171

172 Returns:
173 dict: {quarter: value}
174 """
175 return {
176 q: max(0, value * (1 - q * depreciation_rate))
177 for q in range(periods)
178 }

Final_calculations.py Code
1 """
2 Final calculations for fleet renewal model – Port of Rotterdam
3 Structured for the preprocessing layer of the decision support tool.
4 Author: Jelmer Pentinga
5 """
6 # === IMPORTS ===
7

8 from Preprocessing_input import (
9 vessel_characteristics , vessel_costs, maintenance,
10 depreciation_factors , inflation_factor, battery_costs,
11 infrastructure_costs , battery_characteristics , infrastructure_characteristics ,
12 fuel_type_cost, transport_distances
13 )
14 from Emission_factors import (
15 processing_emission_factors ,
16 production_emission_factors ,
17 dismantling_emission_factors ,
18 energy_grid_emission_factors ,
19 transport_emission_factors ,
20 fuel_emission_factors
21 )
22 from Intermediate_calculations import (
23 processing_emissions ,
24 metal_production_emissions ,
25 battery_production_emissions ,
26 metal_dismantling_emissions ,
27 battery_dismantling_emissions ,
28 transport_emissions ,
29 wtw_emissions,
30 inflation,
31 depreciation,
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32 fuel_cost
33 )
34

35 # === PARAMETERS ===
36 T = 100 # quarters (15 years)
37 J = 200 # asset planning horizon (residual)
38

39

40 # === LIFECYCLE COSTS ===
41

42 def calculate_lifecycle_costs(vessel_class, vessel_costs, battery_costs, infrastructure_costs
,

43 depreciation_factors , inflation_factor,
44 maintenance, fuel_type, fuel_consumption, fuel_type_costs, J, T

, initial_age=None):
45 """
46 Computes CAPEX and OPEX profiles for vessels, batteries, infrastructure and fuel.
47

48 Returns:
49 dict: Cost dictionaries per time period and asset class
50 """
51

52 def get_infra_type(vclass):
53 return "BSM" if vclass in ["IRV", "PV", "NM"] else "Shorepower" if vclass in ["sPV",

"SV"] else None
54

55 def uses_battery(vclass):
56 return vclass in ["IRV", "PV", "NM"]
57

58 results = {}
59

60 # Vessel costs
61 results['v_acq'] = inflation(vessel_costs["acquisition"], T, inflation_factor)
62 base_res = vessel_costs["residual"]
63 raw_dep = depreciation(base_res, J, depreciation_factors["vessels"])
64 if initial_age is not None:
65 shifted_dep = {j: raw_dep[j - initial_age] for j in range(initial_age, J)}
66 else:
67 shifted_dep = raw_dep
68 results['v_res'] = {
69 t: {j: inflation(shifted_dep[j], t + 1, inflation_factor)[t] for j in shifted_dep}
70 for t in range(T)}
71 results['v_ope'] = inflation(vessel_costs["operating"], T, inflation_factor)
72 results['v_ins'] = inflation(vessel_costs["insurance"], T, inflation_factor)
73 results['v_maint'] = {
74 t: {age: inflation(cost, t+1, inflation_factor)[t] for age, cost in maintenance}
75 for t in range(T)
76 }
77

78 # Battery costs
79 if uses_battery(vessel_class):
80 results['b_acq'] = inflation(battery_costs["acquisition"], T, inflation_factor)
81 results['b_ope'] = inflation(battery_costs["operating"], T, inflation_factor)
82 b_res_dep = depreciation(battery_costs["residual"], J, depreciation_factors["

batteries"])
83 results['b_res'] = {
84 t: {j: inflation(b_res_dep[j], t + 1, inflation_factor)[t] for j in b_res_dep}
85 for t in range(T)
86 }
87 else:
88 results['b_res'] = 0
89

90 # Infrastructure costs
91 infra_type = get_infra_type(vessel_class)
92 if infra_type:
93 results['i_acq'] = inflation(infrastructure_costs["acquisition"][infra_type], T,

inflation_factor)
94 results['i_ope'] = inflation(infrastructure_costs["operating"][infra_type], T,

inflation_factor)
95 i_res_dep = depreciation(infrastructure_costs["residual"][infra_type], J,

depreciation_factors["infrastructure"])
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96 results['i_res'] = {
97 t: {j: inflation(i_res_dep[j], t + 1, inflation_factor)[t] for j in i_res_dep}
98 for t in range(T)
99 }
100 else:
101 results['i_acq'] = results['i_ope'] = results['i_res'] = 0
102

103 # Fuel costs
104 base_fuel_cost = fuel_cost(fuel_type, fuel_consumption, fuel_type_costs)
105 results['f_cost'] = inflation(base_fuel_cost, T, inflation_factor)
106

107 return results
108

109

110 def run_cost_analysis():
111 """
112 Wrapper to compute lifecycle costs for all vessels.
113

114 Returns:
115 dict: Nested costs dictionary per vessel ID
116 """
117 costs_all = {}
118 vc_data = vessel_characteristics()
119

120 for v_id, vc in vc_data.items():
121 costs_all[v_id] = calculate_lifecycle_costs(
122 vc["class"],
123 vessel_costs()[v_id],
124 battery_costs(),
125 infrastructure_costs(),
126 depreciation_factors(),
127 inflation_factor(),
128 maintenance()[v_id],
129 vc["specific_emissions"]["fuel_type"],
130 vc["specific_emissions"]["fuel_consumption"],
131 fuel_type_cost(),
132 J,
133 T,
134 vc["initial_age"]
135 )
136 return costs_all
137

138

139 # === LIFECYCLE EMISSIONS ===
140 def run_emission_analysis(materials, vessel_class, fuel_type, fuel_consumption,

fuel_emission_factors , nox_factor, pm_factor):
141 """
142 Computes total emissions: CTG, GTC, WTW across vessel, battery, and infrastructure.
143

144 Returns:
145 dict: {CTG, GTC, WTW emissions by component}
146 """
147 grid_mix = energy_grid_emission_factors()["grid_composition"]
148 dists = transport_distances()
149 transport_factor = transport_emission_factors()
150 battery_chars = battery_characteristics()
151 depr_factors = depreciation_factors()
152

153 transport_dists = {
154 "v_proc": dists["romania_rotterdam"],
155 "v_prod": dists["local"],
156 "v_dism": dists["local"],
157 "b_prod": dists["norway_rotterdam"],
158 "b_dism": dists["norway_rotterdam"],
159 "i_proc": dists["norway_rotterdam"],
160 "i_prod": dists["local"],
161 }
162

163 country_mix = {
164 "proc_v": "EU",
165 "prod_v": "EU",
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166 "dism_v": "EU",
167 "prod_b": "EU",
168 "dism_b": "EU",
169 "i_proc": "EU",
170 "i_prod": "EU"
171 }
172 # === Vessel emissions ===
173 proc_v = processing_emissions(materials, processing_emission_factors(), grid_mix[

country_mix["proc_v"]])
174 prod_v = metal_production_emissions(materials, production_emission_factors(), grid_mix[

country_mix["prod_v"]])
175 dism_v = metal_dismantling_emissions(materials, dismantling_emission_factors(), grid_mix[

country_mix["dism_v"]])
176

177 v_ctg_transport = (
178 transport_emissions(materials, transport_dists["v_proc"], transport_factor))
179 #transport_emissions(materials, transport_dists["v_prod"], transport_factor)
180

181 v_gtc_transport = transport_emissions(materials, transport_dists["v_dism"],
transport_factor)

182

183 v_ctg = proc_v + prod_v + v_ctg_transport
184 v_gtc = dism_v + v_gtc_transport
185

186 # === Battery emissions ===
187 if vessel_class in ["IRV", "PV", "sPV", "SV", "NM"]:
188 capacity_mwh = battery_chars["capacity"].get(vessel_class, 0)
189 battery_weight = capacity_mwh * battery_chars["weight"]
190 battery_materials = {"steel_tons": battery_weight, "aluminium_tons": 0}
191

192 b_ctg = battery_production_emissions(vessel_class, production_emission_factors(),
grid_mix[country_mix["prod_b"]], battery_chars)

193 b_ctg += transport_emissions(battery_materials, transport_dists["b_prod"],
transport_factor)

194

195 b_gtc = battery_dismantling_emissions(vessel_class, dismantling_emission_factors(),
grid_mix[country_mix["dism_b"]], battery_chars)

196 b_gtc += transport_emissions(battery_materials, transport_dists["b_dism"],
transport_factor)

197 else:
198 b_ctg = b_gtc = 0
199

200 if vessel_class in ["sPV", "SV"]:
201 v_ctg += b_ctg
202 v_gtc += b_gtc
203 b_ctg = b_gtc = 0
204

205 # === Infrastructure emissions ===
206 if vessel_class in ["IRV", "PV", "NM"]:
207 infra_materials = infrastructure_characteristics()["BSM"]
208

209 i_ctg = processing_emissions(infra_materials, processing_emission_factors(), grid_mix
[country_mix["i_proc"]])

210 i_ctg += metal_production_emissions(infra_materials, production_emission_factors(),
grid_mix[country_mix["i_prod"]])

211 i_ctg += transport_emissions(infra_materials, transport_dists["i_proc"],
transport_factor)

212 i_ctg += transport_emissions(infra_materials, transport_dists["i_prod"],
transport_factor)

213 else:
214 i_ctg = 0
215

216 # === Operational (WTW) emissions ===
217 fuel_emissions = wtw_emissions(
218 fuel_type, fuel_consumption, fuel_emission_factors ,
219 nox_factor, pm_factor, energy_grid_emission_factors
220 )
221

222 return {
223 'v_ctg': depreciation(v_ctg, T, depr_factors["CO2"]),
224 'v_gtc': depreciation(v_gtc, T, depr_factors["CO2"]),
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225 'b_ctg': depreciation(b_ctg, T, depr_factors["CO2"]),
226 'b_gtc': depreciation(b_gtc, T, depr_factors["CO2"]),
227 'i_ctg': depreciation(i_ctg, T, depr_factors["CO2"]),
228 'f_e': {
229 "CO2": depreciation(fuel_emissions["CO2"], T, depr_factors["CO2"]),
230 "NOX": fuel_emissions["NOX"],
231 "PM": fuel_emissions["PM"]
232 }
233 }
234

235 # === MAIN EXECUTION ===
236

237 if __name__ == "__main__":
238 cost_results = run_cost_analysis()
239

240 vc_data = vessel_characteristics()
241 emission_results = {}
242

243 for v_id, vessel in vc_data.items():
244 emission_results[v_id] = run_emission_analysis(
245 materials=vessel["materials"],
246 vessel_class=vessel["class"],
247 fuel_type=vessel["specific_emissions"]["fuel_type"],
248 fuel_consumption=vessel["specific_emissions"]["fuel_consumption"],
249 fuel_emission_factors=fuel_emission_factors(),
250 nox_factor=vessel["specific_emissions"]["NOX"],
251 pm_factor=vessel["specific_emissions"]["PM"]
252 )
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Multi-objective optimisation layer

code

model_config.py
1 # model_config.py
2 import numpy as np
3 def get_license_options():
4 return {
5 "WLSACCESSID": "f8df8428-a2a5-4d9f-a9a3-732d8c6502e6",
6 "WLSSECRET": "4ae4a663-d32b-4259-b2d2-b95e691e0cac",
7 "LICENSEID": 2647002
8 }
9 MODEL_CONFIG = {
10 "IRV": {
11 "H": "BSM",
12 "battery": True,
13 "infra": True,
14 "name": "modelIRV",
15 "infra_factor": 0.6,
16 "req_period": "quarter",
17 "res_period": "quarter",
18 "has_d_res": True,
19 "epsilon": {�
20 "_LCA": np.linspace(10049, 11629, 20).tolist(),�
21 "_LP": np.linspace(9537, 101229, 20).tolist()
22 }
23 },
24 "PV": {
25 "H": "BSM",
26 "battery": True,
27 "infra": True,
28 "name": "modelPV",
29 "infra_factor": 0.6,
30 "req_period": "quarter",
31 "res_period": "year",
32 "has_d_res": True,
33 "epsilon": {�
34 "_LCA": np.linspace(4983, 5659, 20).tolist(),�
35 "_LP": np.linspace(1678, 25451, 20).tolist()
36 }
37 },
38 "sPV": {
39 "H": "Shorepower",
40 "battery": False,
41 "infra": True,
42 "name": "modelsPV",
43 "infra_factor": 0.75,
44 "req_period": "year",

110
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45 "has_d_res": False,
46 "epsilon": {�
47 "_LCA": np.linspace(290, 290, 20).tolist(),�
48 "_LP": np.linspace(0, 0, 20).tolist()
49 }
50 },
51 "SV": {
52 "H": "Shorepower",
53 "battery": False,
54 "infra": True,
55 "name": "modelSV",
56 "infra_factor": 0.5,
57 "req_period": "year",
58 "has_d_res": False,
59 "epsilon": {�
60 "_LCA": np.linspace(464, 464, 20).tolist(),�
61 "_LP": np.linspace(1305, 1305, 20).tolist()
62 }
63 },
64 "NM": {
65 "H": "BSM",
66 "battery": True,
67 "infra": True,
68 "name": "modelNM",
69 "infra_factor": 0.5,
70 "req_period": "year",
71 "epsilon": {�
72 "_LCA": np.linspace(992, 1199, 20).tolist(),�
73 "_LP": np.linspace(0, 5204, 20).tolist()
74 }
75 },
76 "RHIB": {
77 "H": False,
78 "battery": False,
79 "infra": False,
80 "name": "modelRHIB",
81 "req_period": "year",
82 "has_d_res": False,
83 "epsilon": {�
84 "_LCA": np.linspace(35, 35, 20).tolist(),�
85 "_LP": np.linspace(1809, 1809, 20).tolist()
86 }
87 },
88 }

RHS_input.py
1 """
2 This module defines input index sets and right-hand-side (RHS) parameters
3 used in the fleet optimisation model, specific to each vessel class.
4 Author: Jelmer Pentinga
5 """
6

7 def define_index_sets(vessel_class):
8 """
9 Defines index sets E (infrastructure units), I (vessels), J (age bins), T (time).
10

11 Parameters:
12 - vessel_class: str, one of {"IRV", "PV", "sPV", "SV", "NM", "RHIB"}
13

14 Returns:
15 - Tuple: (E, I, J, T)
16 - E: range, infrastructure unit indices (always range(3))
17 - I: range, vessel identifiers (class-specific)
18 - J: range, age bins (class-specific)
19 - T: range, time periods (always 10 quarters)
20 """
21 E = range(3) # 3 infrastructure locations (e.g., base, forward, outer)
22 T = range(100) # 10 quarters (2.5 years horizon)
23
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24 index_map = {
25 "IRV": (range(13), range(200)), # 13 vessels, 199 age bins
26 "PV": (range(6), range(125)),
27 "sPV": (range(3), range(140)),
28 "SV": (range(4), range(110)),
29 "NM": (range(2), range(150)),
30 "RHIB": (range(3), range(110))
31 }
32

33 if vessel_class not in index_map:
34 raise ValueError(f"Unknown vessel class: {vessel_class}")
35

36 I, J = index_map[vessel_class]
37 return E, I, J, T
38

39

40 def define_rhs_parameters(vessel_class):
41 """
42 Defines RHS parameters for operational and reserve vessel demands,
43 as well as battery parameters.
44

45 Parameters:
46 - vessel_class: str, one of {"IRV", "PV", "sPV", "SV", "NM", "RHIB"}
47

48 Returns:
49 - Tuple: (d_req, d_res, b_eol, b_d)
50 - d_req: int, required number of operational vessels per period
51 - d_res: int or None, number of required reserve vessel periods per year
52 - b_eol: int, battery end-of-life age
53 - b_d: int, battery demand per vessel unit (scaled: op=2×b_d, res=1×b_d)
54 """
55 rhs_map = {
56 "IRV": {"d_req": 4, "d_res": 1, "b_d": 4}, # High redundancy
57 "PV": {"d_req": 2, "d_res": 2, "b_d": 4}, # Balanced ops and reserve
58 "sPV": {"d_req": 3, "d_res": None, "b_d": None},
59 "SV": {"d_req": 7, "d_res": None, "b_d": None},# High operations, no reserve
60 "NM": {"d_req": 2, "d_res": None, "b_d": 2},
61 "RHIB": {"d_req": 2, "d_res": None, "b_d": None}
62 }
63

64 if vessel_class not in rhs_map:
65 raise ValueError(f"Unknown vessel class: {vessel_class}")
66

67 # Fixed across vessel types
68 b_eol = 40 # Battery end-of-life age
69

70 d_req = rhs_map[vessel_class]["d_req"]
71 d_res = rhs_map[vessel_class]["d_res"]
72 b_d = rhs_map[vessel_class]["b_d"]
73 return d_req, d_res, b_eol, b_d

build_model.py
1 """
2 This module defines the Gurobi Optimisation model
3 Author: Jelmer Pentinga
4 """
5 import gurobipy as gp
6 from gurobipy import GRB, quicksum
7 from model_config import MODEL_CONFIG
8

9

10 def compute_feasible_age_map(I, v_i_a, J, T, v_eol_a):
11 """
12 For each vessel i in I, return list of (age, time) pairs
13 that respect end-of-life and time-step logic.
14 """
15 feasible = {}
16 for i in I:
17 if v_i_a[i] is not None:
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18 # existing vessels age in lock-step with t
19 feasible[i] = [
20 (v_i_a[i] + t, t)
21 for t in T
22 if v_i_a[i] + t <= v_eol_a[i]
23 ]
24 else:
25 # new/second-hand: allow any purchase age � eol at any t
26 feasible[i] = [
27 (j, t)
28 for t in T
29 for j in J
30 if j <= t
31 and j <= v_eol_a[i]
32 ]
33 return feasible
34

35

36 def filter_feasible_age_for_maintenance(feasible_age_map, v_maint_c):
37 """
38 Only keep (age, time) pairs for which maintenance data exists.
39 v_maint_c[i][t] is a dict mapping age -> cost.
40 """
41 filtered = {}
42 for i, pairs in feasible_age_map.items():
43 valid = []
44 for (j, t) in pairs:
45 # first make sure we have an entry at time t
46 if t not in v_maint_c[i]:
47 continue
48 # then make sure that at time t we have a cost for age j
49 if j not in v_maint_c[i][t]:
50 continue
51 valid.append((j, t))
52 filtered[i] = valid
53 return filtered
54

55 def build_model(
56 vessel_class,
57 E, I, J, T,
58 v_i_a, d_req, d_res,
59 v_eol_a, v_maint_c,
60 b_d, b_eol_a,
61 params,
62 model=None,
63 epsilon_lca=None,
64 epsilon_lp=None
65 ):
66 cfg = MODEL_CONFIG[vessel_class]
67 if model is None:
68 model = gp.Model(cfg["name"])
69

70 # Compute age maps
71 feasible_age = compute_feasible_age_map(I, v_i_a, J, T, v_eol_a)
72 maint_age = filter_feasible_age_for_maintenance(feasible_age, v_maint_c)
73 new_vessels = [i for i in I if v_i_a[i] is None]
74 final_quarters = {t for t in T if t//4 == (T[-1]//4)}
75 salv_cand = {}
76 for i in I:
77 if v_i_a[i] is not None:
78 t_dead = v_eol_a[i] - v_i_a[i]
79 salv_cand[i] = [
80 (j,t) for (j,t) in feasible_age[i]
81 if t <= t_dead]
82 else:
83 salv_cand[i] = [
84 (j,t) for (j,t) in feasible_age[i]]
85

86 # Vessel state variables: O, R, U, S
87 v = {}
88 v['O'] = model.addVars([(i, j, t) for i in I for j, t in feasible_age[i]],
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89 vtype=GRB.BINARY, name='O')
90 v['R'] = model.addVars([(i, j, t) for i in I for j, t in feasible_age[i]],
91 vtype=GRB.BINARY, name='R')
92 v['U'] = model.addVars([(i, j, t) for i in I for j, t in maint_age[i]],
93 vtype=GRB.BINARY, name='U')
94 v['S'] = model.addVars([(i,j,t) for i in I for (j,t) in salv_cand[i]],vtype=GRB.BINARY,

name="S")
95

96 # Purchase decisions
97 v['P'] = model.addVars([(i, t) for i in new_vessels for t in T],
98 vtype=GRB.BINARY, name='P')
99

100 # Battery variables
101 if cfg['battery']:
102 J_batt = [j for j in J if j <= b_eol_a]
103 v['Q'] = model.addVars(T,lb=0, ub=70,vtype=GRB.INTEGER, name='Q')
104 v['W'] = model.addVars([(j, t) for j in J_batt for t in T if j <= t],lb=0, ub=70,

vtype=GRB.INTEGER, name='W')
105 v['V'] = model.addVars([(j, t) for j in J_batt for t in T if j <= t],lb=0, ub=70,

vtype=GRB.INTEGER, name='V')
106 v['X'] = model.addVars([(b_eol_a, t) for t in T if t >= b_eol_a],lb=0, ub=70, vtype=

GRB.INTEGER, name='X')
107

108 # Infrastructure variables
109 if cfg['infra']:
110 h = cfg['H']
111 v['Y'] = model.addVars([(h, t) for t in T],lb=0, ub=6,vtype=GRB.INTEGER, name='Y')
112 v['Z'] = model.addVars([(h, j, t) for j in J for t in T],lb=0, ub=3,vtype=GRB.INTEGER

, name='Z')
113

114 # Call shared routines
115 define_objective(model, v, params, cfg, E, I, J, T, v_i_a, v_eol_a,
116 epsilon_lca, epsilon_lp)
117 add_constraints(model, v,
118 v_i_a, d_req, d_res,
119 v_eol_a, v_maint_c,
120 b_d, b_eol_a,
121 cfg, E, I, J, T)
122 return model, v
123

124

125

126 def define_objective(
127 model, v, p, cfg, E, I, J, T, v_i_a, v_eol_a,
128 epsilon_lca=None, epsilon_lp=None
129 ):
130 """
131 Build LCA, TCO, TCO_res, LP expressions and attach to model.
132 """
133 def get_keys_for(state, vessel):
134 # return all (i,j,t) tuples for v[state] where i == vessel
135 return [key for key in v[state].keys() if key[0] == vessel]
136 T_max = max(T)
137 new_vessels = [i for i in I if v_i_a[i] is None]
138 feasible_age = compute_feasible_age_map(I, v_i_a, J, T, v_eol_a)
139 known_age = [i for i in I if v_i_a[i] is not None]
140

141 # --- Insurance rate per vessel: new vs existing ---
142 # Vessel CAPEX
143 salv_known = quicksum(v['S'][i,j,t] * p['v_res_c'][i][0][j]
144 for i in known_age for j,t in feasible_age[i] if (i,j,t) in v['S'])
145

146 salv_new = quicksum(v['S'][i,j,t] * p['v_res_c'][i][t-j][j]
147 for i in new_vessels for j,t in feasible_age[i] if (i,j,t) in v['S'])
148

149 vessel_capex = (
150 quicksum(v['P'][i, t] * p['v_acq_c'][i][t] for i, t in v['P'].keys())
151 - (salv_known + salv_new))
152

153 # Vessel OPEX
154 vessel_opex = (quicksum(v[state][i, j, t] * (
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155 p['v_om_c'][i][t] + p['v_ins_c'][i][t]
156 + (p['v_maint_c '][i][t][j] if state == 'U' else 0)
157 ) for state in ['O','R','U'] for i in known_age
158 for (i2, j, t) in get_keys_for(state, i)) +
159 quicksum(v[state][i, j, t] * (p['v_om_c'][i][t] + p['v_ins_c'][i][t - j]
160 + (p['v_maint_c '][i][t][j] if state == 'U' else 0)
161 )
162 for state in ['O','R','U']
163 for i in new_vessels
164 for (i2, j, t) in get_keys_for(state, i)
165 )
166 )
167 # Vessel Residual
168 kept_keys = set(v['O'].keys()) | set(v['R'].keys()) | set(v['U'].keys())
169 vessel_residual = quicksum(
170 (
171 (v['O'][i,j,T_max] if (i,j,T_max) in v['O'] else 0)
172 + (v['R'][i,j,T_max] if (i,j,T_max) in v['R'] else 0)
173 + (v['U'][i,j,T_max] if (i,j,T_max) in v['U'] else 0)
174 )
175 # if it was an existing vessel (initial age � None), purchase time = 0
176 # else purchase time = T_max – j
177 * (
178 p['v_res_c'][i][0][j]
179 if v_i_a[i] is not None
180 else p['v_res_c'][i][T_max - j][j]
181 )
182 for (i, j, t) in kept_keys
183 if t == T_max
184 )
185

186 # Vessel emissions
187 vessel_ctg = quicksum(v['P'][i, t] * p['v_ctg_e'][i][t] for i, t in v['P'].keys())
188 vessel_gtc = quicksum(v['S'][i, j, t] * p['v_gtc_e'][i][t] for i, j, t in v['S'].keys())
189 # Battery
190 batt_capex = 0
191 batt_opex = 0
192 batt_residual = 0
193 batt_ctg = 0
194 batt_gtc = 0
195 if cfg['battery']:
196 # Battery CAPEX
197 batt_capex = (
198 quicksum(v.get('Q',{}).get(t,0) * p['b_acq_c'][t]
199 for t in v.get('Q',{}).keys())
200 - quicksum(
201 # salvage at its "purchase" quarter ‐tj
202 v.get('X',{}).get((j,t),0) * p['b_res_c'][t-j][j]
203 for (j, t) in v.get('X',{}).keys()
204 )
205 )
206 # Battery OPEX
207 batt_opex = quicksum(v['W'][j, t] * p['b_om_c'][t] for j, t in v['W'].keys())
208 # Battery Residual
209 all_batt_keys = set(v['V'].keys()) | set(v['W'].keys())
210 batt_residual = quicksum(
211 (
212 (v['V'][j, t] if (j, t) in v['V'] else 0)
213 + (v['W'][j, t] if (j, t) in v['W'] else 0)
214 )
215 * p['b_res_c'][t - j][j]
216 for (j, t) in all_batt_keys
217 if t == T_max
218 )
219 # Battery emissions
220 batt_ctg = quicksum(v['Q'][t] * p['b_ctg_e'][t] for t in v.get('Q', {}).keys())
221 batt_gtc = quicksum(v['X'][j, t] * p['b_gtc_e'][t] for (j, t) in v.get('X', {}).keys

())
222 # Infra
223 infra_capex = 0
224 infra_opex = 0
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225 infra_residual = 0
226 infra_ctg = 0
227 if cfg['infra']:
228 #h = cfg['H']
229 # Infra CAPEX
230 infra_capex = quicksum(v['Y'][h, t] * p['i_acq_c'][t] for (h, t) in v['Y'].keys())
231 # Infra OPEX
232 infra_opex = quicksum(quicksum(v['Y'][h, tt] for (h, tt) in v['Y'].keys() if tt <= t)

* p['i_om_c'][t]
233 for (h, t) in v['Y'].keys())
234 # Infra Residual
235 infra_residual = quicksum(
236 v['Z'][h, j, T_max] * p['i_res_c'][T_max - j][j]
237 for h, j, t in v['Z'].keys()
238 if t == T_max and (T_max - j) >= 0 # guard out negative indices
239 )
240 # Infra emissions
241 infra_ctg = quicksum(v['Y'][h, t] * p['i_ctg_e'][t] for (h, t) in v['Y'].keys())
242

243 # Fuel cost & emissions
244 fuel_cost = quicksum(v['O'][i, j, t] * p['f_c'][i][t] for i, j, t in v['O'].keys())
245 wtw_co2 = quicksum(v['O'][i, j, t] * p['f_e'][i]['CO2'][t] for i, j, t in v['O'].keys())
246 wtw_nox = quicksum(v['O'][i, j, t] * p['f_e'][i]['NOX'] for i, j, t in v['O'].keys())
247 wtw_pm = quicksum(v['O'][i, j, t] * p['f_e'][i]['PM'] for i, j, t in v['O'].keys())
248

249 # Metrics
250 LCA = vessel_ctg + vessel_gtc + wtw_co2 + infra_ctg + batt_ctg + batt_gtc
251 TCO = vessel_capex + vessel_opex + fuel_cost + infra_capex + infra_opex + batt_capex

+ batt_opex
252 TCO_res = TCO - (vessel_residual + batt_residual + infra_residual)
253 LP_nox = wtw_nox
254 LP_pm = wtw_pm
255

256 # Attach to model
257 model._LCA = LCA
258 model._LPNOX = LP_nox
259 model._LPPM = LP_pm
260 model._TCO = TCO
261 model._TCO_res = TCO_res
262

263 def add_constraints(
264 model, v, v_i_a, d_req, d_res,
265 v_eol_a, v_maint_c,
266 b_d, b_eol_a,
267 cfg, E, I, J, T
268 ):
269 """
270 Add operational, maintenance, battery, and infrastructure constraints.
271 """
272 feasible_age = compute_feasible_age_map(I, v_i_a, J, T, v_eol_a)
273 maint_age = filter_feasible_age_for_maintenance(feasible_age, v_maint_c)
274 new_vessels = [i for i in I if v_i_a[i] is None]
275 known_age = [i for i in I if v_i_a[i] is not None]
276 final_quarters = {t for t in T if t//4 == (T[-1]//4)}
277 salv_cand = {}
278 for i in I:
279 if v_i_a[i] is not None:
280 t_dead = v_eol_a[i] - v_i_a[i]
281 salv_cand[i] = [
282 (j,t) for (j,t) in feasible_age[i]
283 if t <= t_dead]
284 else:
285 salv_cand[i] = [
286 (j,t) for (j,t) in feasible_age[i]
287 if t not in final_quarters]
288 # === OPERATIONAL DEMAND ===
289 occ_O = {t: [] for t in T}
290 occ_R = {t: [] for t in T}
291 for (i, j, t) in v['O'].keys(): occ_O[t].append((i, j))
292 for (i, j, t) in v['R'].keys(): occ_R[t].append((i, j))
293
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294 if cfg['req_period '] == 'quarter':
295 model.addConstrs(
296 (quicksum(v['O'][i, j, t] for i, j in occ_O[t]) >= d_req for t in T),
297 name="demand_operational_quarterly"
298 )
299 else:
300 for y in range(len(T) // 4):
301 quarters = [4 * y + q for q in range(4)]
302 model.addConstr(
303 quicksum(v['O'][i, j, t] for t in quarters for i, j in occ_O[t]) >= d_req,
304 name=f"demand_operational_year_{y}"
305 )
306

307 if cfg.get('has_d_res', False):
308 if cfg['res_period '] == 'quarter':
309 model.addConstrs(
310 (quicksum(v['R'][i, j, t] for i, j in occ_R[t]) >= d_res for t in T),
311 name="demand_reserve_quarterly"
312 )
313 else:
314 for y in range(len(T) // 4):
315 quarters = [4 * y + q for q in range(4)]
316 model.addConstr(
317 quicksum(v['R'][i, j, t] for t in quarters for i, j in occ_R[t]) >= d_res

,
318 name=f"demand_reserve_year_{y}"
319 )
320

321 # === 1) MUTUAL EXCLUSION via SOS1 (at most one of O,R,U,S per (i,j,t)) ===
322 for i, pairs in feasible_age.items():
323 for (j, t) in pairs:
324 svars = [v[s][i,j,t] for s in ('O','R','U','S') if (i,j,t) in v[s]]
325 if len(svars) > 1:
326 model.addSOS(GRB.SOS_TYPE1, svars)
327

328 model.addConstrs(
329 (quicksum(v[s][i, v_i_a[i], 0] for s in ['O', 'R', 'U', 'S']
330 if (i, v_i_a[i], 0) in v[s]) == 1
331 for i in I if v_i_a[i] is not None), name="initial_state"
332 )
333

334 # === AGEING & ENTRY TRANSITIONS ===
335 model.addConstrs(
336 (quicksum(v[s][i, j + 1, t + 1] for s in ['O', 'R', 'U', 'S']
337 if (i, j + 1, t + 1) in v[s]) ==
338 quicksum(v[s][i, j, t] for s in ['O', 'R', 'U', 'S']
339 if (i, j, t) in v[s]) - v['S'].get((i, j, t), 0)
340 for i in I for (j, t) in feasible_age[i]
341 if j + 1 <= v_eol_a[i] and t + 1 in T), name="ageing"
342 )
343 for (i, i_next) in zip(new_vessels, new_vessels[1:]):
344 model.addConstr(
345 quicksum(t * v['P'][i, t] for t in T)
346 <= quicksum(t * v['P'][i_next, t] for t in T),
347 name=f"symmetry_{i}_{i_next}"
348 )
349 model.addConstrs(
350 (quicksum(v[s][i, 0, t + 1] for s in ["O", "R", "U", "S"]
351 if (i, 0, t + 1) in v[s]) == v["P"][i, t]
352 for i in new_vessels for t in T if (i, t) in v["P"] and t + 1 in T),
353 name="initial_age_entry_after_purchase"
354 )
355

356 model.addConstrs(
357 (quicksum(v['P'][i, t] for t in T if (i, t) in v['P']) <= 1
358 for i in new_vessels), name="unique_purchase"
359 )
360

361 model.addConstrs(
362 (quicksum(v[s][i, j, t] for s in ["O", "R", "U", "S"] if (i, j, t) in v[s]) <=
363 quicksum(v["P"][i, tp] for tp in T if tp < t and (i, tp) in v["P"])
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364 for i in new_vessels for (j, t) in feasible_age[i]),
365 name="use_only_after_purchase_strict"
366 )
367

368 # === 2) CUMULATIVE SALVAGE & MAINTENANCE ===
369 # 2b) existing vessels must pick exactly one slot in their EOL window
370 for i in known_age:
371 model.addConstr(
372 quicksum(v['S'][i, j, t] for (j, t) in salv_cand[i]) == 1,
373 name=f"salv_by_eol_initial_{i}"
374 )
375

376 # 2c) new vessels: same, but only if you actually buy them
377 for i in new_vessels:
378 for t in T:
379 if (i, t) not in v['P']:
380 continue
381

382 t_salv = t + v_eol_a[i] + 1
383 # only if that ‐salvageperiod is in your model
384 if t_salv not in T or (i, v_eol_a[i], t_salv) not in v['S']:
385 continue
386 model.addConstr(
387 v['S'][i, v_eol_a[i], t_salv] == v['P'][i, t],
388 name=f"salv_by_eol_new_{i}_{t}"
389 )
390

391 # 2d) for every maintenance date on an existing hull, either you dry-dock or
392 # ’ youve already salvaged (including doing it _right_ on that quarter).
393 for i in known_age:
394 for (j, t_dead) in maint_age[i]:
395 # build the list of all S[i,*,*] � t_dead
396 salvage_by_then = [
397 v['S'][i, jp, tp]
398 for (jp, tp) in salv_cand[i]
399 if tp <= t_dead
400 ]
401 model.addConstr(
402 v['U'][i, j, t_dead]
403 + quicksum(salvage_by_then)
404 == 1,
405 name=f"maint_or_salv_known_{i}_{j}_{t_dead}"
406 )
407

408 # 2e) simplified “‐‐every10years ”maintenance for newly purchased hulls
409 for i in new_vessels:
410 # if you ever buy …it
411 p_i = quicksum(v['P'][i, t] for t in T)
412 # …then at each ‐‐maintenanceagegroup you must perform exactly one U
413 for age in sorted({j for (j, _) in maint_age[i]}):
414 times_at_that_age = [t for (j2, t) in maint_age[i] if j2 == age]
415 if not times_at_that_age:
416 continue
417 model.addConstr(
418 quicksum(v['U'][i, age, t] for t in times_at_that_age)
419 == p_i,
420 name=f"maint_new_exact_{i}_{age}"
421 )
422

423 # === BATTERY COMPOSITION ===
424 if cfg['battery']:
425 model.addConstrs(
426 (v['V'][0, t] + v['W'][0, t] == v['Q'][t]
427 for t in T if (0, t) in v['V']), name="batt_entry")
428 model.addConstrs(
429 (v['V'][j, t] + v['W'][j, t] == v['V'][j - 1, t - 1] + v['W'][j - 1, t - 1]
430 for j in J if 1 <= j <= b_eol_a for t in T if t >= 1
431 and (j, t) in v['V'] and (j - 1, t - 1) in v['V']),
432 name="batt_ageing")
433 z_batt = model.addVars(T, lb=0, vtype=GRB.INTEGER, name="z_batt")
434 for t in T:
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435 expr = (
436 2 * quicksum(
437 v['O'][i, j, t]
438 for i in new_vessels
439 for (j, tt) in feasible_age[i]
440 if tt == t and (i, j, t) in v['O']
441 )
442 + quicksum(
443 v['R'][i, j, t]
444 for i in new_vessels
445 for (j, tt) in feasible_age[i]
446 if tt == t and (i, j, t) in v['R']
447 )
448 )
449 model.addConstr(
450 z_batt[t] == expr,
451 name=f"batt_zdef_{t}"
452 )
453 model.addConstr(
454 quicksum(v['W'][j, t]
455 for j in J if (j, t) in v['W'])
456 == b_d * z_batt[t],
457 name=f"batt_use2_{t}"
458 )
459 b = b_eol_a
460 for t in T:
461 if t >= b:
462 # salvage in t = purchases in t-b
463 model.addConstr(v['X'][b, t] == v['Q'][t - b],
464 name=f"batt_salv_{t}"
465 )
466

467

468

469 # === INFRASTRUCTURE COMPOSITION ===
470 if cfg['infra']:
471 h = cfg['H']
472 i_d = cfg['infra_factor ']
473 model.addConstrs(
474 (quicksum(v['Z'][h, j, t] for j in J if (h, j, t) in v['Z']) ==
475 quicksum(v['Y'][h, tt] for tt in T if tt <= t)
476 for t in T), name="infra_cap")
477 u_op = model.addVars(T, lb=0, vtype=GRB.INTEGER, name="u_op")
478 for t in T:
479 model.addConstr(
480 u_op[t] == quicksum(
481 v['O'][i, j, t]
482 for i in new_vessels
483 for (j, tt) in feasible_age[i]
484 if tt == t and (i, j, t) in v['O']
485 ),
486 name=f"uop_def_{t}"
487 )
488 model.addConstr(
489 quicksum(v['Z'][cfg['H'], j, t]
490 for j in J if (cfg['H'], j, t) in v['Z'])
491 >= i_d * u_op[t],
492 name=f"infra_util2_{t}"
493 )
494 model.addConstrs(
495 (v['Z'][h, 0, t] == v['Y'][h, t]
496 for t in T if (h, 0, t) in v['Z']), name="infra_entry")
497 model.addConstrs(
498 (v['Z'][h, j, t] == v['Z'][j - 1, t - 1]
499 for j in J for t in T if t >= 1 and (j, t) in v['Z'] and (j - 1, t - 1) in v['Z

']),
500 name="infa_ageing")

e_constraint.py
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1 """
2 Handles epsilon-constraint loop for fleet renewal models.
3 Integrates plotting, data extraction, and infeasibility diagnosis.
4 Author: Jelmer Pentinga
5 """
6

7 # === Imports ===
8 import os
9 import time
10 import datetime
11 import pandas as pd
12 #import matplotlib.pyplot as plt
13 import gurobipy as gp
14 from gurobipy import GRB
15

16 # === Local modules ===
17 #from plotter import run_all_plots_for_fleet
18 from model_config import MODEL_CONFIG, get_license_options
19 from Preprocessing_input import vessel_characteristics
20 from data_extract import run_all_data_extract_for_fleet
21 from combine_fleet_data import combine_fleet_data
22 try:
23 SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
24 except NameError:
25 # __file__ ’wont exist in some —REPLsfall back to cwd
26 SCRIPT_DIR = os.getcwd()
27

28

29 # === Helper: Pull epsilon grid per fleet ===
30 def build_epsilon_constraints():
31 return {clas: MODEL_CONFIG[clas]["epsilon"] for clas in MODEL_CONFIG}
32

33

34

35 # === Main solver loop per fleet ===
36 def run_epsilon_loop(fleet_name, base_case, build_model_func, eps_grid, extract_func):
37 vc_data = vessel_characteristics()
38 results, detailed = [], []
39 grid = [(e_lca, e_lp) for e_lca in eps_grid�["_LCA"] for e_lp in eps_grid�["_LP"]]
40

41 with gp.Env(params=get_license_options()) as env:
42 model = gp.Model(f"FleetModel_{fleet_name}", env=env)
43

44 # === Build model and insert dummy epsilon RHS ===
45 model, vars_ = build_model_func(
46 vessel_class=fleet_name,
47 E=base_case["E"],
48 I=base_case["I"],
49 J=base_case["J"],
50 T=base_case["T"],
51 v_i_a=base_case["v_i_a"],
52 d_req=base_case["d_req"],
53 d_res=base_case.get("d_res"),
54 v_eol_a=base_case["v_eol_a"],
55 v_maint_c=base_case["v_maint_c"],
56 b_d=base_case.get("b_d"),
57 b_eol_a=base_case.get("b_eol_a"),
58 params=base_case,
59 model=model,
60 epsilon_lca=grid[0][0],
61 epsilon_lp=grid[0][1]
62 )
63

64 model.setObjective(model._TCO, GRB.MINIMIZE)
65 eps_constr_lca = model.addConstr(model._LCA <= grid[0][0], name="eps_lca")
66 eps_constr_lp = model.addConstr(model._LPNOX <= grid[0][1], name="eps_lp")
67

68

69 # model.setObjectiveN(model._LCA,
70 # index=0,
71 # priority=2, # highest priority
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72 # name="LCA")
73 # model.setObjectiveN(model._TCO,
74 # index=1,
75 # priority=1, # lower priority
76 # name="TCO")
77

78

79 # model.setObjectiveN(model._LPNOX,
80 # index=0,
81 # priority=2,
82 # name="LP_NOx")
83 # model.setObjectiveN(model._TCO,
84 # index=1,
85 # priority=1,
86 # name="TCO")
87

88 model.update()
89 # 3) Tune on the first �-instance
90 model.setParam("PrePasses", 2)
91 model.setParam("Threads", 3)
92 #model.setParam("Method", 2)
93 #model.setParam("BranchDir", 1)
94 model.setParam("CutPasses", 3)
95 model.setParam("Aggregate", 2)
96 model.setParam("OBBT", 0)
97 model.setParam("Heuristics", 0.001)
98

99 # 4) Now sweep all �-pairs with the tuned settings
100 prev_sol = None
101 # === Solve grid of epsilon values ===
102 for idx, (eps_lca, eps_lp) in enumerate(grid):
103 print(f��" {fleet_name} run {idx+1}/{len(grid)} —� _LCA={eps_lca:.2f}, �_LP={eps_lp

:.2f}")
104 eps_constr_lca.RHS = eps_lca
105 eps_constr_lp.RHS = eps_lp
106

107 # Warm-start
108 if prev_sol is not None:
109 for v in model.getVars():
110 if v.VarName in prev_sol:
111 v.Start = prev_sol[v.VarName]
112

113 model.optimize()
114 status = model.Status
115

116 results.append({
117 "Fleet": fleet_name,
118 "Run": idx,�
119 "_LCA": eps_lca,�
120 "_LP": eps_lp,
121 "Status": status,
122 "TCO_res": model._TCO_res.getValue() if status == GRB.OPTIMAL else None,
123 "TCO": model._TCO.getValue() if status == GRB.OPTIMAL else None,
124 "LCA": model._LCA.getValue() if status == GRB.OPTIMAL else None,
125 "LPnox": model._LPNOX.getValue() if status == GRB.OPTIMAL else None,
126 "LPpm": model._LPPM.getValue() if status == GRB.OPTIMAL else None
127 })
128

129 if status == GRB.INFEASIBLE:
130 print(f�" {fleet_name} is infeasible �(_LCA={eps_lca}, �_LP={eps_lp})")
131 prev_sol = None
132

133 # model.computeIIS()
134 # model.write(f"IIS_{fleet_name}_run{idx}.ilp")
135 # for c in model.getConstrs():
136 # if c.IISConstr:
137 # print(" IIS constraint:", c.constrName)
138 # for v in model.getVars():
139 # if v.IISLB or v.IISUB:
140 # print(" IIS variable:", v.varName)
141 continue
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142

143 if status == GRB.OPTIMAL:
144 vessel_names = [vc_data[v]['name'] for v in base_case['vids']]
145 detail = extract_func(base_case, vars_, vessel_names, fleet_name, fleet_name)
146 detailed.append((fleet_name, idx, eps_lca, eps_lp, detail))
147 prev_sol = { v.VarName: v.X for v in model.getVars() }
148

149 return results, detailed
150

151

152 # === Main controller for all fleets ===
153 def run_all_epsilon_loops(fleet_map):
154 eps = build_epsilon_constraints()
155 timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
156 outdir = os.path.join(SCRIPT_DIR, timestamp)
157 os.makedirs(outdir, exist_ok=True)
158

159 all_results, all_detailed = [], []
160 fleet_tables, fleet_times = {}, {}
161

162 for fleet, (base, build_fn) in fleet_map.items():
163 start = time.time()
164 r, d = run_epsilon_loop(fleet, base, build_fn, eps[fleet],

run_all_data_extract_for_fleet)
165 fleet_times[fleet] = time.time() - start
166

167 # Save fleet results
168 df_fleet = pd.DataFrame(r)
169 fleet_dir = os.path.join(outdir, fleet)
170 os.makedirs(fleet_dir, exist_ok=True)
171 df_fleet.to_csv(os.path.join(fleet_dir, f"{fleet}_epsilon.csv"), index=False)
172 fleet_tables[fleet] = df_fleet
173

174 for (_fleet, run_idx, eps_lca, eps_lp, detail) in d:
175 if _fleet != fleet: continue
176 run_dir = os.path.join(fleet_dir, f"Run_{run_idx}")
177 os.makedirs(run_dir, exist_ok=True)
178

179 # Save data
180 detail["df_vessels"].to_csv(os.path.join(run_dir, "df_vessels.csv"), index=False)
181 detail["df_cost_flat"].to_csv(os.path.join(run_dir, "df_cost.csv"), index=False)
182 detail["df_emissions_flat"].to_csv(os.path.join(run_dir, "df_emissions.csv"),

index=False)
183 detail["df_assets"].to_csv(os.path.join(run_dir, "df_assets.csv"), index=False)
184

185 # # Generate plots
186 # figs = run_all_plots_for_fleet(
187 # f"{fleet}_Run_{run_idx}",
188 # detail["df_vessels"],
189 # detail["df_cost"],
190 # detail["df_emissions"],
191 # detail["df_assets"],
192 # base
193 # )
194 # for name, fig in figs.items():
195 # fig.savefig(os.path.join(run_dir, f"{name}.png"), bbox_inches="tight")
196 # plt.close(fig)
197

198 all_results.extend(r)
199 all_detailed.extend(d)
200

201 # Save timing summary
202 with open(os.path.join(outdir, "fleet_timing_summary.txt"), "w") as f:
203 f.write("Fleet �-grid timing (seconds)\n------------------------------\n")
204 for fleet, secs in fleet_times.items():
205 f.write(f"{fleet:6s} : {secs:7.1f} s\n")
206

207 # Save all fleet summary
208 df_all = pd.DataFrame(all_results)
209 df_all.to_csv(os.path.join(outdir, "epsilon_all_fleets.csv"), index=False)
210
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211 # === Combined summary and plots ===
212 num_runs = len(next(iter(fleet_tables.values())))
213 combined = []
214 for run in range(num_runs):
215 row = {"Run": run}
216 feas = True
217 sums = {"TCO": 0, "TCO_res": 0, "LCA": 0, "LPnox": 0, "LPpm": 0}
218 for fleet, df in fleet_tables.items():
219 sub = df[df.Run == run]
220 if sub.empty or sub.iloc[0].Status != GRB.OPTIMAL:
221 feas = False
222 break
223 for k in sums:
224 sums[k] += sub.iloc[0][k]
225 row.update(sums if feas else {k: None for k in sums})
226 row["Status"] = "Feasible" if feas else "Infeasible"
227 combined.append(row)
228

229 df_comb = pd.DataFrame(combined)
230 df_comb.to_csv(os.path.join(outdir, "epsilon_combined_summary.csv"), index=False)
231

232 # === Pareto Plot ===
233 # feas = df_comb[df_comb.Status == "Feasible"]
234 # if not feas.empty:
235 # plt.figure(figsize=(8, 6))
236 # sc = plt.scatter(
237 # feas["LCA"], feas["LPnox"],
238 # c=feas["TCO"], cmap="RdYlGn_r",
239 # s=60, edgecolor="k"
240 # )
241 # plt.colorbar(sc, label="Summed TCO (×1000 €)")
242 # plt.xlabel("Total LCA (t �CO-eq)")
243 # plt.ylabel("Total �NO (kg)")
244 # plt.title("Combined Pareto: ΣLCA vs Σ�NO (colorΣ=TCO)")
245 # plt.grid(True)
246 # plt.tight_layout()
247 # plt.savefig(os.path.join(outdir, "combined_pareto_LCA_LPnox_colorTCO.png"))
248 # plt.close()
249

250 # === Combined data and plots for each run ===
251 combined_dir = os.path.join(outdir, "combined")
252 os.makedirs(combined_dir, exist_ok=True)
253

254 for run_idx in range(num_runs):
255 if df_comb.loc[run_idx, "Status"] != "Feasible":
256 continue
257 this_run = [d for (_f, r, _, _, d) in all_detailed if r == run_idx]
258 if not this_run:
259 continue
260

261 all_H = {h for f in fleet_map if (h := MODEL_CONFIG[f].get("H"))}
262 base_H = sorted(all_H)
263

264 df_vessels, cost_data, emissions_data, df_assets = combine_fleet_data(this_run,
base_H)

265 run_dir = os.path.join(combined_dir, f"Run_{run_idx}")
266 os.makedirs(run_dir, exist_ok=True)
267

268 df_vessels.to_csv(os.path.join(run_dir, "combined_vessels.csv"), index=False)
269 pd.DataFrame.from_dict(cost_data).to_csv(os.path.join(run_dir, "combined_costs.csv"))
270 pd.DataFrame.from_dict(emissions_data).to_csv(os.path.join(run_dir, "

combined_emissions.csv"))
271 pd.DataFrame.from_dict(df_assets).to_csv(os.path.join(run_dir, "combined_assets.csv")

)
272

273 # figs = run_all_plots_for_fleet(
274 # fleet_label=f"Combined_Run_{run_idx}",
275 # df_vessels=df_vessels,
276 # cost_data=cost_data,
277 # emissions_data=emissions_data,
278 # df_assets=df_assets,
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279 # base_case=next(iter(fleet_map.values()))[0]
280 # )
281 # for name, fig in figs.items():
282 # fig.savefig(os.path.join(run_dir, f"{name}.png"), bbox_inches="tight")
283 # plt.close(fig)
284

285 return df_all, all_detailed

MOO.py
1

2 """
3 Main script to execute epsilon-constraint based multi-objective optimization
4 for fleet renewal planning using cost and emission results.
5 Author: Jelmer Pentinga
6 """
7

8 # === Imports ===
9 from Final_calculations import run_cost_analysis, run_emission_analysis
10 from Preprocessing_input import vessel_characteristics
11 from RHS_input import define_index_sets, define_rhs_parameters
12 from Emission_factors import fuel_emission_factors
13 from build_model import build_model
14 from e_constraint import run_all_epsilon_loops
15

16 # === Global emission data (fetched once) ===
17 emission_data = fuel_emission_factors()
18

19

20 # === Base Case Generator ===
21 def get_base_case():
22 """
23 Build and return the base-case parameters grouped by vessel class.
24 Each class entry contains:
25 - Index sets (E, I, J, T)
26 - RHS parameters (d_req, d_res, b_d, b_eol)
27 - Per-vessel input parameters for cost and emissions
28

29 Returns:
30 dict: base_case[class] -> data for optimization model
31 """
32 vc_data = vessel_characteristics()
33 cost_results = run_cost_analysis()
34

35 # Run emission analysis for each vessel
36 emission_results = {
37 v_id: run_emission_analysis(
38 vc["materials"],
39 vc["class"],
40 vc["specific_emissions"]["fuel_type"],
41 vc["specific_emissions"]["fuel_consumption"],
42 emission_data,
43 vc["specific_emissions"]["NOX"],
44 vc["specific_emissions"]["PM"]
45 )
46 for v_id, vc in vc_data.items()
47 }
48

49 base_case = {}
50 # Group vessels by class
51 class_groups = {}
52 for v_id, vc in vc_data.items():
53 clss = vc["class"]
54 class_groups.setdefault(clss, []).append(v_id)
55

56 # Build base-case per class
57 for vessel_class, vids in class_groups.items():
58 E, I, J, T = define_index_sets(vessel_class)
59 d_req, d_res, b_eol, b_d = define_rhs_parameters(vessel_class)
60
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61 entry = {
62 "E": E, "I": I, "J": J, "T": T,
63 "d_req": d_req,
64 "vids": sorted(vids),
65 "v_i_a": [vc_data[v]["initial_age"] for v in vids],
66 "v_eol_a": [vc_data[v]["eol"] for v in vids],
67 "v_acq_c": [cost_results[v]["v_acq"] for v in vids],
68 "v_ins_c": [cost_results[v]["v_ins"] for v in vids],
69 "v_res_c": [cost_results[v]["v_res"] for v in vids],
70 "v_om_c": [cost_results[v]["v_ope"] for v in vids],
71 "v_maint_c": [cost_results[v]["v_maint"] for v in vids],
72 "f_c": [cost_results[v]["f_cost"] for v in vids],
73 "v_ctg_e": [emission_results[v]["v_ctg"] for v in vids],
74 "v_gtc_e": [emission_results[v]["v_gtc"] for v in vids],
75 "f_e": [emission_results[v]["f_e"] for v in vids],
76 }
77

78 if vessel_class in ["IRV", "PV"]:
79 entry["d_res"] = d_res
80

81 if vessel_class in ["IRV", "PV", "NM"]:
82 entry["b_eol_a"] = b_eol
83 entry["b_d"] = b_d
84 entry["b_acq_c"] = cost_results[vids[0]]["b_acq"]
85 entry["b_om_c"] = cost_results[vids[0]]["b_ope"]
86 entry["b_res_c"] = cost_results[vids[0]]["b_res"]
87 entry["b_ctg_e"] = emission_results[vids[0]]["b_ctg"]
88 entry["b_gtc_e"] = emission_results[vids[0]]["b_gtc"]
89

90 if vessel_class != "RHIB":
91 entry["i_acq_c"] = cost_results[vids[0]]["i_acq"]
92 entry["i_om_c"] = cost_results[vids[0]]["i_ope"]
93 entry["i_res_c"] = cost_results[vids[0]]["i_res"]
94 entry["i_ctg_e"] = emission_results[vids[0]]["i_ctg"]
95 # Note: i_gtc not available in emission_results
96

97 base_case[vessel_class] = entry
98

99 return base_case
100

101

102 # === Main Execution ===
103 if __name__ == "__main__":
104 print��(" Generating base case data...")
105 base_cases = get_base_case()
106

107 fleet_map = {
108 clas: (base_cases[clas], build_model)
109 for clas in base_cases
110 }
111

112 print��(" Running �-constraint loops for all fleets...")
113 df_epsilon_results, all_detailed_data = run_all_epsilon_loops(fleet_map)
114 print�(" �-constraint analysis complete.")
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Data extraction code

data_extract.py
1 # data_extract.py
2 import pandas as pd
3 from model_config import MODEL_CONFIG
4 def safe_val(d, key):
5 """Extract .X from a Gurobi var if present, else return 0/float."""
6 if d is None:
7 return 0
8 v = d.get(key, 0)
9 return v.X if hasattr(v, "X") else v
10

11 def build_vessel_state_dataframe(I, J, T, P, O, R, S, U, vessel_names, class_label=None):
12 rows = []
13 for t in T:
14 for i in I:
15 vessel = vessel_names[i]
16 state = None
17 age = None
18 # purchase
19 if safe_val(P, (i, t)) > 0.5:
20 state = "Purchased"
21 # then check the other four mutually-exclusive states
22 for j in J:
23 if safe_val(O, (i, j, t)) > 0.5:
24 state, age = "Operational", j
25 break
26 if safe_val(R, (i, j, t)) > 0.5:
27 state, age = "Reserve", j
28 break
29 if safe_val(U, (i, j, t)) > 0.5:
30 state, age = "Maintained", j
31 break
32 if safe_val(S, (i, j, t)) > 0.5:
33 state, age = "Salvaged", j
34 break
35 rows.append({
36 "Time": t,
37 "Vessel": vessel,
38 "Class": class_label,
39 "State": state,
40 "Age": age
41 })
42 df = pd.DataFrame(rows)
43 df["Label"] = df.apply(
44 lambda r: f"{r['Vessel']} (Class {r['Class']})"
45 if pd.notna(r["Class"]) else f"{r['Vessel']} �( Not purchased)",
46 axis=1
47 )

126
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48 return df
49 def extract_cost_data(
50 I, J, T, H,
51 P, O, R, S, U,
52 Q=None, V=None, W=None, X=None, Y=None, Z=None,
53 v_acq_c=None, v_res_c=None, v_om_c=None,
54 v_ins_c=None, v_maint_c=None, f_c=None,
55 i_acq_c=None, i_om_c=None, i_res_c=None,
56 b_acq_c=None, b_om_c=None, b_res_c=None,
57 initial_age=None,
58 b_eol_a=None
59 ):
60 """
61 initial_age: list or dict mapping vessel i -> initial_age or None
62 """
63 T_max = max(T)
64

65 # --- Vessel CAPEX: acquisitions minus salvage ---
66 # split salvage into known vs new
67 def safe(vdict, key): return vdict[key] if key in vdict else 0
68

69 salv_known = {
70 t: sum(
71 safe_val(S, (i, j, t)) * v_res_c[i][0].get(j, 0)
72 for i in I if initial_age[i] is not None
73 for j in J
74 if (i, j, t) in S
75 )
76 for t in T
77 }
78 salv_new = {
79 t: sum(
80 safe_val(S, (i, j, t)) * v_res_c[i].get(t - j, {}).get(j, 0)
81 for i in I if initial_age[i] is None
82 for j in J
83 if (i, j, t) in S and (t - j) >= 0
84 )
85 for t in T
86 }
87

88 vessel_capex = {
89 t: sum(
90 safe_val(P, (i, t)) * v_acq_c[i][t]
91 for i in I
92 )
93 - salv_known.get(t, 0)
94 - salv_new.get(t, 0)
95 for t in T
96 }
97

98 # --- Vessel OPEX: O&M + insurance + maintenance ---
99 vessel_opex = {
100 t: sum(
101 safe_val(var, (i, j, t))
102 * (
103 # O&M
104 v_om_c[i][t]
105 # insurance: at t if existing, at t-j if new
106 + (
107 v_ins_c[i][t]
108 if initial_age[i] is not None
109 else v_ins_c[i].get(t-j, 0)
110 )
111 # maintenance only when in U
112 + (
113 v_maint_c[i][t].get(j, 0)
114 if state == 'U'
115 else 0
116 )
117 )
118 for state, var in (('O', O), ('R', R), ('U', U))
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119 for i in I
120 for j in J
121 if (i, j, t) in var
122 )
123 for t in T
124 }
125 # --- Residual values at T_max ---
126 vessel_residual = sum(
127 (
128 safe_val(O, (i, j, T_max))
129 + safe_val(R, (i, j, T_max))
130 + safe_val(U, (i, j, T_max))
131 )
132 * (
133 # existing: purchase at t=0
134 v_res_c[i][0].get(j, 0)
135 if initial_age[i] is not None
136 # new: purchase at T_max-j
137 else v_res_c[i].get(T_max - j, {}).get(j, 0)
138 )
139 for i in I for j in J
140 if (i, j, T_max) in O or (i, j, T_max) in R or (i, j, T_max) in U
141 )
142

143 # --- Infra CAPEX & OPEX (unchanged) ---
144 infra_capex = {
145 t: sum(safe_val(Y, (h, t)) * i_acq_c[t] for h in H) if i_acq_c else 0
146 for t in T
147 }
148 infra_opex = {
149 t: sum(sum(safe_val(Y, (h, tt)) for tt in T if tt <= t) * i_om_c[t] for h in H) if

i_om_c else 0
150 for t in T
151 }
152

153 # --- Infra Residual at T_max (new logic) ---
154 infra_residual = (
155 sum(
156 safe_val(Z, (h, j, T_max))
157 * i_res_c.get(T_max - j, {}).get(j, 0)
158 for h in H
159 for j in J
160 if (h, j, T_max) in Z
161 )
162 if i_res_c
163 else 0
164 )
165 # --- Battery CAPEX & OPEX & Residual ---
166 batt_salvage = {t: sum(safe_val(X, (j,t)) * b_res_c.get(t-j, {}).get(j, 0)
167 for j in J
168 if (j,t) in (X or {})
169 )
170 for t in T
171 }
172 batt_capex = {
173 t: safe_val(Q, t) * b_acq_c[t] - batt_salvage.get(t, 0)
174 for t in T
175 } if b_acq_c else {}
176 batt_opex = {
177 t: sum(safe_val(W, (j, t)) * b_om_c[t] for j in range(b_eol_a + 1))
178 for t in T
179 } if b_om_c else {}
180

181 batt_residual = sum(
182 (safe_val(V, (j, T_max)) + safe_val(W, (j, T_max)))
183 * b_res_c.get(T_max - j, {}).get(j, 0)
184 for j in range(b_eol_a + 1)
185 if (j, T_max) in V and (j, T_max) in W
186 ) if b_res_c else 0
187

188 # --- Fuel costs ---
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189 fuel_cost = {
190 t: sum(safe_val(O, (i, j, t)) * f_c[i][t] for i in I for j in J if (i, j, t) in O)
191 for t in T
192 }
193

194 return {
195 "vessel_capex": vessel_capex,
196 "vessel_opex": vessel_opex,
197 "vessel_residual": vessel_residual,
198 "infra_capex": infra_capex,
199 "infra_opex": infra_opex,
200 "infra_residual": infra_residual,
201 "batt_capex": batt_capex,
202 "batt_opex": batt_opex,
203 "batt_residual": batt_residual,
204 "fuel_cost": fuel_cost
205 }
206

207 def extract_emissions_data(
208 E, I, J, T,
209 P, O, R, S,
210 Q=None, X=None, Y=None,
211 f_e=None, v_ctg_e=None, v_gtc_e=None,
212 i_ctg_e=None, i_gtc=None, b_ctg_e=None, b_gtc_e=None
213 ):
214 # --- Vessel manufacturing (CTG) ---
215 vessel_ctg = {
216 t: sum(safe_val(P, (i, t)) * v_ctg_e[i][t] for i in I)
217 for t in T
218 }
219

220 # --- Infra CTG ---
221 infra_ctg = {
222 t: sum(safe_val(Y, ("BSM", t)) * i_ctg_e[t]
223 for (h, tt) in (Y or {}).keys()
224 if tt == t
225 )
226 if i_ctg_e else 0
227 for t in T
228 }
229 # --- Battery CTG ---
230 batt_ctg = {
231 t: safe_val(Q, t) * b_ctg_e[t] if b_ctg_e else 0
232 for t in T
233 }
234

235 # --- Vessel end-of-life (GTC) ---
236 vessel_gtc = {
237 t: sum(safe_val(S, (i, j, t)) * v_gtc_e[i][t] for i in I for j in J)
238 for t in T
239 }
240

241 # --- Infra GTC
242 infra_gtc = {
243 t: sum(safe_val(Y, ("BSM", t)) * i_gtc[t] for h in Y.keys())
244 if i_gtc else 0
245 for t in T
246 }
247

248 # --- Battery GTC
249 batt_gtc = {
250 t: sum(safe_val(X, (j, t)) * b_gtc_e[t] for j in J if j <= t)
251 if b_gtc_e else 0
252 for t in T
253 }
254

255 # --- Well-to-wheel (fuel) ---
256 wtw = {}
257 # f_e is a list (indexed by vessel i) of dicts keyed by pollutant name
258 for pollutant in next(iter(f_e)).keys():
259 series = {}
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260 for t in T:
261 s = 0.0
262 for i in I:
263 for j in J:
264 if (i, j, t) in O and safe_val(O, (i, j, t)) > 0:
265 val = f_e[i][pollutant]
266 # if it's ‐timeseries, look up t; otherwise it's constant
267 s += safe_val(O, (i, j, t)) * (val[t] if isinstance(val, dict) else

val)
268 series[t] = s
269 wtw[pollutant] = series
270

271 return {
272 "vessel_ctg": vessel_ctg,
273 "infra_ctg": infra_ctg,
274 "batt_ctg": batt_ctg,
275 "vessel_gtc": vessel_gtc,
276 "infra_gtc": infra_gtc,
277 "batt_gtc": batt_gtc,
278 "wtw": wtw
279 }
280

281 def extract_acqinfra_data(T, H, Q=None, Y=None):
282 return {
283 "Infrastructure": {
284 t: {h: safe_val(Y, (h, t)) for (h_,tt_) in (Y or {}) if tt_ == t for h in [h_]}
285 for t in T
286 },
287 "Batteries": {
288 t: safe_val(Q, t) for t in T
289 }
290 }
291

292 def extract_opinfra_data(T, H, V, W, Z):
293 """
294 Extracts operational infrastructure & battery data, safely handling fleets
295 without batteries (V or W may be None) or without decommissioning (Z may be None).
296 """
297 # If no battery vars exist, treat as empty
298 Wkeys = W.keys() if W is not None else []
299 Vkeys = V.keys() if V is not None else []
300 Zkeys = Z if Z is not None else []
301

302 # Infrastructure in operation
303 infra_op = {}
304 for t in T:
305 infra_op[t] = {
306 h: sum(
307 safe_val(Z, (hh, j, tt))
308 for (hh, j, tt) in Zkeys
309 if hh == h and tt == t
310 )
311 for h in H
312 }
313

314 # Batteries in operation / non-op
315 batt_in_op = {}
316 nonop_batt = {}
317 for t in T:
318 batt_in_op[t] = sum(
319 safe_val(W, (j, tt))
320 for (j, tt) in Wkeys
321 if tt == t
322 )
323 nonop_batt[t] = sum(
324 safe_val(V, (j, tt))
325 for (j, tt) in Vkeys
326 if tt == t
327 )
328

329 return {
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330 'Infrastructure ': infra_op,
331 'Batteries in Operation': batt_in_op,
332 'NonOperational Batteries': nonop_batt
333 }
334

335 def extract_salvaged_batteries_data(J, T, X=None):
336 return {
337 t: sum(safe_val(X, (j, t)) for j in J if (j, t) in (X or {}))
338 for t in T
339 }
340

341 def unify_acq_op_salv_data(T, H, J, acq_data, op_data, sal_data):
342 recs = []
343 for t in T:
344 # infra acquisition
345 for h in H:
346 recs.append(dict(
347 Time=t, Type="Acquisition", Asset="Infra", Name=h,
348 Value=acq_data["Infrastructure"][t][h]
349 ))
350 # battery acquisition
351 recs.append(dict(
352 Time=t, Type="Acquisition", Asset="Battery", Name=None,
353 Value=acq_data["Batteries"][t]
354 ))
355 # infra operation
356 for h in H:
357 recs.append(dict(
358 Time=t, Type="Installed", Asset="Infra", Name=h,
359 Value=op_data["Infrastructure"][t][h]
360 ))
361 # battery operation
362 recs.append(dict(
363 Time=t, Type="Operation", Asset="Battery", Name=None,
364 Value=op_data["Batteries in Operation"][t]
365 ))
366 # non-op batteries
367 recs.append(dict(
368 Time=t, Type="NonOperational Batteries", Asset="Battery", Name=None,
369 Value=op_data.get("NonOperational Batteries", {}).get(t, 0)
370 ))
371 # salvaged batteries
372 recs.append(dict(
373 Time=t, Type="Salvaged", Asset="Battery", Name=None,
374 Value=sal_data[t]
375 ))
376 return pd.DataFrame(recs)
377

378 def flatten_cost_dict_to_df(cost_dict):
379 rows = []
380 for cat, series in cost_dict.items():
381 if isinstance(series, dict):
382 for t, v in series.items():
383 rows.append({"Time": t, "Category": cat, "Value": v})
384 else:
385 rows.append({"Time": "final", "Category": cat, "Value": series})
386 return pd.DataFrame(rows)
387

388 def flatten_emissions_dict_to_df(em_dict):
389 rows = []
390 for cat, data in em_dict.items():
391 if isinstance(data, dict):
392 for t, v in data.items():
393 rows.append({"Time": t, "Category": cat, "Value": v})
394 else:
395 # pollutant-specific nested
396 for pol, series in data.items():
397 for t, v in series.items():
398 rows.append({"Time": t, "Category": f"wtw_{pol}", "Value": v})
399 return pd.DataFrame(rows)
400
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401 def run_all_data_extract_for_fleet(base_case, variables, vessel_names, fleet_label,
class_label=None):

402 df_vessels = build_vessel_state_dataframe(
403 base_case["I"], base_case["J"], base_case["T"],
404 variables["P"], variables["O"], variables["R"],
405 variables["S"], variables["U"],
406 vessel_names, class_label
407 )
408 df_vessels["model"] = fleet_label
409 # grab raw H from the config
410 raw_H = MODEL_CONFIG[fleet_label].get("H", [])
411 # normalize to always be a list of infra names (or empty)
412 if not raw_H:
413 H = []
414 elif isinstance(raw_H, list):
415 H = raw_H
416 else:
417 H = [raw_H]
418

419 df_cost = extract_cost_data(
420 I=base_case["I"], J=base_case["J"], T=base_case["T"], H=H,
421 P=variables["P"], O=variables["O"], R=variables["R"],
422 S=variables["S"], U=variables["U"],
423 Q=variables.get("Q"), V=variables.get("V"),
424 W=variables.get("W"), X=variables.get("X"),
425 Y=variables.get("Y"), Z=variables.get("Z"),
426 v_acq_c=base_case["v_acq_c"],
427 v_res_c=base_case["v_res_c"],
428 v_om_c=base_case["v_om_c"],
429 v_ins_c=base_case["v_ins_c"],
430 v_maint_c=base_case["v_maint_c"],
431 f_c=base_case["f_c"],
432 i_acq_c=base_case.get("i_acq_c"),
433 i_om_c=base_case.get("i_om_c"),
434 i_res_c=base_case.get("i_res_c"),
435 b_acq_c=base_case.get("b_acq_c"),
436 b_om_c=base_case.get("b_om_c"),
437 b_res_c=base_case.get("b_res_c"),
438 initial_age=base_case["v_i_a"],
439 b_eol_a=base_case.get("b_eol_a")
440 )
441

442 df_emissions = extract_emissions_data(
443 E=base_case["E"], I=base_case["I"], J=base_case["J"], T=base_case["T"],
444 P=variables["P"], O=variables["O"], R=variables["R"], S=variables["S"],
445 Q=variables.get("Q"), X=variables.get("X"), Y=variables.get("Y"),
446 f_e=base_case["f_e"],
447 v_ctg_e=base_case["v_ctg_e"],
448 v_gtc_e=base_case["v_gtc_e"],
449 i_ctg_e=base_case.get("i_ctg_e"),
450 i_gtc=base_case.get("i_gtc"),
451 b_ctg_e=base_case.get("b_ctg_e"),
452 b_gtc_e=base_case.get("b_gtc_e"),
453 )
454 df_acqinfra = extract_acqinfra_data(
455 T=base_case["T"],
456 H=H, # guaranteed iterable
457 Q=variables.get("Q"),
458 Y=variables.get("Y")
459 )
460 df_opinfra = extract_opinfra_data(
461 T=base_case["T"],
462 H=H,
463 V=variables.get("V"),
464 W=variables.get("W"),
465 Z=variables.get("Z")
466 )
467 df_salvaged = extract_salvaged_batteries_data(
468 J=base_case["J"], T=base_case["T"], X=variables.get("X")
469 )
470 df_assets = unify_acq_op_salv_data(
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471 T=base_case["T"], H=H, J=base_case["J"],
472 acq_data=df_acqinfra, op_data=df_opinfra, sal_data=df_salvaged
473 )
474

475 return {
476 "df_vessels": df_vessels,
477 "df_cost": df_cost,
478 "df_emissions": df_emissions,
479 "df_acqinfra": df_acqinfra,
480 "df_opinfra": df_opinfra,
481 "df_salvaged": df_salvaged,
482 "df_assets": df_assets,
483 "df_cost_flat": flatten_cost_dict_to_df(df_cost),
484 "df_emissions_flat": flatten_emissions_dict_to_df(df_emissions),
485 }

combine_fleet_data.py
1 # combine_fleet_data.py
2 import pandas as pd
3 from collections import defaultdict
4 from data_extract import unify_acq_op_salv_data
5 def combine_fleet_data(fleet_datasets, base_H):
6 """
7 fleet_datasets: list of dicts, each containing keys
8 df_vessels, df_cost, df_emissions, df_acqinfra, df_opinfra, df_salvaged
9 base_H: list of infrastructure names (e.g. ["BSM","Shorepower",...])
10 """
11 # === Combine vessel states ===
12 df_all_vessels = pd.concat(
13 [fleet["df_vessels"] for fleet in fleet_datasets],
14 ignore_index=True
15 )
16

17 # === Combine cost data ===
18 cost_data_combined = {}
19 for fleet in fleet_datasets:
20 for key, series in fleet["df_cost"].items():
21 if isinstance(series, dict):
22 cost_data_combined.setdefault(key, {})
23 for t, value in series.items():
24 cost_data_combined[key][t] = cost_data_combined[key].get(t, 0.0) + value
25 else:
26 cost_data_combined[key] = cost_data_combined.get(key, 0.0) + series
27

28 # === Combine emissions data ===
29 emissions_data_combined = defaultdict(dict)
30 for fleet in fleet_datasets:
31 for key, series in fleet["df_emissions"].items():
32 if key != "wtw":
33 for t, value in series.items():
34 emissions_data_combined[key][t] = (
35 emissions_data_combined[key].get(t, 0.0) + value
36 )
37

38 # Combine WTW emissions separately
39 wtw_combined = defaultdict(lambda: defaultdict(float))
40 for fleet in fleet_datasets:
41 for pollutant, series in fleet["df_emissions"].get("wtw", {}).items():
42 for t, val in series.items():
43 wtw_combined[pollutant][t] += val
44 emissions_data_combined["wtw"] = {
45 pollutant: dict(series) for pollutant, series in wtw_combined.items()
46 }
47

48 # === Combine acquisition infrastructure & batteries ===
49 acquisition_data = {
50 "Infrastructure": defaultdict(dict),
51 "Batteries": defaultdict(float)
52 }
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53 for fleet in fleet_datasets:
54 infra = fleet["df_acqinfra"]["Infrastructure"]
55 for t, h_vals in infra.items():
56 for h, val in h_vals.items():
57 acquisition_data["Infrastructure"][t][h] = (
58 acquisition_data["Infrastructure"][t].get(h, 0.0) + val
59 )
60 for t, val in fleet["df_acqinfra"]["Batteries"].items():
61 acquisition_data["Batteries"][t] += val
62

63 # === Combine operational infra, batteries, salvage ===
64 operation_data = {
65 "Infrastructure": defaultdict(lambda: defaultdict(float)),
66 "Batteries in Operation": defaultdict(float),
67 "NonOperational Batteries": defaultdict(float),
68 "Salvaged": defaultdict(float)
69 }
70 for fleet in fleet_datasets:
71 # infra operation
72 for t, h_vals in fleet["df_opinfra"]["Infrastructure"].items():
73 for h in base_H:
74 operation_data["Infrastructure"][t][h] += h_vals.get(h, 0.0)
75 # batteries in operation
76 for t, val in fleet["df_opinfra"].get("Batteries in Operation", {}).items():
77 operation_data["Batteries in Operation"][t] += val
78 # non-operational batteries
79 for t, val in fleet["df_opinfra"].get("NonOperational Batteries", {}).items():
80 operation_data["NonOperational Batteries"][t] += val
81 # salvaged batteries
82 for t, val in fleet["df_salvaged"].items():
83 operation_data["Salvaged"][t] += val
84

85 # === Convert all defaultdicts to plain dicts ===
86 # cost_data_combined: series of dicts or scalars
87 cost_data_combined = {
88 k: dict(v) if isinstance(v, dict) else v
89 for k, v in cost_data_combined.items()
90 }
91

92 emissions_data_combined = {
93 k: dict(v) if isinstance(v, dict) else v
94 for k, v in emissions_data_combined.items()
95 }
96

97 acquisition_data = {
98 "Infrastructure": dict(acquisition_data["Infrastructure"]),
99 "Batteries": dict(acquisition_data["Batteries"])
100 }
101

102 operation_data = {
103 "Infrastructure": {
104 t: dict(hvals)
105 for t, hvals in operation_data["Infrastructure"].items()
106 },
107 "Batteries in Operation": dict(operation_data["Batteries in Operation"]),
108 "NonOperational Batteries": dict(operation_data["NonOperational Batteries"]),
109 "Salvaged": dict(operation_data["Salvaged"])
110 }
111

112 # === NEW: Build df_assets ===
113 # T is just the sorted ‐timepoints you have in acq infra:
114 T = sorted(acquisition_data["Infrastructure"].keys())
115

116 # the salvage series you already accumulated lives in operation_data["Salvaged"]
117 salvaged_data = operation_data["Salvaged"]
118

119 df_assets = unify_acq_op_salv_data(
120 T = T,
121 H = base_H,
122 J = None, # `unify_acq_op_salv_data ` doesn't actually use J
123 acq_data = acquisition_data,
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124 op_data = operation_data,
125 sal_data = salvaged_data
126 )
127

128 return (
129 df_all_vessels,
130 cost_data_combined,
131 emissions_data_combined ,
132 df_assets # ← return it as the sixth element
133 )

plotter.py
1 # plotter.py
2 """
3 Created on Thu Jun 12 13:26:21 2025
4

5 @author: penti
6 """
7

8 # plotter.py
9 # -*- coding: utf-8 -*-
10 """
11 Revised plotting routines for the modular ‐fleetmodel workflow.
12 """
13

14 import os
15 import matplotlib.pyplot as plt
16 import pandas as pd
17 from scipy.io import savemat
18 plt.rcParams.update({
19 'font.size': 14, # default text size
20 'axes.titlesize': 18, # axes title
21 'axes.labelsize': 16, # x/y labels
22 'xtick.labelsize': 12, # tick labels
23 'ytick.labelsize': 12,
24 'legend.fontsize': 14,
25 'legend.title_fontsize ': 14,
26 'figure.titlesize': 18 # if you ever use fig.suptitle()
27 })
28

29 # these two dicts are populated by run_all_plots_for_fleet()
30 figures = {}
31 figure_data = {}
32

33 # Global color mappings
34 STATE_COLORS = {
35 "Purchased": "#6699cc",
36 "Operational": "#2ca02c",
37 "Reserve": "#ffe680",
38 "Maintained": "#ff8c00",
39 "Salvaged": "#d62728"
40 }
41

42 def _year_ticks(T, start_year=2026):
43 # pick every 4th quarter (including t=0)
44 years = sorted(t for t in T if t % 4 == 0)
45 labels = [str(start_year + (t // 4)) for t in years]
46 return years, labels
47 def plot_vessel_gantt_and_age(df_vessels, fleet_label, start_year=2026):
48 """
49 1) ‐brokenbarh Gantt of states over time
50 2) line plot of age vs time
51 """
52 # collect ‐timepoints and labels
53 T = sorted(df_vessels["Time"].unique())
54 labels = df_vessels["Label"].unique()
55

56 # identify the “year ”boundaries in T (every 4 quarters)
57 year_ticks = [t for t in T if t % 4 == 0]
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58 year_labels = [str(start_year + t // 4) for t in year_ticks]
59

60 # --- Gantt ---
61 fig, ax = plt.subplots(figsize=(16, 8))
62 for idx, lbl in enumerate(labels):
63 sub = df_vessels[df_vessels["Label"] == lbl]
64 y0 = idx * 10
65 for state, grp in sub.groupby("State"):
66 times = grp["Time"].values
67 if times.size:
68 ax.broken_barh(
69 [(t, 1) for t in times],
70 (y0, 8),
71 facecolors=STATE_COLORS.get(state, "#999999")
72 )
73

74 # y-axis
75 year_ticks = year_ticks[::2]
76 year_labels = year_labels[::2]
77

78 ax.set_xticks(year_ticks)
79 ax.set_xticklabels(year_labels)
80 ax.set_xlim(year_ticks[0], T[-1])
81 ax.set_yticks([i*10 + 4 for i in range(len(labels))])
82 ax.set_yticklabels(labels)
83

84 # x-axis: years only
85 ax.set_xlim(year_ticks[0], T[-1])
86 ax.set_xlabel("Year")
87 ax.set_title(f"{fleet_label} Vessel State Timeline")
88

89 # legend
90 handles = [plt.Line2D([0],[0], color=c, lw=6) for c in STATE_COLORS.values()]
91 ax.legend(handles, STATE_COLORS.keys(), title="State",
92 bbox_to_anchor=(1.05,1), loc="upper left")
93

94 ax.grid(True)
95 fig.tight_layout(rect=[0,0,0.85,1])
96 figures["gantt_vessel_timeline"] = fig
97

98 # --- Age vs Time ---
99 # fig2, ax2 = plt.subplots(figsize=(16, 8))
100 # for lbl in labels:
101 # sub = df_vessels[df_vessels["Label"] == lbl]
102 # ax2.plot(sub["Time"], sub["Age"], marker="o", markersize=3, label=lbl)
103 # ax2.set_xlabel("Time (quarters)")
104 # ax2.set_ylabel("Age (quarters)")
105 # ax2.set_title("Vessel Age Over Time")
106 # ax2.set_xlim(year_ticks[0], year_ticks[-1])
107 # ax2.legend(loc="upper left", bbox_to_anchor=(1.05,1))
108 # ax2.grid(True)
109 # fig2.tight_layout(rect=[0,0,0.85,1])
110 # figures["vessel_age_over_time"] = fig2
111 def plot_costs_over_time(T, cost_data, fleet_label, start_year=2026):
112 """
113 Stacked CAPEX/OPEX/Fuel Cost over time + scatter at final residual.
114 """
115

116 # helper to pull out either a dict[t] or a constant
117 def series(key):
118 v = cost_data.get(key, 0)
119 if isinstance(v, dict):
120 return [v.get(t, 0) for t in T]
121 else:
122 return [v] * len(T)
123

124 df = pd.DataFrame({
125 "Time": T,
126 "Vessel CAPEX": series("vessel_capex"),
127 "Infra CAPEX": series("infra_capex"),
128 "Battery CAPEX":series("batt_capex"),
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129 "Vessel OPEX": series("vessel_opex"),
130 "Infra OPEX": series("infra_opex"),
131 "Battery OPEX": series("batt_opex"),
132 "Fuel Cost": series("fuel_cost"),
133 })
134

135 df["CAPEX"] = df["Vessel CAPEX"] + df["Infra CAPEX"] + df["Battery CAPEX"]
136 df["OPEX"] = df["Vessel OPEX"] + df["Infra OPEX"] + df["Battery OPEX"]
137 df["Total Cost"] = df["CAPEX"] + df["OPEX"] + df["Fuel Cost"]
138

139 # draw the six ‐timeseries
140 fig, ax = plt.subplots(figsize=(16,8))
141 for col in ["CAPEX","OPEX","Fuel Cost","Total Cost"]:
142 ax.plot(df["Time"], df[col], marker="o", markersize=3, label=col)
143

144 # scatter the residual value at T_max
145 T_max = max(T)
146 residual = (
147 cost_data.get("vessel_residual", 0)
148 + cost_data.get("infra_residual", 0)
149 + cost_data.get("batt_residual", 0)
150 )
151 ax.scatter([T_max], [residual], s=60,
152 facecolor="black", edgecolor="k", clip_on=False,
153 label="Residual value")
154

155 ax.set_title(f"{fleet_label} — Cost Components Over Time")
156 years, labels = _year_ticks(T, start_year)
157 ax.set_xticks(years)
158 ax.set_xticklabels(labels)
159 ymin = min(df["CAPEX"].min(),0)
160 ax.set_ylim(bottom=ymin * 1.1)
161 ax.set_xlabel("Year")
162 ax.set_xlim(years[0], T[-1])
163 ax.set_ylabel("Cost €( thousands)")
164 ax.tick_params(axis='x', labelsize=12) # ← override to 16pt for this plot
165 ax.legend(loc="upper right")
166 ax.grid(True)
167 fig.tight_layout(rect=[0,0,0.85,1])
168

169 figures["cost_components_over_time"] = fig
170 def plot_cumulative_tco_lca(T, cost_data, emissions_data, fleet_label, start_year=2026):
171 """
172 Dual-axis: cumulative total cost vs cumulative LCA (�CO only).
173 """
174

175 # helper to fetch cost_data[key][t] if ’its a dict, else return scalar
176 def cval(key, t):
177 v = cost_data.get(key, 0)
178 if isinstance(v, dict):
179 return v.get(t, 0)
180 return v
181

182 running_cost = 0.0
183 cum_cost = []
184 running_co2 = 0.0
185 cum_co2 = []
186

187 for t in T:
188 # accumulate cost
189 running_cost += (
190 cval("vessel_capex", t)
191 + cval("infra_capex", t)
192 + cval("batt_capex", t)
193 + cval("vessel_opex", t)
194 + cval("infra_opex", t)
195 + cval("batt_opex", t)
196 + cval("fuel_cost", t)
197 )
198 cum_cost.append(running_cost)
199
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200 # accumulate �CO from the various series
201 running_co2 += (
202 emissions_data.get("vessel_ctg", {}).get(t, 0)
203 + emissions_data.get("wtw", {}).get("CO2", {}).get(t, 0)
204 + emissions_data.get("vessel_gtc", {}).get(t, 0)
205 + emissions_data.get("infra_ctg", {}).get(t, 0)
206 + emissions_data.get("infra_gtc", {}).get(t, 0)
207 + emissions_data.get("batt_ctg", {}).get(t, 0)
208 + emissions_data.get("batt_gtc", {}).get(t, 0)
209 )
210 cum_co2.append(running_co2)
211

212 # subtract the final residual from the last point
213 residual = (
214 cost_data.get("vessel_residual_value", 0)
215 + cost_data.get("infra_residual_value", 0)
216 + cost_data.get("batt_residual_value", 0)
217 )
218 cum_cost_net = cum_cost.copy()
219 cum_cost_net[-1] -= residual
220

221 fig, ax1 = plt.subplots(figsize=(16,8))
222 ax1.plot(
223 T, cum_cost,
224 marker="o", markersize=3, label="Cumulative TCO",
225 color="blue" # ← force blue for cost
226 )
227 years, labels = _year_ticks(T, start_year)
228 ax1.set_xticks(years)
229 ax1.set_xticklabels(labels)
230 ax1.tick_params(axis='x', labelsize=12) # ← override to 16pt for this plot
231 ax1.set_xlabel("Year")
232 ax1.set_xlim(years[0], T[-1])
233 ax1.set_ylabel("Cumulative TCO €(k)")
234 ax1.grid(True)
235 ax1.set_ylim(bottom=0)
236 ax2 = ax1.twinx()
237 ax2.plot(
238 T, cum_co2,
239 marker="s", markersize=3, label="Cumulative LCA",
240 color="green" # ← force green for LCA
241 )
242 ax2.set_ylabel("Cumulative LCA (t �CO-eq)")
243

244 # combined legend
245 h1, l1 = ax1.get_legend_handles_labels()
246 h2, l2 = ax2.get_legend_handles_labels()
247 ax1.legend(h1+h2, l1+l2, loc="upper left")
248 ax2.set_ylim(bottom=0)
249 ax1.set_title(f"{fleet_label} — Cumulative TCO & LCA")
250 fig.tight_layout()
251

252 figures["cumulative_tco_lca"] = fig
253

254

255 def plot_wtw_emissions_over_time(T, emissions_data, fleet_label, start_year=2026):
256 """
257 Plot each pollutant in emissions_data['wtw'] over time,
258 scaling NOx to “per 10 ”kg and PM to “per 100 ”kg.
259 """
260 # define how we want to scale each series
261 scale = {
262 "CO2": 1, # already in t-CO2-eq
263 "NOX": 10, # show “per 10 ”kg
264 "PM": 1 # show “per 100 ”kg
265 }
266 # and what unit-label to display for each
267 unit_label = {
268 "CO2": "t �CO-eq",
269 "NOX": "× 10 kg �NO",
270 "PM": "kg PM",
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271 }
272

273 fig, ax = plt.subplots(figsize=(16,8))
274

275 for pol, series in emissions_data["wtw"].items():
276 divisor = scale.get(pol, 1)
277 vals = [series[t] / divisor for t in T]
278 ax.plot(T, vals, marker="o", markersize=3, label=f"{pol} ({unit_label[pol]})")
279

280 # tick formatting unchanged
281 years, labels = _year_ticks(T, start_year)
282 ax.set_xticks(years)
283 ax.set_xticklabels(labels)
284

285 ax.set_xlabel("Year")
286 ax.set_xlim(years[0], T[-1])
287 ax.set_ylabel("Emissions")
288 ax.set_title(f"{fleet_label} — WtW Fuel Emissions")
289 ax.set_ylim(bottom=0)
290 ax.tick_params(axis='x', labelsize=12) # ← override to 16pt for this plot
291 ax.grid(True)
292 ax.legend(loc= "upper right")
293 fig.tight_layout(rect=[0,0,0.85,1])
294

295 figures["wtw_emissions_over_time"] = fig
296 # store the *raw* data if you like, or store the scaled if that's what downstream wants:
297 figure_data["wtw_emissions_over_time"] = {
298 **{pol: [emissions_data["wtw"][pol][t] for t in T] for pol in emissions_data["wtw"]},
299 "Time": T
300 }
301

302 def plot_emission_breakdowns_over_time(T, emissions_data, fleet_label, start_year=2026):
303 """
304 Plot CTG vs GTC for vessel, infra, batt, plus totals and
305 include WtW �CO emissions as its own line.
306 """
307 fig, ax = plt.subplots(figsize=(16,8))
308

309 # --- CTG series ---
310 ax.plot(T, [emissions_data["vessel_ctg"][t] for t in T],
311 marker="o", markersize=3, label="Vessel CTG")
312 ax.plot(T, [emissions_data["infra_ctg"][t] for t in T],
313 marker="o", markersize=3, label="Infra CTG")
314 ax.plot(T, [emissions_data["batt_ctg"][t] for t in T],
315 marker="o", markersize=3, label="Batt CTG")
316 total_ctg = [emissions_data["vessel_ctg"][t]
317 + emissions_data["infra_ctg"][t]
318 + emissions_data["batt_ctg"][t] for t in T]
319 ax.plot(T, total_ctg, linestyle="--", color="red", label="Total CTG")
320

321 # --- GTC series ---
322 ax.plot(T, [emissions_data["vessel_gtc"][t] for t in T],
323 marker="x", markersize=3, label="Vessel GTC")
324 ax.plot(T, [emissions_data["infra_gtc"][t] for t in T],
325 marker="x", markersize=3, label="Infra GTC")
326 ax.plot(T, [emissions_data["batt_gtc"][t] for t in T],
327 marker="x", markersize=3, label="Batt GTC")
328 total_gtc = [emissions_data["vessel_gtc"][t]
329 + emissions_data["infra_gtc"][t]
330 + emissions_data["batt_gtc"][t] for t in T]
331 ax.plot(T, total_gtc, linestyle="--", color="purple", label="Total GTC")
332

333 # --- NEW: WtW �CO ---
334 # emissions_data["wtw"]["CO2"] is a dict →tvalue (t �CO-eq)
335 ax.plot(T, [emissions_data["wtw"]["CO2"].get(t, 0) for t in T],
336 marker="s", markersize=4, linestyle="-.",
337 color="green", label="WtW �CO")
338

339 # formatting
340 years, labels = _year_ticks(T, start_year)
341 ax.set_xticks(years)
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342 ax.set_xticklabels(labels)
343 ax.set_xlabel("Year")
344 ax.set_xlim(years[0], T[-1])
345 ax.tick_params(axis='x', labelsize=12) # ← override to 16pt for this plot
346 ax.set_ylabel("Emissions (t �CO-eq)")
347 ax.set_title(f"{fleet_label} — CTG, GTC & WtW �CO Emissions")
348 ax.legend(loc="upper right")
349 ax.grid(True)
350 fig.tight_layout(rect=[0,0,0.85,1])
351

352 figures["emission_breakdown_over_time"] = fig
353 figure_data["emission_breakdown_over_time"] = {
354 "Time": T,
355 "VesselCTG": [emissions_data["vessel_ctg"][t] for t in T],
356 "InfraCTG": [emissions_data["infra_ctg"][t] for t in T],
357 "BatteryCTG": [emissions_data["batt_ctg"][t] for t in T],
358 "VesselGTC": [emissions_data["vessel_gtc"][t] for t in T],
359 "InfraGTC": [emissions_data["infra_gtc"][t] for t in T],
360 "BatteryGTC": [emissions_data["batt_gtc"][t] for t in T],
361 "WtW_CO2": [emissions_data["wtw"]["CO2"].get(t, 0) for t in T]
362 }
363

364 def plot_acquisition_and_operation(df_assets, fleet_label, start_year=2026):
365 """
366 df_assets: DataFrame with columns [Time, Type, Asset, Name, Value]
367 Type � {"Acquisition","Operation","NonOperational Batteries","Salvaged"}
368 Asset � {"Infra","Battery"}
369 Name = infra name (e.g. "BSM") or None for batteries
370 """
371

372 # ensure Time is sorted
373 df_assets = df_assets.sort_values("Time")
374 T = sorted(df_assets["Time"].unique())
375

376 fig, (ax1, ax2) = plt.subplots(2,1, figsize=(16,8), sharex=True)
377

378 # --- Top: Acquisition & Salvage ---
379 df_acq = df_assets[df_assets.Type == "Acquisition"]
380 df_salv = df_assets[df_assets.Type == "Salvaged"]
381

382 # Infra acquisitions (one line per Name)
383 for name, sub in df_acq[df_acq.Asset=="Infra"].groupby("Name"):
384 ax1.plot(sub["Time"], sub["Value"], '-o', markersize=3, label=f"Acquire {name}")
385

386 # Battery acquisitions
387 batt_acq = df_acq[df_acq.Asset=="Battery"]
388 ax1.plot(batt_acq["Time"], batt_acq["Value"], '-o', markersize=3, label="Acquire

Batteries")
389

390 # Salvaged batteries
391 df_salv_batt = df_salv[df_salv.Asset=="Battery"]
392 ax1.plot(df_salv_batt["Time"], df_salv_batt["Value"], '-o', markersize=3, label="

Batteries Salvaged")
393

394 ax1.set_ylabel("Quantity")
395 ax1.set_title(f"{fleet_label} — Acquisition & Salvage of Batteries and Infrastructure")
396 ax1.legend(bbox_to_anchor=(1.05,1), loc="upper left")
397 ax1.grid(True)
398

399 # --- Bottom: Operation Status (4 series) ---
400 df_op = df_assets[df_assets.Type == "Operation"]
401 df_inins = df_assets[df_assets.Type == "Installed"]
402 df_nonop = df_assets[df_assets.Type == "NonOperational Batteries"]
403

404 # 1) Batteries in operation
405 batt_op = df_op[df_op.Asset=="Battery"]
406 ax2.plot(batt_op["Time"], batt_op["Value"],
407 '-o', markersize=3, label="Batteries Op")
408

409 # 2) Non-operational batteries
410 df_nonop_batt = df_nonop[df_nonop.Asset=="Battery"]
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411 ax2.plot(df_nonop_batt["Time"], df_nonop_batt["Value"],
412 '--x', markersize=3, label="Batteries Non-Op")
413

414 # 3) Installed BSM
415 bsm = df_inins[(df_inins.Asset == "Infra")
416 & (df_inins.Name == "BSM")]
417 if not bsm.empty:
418 ax2.plot(bsm["Time"], bsm["Value"],
419 '-s', markersize=3, label="BSM Installed")
420

421 # 4) Installed Shorepower
422 shore = df_inins[(df_inins.Asset == "Infra")
423 & (df_inins.Name == "Shorepower")]
424 if not shore.empty:
425 ax2.plot(shore["Time"], shore["Value"],
426 '-^', markersize=3, label="Shorepower Installed")
427

428 ax2.set_ylabel("Quantity")
429 ax2.set_title(f"{fleet_label} — Operation Status Batteries and Infrastructure")
430 ax2.legend(bbox_to_anchor=(1.05,1), loc="upper left")
431 ax2.grid(True)
432

433 years, labels = _year_ticks(T, start_year)
434 years = years[::2]
435 labels = labels[::2]
436

437

438 ax2.set_xlabel("Year")
439 ax1.set_xlim(years[0], T[-1])
440 plt.tight_layout(rect=[0,0,0.85,1])
441 ax1.set_xticks(years)
442 ax1.set_xticklabels(labels)
443 ax2.set_xlabel("Year")
444 ax1.set_xlim(years[0], T[-1])
445 plt.tight_layout(rect=[0,0,0.85,1])
446 figures["acquisition_and_operation_assets"] = fig
447 def save_figures_and_data(plots_dir):
448 """
449 Write out all figures
450 """
451 os.makedirs(plots_dir, exist_ok=True)
452 for name, fig in figures.items():
453 # save as PDF
454 fig.savefig(
455 os.path.join(plots_dir, f"{name}.pdf"),
456 format='pdf',
457 bbox_inches="tight"
458 )
459 plt.close(fig)
460 # for name, data in figure_data.items():
461 # savemat(os.path.join(plots_dir, f"{name}.mat"), {name: data})
462

463

464 def run_all_plots_for_fleet(
465 fleet_label,
466 df_vessels,
467 cost_data,
468 emissions_data,
469 df_assets,
470 base_case
471 ):
472 """
473 Orchestrate *all* of the above for one fleet/run.
474 Returns the dict of matplotlib.Figure objects.
475 """
476 figures.clear()
477 figure_data.clear()
478

479 T = base_case["T"]
480

481 plot_vessel_gantt_and_age(df_vessels, fleet_label)
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482 plot_costs_over_time(T, cost_data, fleet_label)
483 plot_cumulative_tco_lca(T, cost_data, emissions_data, fleet_label)
484 plot_wtw_emissions_over_time(T, emissions_data, fleet_label)
485 plot_emission_breakdowns_over_time(T, emissions_data, fleet_label)
486 plot_acquisition_and_operation(df_assets, fleet_label)
487

488 return figures
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TOPSIS Source Code

The following Python script implements the TOPSIS method for MCDA used in the decision support layer of the
model. The code handles normalisation, weighting, and ranking of Pareto-optimal solutions based on stakeholder
preferences.

1 import pandas as pd
2 import numpy as np
3 import os
4

5 # === USER CONFIGURATION ===
6 directory = r"C:\Users\penti\OneDrive\Results\Modelv5\Pathway2" # Change this to the

appropriate result folder
7 # Stakeholder-defined weights: TCO, LCA, LPnox
8 # === TOPSIS Ranking ===
9

10 # Stakeholder-defined weights: TCO, LCA, LPnox
11 weights = [0, 0, 1]
12

13 # Reuse `topsis` name with vector normalization internally
14

15 def topsis(df, criteria_cols, benefit_criteria, weights):
16 """
17 Vector-normalized TOPSIS:
18 1) Normalize each criterion by Euclidean norm
19 2) Apply stakeholder weights (sum to 1)
20 3) Invert cost criteria
21 4) Compute distances to ideal and nadir
22 5) Score = D_minus / (D_plus + D_minus)
23 """
24 X = df[criteria_cols].values.astype(float)
25 norms = np.linalg.norm(X, axis=0)
26 X_norm = X / norms
27

28 w = np.array(weights, dtype=float)
29 w /= w.sum()
30 V = X_norm * w
31

32 for i, is_benefit in enumerate(benefit_criteria):
33 if not is_benefit:
34 V[:, i] = 1 - V[:, i]
35

36 y_plus = V.max(axis=0)
37 y_minus = V.min(axis=0)
38

39 D_plus = np.linalg.norm(V - y_plus, axis=1)
40 D_minus = np.linalg.norm(V - y_minus, axis=1)
41

42 C_s = D_minus / (D_plus + D_minus)
43

44 out = df.copy().reset_index(drop=True)

143
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45 out['TOPSIS_Score'] = C_s
46 out['TOPSIS_Rank'] = out['TOPSIS_Score'].rank(ascending=False).astype(int)
47 return out.sort_values('TOPSIS_Rank')
48 # === MAIN EXECUTION ===
49 summary_path = os.path.join(directory, "epsilon_combined_summary_cleaned.csv")
50

51 if not os.path.exists(summary_path):
52 print(f"�␣File␣not␣found:␣{summary_path}")
53 else:
54 df = pd.read_csv(summary_path)
55

56 # Filter for feasible solutions only
57 df = (df[df["Status"] == "Feasible"].copy() if "Status" in df.columns else df)
58

59 if df.empty:
60 print("� ␣No␣feasible␣results␣found.")
61 else:
62 # Criteria definitions:
63 # f1: LCA (min), f2: TCO_res (min), f3: LP (min)
64 criteria = ["TCO", "LCA", "LPnox"]
65 benefit_criteria = [False, False, False] # All are to be minimized
66

67 # Perform TOPSIS
68 df_topsis_result = topsis(df, criteria, benefit_criteria, weights)
69

70 # Save results
71 output_path = os.path.join(directory, "topsis_ranked_results.csv")
72 df_topsis_result.to_csv(output_path, index=False)
73 print(f"�␣TOPSIS␣completed.\nResults␣saved␣to:␣{output_path}")
74

75 # Display top results
76 print(df_topsis_result.head())
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Framework verification

G.1. Preprocessing layer
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Figure G.1: Fleet schedule preprocessing verification.
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Figure G.2: Battery and infrastructure schedule preprocessing verification.
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Cost:
Model output: vessel_capex vessel_opex infra_capex infra_opex batt_capex batt_opex fuel_cost

0 41525 49 0 0 10720 0 45.974
1 -3473.75 151.755 16301.1 102.51 0 64.32 68.9832

Hand calculations: T0 T1 Initial T1 T0 T1 Fuel consumption T0 T1
RPA 7 residual value -875 Infra acquisiton 8110 8150.55 Battery acquisition 670 RPA 6 22.2
RPA 8 residual value -3500 -3473.8 Units 2 Units 16 RPA 8 14
RPA 22/24 acquistion 21200 Total infra CAPEX 16301.1 Total battery CAPEX 10720 HVO cost 1.27
Total vessel capex 41525 -3473.8 RPA 22/24 143 143

Infra OPEX 51 51.255 Battery OPEX 4 4.02 Electricity cost 0.24 0.2412
RPA 6 OPEX 17 17.085 Units 2 16
RPA 8 OPEX 32 Total infra OPEX 102.51 Total batteyr OPEX 64.32 Fuel cost 45.974 68.9832
RPA 22/24 OPEX 67 67.335
Total vessel opex 49 151.755

Figure G.3: Preprocessing layer cost verification.
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Model: Hand calculations:
Emissions: Vessel CTG: Vessel WTW Infra CTG
Time Category Value Notes Hull weight (22+24) 190 ton CO2/MWh fuel consumption RPA 6 22.2 ton HVO Total weight (2 units) 8 ton

0 vessel_ctg 80.1407 RPA 22+24 Hull material secondary aluminium fuel consumption RPA 8 14 ton HVO Material EAF SCRAP steel
1 infra_ctg 2.56218 2x BSM EU grid 0.237 ton CO2/MWh HVO emission factor 0.41 ton CO2/ ton HVO EU grid 0.237 ton CO2/MWh
0 batt_ctg 1124.27 16x Distance proc-prod 6300 km WTW CO2 emissions 14.842 Distance proc-prod 1000 km
0 vessel_gtc 4.66511 RPA 7 EU grid 0.237 ton CO2/MWh RPA 6 NOX specific emissions 10.05 Distance prod-use 0 km

Distance prod-use 0 km RPA 6 PM specific emissions 0.54 Direct processing factor 0.04 tCO2/ton
Emission factors: RPA 8 NOX specific emissions 4.57 Indirect processing factor 0.58 MWh/ton

Time 0 1 Transport 7.9 g/tonkm RPA 8 PM specific emissions 0.186 Direct production factor 0.000771 tCO2/ton
CO2 wtw 14.842 0 Direct processing factor 0.23 tCO2/ton LHV 11.94444444 MWh/tonHVO Indirect production factor 0.566 MWh/ton
NOX wtw 1371.65 0 Indirect processing factor 0.03 MWh/ton engine efficiency 0.4 Direct processing emissions 0.32
PM wtw 69.7173 0 Direct production factor 0.000771 tCO2/ton RPA 6 NOX emissions 1065.97 Indirect processing emissions 1.09968
Notes RPA 6+8 Indirect production factor 0.566 MWh/ton RPA 6 PM emissions 57.276 Transport proc-prod 0.0632

Direct processing emissions 43.7 ton CO2 RPA 8 NOX emissions 305.6822222 Direct production emissions 0.006168
Indirect processing emissions 1.3509 ton CO2 RPA  PM emissions 12.44133333 Indirect production emissions 1.073136
Transport proc-prod 9.4563 ton CO2 Total NOX 1371.652222 Total GTC 2.562184
Direct production emissions 0.14649 ton CO2 Total PM 69.71733333
Indirect production emissions25.48698 ton CO2 Battery CTG
Total CTG 80.14067 ton CO2 Total capacity (16 units) 16 MWh

Total weight 94.4 Ton
Vessel GTC Production direct factor 56 ton/MWh capacity
Hull weight (7) 38 ton Production indirect factor 60 MWh/MWh capacity
EU grid 0.237 ton CO2/MWh Distance proc-prod 1000 km
Distance prod-use 0 EU grid 0.237 ton CO2/MWh
Dismantling factor 0.518 MWh/ton Direct production emissions 896 ton CO2
Dismantling emission 4.665108 Indirect production emisions 227.52 ton CO2
Total GTC 4.665108 Transport emissions 0.74576

Total CTG 1124.266

Figure G.4: Preprocessing layer emission verification.
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G.2. Multi-objective optimisation layer
Baseline
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Figure G.5: Baseline verification: Fleet schedule.
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Figure G.6: Baseline verification: Cumulative TCO and LCA.
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Figure G.7: Baseline verification: Asset acquisition, operation and salvage.
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Figure G.8: Baseline verification: Vessel age over time.
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Demand
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Figure G.9: Demand verification: Fleet schedule.
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Figure G.10: Demand verification: Cumulative TCO and LCA.
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Battery and infrastructure
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Figure G.11: Battery and infrastructure verification: Fleet schedule.
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Figure G.12: Battery and infrastructure verification: Asset acquisition, operation and salvage.
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Figure G.13: Battery and infrastructure verification: Cumulative TCO and LCA.
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Figure G.14: Fleet composition verification: Fleet schedule.
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Figure G.15: Fleet composition verification: Cumulative TCO and LCA.
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Figure G.16: Ageing verification: Fleet schedule.



G.2. Multi-objective optimisation layer 154

0 20 40 60 80
Time (quarters)

0

25

50

75

100

125

150

175

200

Ag
e 

(q
ua

rte
rs

)

Vessel Age Over Time
RPA 10 (Class IRV)
RPA 11 (Class IRV)
RPA 12 (Class IRV)
RPA 13 (Class IRV)
RPA 14 (Class IRV)
RPA 15 (Class IRV)
RPA 16 (Class IRV)
RPA 30 (Class IRV)
RPA 31 (Class IRV)
RPA 32 (Class IRV)
RPA 33 (Class IRV)
RPA 34 (Class IRV)
RPA 35 (Class IRV)
RPA 6 (Class PV)
RPA 7 (Class PV)
RPA 8 (Class PV)
RPA 22 (Class PV)
RPA 23 (Class PV)
RPA 24 (Class PV)
RPA 1 (Class sPV)
RPA 2 (Class sPV)
RPA 21 (Class sPV)
SV 1 (Class SV)
SV 2 (Class SV)
SV 41 (Class SV)
SV 42 (Class SV)
NM (Class NM)
GM (Class NM)
RPA 5 (Class RHIB)
RPA 25 (Class RHIB)
RPA 26 (Class RHIB)

Figure G.17: Ageing verification: Vessel age over time.
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G.3. Multi-criteria decision analysis layer

TOPSIS verification
Run TCO TCO_res LCA LPnox LPpm

0 67776.52639 30256.66639 1233.59615 1371.652 69.71733
1 67588.91334 30069.05334 1282.46815 7461.79 400.932

TOPSIS criteria
Run TCO LCA LPnox

0 67776.52639 1233.59615 1371.652222
1 67588.91334 1282.46815 7461.79

Norm TCO 95717.9123
Norm LCA 1779.461721
Norm LP 7586.813549

Run Normalised TCO Normalised LCA Normalised LP
0 0.708086133 0.693241184 0.180794244
1 0.706126071 0.720705669 0.983520941

Equal weights
Run Normalised TCO Normalised LCA Normalised LP

0 0.236028711 0.231080395 0.060264748
1 0.235375357 0.240235223 0.327840314

Invert criteria
Run Normalised TCO Normalised LCA Normalised LP

0 0.763971289 0.768919605 0.939735252
1 0.764624643 0.759764777 0.672159686

Determine ideal and nadirIdeal Nadir
Tco 0.764624643 0.763971289
LCA 0.768919605 0.759764777
LP 0.939735252 0.672159686

Calculate Euclidian distances
Run 0 D+ 0.000653354
Run 0 D- 0.267732131
Run 1 D+ 0.267732131
Run 1 D- 0.000653354

TOPSIS score Rank
Run 0 0.997565613 1
Run 1 0.002434387 2

Figure G.18: TOPSIS verification hand calculations result.
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Figure G.19: TOPSIS verification framework result.



H
Constraint boundaries

Table H.1: ε-constraint values.

Scenario Class Min LCA Max LCA Min NOX Max NOX

Pathway 1 IRV 50763 55055 9551 107498
PV 22747 26234 1685 24241
sPV 4940 5008 2 5270
SV 5643 5643 1307 1307
NM 4534 4842 2 2
RHIB 356 357 1871 1871

Pathway 2 IRV 29537 38183 9546 206354
PV 13714 18188 1682 51522
sPV 2458 3325 2 31606
SV 3554 3979 1306 12066
NM 3370 4044 2 8673
RHIB 65 65 1871 1871

Pathway 3 IRV 6507 6995 9537 104813
PV 3148 3453 1678 23013
sPV 121 121 0 0
SV 256 256 1305 1305
NM 637 688 0 5203
RHIB 34 34 1871 1871

Pathway 4 IRV 10330 12787 9537 107486
PV 5004 6302 1678 23013
sPV 290 290 0 0
SV 464 464 1305 1305
NM 1012 1264 0 6938
RHIB 35 35 1871 1871

Pathway 5 IRV 10520 12978 9537 107486
PV 5090 6389 1678 23624
sPV 301 322 0 3161
SV 485 485 1305 1305
NM 1012 1264 0 6938
RHIB 35 35 1871 1871

Conservative IRV 10342 12800 9537 104925
PV 5012 6311 1678 23319
sPV 290 290 0 0
SV 464 464 1305 1305
NM 1016 1268 0 6938
RHIB 35 35 1871 1871

Optimistic IRV 10342 12882 9537 65239

Continued on next page
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Table H.1: ε-constraint values.

Scenario Class Min LCA Max LCA Min NOX Max NOX

PV 5012 6311 1678 22707
sPV 290 290 0 0
SV 464 464 1305 1305
NM 1016 1268 0 6938
RHIB 35 35 1871 1871

CO2 IRV 5711 8078 9537 107486
PV 2645 3951 1678 29432
sPV 248 290 0 0
SV 429 456 1305 1305
NM 549 810 0 5203
RHIB 34 34 1871 1912
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Pareto fronts

Pathway 1

89000 90000 91000 92000 93000 94000 95000 96000 97000
LCA (t CO -eq)

707500

710000

712500

715000

717500

720000

722500

725000

TC
O 

(×
10

00
 

)

Pathway 1 Pareto front
Ideal run 131

20000

40000

60000

80000

100000

120000

140000

NO
 (k

g)

Figure I.1: Pathway 1: Pareto front LCA - TCO.
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Figure I.2: Pathway 1: Pareto front LP - TCO.
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Pathway 2
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Figure I.3: Pathway 2: Pareto front LCA - TCO.

0 50000 100000 150000 200000 250000 300000
NO  (kg)

695000

700000

705000

710000

715000

720000

TC
O 

(×
10

00
 

)

Pathway 2 Pareto front
Ideal run 385

54000

56000

58000

60000

62000

64000

66000

LC
A 

(t 
CO

-e
q)

Figure I.4: Pathway 2: Pareto front LP - TCO.
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Pathway 3
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Figure I.5: Pathway 3: Pareto front LCA - TCO.
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Figure I.6: Pathway 3: Pareto front LP - TCO.
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Pathway 4
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Figure I.7: Pathway 4: Pareto front LCA - TCO.
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Figure I.8: Pathway 4: Pareto front LP - TCO.
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Pathway 5
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Figure I.9: Pathway 5: Pareto front LCA - TCO.
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Figure I.10: Pathway 5: Pareto front LP - TCO.
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Conservative scenario
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Figure I.11: Conservative scenario: Pareto front LCA - TCO.
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Figure I.12: Conservative scenario: Pareto front LP - TCO.
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Optimistic scenario
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Figure I.13: Optimistic scenario: Pareto front LCA - TCO.
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Figure I.14: Optimistic scenario: Pareto front LP - TCO.
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CO2 depreciation scenario

9500 10000 10500 11000 11500 12000 12500 13000 13500
LCA (t CO -eq)

690000

700000

710000

720000

730000

740000

750000

TC
O 

(×
10

00
 

)

CO2 depreciation scenario Pareto front
Ideal run 122

20000

40000

60000

80000

100000

120000

NO
 (k

g)

Figure I.15: CO2 depreciation scenario: Pareto front LCA - TCO.
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Figure I.16: CO2 depreciation scenario: Pareto front LP - TCO.
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TOPSIS results

All results are generated using the same objective weights (TCO = 1, LCA = 1, LPnox = 1).

Pathway 1

Run TCO LCA LPnox TOPSIS Score TOPSIS Rank

131 715453.70 91505.50 79117.42 0.585649 1
132 715453.70 91505.50 79117.42 0.585649 1
133 715453.70 91505.50 79117.42 0.585649 3
151 714651.00 91889.67 79117.42 0.585521 4
111 716416.95 91044.49 79117.42 0.584517 5

Table J.1: TOPSIS results for Pathway 1.

Pathway 2

Run TCO LCA LPnox TOPSIS Score TOPSIS Rank
385 692787.31 62839.57 81648.04 0.645684 1
366 692685.09 62421.69 95784.53 0.645470 2
365 692905.83 62687.95 86141.40 0.645451 3
345 693126.31 62572.21 88900.46 0.645064 4
346 692906.15 62305.96 98543.59 0.644949 5

Table J.2: TOPSIS results for Pathway 2.

Pathway 3

Run TCO LCA LPnox TOPSIS Score TOPSIS Rank

67 694410.44 10718.77 68383.19 0.709095 1
24 694410.44 10718.77 68383.19 0.709095 1
60 694410.44 10718.77 68383.19 0.709095 1
61 694410.44 10718.77 68383.19 0.709095 1
27 694410.44 10718.77 68383.19 0.709095 1

Table J.3: TOPSIS results for Pathway 3.
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Pathway 4

Run TCO LCA LPnox TOPSIS Score TOPSIS Rank

87 700290.40 17930.14 69007.66 0.617352 1
211 693527.43 19170.64 78845.11 0.611954 2
207 697237.58 19197.90 56661.64 0.610353 3
227 696881.95 19268.00 56967.33 0.609565 4
88 699955.02 17909.69 75118.39 0.609113 5

Table J.4: TOPSIS results for Pathway 4.

Pathway 5

Run TCO LCA LPnox TOPSIS Score TOPSIS Rank

153 715024.35 18898.36 71106.56 0.615395 1
173 714041.64 19094.79 71866.85 0.615015 2
193 712822.50 19334.52 72020.85 0.614501 3
212 715091.16 19494.92 50867.77 0.614052 4
232 714449.00 19623.64 50867.77 0.613897 5

Table J.5: TOPSIS results for Pathway 5.

Conservative scenario

Run TCO LCA LPnox TOPSIS Score TOPSIS Rank

85 1070902.72 17940.40 56482.82 0.705895 1
88 1069043.65 17946.22 71353.84 0.694233 2
45 1070202.13 17516.20 73088.17 0.692074 5
43 1070202.13 17516.20 73088.17 0.692074 5
42 1070202.13 17516.20 73088.17 0.692074 5

Table J.6: TOPSIS results for the conservative scenario.

Optimistic scenario

Run TCO LCA LPnox TOPSIS Score TOPSIS Rank

242 377840.00 19711.85 21693.04 0.629473 1
262 376404.32 19904.93 21693.04 0.628672 2
222 379757.73 19454.41 21693.04 0.627165 3
282 374968.66 20098.00 21693.04 0.626074 4
244 377491.20 19726.16 25562.97 0.622880 5

Table J.7: TOPSIS results for the optimistic scenario.
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CO2 depreciation scenario

Run TCO LCA LPnox TOPSIS Score TOPSIS Rank

122 710653.59 10873.20 27130.69 0.738655 1
142 707611.72 11088.99 27130.69 0.736777 2
123 709369.21 10878.10 33215.23 0.735261 3
143 706369.47 11088.89 32117.97 0.734812 4
124 707408.00 10878.12 39901.38 0.732291 5

Table J.8: TOPSIS results for the CO2 depreciation scenario.
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Pathway and scenario figures
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Pathway 1 run 131  operation status battery packs and infrastructure
Batteries operational
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BSM installed
Shorepower installed

Figure K.1: Pathway 1 run 131: Battery and infrastructure schedule.

170



171

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
Year

0

100

200

300

400

500

600

700

800
Em

iss
io

ns
Pathway 1 run 131  WTW fuel emissions

CO2 (t CO -eq)
NOX (× 10 kg)
PM (kg)

Figure K.2: Pathway 1 run 131: Well to Wake emissions over time.
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Figure K.3: Pathway 1 run 131: Cost breakdown over time.
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Figure K.4: Pathway 1 run 131: Emission breakdown over time.
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Pathway 2 run 385  operation status battery packs and infrastructure
Batteries operational
Batteries non-operational
BSM installed
Shorepower installed

Figure K.5: Pathway 2 run 385: Battery and infrastructure schedule.
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Figure K.6: Pathway 2 run 385: Well to Wake emissions over time.
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Figure K.7: Pathway 2 run 385: Cost breakdown over time.
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Figure K.8: Pathway 2 run 385: Emission breakdown over time.
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Pathway 3 run 67  operation status battery packs and infrastructure
Batteries operational
Batteries non-operational
BSM installed
Shorepower installed

Figure K.9: Pathway 3 run 67: Battery and infrastructure schedule.
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Figure K.10: Pathway 3 run 67: Well to Wake emissions over time.
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Figure K.11: Pathway 3 run 67: Cost breakdown over time.
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Figure K.12: Pathway 3 run 67: Emission breakdown over time.
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Pathway 4 run 87  operation status battery packs and infrastructure
Batteries operational
Batteries non-operational
BSM installed
Shorepower installed

Figure K.13: Pathway 4 run 87: Battery and infrastructure schedule.
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Figure K.14: Pathway 4 run 87: Well to Wake emissions over time.
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Figure K.15: Pathway 4 run 87: Cost breakdown over time.
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Figure K.16: Pathway 4 run 87: Emission breakdown over time.
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Pathway 5 run 153  operation status battery packs and infrastructure
Batteries operational
Batteries non-operational
BSM installed
Shorepower installed

Figure K.17: Pathway 5 run 153: Battery and infrastructure schedule.
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Figure K.18: Pathway 5 run 153: Well to Wake emissions over time.
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Figure K.19: Pathway 5 run 153: Cost breakdown over time.
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Figure K.20: Pathway 5 run 153: Emission breakdown over time.
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Conservative scenario run 85  operation status battery packs and infrastructure
Batteries operational
Batteries non-operational
BSM installed
Shorepower installed

Figure K.21: Conservative scenario run 85: Battery and infrastructure schedule.
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Figure K.22: Conservative scenario run 85: Well to Wake emissions over time conservative scenario.
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Figure K.23: Conservative scenario run 85: Cost breakdown over time.
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Figure K.24: Conservative scenario run 85: Emission breakdown over time.
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Figure K.25: Optimistic scenario run 242: Battery and infrastructure schedule.
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Figure K.26: Optimistic scenario run 242: Well to Wake emissions over time.
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Figure K.27: Optimistic scenario run 242: Cost breakdown over time.
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Figure K.28: Optimistic scenario run 242: Emission breakdown over time.
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Figure K.29: CO2 depreciation scenario run 122: Battery and infrastructure schedule.
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Figure K.30: CO2 depreciation scenario run 122: Well to Wake emissions over time.
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Figure K.31: CO2 depreciation scenario run 122: Cost breakdown over time.
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Figure K.32: CO2 depreciation scenario run 122: Emission breakdown over time.
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