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Abstract
A fully separated bicycle network from vehicular traffic is not realistic even for the most 
bicycle-friendly cities. Thus, all around the world urban cycling entails switching between 
streets of different safety, convenience, and comfort levels. As a consequence, the quality 
of bicycle networks should be evaluated not based on one but multiple factors and by con-
sidering the different user preferences regarding these factors. More comprehensive meth-
odologies to assess urban bicycle networks are essential to the operation and planning of 
modern city transportation. This work proposes a multi-objective methodology to assess—
what we refer to as—bikeability between origin–destination locations and over the entire 
network, useful for evaluation and planning of bicycle networks. We do so by introducing 
the concept of bikeability curves which allows us to assess the quality of cycling in a city 
network with respect to the heterogeneity of user preferences. The application of the pro-
posed methodology is demonstrated on two cities with different bike cultures: Amsterdam 
and Melbourne. Our results suggest the effectiveness of bikeability curves in describing the 
characteristic features and differences in the two networks.

Keywords Bikeability · Complex network analysis · Urban traffic networks · Multi-
objective optimisation · Multi-layer networks

Introduction

Few cities have a fully connected network of separated bike tracks. Often, bike networks 
consist of a heterogeneous set of streets (including car streets) with various comfort and 
convenience levels. This forces cyclists to switch between networks with different comfort 
levels during their journey (as if they travel through a multi-layer network). Unlike drivers 
of private vehicles, cyclists choose their routes by taking multiple contrasting objectives 
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into consideration, for example, they consider the distance and suitability of a bike route 
(Ehrgott et al. 2012) while also accounting for safety and comfort (Stinson and Bhat 2003).

Cyclists have heterogeneous route preferences and therefore, one single route that is 
optimally bikeable for all individuals does generally not exist between an origin–destina-
tion (OD). For example, commuter cyclists might prefer a very short bike route with high 
discomfort while recreational cyclists might prefer a longer route that is more comfort-
able (Krizek et al. 2007). Many studies have successfully modeled cyclists’ route choice 
behaviour and have reported findings concerning the average cyclists’ route preference in 
terms of detour, facility type, travel time, etc. (Krizek et al. 2007; Menghini et al. 2010; 
Broach et al. 2012; Zimmermann et al. 2017). While the average behaviour is useful for 
understanding attractors and deterrents of cyclists in general, it does not provide a compre-
hensive picture of individual facets (since averagin blurs out the effects of diversity among 
cyclists). We think that network assessment tools should provide a full picture of what the 
network supplies means to all users, not only to the average cyclist. Since transparency and 
understanding of the network quality are key elements to decision makers we aim to pro-
vide a tool to evaluate the network free from user preference assumptions. It is then up to 
the policymaker to slice the analysis for a specific user type she wants to serve.

The heterogeneity of both the street network and of users’ preferences motivates the 
development of a multi-objective methodology to assess the bikeability of a network. Hav-
ing multiple objectives offers a more comprehensive evaluation (in terms of user hetero-
geneity) of the network, but also makes the evaluation more complex (Gholamialm and 
Matisziw 2018). This work addresses this problem via a network-wide bikeability curve 
concept we elaborate on. The main contribution is to define an assumption-free method-
ology for assessing how bikeable specific OD pairs and the networks themselves are, by 
taking into account the heterogeneity of the streets and users’ preferences. To this end, this 
work provides a multi-objective tool for city planners to study bikeability of specific OD 
pairs, neighbourhoods or a whole city network.

This article is organized as follows. “Literature review” section presents a literature 
review on bikeability assessment methodologies. “Multi-layered bikeability assessment 
methodology” section illustrates the proposed methodology. Implementation of a key com-
ponent of our methodology (the discomfort function) is discussed in “Implementation of 
the discomfort function” section. An application of the methodology is presented in “Case 
study: Amsterdam–Melbourne” section via case-studies of Amsterdam, Netherlands and 
Melbourne, Australia. After discussing the applications of the proposed framework and 
implications for future research in “Discussion” section, the conclusions are presented in 
“Conclusions” section.

Literature review

Answering the question “how easily can a person get to their destination by riding a bike?” 
is a non-trivial task in complex urban networks, while it is crucial for measuring the good-
ness of a bike network. In some previous studies, this question has been mostly answered 
by focusing on network structural properties and neglecting user preferences. For example, 
Dill (2004) explores a wide range of connectivity measures from various domains such as 
landscape ecology, geography, and urban planning. Whereas Schoner and Levinson (2014) 
and Orozco et al. (2020) use network science to measure connectivity via indicators such 
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as network completeness and the number of connected components. However, the comfort 
and safety of a bicycle network is a crucial component for its assessment, as it reveals to 
be an important factor affecting cyclists’ route choices (Stinson 1828). For this reason, to 
assess urban bicycle networks, we refer to the concept of “bikeability”.

Bikeability can be defined as the extent to which an environment is convenient and safe 
for cycling. However, a recent review of the existing literature shows that bikeability has 
been defined and assessed in several ways and the study concludes that there is no univer-
sally accepted definition (Kellstedt et al. 2021). Bikeability is the combination of objective 
and subjective factors and it integrates concepts such as bicycle comfort, bicycle suitabil-
ity, bicycle friendliness, and bicycle accessibility. According to a review published in 2020 
(Arellana et al. 2020) comfort and safety were the most common factors to construct bike-
ability indexes, around 96% of the reviewed studies included at least one of these factors. 
Lowry et al. (2012) present bikeability in relation to the scale of analysis and distinguish 
between suitability of a link and bikeability defined as the convenience and comfort of 
routes over the entire city network. In our work, bikeability focuses on the detour and type 
(or presence) of physical bicycle infrastructure, which can be regarded both as a comfort 
and a safety factor (Arellana et  al. 2020). The scale of the assessment developed in this 
study is based on segment level measurements of length and comfort at a city- or neigh-
bourhood-level analysis.

The concept of comfort introduces user preferences and the trade-off between direct-
ness versus comfort to the analysis. Cyclists have different route preferences: some may 
prefer direct routes, while others prefer more comfortable ones. Previous studies have made 
it clear that cyclists are willing to choose a longer route over the shortest path in order to 
ride bicycle-designated streets, i.e., more comfortable and safer routes (Sener et al. 2009; 
Larsen and El-Geneidy 2011; Broach et al. 2012; Hood et al. 2011; Krizek et al. 2007). 
Detours depend on trip length (Larsen and El-Geneidy 2011; Krizek et  al. 2007) and 
cyclists who cycle regularly are less likely to use a bicycle facility (Larsen and El-Geneidy 
2011). On average recreational and afternoon cyclists tend to have larger detours compared 
to morning commuters (Krizek et al. 2007; Hyodo et al. 2000) thanks to fewer time con-
straints that allow longer travel times.

The average detour rates of trips range between 8% and 93%. In Broach et al. (2012), 
Winters et al. (2010) and Boisjoly et al. (2020), 50–75% of observed trips deviate from the 
shortest route by 10%. Hood et al. (2011) analyse marginal rates of substitution and show 
that the average cyclist is willing to add a mile on bike lanes in exchange for only half a 
mile on ordinary roads. Evidence from Minneapolis states that on average cyclists travelled 
67% longer in order to include a cycle path facility on their route whereas weekend cyclists 
are willing to cycle up to 40% more (resulting in 93% detour) (Krizek et al. 2007). Figure 1 
manifests the variety amongst different cyclists and contexts when it comes to the willing-
ness to make detours, which supports our motivation to define an assumption-free assess-
ment tool.

A well-known study that has incorporated the interplay between comfort and distance is 
Mekuria et al. (2012). Mekuria et al. (2012) and studies following a similar approach (Furth 
et  al. 2016; Lowry and Loh 2017; Abad and van der Meer 2018) define the preference of 
the users as an a priori specification of tolerance level of traffic stress. To analyse low-stress 
connectivity, these studies assume that a trip is connected at a certain level of stress if all 
segments of the trip are below that stress level and if the detour is below a fixed rate. These 
are a priori assumptions that may limit the analysis on specific user types. For example, one 
may be willing to accept a high-stress level for a small part of the trip to avoid large detours. 
Moreover, the accepted detour ratio depends on the user (different users may accept different 
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detour ratios) and on the gained comfort. We believe that it is useful to observe how the net-
work performs when assumptions on detour and comfort are not fixed, as fixing preferences a 
priori may obscure the complete picture of the network bikeability and results in an analysis 
that is highly dependent on the assumption parameters. In order to not make assumptions on 
the preferred comfort level of users, our work will not reduce bikeability to one aggregated 
value. Instead, we represent it as a set of bikeability curves that can be aggregated to analyse 
the quality of the entire city network. This allows us to analyse the network depending on all 
possible user preferences without the need to specify their behaviour beforehand.

Instead of using a generalised cost function, which requires a priori assumptions on users, 
we model route choice as a multi-objective behaviour. This allows us to also assess the net-
work in an assumption-free method. Although a few existing studies (Ehrgott et  al. 2012; 
Kang and Fricker 2018; Wang et al. 2018) has used multi-objective criteria in route choice 
modelling no previous study, except (Gholamialm and Matisziw 2018), has attempted to 
assess a bicycle network with it. The work of Gholamialm and Matisziw (2018) points out the 
higher complexity of analysing optimal route alternatives for multiple ODs compared to only 
one OD and addresses it with aggregated summary metrics which only reflect a partial picture 
of bikeability. Summary matrices are computed for one criterion at a time, meaning that they 
do not show the trade-off between the different criteria [see the method section in Gholamialm 
and Matisziw (2018)].

Our methodology extends the multi-objective bikeability assessment literature by provid-
ing a more general framework that avoids summary metrics, to observe bikeability depending 
on all the different user preferences. We tackle the increased complexity of multi-objective 
analysis by providing a methodology to build an average bikeability curve: an intuitive and 
visual instrument to evaluate a network. This work develops a methodology for the analysis 
and visualisation of bikeability that uses the shape of Pareto fronts (Khorram et al. 2014) to 
extract information. We validate and illustrate the use of our proposed method by assessing 
and visualising the network-wide bikeability of two cities.

Fig. 1  Overview of cyclists’ detour behaviour and bike facility preference reported in the literature
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Multi‑layered bikeability assessment methodology

We do not assume that the users will—or in fact, can—always cycle on streets that do not 
exceed their tolerance of discomfort. For example, one could prefer separated cycle tracks 
(that have a low level of discomfort) but be willing to take a higher risk or discomfort 
and cycle along with vehicular traffic for a short part of the trip, if this avoids a very long 
detour. This is also because only separated cycle tracks will not—at least for many cit-
ies—make a pathway from an origin to the desired destination. Thus cyclists go through a 
multi-objective optimisation process to select their route comprised of cycling tracks and 
other types of roads.

In general, multiple objectives should be considered simultaneously for assessing a 
bicycle network. To name just a few we can consider: traveled distance, perceived safety, 
number of interruptions, and comfort. For a matter of simplicity, we illustrate our method-
ology for two representative costs: distance and discomfort. Distance is an objective factor 
whereas discomfort is a subjective, and complex factor to measure (Arellana et al. 2020). 
The methodology still holds for a wider set of objectives at the cost of less interpretabil-
ity.1 In the following paragraphs, we illustrate how the problem of assessing bikeability 
between a pair of nodes can be seen as a trade-off, between distance and discomfort, on a 
multi-layer network.

We claim that there is no universally accepted definition of what a bike network is. As 
Mekuria et al. (2012) points out, there are two perspectives on bicycle networks: from a 
municipality point of view, a bike network is made up of any street where cycling is not 
prohibited, whereas, from a user perspective a bike network is a set of streets and paths 
that do not exceed the person’s tolerance for traffic stress. We do not narrow down a bike 
network to only the separated bike streets where all users feel comfortable to cycle on. 
Instead, we include all the different streets, from most to least comfortable ones, by defin-
ing the bike network as a multi-layer network (see “Modelling the multi-layer network” 
section for the formal definition) where each layer represents a sub-network made of all 
roads with homogeneous discomfort. In a multi-layer representation (Boccaletti et al. 2014; 
Kivelä et al. 2014) of a bike network, a route becomes a set of links on a set of layers in 
addition to a set of links connecting the different layers. Figure 2 provides a visual repre-
sentation of a route as a path on a multi-layered graph. A multi-layer network effectively 
shows the costs a cyclist incurs when cycling from an origin to a destination. This model 
allows us to generalize the discomfort cost of a route depending on the comfort level of the 
street segments that define the route and the number of changes between comfort levels. 
Thus, the discomfort of a trip can be defined as the sum of the discomfort of all the links 
and nodes in the path.

Hereafter, we first define what is meant by a multi-layer network (“Modelling the multi-
layer network” section), secondly we present route choice as an optimisation problem 
based on the concept of disutility (in “Individual route choice model to define bikeability” 
section ). Subsequently, the set of solutions to the route choice problem is identified by 
the Pareto front (in “Pareto optimality” section). Using a modified Dijkstra algorithm the 
Pareto optimal (set of) bike routes that connect an OD pair are identified (“Multi-objective 
shortest path algorithm” section). Finally, we define the bikeability curves for one OD pair 

1 For insight about additional complexity of multi-objective optimisation as more objectives are added we 
refer the reader to Jakob and Blume (2014).
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and for a network (in “Definition of the bikeability curve” and “Network-wide bikeability 
curve” sections).

Modelling the multi‑layer network

The urban bicycle road network is modelled as a multi-layered directed network denoted by 
G = (N,E, L) , where N is the set of all nodes, E is the set of directed links and L is a set of 
layers. Each intersection i between the edges is represented by a single node n�

i
∈ N , in each 

layer � ∈ L of the network. Each link e ∈ E can be denoted as an ordered pair e = (n�
i
, n�

�

j
) 

representing a connection from node i in layer � to node j in layer �′ . Intra-layer links 
(n�

i
, n�

j
) ∈ E (i.e. connecting two nodes on the same layer) represent the real connections 

between different locations by streets of the same facility type. Inter-layer links only con-
nect the corresponding nodes between different layers, i.e. ∀e = (n�

i
, n�

�

j
)� ≠ �

�
⇒ i = j . 

These links are used to model the change of facility type while cycling. In order to address 
the source node of a link, we introduce S ∶ E → N as the function that maps a link onto its 
source node. To address the layer of a link, we introduce L ∶ E → L as the function that 
maps a link onto the layer of its source node. Each link has a length and discomfort attrib-
ute which differs across different network layers. The length of an intra-layer link is the 
physical length of the street segment, whereas the length of inter-layer links represents the 
length of the “turning manoeuvre”, and can be a few tens of meters, for a wide intersection, 
or set to a small but positive value, for an immediate transition.2 The discomfort attrib-
ute of an intra-layer link models the impedance of cycling on the particular link, which is 
highly influenced by its facility type, whereas the discomfort of inter-layer link models the 
inconvenience of changing cycling facility type. Empirical data have shown that such a 

Fig. 2  Example of a route from 
node 1 to node 6 using intra-layer 
links on different layers (solid 
links) and switching between 
layers represented by inter-layer 
links (dashed arrows)

2 Length should always be strictly positive for technical reasons (to prevent infinite looping of the path 
search algorithm).
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facility discontinuity implies (1) more diverse motion strategies of users, (2) speed reduc-
tion and (3) more maneuvers and braking compared to the control site (Niaki et al. 2018).

We define a directed path through the multi-layered network from node o to node d as 
an ordered sequence of links � = (e1, ..., e|�|) , with length |�| , where e1 ’s source and e|�| ’s 
target are nodes o and d respectively. The total length of the path � is calculated as

where d(e) is the length of the edge e. Similarly, the total discomfort of path � is calculated 
as a sum of path segment discomfort r(e):

The segment discomfort r(e) is the combination of edge and node discomfort:

where re(e) is a discomfort function that maps an edge e to a discomfort value, and rn(n) is 
a discomfort function that maps a node n to a discomfort value, which can, for instance, be 
used to model negative impact on cyclists route choice [due to deceleration, stop, waiting 
time to traverse an intersection (Ton et al. 2017)]. We model rn(S(e)) to be always zero for 
the first edge that a person travels.

The methodology presented here is independent of the discomfort function. The only 
condition is that the discomfort should not be negative, since this could introduce cycles 
with a positive accumulated utility, which is not supported by our later introduced method-
ologies. Some examples of discomfort function specifications are reported in “Implementa-
tion of the discomfort function” section, where we discuss viable implementations.

Individual route choice model to define bikeability

In this section, we briefly touch upon route choice and utility theory to describe the indi-
vidual route choice behaviour because bikeability should assess what the network offers, in 
relation to what the cyclist would choose. Thus, understanding how cyclists choose their 
routes guides us in defining the bikeability of a network.

Route choice modelers often represent user preferences via so-called (dis-) utility func-
tions (Ben-Akiva et  al. 2004). Each route has specific qualities or costs that result in a 
utility value perceived by the cyclist. Cyclists are assumed to be rational users, thus to be 
utility maximisers (or disutility minimisers). Without loss of generality, in this work we 
simplify route choice by assuming that route choice depends only on two major factors 
such as distance and discomfort3 factor. The rational cyclist will typically identify the most 
bikeable route as the one with a distance-discomfort combination associated with the low-
est disutility, as defined in (1).

D(�) =
∑
e∈�

d(e),

R(�) =
∑
e∈�

r(e).

r(e) = re(e) + rn(S(e)),

3 Discomfort depends on many factors (both observable and non-observable) (Arellana et al. 2020), here 
we model discomfort as an ideal impedance value that one can measure to the best of its data availability. 
Later in the case study we will measure discomfort as presence and type of bicycle infrastructure, which is 
regarded by some studies as a comfort and others as a safety factor (Arellana et al. 2020).
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The route choice problem can be seen as an optimisation problem where each individual 
will minimise its total disutility constrained to the set of feasible routes. Let us define Π 
as the set of all feasible routes from o to d, and let us define C(D(�),R(�)) ∶ ℝ ×ℝ → ℝ 
as the cost function that maps a pair of total distance and total discomfort values to a cost 
value. Now, the individual route choice problem can be formally defined as:

The solution to the optimisation problem of Eq. (1) is depicted in Fig. 3 where we plot 
the iso-disutility lines (level sets of C(D(�),R(�)) ) and the feasible set of routes Π (as 
points) with respect to a linear utility function. Graphically, the optimal (most bikeable) 
route corresponds to the route laying on the iso-disutility line closest to the origin. Users 
might also choose non-optimal routes, we leave the investigation of indifference bands 
(Vreeswijk et al. 2013) in the field of cycling to future research (see the discussion in “Dis-
cussion” section).

The shape of the iso-utility curves depends on individual preference and is generally not 
restricted to linear ones. Even if we would expect a linear cost function, the specific slopes 
of the indifference curves will differ between individuals. Figure  4, for example, shows 
different types of indifference curves reflecting the discomfort acceptance behaviour of 
cyclists. Depending on the indifference curve being used, the solution to the optimisation 
problem formulated by Eq. (1) is different, and consequently also the most bikeable route. 

(1)�∗ = argmin�∈ΠC(D(�),R(�)).

Fig. 3  Solution to the route 
choice optimisation prob-
lem for one OD pair, in the 
case of linear cost function 
C(D(�),R(�)) = � ∗ D(�) + � ∗ R(�)

Fig. 4  Indifference curves reflecting discomfort acceptance attitude of cyclists
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In order to consider the entire set of individual optima, the following section introduces 
Pareto optimality.

Pareto optimality

In the previous section, we described how the chosen route of a cyclist is assumed to be 
the solution to an individual optimisation problem, in which the cyclist makes a trade-off 
between the experienced discomfort and travel distance. The extent to which individuals 
prefer short trips over comfortable trips defines the shape of their indifference curves and 
herewith the route that they will select. As a result, one single route that is optimal to all 
individuals generally does not exist, which makes the definition of a bikeability measure in 
this context far from trivial. Since a bikeability measure should consider the different users 
of the system, the measure should somehow incorporate the entire set of individual optimal 
routes.

Although we cannot identify a global optimal route, we can simplify our analysis by 
making the assumption that individuals will never prefer a certain route over another one 
if this route is both longer and more uncomfortable (non-dominant alternatives). Formally, 
this assumption can be called the “rational cyclist” assumption and can be expressed as:

This assumption allows us to identify the smallest sub-set of routes which is guaranteed to 
contain each possible individual-specific optimal route (according to (1)). This sub-set is 
called the Pareto-front and deals with the concept of Pareto optimality. Pareto optimality 
of a multi-objective optimisation problem is defined as a situation in which it is impossible 
to score better on one criterion without scoring worse on another criterion. The set of all 
Pareto optimal choices is called the Pareto front. In the next sub-sections, we briefly dis-
cuss Pareto optimality and how this is applied to the route choice problem to identify the 
set of optimal routes.

Pareto optimality for route choice problem

In the context of the bicycle route choice problem on multi-layer networks, the concept of 
Pareto optimality is intertwined with the assumption that people will never prefer a route 
with a higher distance and discomfort (2).

Pareto domination of path �1 ∈ Π over path �2 ∈ Π is now defined as:

and the Pareto front Π∗ is defined as:

As mentioned before, with assumption (2), the optimal route according to (1), is guaran-
teed to be in Π∗ for each individual. This makes the assessment of the Pareto front a power-
ful methodology to study the bikeability of a network in terms of distance and discomfort.

(2)
𝜕C(d, r)

𝜕d
> 0 and

𝜕C(d, r)

𝜕r
> 0.

(3)𝜋1 ≤P 𝜋2
⟺

⎧
⎪⎨⎪⎩

R(𝜋1) ≤ R(𝜋2),
D(𝜋1) ≤ D(𝜋2),
R(𝜋1) < R(𝜋2) or D(𝜋1) < D(𝜋2)

,

(4)Π∗ = {�1 ∈ Π | ∄ �2 ∈ Π,�2 ≤P �1}.
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We illustrate the aforementioned concepts in Fig.  5. As an example, we use a 5 × 5 
2-layer grid network. The two layers represent a very comfortable (green bordered layer) 
and uncomfortable (orange bordered layer) network. The intra-layer link weights (shown 
as ordered pairs of values), describe the length and discomfort of the links on the specific 
layer. The orange layer has a discomfort equals to the length of each link, whereas the 
green layer has a discomfort value of zero on each link. Thus, the total cost of moving on 
the orange layer is double the distance, whereas on the green layer the cost is equal to the 
distance. The only inter-layer links are between the same nodes, and, in this case, have zero 
length and zero discomfort value.

Finding all possible paths is a hard problem since there is an exponential number of 
simple paths (with respect to the size of the longest path). The scatter plot on the right 
shows 100,000 possible routes from the origin to the destination node. The routes were 
randomly generated excluding cycles (repeated nodes). Each route is a point on the dis-
tance-discomfort plane. Among the points, we color-coded the points on the Pareto front in 
red and joined them with a line. Note that in the example in Fig. 5 only 7 routes, among the 
millions of possible routes, are optimal with respect to distance and discomfort.

The shape of the Pareto front, also called “bikeability curve” in the remainder of this 
paper, will be used as the main tool to assess the bikeability in the multi-layered network. 
The Pareto front is identified by a modified version of the Dijkstra algorithm presented in 
“Multi-objective shortest path algorithm” section.

Multi‑objective shortest path algorithm

Finding the shortest path on a network for a single objective is a well-known problem, 
solved in an exact way using Dijkstra’s algorithm. In the presented methodology a multi-
objective shortest path (MOSP) algorithm is needed since we want to minimise conflicting 
objectives of detour and discomfort. In literature, there is a wide variety of MOSP algo-
rithms that work on the k-objectives optimal path problem. Algorithms can be classified as 
an exact, heuristic, approximate and meta-heuristic. In the field of transport, the 2-D prob-
lem was already addressed in 1979 in Dial (1979). The author describes an exact recursive 
method to find the Pareto front of a mode choice model in which cost and time are simulta-
neously being minimised. Another branch of exact methods to solve the MOSP problem is 

Fig. 5  Pareto front on 5 × 5 2-layer grid network
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the family of labelling algorithms, in which lists of multi-dimensional labels are assigned 
to nodes, representing the set of non-dominated path costs (Hansen 1980; Martins 1984).

For our study, we implement a labelling algorithm in Python. The algorithm calculates 
the Pareto front for a given origin to all possible destination nodes. Since we applied our 
methodology only on small to medium-sized networks, we did not have to consider using 
more complex methods. For larger networks, the use of MOSP labelling algorithms can 
become infeasible due to the computation cost. For these cases, some exact methods have 
been developed, yielding a higher computational efficiency (e.g. Raith 2010; Duque et al. 
2014). Also, an approximate method could be adopted, in which approximately non-domi-
nated paths are found, for more insight we refer the reader to Garroppo et al. (2010). Given 
that the methodology presented can be generalized to more than two dimensions, for an 
extension of the multi-objective shortest path algorithm we refer the reader to Ghariblou 
et al. (2017) and Garroppo et al. (2010).

Definition of the bikeability curve

The bikeability curve, as presented in “Pareto optimality” section, is the Pareto front of 
routes which minimise two costs imposed on cyclists when choosing a route, in our case 
those are route distance and route discomfort. For the sake of comparison between routes, 
we normalise distances and discomfort values as explained in the following paragraphs. 
This enables us to use this methodology on OD pairs with different distances and to com-
pare the discomfort values across routes.

The relative distance, also referred to as circuity in the remainder of the article, is the 
route distance (sum of all path links) divided by the Euclidean distance. This measure, 
used also in Schoner and Levinson (2014), allows identifying if there are OD pairs con-
nected by meandering routes, which may suggest the need for new road infrastructure. 
Note that using Euclidean distance as a denominator can penalise cities whose topography 
imposes inevitable detours (e.g. cities with canals and bridges) and cities with many short 
ODs, since the effect of a detour is less for long routes than for short routes. The aforemen-
tioned limitations should be considered when comparing different cities. The purpose of 
this measure is to “identify recreationally oriented routes that meander or circle back on 
themselves, versus routes that provide an efficient utilitarian connection for commuting” as 
pointed out in Schoner and Levinson (2014).

The relative discomfort is defined as the total discomfort of the route (sum of discom-
fort on all links of the route) divided by the Euclidean distance (in meters) of the shortest 
route. The resulting relative discomfort represents the discomfort per meter. This allows for 
a comparison between discomfort values among the alternative routes.

We use Fig. 6a to explain the bikeability curve on the distance-discomfort space. Point 
(A), in Fig. 6a, represents the shortest route. The ordinate of route (A) shows the highest 
imposed discomfort on cyclists that seek to cycle the shortest route possible. Point (B) is 
the shortest route. Its relative discomfort value shows the lowest possible discomfort level 
to go from origin to destination. Whereas B’s relative distance value measures what is the 
imposed detour to have the least possible discomfort. Finally, an important measure on 
the curve is the trade-off rate (ToR) between any two routes on the Pareto front which is 
defined as ToR = Δdiscomfort∕Δdistance between two routes. Ideally, the higher the trade-
off rate, the more bikeable the network structure as it means it is easier to go on a more 
comfortable route with a small increase in path length.
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Note that the curves defining Pareto optimal paths can be described by both convex 
and non-convex functions, where the convexity of the Pareto front depends on the convex-
ity of the feasible set of routes (Brisset and Gillon 2015). As an instance, in Fig. 6b the 
blue curve is convex whereas the red is non-convex. If we place stronger assumptions on 
the utility function such as linearity, instead of assumptions 2, some Pareto optima would 
never be chosen from the users. We prefer not to make strict assumptions on user utility 
and keep the Pareto front more general.

The ideal bikeability curve, between an OD pair, should resemble a vertical line that 
reaches the lowest possible discomfort value and with a relative distance close to one. This 
would guarantee alternative routes that are almost equivalent from the distance aspect, but 
that offer different discomfort values, including low discomfort values. Moreover, the more 
routes there are on the bikeability curve, the better because it means that there are many 
optimally bikeable alternatives. In Fig. 6b the red curve is considered as a better bikeability 
curve compared to the blue curve because the red curve reaches zero discomfort values 
with a much smaller distance increase, and has more alternative routes.

The result of the methodology is a curve that, combined with cyclists’ route preference, 
shows what bicycle users’ the network serves best. To interpret the bikeability curves the 
analyst should make use of findings on cyclists’ actual behaviour and route choice prefer-
ences (see Fig. 1 for an overview). This way policymakers are informed on which type of 
users their network is serving and can define improvement strategies to attract new cyclists.

Network‑wide bikeability curve

There may be a variety of ways to interpret the bikeability curves and use them to evaluate 
the network bikeability of the whole city. We present an approach that incorporates all the 
different individual preferences (thus utility functions) and shows how bikeable the network 
is according to the different users. There are many ways to combine the Pareto fronts of all 
different OD-pairs into one single so-called network-wide bikeability curve. We will describe 
an approach that transforms the set of Pareto fronts into one single network-wide bikeability 
curve. This curve contains for all possible distance-discomfort trade-off choices, the expected 

Fig. 6  Interpretation of bikeability curves. a Extreme routes and trade-off rate are shown. b Provides an 
example of comparison between two bikeability curves. (Color figure online)
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distance, and discomfort of the optimal route for an OD-pair that is sampled from an OD-
demand distribution.

For simplicity, let us assume that people have a linear deterministic cost function: 
C�(d, r) = d + � ⋅ r . Let us now imagine that we have an individual with a certain value of 
� . We assign this person to an OD-pair that is sampled from a predefined demand distribution 
w. Precisely, w(o, d) equals the probability that an arbitrary trip in the network has node o as 
its origin and node d as its destination. We denote d∗ and r∗ as the distance and discomfort of 
this person’s optimal trip for the selected OD-pair. Using the demand distribution, we can now 
express the expected distance �(d∗|�) and expected discomfort �(r∗|�) , given a certain value 
of � , as:

where D(⋅) and R(⋅) are the distance and discomfort function respectively and �∗
o,d
(�) 

denotes the optimal path from o to d with cost parameter � , which can be calculated 
according to Eq. (1):

with Πo,d the set of all paths between o and d. Similar to the single OD-pair analysis, we 
notice that it is impossible to express the expected distance and discomfort (i.e. bikeability) 
as a single point, because of their dependency on the discomfort-distance trade-off param-
eter � . In a comparable fashion as for the single OD case, we, therefore, define the network-
wide bikeability curve B as the set of the unique expected discomfort versus expected dis-
tance points, for all possible �:

Figure  7 shows how the network-wide bikeability curve builds up starting from one 
curve and considering one additional curve for each iteration. An interesting property of 
this network-wide bikeability curve is that it is guaranteed to be convex. This is because 
we use a linear cost function, which makes that the distance-discomfort point of an optimal 

(5)�(d∗|�) = ∑
(o,d)∈N×N

wo,d ⋅ D(�
∗
o,d
(�))

(6)�(r∗|�) = ∑
(o,d)∈N×N

wo,d ⋅ R(�
∗
o,d
(�)),

(7)�∗
o,d
(�) = argmin�∈Πo,d

C�(D(�),R(�)),

(8)B =
{
(𝔼(d∗|�),𝔼(r∗|�))|� ∈ ℝ≥0

}
.

Fig. 7  Building the network-wide Pareto front, for a generic users with utility: C� (d, r) = d + � ⋅ r . For this 
example we computed for values of � = 1, 2,… , 10 . In reality � will be computed for a wider range of val-
ues
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route is always in the convex hull of a Pareto front. We will not give the details, but it 
can be shown that the distance-discomfort aggregation [Eqs. (5) and (6)] preserves this 
property.

Calculation of the network‑wide bikeability curve

The first thing to realize when calculating the network-wide bikeability curve B is that the 
parameter space Πo,d from which to select the optimal path [Eq. (7)] can be reduced to the 
Pareto front Π∗

o,d
 for origin o and d. To calculate the points in set B [Eq. (8)], we will briefly 

describe two methods. A simple approach, which is not guaranteed to be 100% correct, 
iterates over � with a sufficiently small fixed step, such that we expect to not “skip” a point 
in the curve. Although this simple approach does not guarantee to find all points in B, our 
case-studies indicate that with a small iteration step this approach is capable in revealing 
the true “shape” of B.

If networks become large and/or 100% coverage is required, a more advanced approach 
has to be considered. We realize that there is a limited number of values for � to be tested 
in order to be sure that we will find all elements of B. The main idea is to first identify the 
‘critical’ values of � for each OD-pair, where a ‘critical’ value is defined as a value for 
� at which the optimal route changes. These ‘critical’ values can easily be determined in 
an exact way by matching them with the slopes between consecutive points in the Pareto 
front. Putting the ‘critical’ � values of all OD-pairs in one large ordered list, we can state 
that between two consecutive ‘critical’ � values, the result of (7) is guaranteed to be the 
same in the whole interval between these two values, so it suffices to evaluate only one 
single point in each interval. This calculation is guaranteed to provide the exact B. The 
choice between the simple and advanced approach boils down to a trade-off between com-
putational time and accuracy. The advanced approach might become slow for very large 
networks, where the simple approach could still be computed in a reasonable time at the 
expense of a reduced resemblance of the true B.

Implementation of the discomfort function

Discomfort of a path consists of an edge component, expressed by re(⋅) , and a node com-
ponent, expressed by rn(⋅) . Practitioners aiming to implement this methodology can select 
the discomfort function specifications depending on the analysis they want to conduct. The 
only condition is that the discomfort has to be positive. Some examples of discomfort func-
tion specifications are presented hereafter.

Possible examples of edge discomfort function re(⋅) are:

• Distance travelled on the bike-unfriendly network: 

• Number of facility changes. One could measure discomfort, or express a compo-
nent of it, by counting the number of facility changes. 

re(e) =

{
d(e), if L(e) is a bike-unfriendly layer
0, otherwise
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 Certainly, one could also put specific weights on the different types of facility changes, 
which demands a deeper empirical insight into the experienced discomfort of all types 
of maneuvers.

• Accident risk, based on distance and road type. In this case, the discomfort func-
tion would be 

 where �
�
 is a layer-specific constant that defines the accident risk per distance unit on 

layer � and d(e) is the exposure to the risk in terms of distance travelled. The accident 
risk �

�
 will be different depending on the cities, their road regulation, and bike culture. 

Both the exposure and the probability of an accident can be functions of the volumes of 
bikes and cars on the streets.

  A similar function can also measure discomfort proportionally to the distance 
travelled on bike infrastructure of different comfort levels. �

�
 values will be low 

(close to or equal to 0) for bike-friendly layers and high for bike-unfriendly lay-
ers. This discomfort definition is similar to roadway stress used in Lowry and Loh 
(2017), which is a percentage increase in perceived travel distance.

• The discomfort function can depend on the demand (both at a OD or link-level). 
As a fact, too many cyclists on the same street segment can slow down the ideal 
speed of some cyclists and also create queues at intersections that may delay the 
departure of cyclists at a green light. The challenge to implement such a discom-
fort function is to obtain real-time estimates of crowdedness on bike streets. Many 
municipalities in The Netherlands employ inductive loop sensors for traffic signal 
controllers, through which we can estimate flows or queues in specific locations of 
the network (Reggiani et al. 2019).

• Bike level of service (BLOS) is an index that attempts to rank bike street segments 
based on perceived comfort and safety and can be a valid discomfort function for 
our methodology. For an overview of the methods, we refer to Zuniga-Garcia et al. 
(2018) however a comparison on BLOS methodologies showed diverse scores of 
BLOS for the same street segment (Lowry et al. 2012). This shows that there is no 
agreement on how to grade a street level of service for bicycles.

Below is a list of possible examples of node discomfort function rn(⋅):

• Presence of a signalized intersections could be modeled as an impedance factor: 

• Expected waiting time at intersections can be a realistic impedance factor of tra-
versing a node.

re(e) =

{
1, if edge e is an inter-layer link

0, otherwise

re(e) = �
𝓁
⋅ d(e), 𝓁 = L(e),

rn(n) =

{
1, if node n is a signalized intersection

0, otherwise
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Case study: Amsterdam–Melbourne

In this section, we give an example of how the proposed methodology can be implemented 
on real street networks and analyse bikeability results between two cities, Amsterdam and 
Melbourne, with very different bike cultures. We explain the data used for the case study 
in “Areas of study and data sets” section. The bicycle networks are modeled and coarse-
grained in “Modelling the multi-layer networks” section. The results from the bikeability 
analysis at city and neighbourhood level are presented in “City level bikeability assess-
ment” and “Neighbourhood level bikeability assessment” sections respectively.

Areas of study and data sets

Melbourne and Amsterdam are selected to show an application of the methodology. These 
two cities have very different bike cultures, the share of bike trips in Amsterdam and Mel-
bourne is respectively 27% and 2% (Pucher and Buehler 2007), which allows us to test if 
the methodology is able to explain the difference in bike culture from a bikeability point 
of view. For the network of the city of Melbourne, we consider “Melbourne city” area 
given the higher densities and consequently the higher bike-share compared to other parts 
of the city. Concerning the network of the city of Amsterdam, we remove from the network 
the “Amsterdam-Zuidoost” area since it is a disconnected component of the network. The 
resulting areas of the two cities are shown in Fig. 8. The size of the two areas is signifi-
cantly different however, this does not affect the comparison since route distances, in the 
analysis, are re-scaled according to the shortest distance available.

The case study uses the bike and car street networks made available from Open Street 
Map project (OSM). Such crowd-sourced and open access platforms provide an attractive 
and often up-to-date source of detailed data (Ferster et al. 2019). Although we are aware 
of tagging inconsistency, Ferster et al. (2019) report that OSM can be more updated than 
municipality records, given the higher frequency with which “the crowd” contributes to 
updating the OSM compared to the city releasing updated data. Moreover, we are aware of 
inaccuracies of OSM data such as missing links or disconnected components that in real-
ity are connected. In order to not have bikeability results affected by these inaccuracies, 

Fig. 8  City areas in analysis, the scale for each city is provided at the bottom-left of each map. a Amster-
dam, b Melbourne City
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we aggregate the urban bicycle network data (from OSM) to city zone level (described 
in “Modelling the multi-layer networks” section). Namely, two locations could be discon-
nected due to missing links in OSM, but if their respective zones have uninterrupted paths 
connecting them we assume that also the specific locations are connected. The benefit of 
using OSM data is evident for reproducibility reasons as well as ease of accessibility.

The travel demand between zones in Amsterdam has been computed based on the out-
come of the learning-based transportation oriented simulation system (ALBATROSS) for 
the base year 2004 (Arentze and Timmermans 2004). A detailed description of how the 
modified ALBATROSS data set (calibrated to match Amsterdam’s mode split) was derived 
is available at Winter and Narayan (2019). After filtering out all trips that started or ended 
outside the city, intra-zone trips and trips with a distance larger than 10 km,4 the resulting 
passenger trips’ data set included a total of 52,656 agents performing a total of 139,223 
trips.

Modelling the multi‑layer networks

We import the networks from Open Street Map (OSM) using OSMNx package available 
for python (Boeing 2017). This data is available and easy to retrieve for many cities world-
wide, which makes this analysis replicable in other cities as well. We will work with a 
coarse-grained city network (Hamedmoghadam et  al. 2019), rather than the fine-grained 
urban bicycle network for two reasons: (1) to reduce the computational burden of working 
with large-scale networks, (2) to be less dependent on OSM inaccuracies, due to crowd-
sourced nature of the dataset.

Hereafter we explain the meaning of the nodes, links, and layers of the bike network. 
Given a graph representation of the urban bicycle network G(N, E, L), we build a coarse-
grained network C(N�,E�, L) such that the structure and weights of the coarse network 
represent the structural characteristics of the urban bicycle network graph. The network is 
built with a granularity level of zones (statistical areas in Melbourne and postal code areas 
in Amsterdam). The set of layers remains unchanged when building the coarse-grained 
network.

Nodes

The coarse-grained network C(N�,E�, L ) has one node per zone per layer, corresponding to 
the centroid of the zone. This means that a node n� ∈ N� corresponds to a set of nodes in N. 
To make this mapping explicit, we introduce N ∶ N�

→ P(N) as the function that maps a 
node n� ∈ N� in the coarse-grained network on the set of corresponding nodes in the origi-
nal network.

Links

For each origin o� ∈ N� and destination d� ∈ N� in the coarse-grained network, and a 
layer � ∈ L , we define an intra-layer edge e� = ((o�)� , (d�)�) if there exist an origin node 

4 We filter based on trip distance and not mode so to do an analysis not on the observed bicycle trips, but 
on the potential ones. 95% of cycling trips in the Netherlands are within 10 km, thus the exclusion of longer 
tips from this study (Schneider 2021).
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o ∈ N(o�) and destination node d ∈ N(d�) in the original network that can be connected by 
a path that only uses nodes in zones o′ and d′ and edges on layer �.

Each intra-layer edge (i.e. connecting two nodes from the same layer), has a layer-spe-
cific length and discomfort associated with the different network-layers. Inter-layer links 
exist only between the same nodes, and have zero weight associated to them. Thus a user 
can switch between layers with no discomfort cost via inter-layer links connecting the same 
nodes on different layers.

Layers

We import four network layers, corresponding to different OSM facility types. In particu-
lar, the four layers corresponds to the following facility type: 

1. bike lanes and bike tracks, denoted as �1,
2. bike lanes, bike tracks and residential streets, denoted as �2,
3. all streets where cycling is allowed by city laws, denoted as �3,
4. car streets, denoted as �4.

We assume that the four layers have increasing levels of discomfort [low, medium, high, 
very-high] although some elements of one layer may be also included in another layer, as 
shown in the Venn diagram in Fig. 9. This assumption is made for the sake of simplicity in 
this case study but can be released (if detailed data on comfort value per network edge is 
available) without loss of generality. The low discomfort links are contained in the medium 
discomfort layer and the medium discomfort layers are contained in the high discomfort 
layer (as green sets show in Fig. 9), because if one tolerates medium discomfort, they can 
also tolerate lower discomfort links. The car layer includes both very high levels of dis-
comfort as well as some streets with high and medium discomfort.

Edge weights

Each intra-layer edge e′ on a particular layer L(e�) of the coarse-grained network has a 
length that corresponds to the average shortest distance, on that layer, between all nodes 
of the zones it is connecting. The average shortest distance is computed as the mean of all 
shortest paths between the two zones, without routing through any other zone as in the fol-
lowing formula

Fig. 9  Diagram of the four layers and their related level of discomfort. To explain the difference between 
layers, the queries to retrieve these networks are reported in Appendix 1



Transportation 

1 3

where e′
1
 and e′

2
 denote the source and target node of edge e′ , respectively. Reachability 

�o,d,� indicates whether or not node d can be reached from node o in the original network 
G, by using only intra-layer links in layer � of neighbouring zones. It returns 1 if this is 
the case, 0 otherwise. Δ(o, d,�) represents the length of the shortest path between o and 
d, using only links in layer � of neighbouring zones. By the definition of e′ , this value is 
always larger than 0, since e′ only exists if there is at least one direct path connecting o′ and 
d′ on layer L(e�).

Each intra-layer edge e′ on layer �′ has discomfort value corresponding to a prede-
fined discomfort function. As reported in “Implementation of the discomfort function” 
section many discomfort functions can be defined as long as the value is always non-
negative, in order to satisfy Dijkstra’s algorithm requirements. For the sake of simplicity 
and interpretability of results, in this case study, we define the discomfort function as a 
percentage of the distance travelled on a specific layer (Lowry and Loh 2017). In par-
ticular, we assume equally distanced sequence of values, between zero and one, for the 
percentage of distance to be considered as discomfort. The higher the discomfort on the 
layer, the higher the percentage of distance that is considered in the discomfort value, as 
reported hereafter:

Node discomfort attributes rn(e�) are set to zero since it has no relevance to model node 
attributes for such a coarse-grained network.

(9)d(e�) =

∑
o∈N(e�

1
)

∑
d∈N(e�

2
) Δ(o, d,L(e

�))
∑

o∈N(e�
1
)

∑
d∈N(e�

2
) �o,d,L(e�)

,

(10)re(e
�) =

⎧
⎪⎨⎪⎩

d(e�), if L(e�) = 𝓁4

0.66 ⋅ d(e�), if L(e�) = 𝓁3

0.33 ⋅ d(e�), if L(e�) = 𝓁2

0, if L(e�) = 𝓁1.

Fig. 10  The red and blue curves are a subset of all individual bikeability curves for each city (one-hundred 
randomly selected OD pairs). The black points represent the network-wide bikeability curve computed over 
all OD pairs. (Color figure online)
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City level bikeability assessment

Figure 10 shows the individual and network-wide bikeability curves for the two studied cit-
ies. The individual curves from the two cities perform quite differently, confirming the idea 
that in bike-friendly environments, like Amsterdam, the bicycle network provides more 
direct and comfortable routes. Almost all OD pairs in Amsterdam have a route alternative 
with zero discomfort, whereas in Melbourne not all ODs have a zero discomfort option and 
if they do it may require a very large detour. This means that no matter how much detour a 
cyclist is willing to take in Melbourne it will not always lead to a discomfort value close to 
zero. Overall, Amsterdam’s curves are more vertically shaped, whereas Melbourne curves 
are more L-shaped, implying that in Amsterdam there is a larger discomfort decrease per 
distance increase than in Melbourne.

In addition to the individual bikeability curves Fig. 10 shows the network-wide bike-
ability curve (in black) as presented in “Network-wide bikeability curve” section. In this 
part, we assume uniform distribution over all selected ODs (note that this assumption may 
penalize some cities by considering low performing ODs although they have no bicy-
cle demand between them). Note that strictly speaking the relative distance used by the 
bikeability curves is the route length divided the Euclidean distance, whereas most of the 
results in the literature (as in “Literature review” section) use the detour which is route 
length divided the shortest available route. In order to compare these values, we multiply 
the detour values by the average street circuity of the city, so to compare the observed 
route circuity with detour values retrieved from the literature. The average street circuity of 
Amsterdam is 1.06 and it is 1.05 in Melbourne.5

The average bikeability curve of Amsterdam shows that the average trip requires a cir-
cuity value between 1.28 and 1.63, from highest to lowest discomfort. This is in line with 
findings from the literature presented in “Literature review” section, where detour varies 
between 8 and 93% (which multiplied by the street circuity of Amsterdam’s network results 
in a route circuity of 8 and 98%). Amsterdam’s average relative distances, for all discom-
fort levels, reflect detour preferences of both commuters and leisure type preference, thus 
it provides a network for a wide range of cyclists types, serving both high and low com-
fort seekers. Discomfort levels on average reach low (close to zero values) on trips with 
a circuity of 40–60%, given the overview in “Literature review” section these are accept-
able detour values for low traffic stress seekers and off-street bike facilities. Amsterdam’s 
network-wide bikeability curve has lower values of circuity and discomfort compared to 
Melbourne.

Melbourne’s network-wide bikeability curve, instead, includes trips with circuity up to 
three and a half times longer and does not reach discomfort values below 0.1. Evidence 
from revealed and stated preference studies, suggests that detour factors beyond 0.93 
(which multiplied by the street circuity of Melbourne’s network results in a route circu-
ity of 98%) are not commonly accepted by cyclists (especially not by commuters). Hence, 
the trips most likely chosen by commuter cyclists in Melbourne are on the left part of the 
curve; with circuity below 0.9 and discomfort above 0.2. However, those trips do not serve 
low discomfort acceptance cyclists, since the left part of the curve does not reach zero val-
ues (meaning that routes entirely on bike dedicated facilities are not common). The right 
part of the curve in Melbourne has trips with a large increase of distance (beyond what 

5 The average street circuity was computed with OSMNx as the average ratio between an edge length and 
the straight-line distance between the two nodes it links.
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is acceptable according to the literature (see “Literature review” section) and only minor 
reduction of discomfort. These route alternatives, on the right side of the curve, do not 
meet the needs of sporty cyclists or commuters (high discomfort and low detour accept-
ance) nor of weekend or afternoon cyclists that seek to cycle on off-street facilities (equiva-
lent to discomfort value of zero) and detour smaller than 93% (Krizek et al. 2007).

Bikeability tables

In order to have a more systematic approach to interpret how bikeable the network of a city 
is we build the bikeability table as in Fig. 11. In each cell we report the percentage of OD 
pairs (over all ODs in the network) that offer at least one route with discomfort and circu-
ity both lower or equal to the value reported on the column and row header respectively. 
The bikeability tables (in Fig. 11), show that the two cities offer a different ratio of routes 
with zero discomfort value, across all circuity values (first row of the tables). Zero discom-
fort value (as defined in the “edge weights” “Modelling the multi-layer networks” section) 
means that the entire trip is on bike tracks and bike lanes streets (resulting in no increase 
in perceived travel distance). For example, in Amsterdam 83% of OD pairs are connected 
with maximum circuity of 2. In Melbourne, instead, only 8% of all the OD pairs are con-
nected with zero discomfort and maximum circuity of 2. By considering the ratio of routes 
within a circuity of 1.20 we observe that Amsterdam has 13% of ODs with zero discom-
fort, 21% of ODs with discomfort below or equal to 0.20, and 31% of ODs with discom-
fort below or equal to 0.40 whereas Melbourne respectively has 1%, 3%, 6% of ODs. The 
analysis makes clear that a higher percentage of Amsterdam’s routes has a low discomfort 
value, compared to Melbourne’s, given the same circuity factor. Meaning that on average 
Melbourne serves only low comfort seekers whereas Amsterdam serves both low and high 
comfort seekers, within acceptable detour rates.

Inclusion of travel demand

This section analyses how the bikeability curve changes when travel demand on the 
network is considered. Namely, how well does the network accommodate observed and 

Fig. 11  Network Bikeability tables. Each cell shows the percentage of OD pairs (over all the possible OD 
pairs) that offer at least one route with discomfort and circuity both lower or equal to the value reported on 
the column and row header respectively
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potential bicycle demand? Increasing connectedness per se can be a waste of resources 
if there is no demand between two specific zones.

The demand is used to define probability values to weigh each OD pairs (zones) 
in the network. Including the demand shows a less bikeable average bikeability curve 
of the whole city. In Fig. 12 the curve weighted on travel demand between zones has 
higher discomfort values for detour until 1.4, meaning that there is more demand 
between zones of a city that are not as comfortable nor as direct. There is space for 
improvement on how the network accommodates demand, especially with regards to 
the users that do not want to detour more than 40%. Instead, the demand-weighted 
curve performs better for larger detours values. The overall differences between the 
analysis with and without demand, at city level scale, are minor. A similar analysis was 
conducted on a smaller portion of the network, to identify differences within the same 
city.

Fig. 12  Comparison between 
average bikability curve of 
Amsterdam, with and without 
demand

Fig. 13  Comparison between average bikability curve of north, centre, and south neighbourhood of 
Amsterdam, with and without demand. a Neighbourhoods under analysis. b Neighbourhood-wide bikeabil-
ity curves
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Neighbourhood level bikeability assessment

In this section we showcase how the methodology can be applied to areas within the 
same city. This allows to compare areas with the same road standards (e.g. cycling rules 
and culture). The analysis focuses on north, centre, and south of Amsterdam, as delim-
ited in Fig. 13a.

Analysing the zones without demand (dashed line in Fig. 13b). The centre is serving 
confident and sporty cyclists better, than the vulnerable or commuters that don’t accept 
high discomfort. In order to cycle with low discomfort in the centre, higher levels of cir-
cuity are needed, which makes the low discomfort routes in the centre more suitable for 
recreational cyclists than commuters, according to findings “Literature review” section. 
The north part of the city has more direct routes for lower discomfort levels, thus this 
part of the city serves another type of user compared to the city centre: those who like 
separated facilities and low detour. Finally, the southern sub-network performs worse, 
in terms of bikeability, than the centre and north on average. However, for circuity val-
ues greater than 1.40 it offers lower discomfort and lower detour rates compared to the 
centre.

Once the demand is used to weigh bikeability curves (solid lines in Fig.  13b) the 
average curve of the north improves, meaning that the travel demand is concentrated 
between zones that have better (more direct and comfortable) routes. The centre and 
south, instead, perform worse when the curves are weighted with the demand. This 
shows that the ODs with high concentration of trips, in the centre and south, are not the 
most bikeable ones. Speculating on the reasons for the better performance of the north 
compared to the south, when demand is added, we think it is more the infrastructure 
type (thus comfort level) rather than the circuity to make the difference. If we observe 
the infrastructure type of the OD pairs with the highest demand we see that the North 
has more kilometers of medium discomfort ( �2 ) infrastructure and less of high discom-
fort ( �3 ) infrastructure, compared to the south which has less medium and more high 
discomfort infrastructure. The inclusion of travel demand in the analysis has shown to 
have an important effect on the results of the analysis and thus for decision making, 
since the outcome of the analysis shows substantial differences between the zones.

Discussion

This section discusses possible applications for practice as well as implications of the 
proposed methodology for future research. Finally, we acknowledge the limitations 
related to our methodology.

The presented methodology enables cities to make trade-off analysis for bike network 
infrastructure. For example, a city may want to improve bikeability among popular origins 
and destinations. By examining the bikeability curves associated with different OD pairs 
city planners can pinpoint the locations that need to be better connected for cycling. Then, 
the improvements can be made by reducing detour on routs with low discomfort or by 
reducing the discomfort on routes with a low detour. Besides using the proposed methodol-
ogy to assess the bikeability of existing routes, urban planners can also use it to evaluate 
and prioritize investments. For example by prioritizing projects that improve the bikiability 
of the worse performing ODs (according to the OD bikeability curves).
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The proposed methodology to assess the bikeability of an OD pair can be employed 
by bicycle route planner apps. There are two main limitations in this regard: (1) compu-
tational time is far from real-time route guidance and (2) the user should know its trade-
off profile. The first challenge is being investigated by Hrncir et al. (2015, 2017). For the 
second point, since it is not realistic for cyclists to know their willingness to detour and 
accepted discomfort quantitatively, one option is to include a stated preference survey 
to users of the app to quantitatively measure their trade-off profile and recommend them 
specific routes from all those on the Pareto front.

Users might choose non-optimal routes, ones that lie at a band-with from the indiffer-
ence curve with maximum utility. Studies in the transport field have developed the idea of 
indifference curves into indifference bands (Vreeswijk et al. 2013). Future research could 
generalize the bikeability curves to bikeablity bands by investigating to what extent cyclists 
are aware of routes on the Pareto front.

We identify two limitations, which do not reducing the validity of the methodology but 
may represent challenges in the implementation phase. First, the availability of data on 
discomfort and safety on a network level is not easily accessible. In our case study, we 
made use of OSM facility types as a proxy for discomfort. However, the discomfort and 
safety of bicycle facilities can be highly context-dependent. For example, these attributes 
are influenced by the presence of on-street parking, the volume, and the speed of vehicular 
traffic, as well as local traffic laws. Secondly, the computational burden of working with 
large-scale detailed networks, is a concern for network-wide implementation. At this point, 
high-level analysis on coarse-grained networks is more feasible than on fine-grained ones.

Conclusions

This work introduced a new methodology to assess bikeability of urban networks free 
from user preference assumptions, so as to provide an exhaustive overview of what routes 
the network supplies to its users and not the average cyclist. Bikeability is visualised and 
analysed through the concept of network-wide “bikeability curve” elaborated in this work. 
The methodology has shown to provide means to study the relationship between direct-
ness and comfort of routes over an entire network by modelling the heterogeneity of streets 
that build up a bicycle network and not making a priori assumptions on users’ preferences 
between contrasting objectives.

Via a case study, we analysed and compared different bike networks based on large-
scale real-world topological data, and showed the validity of the proposed methodology. 
Amsterdam’s bicycle network showed to supply users with more direct and comfortable 
routes compared to Melbourne which on average supplied trips with a significantly longer 
detour for low levels of discomfort. An application to neighbourhoods within Amsterdam 
showed that different parts of the city accommodate different types of cyclists, the centre 
is more for recreational and high detour acceptance cyclists, whereas the northern part has 
more direct routes, preferred by commuter type of cyclists. The inclusion of travel demand 
in the analysis has shown to have an important effect on the results of the analysis and is 
crucial for decision-making for network improvements.

The methodology presented in this paper can be of interest to transport planners and 
policymakers to understand and evaluate urban bicycle networks without making assump-
tions on user preferences. Planners will gain extensive insight into the bicycle networks 
by identifying which type of users (high discomfort acceptance or high detour acceptance 
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users) are better accommodated by the network and which origin–destination pairs need to 
be prioritised for an infrastructural improvement. The generalisability of the methodology 
allows practitioners to apply it in different scenarios, depending on their data and network 
evaluation criteria.

Appendix 1: Network queries on OpenStreeMap

Hereby we report the queries used to extract the bicycle network layers ( �1 , �2 , �3 , �4 ) in 
“Case study: Amsterdam–Melbourne” section, using the python library OSMnx (imported 
as “ox”). To install and use the OSMnx package we refer to the decriptive paper from the 
author of the package (Boeing 2017).
�1 is defined as: 

�2 is defined as: 

�3 is defined as: 

�4 is defined as: 
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