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SUMMARY

The spectrometers are widely used in various fields ranging from astronomy to biology.
Recently, lots of efforts have been made to miniaturize the size of the spectrometer to
meet the needs of fields such as real-time health monitoring. Therefore, achieving a
high-resolution, broadband on-chip spectrometer is an intriguing but challenging topic.
Photonic crystals are constructed by material with periodic refractive indices. They allow
us to modify the interaction between electromagnetic fields and dielectric media. In
this work, using a special kind of photonic crystal called “zipper cavity”, we design a
wavelength tunable filter, which can be used as the key component for a filter-based
spectrometer. By FEM simulation, we design a zipper cavity with a resolution of sub-
nanometer and a wavelength tunable range of 21 nm. The prototypes of the devices are
fabricated and measured. The loss rate is evaluated and the tunability of the wavelength
is examined.






INTRODUCTION

The spectrometers are indispensable instruments in a wide range of cutting-edge fields.
Such as biological sensing, chemical characterization [6], astronomical spectroscopy [2],
and remote sensing [1]. The high resolution, high speed, wide operation wavelength,
and small size are all wanted features for spectrometers [21].

Recently, lots of efforts have been put into miniaturizing the spectrometers. Compared
with the conventional spectrometers which are bulky, the on-chip spectrometers have
many advantages. The small size makes it possible to integrate it into portable instru-
ments, which further makes it possible to be used in fields such as real-time health mon-
itoring and pollution detection [14, 30].

Currently, on-chip spectrometers have been realized in various systems, including nanopho-
tonic echelle grating [11], random spectrometers based on disordered scattering [21],
metasurfaces [38] and 2D van der Waals materials [39, 44]. However, there are still lots of
problems that need to be solved. For example, Risheng Cheng, et. al achieved a broad-
band spectrometer with a sub-nanometer resolution by echelle gratings [11]. However, a
long superconductor nanowire delay line is used to detect the photon and leads to along
dead time. Wladick Hartmann, et. al demonstrated a broadband on-chip spectrometer
by disordered scattering. However, the resolution of it is limited by the detector numbers
[21]. Achieving an on-chip spectrometer with a broad working wavelength, fast speed,
and high resolution is still an intriguing and challenging project. Based on some previ-
ous works, the photonic crystals are found to be an ideal platform to achieve this target
[32, 40].

Photonic crystals are constructed by material with periodic refractive indices in certain
directions [33]. The light propagating through it will be modulated by these periodic
refractive indices. This property allows us to modify the interaction between electro-
magnetic fields and dielectric media [29], which makes them promising candidates for
on-chip miniaturized optical components. Among the photonic crystals with different
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structures, there is a kind of photonic crystals called “zipper cavities”. A zipper cavity
is composed of two photonic nanobeam cavities [9, 15]. According to previous works,
the zipper cavities have lots of advantages. For instance, they are suitable for a broad
range of wavelengths from the visible to the mid-infrared [9]. With careful design, they
can have a high optical quality factor [37]. More importantly, with a large optomechan-
ical coupling strength, they have high resonance wavelength tuning rates [34]. These
features give them great potential for on-chip broadband high-resolution wavelength
tunable filters [12], which further allows us to develop a filter-based on-chip spectrome-
ter with them [27, 42].

The aim of this project is to design an on-chip spectrometer. To realize this purpose,
we design a photonic crystal zipper cavity with a tunable resonance wavelength (with a
simulated tunable range of more than 20 nanometers). By modifying the optical prop-
erties and investigating its optical response, we prove it can serve as a high-resolution
(with the sub-nanometer resolution) tunable filter, which makes it possible to serve as
the key component of a filter-based on-chip spectrometer. The prototype of the tunable
zipper cavity is fabricated and measured. Important optical properties of the cavity such
as the external coupling rate and the intrinsic loss rate are evaluated to further optimize
the design, and the tunability of the resonance wavelength is proved by comparing the
optical responses over the different devices.

In this thesis, we start by introducing the theories used in our works in chapter 2. First,
we introduce the basic theory of photonic crystal, which directs us in the design of the
zipper cavity. The electrostatic force and optomechanical theories are introduced af-
terward to help us investigate the tunability of the resonance frequency of our cavity.
Finally, the input-output theory is introduced to explain how we conduct the measure-
ment and analyze the result.

In chapter 3, we introduce how we design the structure of our zipper cavity based on
the FEM simulation. Firstly, we introduce how we use the unit cell structure to simu-
late the 1D photonic crystal constructed by it. By changing the geometry of the unit cell,
we can realize a band diagram as we want. After that, we find the unit cells for differ-
ent regions of the nanobeam and the transition functions to connect them, which helps
us to build a full nanobeam cavity. Then, by putting two identical nanobeams together,
we make a zipper cavity and simulate the electromagnetic field of its eigenmodes. The
tunability of the resonance wavelength induced by changing the internal gap is also eval-
uated. After we get the zipper cavity we want, we add the electrodes to the model and
further simulate the electrostatic force applied to it. The deformation and the change
of the eigenmodes induced by this force are evaluated in the following sections and the
optomechanical coupling factor is also calculated. Finally, we add a light source to the
model and simulate the optical response of the cavity. The FEM simulations in this chap-
ter are conducted with the assistance of COMSOL.

In chapter 4, we introduce the experiments we carry out to evaluate the performance
of our devices. We first introduce the devices we used in our experiment. After that, we



demonstrate the setup for the reflection spectrum, which will be mainly used in the fol-
lowing experiments. Then, we show the reflection spectrum we get and introduce how
we extract the resonance wavelength and the total loss rate of the cavity from it. Finally,
three we analyze three sets of devices to evaluate the intrinsic loss rate and the external
coupling rate, investigate the tunability of resonance wavelength, and demonstrate the
operation wavelength ranges of our devices.






THEORY

In this chapter, we will introduce the theories used in this thesis. First, we introduce the
basic theory of photonic crystal, which gives us the relation between the geometry of the
photonic crystal and the electromagnetic fields propagating through it. This directs us
in the design of the one-dimensional photonic crystal (1D PhC), which is used as an op-
tical zipper cavity. The electrostatic force and optomechanical theories are introduced
in the following sections. The electrostatic force bridges the voltage and the force, and
the force will further cause a deformation of the cavity. The optomechanical theories
explain the relation between the deformation of the cavity and its resonance frequen-
cies. Therefore, these theories help us in investigating the tunability of the resonance
frequency of our cavity when voltage is applied to it. Finally, the input-output theory is
introduced. It gives us the relation between the resonance frequencies of the cavity and
the optical reflection response of it. This theory helps us to understand how to conduct
the measurement and analyze the result.

2.1. BASIC THEORY FOR PHOTONIC CRYSTALS

The photonic crystal is constructed of material with different refractive indices arranged
in a periodic structure. This periodic structure gives a periodic potential field that will
modulate the electromagnetic (EM) field propagating through it. In the physics picture,
the periodic structure gives a periodic permittivity e(x) and further influences the distri-
bution of the EM field. In this section, we will show that the EM field in photonic crystals
is in the form of Bloch waves by following the discussion in [8].

Let’s start with the Maxwell’s equations, which writes:
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V-D=p 2.1)
V:-B=0 2.2)
VxE = _6_B (2.3)
ot
VxH = ]+6—D (2.4)
ot

For the PhC, we don’t have any free charge or current. Therefore, we should set the
charge density p and current density J to be zero. Then the Maxwell’s equations writes:

V-D = (2.5)
V:-B = (2.6)
VxE oB 2.7)
X = —— .
ot
oD
VxH = — (2.8)
ot

As the electromagnetic field can always be written written as a sum of time harmonic
modes [8] (For example, by Fourier Transformation), we can always write the electric
part and magnetic part of the Maxwell’s equations as:

Ex, 1) = Exe'®! (2.9)
Bx, 1) = Bx)e®! (2.10)

By substituting equations 2.10 and 2.9 into 2.7 and 2.8, we can simplify the Maxwell’s
equations. In addition, we replace the magnetic field strength H and electric displace-
ment field D with the magnetic flux density iB and the electric field e, (X)egE. The equa-
tions can then be written as:

V-e;X)egEx) = 0 (2.11)
V-Bx) =0 (2.12)
VxEX) = —iwB(Xx) (2.13)

,wer (X)
VxBX) =i ) Ex) (2.14)

Note that with the last two terms in the Maxwell’s equations, by substituting the equa-
tion 2.14 into 2.13, we can get a function of B:

2

V x VxB) = —BX. 2.15)
(5

€r(x)



2.1. BASIC THEORY FOR PHOTONIC CRYSTALS 7

Then, we can define a Hermitian operator ©:

OBX) = Vx

V x B(x). (2.16)
€r(x)

Thus we can rewrite the relation of the B fields in equation 2.15 as:

2
OB(x) = cz—zB(x). 2.17)

Through equation 2.17, we can know that the B fields are eigenfunctions of the operator
O with the eigenvalues of ‘2’—22

The equation 2.17 is applicable in any situation. In our situation, e.g., in the photonic
crystals, the periodic dielectric structure gives a periodic permittivity. We will then prove
that with this periodic permittivity, the B fields are governed by Bloch’s theorem. Let’s
first define the translation operator T, which transforms the function in the following
way:

Trf(r) = fr+R). (2.18)

In the photonic crystal, the physical structure is periodic, which means the permittivity
is also periodic. With a denotes the repeating period of the photonic crystal, we can have
the relation that:

Tae(x) = e(x+a) = ex). (2.19)

Consider the translation operators with the subscript of an integral multiple of the re-
peating period na, where n is an integer and a is the period of the photonic crystal. These
operators translate the function with an integral multiple of the period of the photonic
crystal. We can prove that these operators T, commute with ©:

Tha®B(x) = O(e(x+na))B(x+na) = O x)Bx+na) = OTh,BX). (2.20)

For the operators that have commutation relation [0, Tna] =0, they have the same eigen-
functions [23]. Therefore, the eigenfunctions of 0, e.g. B, can also be obtained by solving
the eigenfunctions for translation operator T},,, which is relatively easier. Considering
the eigenvalues A, for Tha, two relations need to be met [3]:

f | ThaB®)2dx = f AnaB®)[*dx = |Anal® f IBX)|*dx (2.21)

TnaTmaB(X) = AnatmaB(X) = Tna+maB(X) = Anat+maBX) (2.22)
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These two relations require the translation operator to have the eigenfunctions in the
form of e’** with eigenvalues e!f"%. We notice that for the eigenfunctions with wavevec-
tors k and k + n * 27/ a, the eigenvalues are the same. Therefore, we can have that:

By (x) ZBk,n (x)ei(k+n*2n/u)x (2.23)

n

ey (x) (2.24)

Where ug(x) is a periodic function obtained from the sum of the eigenfunctions of the
translation operator.

Equation 2.24 is called Bloch theorem [26]. Analogous to solid-state physics, it states
that the B fields can be written as plane waves modulated by periodic functions. The
resulting B fields have a period of 27/ a in k-space and are symmetric at k = 0 [8]. There-
fore, when studying the B fields, we only need to consider the wavevectors that meet
0 < k </ a, which is called the first Brillouin zone.

Although the © operator has the same eigenfunctions as the translation operator, the
eigenvalues are still needed to be derived. By substituting the equation 2.24 into equa-
tion 2.17, we can get the new relation:

1 2(k
(KR V) % — (kR4 V) <) = = ). (2.25)
r
In addition, the boundary conditions need to be met:
((kx+V) uy(x) =0 (2.26)
ug(x) = ug(x+ na) (2.27)

Equation 2.26 is derived from Gauss’s law for magnetism and equation 2.27 refers to the
periodic condition [19]. We can see that for each wavevector k, we should have infinite
eigenvalues (w(k)/c®)m, continuous in k-space, but discretely spaced in m [8]. With the
assistance of numerical solver tools, we can obtain the eigenfunctions (EM field) and
eigenvalues (w(k)/ ¢2). For the continuous wavevector k from 0 to 7/ a, we can have the
corresponding continuous w (k). This relation between w and k is called the optical band
diagram of the photonic crystal, in analogy with the electron band diagram in solid-state
physics [26]. For each integer m, we have wmy, (k) continue in k-space, which is called an
optical band. The band of wy, (k) is called the mt? band and the first band w, (k) denotes
the one with the lowest frequency. The region between different optical bands is called
the band gap.
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Figure 2.1: (a) Electromagnetic field distribution of the first eigenmode in 1D PhC constructed by two materials
with different refraction indices. (b) The |E|? distribution of the same mode. (c) and (d) The electric field and
energy distribution of the air mode. Figures are cited from [23].

One of the most important properties of the photonic crystal is its band gap. As we
proved above, the electromagnetic field is Bolch waves in photonic crystals, we can just
consider the first Brillouin zone. Specifically, we can consider the situation with wavevec-
tor k = 7/ a, where is the physical boundary of two different materials. In this paper, one-
dimensional photonic crystal (1D PhC) is used for the design of the device. The 1D PhC
means that the periodic modulation only happens in one direction, while in other direc-
tions, light is free or bounded by some simple dielectric boundary without the period, as
shown in Fig. 2.1. The relation between the wavelength of the fundamental mode and
the period of the PhC can be described by the following equation [43]:

mdy + nady = %, (2.28)

where n;, np and d;, d denote the refraction indices and the widths of the first and sec-
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ond material of the PhC, respectively. In addition, the band gap is maximized when the
thickness of the two different dielectric materials meets n;d; = nad, [23]. Substituting
this relation into the equation 2.28, the optimal theoretical thicknesses of the layers are
written as:

= —,dy = —. (2.29)

Here in our situation, the target wavelength is 1550 nm, and the refraction indices for
silicon nitride and air are 2 and 1, respectively [17]. Therefore, the theoretical widths for
the two materials are 193.75 nm and 387.5 nm, respectively.

With wavevector k = n/a, there are two different possible eigenmodes in the 1D PhC
[23]. One is the fundamental mode introduced above, and the other is the mode with
the same wavevector, but the energy is mainly distributed in the air region as shown
in Fig 2.1 (c) and (d). This is called the air mode. With different effective permittivity,
the frequencies of these two modes are different, and the frequency difference between
these two modes is the band gap. The middle frequency wy, and the band gap size Aw
are used to describe the band gap. They are given by the functions:

ny+ny 2mc

m = (2.30)
4dn1ny a

Aw Ae sinmd/a
o~ .~ (2.31)
Wm € b4

With these functions, we can estimate that for our silicon nitride 1D PhC, we can have a
band gap for about 26 THz around our target frequency 193 THz.

2.2. ELECTROSTATIC FORCE

To achieve a photonic crystal cavity with tunable resonance frequency, external control
of the system is necessary. The eigenfrequency of the photonic crystal is dependent on
its effective €, which is decided by its physical structure [45]. The most straightforward
way to modify the effective € is to induce some deformation in the physical structure
[34]. However, the scale of our system is in hundreds of micrometers, which means it’s
extremely difficult to apply forces on it. In this case, the electrostatic force becomes an
ideal candidate, which makes it possible to apply forces on a tiny structure by just de-
positing metallic on our photonic crystals and apply a voltage on it [5]. Moreover, the
magnitude force is easily to control by simply changing the input voltage.

The principle for the electrostatic force is relatively simple. For a capacitor with capac-
itance C, the relation between the voltage V and the energy stored on it follows the for-
mula [19]:

1

W, = 5CVZ, (2.32)



2.3. OPTOMECHANICS 11

where W, is the charging energy. Considering a parallel-plate capacitor, the capacitance
of it can be written as:

C=— (2.33)
where €, A, and d refer to the permittivity, capacitor area, and the distance between two
parallel plates. Therefore, the charging energy can be written as:

W_leAv2
‘T2 ad

(2.34)

While the force can be derived by the derivation between the energy and displacement,
it can be written as:

OWe 1 eAV?

From the formula, we can see that with certain material, the electrostatic force is pro-
portional to the plate area, the square of the applied voltage, and inverse proportional
to the square of the plate gap. In our cases, the permittivity and the initial distance are
relatively fixed. The area can be controlled by the length and thickness of the metal depo-
sition. The voltage is the main parameter that we will control to induce the deformation
and control the resonance frequency of our cavity.

2.3. OPTOMECHANICS

The optomechanical theory is used to describe the system in which optics and mechan-
ics both play important roles. When describing an optomechanical system, the interac-
tion term between the optics and mechanics in quantum mechanics description is [4]:

Hine = higoa'ab+bh, (2.36)

where a, b @, b!) refer to the annihilation (creation) operators of the optics and me-
chanics systems, respectively. The parameter gy is called single-photon optomechanical
coupling strength, which describes the strength of the interaction between photon and
phonon [4]. The expression of gy can be written as:

ow
8o = G-xzpp, where G = P 2.37)

where the G is the optomechanical coupling factor which evaluates the optical frequency
shift per displacement, while the xzpr is the zero-point fluctuation [4]. However, in our
system, the mechanical deformations are not decided by the mechanical eigenmodes,
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(@) (b)
Demonstration of the Deformation Field Surface Displacement

) & &
: *

Before Deformation  After Deformation

Figure 2.2: (a) The demonstration of the deformation field Q(x). (b) The boundary between two different
dielectric materials in a small region.

which are related to the zero point fluctuation. Therefore, we only care about the G fac-
tor which gives us the relation between the frequency shift of the system and the defor-
mation. The deformation will be evaluated by electrostatic force with the assistance of
the FEM simulator.

To evaluate the magnitude of the G factor, we will introduce the Moving Dielectric Bound-
ary theory. The Moving Dielectric Boundary theory is based on the perturbation theory
and evaluates the shift of the frequency induced by the changing of effective permittivity
caused by the deformation of the system [8]. Therefore, this theory works in both the
quantum regime and macro scale [4].

Before introducing the Moving Dielectric Boundary theory, we need to give some defi-
nitions. Considering a three-dimensional system, the deformation of the system can be
described by a vector field Q(x), where x is a vector that represents the position of a point
before the deformation happens. Considering a point x¢ before the deformation, after
the deformation happens, the point will move to a new position x;. The displacement
between x¢ and x;) is expressed by Q(xo). The sketch of this explanation is shown in Fig.
2.2 (a) to give a more clear picture. Then, we can further parameterize the displacement
field for the convenience of further calculation. For a small enough displacement field
that can be regarded as a perturbation, we can write the vector field Q(x) as the pro-
duction as the perturbation magnitude a and the normalized displacement field q(x),
which is Q(x) = Q(a,x) = aq(x). In addition, the relative permittivity can also be written
as a scale field e(x) with x denoting the coordinate.

Through the perturbation theory, the shift of the frequency of the system induced by a
tiny perturbation on the effective permittivity can be written as:[16]

do o EOIGRER) oy [dxGRE®P 2.38)
da 2 E®E®E®) 2 [dxe®E®?’ '

Now, the relation between the permittivity and the perturbation still needs to be investi-
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gated. To simplify the model, we will begin with the one-dimensional system. Consider-
ing the boundary of two different dielectric materials shown in Fig. 2.2 (b), the permit-
tivity in a one-dimensional system can be demonstrated by a Heaviside function ©(x).
For a system with two different materials with permittivity €; and €, while setting the
boundary between these two materials at xp, the permittivity should be €; for x < xo and
€2 when x > xp. To meet this requirement, the permittivity of this system can be written
as:

€(x) = €1+ (e2—€1)O(x — xp — Q(a, Xp)). (2.39)

In addition, the derivation of the Heaviside function is the delta function. Therefore, the
numerator of the perturbation theory can be written as:

de(x) 3 de(x) dQ(a,xo)
(B(0I= B = B0 o™ = P IE) (2.40)
d y
= f dx(€2—61)5(x—x0—Q(ayxo))%m(xﬂz (2.41)
dQ(a,
= %(Q-QNEUHZ e, (2.42)
[04

Then, considering a three-dimensional system, the boundary now becomes a surface
with the coordinates (x, y,z). In addition, only the displacement perpendicular to the
surface will lead to a change in the distribution of the permittivity of the whole system.
Therefore, the term Q(a, x) is converted to Q(a, x, y, z) - i(x, y, z), where f denotes the
normalized surface vector. Replacing the result by surface integration, the formula in
the three-dimensional situation then becomes:

(EX)| (€2 —€)E®)*. (2.43)

de(x) EX) = ]{ dAdQ(a,x,y,Z)'n(x,y,Z)
da A da

This function gives a form to derive the relation between the resonance and the deforma-
tion. However, the electric field here is not well defined. To be more specific, the surface
integration requires the electric field at the boundary. However, the perpendicular com-
ponent of the electric field on the surface is discontinued, which must obey the relation
€1E11 =e2E] » [19]. Neither E; ; nor E| » is proper to be substituted into equation 2.43.
Therefore, a more careful insight into the small area around the dielectric boundary is
needed to solve this problem. One way for solving this problem is given by Steven G.
Johnson, et al [24].

To avoid the discontinuity on the boundary, we consider the permittivity as a matrix,
which allows us to separate the perpendicular terms and the in-plane terms:

) (2.44)

oS o ©
R
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Here the € refers to the perpendicular terms while the € refers to the in-plane terms.

We can start with the in-plane components of the permittivity, which don’t need to meet
the continuous restriction and are easier to due with. Considering a small area in the
surface d A, recall that we always have the relation e(x) = €; + (€2 —€1)O(x — h) (here we
set the xg to be 0 for convenience, and % denotes a small displacement of the boundary
as shown in Fig. 2.2 (b)). This time, we start with a relatively smooth boundary transition
and then go to the limit which is a Heaviside function transition. The permittivity in a
smooth transition is denoted as €. In this case, looking at the region around the bound-
ary, the in-plane component of the permittivity in this small region can be written as:

€s(x) = f gs(x—xNe(x"dx', (2.45)
where g; is a smooth transition function with the property:

f g(x)dx =1 (2.46)

lir% gs(x)=0(x) (2.47)
S—

The plot of the g5 function is shown in Fig. 2.3. In this way, we can get the derivation of
the permittivity is that:

des(x)
dh

= (e2—€1)gs(x—h). (2.48)

Remind that this transition relation doesn't meet the continuous requirement in a per-
pendicular direction. Therefore, a function which can describe the transition and the
continuity of the permittivity simultaneously is needed. Fortunately, a proper function
has already been found in previous works [25, 31]:

E(0)7! = fgs(x—x’)e(x’)‘ldx’. (2.49)

And again, the derivation relation can be written as:

dés(x)
dh

1 1
= —&(x)? (— — —)gs(x = h). (2.50)
€2 €1

Now we have the permittivity for different directions. By combining it with the corre-
sponding electric field components, we can get a new form of the numerator of the per-
turbation theory:
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y y
|
|
'
|
—
X, X X, X
gS(X-Xo) lim )l!% gS(X'XO) = 5(X_X0)
x—0
ﬁ
y y
|
|
|
|
X X X, X
fdx g (x-x,) lim Jdx g (x-x,) = ©(x-x,)

Figure 2.3: The plot of gs and its integral in normal condition and at the limit of s — 0.

deg(x) _ deg(x) @
(E(x)IWIE(x)) = (E(x)| ah dalE(x)> (2.51)

dh 11
= dA—— f dx((e2— €D Ej1> - (— — —)IE&s(DEL D) gs(x—h)  (2.52)
a € €1

Considering the limit of the g, the gs becomes a delta function at s — 0. And the smoothed
permittivity becomes the permittivity in the real situation [31]. In addition, remember
that in previous steps, the form of gs(x — h) is the simplified form by considering the
boundary at the origin of the coordinate. In the real situation, the actual form should be
gs(x — h— x¢) for a small surface area. Then the complete version of the function can be
written by the surface integration as:

dh(a,x,y, 1 1
f Aa O 0D (eI (x, 1, D = (— — D), y, DB (6 AP, (2.53)
A da € €]

Finally, for the whole formula, the final expression for the G factor is given by:

dw

do| _ wo $1dAdx,y,2) 0%, y,2)AelE)(x, y,2)* - Ae” DL (x, 5, 2) )
da

2 [ dxe®|EX)? . (2.54)

mb

where Ae =€, —e; and Ae™! = é - é
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K
ex
Input Field & _ fﬂ
—

—

Reflection Field &_,

~—

Figure 2.4: The simplified sketch of the 1-port cavity, which is constructed by the port (waveguide) and the
cavity.

Until now, we can derive the G factor from the deformation field and electric field, which
can be obtained from the simulation which will be introduced in the later part of this
thesis. The G factor evaluates how large the shift of the frequency will be with a small
perturbation. It's an important tool for us to theoretically analyze how sensitive the res-
onance frequency of our device is to the deformation in the following chapters.

2.4. INPUT-OUTPUT THEORY

The cavity’s response to the input light is described by the input-output theory model [4].
In this section, we will introduce the input-output theory, which will give us the relation
between the cavity’s reflection response, input frequency, cavity resonance frequency,
and coupling strength.

Considering a cavity connected to a waveguide with a resonance at w. as shown in Fig.
2.4, there are two ways that the light will be lost from the cavity [7]. One way is by cou-
pling to the waveguide. The loss rate of this way is described by the external coupling
rate xex. The other way is the internal loss of the cavity itself, such as the leaking into
the environment, and the thermal absorption by the cavity. The loss rate in this way is
described by the intrinsic loss rate «xiy.

The input-output theory is based on the Heisenberg equations of motion [20]. In the
Heisenberg equation, the field in the cavity is described by the operator 4. The time evo-
lution of the cavity annihilation operator can be written as [4]:

: K
a = —§+iAa+\/1<exain, (2.55)

where the A is the detuning between the input signal and the cavity resonance fre-
quency, which can be written as wij, — w.. The « is the total loss rate which is the sum
of all the losses x = ki + kex. The djy, is the annihilation operator of the input field. The
output field of this cavity can be written as:

dout = Gin — V/Kexd. (2.56)
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Figure 2.5: The plot of the reflection response of the cavity with different ratios between xj, and xex

As we are considering the stationary state, in which the time derivation of the cavity field
operator is zero, which means the equation 2.55 equals to zero. In addition, the actual
amplitude of the field is given by the average of the operator, namely, (4) [4]. By elim-
inating &, we can get a ratio between the &;, and dqyy, €.g., the reflection amplitude R.
The result can be written as:

_ {Gout) _ (Kin —Kex) /12— 1A
(Gin) (Kin +Kex) /2 — IA”

(2.57)

This formula gives the relation between the input and the reflection fields. In the real
situation, the signal we detect is the intensity of the light, which is proportional to the
probability of reflection from the cavity and can be written as |R|2. The reflection prob-
ability then can be written as:

KinKex

IR> = 1- (2.58)

(Kin‘;Kex)Z + AZ .

We can see that the reflection probabilities are decided by both the intrinsic loss rate,
the external coupling rate, and the detuning. The plot of the reflection probabilities is
shown in Fig. 2.5. The reflection probabilities reach their minimum at A = 0, and with
a large detuning, they will converge to one. In addition, when «xj, = k¢, the reflection
probability goes to zero when the input light is on resonance. This condition is called
critical coupling. When the external coupling rate increases, the linewidth of the curve
increases. Oppositely, when the intrinsic loss rate increases, the linewidth will decrease.







DESIGN AND SIMULATION

In this chapter, we introduce our procedure to design the zipper cavity, which can serve
as the key component of an on-chip spectrometer device. The 1D PhCis a periodic struc-
ture constructed by repeating the unit cell along a certain direction. Therefore, the first
step for designing the 1D PhC is to find an ideal unit cell structure. We start with the
design of the photonic crystal unit cell in section 3.1. By studying the influence of dif-
ferent geometry parameters on the eigenfrequency, we learn how to control the band
diagram by changing the geometry of the unit cell. After that, we design unit cells with
desired eigenfrequencies. With transition functions, we make a nanobeam cavity in sec-
tion 3.2. However, the nanobeam is barely tunable, which makes it impossible to con-
struct a spectrometer device with it. Therefore, in section 3.3, by putting two identical
nanobeams together, we construct a zipper cavity, whose eigenfrequencies can be tuned
by changing the distance between two nanobeams. To tune the internal gap distance
of the cavity, we need to apply force to it. In section 3.4, we conduct the electrostatic
force simulation to evaluate the deformation induced by the voltage applied to it. Then
in the following section 3.5, we combine the electrostatic force simulation and the op-
tics simulation. We study the eigenmode of the deformation structure and derive the
optomechanical coupling factor. The simulations until now are all focused on the eigen-
frequency of the device, and the response of the device with input sources has not been
evaluated. Therefore, in section 3.6, we evaluate the optical response of our system. This
helps us predict the performance of our device and find the optimal waveguide-cavity
distance, which is difficult to get from the theory.

3.1. PHOTONIC CRYSTAL UNIT CELL

In this section, we introduce the way to design the unit cell for 1D PhC. Firstly, we intro-
duce the geometry parameters that decide the geometry of our unit cell, and the bound-
ary conditions that realize the transverse electromagnetic (TE) modes that are used in
the simulation. These help us to set up the model for the FEM simulation. After that, by

19



20 3. DESIGN AND SIMULATION

(b) (0)
PEC

PMC

Figure 3.1: (a) The geometry of the photonic crystal unit cell. (b) The boundary conditions applied on the unit
cell to realize the TE mode and simplify the simulation. PEC and PMC refer to the Perfect Electric Conductor
and the Perfect Magnetic Conductor, respectively. (c) The geometry of the final structure used for the simula-
tion.

conducting simulations and varying different geometry parameters, we show how the
eigenfrequency is influenced by the change of the unit cell geometry, which enables us
to further control the eigenfrequency of the photonic crystal.

In our case, we set the x-axis as the repeating direction. Following the example of Jasper
Chan et al, the structure of the PhC unit cell is constructed by a rectangular silicon ni-
tride bulk with an ellipsoid air hole in the center of it [10]. The structure of the unit cell
is shown in Fig 3.1 (a). For this structure, there are 5 parameters to decide the geometry
of the unit cell. The length of the unit cell a and the width of the unit cell w decide the
geometry of the rectangle silicon nitride bulk. In addition, as a is the length along the
x direction, which is the repeating direction of the 1D PhC, it also represents the lattice
constant of the PhC. The variables hy and hy represent the width of the ellipse along the
x-axis, and the height of the ellipse along the y-axis, respectively, which decide the geom-
etry of the air hole. Finally, th represents the thickness of the unit cell in the z-direction.
These 5 parameters together decide the geometry of the unit cell.

By changing the parameters in a reasonable range, we can change the geometry of our
unit cell. Considering the fabrication condition, the thickness of the PhC depends on the
thickness of the silicon nitride layer, which has been grown previously and is not easy to
change. However, all the other four parameters are flexible which makes it possible to
realize the ideal photonic band structure. The only limitation of these parameters is the
minimum feature size which is restricted by the accuracy of fabrication and the robust-
ness of the device. According to the experience of fabrication, the smallest feature of
the device should be larger than 80 nanometers. The initial geometry parameters are
taken from the paper of Jasper Chan et al in 2012 [10]. The value of the parameter set
(a, w, hy, hy) in nanometer is (440, 530, 170, 370).

As transversal electric mode (TE mode) is used in our device, we need some boundary
conditions to restrict the electromagnetic field to realize this mode. As the propagation
direction of the TE wave is along the x-axis, the ideal mode should have zero electric
fields along the x-axis and the z-axis. In addition, the electromagnetic field should be
symmetric in the y and z directions. To realize these conditions in the simulation, we
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Figure 3.2: (a) The spatial distribution of the y component of the electric field for the eigenmode. (b) and (c)
The spatial distribution of the electric field and electric energy.

divide the unit cell, apply boundary conditions, and simulate a quarter of it, which al-
lows us to meet the symmetric conditions and eliminate unwanted components of the
electromagnetic fields. The Perfect Electric Conductor (PEC) condition is applied to the
z-x symmetric plane of the model and the Perfect Magnetic Conductor (PMC) condition
is applied to the x-y symmetric plane of the model. The detailed resonance for applying
boundary conditions in this way and how it leads to a TE mode is further explained in
appendix A.1. Moreover, to make the simulation consistent with the realistic condition,
we add an air cylinder to imitate the environment around the device. The boundary
outside the air cylinder is set as a scattering boundary to let the light pass through and
propagate to the infinite far without reflection. Finally, periodic conditions are applied
to both sides of the unit cell to get a continuous wavevector. The boundary conditions
applied in the model and the final geometry are demonstrated in Fig. 3.1 (b) and (c).

With the simulation strategy mentioned above, we can simulate the electromagnetic
fields of the photonic crystal constructed by infinite unit cells repeated in the x direction.
Three simulations are done to study the electric field distribution and the optical band
diagram of the photonic crystal. Firstly, we simulate the electromagnetic field distribu-
tion of the eigenmode with a wavevector of m/a The field distribution of the TE mode
is shown in Fig. 3.2 (a), which is consistent with the distribution mentioned in Chan’s
paper. The spatial distribution of electric field and electric energy are shown in Fig. 3.2
(b) and (c). As shown in the theoretical section, the electric energy is distributed mainly
inside the silicon nitride. A sharp transition in the boundary between the air and silicon
nitride also appeared in the energy plot. With these results, we show that we already
have a reasonable mode according to the electric field distribution, and we can move to
analyze the band diagram.

Then, we simulate the band diagram of the unit cell with different i while other param-
eters are fixed. This helps to understand how the band diagram changes according to the
change of this geometry parameter. The optical band diagram of the photonic crystal is
illustrated in Fig. 3.3 (a). The band with the lower frequency ended at about 272 THz
with the wavevector of #/a. In addition, a clear band gap can be seen between the first
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Figure 3.3: (a) The band structure of the sample with the original parameters. (b) The change of the first and
second optical bands with different /. The zoom-in figure is inserted into it.

and second optical bands within the area under the light line. By changing the width
of the air hole &y, the band diagram changes with it. Fig. 3.3 (b) shows the change of
the band with different hx. We can see the eigenfrequencies of both the first and second
bands increase with increasing hy.

Finally, with the same method, we simulate the band diagram when the other 3 param-
eters are changed. As what we do to evaluate the influence of changing hy, when we
change one parameter, we keep the other parameters fixed. The changes of the posi-
tions of the first and second bands with different parameters varied are demonstrated
in Fig. 3.4. We can see that the eigenfrequency is correlated with the hy and hy while
anti-correlated with a and w. The result is consistent with the fact that as silicon ni-
tride has a higher refractive index, with a larger silicon nitride proportion, the supported
frequency will decrease. Oppositely, with larger air proportion, the frequency increases.
With this result, we learn about the influence of different parameters on the band gap of
the photonic crystal, which further enables us to design photonic crystals with certain
band diagrams.

3.2. ONE-DIMENSIONAL PHOTONIC CRYSTAL NANOBEAM

With all the knowledge gained above, we can modify the band diagram by changing the
geometry parameters. In this section, we introduce how we find proper unit cells for
a nanobeam cavity and how to constitute the nanobeam with them. We start with the
introduction of the nanobeam and show the requirements of the band diagrams of its
unit cells. After that, we show the transition functions that govern the transition of the
sizes of the unit cells that construct the nanobeam. Then we conduct the simulation
and optimization. We show the band diagrams of the unit cells we designed based on
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the requirement of the nanobeam. Finally, with the transition functions we get from
the optimization, we demonstrate the full nanobeam structure and its electromagnetic
properties.

The nanobeam cavity is a kind of one-dimensional photonic crystal which can confine
the light with a certain frequency in the center of it [28]. It is constituted by two differ-
ent regions, which we call the mirror region and the defect region. The defect region is
in the center of the photonic crystal while the mirror regions are on both sides of it. To
confine the light in a certain area, we need two kinds of unit cells with different band di-
agrams for these two regions. The geometry arrangement and corresponding ideal band
diagram are shown in Fig. 3.5 (a). For the defect region, we want unit cells whose first
band is at the target frequency, so that the light of the target frequency can propagate in
this region. For the mirror regions on both sides of it, we need unit cells with a band gap
around the target frequency. Therefore, the light of the target frequency cannot prop-
agate through these regions and will be reflected. These regions work like mirrors that
can prevent the light with target frequency from leaking out of the defect region. With
this arrangement, the light can be confined inside the defect region.

Until now, we know that we need the defect region in the middle and the mirror regions
on both sides of it. There are still lots of ways to arrange the unit cells for each region. For
example, we can construct the mirror regions with identical unit cells whose band dia-
grams meet the requirement. For the defect region, we can also use identical unit cells
whose first band is at the target frequency. In this way, only two kinds of unit cells are
used in the whole nanobeam and there will be a significant size change on the boundary
of these two regions. In this work, instead, we will use a relatively smooth transition be-
tween these two regions. Following the method proposed by Jasper Chan et al, we use a
transition function to control the transition of the sizes of the unit cells from the mirror
region to the defect region [10]. According to their work, the Gauss function can serve
as the transition function. In addition, the defect region should have a higher eigenfre-
quency, which means it should have a smaller lattice constant than the mirror region
(See the theory section and Fig. 3.4). Therefore, the lattice constants of the nanobeam
can be written as:

_ .2 2
an = Amirror (1 — Cle(n Mmid) /262)r 3.1

where a, notes the lattice constant of the n'" unit cell in the nanobeam, n;q marks the
middle one of the defect region. Notably, the ratio of the lattice constant between the
smallest unit cell and the mirror unit cell is decided by the Gauss parameter c;. There-
fore, we call it the maximum difference. In addition, the other parameter c, controls
the broadening of the Gauss function, e.g. the shape of the Gauss well function, and it’s
called the well factor. However, the hy and hy in the defect region may not have the same
changing rate as the lattice constant. Therefore, two additional parameters are used to
control the change of the hole sizes. The oblongness factor for the x and the y directions
are applied and the hx and hy in the nanobeam can be described by the following equa-
tions:



3.3. ZIPPER CAVITY 25

2 2 _
hxn = hymirror (1 — Cle(n Mmid) /202) obly 3.2)

2792
hyn = hymiror (1 — cp et tmid) /ZCZ)Obly (3.3)

Notably, a minus sign is applied to the oblongness factor in the x direction because of the
previous experiences in designing of the nanobeam [22]. An example of these transition
functions is shown in Fig. 3.6 (a). While the thickness and the width of the nanobeam
should be fixed over the whole beam, the transitions of the other three parameters are
governed by these three transition functions. Therefore, by finding the geometry pa-
rameters of the unit cells for the mirror and the defect regions, and the three transition
functions, we can decide the full geometry of the nanobeam cavity.

With the requirements and method mentioned above, we conduct simulations and op-
timizations to find the geometry parameters of the unit cells of the mirror and defect
regions and the transition functions that govern the transition of the geometry parame-
ters between different regions. Firstly, we simulate the band diagram of the unit cell and
adjust the geometry parameters to modify the position and the width of the bandgap. In
this way, we realize the desired band diagram for both regions. The results are plotted in
Fig. 3.5 (b) and (c). We can see that for the defect region, the first band is located exactly
at 193 THz, which is our target frequency. While for the mirror region, there is a band
gap from 178 THz to 215 THz, between the first and second bands. These band diagrams
meet the requirements for unit cells of the defect and the mirror regions, respectively.

Then with the unit cells we found, we conduct the optimization to find the transition
functions for optimal nanobeam structure. The optimization is done with MATLAB scripts
with the fminsearch function, which is based on the Nelder-Mead algorithm [36]. In
this way, we find the optimal transition functions which give us a nanobeam with a high
quality factor, e.g., minimum loss. With these transition functions, we can construct a
full nanobeam cavity, whose structure is shown in Fig. 3.6.

Finally, the electromagnetic field simulation is conducted and the electromagnetic field
and the energy distribution are also shown in Fig.3.6 (b) and (c). We can see that the elec-
tromagnetic field and the electric energy are confined in the middle of the defect region
and the field is anti-symmetric along the axis. This helps us to manipulate the optical
performance of our device better in the following steps.

3.3. ZIPPER CAVITY

Since now, we have 1D PhC nanobeam which allows us to confine the light in a small
mode volume. In this section, we convert the nanobeam into a zipper cavity. We first
introduce the properties of the zipper cavities. After that, we simulate the electromag-
netic field of the zipper cavity. Finally, we study the shift of the eigenfrequencies with the
change of the distance between two nanobeams that construct the zipper cavity.
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Figure 3.5: (a) The spatial geometry arrangement and the corresponding band structure for the nanobeam. (b)
and (c) The band structure of the unit cells designed for the defect and mirror regions, respectively.
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Figure 3.7: The electric field in the y direction (in-plane and perpendicular to the direction of the beam) of the
symmetry (a) and anti-symmetry mode (b).

When two nanobeams are put close to each other, the original electromagnetic field of
each nanobeam is coupled to the other [45]. The electromagnetic field will redistribute
and the mode splits into symmetry and anti-symmetry ones. Therefore, a new optical
cavity is constructed in this way and it’s called a zipper cavity [9]. As we already have
a well-designed nanobeam, we can make a zipper cavity by putting two nanobeams
together parallelly in the x-y plane. The reason for doing this is that the optical prop-
erty of the zipper cavity can be easily modified by changing the gap between the two
nanobeams [45]. To study the electromagnetic field of the zipper cavity, we conduct the
two simulations.

Firstly, the distance between two nanobeams is set as 100 nm and we simulate the elec-
tromagnetic field distribution of it. The result is shown in Fig. 3.7. Notably, for the sym-
metric mode, a significant proportion of the electromagnetic field is distributed inside
the gap between two nanobeams, while for the anti-symmetric mode, there is nearly no
field in the gap between them. The eigenfrequencies of these two modes are not degen-
erated. The eigenfrequency of the symmetry mode is lower than the original eigenmode
frequency of the nanobeam, while the one of the anti-symmetry mode is higher.

Then, we simulate the zipper cavities with different gap distances between two nanobeams
that construct it. The wavelengths of the eigenmodes of the symmetric and anti-symmetric
modes change with different internal gap distances. The plot is shown in Fig. 3.8. In-
triguingly, the changes in the wavelengths of two different eigenmodes are not the same.
While the wavelengths of the anti-symmetric eigenmodes remain relatively stable, the
wavelengths of symmetric eigenmodes change significantly, especially with a small dis-
tance. This is an ideal property as it shows high wavelength flexibility. The reason for dif-
ferent wavelength shifts of these two modes is caused by the different concentrations of
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Figure 3.8: The change of the symmetry and anti-symmetry mode with different inter-beam gap distances.

the electromagnetic field inside the gap, which leads to a difference in the second-order
self-coupling [13, 35, 45]. In addition, the eigenfrequencies of both modes converge to
the eigenfrequency of nanobeam eigenmode with increasing distance. This is because
that the coupling between two beams becomes weaker with a large internal gap distance
and the mode splitting decreases.

By analyzing the change of these two zipper cavity modes, two conclusions are sum-
marized to instruct our design of the zipper cavity. Firstly, to realize high wavelength
tunability, the symmetric mode should be used as the target mode. Secondly, as the
wavelength is more sensitive to the change of the gap when the gap distance is small, a
small value is chosen when designing the zipper cavity. Therefore, considering the fab-
rication difficulty for tiny features, the gap distance is set to be 100 nanometers.

Therefore, from now on, we will focus on the symmetric mode of the zipper cavity. Some
additional work is conducted to optimize the performance of the zipper cavity. While
the wavelength of the symmetric mode is longer than the wavelength of the nanobeam,
which means it’s longer than our target wavelength of 1550 nm, we modified the struc-
ture of nanobeams that constructed the zipper cavity and the modified wavelength of
the symmetric mode of the zipper cavity is 1550 nm when the gap distance is 100 nm.
We also optimize the quality factor of the zipper cavity and the optimal quality factor we
getis 1.47 x 107,
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Figure 3.9: (a) The design of the zipper cavity with deposited electrodes. (b) The corresponding equivalent
circuit of the device including external voltage source.

3.4. ELECTROSTATIC FORCE

Until now, we demonstrated a zipper cavity whose wavelength of the eigenmodes can be
modified by changing the internal gap distance. In this section, we evaluate the feasi-
bility of changing the gap distance by electrostatic forces. We first introduce how we set
up the model for the electrostatic force simulation and estimate the magnitude of the
deformation by the Young’s modulus. Then we conduct the electrostatic force simula-
tion and get the deformation field from it. We evaluate the change in the magnitude of
the deformation with different voltages applied to it. Finally, we estimate the wavelength
shift induced by the deformation.

The most intrinsic way to modify the gap distance of the zipper cavity is by the elec-
trostatic force, which allows us to apply the force on the micrometer scale device. The
model we used to simulate the electrostatic force is shown in Fig. 3.9 (a), which is based
on the work of R. Perahia et al [34]. The length of the original zipper cavity is extended
for 20 um and both ends are fixed. On both sides of it, gold electrodes with lengths of 16
um are put on the top of the silicon nitride nanobeams. The thickness of the electrodes
is 100 nm. The voltages applied on the upper gold electrodes are set to be the same, and
the magnitude of the voltage is set to be V4., while the lower two electrodes are set to be
grounded. The corresponding equivalent circuit for this setting is shown in Fig. 3.9 (b).
According to the electrostatics, an attractive force will be generated when there is a volt-
age difference between two plates of the capacitor. This force will induce a deformation
of the zipper cavity and reduce the gap distance.

Before the simulation, we first estimate the deformation induced by the electrostatic
force to check if our model is reasonable. The force applied to the nanobeam can be
calculated by electrostatics. According to the theory section, the electrostatic force can
be calculated by equation 2.35. The magnitude of the force is decided by the permit-
tivity, plate area of the capacitor, voltage, and distance between two electrodes. For our
device, the dielectric medium between the capacitor plates is air, whose permittivity is
the vacuum permittivity. The area of the capacitor plates is the cross-section area of the
gold electrodes in the z-x plane, which can be obtained by the production of the length
and thickness of the electrodes. The voltage is set to be 10 volts, which is a value that
most of the voltage sources can support. The distance between two plates is the same as
the distance between two nanobeams. Substituting the parameters of our device to the
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equation, the total force provided by two capacitors on both ends is estimated to be 203
nanonewton.

Then, we estimate the deformation induced by this force. In the elastic region, the rela-
tion between the force and the deformation can be written as:

F = ExA (3.4)

Where E is the Young’s modulus of the material, A is the cross-section area, and x is the
deformation. With the electrostatic force calculated above, the deformation perpendicu-
lar to the beam is estimated to be about 22.7 nanometers, which is a relatively reasonable
value that is neither too large that collapse the beam nor too small to influence the gap
distance. Nevertheless, the exact deformation still needs to be simulated to get a result
that is more consistent with the real experience.

As we show by the estimation that the model will give a reasonable deformation, we can
conduct simulations to obtain an accurate deformation field induced by the electrostatic
force. Firstly, the deformation of the whole beam was simulated with a voltage from 0 to
12 volts. The result is plotted in Fig. 3.10. The distribution of the displacement from the
original position induced by the electrostatic force is shown in Fig. 3.10 (a). As both ends
of the beam are fixed, the displacement is negligible close to these regions and reaches a
maximum at the middle point. In addition, the deformation of two nanobeams is anti-
symmetric as the electrostatic force applied to them is anti-symmetric. The relation be-
tween the magnitude of the deformation and the voltage is demonstrated in Fig. 3.10
(b). The deformation of the beam is evaluated by the displacement of the middle point
of the beam. The reason for choosing this value is that the concentration of the elec-
tromagnetic field meets the maximum in this region, thus the deformation around this
region is more influential to the frequency shift. Notably, the increase of the deforma-
tion gets more significant as the voltage gets higher, which is caused by the electrostatic
force’s quadratic dependence on the voltage.

As we show the maximum deformation of the zipper cavity is about 16 nm for each
nanobeam, which means a decrease of 32 nm in the total gap width, we then simulate
wavelength shift corresponding this gap change. We simulate the wavelengths of the
symmetric eigenmodes with the gap distance from 100nm, e.g. the original designed
value, to 70nm. The result is shown in Fig. 3.10 (c). We can see that the wavelength of
the symmetric eigenmode can be tuned up to 10 nanometers.

3.5. OPTOMECHANICAL COUPLING

Until now, we have shown that the deformation of the zipper cavity can be modified by
the voltage on it. In this section, we combine the electrostatic force simulation and the
optics simulation to show the wavelength shift induced by the deformation. After that,
with the deformation field and the electromagnetic field obtained from the simulation,
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Figure 3.10: (a) The distribution of the deformation over the zipper cavity induced by the electrostatic force
with a voltage of 10 volts. (b) The deformation of the zipper cavity. Values are taken from the displacement of
the center point of each nanobeam. (c) The shift of the wavelength with decreased gap distance. The range of
the distance is decided by the magnitude of the deformation of the electrostatic force simulation result.

we calculate the optomechanical coupling factor to evaluate the wavelength tunability
of our device.

In the combined simulation, the electrostatic force is first applied to simulate the defor-
mation of the structure. After that, the deformed structure is used as the dielectric geom-
etry for the electromagnetic field simulation to get the wavelengths of the eigenmodes
of the structure. Fig. 3.11 shows the change of the symmetric eigenmode wavelength
of the deformed device with different voltages applied to it. We can see that the shift in
wavelength has a similar tendency to the change of the middle point position. According
to the estimation, the wavelength shift is nearly linear with small deformation. In addi-
tion, the deformation is nearly quadratically dependent on the voltage. Therefore, it’s
consistent with the expectation that the wavelength should also be nearly quadratically
dependent on the voltage. With 12 volts of voltage, we got the highest detuning of 21
nanometers.

As introduced in the theory chapter, the factor which evaluates optical frequency shift
per displacement is called the optomechanical coupling factor. According to the moving
dielectric boundary theory, the relation between the G factor and the deformation field
can be described by the equation 2.54. From the equation, the optomechanical cou-
pling factor is decided by the deformation and the electromagnetic field distribution. As
we realized both the simulation of the electrostatic force and the electromagnetic field,
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Figure 3.11: The change of the wavelength of the symmetric mode with different voltage applied to it.

it’s possible to use the result of these two simulations to calculate the optomechanical
coupling factor. The normalized deformation field can be derived from the electrostatic
force simulation, while the electromagnetic field and electric displacement can be ob-
tained from the electromagnetics simulation. Substituting the values obtained from the
simulation to this formula, we can get the G factor for 89 GHz/nm, or 0.69nm/nm, which
is comparable with the result achieved by previous works [34]. The G factor also indicates
that we will have a wavelength change for 0.69 nm with the gap distance change of 1 nm,
which is also close to the result of our simulation.

3.6. OPTICAL RESPONSE

Until now, we have the complete design of our wavelength tunable cavity. In this section,
we focus on the simulation of the optical response of our cavity with an input source.
First, we introduce the model and the input source we used in the simulation. Then, we
conduct the simulation and demonstrate the distribution of the electromagnetic field
distribution with different input frequencies. Finally, the theoretical and simulated re-
flection probability is evaluated with different waveguide-cavity coupling distances.

The model used for the response simulation is shown in Fig. 3.12 (a). The light is in-
putted from the right side of the simulation area, propagates through the waveguide,
and is evanescently coupled into the cavity. In addition, in the real experiment, the re-
flection spectrum will be measured considering the current test setup. Therefore, the
pattern of the mirror region which is used to prevent the light from going through is also
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Figure 3.12: (a) The scheme of the optical response simulation. The structure contains the zipper cavity and
input waveguide. (b) The electric field distribution of the TEgg mode of the input waveguide. (c) and (d) The
distribution of the electric field with on-resonance and off-resonance (20 GHz detuning) input.

patterned on the left side of the waveguide. In this way, all the light that is not coupled
into the cavity or is coupled back from the cavity will all be reflected to the right port
while nothing will go to the left port.

In addition, the initial value of the distance between the waveguide and the cavity is set
to be 500 nm. In the simulation, we want to be able to control the intrinsic loss rate «i,
and the external coupling rate k¢x. While we already have the designed cavity, the intrin-
sic loss rate is already fixed. However, we can still change the external coupling rate by
changing the distance between the waveguide and the cavity. Therefore, by simulating
the optical response of the models with different waveguide-cavity distances, we can get
the response of the devices with different ratios between the intrinsic loss rate xj, and
the external coupling rate xey.

Another preparation work for the response simulation is to evaluate waveguide mode
which is used as the input signal in the simulation. As the width of the waveguide is
much less than the threshold of the TEy; mode, the only mode that the cavity can sup-
port is the TEgy mode. Fig. 3.12 (b) shows the simulation result of the electric field distri-
bution of this mode. The damping rate of the mode is 2.4 x 10~ dB/m, which means less
than 10~ '3dB damping in our system scale (100 um) and it's negligible. Therefore, with
the model we set and the input signal we found, we can simulate the optical response of
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our cavity.

We first evaluate the electromagnetic field distribution of the system. Fig. 3.12 (c) and (d)
show the electric field distribution with on-resonance and off-resonance input, respec-
tively. We can see that with on-resonance input, which means the input signal is exactly
at the eigenfrequency of the cavity. We can see that most of the light field are coupled
into the cavity while the residual in the waveguide is neglectable, which means a low re-
flection probability. However, when the input frequency has a 20 GHz detuning, we can
see a significant decrease in the field inside the cavity while the signal in the waveguide
is dramatically enhanced. This means only a small fraction of the light at this frequency
is coupled into the cavity, and this leads to a high reflection probability.

Then we evaluate the theoretical reflection probability with different ratios between the
intrinsic loss «j, rate and the external coupling rate x¢x. The theoretical result is based
on equation 2.58. The result is shown in Fig. 3.13 (a). We can see that the minimum and
the linewidth of the reflection dip are determined by the intrinsic loss rate and external
coupling rate. When the intrinsic loss rate equals the external coupling rate, the mini-
mum of the dip reaches the minimum point, e.g. zero reflection, thus this coupling ratio
is called critical coupling which indicates the coupling with the best performance and
highest efficiency. With increasing external coupling rate, the line width of the dip will
get broader, which means that the photons with larger detuning also have a chance to be
coupled into the cavity. In addition, the minimum of the dip will become larger, which
is caused by the increasing probability of the photons inside the cavity being coupled
back to the waveguide. On the other hand, with a smaller external coupling rate com-
pared to the internal losing rate, the line width will become narrower, which indicates
a smaller probability for the detuned photon to be coupled into the cavity. Simultane-
ously, the on-resonance photon also has a smaller probability of being coupled into the
cavity, which leads to a larger minimum value of the dip. Therefore, considering that we
want to use it for a spectrometer, there is a trade-off between the efficiency (the mini-
mum of the reflection) and the resolution (the line width). As in real situations, a high
sensitivity is desired in multiple fields, which means the detection efficiency should be
considered more. Therefore, the ideal coupling strength for our device should be the one
at the critical coupling point.

Finally, we conduct the simulation of the cavity with different waveguide-cavity dis-
tances. The result is shown in Fig. 3.13 (b), and it’s consistent with the theoretical pre-
diction. We can see a clear change in the minimum and the line width of the response
signal with different waveguide distances. With a near distance at 300nm, the dip is sig-
nificantly broadened, while oppositely, the dip gets narrow and shallow at 900nm nm,
which is a relatively big distance. The minimum of the dip appears at 600nm, and with
a slightly smaller or larger distance (500 or 700nm), a significant change in depth and
line width can be observed. Therefore, we can conclude that with a waveguide distance
of 600nm, we can have a critical coupling between the waveguide and the cavity. When
the distance is shorter, the cavity is over-coupled. Oppositely, with a longer distance, the
cavity is under-coupled [4].
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Figure 3.13: (a) The reflection probability with different ratios between external coupling rate and intrinsic loss
rate derived from the input-output theory. (b) Simulation of the reflection probability with different distances
between the waveguide and cavity.



EXPERIMENT

Through FEM simulation, we get our design of the zipper cavity which we expect to have
an ideal optical response. After fabrication, we get a chip with multiple devices that have
different geometry parameters for each device. Then, the devices are tested using the re-
flection spectrum. The aims of the experiment are mainly two things. Firstly, we need to
check the consistency of the actual response and our simulation and design. Secondly,
some parameters, such as the external coupling strength, are difficult to get from the
theory and simulation. We hope to figure out an ideal geometry parameter for it by at-
tempting different designs.

In this chapter, we first introduce the devices we used in our experiment in section 4.1.
The devices are fabricated with different geometry parameters which allows us to com-
pare them and analyze the influence of each parameter. After that, in section 4.2, we
introduce the setup for the reflection spectrum, which will be mainly used in the follow-
ing experiments. Then, we demonstrate the reflection spectrum we get and introduce
how we extract the resonance wavelength and the total loss rate of the cavity from it in
section 4.3. Finally, we analyze three sets of devices. The intrinsic loss rate and the ex-
ternal coupling rate are evaluated by comparing devices with different waveguide-cavity
gap distances in section 4.4. In section 4.5, the tunability of resonance wavelength is
investigated by studying devices with different internal gap distances. We also study de-
vices with different hole sizes to prove that they can work in different wavelength ranges
in section 4.6.

4.1. DEVICES

The devices are fabricated based on the simulation result. In this section, we introduce
the structure of the devices. The meaning of each geometry parameter is also intro-
duced. The geometry parameters are varied from device to device for further investiga-
tion of the influence of them.

37



38 4. EXPERIMENT

(b)

I Internal Gap Distance Zipper cavity

I Waveguide-Cavity Distance

Waveguide

Figure 4.1: The geometry of the devices. (a) The picture of the device after fabrication. The scale bar is 10 um.
(b) The sketch of the sample structure with geometry parameters marked on it.

The geometry of the fabricated device is shown in Fig. 4.1 (a). Following the simulation
and the design, the device is constructed by a zipper cavity and a coupling waveguide
with a tapered tail which is used for coupling to the input fiber. The size of the holes
patterned on the zipper cavity is decided by the simulation result (see Chapter 3). Be-
sides, two more parameters decide the geometry of the samples, which is demonstrated
in Fig. 4.1 (b). The distance between the two nanobeams that constitute the zipper cav-
ity is called the internal gap distance. The distance between the zipper cavity and the
coupling waveguide is called the waveguide-cavity distance. The combination of these
parameters decided the geometry of the device.

To study the influence of each geometry parameter, these parameters are varied from
device to device. Firstly, according to the input-output theory introduced in Chapter
2 and the simulation of the reflection response shown in Chapter 3, the reflection re-
sponse of the device is decided by the external coupling rate, which can be changed by
the waveguide-cavity distance. Therefore, the waveguide-cavity distance is varied from
200 nm to 800 nm with a 100 nm difference between each of them. In addition, as dis-
cussed in the simulation of the zipper cavity resonance wavelength in Chapter 3, the
resonance wavelength of the cavity is decided by the internal gap distance. To prove that
the resonance of the cavity can be changed, we vary the internal gap distance from 200
nm to 400 nm with a difference of 50 nm between each of them. Finally, based on the
photonic crystal theory introduced in Chapter 2, the resonance of the cavity is decided
by the widths of materials with different refraction indices. For our devices, the widths
of the air and the silicon nitride are decided by the size of the holes patterned on the
nanobeams. Therefore, besides the devices with the hole sizes that are obtained from
the simulation, we also fabricate devices whose hole sizes are 10 nm and 20 nm larger.
Therefore, we have 7 different waveguide-cavity distances, 5 different internal-gap dis-
tances, and 3 different hole sizes. Combining these three sets of parameters, we have
7 x5 x3 =105 devices.



4.2. EXPERIMENT SETUP 39

—
()
~

Sample

Tunable Laser VOA Polarizer PD

o 0
) >

Circulator
(b)
Etched Fiber Etched Fiber
4
]
Touch Piezoelectric Stage
<—1—> —

Piezoelectric Stage

Figure 4.2: (a) The scheme of the test setup for the reflection spectrum. (b) The sketch of the method to couple
the etched fiber to the waveguide.

4.2. EXPERIMENT SETUP

In our experiment, the reflection spectrum is used to investigate our cavity, not only
because it can easily give us the internal and external coupling rate through the input-
output theory, but also because our current test setup in the lab is suitable for this mea-
surement. In this section, we will introduce the experiment setup for the reflection spec-
trum.

The sketch of the reflection experiment setup is shown in Fig. 4.2 (a). The laser is gen-
erated by a tunable laser source (Suntech). Using the variable optical attenuator (VOA),
the intensity of the laser can be modified. The TE mode is realized by the polarizer and
sent into the sample through the oscillator. After interacting with our cavity, certain pro-
portions of the light will reflect according to its wavelength. The light will be sent to the
circulator and directed to the photon detector (PD), through which the intensity of the
reflection light will be recorded. As the laser source is tunable, by tuning the input signal
and recording the corresponding reflection intensity, we can get the relation between
the reflection and the wavelength, which is the reflection spectrum that we want.

An additional point to claim is the method we use to couple the fiber of the test setup
and our device in our on-chip measurement. The sketch of the connection between the
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Figure 4.3: The reflection spectrum of the device. (a) The coarse scan over a large wavelength range. Four
obvious dips appear on the spectrum. (b) The zoom-in of the dip and the fitting by Lorentz distribution.

fiber and the device waveguide is shown in Fig. 4.2 (b). The end of the fiber in the in-
put arm of our test setup is connected to an etched fiber, which is etched by the HF to a
tapered shape. In this way, the fiber can evanescently couple the light to other systems
through touching it. The device is placed on a piezoelectric stage which can move the
device with the accuracy of micrometers. In this way, we can move our device and touch
the fiber, which allows us to couple the light into our cavity.

4.3. REFLECTION SPECTRUM

Using our experiment setup, we can get the reflection spectrum of our device. In addi-
tion, in the design and simulation section, we introduced that we could use the reflection
response of our device to characterize our device (for example, to get the coupling rate).
Here, in detail, we will discuss the result of the reflection measurement and how we use
it to evaluate the performance of our device.

A typical reflection spectrum of our device is shown in Fig 4.3 (a). There are four obvious
dipsin the spectrum that indicate low reflection probabilities around them. According to
our simulation and previous works, the first-order eigenmodes have the highest eigen-
frequencies, which also means the shortest wavelength, while the higher-order modes
have longer wavelengths [9]. In addition, for the eigenmodes with the same order, the
anti-symmetric mode has a shorter wavelength. We also checked that there are no addi-
tional dips in the shorter wavelength range. Therefore, we can conclude that the dips in
the spectrum, ranging from shorter to longer wavelengths, correspond to the first-order
anti-symmetric mode, first-order symmetric mode, second-order anti-symmetric mode,
and second-order symmetric mode, respectively.

To get more insight into the device’s reflection response and extract more information
about our cavity through it, we conduct zoom-in fine scans for each dip. The result is
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shown in Fig. 4.3 (b). To analyze the reflection dip, let’s first recall the input-output the-
ory. The reflection probability can be written as:
KinKex

2 _ -
|R| =1 (Kin;Kex)2+A2. (41)

However, in our situation, the test setup doesn’t contain the reference light path, which
makes it impossible to get the reflection probability. The reflection spectrum we got is
the unnormalized reflected intensity which is decided by both the reflection probability
and the laser intensity distribution over different wavelengths. In addition, other factors
influence the reflection spectrum, for example, the background signal, the laser fluctua-
tion, and other noises. Therefore, considering all of these factors, the function we used
to fit the curve is:

Ig = offset— (4.2)

Kt Kae o o
(Km‘gkex )2 + A2

where offset and a refer to the effective influence of all other factors. We use the Iy to
replace |R|? in order to emphasize that the things we get are the reflection intensities
instead of normalized reflection probabilities. Although the offset and the scale a are
ambiguous and impossible to get, we can see that the reflection intensity is in the form
of Lorentz distribution, which means that the full width at half maximum (FWHM), or
we say the linewidth of it, is only dependent on the sum of the intrinsic loss rate and ex-
ternal coupling rate with the relation FWHM = k;, + kex. Therefore, through this Lorentz
fitting, we can get the total loss rate. Note that the function is written based on frequency,
but our reflection spectrum is based on wavelength. Thus, we need to first convert the
result into frequency and then conduct the fitting.

In addition, the quality factor, which evaluates the ability of the cavity to confine the
energy, is also an important factor for us to characterize the performance of our cavity.
Based on its definition, the quality factor Q of a cavity can be written as:

Q= Weavity _ hwcavity _ Wcavity 4.3)
Wioss Rwioss Kin + Kex .

Therefore, with the total loss rate, e.g. the linewidth we get from the fitting, we can also
get the quality factor of our cavity.

4.4. EVALUATION OF COUPLING RATE

As mentioned before, it’s relatively difficult to get the ideal waveguide-cavity distance
which gives us the external coupling rate that leads to the critical coupling. Therefore,
in this section, we measure the devices with different waveguide-cavity distances to find
the best-performed one among them by experiment.
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Firstly, we need to decide which devices we need to measure. To compare the external
coupling rate, we need to vary it while keeping other parameters fixed. According to the
expression of the reflection spectrum, we can find that the external coupling rate, intrin-
sic loss rate, and resonance frequency all influence the final spectrum we get. Therefore,
while changing the external coupling rate, we want to fix the intrinsic loss rate and the
resonance wavelength. Since our waveguide is evanescently coupled to the cavity, the
external coupling rate is most sensitive to the waveguide-cavity gap distance. The in-
trinsic loss rate is mainly decided by the fluctuation in the fabrication. In addition, as
discussed in the design section, for a zipper cavity constructed by certain nanobeams,
the resonance frequency mainly depends on the internal gap distance. Therefore, we
choose 7 samples with different waveguide-cavity gap distances and the same internal
gap distance and compare them. The waveguide-cavity gap distance is set to be from 200
to 800 nm with a 100 nm increase for each device, and the internal gap distance of these
7 devices is fixed to be 200 nm. In addition, we showed by the simulation that the sym-
metric mode is more sensitive to the change of the internal gap distance, which means
it has better tunability in the resonance wavelength. Therefore, our study will focus on
the symmetric mode, e.g., the second dip in our reflection spectrum.

In addition another fitting equation is needed to extract the external coupling rate from
the FWHM we get. To investigate the change of the coupling rate with different waveguide-
cavity distances, we compare the FWHMs over these devices, which gives us information
about the total loss rate. However, we cannot figure out the intrinsic loss rate and the ex-
ternal coupling rate separately. Therefore, we need to further investigate the result. As
the intrinsic loss rate is relatively fixed, we can suppose it’s identical over these samples
and only the external coupling rate is different over samples. In addition, as the light
is evanescently coupled to the cavity, the coupling strength exponentially decays with
the increasing distance [7]. Therefore, the relation between the total loss rate and the
waveguide-cavity gap distance dwc can be written as:

FWHM = ki + Kex,200nm e—(dwc,—ZOOnm)/dO, (4.4)

where d is the decay length of the coupling strength. We can use this function to fit the
FWHMs we get. Through this way, we can get the k¢ for a 200 nm waveguide-cavity dis-
tance and the ki, and dj for all the devices. The external coupling rate for other devices
can be calculated by the calculated by the function with their waveguide-cavity gap dis-
tance.

With the methods mentioned above, we conduct the experiment and analyze the reflec-
tion spectrum we get. The result is demonstrated in Fig. 4.4. The FWHM of the reflec-
tion dip decreases with the increase of the waveguide-cavity gap, which is caused by
decreased external coupling rates. In addition, with a large waveguide-cavity distance,
the change in the total loss rate becomes smaller, which indicates an exponential decay
of the external coupling rate instead of a linear change. The fitted result is shown by the
orange line in Fig. 4.4. The intrinsic loss rate obtained by the fitting is 12.43 GHz and
the external coupling rate at 200 nm is 27.35 GHz. The fixed intrinsic loss rate is shown
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Figure 4.4: The changing of the FWHM with different waveguide-cavity distance. The dashed horizontal line
refers to the intrinsic loss rate.

by the green dashed line in Fig. 4.4. We can see that the FWHMs converge to that line
with increasing waveguide-cavity distance, which is caused by the fact that the external
coupling rate decays with the distance while the internal loss remains the same. In ad-
dition, as we mentioned in the simulation section, we want to find a distance that gives
the same external coupling rate and the internal losing rate which leads to the critical
coupling. Through this fitting result, we can find that when the waveguide-cavity gap
distance is 400 nm, the external coupling rate is closest to the intrinsic loss rate, which
leads to a critical coupling. From now on, we will evaluate the devices with this best-
performed parameter.

4.5, SHIFT OF THE RESONANCE

Now we have found the waveguide-cavity distance for the critical coupling. Another
goal for our measurement is to prove the tunability of the resonance of our device. In
this section, we measure the devices with different internal gap distances to show the
wavelength tunability of them.

Currently, we haven't finished the fabrication of the devices with electrodes that make
it possible to tune their resonance. Therefore, the only thing we can do now is to com-
pare the wavelengths of devices with different internal gap distances. If the resonance
wavelengths change over the devices with different internal gap distances, we can say
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Figure 4.5: The resonance wavelengths of devices with different internal gap distances. We can see the wave-
lengths of symmetric modes decrease with increasing internal gap distance, while the wavelengths of the anti-
symmetric modes remain nearly the same.

that we will be able to tune the resonance wavelength of the cavity once we can apply
electrostatic force on it and change the internal gap distance. To show the changing of
the resonance wavelength we measured the devices with fixed waveguide-cavity gap dis-
tances of 400 nm and different internal gap distances from 200 nm to 400 nm with the
increase of 50 nm for each device.

The result is shown in Fig. 4.5. Consistent with what we showed in the simulation, the
wavelengths of the symmetric modes decrease with the increasing internal gap distance,
while the wavelengths of the anti-symmetric modes don’t have an obvious shift. The
wavelengths of the symmetric modes change from 1531.44 nm to 1518.61 nm, which has
a shift of 12.83 nm. The shift of 12.83 nm in the resonance wavelength is consistent with
our simulation result, which changes for 13 nm when the internal gap distance changes
from 200 nm to 400 nm. The shift of 12.83 nm is not a big change. The reason is that, as
we showed in the simulation, the shift of the resonance is less significant with large start
and end internal gap distances. The wavelength shift of the device with the internal-
gap distance from 100 nm to 300 nm is nearly twice compared to the device whose gap
changes from 200 nm to 400 nm. With optimized fabrication strategies, we expect to be
able to fabricate devices with smaller internal gap distances, which will lead to a signifi-
cant increase in the tunability of the resonance wavelength.
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4.6. MODIFYING THE WAVELENGTH RANGE

Now we have shown the tunability of our devices, whose resonance wavelength can be
changed from 1531.44 nm to 1518.61 nm by changing the internal gap distance. In this
section, we measure devices with different hole sizes to show that we can modify the
range in which the wavelength is tunable by modifying their geometry.

To further evaluate the performance of our device, we show that we can modify the tun-
able range of the wavelength. This requires us to change the resonance wavelength while
keeping the internal gap fixed. Based on the photonic crystal theory introduced in the
second chapter, the resonance wavelength can be changed by changing the size of dif-
ferent dielectric materials. The reason for this phenomenon can be simply explained by
the equation 2.28, which is:

A
n1d1 + ngdg = 5 (4.5)

Suppose that n; denotes the refractive index for air and n, for the silicon nitride. With
an increase in d; and a decrease in d» with the same amount, we will expect a shorter
resonance wavelength. By changing the sizes of the air holes patterned on the cavity, we
can change the size of the air and the silicon nitride and further change the resonance
wavelength. Therefore, in this experiment, three sets of devices were measured. Within
each set, the air hole sizes and the waveguide-cavity distance are fixed. The internal gap
of the cavity changes from 200 nm to 400 nm. For the first set of devices, the hole size is
the same as the original design. For the other two sets, both the width and the height of
the hole sizes are enlarged for 10 nm and 20 nm, respectively.

The resonance wavelengths of these three sets of devices are shown in Fig. 4.6. Within
each set of devices, we can see a decrease in the wavelength with increasing gap distance,
which is consistent with our previous measurement result. In addition, a clear shift of
the wavelength range can be seen between different device sets. For the set with original
hole sizes, the wavelength is tuned from 1531 nm to 1518 nm. For the other two sets, the
wavelength shift range is from 1523 nm to 1509 when the hole size is 10 nm larger, and
from 1513 nm to 1501 when the hole size is 20 nm larger. This result shows that the range
in which the resonance wavelength is tunable can be modified simply by changing the
geometry of our devices.
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set of devices.



CONCLUSION AND DISCUSSION

In this work, we designed a zipper cavity with tunable resonance wavelength in order to
achieve an on-chip tunable spectrometer. The prototypes of the cavity were fabricated
and the optical response of them were tested.

Based on FEM simulations and with the assistance of the simulator COMSOL, we de-
signed the unit cells of the photonic crystals with a bandgap of 37 THz width around
our target frequency of 193 THz. With transition functions, whose parameters were opti-
mized through the Nelder—-Mead algorithm, we designed a nanobeam cavity with a high
quality factor. By putting two nanobeams together, we designed a zipper cavity whose
resonance wavelength can be changed in a range of 49 nm by changing the internal gap
distance. After that, we put gold electrodes on both ends of our cavity and simulated
the deformation of it caused by the electrostatic force. The change in the gap distance
induced by the electrostatic force was found to be more than 30 nm. Combining the elec-
trostatic force simulation and the optical simulation, we show the resonance wavelength
of the cavity can be tuned for 21 nm. The optomechanical coupling factor is also calcu-
lated to be 0.69 nm/nm. Finally, with an input source, the optical reflection response of
the cavity was evaluated.

With the designed structure, the prototypes of the devices were fabricated. By comparing
devices with different parameters, we figured out the intrinsic loss rate of the devices to
be 12.43 GHz. We also showed the resonance wavelength of the devices can be changed
for 12.83 nm with the internal gap distance changed from 200 nm to 400 nm. By changing
the hole sizes of the devices, we demonstrated that the operation wavelength range can
be modified. All these features proved that our cavity could serve as a high-resolution
wavelength tunable filter, which is a key component for the on-chip spectrometer.

There are some previous works about the zipper cavity. The idea of using electrostatic
force to tune the cavity, which is used in this project, was proposed by Teodoro Graziosi

in this master thesis [18]. Based on his work, in this thesis, we further focus on the elec-
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tromagnetic property of the cavity and the tunability of the optical modes. We optimized
the features that are important for using it as a spectrometer such as the linewidth and
the wavelength tunable range. These are also tested by measuring the prototypes of the
cavity.

While the performances of the prototypes of our devices have been evaluated, there are
still some problems to solve to optimize the performance of our zipper cavities. Firstly,
the linewidth of the absorption dips for our device is about 28 GHz, which means a qual-
ity factor of 6.8 thousand and a resolution of 0.22 nm. This quality factor is still lower
than our expectations. As this is the first chip successfully fabricated, we still need to
optimize the fabrication process, through which we expect to minimize the fabrication
fluctuations and have a higher quality factor, which will lead to a higher resolution.

Another problem is that the current wavelength tunable range is 12 nm with the gap
distance changes from 200 nm to 400 nm. The tunable range is not broad enough and
it’s difficult to change the gap for 200 nm by electrostatic force. However, based on the
simulation and previous works [45], we know that the resonance wavelength of the sym-
metric mode becomes more and more sensitive to the change of internal gap distance
with a smaller internal gap distance. After the electrode deposition and the voltage ap-
plied to it, we can start with 200 nm or some slightly smaller initial value and further
decrease the gap distance by the attractive electrostatic force. Based on the simulation,
the wavelength is tuned for 13 nm with the gap distance decreasing from 400 nm to 200
nm. However, with the gap distance decrease from 200 nm to 75 nm, the wavelength will
be tuned for more than 26 nm. Therefore, although the wavelength tunability is not ideal
now, we expect a much larger tunable range after we are able to apply electrostatic force
to it.

Besides solving these problems, we also plan to conduct some other work to realize a
complete spectrometer. Firstly, we need to deposit electrodes on the cavities and wire-
bound them to the printed circuit boards. This procedure allows us to apply electrostatic
force on it. The force will cause the deformation and further enable us to tune the reso-
nance wavelength of the cavity.

In addition, our current focus is on the zipper cavity which serves as the filter in our
spectrometer. However, to achieve a complete spectrometer, we also need a detector to
convert the photons to signals. To achieve an on-chip photon detector, we plan to use su-
perconductor nanowire single-photon detectors (SNSPD). Previous works have already
shown the feasibility of this method [41], and we also conducted simulations which show
that we can achieve a photon absorption rate for more than 87% by this method.
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ADDITIONAL INFORMATION

A.1. BOUNDARY CONDITIONS FOR UNIT CELL SIMULATION

The detailed way of setting the boundary conditions for the unit cell simulation is intro-
duced in this section.

For the symmetry plane in the x-y plane, the perfect magnetic conductor (PMC) condi-
tion is applied. This boundary condition guarantees that only the modes whose mag-
netic fields are perpendicular to this plane can be supplied in the structure, which is a
necessary condition for the TE mode. In addition, as the PMC doesn't allow the tan-
gential component of the magnetic field to exist within the plane, the unwanted electric
field along the z direction is eliminated. As for the symmetry plane in the z-x plane,
the perfect electric conductor (PEC) condition is applied. Similarly, this boundary con-
dition only supports the mode with the electric field perpendicular to this surface, e.g.
along the y-axis, and eliminates ones that have tangential components. In addition, the
symmetry conditions are also met with these boundaries because of the mathematical
property of the wave function (the first-order spacial derivation should be 0 at the sym-
metry point).
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A.2. FABRICATION PROCEDURE

In this section, we introduce the fabrication procedure to get the devices in detail.

We start with the commercial silicon wafer as the substrate of our devices. After that,
high-stress silicon nitride is grown on the silicon wafer with a thickness of 300 nm by
LPCVD. Then by spin coating, the resist (CSAR62) is coated on the top of the silicon ni-
tride. Then we bake it for 3 minutes to let the resist to be formed. The pattern based
on our device is written on the resist by the e-beam lithography. After this, in the de-
velopment step, the e-beam-exposed areas on the resist are removed. Then we conduct
dry etching and the areas of the silicon nitride that are not covered by the resist will be
etched. As the pattern is already patterned on the resist, through dry etching, we can
transfer the pattern to the silicon nitride. After we etch through the silicon nitride, we
clean all the resist by hot DMF (Dimethylformamide). Finally, we conduct dry release
using SF6 and 02, which only react with silicon and won't influence the silicon nitride.
In this way, we etch the area under our devices and suspend them, which allows us to
deform them in our experiment. The sketch of the whole fabrication procedure is shown
in Fig. A.1.

Growing Spin Coating

B - N -

Exposure l

|
Development

Dry Etching
B - N -
lCIeaning
Releasing

N

Figure A.1: The fabrication procedure through we fabricate our device. The blue layer refers to the silicon. The
green layer refers to the silicon nitride. The yellow layer refers to the resist.
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