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Complex Factor Analysis and Extensions
Ahmad Mouri Sardarabadi and Alle-Jan van der Veen

Abstract—Many subspace-based array signal processing algo-
rithms assume that the noise is spatially white. In this case the
noise covariance matrix is a multiple of the identity and the
eigenvectors of the data covariance matrix are not affected by the
noise. If the noise covariance is an unknown arbitrary diagonal
(e.g., for an uncalibrated array), the eigenvalue decomposition
leads to incorrect subspace estimates and it has to be replaced
by a more general “Factor Analysis” decomposition (FA), which
then reveals all relevant information. We consider this data model
and several extensions where the noise covariance matrix has a
more general structure, such as banded, sparse, block-diagonal,
and cases where we have multiple data covariance matrices that
share the same noise covariance matrix. Starting from a nonlinear
weighted least squares formulation, we propose new estimation
algorithms for both classical FA and its extensions. The opti-
mization is based on Gauss-Newton gradient descent. Generally,
this leads to an iteration involving the inversion of a very large
matrix. Using the structure of the problem, we show how this
can be reduced to the inversion of a matrix with dimension equal
to the number of unknown noise covariance parameters. This
results in new algorithms that have faster numerical convergence
and lower complexity compared to several maximum-likelihood
based algorithms that could be considered state-of-the-art. The
new algorithms scale well to large dimensions and can replace
eigenvalue decompositions in many applications even if the noise
can be assumed to be white.

Index Terms—Factor Analysis, covariance matching, subspace
estimation, maximum-likelihood

I. INTRODUCTION

Subspace-based techniques for parameter estimation often
start with a singular value decomposition (SVD) of a data
matrix, or equivalently the eigenvalue decomposition (EVD) of
the corresponding data covariance matrix. Without noise, this
matrix is considered to be rank-deficient, and its column span
is called the signal subspace. With additive noise perturbing
the data, an implicit assumption is that this noise is white
with covariance matrix σ2I, as adding a scaled identity matrix
to the data covariance matrix does not modify the signal
subspace. If this is not the case but the noise covariance
matrix is known from calibration, whitening techniques can
be used as a pre-processing step. However, in many array
processing applications this knowledge is not available. A
preferable approach is to replace the EVD by techniques that
jointly estimate the signal subspace and the noise covariance
matrix.

Factor Analysis (FA) is a tool from multivariate statistics
that assumes a covariance matrix R of the data under study
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(e.g., samples acquired from an array of sensors) can be
modeled as

R = AAH + D, (1)
where A is a “tall” matrix (AAH has low rank), and D
is a positive diagonal matrix. In terms of subspace-based
techniques, A captures the signal subspace while D can model
the noise covariance matrix. Given a sample covariance matrix
R̂, the objective of FA is to estimate A and D.

FA for real-valued matrices was first introduced by Spear-
man [1] in 1904 to find a quantitative measure for intelligence,
given a series of test results. Between 1940 and 1970, Lawley,
Anderson, Jöreskog and others developed FA as an established
multivariate technique [2]–[6]. Currently, FA is an important
and popular tool for latent variable analysis with many applica-
tions in various fields of science [7]. However, its application
within the signal processing community has been surprisingly
limited.

In the context of signal processing, the FA problem and
several extensions can be regarded as a specific case of
covariance matching, studied in detail in [8]. In there, the
model (1) is presented more generically in terms of a para-
metric model A(θ) and a linear parametric model for the
noise covariance (not restricted to diagonal), and maximum
likelihood algorithms are presented to estimate the parameters.
This relates to the topic of sensor array parameter estimation
(e.g., direction of arrival) in the presence of colored noise or
spatially correlated noise, under a variety of possible model
assumptions such as D being diagonal, block diagonal, or
composed of a linear sum of known matrices [9]–[12].

Generally, algorithms for finding the model parameters in
the FA model can be categorized into two groups. “Classical”
approaches are based on Maximum Likelihood (ML) or related
weighted least squares optimization. This results in large non-
linear optimization problems that are often implemented using
Newton-Raphson or more efficient Fletcher-Powell iterations
[2], [13], [14]. These algorithms are still very popular and
standard toolboxes (Matlab, SPSS) use them. Unfortunately,
they are relatively hard to implement and computationally
rather complex due to the inversion of a large matrix con-
taining the second-order derivatives, so that approximations
are necessary. Alternatively, the ML solution is found using
Expectation-Maximization (EM) techniques, first proposed in
[15], resulting in algorithms that are simpler to implement but
often show slow convergence. The Conditional Maximization
(CM) algorithm [16] has quadratic convergence and currently
seems most competitive.

A second class of algorithms is inspired by the work of
Ledermann in 1940 [17] and gained renewed momentum in
recent years due to the popularity of convex optimization.
The factors are found using the trace function as a convex
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relaxation of a minimum-rank constraint [18]–[20]. Recently,
several new approaches for matrix completion have been
proposed that involve low-rank plus sparse matrices [21], [22].
This leads to similar convex optimization algorithms, although
not specifically designed with covariance matrices in mind.

In this paper, we aim to present factor analysis as a generic
tool to replace EVD in array processing applications. We build
upon prior work where we applied FA to calibration and
interference detection/filtering in radio astronomy [23]–[26].
These addressed the case where the noise covariance matrix
is diagonal with unknown elements. For cases where the noise
covariance matrix is no longer diagonal but has a known sparse
structure, we propose in this paper the “extended FA” (EFA)
model.

We also consider applications where the desired subspace
changes rapidly while the noise remains stationary. In this case
we can compute a series of short-term covariance matrices
or “snapshots” (each of the form (1) but with a common
matrix D), requiring an extension toward “joint FA” (JFA).
Combined, this leads to “joint extended FA” (JEFA).

In this paper, we focus on the ML-type algorithms, and in
particular consider a Weighted Least Squares (WLS) formu-
lation that is minimized using fast-converging Gauss-Newton
iterations. Contributions are:
• We extend the FA model to complex data and multi-

snapshot observations, and replace the diagonal term with
a more general structure (i.e., the JEFA model).

• To avoid large matrix inversions in the computation of
the direction of descent, we use the Kronecker structure
of these matrices to derive a closed-form expression for
the direction of descent of only the noise parameters,
without resorting to approximations. This results in a fast
algorithm that is scalable to large problem sizes.

• Specializing this approach to the classical FA problem,
we arrive at an attractive Alternating WLS algorithm that
is easy to implement.

• Simulations show that the proposed algorithms are re-
liable and outperform many of the currently available
algorithms in terms of convergence speed.

The outline of this paper is as follows. In Sec. II we
discuss the data and covariance models for classical FA and
in Sec. III the proposed extensions to JEFA. Sec. IV gives
a brief overview of algorithms used for classical FA. Sec.
V presents JEFA as a Nonlinear WLS problem and derives
an efficient Gauss-Newton-based algorithm to estimate the
parameters. Specializing to the classical FA model leads to an
Alternating WLS solution that converges much faster than the
existing algorithms. Various model order detection methods
are discussed in Sec. VI, and computational complexity in
Sec. VII. Finally, in Sec. VIII we use simulations to evaluate
the performance of the proposed methods.

Notation

Superscript T denotes matrix transpose, ∗ denotes complex
conjugate, and H complex conjugate transpose, vect(·) de-
notes the stacking of the columns of a matrix in a vector
and unvect(·) is the inverse operation (we assume that the

dimensions of the resulting matrix are known). diag(a) creates
a diagonal matrix out of a vector, vectdiag(M) creates a
vector from the diagonal elements of a matrix, diag(M) =
diag(vectdiag(M)), bdiag({Mm}), m = 1, . . . ,M creates a
block-diagonal matrix from the argument matrices. I is the
identity matrix and 1M is an M ×1 column vector containing
only ones.
E{·} is the expectation operator. ⊗ denotes the Kronecker

product, ◦ a Khatri-Rao product (column-wise Kronecker
product), and � the entrywise multiplication of two matrices
of equal size.

For any P ×Q matrix A, we denote by KP,Q the permu-
tation matrix such that vect(AT ) = KP,Qvect(A). For any
P ×Q matrix A and M ×N matrix B we have

(A⊗B)KQ,N = KP,M (B⊗A) . (2)

II. CLASSICAL FACTOR ANALYSIS MODEL

A. Data Model

To derive the classical FA model, we consider an array of
P receiving elements exposed to a mixture of Q < P sources
modeled by a complex Gaussian distribution. The array is
uncalibrated—each element could have a different gain and
noise level. We assume that the noise is a proper complex
Gaussian process [27, pp. 39–40] and, for the classical model,
uncorrelated between different receiving elements. By stacking
the received signals from each receiver, we can model the
sampled output of the system as

y[n] = A0x[n] + n[n], n = 1, . . . , N (3)
where y is a P × 1 vector of received signals, A0 is a P ×Q
array response matrix, x is a Q × 1 vector representing the
source signals, and n is a P ×1 vector modeling the noise. N
observations are available, and assuming y[n] is zero mean,
we construct the sample covariance matrix as

R̂ =
1

N

N−1∑
n=0

y[n]y[n]H .

Assuming that the sources and noise contributions are station-
ary and uncorrelated, the model for R̂ is

R = E{yyH} = A0RxAH
0 + Rn . (4)

R0 = A0RxAH
0 is the noise-free covariance matrix, and

Rn = E{nnH} is the noise covariance matrix. R0 is of rank
Q, and it can be factored as R0 = AAH where A is a P ×Q
matrix with the same column span as A0.

Subspace-based array processing techniques such as MU-
SIC [28] and ESPRIT [29] have a first step in which the
column span of A is to be estimated. Assuming white noise
(Rn = σ2I), the eigenvalue decomposition of R̂ is computed.
The eigenvectors corresponding to the dominant Q eigenvalues
then form an estimate for the column span of A. However, this
technique fails if the noise is not white and Rn takes another
model. Most literature assumes in this case that Rn is known
so that the data can be prewhitened by R

−1/2
n , reducing it to

the previous situation.
Instead, the classical FA model1 assumes that the additive

1Traditionally FA is geared for real-valued data; in this paper we make the
straightforward adaptations to complex data.



3

noise is independent, but not necessarily identical, i.e.,

R = AAH + D, (5)
where Rn = D is a diagonal matrix with positive diagonal
elements. Given R̂, the objective is to estimate the factors
A and D. In this problem, the number of columns Q of A
(i.e., the number of sources) is assumed to be known. If Q is
unknown, it can be estimated by solving the FA problem for
several values of Q and employing a Generalized Likelihood
Ratio Test. This approach is discussed in Sec. VI.

B. Identifiability and Uniqueness

It is immediately clear that the factors are not uniquely
identifiable. E.g., A is not unique: The columns of A can
be permuted and if A satisfies the model, then also A′ = AQ
is valid, for any unitary matrix Q. The column span of A is
invariant under these transformations, and thus these do not
harm subspace estimation techniques.

More important is the uniqueness of D. By counting num-
bers of observations and numbers of unknowns, we see that
the number of columns Q of A cannot be too large, in fact
we need Q < P −

√
P as discussed in Appendix A. Even so,

D is not always unique, as seen from the following example.
Consider R = A1A

H
1 + D1, where

A1 =

[
1 1 . . . 1
0 1 . . . 1

]T
.

Then we also have R = A2A
H
2 + D2, where

A2 =
√
2
[
1/2 1 . . . 1

]T
, D2 = D1 +

1
2e1e

T
1

and ei is the ith column of the identity matrix. The problem in
this case is caused by a submatrix of A1 being rank-deficient.
This can be considered an uncommon technicality. Appendix
A discusses the identifiability conditions in more detail and
offers a test, for given A, to establish identifiability of D.
Throughout the rest of the paper, we assume that D can be
identified uniquely.

If D is identifiable, then A is unique up to a rotation Q.
We can make A unique by adding additional constraints. This
essentially amounts to choosing a non-redundant parametriza-
tion. Not all algorithms require this, but it may be needed
to avoid singularities during the computation of the Cramer-
Rao Bound (CRB) or when we use Newton gradient descent
techniques. For complex data, Q2 constraint equations are
needed. Common constraints are to force the columns of A to
be orthogonal with respect to a certain weight matrix W > 0,
i.e. to require that AHWA is diagonal.

If we compute a matrix A without satisfying constraints,
the required transformation Q such that A′ = AQ satisfies
the constraints is easily determined afterwards. Hence, in most
algorithms the constraints do not play a role.

III. EXTENSIONS OF THE CLASSICAL MODEL

We develop two extensions of the classical model: joint and
extended factor analysis.

A. Joint Factor Analysis Model

In some applications, the signal subspace (i.e. A) is not
stationary, while the noise covariance is stationary. Consider
e.g., DOA estimation of moving sources and an uncalibrated
array. An available dataset is then partitioned into M short
subsets or “snapshots”, each containing N samples. This leads
to M sample covariance matrices R̂m, m = 1, . . . ,M , with
model

Rm = AmAH
m + D, m = 1, . . . ,M . (6)

Am is a low-rank matrix of size P × Qm with Qm < P
for all m = 1, . . . ,M , and D is a positive real diagonal
matrix common among the M models. We call this model
Joint Factor Analysis (JFA). The objective is to estimate D
and {Am} jointly, based on the available sample covariance
matrices {R̂m}. In many applications we are just interested
in the column span of Am.

B. Extended and Joint Extended FA Model

Another extension is to consider the noise covariance matrix
to be more general than a diagonal matrix, say Rn = Ψ,
where Ψ has a certain structure, assumed to be known. Here
we consider Ψ of the form

Ψ = M�Ψ,

where M is a symmetric matrix containing only ones and
zeros and � denotes the Hadamard or entrywise product. We
call M a mask matrix; the main diagonal is assumed to be
nonzero. We can model various types of covariance matrices
using this approach (for example: block-diagonal matrices,
band matrices, sparse matrices, etc.).2 We assume M to be
known based on the application. The Extended FA (EFA)
model then becomes

R = AAH + M�Ψ . (7)
Both generalizations can be combined into Joint Extended FA
(JEFA), where we have

Rm = AmAH
m + M�Ψ , m = 1, . . . ,M . (8)

C. Parametrization

All models presented in this section are covariance models,
i.e. we can write R(θ), where the vector θ represents the
unknown parameters in the model. If the parameters are com-
plex, one popular method in signal processing is to represent
them using Wirtinger operators and its extensions [30]. Given
an unknown parameter θi we consider its conjugate θ∗i as an
independent parameter while real parameters are represented
only once. Using this method we define the parameter vector
as

θ =
[
θTA1

,θTA∗
1
, . . . ,θTAM

,θTA∗
M
,θTΨ

]T
, (9)

where

θAm
= vect(Am)

θA∗
m
= vect(A∗m)

θΨ =

 ψψ∗
d

 .
2A further generalization of this (not considered here) is to model Ψ as a

linear sum of known matrices [8].
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Based on the mask M, ψ is a vector consisting of the non-zero
elements of the strictly upper triangular part of Ψ, while d =
vectdiag(Ψ) represents the diagonal elements of Ψ, which are
real. Using this parameterization we have

vect(Ψ) = SUψ + SLψ
∗ + (Ip ◦ Ip)d,

where SU and SL are selection matrices for the upper and
lower triangular part of Ψ, based on the mask matrix M,
and ◦ denotes the Khatri-Rao product (column-wise Kronecker
product). We can write this as

vect(Ψ) = JΨθΨ, (10)
where

JΨ =
[
SU SL IP ◦ IP

]
. (11)

Note that JH
ΨJΨ = I, so that JH

Ψvect(Ψ) = θΨ, while JΨJH
Ψ

is a projection that represents the mask: for any P ×P matrix
X with x = vect(X) we have

vect(M�X) = diag[vect(M)]x = JΨJH
Ψx . (12)

For classical FA we have ψ = 0 and M = 1, which leads to
a simplified parameterization

θ =

 θA

θA∗

θD

 =

 vect(A)
vect(A∗)

d

 . (13)

Using this parameterization, we discuss in the following sec-
tions various methods to find an estimate for θ given a series
of sample covariance matrices {R̂m}. Cramér-Rao Bounds for
the presented models have been derived by us before and were
presented in [31].

IV. ESTIMATION ALGORITHMS FOR CLASSICAL FA
The classical FA problem was introduced in 1904 [1] and

several algorithms were proposed [4], [17], [32], all for real
data matrices (although readily extended to the complex case).
In this section we briefly review some of these approaches.

A. Ad Hoc Method

The estimation problem can be approached as a two-stage
minimization problem [6]. In this approach we minimize the
LS cost function

min
A,D
‖R̂−AAH −D‖2F (14)

by an alternating least-squares (ALS) approach, where ‖ · ‖F
is the Frobenius norm. First, for a given A, (14) is minimized
with respect to D and in the next stage, D is held constant
and a new A is found.

Let the subscript (k) denote the iteration count. The iteration
steps are

D(k+1) := diag(R̂−A(k)A
H
(k)) (15)

U(k+1)Λ(k+1)U
H
(k+1) := R̂−D(k+1) [EVD] (16)

A(k+1) := U0,(k+1)Λ
1/2
0,(k+1), (17)

where U(k+1) and Λ(k+1) follow from an eigenvalue de-
composition, and U0,(k+1) and Λ0,(k+1) are the Q domi-
nant eigenvectors and corresponding eigenvalues. A Weighted
Least Squares formulation could be considered instead of
(14), leading to similar iterations, but involving the EVD of
Ψ−1/2R̂Ψ−1/2.

As for most ALS approaches, the rate of convergence is
slow (linear). The EVD required at each iteration makes this
prohibitive for large problems. Nonetheless, a single iteration
of this ad hoc method is often used to initialize other iterative
techniques.

B. Maximum Likelihood Estimator

Since the sources and noise are modeled as complex Gaus-
sian, the complex log-likelihood function is given by

l(θ) = N
[
− log(πP ) + log |R−1| − tr(R−1R̂)

]
, (18)

where R(θ) = AAH + D. The maximum likelihood (ML)
approach aims to find A and D that maximizes this function.
To this end, we find the gradient of the likelihood function
(called the Fisher score) and set it equal to zero. The Fisher
score for a proper Gaussian distributed signal is given by [27,
p.165]

g(θ) =

 gA

gA∗

gD

 = NJH
(
R−T ⊗R−1

)
vect(R̂−R), (19)

where the Jacobian J(θ) is given by

J =
∂vect(R)

∂θT
=

[
∂vect(R)

∂θTA
,
∂vect(R)

∂θTA∗

,
∂vect(R)

∂θTD

]
= [JA,JA∗ ,JD] , (20)

which evaluates to (cf. (2))
JA = A∗ ⊗ IP , JA∗ = (IP ⊗A)KP,Q,
JD = IP ◦ IP .

From these results and (19), the elements of the Fisher score
become

gA = N(ATR−T ⊗R−1)vect(R̂−R)

= Nvect
[
R−1(R̂−R)R−1A

]
(21)

gA∗ = g∗A (22)

gD = Nvectdiag
[
R−1(R̂−R)R−1

]
. (23)

The ML technique requires us to set (21) and (23) equal to
zero, but unfortunately this does not produce a closed-form
solution. As a result, different iterative techniques such as the
scoring method and EM based approaches have been suggested
in the literature.

1) The Scoring Method: Initial algorithms considered the
alternating optimization of (21) and (23), and this leads to
similar algorithms as the Ad Hoc method [2]. Starting with
[13], one line of research has considered Newton-Raphson-
like algorithms to numerically compute the ML estimate, as
these provide quadratic convergence. In particular, the scoring
algorithm is a variant of the Newton-Raphson algorithm where
the gradient and Hessian are replaced by the Fisher score
and Fisher information matrix, respectively [33]. The Fisher
information matrix (FIM) for the Gaussian distribution is given
by

F = JH(R−T ⊗R−1)J, (24)
where J is given by (20). The resulting scoring iterations are

θ(k+1) = θ(k) + µ(k)δ, (25)
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where µ(k) is a step size and

δ =
[
δTA δTA∗ δTD

]T
is the direction of descent. The latter follows from solving

F(k)δ = g(k), (26)
where g(k) = g(θ(k)) is the Fisher score and F(k) = F(θ(k))
is the FIM. Since without constraints the parametrization is
redundant (see Sec. II-B), the FIM is singular. However, this
does not need to cause complications because g(k) is in the
column span of F(k), so that the system of equations has a
solution, and (taking the minimum-norm solution) standard
convergence results for the scoring method follow.3

A problem with the scoring method is that the matrix
F quickly becomes large, as its dimension is equal to the
number of unknown parameters. Solving (26) then becomes
unattractive. The literature shows several approximations to
reduce the complexity of this step. E.g., the ML method
described in [4] is an approximation of the scoring method in
which F†(k) is approximated by [diag(F(k))]

−1, i.e., a Jacobi
preconditioner.

2) EM-based Algorithms: Alternatively, the expectation
maximization (EM) technique may be used to optimize the
likelihood function. For FA, this was first proposed by [15].
Unfortunately, many of the EM algorithms show very slow
(linear) convergence. An overview of the original method and
several of its derivatives can be found in [16]. In that paper, an
alternative Constrained Maximization (CM) algorithm is pro-
posed that is straightforward to implement and shows quadratic
convergence. We compare with CM in the simulations.

3) Covariance matching techniques: Factor Analysis can
be viewed as a special case of covariance matching, studied
in detail in [8]. In there, A(θ) is modeled parametrically,
while the noise covariance Ψ has a linear parametrization as
in (10), but for a more general (known) matrix JΨ. This fits
the formalism of what we call Extended Factor Analysis.

In [8], the ML problem is replaced by a Weighted Least
Squares (WLS) fitting of the sample covariance, and it is
shown that the large sample properties of the estimators are
the same. Solving this nonlinear least squares problem using
gradient descent techniques is closely connected to the scoring
algorithm, and we follow this approach.

For FA, a technique based on WLS was proposed by
Jöreskog in 1972 [14] and solved using Newton-Raphson
iterations. We compare this method in the simulations in Sec.
VIII-A.

This concludes our review of some of the popular estimation
techniques for classical FA.

V. ESTIMATION ALGORITHMS FOR JEFA

In this section we consider the generalization toward the
JEFA model (8). Starting from a covariance matching for-
mulation, estimating the parameters for JEFA also leads to
a nonlinear weighted least squares problem. As the number
of parameters grows quickly, we need to consider scalable
approaches. We propose several algorithms.

3Alternatively, a non-redundant or constrained parametrization could be
used, but it does not seem to offer advantages.

A. Nonlinear Weighted Least Squares

Recall the JEFA data model (8). We start by vectoring
and stacking all the covariance matrices to form a single
measurement vector

r̂ =
[
vectT (R̂1), . . . , vectT (R̂M )

]T
, (27)

and similarly

r(θ) =
[
vectT (R1(θ)), . . . , vectT (RM (θ))

]T
, (28)

where θ is defined by (9). Instead of following the ML
formalism, we can estimate the unknown parameters in θ using
nonlinear WLS defined as

θ̂ = argmin
θ
‖W1/2 [̂r− r(θ)]‖22, (29)

where W is a weighting matrix. The optimum weighting
matrix is the inverse of the (asymptotic) covariance matrix
of the entire dataset, but because we only have access to the
sample covariance matrices R̂m we use

W =

R̂−T1 ⊗ R̂−11 . . . 0

0
. . . 0

0 . . . R̂−TM ⊗ R̂−1M

 , (30)

which gives an asymptotically optimal solution for a Gaussian
distributed data matrix [8].4

A very common iterative technique for solving nonlinear
optimization problems is the Gauss-Newton algorithm, where
the Hessian is replaced by the Gramian of the Jacobians [34].
The updates are similar to the scoring method updates (25):

θ(k+1) = θ(k) + µ(k)δ, (31)
where δ is the direction of descent. To find δ we need to solve

B(θ(k))δ = g(θ(k)), (32)
where

g(θ) = JH(θ)W[̂r− r(θ)] (33)
B(θ) = JH(θ)WJ(θ) (34)

and the Jacobian J(θ) is given by

J =
∂r(θ)

∂θT
=


JA1

JA∗
1

. . . 0 JΨ

0 . . . 0 JΨ

0
. . . . . . 0 JΨ

0 . . . JAM
JA∗

M
JΨ

 (35)

JAm
= (A∗m ⊗ IP ), JA∗

m
= (IP ⊗Am)KP,Qm

JΨ = [SU , SL, IP ◦ IP ] .
(36)

The iterations given by (31) are repeated until ‖g(θ(k))‖2 < ε,
where ε > 0 depends on the desired accuracy. Clearly, the
equations are very similar to the ML equations in Sec. IV-B,
except that the covariance matrices in W (30) have to be
inverted only once.

The key step in the Gauss-Newton iteration is solving the
linear system (32). For the JEFA model the matrix dimensions
can quickly become large. We propose two approaches for
solving this system. The first approach (Sec. V-B) is a Krylov-
based method directly applied to the system of equations,
while the second approach (Sec. V-C) is based on a symbolic

4As an aside, we remark that the minimum trace factor analysis discussed
by [32] is a special case of the WLS we are considering here.
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inversion of B, essentially exploiting the sparse structure of
(35).

The optimal step size µ(k) can also be derived, and this is
done in Appendix C. It amounts to solving for the roots of a
cubic polynomial, which is computationally simple.

For JFA we can enforce additional constraints such as D ≥
εI for some ε > 0 using a nonlinear active set approach [34].
The full discussion of this approach is beyond the scope of
this paper, but the algorithm presented here can be extended
with small modifications.

B. Krylov-Based Method for Direction of Descent

To reduce storage and complexity, we propose to solve
(32) using a Krylov subspace-based solver. An overview of
such solvers is in [35]. We know that for the FA problem the
solution is not unique. This means that the Jacobians and hence
B are singular. One possible Krylov solver that is applicable in
this case is the MinresQLP algorithm [36] and for this reason
we have chosen this solver for our iterative approach.5

MinresQLP is a standard Krylov-subspace iterative solver
that requires the availability of a subroutine that performs
a matrix-vector multiplications of the form u = Bv. Other
operations in MinresQLP have negligible complexity. We
show how we can perform this multiplication efficiently by
exploiting the Kronecker structure of B(θ) and the underlying
J(θ), without needing to store the Jacobians.

We drop the dependency on θ from the notation and write
only J and r because θ does not change while we are solving
for δ. To calculate a product u = Bv for B in (34) and
arbitrary vectors u,v of compatible dimensions, we define the
intermediate results

z = Jv , y = Wz , u = JHy .

We partition u and v in the same manner as θ in (9) into

v =


vect(VA1

)
vect(VA∗

1
)

...
vΨ

 , u =


vect(UA1

)
vect(UA∗

1
)

...
uΨ

 . (37)

Likewise we partition z and y in the same manner as r in (28)
as

z =

 vect(Z1)
...

vect(Zm)

 , y =

 vect(Y1)
...

vect(Ym)

 . (38)

To find u we compute UAm
(m = 1, . . . ,M ) and uΨ. We

assume that v is such that VA∗
m

= V∗Am
, and in that case

UA∗
m

= U∗Am
. It can be shown that MinresQLP provides

vectors v that have this property, as long as we initialize the
iteration with a vector g with the same property.

The Jacobian for the entire dataset is given by (35). Note
that JΨ in (36) is identical to JΨ as defined by (11), which
related the parameter vector θΨ to the P × P matrix Ψ via

5Alternatively, methods such as LSQR or LSMR could be used to solve the
equivalent LS problem, minδ ‖W1/2(Jkδ−bk)‖22, where bk = r̂−r(θk).
However, working with W1/2 could make these methods computationally
less attractive.

vect(Ψ) = JΨθΨ. Similarly, we can define a P × P matrix
VΨ as vect(VΨ) = JΨvΨ and likewise vect(UΨ) = JΨuΨ.

Using these relations, we can compute the components of
z = Jv as

vect(Zm) = (A∗m ⊗ IP )vect(VAm
)

+ (IP ⊗Am)KP,Qvect(VA∗
m
) + vect(VΨ)

= vect
(
VAm

AH
m + AmVH

Am
+ VΨ

)
,

where we used VA∗
m
= V∗Am

. Unstacking both sides gives

Zm = VAmAH
m + AmVH

Am
+ VΨ. (39)

Hence, to calculate z = Jv, we reshape the vector v
into corresponding matrices VAm and VΨ, and apply (39).
The variables Am are the current estimates of the unknown
parameters and hence require no additional storage.

Next, we compute y = Wz. Using properties of Kronecker
products and the definition of W in (30), it is straightforward
to show that we only need to compute

Ym = R̂−1m ZmR̂−1m , m = 1, . . . ,M. (40)
Finally, we calculate u = JHy. From the structure of (35),
(36), we find

vect(UAm
) = JH

Am
vect(Ym) ⇔ UAm

= YmAm (41)
while UA∗

m
= U∗Am

. The remaining term UΨ is given by

UΨ =

M∑
m=1

M�Ym, (42)

where we have used the properties
uΨ = JH

Ψvect(UΨ) and, using (12),
JH

Ψvect(X) = JH
ΨJΨJH

Ψvect(X) = JH
Ψvect(M�X).

To summarize, to calculate a matrix-vector product u = Bv
we reshape v into VAm

and VΨ and use (39)–(42) to find the
result. The gradient g in (33) can be calculated in a similar
manner by replacing Zm in (40) by R̂m−Rm and using (41)
and (42) with the result. The procedures that perform these
steps are provided to MinresQLP, which then solves Bδ = g
(32).

C. Direct Method for Direction of Descent

As an alternative technique to Krylov iterations for comput-
ing the direction of descent, we now provide a direct approach
for solving Bδ = g. A block LDU (lower-diagonal-upper,
or Cholesky) decomposition of the Hermitian matrix B can
be computed symbolically in closed form and leads to the
following solution for the descent direction δ.

Define Wm = R̂−1m and the quantities

W̃m = Wm −WmAm(AH
mWmAm)−1AH

mWm, (43)

B̃Ψ = JH
Ψ

(∑
m

W̃T
m ⊗ W̃m

)
JΨ, (44)

g̃Ψ = JH
Ψ

∑
m

(
W̃T

m ⊗ W̃m

)
vect[R̂m −Rm(θ)] . (45)

As shown in Appendix B, the computation of

δ =


vect(∆A1

)
vect(∆A∗

1
)

...
δΨ
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reduces to the computation of δΨ from

B̃ΨδΨ = g̃Ψ . (46)
Subsequently, we define ∆Ψ as vect(∆Ψ) = JΨδΨ. Closed-
form expressions for the ∆Am are

∆Am =
1

2
(I + W−1

m W̃m)(R̂m −Rm(θ)−∆Ψ)·
·WmAm(AH

mWmAm)−1 ,m = 1, . . . ,M , (47)
and ∆A∗

m
= ∆∗Am

. Hence, the original matrix inversion
problem reduces to solving for δΨ in (46), which has a
dimension equal to the number of nonzero entries in the
mask M, which is 2P

∑
mQm fewer unknowns than in δ. In

particular, for the JFA model (Ψ diagonal), B̃Ψ is just P ×P .
Since Ψ is well defined if the JEFA model is identifiable, this
problem is well-posed.

For large problems, we can also solve (46) using a Krylov-
subspace based solver, and the matrix-vector products are
similar to the ones presented in the previous section.

D. Alternating WLS method

The approach from Sec. V-C can be developed into a new
Alternating WLS method that is similar to the Ad Hoc method
discussed in Sec. IV-A, but providing much faster convergence.
We consider the update equation for θΨ. If we take the step
size µ(k) = 1 we have θ(k+1)

Ψ = θ
(k)
Ψ + δΨ. Starting from

(46) and subsequently using vect(Ψ(k)) = JΨθ
(k)
Ψ and the

definition of B̃Ψ in (44), we obtain

B̃Ψθ
(k+1)
Ψ

= B̃Ψθ
(k)
Ψ + JH

Ψ

∑
m

(W̃T
m ⊗ W̃m)vect(R̂m−AmAH

m−Ψ(k))

= JH
Ψ

∑
m

(
W̃T

m ⊗ W̃m

)
vect(R̂m −AmAH

m),

where to simplify the notation we have dropped the depen-
dency on k from B̃Ψ, W̃m and Am. Since W̃mAm = 0 as
a result of (43), this reduces to

B̃Ψθ
(k+1)
Ψ = JH

Ψ

∑
m

(
W̃T

m ⊗ W̃m

)
vect(R̂m). (48)

From the definition of B̃Ψ in (44), the solution θ(k+1)
Ψ can

also be written as the solution to

min
θΨ

∥∥∥W̃1/2
(k) [̂r− J̃ΨθΨ]

∥∥∥2
2
, (49)

where J̃Ψ := [JT
Ψ, . . . ,J

T
Ψ]T and W̃(k) := bdiag{W̃T

m ⊗
W̃m}. The latter matrix can be interpreted as “projecting out”
the contribution of the terms AmAH

m in r̂ (incorporating an
optimal weighting), after which the remaining term Ψ can
be estimated. Estimation of Ψ from (49) is computationally
efficient, compared to the original problem (32). The problem
is convex, and additional constraints such as positivity of Ψ
could also be incorporated.

This approach can be formulated as a new Alternating
Weighted Least Squares (AWLS) algorithm. Starting from an
initial estimate for Ψ, in the iteration we estimate the Am

using the EVD of R̂m−Ψ (for Wm = I) or Ψ−1/2R̂mΨ−1/2

(for Wm = R̂−1m ), similar to Sec. IV-A. Next, we calculate
W̃m using (43), which depends only on Am and Wm,
followed by solving (48) or equivalently (49). For classical

FA, this leads to the following iterations (where with abuse of
notation we write W instead of W1):

U(k+1)Λ(k+1)U
H
(k+1) := D

−1/2
(k) R̂D

−1/2
(k) [EVD]

A(k+1) := D
1/2
(k) U0,(k+1)(Λ0,(k+1) − I)1/2

W̃ := W −WA(k+1)(A
H
(k+1)WA(k+1))

−1AH
(k+1)W

d(k+1) :=
[
W̃T � W̃

]−1
vectdiag(W̃R̂W̃)

D(k+1) := diag(d(k+1)).

Note that for W = R̂−1 , we have W̃R̂W̃ = W̃. Hence
this calculation is not needed.

For W = I, W̃ = P⊥A is the projection matrix for the
orthogonal subspace of A. If we are only interested in the
null space of A for applications such as MUSIC or spatial
filtering, we can avoid calculating A and obtain W̃ directly
from the EVD of R̂−D.

VI. GOODNESS OF FIT AND DETECTION

One of the parameters that needs to be found for the FA
model is the factor dimension Q (i.e., rank(A)). In array
processing, this relates to detecting the number of sources that
the array is exposed to. An extensive literature exists on this
topic (an overview can be found in [37, pp. 222-223] [38]).
Here we limit the discussion to a general likelihood ratio test
(GLRT), which is used to decide whether the FA model fits a
given sample covariance matrix. We consider the classical FA
model and aim to detect the smallest number of sources for
which the model fits the data.

For each Q, two hypotheses are tested against each other.
H0 assumes that there is an FA model underlying the data,
while H1 assumes no structure. For a threshold γ, consider
the GLRT

ζ =
L∗1
L∗0

≷ γ,

where L∗1 is the maximum value of the likelihood when H1

is true, and L∗0 is the maximum value of the likelihood for an
FA model. Taking the natural logarithm from both sides we
see that the likelihood ratio reduces to

λ = 2 log(ζ)

= 2N
[
tr(R−1R̂)− log |R−1R̂| − P

]
, (50)

where R is the best-fitting model with Q sources. From [6,
p.267] [39, p.281] we know that λ has an asymptotic χ2

s dis-
tribution under H0, where for complex data s = (P−Q)2−P
is the degree of freedom, as defined by (51) later in Appendix
A. We can use this statistic to find a constant false alarm ratio
detector. In the special case where Q = 0 this test indicates
whether there are any sources active during the measurement.

If the GLRT passes for a given estimate Q0 it also passes
for any Q > Q0, and if it fails it also fails for any Q < Q0.
Therefore, instead of a linear search for Q̂ we propose to use a
binary search. In this case the number of needed FA estimates
is on average log2(Qmax) + 1, where Qmax is the maximum
number of possible sources for FA given by Qmax < P −

√
P

as shown later in (52).
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TABLE I: Complexity of various algorithms per iteration

Model Approach Flops per iteration (order)
Ad Hoc (Sec.IV-A) P 3

CM [16] P 3

FA KLD/EM [40] P 2Q+Q3

AWLS (Sec.V-D) P 3

Krylov NLWLS (Sec.V-A+V-B) IK
∑

m P 2Qm

JFA Direct NLWLS (Sec.V-A+V-C) P 3 +
∑

m P 2Qm

AWLS (Sec.V-D) MP 3 +
∑

m P 2Qm

VII. COMPUTATIONAL COMPLEXITY

Table I gives an overview of the available and proposed
algorithms and shows the complexity for a single iteration of
each.

For classical FA, some original algorithms to compare with
are the Ad Hoc iterations (Sec. IV-A), the ML approach
solved using Conditional Maximization (CM, [16]), or using
iterations that minimize the Kullback-Leibler Divergence as a
prototype EM algorithm (KLD/EM, [40]). Here we propose
to use the new AWLS algorithm presented in Sec. V-D.
The main computational complexity is caused by inverting a
P × P matrix and computing the EVD of a P × P matrix
inside the iteration, both with a complexity of order P 3. The
number of iterations needed for AWLS is usually very small
(see Sec. VIII). Thus, the total complexity of this algorithm
for FA is similar to EVD. The Ad Hoc, CM and KLD/EM
algorithms have a similar complexity per iteration. However,
simulations show that the number of iterations and hence the
total complexity of the Ad Hoc and KLD/EM methods is very
large. For CM, the number of iterations appear to be two or
three times larger than for AWLS, and much more for large
Q.

For the JFA model, the available algorithms are based
on solving a nonlinear WLS using Gauss-Newton iterations
(Sec. V-A), where the key step is solution of Bδ = g (32).
This could be implemented using a Krylov subspace method
(Krylov NLWLS), Sec. V-B. Alternatively, we proposed a
direct method (Sec. V-C), where for JFA the main complexity
is in the formation of W̃m (m = 1, . . . ,M ).

In the table, IK is the number of iterations needed for
the Krylov solver to converge. This number can be chosen
to be very small depending on how much improvement is
desired with respect to the descent direction provided by the
gradient. In the simulations presented next we allow the solver
to fully converge based on the default convergence criteria
of MinresQLP. For relatively large P (e.g., P = 100) IK is
usually less than P , which is a factor 2Q+ 1 smaller than the
dimension of the matrix B. This estimate for IK is based on
a final error of ‖Bδ − g‖2 < 10−12.

In summary, it appears there is no specific computational or
storage advantage of Krylov over the direct method. For equal
Qm = Q, the computational complexity is of order MP 2Q.

VIII. SIMULATIONS

We evaluate the performance of the proposed models and
algorithms using a series of simulations. In Sec. VIII-A, we
evaluate the convergence speed of the various algorithms, then

in Sec. VIII-B, we evaluate the quality of the estimated sub-
space using classical and Joint FA, and finally in Sec. VIII-D
we show that the proposed algorithm for JEFA converges to
the CRB as the number of samples becomes large.

A. Convergence Speed

We first evaluate the convergence speed of various algo-
rithms for the classical factor analysis model. An array with
P = 100 elements is simulated. The matrix A is chosen
randomly with a standard complex Gaussian distribution (i.e.
each element is distributed as CN (0, 1)) and D is chosen
randomly with a uniform distribution between 1 and 5.

For P = 100, the maximum number of sources is Qmax =
89. We show simulation results for Q = 20, representative for
low-rank cases, and for Q = 80 for high-rank cases. Sources
and noise are generated using standard unit power complex
Gaussian distributions.

The algorithms that we consider are the proposed AWLS
(Sec. V-D), the proposed Direct NLWLS (Sec. V-C), and the
ML scoring method (Sec. IV-B1) combined with the Krylov
solver in Sec. V-B, referred to as Krylov Scoring. We compare
with the classical Ad Hoc (Sec. IV-A), the WLS method by
Jöreskog [14], and the more recent CM [16] and KLD/EM
[40] as a representative of many other EM-type algorithms. We
believe that this gives a good range of algorithms indicative
of the state-of-the-art (for lack of an agreed standard).6

The same initial point is chosen for all the algorithms. As
in other literature, we initialize with D(0) = [diag(R̂−1)]−1.

Fig. 1 shows the convergence rate of the different ML
algorithms based on the magnitude of the gradient. In the
different panels we vary the number of sources Q and the
number of samples N , where N → ∞ represents the case
where the covariance data is exactly equal to its model.

We observe that AWLS consistently outperforms all other
presented algorithms in terms of the number of iterations
needed to reduce the gradient to a given threshold. Typically
10 iterations or less are needed. The Direct NLWLS converges
equally fast for infinite data (true R) but it is seen to degrade
for finite data size (N = 1000), with convergence around
30–40 iterations. Next, Krylov scoring requires consistently
around 40–50 iterations. The CM method performs well for
smaller Q but not for large Q, where it requires around 100
iterations. The Ad Hoc method is seen to be very sensitive to
Q and converges orders of magnitude slower for larger Q, and
KLD/EM always converges slowly.

While these results are based on a single realization of the
data, we consider the outcome as typical.

B. Subspace Estimation Performance

Next, we study the subspace estimation performance of FA
and JFA in comparison to EVD for Ψ = σ2I. This gives an
indication of the performance penalty if we use FA even if the
noise is white and EVD is suitable.

We have chosen Qm = 2, P = 5, M = 5 and σ = 1 is the
noise power. We study the subspace estimation performance

6E.g., the Matlab algorithm factoran optimizes the ML cost function using
a standard optimization toolbox.
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Fig. 1: Convergence for P = 100 sensors and varying number of samples N and sources Q.
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Fig. 2: Subspace error as function of SNR for Ψ = I (white
noise).

for various signal-to-noise ratios (SNR) ranging from −5 dB to
20 dB per antenna. Each sample covariance matrix is generated
using N = 100 samples and Am is generated as a random
complex matrix.

As metric for the accuracy of the estimated subspace, we
define a projection matrix P̂m onto the null-space of the
estimated Âm, and measure

Subspace error =
∑
m

‖P̂mAmAH
mP̂m‖F

‖AmAH
m‖F

.

Fig. 2 shows the result. FA is the case where the model
parameters are estimated separately for each of the M = 5
covariance matrices, while JFA shows the effect of jointly
processing with a common Ψ. In both cases, the Direct NL-
WLS algorithm is used. Because FA and JFA have to estimate

more parameters, we expect a drop in performance compared
to EVD. The simulation shows that for sufficiently high SNR,
the algorithms behave the same, while some performance drop
occurs for FA at low SNR. JFA exploits the stationarity of the
noise component and has a negligible performance penalty
with respect to EVD.

We conclude that the use of (J)FA does not result in a
significant performance loss, while this model is more general
than the white-noise model, making it applicable in many
practical situations, e.g., cases where the sensor array is not
(yet) accurately calibrated.

C. Convergence to local minima

One of the important points of concern for the proposed iter-
ative methods is the possible convergence to a local minimum.
By estimating the distribution of the subspace error we argue
that for the NLWLS algorithms proposed in this paper this
possibility does not create statistical artifacts in the solutions.

The data set is generated using P = 100, Q = 70, M = 1,
N = 500 and Ψ = I. To simulate A, the 100 receivers are
randomly spread over an area of 6 × 6 wavelengths, and 70
sources of equal strength are randomly chosen with minimum
angular distance slightly less than 1 degree. This is repeated
for each iteration of a Monte-Carlo run. In total 20K runs have
been performed.

The results of the Monte-Carlo simulations are used to
create the histogram Fig. 3, which shows the distribution of
the subspace errors for NLWLS using the direct method and
for EVD. We also found that a log-normal distribution fits the
histograms quite well.

The smooth behavior of the histogram and its similarity to
the behavior of EVD indicates that there are no outliers (large
subspace errors) beyond expected deviations of the subspace
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Fig. 3: Distribution of subspace errors for Ψ = I.

due to finite sample noise. We conclude that the convergence
of the algorithm is reliable.

D. Comparison to the Cramér-Rao Bound

In this part we investigate the performance of the proposed
Direct NLWLS algorithm using the Cramér-Rao bound in
a JFA setting. We use a setup with P = 5, Qm = 2,
Ψ = D with diagonal elements ranging from 0.5 to 1.5. Two
different approaches are compared. The first approach is to
apply FA separately and then use D̂ = 1/K

∑
m D̂m. The

other approach is to estimate D̂ using JFA.
To measure the performance we use

E{‖D̂−D‖2F } = E{vect(D̂−D)Hvect(D̂−D)}
= tr[E{vect(D̂−D)vect(D̂−D)H}]
≥ tr(CΨ),

where CΨ is the sub-matrix of the CRB corresponding to Ψ
that was derived previously in [31]. We estimate E{‖D̂−D‖2F }
using Monte Carlo simulations. Fig. 4 shows the result of this
simulation. This figure clearly illustrates that the proposed
joint estimation reaches the CRB asymptotically and that
applying the estimation separately followed by an averaging
results in a sub-optimal estimation with higher variance.

E. Experimental results

The potential of FA and (J)EFA in practical scenarios was
demonstrated for spatial filtering of RFI signals present in
astronomical data in [31]. Calibration of the Westerbork radio
telescope array (P = 14 dishes) using the Ad Hoc approach
was shown in [23]. Calibration of one station of the LOFAR
radio telescope array (P = 96 antennas) was reported in [26],
[41], [42], and this application is run in daily practice of the
array [43]. Using LOFAR data, EFA was demonstrated in
[44] to suppress the Milky Way (broadband emission) from
a mixture with point sources.
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Fig. 4: Performance of the diagonal estimates compared to the
CRB

IX. CONCLUSIONS

We proposed extensions of the Factor Analysis model to
multiple matrices and more general noise covariance struc-
tures, and we presented efficient estimation algorithms based
on Gauss-Newton iterations. For the classical FA model, we
derived a straightforward Alternating WLS algorithm that
converges much faster than currently used techniques.

The simulations indicated the reliability and efficiency of
the proposed algorithms, showing them feasible for moderately
large problem sizes (P = 100 sensors).

We consider FA as an extension of the eigenvalue de-
composition (EVD) to cases where the noise is not white.
The simulations indicated that even if the noise is white, the
performance penalty with respect to EVD is minor. Therefore,
the more general structure of the extended FA data models
enable their application in a wide range of signal processing
applications.

APPENDIX A
IDENTIFIABILITY

One of the challenges with the FA models is the problem
of identifiability. As in [45] we call two solutions, θ1 and
θ2, observationally equivalent if for a set of observations with
probability density p(x;θ), we have p(x;θ1) = p(x;θ2). The
problem is called (globally) identifiable if for a solution θ,
there are no observationally equivalent solutions on the entire
solution space Θ.

The question we address in this Appendix is: Given a
Hermitian matrix R with decomposition R = R0 + D, with
R0 = AAH of rank Q and D diagonal, are R0 and a non-
singular D identifiable?

Early results on the identification problem were published
in [3]. Later work on this subject has been summarized by
[46], while [47] gives a more recent overview of important
theorems on this subject. However only for Q = 1 or Q = 2
(very small ranks) do these theorems provide both sufficient
and necessary conditions of identifiability. Here we use the
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results provided by [45] to formulate necessary and sufficient
conditions for identifiability.

A necessary condition for identifiability is that the number
of knowns exceeds the number of unknowns. This puts a limit
on Q, the number of columns of A. To find this limit we study
the degrees of freedom we have for the estimation parameter
vector based on a given sample covariance matrix.

For classical FA, the sample covariance matrix consists of
1
2P (P−1) complex and P real observations, which are in total
P 2 real knowns. The FA model has PQ complex parameters
in A and P real parameters in D, or 2PQ+P real parameters
in total. We pose Q2 constraints on A, cf. Sec. II-B. As such
the total degrees of freedom becomes7

s = P 2 − (2PQ+ P ) +Q2

= (P −Q)2 − P . (51)
For the FA model to be identifiable, s > 0 is a necessary
condition. Solving for Q, we see that the maximum number
of sources that could theoretically be detected by classical FA
is

Q < P −
√
P . (52)

Following the same procedure for EFA we find

Q < P −
√

tr(M2) , (53)
where tr(M2) represents the total number of nonzero entries
in the mask M. To find a bound on Q for JEFA we assume
for simplicity that Qm is constant. In this case we find

Q < P −
√

tr(M2)

M
. (54)

Next, we study identifiability in more detail. Typically, an
estimation problem is considered identifiable if the corre-
sponding Fisher Information Matrix (FIM) F is nonsingular.
In our case, some refinements are needed. We know already
that the problem has to be complemented with constraints.
Further, the FIM depends on the actual parameter values while
we would like to say something that relates to the structure of
the problem.

To connect to known literature on identifiability, we briefly
consider a parameterization of the unknowns in terms of real
values. Let θR denote such a parameterization. One way to
define θR for classical FA is

θ = TθR, (55)
where

T =
1√
2

IPQ jIPQ 0
IPQ −jIPQ 0

0 0
√
2IP

 (56)

has size (2PQ + P ) × (2PQ + P ). It is straightforward to
show that T is a unitary (and invertible) transformation and
hence does not change the number of real unknowns. The
Q2 constraints on θR are written in the form of a function
hR(θR) = 0. The Jacobian of this function is

HR =
∂hR

∂θTR
(57)

of size Q2 × (2PQ+ P ). Let F be the FIM of the problem,

7For real-valued data, a similar derivation shows s = 1
2
[(P −Q)2− (P +

Q)].

and let FR = THFT be the real FIM. Define

VR(θR) =

[
FR

HR

]
.

Reformulating Theorem 2 of [45] gives:

Suppose θ0 is in the solution space of h(θR) =
0 and is a regular point of HR(θR), and assume
rank(A) = Q. Then θ0 is locally identifiable if and
only if rank[VR(θ0)] = 2PQ+ P .

This means that for a locally identifiable problem VR

has full column rank. If rank(VR) < 2PQ + P , there is
another parameterization R = R0 + D = R1 + D1 such
that rank(R1) ≤ rank(R0) and D 6= D1. In that case the
matrix D cannot be uniquely estimated, and the problem
should be complemented with constraints on D itself. E.g.,
if in array processing the array signature combined with the
noise covariance matrix is unidentifiable then D also contains
part of the signal power and one of the signal subspaces is
lost.

In this paper we assume that the signal and noise have
proper complex Gaussian distributions. This can be used to
simplify the identification criteria. Using Bang’s formula we
can write the FIM as

FR = JH
R

(
R−T ⊗R−1

)
JR, (58)

where JR = JT. Let H = HRTH . Considering that R−T ⊗
R−1 is a positive definite matrix and that HHH has the same
row space as H, we have

rank(VR) = rank
([

T 0
0 I

]
VRTH

)
= rank

([
F
H

])
= rank

([
J
H

])
. (59)

This means that by studying the rank of the Jacobian we can
establish the identifiability of the problem. With Q2 suitable
constraints, H adds Q2 independent rows to J, and we require
the rank of J to be (at least) 2PQ+ P −Q2.

Next, we establish that the rank of J solely depends on
the diagonal structure of D and on the column span of A,
but not on the actual values of R, D or the power of the
sources. Let A = U0Γ

1/2QH be the (economical) singular
value decomposition of A, where U0 forms an orthonormal
basis for the column span of A. We use the structure of J in
(21) to obtain

J = [A∗ ⊗ I, (I⊗A)K, I ◦ I]

= [U∗0Γ
1/2QT ⊗ I, (I⊗U0Γ

1/2QH)K, I ◦ I]

= Ũ

Γ1/2QT ⊗ I 0 0

0 (I⊗ Γ1/2QH)K 0
0 0 I

 , (60)

where

Ũ = [U∗0 ⊗ I, I⊗U0, I ◦ I], (61)
has size P 2 × (2PQ + P ). The latter factor of J is square
and invertible, so that the rank of J is equal to the rank of Ũ,
which only depends on U0 and the diagonal structure of D
(which is captured by I ◦ I). For the problem to be (locally)
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identifiable we need

rank(Ũ) = 2PQ+ P −Q2. (62)
Further, we can show that the submatrix of Ũ given by the
2PQ columns

Ũ1 = [U∗0 ⊗ I, I⊗U0]

has (at least) Q2 dependent columns. To show this we use the
fact that Ũ1Z = 0, where

Z =
1

2

[
IQ ⊗U0

−(U∗0 ⊗ IQ)

]
is a unitary basis of size 2PQ×Q2 for the null space of Ũ1

(i.e. ZHZ = IQ2 ).
Thus, identifiability requires that the P columns of I ◦ I be

linearly independent to the columns of Ũ1.
In summary, we showed that the identifiability of the

classical FA problem can be established by examining the rank
of Ũ in (61), which depends only on the column span of A.
This result is readily extended to EFA by replacing I ◦ I in
(61) by JΨ. The identifiability criteria for EFA becomes

rank(Ũ) = 2PQ+ tr(M2)−Q2. (63)

To conclude, we have used the identifiability problem to
find the maximum number of sources that can be modeled
using (E)FA. We have also shown that the local identifiability
of (E)FA is completely defined by the signal subspace and the
structure of the Jacobians with respect to the noise covariance
matrix. This structure is completely defined by the masking
matrix M in (7).

APPENDIX B
PROOF OF THE DIRECT METHOD IN SEC. V-C

We prove the expression for δ given in (46) and (47).
Although the result was obtained from executing a symbolic
block-LDU decomposition of D, we omit this derivation and
only verify the result. We need to prove that Bδ = g.
To simplify the presentation we limit ourselves to the case
M = 1, and write A,W instead of Am,Wm. We also write
S = JΨ; note that SHS = I and SSHvect(∆Ψ) = vect(∆Ψ).
Then

B = JH(WT ⊗W)J

g =

 gA

gA∗

gΨ

 =

 W(R̂−R(θ))WA
(· · · )∗

SHvect[W(R̂−R(θ))W]


and

δ =

 1
2vect[(I + W−1W̃)C]

1
2vect[(I + W−TW̃T )C∗]

SHvect(∆Ψ)


where C = (R̂ − R(θ) −∆Ψ)WA(AHWA)−1, and ∆Ψ

satisfies (46), i.e.,

SH(W̃T ⊗W̃)SδΨ = SH(W̃T ⊗W̃)vect[R̂−R(θ)] . (64)
Also define

P = W1/2A(AHWA)−1AHW1/2

then W̃ = W1/2(I − P)W1/2. Note that P is a projection
such that P(W1/2A) = W1/2A, and also W̃A = 0. Further,

(64) with δΨ = SHvect(∆Ψ) leads to

W̃(R̂−R(θ)−∆Ψ)W̃ = 0 . (65)

We need to prove that Bδ = g. The first line of this
expression is

1
2 (A

TWTA∗ ⊗W)vect[(I + W−1W̃)C]

+ 1
2 (A

TWT ⊗WA)Kvect[(I + W−TW̃T )C∗]
+(ATWT ⊗W)SSHvect(∆Ψ)

= 1
2vect[W(R̂−R(θ)−∆Ψ)WA

+W̃(R̂−R(θ)−∆Ψ)WA

+WA(AHWA)−1AHW︸ ︷︷ ︸
=W−W̃

(R̂−R(θ)−∆Ψ)WA

+WA(AHWA)AHW(R̂−R(θ)−∆Ψ)W̃W−1WA︸ ︷︷ ︸
=0

+2W∆ΨWA]

= vect[W(R̂−R(θ)−∆Ψ)WA + W∆ΨWA]

= vect[W(R̂−R(θ))WA] = gA

The second line is the complex conjugate of the first line. The
third line is

1
2SHvect[W(I + W−1W̃)︸ ︷︷ ︸

=W+W̃

(R̂−R(θ)−∆Ψ)·

·WA(AHWA)−1AHW︸ ︷︷ ︸
=W−W̃

+WA(AHWA)−1AHW︸ ︷︷ ︸
=W−W̃

(R̂−R(θ)−∆Ψ)·

· (I + W̃W−1)W︸ ︷︷ ︸
=W+W̃

+2W∆ΨW]

= SHvect[W(R̂−R(θ)−∆Ψ)W + W∆ΨW]

= SHvect[W(R̂−R(θ))W] = gΨ,

where in the first step we used (65).

APPENDIX C
STEP-SIZE FOR WEIGHTED LEAST SQUARES

In Section V-A, we showed parameter estimation using
a Weighted Least Squares formulation, solved by a descent
algorithm such as GN. Here we discuss the selection of the
step-size parameter µ and show that the optimal value can be
obtained in closed form. We first investigate how the error
term E = R̂−R is updated after each iteration,

E(k)
m = R̂m −A(k)

m (A(k)
m )H −Ψ(k)

E(k+1)
m = R̂m −A(k+1)

m (A(k+1)
m )H −Ψ(k+1)

= E(k)
m − µYm − µ2Xm,

where
Ym = ∆Am

(A
(k)
m )H + A

(k)
m ∆H

Am
+ ∆Ψ

Xm = ∆Am∆H
Am

.

Let e = vect(E), x = vect(X) and y = vect(Y). Then the
WLS cost function can be written as

f(θ, δ, µ) =
∑
m

eH
m(WT

m ⊗Wm)em

and

e(k+1)
m = e(k)

m − µym − µ2xm.
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After taking derivatives with respect to µ we need to solve
∂f

∂µ
= a1µ

3 + a2µ
2 + a3µ+ a4 = 0, (66)

where

a1 = 4
∑
m

xH
m(WT

m ⊗Wm)xm, (67)

a2 = 6
∑
m

<{yH
m(WT

m ⊗Wm)xm}, (68)

a3 = 2
∑
m

yH
m(WT

m ⊗Wm)ym (69)

− 4
∑
m

<{eH
m(WT

m ⊗Wm)xm}, (70)

a4 = −2
∑
m

<{eH
m(WT

m ⊗Wm)ym}. (71)

<{.} is the real part of the argument and we have dropped the
dependency on k from the notation.

This is a cubic relation where all the parameters are real,
and closed-form solutions exists.
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