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Abstract

The clustering of events can have a large impact on society. The extremal index θ tells how much extreme
events cluster. We will compare different types of estimators in this project. First, we review the extremes
of different sequences which have different values of θ. We have found significant differences between the
extremes. Then, 2 different types of estimators are introduced which both use different ways to divide
the data, using disjoint blocks and using sliding blocks. The optimal block lengths are simulated for all
those estimators. Using those block lengths, θ is simulated with all the estimators. From the simulations
we conclude that the estimators using sliding blocks perform better. The best-performed estimator that
we found from the simulations is used to estimate θ on data from the KNMI, comparing wind gusts and
precipitation at weather stations De Bilt and Vlissingen.
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1 Introduction
Clustering of extreme events in a short period can have a large impact on society. For example, high temperatures
can lead to forest fires, or multiple days of heavy rain can results in floods. Clustering of extremes is due to
sequentially extremal dependence in a time series. The extremal index θ is a parameter that measures the
clustering of extreme values. Its value ranges between 0 and 1. When θ = 1, the extreme events are independent,
they do not cluster. When θ < 1, the extreme events are dependent, so they cluster together. The lower the
extremal index, the more dependent the extreme events are, the more they cluster together.

The extremal index is defined by (Leadbetter (1983) [6]):

Definition 1. Let {ξn}n≥1 be a strictly stationary sequence of random variables with marginal distribution
function F , finite or infinite right end point ω = sup{x ∶ F (x) < 1} and tail function F̄ = 1 − F . For integers
0 ≤ k < l and n ≥ 1 put Mk,l = max{ξi ∶ i = k + 1, ..., l} and Mn = M0,n. The process {ξn}n≥1 is said to have
extremal index θ ∈ [0,1] if for each τ > 0 there is a sequence {un}n≥1 such that, as n→∞,

(a) nF̄ (un)→ τ and
(b) P (Mn ≤ un)→ e−θτ .

Combining a and b gives another interpretation of the definition of the extremal index. Let

un = F̄ −1( τ
n
)

Resulting in,

P (Mn ≤ F̄ −1( τ
n
)) = P (F̄ (Mn) ≥

τ

n
) = P (n(1 − F (Mn)) ≥ τ)→ e−θτ

Therefore, P (n(1−F (Mn)) ≥ τ)→ e−θτ defines the extremal index. This implies that n(1−F (Mn)) follows
an Exp(θ)-distribution asymptotically. We will use this later on the project to build up the estimator.

The project is structured around the following 3 research questions:

• What is the behaviour of extremes of different types of sequences?

• Which type of estimator is the best for estimating θ, using the simulated optimal block length bn for every
sequence?

• How does the extremal index behave for data from the KNMI?

The first research question will be handled in Sections 2 and 3. In Section 2 the extremes are presented
of different sequences: independent sequences with θ = 1 and dependent sequences with different values of θ.
Continuing in Section 3, a comparison study will be made on the maximum value of different sequences. The
second research question will be discussed in Sections 4, 5 and 6. Different types of estimators are introduced
in Section 4, where we distinguish between the use of disjoint blocks and sliding blocks. In Section 5 the
optimal block length is simulated for every estimator, using those block lengths. In Section 6, is θ estimated for
different sequences with independent and dependent extreme values. Finally, in Section 7 data from the KNMI
(Koninklijk Nederlands Meteorologisch Instituut) will be introduced, with this data θ is estimated for different
block lengths.

1.1 Codes
All the simulations of the project have been done in the program ’RStudio’, the codes can be found on www
.github.com/JosephineClercx/BEP.
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2 Extremes of different sequences
The extremes of sequences can be either dependent (θ < 1) or independent (θ = 1). Both cases are explained
with some examples of different sequences. These sequences will be used in all the simulations and calculations
of the project.

2.1 Independent extremes of sequences
When θ = 1 for a sequence, the extreme values of that sequence are independent, they will not cluster together.
Below you find some examples, the first ones are based on an independent and identical distribution (iid) of
random variables, the last one is a moving average sequence.

IID

First, we will prove that for every sequence that is iid, θ = 1 holds.

Theorem 1. Let X1,X2, ...,Xn be a sequence which is Independent and Identical Distributed, then the extreme
values of X1,X2, ... are independent. Hence θ = 1 according to Definition 1.

Proof. LetX1,X2, ...,Xn be iid with continuous cumulative distribution function (cdf) F andMn = max1≤i≤nXi.
F (Mn) has the same distribution as the distribution of max1≤i≤nUi with Ui iid U(0,1) for every i. This
is because, F (Xi) is equal in distribution to U(0,1) for every i, which follows from the probability integral
transform (page 353 in Rice (2007) [8]). Then, as n→∞, for each τ > 0,

P (max
1≤i≤n

Ui ≤ 1 − τ/n) (1)= (1 − τ/n)n (2)→ e−τ (1)

(1) derives from the fact that Ui is iid for every i, because the following holds (page 109 in Dekking et al.
(2005) [4]): Let Z = max1≤i≤nUi, then

FZ(1 − τ/n) = P (Z ≤ 1 − τ/n) = P (max1≤i≤nUi ≤ 1 − τ/n) = P (U1 ≤ 1 − τ/n,U2 ≤ 1 − τ/n, ..., Un ≤ 1 − τ/n) =
P (U1 ≤ 1 − τ/n)P (U2 ≤ 1 − τ/n) ⋅ ⋅ ⋅ P (Un ≤ 1 − τ/n) = (F (1 − τ/n))n.

The last step, (2), derives from the standard limit limn→∞(1 + x
n
)n → ex, here the short proof:

lim
n→∞

(1 + x
n
)n = lim

n→∞
elnn(1+

x
n ) = elimn→∞ lnn(1+ x

n ) = e
limn→∞

1+ x
n

1
n

(3)= e
limn→∞

−x
n2

1
1+ x

n
−

1
n2 = elimn→∞

x
1+ x

n = ex

In step (3) is L’Hopital’s Rule used. Rewriting Equation 1 gives,

P (max
1≤i≤n

Ui ≤ 1 − τ/n) = P (n(1 − max
1≤i≤n

Ui) ≥ τ)→ e−τ (2)

Therefore, P (n(1−F (Mn)) ≥ τ)→ e−τ . Hence, an iid sequence with continuous cdf has independent extreme
values and θ = 1.

Here follow some examples of different iid sequences. In Figure 1 we have simulated 5000 random variables
from a U(0,1) distribution. We also looked at the extreme values in Figure 1b. The results give a homogeneous
distribution without obvious clusters, therefore we can say that the extreme values do not cluster and the
extreme values of this model are independent.

In Figure 2 we did the same, we simulated 5000 random variables of the N(0,1)-, Exp(1)- and Gamma(2,3)-
distribution. Figures 2d, 2e and 2f show the extreme values of the different sequences, respectively. All the
sequences do not show clustering at the extreme values and therefore the extreme values of these models are
also independent.
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(a) U(0,1) sequence with red line at 0.98 (b) Values above 0.98

Figure 1: Extreme values of a U(0,1) sequence

(a) N(0,1) sequence with red line at 2 (b) Exp(1) sequence with red line at 4 (c) Gamma(2,3) sequence with red line
at 1.8

(d) Values above 2 (e) Values above 4 (f) Values above 1.8

Figure 2: Extreme values of 3 different iid sequences

Moving average

A moving average sequence is an example of a sequence that has an independent extremal index but it is not
iid. Below is the definition given (page 11 in VanderMeulen (2019) [10]) :

Definition 2. Let Zi ∼WN(0, σ2) and a ∈ R,

Xi = Zi + aZi−1, i = 0,±1,±2, ... (3)

Xi is a first order moving average process, it can be written as Xi ∼MA(1).

In Figure 3 we simulated 5000 MA(1) random variables with a = 2 and σ2 = 1. We zoomed in at the extreme
values of the MA(1) sequence in Figure 3b, we don’t see any obvious clusters. Therefore we can conclude that
the extreme values are independent.
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(a) MA(1) sequence with red line at 4.3 (b) Values above 4.3

Figure 3: Extreme values of a MA(1) sequence with a = 2

2.2 Dependent extremes of sequences
In this section, we present different sequences where θ < 1 for.

ARCH

This is an ARCH model given by:

Definition 3. Let εi be iid N(0,1) for every i and

Xi = (2 × 10−5 + 0.7X2
i−1)1/2εi, i ≥ 1

Xi is an ARCH model.

For this model, θ = 0.721 (Table 3.2 in de Haan et al. (1989) [3]). This means that θ < 1, therefore the
extreme values are not independent of this model. In Figure 4b we see some extreme values that tend to cluster
together, however there are not clear peaks.

(a) ARCH sequence with red line at 0.02 (b) Values above 0.02

Figure 4: Extreme values of an ARCH sequence

sARCH

sARCH is a squared ARCH model, given by:

Definition 4. Let εi be iid N(0,1) for every i and

Xi = (2 × 10−5 + 1

2
Xi−1)ε2i , i ≥ 1

Xi is sARCH model.
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For this model, θ = 0.727 (Table 3.2 in de Haan et al. (1989) [3]). So θ < 1, therefore the extreme values are
not independent. In figure 5b we also see some extreme values that tend to cluster together.

(a) sARCH sequence with red line at 0.00035 (b) Values above 0.00035

Figure 5: Extreme values of a sARCH sequence

Moving Maxima

A Moving Maxima sequence (Cai (2019) [2]) is given by:

Definition 5. Let m ≥ 2 a fixed constant, let εi be an iid sequence with P (εi ≤ x) = exp(− 1
mx

) and Xi =
max0≤j≤m εj+i for i ≥ 1 . Then, Xi is a Moving Maxima model.

For this model θ = 1
m
. In Figure 6b the extreme values are plotted of a Moving Maxima sequence with

m = 25, so θ = 0.04, which is a very small value. The dependence of the extreme values are clearly visible.

(a) Moving Maxima sequence with red line at 13 (b) Values above 13

Figure 6: Extreme values of a Moving Maxima sequence

AR-C

This is an AR(1) model with Cauchy margin (Cai (2019) [2]):

Definition 6. Let z ∈ (−1,1), let εi be iid with density 1−∣z∣
π(x2+(1−∣z∣)2) , let X0 have a standard Cauchy density

1
π(1+x2) and let

Xi = zXi−1 + εi, i ≥ 1 (4)

Then, Xi is an AR-C model.
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For this model, if z ≥ 0 then θ = 1−z and if z ≥ 0 then θ = 1− ∣z∣2. In figure 7b the extreme values are plotted
of an AR-C sequence with z = 0.7, so θ = 0.3. We see that almost every extreme value is dependent on another.

(a) AR-C sequence with red line at 50 (b) Values above 50

Figure 7: Extreme values of an AR-C sequence with z=0.7

We have discussed and demonstrated different sequences above, there is a clear difference between sequences
with θ = 1 and θ < 1. We can conclude that the lower the value of θ, the more dependent the extremes are. This
is clearly visible when you compare figures 5b and 6b, with θ = 0.727 and θ = 0.04 respectively.
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3 Compare sequences
In this section, we will investigate the maximum values of different sequences. We compare 3 pairs of sequences,
each one has the same distribution but differs in dependence. MA(1) and N(0,5), Moving Maxima and Std.
Fréchet, AR-C and Std. Cauchy will be compared. Below are the definitions used for the comparison, given in
pairs.

⎧⎪⎪⎨⎪⎪⎩

Xi ∼MA(1), Xi = Zi + aZi−1, Zi ∼WN(0, σ2), a ∈ R
X̃i ∼ N(0, (1 + a2)σ2)

⎧⎪⎪⎨⎪⎪⎩

Yi = max0≤j≤m εj+i, i ≥ 1,m ≥ 2, εi ∼ P (εi ≤ x) = exp(− 1
mx

)(= Fréchet(1, 1
m
,0)) (MovingMaxima,Def. 5)

Ỹi ∼ Fréchet(1, 1
m
,0)

⎧⎪⎪⎨⎪⎪⎩

Zi = zZi−1 + εi, z ∈ (−1,1), εi ∼ 1−∣z∣
π(x2+(1−∣z∣)2)(= Cauchy(0,1 − ∣z∣)) (AR −C,Def. 6)

Z̃i ∼ Cauchy(0,1 − ∣z∣)

For the further simulations and calculations the following parameter values are chosen: a = 2, σ2 = 1,m = 10
and z = 0.7

In Figures 8a, 8d and 8g the different sequences are represented, in every figure it seems that the pair of
sequences behave the same. We took 100 times the maximum of 5000 random variables from the sequences, see
Figures 8b, 8e and 8h. There are no differences between the behaviour of the maximum values of the sequences.
Note that in figures 8e and 8h the logarithmic values are presented to see the results better.

In Figures 8c, 8f and 8i we have simulated a density plot of F (Mn) for every pair. The F (Mn) of MA(1)
and N(0,5) have the same density behaviour, this is because for both distributions θ = 1. For the other 2 pairs
this is different, see Figures 8f and 8i. The density for the standard independent sequences is much higher
at the values close to 1, compared to the dependent sequences. In Appendix A, Figures 8f and 8i are bigger
presented. The explanation for the differences is: Assume Yi has cdf F and Ỹi has cdf F̃ , then F and F̃ are
the same because Yi and Ỹi have the same distribution, however F (Mn) and F̃ (M̃n) (with Mn = max(Xi) and
M̃n = max(X̃i)) are not the same. This is because Yi is not an independent distribution, while Ỹi is. The same
applies to Zi and Z̃i

For Yi is θ = 1/m = 0.1 and for Zi is θ = 1 − z = 0.3. Accordingly, the smaller θ is, the larger the variation in
density is.
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(a) MA(1) and N(0,5) sequence (b) Maximum values of MA(1) and
N(0,5) sequence (c) Density plot of F (Mn)

(d) Moving Maxima and Std. Fréchet
sequence

(e) Maximum values of Moving Maxima
and Std. Fréchet sequence (f) Density plot of F (Mn)

(g) AR-C and Std. Cauchy sequence (h) Maximum values of AR-C and Std.
Cauchy sequence (i) Density plot of F (Mn)

Figure 8: Comparing sequences
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4 Maximum likelihood estimation of the extremal index
A way to estimate the extremal index θ is by using the maximum likelihood estimator for the exponential
distribution, based on a sample of estimated block maxima (Berghaus (2013) [1]). We use the maximum
likelihood estimator for the exponential distributions because, in Section 1 we explained that the definition of
the extremal index follows an Exp(θ)-distribution asymptotically. The maximum likelihood estimator for the
exponential distribution is defined in the following steps. The probability density function of the exponential
distribution is defined as

f(x;λ) = { λe−λx x ≥ 0
0 x < 0

(5)

Its likelihood function is

L(λ;x1, ....xn) =
n

∏
i=1
f(xi;λ) =

n

∏
i=1
λe−λxi = λne−λ∑

n
i=1 xi (6)

To calculate the maximum likelihood solve the following for λ:

dln(L(λ;x1, ..., xn))
dλ

= 0 (7)

dln(L(λ;x1, ..., xn))
dλ

= dln(λne−λ∑n
i=1 xi)

dλ
= dnln(λ) − λ∑ni=1 xi

dλ
= n
λ
−

n

∑
i=1
xi = 0 (8)

Finally we get (page 318 in Dekking et al. (2015) [4]),

λ = n

∑ni=1 xi
(9)

Combining these to estimate θ, the formula becomes:

θ̃n = ( 1

n

n

∑
i=1
Xi)−1 (10)

With X1,X2, ...,Xn a stationary sequence of real-valued random variables with stationary cdf F . The data
can be separated in 2 ways, with disjoint blocks and with sliding blocks.

4.1 Disjoint blocks
Looking at the sample block maxima, suppose n observations from time series (Xi)i≥1. Divide the sample into kn
blocks of length bn and assume n = knbn. For i = 1, ..., kn letMni =M((i−1)bn+1)∶(ibn) = max{X(i−1)bn+1, ...,Xibn},
the maximum over all the Xi in the ith block. Let Nni = F (Mni) = max{U(i−1)bn+1, ..., Uibn}, the last equality
follows from the fact that F (Mni) is a probability integral transform, see the proof of Theorem 1. Let Yni =
−bn log (Nni). With bn sufficiently large the random variables Yni, ..., Ynk follow an approximate sample from
the Exp(θ)-distribution. Using the maximum likelihood estimator in Equation 10, we replace Xi with Yni and
n with kn, we get:

θ̃n = ( 1

kn

kn

∑
i=1
Yni)−1 (11)

Note that, θ̃n is not an estimator for θ, because it is based on the unknown cdf F , therefore we call θ̃n an
oracle for θ. For this reason, we have the following definitions: N̂ni = F̂n(Mni) with F̂n(x) = n−1∑ns=1 1(Xs ≤ x)
denotes the emperical cdf of X1, ...,Xn. Then, Ŷni = −bn log (N̂ni). We use Equation 10 again, but now with
Ŷni for Xi and kn for n:

θ̂N,djn = ( 1

kn

kn

∑
i=1
Ŷni)−1 (12)

θ̂N,djn is an estimator for θ (Northrop (2015) [7]).
There is another variant of the estimator, using the following formulas:

θ̂B,djn = ( 1

kn

kn

∑
i=1
Ẑni)−1, Ẑni = bn(1 − N̂ni) (13)
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The 2 variants of the estimator are almost the same, because Ŷni and Ẑni are almost the same. Using
log(1 − x) ≈ −x for ∣x∣ < 1, with x = N̂ni = F̂n(Mni), Ŷni can be rewritten:

Ŷni = −bn log(N̂ni) = −bn log(1 − (1 − N̂ni)) ≈ bn(1 − N̂ni) = Ẑni
Therefore, Ŷni ≈ Ẑni, the next step is showing that Ẑni is connected to the extremal index with Definition

1. Rewriting Ẑni gives, Ẑni = bn(1 − N̂ni) = bn(1 − F̂ (Mni)), then using Definition 1 with F = F̂ , un = ¯̂
F ( τ

bn
)

and Mn =Mni, we can conclude that bn(1 − F̂ (Mni)→ e−θτ . This confirms the choice of Ŷni and Ẑni.

4.2 Sliding blocks
Another way to estimate θ, is a variant based on sliding blocks (Northrop (2015) [7]) instead of disjoint
blocks. Divide the sample into n − bn + 1 blocks of length bn, for t = 1, ..., n − bn + 1, let M sl

nt = Mt∶(t+bn−1) =
max{Xt, ...,Xt+bn−1}. Using the same formulas as for the estimators with the disjoint blocks, N sl

nt = F (M sl
nt),

Zsl
nt = bn(1 −N sl

nt) and Y sl
nt = −bn logN sl

nt, and the empirical counterparts, N̂ sl
nt = F̂ (M sl

nt), Ẑsl
nt = bn(1 − N̂ sl

nt) and
Ŷ sl
nt = −bn log N̂ sl

nt. Then the 2 variants of estimators are defined as

θ̂N,sln = ( 1

n − bn + 1

n−bn+1
∑
t=1

Ŷ sl
nt)−1, θ̂B,sln = ( 1

n − bn + 1

n−bn+1
∑
t=1

Ẑsl
nt)−1 (14)

Note that, for both estimators above, the data should not be discarded if bn is not a divisor of the sample
size n. This is different for the 2 estimators which use disjoint blocks, there the data will be discarded if bn is
not a divisor of n.
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5 Optimal block length
For different sequences and different estimators the size of the block length and the amount of blocks can affect
the result of the estimator. In this section the optimal block length will be investigated by running a simulation
based on the Mean Squared Error (MSE) of the estimation.

To compare all the different relevant block lengths with sample size n = 5000, we will compare block lengths
bn = 2,7,12, ...,2497. Note that block length bn = 1 is not used, because then Mni =Xi and the concept of using
blocks is gone. Also, the maximum compared block length is bn = 2497 because, for larger block lengths the
MSE goes to infinity. This is because, if the amount of blocks is kn = 1, there is a chance that N̂ni = F̂ (Mni) = 1
and then the estimator will not work.

With all those block lengths, the estimator is simulated 100 times. Then the MSE is calculated using the
original value of θ for that sequence. We did this for the 4 estimators from Section 4 and for all the sequences
in Section 2.

We will discuss the results of the MA(1) and the Moving Maxima sequence, the other distribution results
are in Table 2 and Appendix B. This is because some results, like the sequences who are all iid, are very much
the same.

We start with the results of the MA(1) sequence. In Figure 9a are the results of the MSE with different
block lengths for estimators θ̂N,djn and θ̂N,sln , in Figure 9b are the results for estimators θ̂B,djn and θ̂B,sln . Both
figures look the same, however in Figure 9 at the beginning, there is a small difference compared to Figure 9a.
We will focus on this difference later.

(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for MA(1) for dif-
ferent block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for MA(1) for dif-
ferent block lengths

Figure 9: MSE of MA(1) for different block lengths

In both the figures, there are some remarkable observations. First, for both the disjoint blocks estimators,
there are some jumps around bn = 1000,1250,1600. This is because for estimations with disjoint blocks there
are few values for which kn = n/bn is an integer. Using the floor() argument in RStudio, there are simulations
with the same amount of blocks kn. However, those blocks aren’t the same, see an example in Table 1. When
the value of floor( kn) decreases, a large amount of data is not used, see the last column in Table 1. This
results in a higher MSE. Therefore, the jumps are due to the changing amounts of blocks kn.

bn kn floor( kn) First block Second block Third block
1665 3,003 3 X1, ..,X1665 X1666, ...,X3331 X3332, ...,X4997

1666 3,001 3 X1, ..,X1666 X1667, ...,X3333 X3334, ...,X4999

1667 2,999 2 X1, ..,X1667 X1668, ...,X3335 Out of range
1668 2,998 2 X1, ..,X1668 X1669, ...,X3337 Out of range

Table 1: Explanation of the jumps in figures 9a and 9b

Another remarkable thing that we observe, is that for the sliding blocks estimators, when the block length
increases, the MSE increases as well. This is because if the block length bn increases, then N̂ni = F̂ (Mni)
increases as well, this results in a higher Ŷni and Ẑni, which results into a higher MSE.

Now, we zoom in on Figures 9a and 9b and look at Figures 10a and 10b. For the estimators θ̂B,djn and θ̂B,sln

the block length bn = 7 is the optimal block length, however for estimators θ̂B,djn and θ̂B,sln the optimal block
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length is larger. For θ̂N,djn it is bn = 97 and for θ̂N,sln it is bn = 157. It can be concluded that the MSE for the
sliding block estimators are lower than the disjoint block estimators for different block lengths.

(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for MA(1) for dif-
ferent block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for MA(1) for dif-
ferent block lengths

Figure 10: MSE of MA(1) for different block lengths

Also, for the Moving Maxima sequence we discuss the results in detail. In Figure 11a the results of the MSE
with different block lengths for estimators θ̂N,djn and θ̂N,sln are presented, in Figure 11b the results for estimators
θ̂B,djn and θ̂B,sln are presented. At the beginning of both figures, the MSE decreases until its optimal point, and
from bn = 2000 the MSE grows exponential. Note that there are some gaps in both figures, that is because the
MSE value is infinity. Let’s zoom in at the optimal point.

(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for Moving Maxima
for different block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for Moving Maxima
for different block lengths

Figure 11: MSE of Moving Maxima for different block lengths

Zooming in on Figures 11a and 11b results in Figure 12. The MSE decreases exponentially until its optimal
point, then it increases. All the optimal points are at different block lengths, for θ̂N,djn it is at bn = 172 and for
θ̂N,sln , θ̂B,djn and θ̂B,sln it is at bn = 267,242,337 respectively. Also in these cases the MSE for the sliding blocks
estimators are smaller than the disjoint blocks estimators for different block lengths.
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(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for Moving Maxima
for different block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for Moving Maxima
for different block lengths

Figure 12: MSE of Moving Maxima for different block lengths

For all the other sequences in this paper we have made the same simulations, in the table below the results
are represented. It seems that all the iid sequences work optimally for the same block lengths approximately,
while the other sequences have different results. Also, for almost all the sequences, except the ARCH and
Moving Maxima sequences, there is a clear difference in block length between the 2 variants of the estimator.

Optimal bn for estimator
Model θ̂N,djn θ̂N,sln θ̂B,djn θ̂B,sln

U(0,1) 2 2 32 57
N(0,1) 2 2 27 42
Exp(1) 2 2 32 32
Gamma(2,3) 2 2 27 27
MA(1) 97 157 7 7
ARCH 37 92 92 92
sARCH 17 17 37 47
Moving Maxima 172 267 242 337
AR-C 12 12 47 47

Table 2: Optimal bn for every estimator

We will use the results of Table 2 for every simulation to estimate θ in further sections of this paper. In
Appendix B the zoomed figures for all the other models are presented, that we did not discussed in detail.
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6 Estimating the extremal index
For different sequences with sample size n = 5000, θ has been estimated 100 times using 2 different estimators
with 2 different types of dividing blocks, disjoint blocks and sliding blocks. Also for every distribution, the
optimal block length has been computed in the previous section. The results of the optimal block lengths
computations are given in Table 2. We will discuss the results of 2 models in detail, the U(0,1) and Moving
Maxima model.

In Figure 13 the histograms for a U(0,1) sequence are presented. The first variant of the estimator (θ̂N,djn ,
θ̂N,sln ) is more accurate than the second variant (θ̂B,djn , θ̂B,sln ), the second variant estimators are slightly too high.
Comparing the disjoint with the sliding estimators doesn’t give a clear, significant difference. The MSE and
absolute bias of the sliding estimators are smaller than the disjoint estimators, see Table 3. Therefore the θ̂N,djn

estimator is the best for the U(0,1) model.

Figure 13: Histograms of estimators of θ for U(0,1) sequence

In Figure 14 the histograms for a sARCH sequence are presented. In the upper 2 histograms, the bold line
(the real value of θ = 0.727) is closer to the middle than the two lower histograms. The MSE and absolute bias
for the lower 2 histograms are also higher, see Table 3. Therefore, first variant of the estimator (θ̂N,djn , θ̂N,sln ) is
better than the second variant (θ̂B,djn , θ̂B,sln ) for the sARCH model. Also with this model, comparing disjoint
and sliding estimators to each other does not give useful results. The MSE of the sliding blocks estimators are
smaller than the MSE of the disjoint estimators, but there is not a clear obvious difference between them. It
can be concluded that also the θ̂N,djn estimator is the best estimator for the sARCH model.
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Figure 14: Histograms of estimators of θ for sARCH sequence

For the other distributions the results are in Table 3. All the histograms can be found in Appendix C.
Comparing all the estimators, the sliding estimators have a smaller MSE than the disjoint estimators for almost
all the distributions. We can conclude that the sliding block estimators are better for estimating θ.

Comparing the 4 estimators, the θ̂N,sln estimator is the best estimator for estimating θ for almost all the
models.

Absolute Bias MSE
Model θ θ̂N,dj

n θ̂N,sl
n θ̂B,dj

n θ̂B,sl
n θ̂N,dj

n θ̂N,sl
n θ̂B,dj

n θ̂B,sl
n

U(0,1) 1 0.001855 0.0005824 0.04920 0.03360 0.0001414 7.6118e-05 0.004120 0.002646
N(0,1) 1 0.001571 0.001511 0.05152 0.04641 0.0001271 7.2317e-05 0.004551 0.003158
Exp(1) 1 0.002701 0.001421 0.03646 0.03907 0.0001400 6.9881e-05 0.003691 0.003102

Gamma(2,3) 1 0.002727 0.002043 0.05299 0.04831 0.0001419 6.0257e-05 0.005392 0.01271
MA(1) 1 0.05562 0.02999 0.05239 0.05295 0.01190 0.008995 0.002957 0.002984
ARCH 0.721 0.05867 0.04238 0.06414 0.05301 0.004782 0.005080 0.007498 0.006158
sARCH 0.727 0.006896 0.007003 0.01165 0.006339 0.001308 0.0008225 0.002903 0.002773

Moving Maxima 0.04 0.006888 0.006081 0.01244 0.009341 8.1320e-05 6.4232e-05 0.0001431 0.0001156
AR-C 0.3 0.001702 0.0004053 0.01950 0.01760 0.0001599 0.0001148 0.001255 0.0008936

Table 3: Results of estimating θ
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7 Application to wind gust data and precipitation data
In this section, the value of θ will be compared for different types of weather conditions (wind gusts and
precipitation) and at different weather stations (De Bilt and Vlissingen). Estimator θ̂N,sln will be used to
estimate θ, because in Section 6 we concluded that it is the best estimator.

7.1 Data
The data which is used, is taken from the KNMI (Koninklijk Nederlands Meteorologisch Instituut) database
1. It is the national data- and knowledge-center for the weather, the climate and the seismology for The
Netherlands. The data set contains the highest wind gust per hour in 0.1 m/s and the hour sum of precipitation
in 0.1 mm starting at 2019-10-01 00:00, till 2019-12-31 23:59, at weather stations De Bilt and Vlissingen in The
Netherlands. Note that when the precipitation is less than 0.05 mm, the given value is -1. The codes on the
website for the highest wind gust per hour and hour sum of precipitation are FX and RH, respectively.

7.2 Plotted data
Vlissingen is located at the coast of The Netherlands, while De Bilt is in the middle of The Netherlands. At
the coast, wind and wind gusts can behave differently (Endean (2010) [5]) due to the wind blowing over and
around solid obstructions, which influences the overall weather pattern. In Figures 15a and 15b the wind gust
and precipitation data are plotted at stations De Bilt and Vlissingen. It seems that the wind gusts are stronger
in Vlissingen than in De Bilt. The precipitation seems to be slightly different in the 2 cities.

(a) Highest wind gust per hour in October, November and
December 2019

(b) Hour sum of the precipitation per hour in October,
November and December 2019

Figure 15: Data from KNMI at stations De Bilt and Vlissingen

7.3 Estimating the extremal index
Estimator θ̂N,sln has been used to estimate θ in Figures 16a and 16b for the wind gust and precipitation data at
stations The Bilt and Vlissingen. A clear result is that θ is lower for the wind gusts for certain block lengths
compared to the precipitation, this means that the wind gusts extremes are more dependent on each other than
the precipitation extremes. This makes sense, it is more likely to stop raining immediately than that it stops
to being windy.

Another result, looking at Figure 16a, θ̂N,sln seems to be higher at The Bilt than at Vlissingen, this means
that the wind gusts at Vlissingen are more dependent on each other compared to the wind gusts at De Bilt.

Looking at Figure 16b, θ̂N,sln fluctuates for both stations with different block lengths. It is hard to conclude
the difference at 2 the weather stations. Apparently, the two locations do not influence the way the extreme
values of precipitation behave.

1https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi
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(a) Estimation of θ for the wind gusts at De Bilt and Vlissin-
gen for different block lengths

(b) Estimation of θ for the precipitation at De Bilt and
Vlissingen for different block lengths

Figure 16: Estimations of θ for different block lengths
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8 Conclusion
In this project, the main goal was investigating the 3 research questions:

• What is the behaviour of extremes of different types of sequences?

• Which type of estimator is the best for estimating θ, using the simulated optimal block length bn for every
sequence?

• How does the extremal index behave for data from the KNMI?

In the first part of the project, we investigated the behaviour of different sequences. We saw an obvious
difference between the extreme values of sequences where θ = 1 for and where θ < 1. The extremes of sequence
with θ = 1 were independent and randomly distributed. Compared to sequences where θ was very low, there
were clear peaks with multiple extreme values. Also, we made a comparison study on the maximum values of
sequences which are the same but different in dependence. The results showed that for sequences where θ < 1,
the F (Mn)-values behaved different.

Continuing, we introduced different estimators, 2 different variants of estimators with disjoint blocks or
sliding blocks. First, the optimal block length was determined with the use of the MSE. For almost all the
models there was a clear difference in the 2 variants of estimators. The iid sequences all had approximately
the same optimal block length. For the other distributions, the optimal block lengths were very different from
each other. Another result, was that the MSE of the sliding block estimators were lower than the disjoint block
estimators for all the block lengths. Then, θ was estimated using the optimal block lengths. The estimated value
was compared to the original value. Again, there was a clear pattern in the MSE of all the iid distributions.
Comparing the disjoint block estimators with the sliding block estimator, the sliding block estimators performed
better, the MSE were smaller for almost all the models. Comparing all the estimators, the θ̂N,sln estimator is
the best for almost all the models.

Finally, the best estimator, θ̂N,sln , was used to estimate θ for real data from the KNMI. The wind gusts and
precipitation were compared for two weather stations, De Bilt and Vlissingen. It resulted in that the wind gusts
have a lower extremal index than the precipitation. Also, the extremes of the wind gusts at Vlissingen are more
dependent on each other than at De Bilt. For the precipitation at the 2 stations, no large, significant difference
was observed.

8.1 Further research
Different topics have been studied in this project. When interested in the optimal block length, it is possible to
simulate more precisely. We did not simulated all the block lengths, but block lengths bn = 2,7,12, ..., because
it took a long running time for the program ’RStudio’ and my laptop, to simulate them all. So with better and
faster hardware these simulations can be made.

Another interesting thing could be comparing more different types of estimators. Moreover, other variants
could be used or the data could be divided in different ways. Also, in this project the estimators have been
compared by looking at simulated results. Another way to compare these, is by looking more theoretical at
them.

Last, the peaks of the distributions could be looked at more closely. When is a peak a cluster? How many
extremes are needed to become a cluster. Identifying those clusters is called declustering. To use the declustering
methods, Segers presents them in his paper (Segers (2014)[9]).
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Appendices
A Compare sequences

Figure 17: Density plot of F (Mn)

Figure 18: Density plot of F (Mn)
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B Optimal block length results

(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for U(0,1) for
different block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for U(0,1) for
different block lengths

Figure 19: MSE of U(0,1) for different block lengths

(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for N(0,1) for
different block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for N(0,1) for
different block lengths

Figure 20: MSE of N(0,1) for different block lengths

(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for Exp(1) for
different block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for Exp(1) for
different block lengths

Figure 21: MSE of Exp(1) for different block lengths
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(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for Gamma(2,3)
for different block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for Gamma(2,3)
for different block lengths

Figure 22: MSE of Gamma(2,3) for different block lengths

(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for ARCH for dif-
ferent block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for ARCH for dif-
ferent block lengths

Figure 23: MSE of ARCH for different block lengths

(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for sARCH for
different block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for sARCH for
different block lengths

Figure 24: MSE of sARCH for different block lengths
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(a) MSE of the estimators θ̂N,dj
n and θ̂N,sl

n for AR-C for dif-
ferent block lengths

(b) MSE of the estimators θ̂B,dj
n and θ̂B,sl

n for AR-C for dif-
ferent block lengths

Figure 25: MSE of AR-C for different block lengths

C Estimating the extremal index histograms

Figure 26: Histograms of estimators of θ for N(0,1) model
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Figure 27: Histograms of estimators of θ for Exp(1) model

Figure 28: Histograms of estimators of θ for Gamma(2,3) model
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Figure 29: Histograms of estimators of θ for MA(1) model

Figure 30: Histograms of estimators of θ for ARCH model
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Figure 31: Histograms of estimators of θ for Moving Maxima model

Figure 32: Histograms of estimators of θ for AR-C model
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