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A B S T R A C T

Proper understanding of motor control requires insight into the extent and manner in which task performance
and control strategy are influenced by various aspects of visual information. We therefore systematically
manipulated the visual presentation (i.e., scaling factor and optical flow density) of a visuomotor tracking task
without changing the task itself, and investigated the effect on performance, effort, motor control strategy (i.e.,
anticipatory or corrective steering) and underlying neuromechanical parameters (i.e., intrinsic muscle stiffness
and damping, and proprioceptive and visual feedback). Twenty healthy participants controlled the left-right
position of a virtual car (by means of wrist rotations in a haptic robot) to track a slightly curved virtual road
(presented on a 60” LED screen), while small torque perturbations were applied to the wrist (1.25–20 Hz
multisine) for quantification of the neuromechanical parameters. This visuomotor tracking task was performed
in conditions with low/medium/high scaling factor and low/high optical flow density. Task performance was
high in all conditions (tracking accuracy 96.6%–100%); a higher scaling factor was associated with slightly
better performance. As expected, participants did adapt their control strategy and the use of proprioceptive and
visual feedback in response to changes in the visual presentation. These findings indicate that effects of visual
representation on motor behavior should be taken into consideration in designing, interpreting and comparing
experiments on motor control in health and disease. In future studies, these insights might be exploited to assess
the sensory-motor adaptability in various clinical conditions.

1. Introduction

Given that vision if reliable is dominant over the other senses in
many situations [1,2] and strong connections exist between the visual
and the motor system [3,4] proper understanding of motor control
requires insight into the extent and manner in which task performance
and control strategy are influenced by various aspects of visual
information such as resolution intensity contrast optical flow density
and predictability. Between different studies and experiments however
the visual representation of the task is usually not controlled (e.g.,
screen size, resolution, distance between the participant and the screen,
scaling factor of visual feedback, the degree of immersion (screen,

virtual reality, augmented reality) etc. Hence it is assumed that
variation in the visual representation of the task under study does not
affect the motor control that is being studied. Insight into the effects of
visual representation on motor behavior however is important for
designing interpreting and comparing experiments on motor control
in health and disease. In future studies these insights might be exploited
to assess sensory-motor adaptability, which is essential for adequate
interaction with the environment in daily life, in various clinical
conditions.

Against this background, we hypothesized that visual representation
of a task would affect motor control even if the task demands remained
unchanged. We therefore systematically manipulated the visual pre-
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sentation (i.e. scaling factor and optical flow density) of a visuomotor
tracking task without changing the task itself and investigated the effect
on performance, effort, motor control strategy, and underlying neuro-
mechanical parameters. It was anticipated that a higher resolution and
density of visual information (i.e. higher scaling factor [5,6] and higher
optical flow density [7,8]) would provide more reliable visual informa-
tion which in turn may contribute more to motor control (i.e. receive a
higher weight in the sensory weighing of input signals [9]). Conse-
quently higher scaling factor and higher optical flow density were
expected to result in improved performance with lower effort and more
anticipatory control.

2. Methods

The present study aimed to determine the effects of visual informa-
tion (i.e., scaling factor and optical flow density) on task performance,
effort, control strategy and underlying neuromechanical parameters
during a visuomotor tracking task that was presented on a LED screen.
Participants controlled the left-right position of a virtual car, by means
of small flexion and extension movements of the wrist, in order to track
a slightly curved virtual road. Task performance was defined by
tracking accuracy. Effort and co-contraction were determined by the
muscle activity, and the adopted control strategy was quantified in
terms of the steering delay and corrective steering actions.
Neuromechanical properties (i.e., intrinsic muscle stiffness and damp-
ing, and contributions of proprioceptive and visual feedback) under-
lying task performance and control strategy were quantified using
System Identification and Parameter Estimation (SIPE) (e.g. [10–14]).

2.1. Participants

18 healthy adults (13 female; 16 right-handed; age 50–76 years)
with normal or corrected to normal vision participated in the study.
Participants had no known history of lesions or diseases of the nervous
system, or other conditions associated with pain and/or limited sensory
or motor function of the upper extremities. Informed consent was
obtained from all individual participants included in the study. All
procedures performed in this study were approved by the ethical
committee of the Leiden University Medical Center and in accordance
with the 1964 Helsinki declaration and its later amendments.

2.2. Measurement setup

Throughout the experiment, participants sat in a chair with their
elbow flexed and their feet supported. On a 60” flatscreen LED TV
(Sharp LC-60LE652E, Sharp Electronics Europe Ltd., Usbridge, UK)
placed circa 1.5 m in front of the participant, a visuomotor tracking task
was presented by means of a virtual car on an animated curved road in
a virtual environment (D-flow software; Motekforce Link B.V.,
Amsterdam, The Netherlands). Participants had to control the left-right
movements of the virtual car by means of flexion and extension
movements of their right wrist (≈10° peak-to-peak movement ampli-
tude). To this end, the forearm was placed in a haptic robot
(Wristalyzer™; MOOG FCS Inc., Nieuw Vennep, The Netherlands),
consisting of a vertically positioned servo-controlled motor (Parker
SMH100 series) that only permitted flexion-extension movements of the
wrist in the horizontal plane. The forearm was placed in the apparatus
with thumb up and palm facing inward, and its position was restrained
to prevent movements of the elbow. The rotation axis of the wrist was
aligned with that of the motor such that movement of the motor was
directly coupled to flexion-extension of the wrist. The distance between
the handle (diameter 32 mm) and the forearm support was adjusted
such that the handle fell in the crease between thumb and index finger
(see Fig. 1). The robot’s neutral position corresponded with the handle
being aligned with the forearm.

2.3. Data collection procedure

Participants were instructed to control the left-right position of a
virtual car (presented on the LED screen) by means of small flexion and
extension movements of the wrist in order to track a slightly curved
virtual road (see 2.4.1), while small torque perturbations were applied
by the haptic robot (see 2.4.1). Two features of the visual scenery were
manipulated to change the visual presentation of the task (Fig. 2),
without affecting the task demands: (1) scaling factor, which concerned
the scaling of the virtual car and the road as well as the scaling between
movements of the wrist and those of the virtual car (3 levels: low,
medium, and high; corresponding to 0.5, 1 and 2 times the ‘default’
scaling factor). With the default scaling factor, the virtual car and the
road were circa 5 and 11 cm wide, respectively, and 1° of wrist
movement corresponded to circa 4.5 cm displacement of the virtual
car on the screen; with a higher scaling factor all objects in the virtual
environment were larger and a given wrist movement resulted in larger
movement of the virtual car; and (2) optical flow density, which was
defined by the absence or presence of a virtual tunnel with textured
walls (2 levels: low optical flow density (without tunnel) and high
optical flow density (with tunnel); tunnel width circa 60 cm, 80 cm and
130 cm, respectively, in conditions with low, medium and high scaling
factor). These manipulations were intended to have no effect on the task
demands, e.g. in conditions with high scaling factor a given wrist
movement resulted in twice as large movements of the virtual car (i.e.,
1° of wrist movement corresponded to circa 9 cm of displacement of the
virtual car), but the road (22 cm) and virtual car (10 cm) were also
twice as wide.

All combinations of the abovementioned factors were tested. Hence,
the experiment involved 6 conditions. The order of conditions was
randomized between participants, and one trial (duration: 30 s) was
performed per condition. Two blocks of three consecutive trials were
presented. At the start and the end of each block, and during transitions
between consecutive trials, scaling of the visual scenery changed
linearly from one condition to the next in 10 s and changes in optical
flow density were gradually introduced, i.e., the virtual tunnel (or its
end) became visible in the distance and was approached within 5 s,
such that the virtual car entered (or left) the virtual tunnel 5 s before
the start of the actual trial. These gradual transitions provided sufficient
time to adapt to the new condition. In specific, the three-trial blocks
were separated by a 40-s pause during which stimulating performance
feedback on the task was provided to motivate the participant (i.e., a
score reflecting the percentage of time on the road, averaged over the
three trials within that block).

A practice trial (medium scaling factor and low optical flow density)
prior to the first experimental condition served to familiarize partici-
pants with the visuomotor tracking task. During the practice trial, a
fixed set of perturbation powers was tested (in random order) to
determine the appropriate power of the perturbation signal for each
individual participant. To allow for application of linear modeling
techniques in the SIPE analyses, we selected the power for which wrist
rotations due to the exerted torques had a standard deviation of
approximately 2° and coherence between perturbation torques and
wrist rotations [15] was> 0.7 for all frequencies in the signal. The
selected power of the perturbation signal varied between 0.07 (n = 12)
and 0.08 (n = 6), which corresponded to maximum torques of 0.12 and
0.14 Nm, respectively. For each individual participant, the selected
power was used for all conditions of the experiment.

2.4. Input and output signals

2.4.1. Input (task) signals
2.4.1.1. Visual. On the LED screen a virtual road was presented that
served as visual input for the tracking task (Xref in Figs. 3a, 4 and 5. It
consisted of three (phase shifted) sinusoids in order to reduce the
predictability of the road curvature and was defined as:
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with f1 = 0.2 Hz and f2 = f3 = 0.1 Hz.
As a result, the visual task required voluntary steering movements

up to 0.2 Hz at about 10° peak-to-peak movement amplitude to
approximate linear conditions and thus allow for application of linear
modeling techniques. In all conditions, a 1.25 s preview of the upcom-
ing trajectory was provided.

2.4.1.2. Mechanical. The haptic robot applied unpredictable torque
perturbations to the wrist to estimate the neuromuscular properties
underlying task performance using SIPE [12]. The perturbation signal
(TD in Figs. 3b and 4) consisted of a repeating unpredictable 4-s multi-
sine signal (full power spectrum over frequency bandwidth 1.25 −
20 Hz, with Δf = 0.25 Hz (i.e., 76 frequencies), maximum torque 0.14
Nm) with equal power per frequency and randomized phases
(uniformly distributed between 0 and 2π radians). The lower
boundary of perturbation frequencies was set at 1.25 Hz to avoid
interference with voluntary steering (i.e., tracking movements up to
0.2 Hz and potential corrective movements up to a frequency of ca.
1 Hz [16]).

2.4.2. Output signals
2.4.2.1. Mechanical. Angular displacement of the haptic robot’s handle
(X) was measured using a high resolution angular encoder and wrist
rotation torque (T) was measured using a force transducer mounted
between the motor axis and the handle (see Fig. 3a and b for example
signals). Positive values indicated flexion angles and torques of the
hand to the handle, respectively. Position and torque outputs were
digitized using a 16-bit A/D converter and subsequently imported to D-
flow software (Motekforce Link B.V., Amsterdam, The Netherlands) for
storage and for real-time control of the virtual car’s movements (at
100 Hz). A first order filter (τ= 0.1 s) was applied to the wrist’s
angular position signal to minimize the visual effects of high
frequency torque perturbations. To quantify corrective steering (see
2.5.2), the raw angular position data were low-pass filtered (third order
recursive Butterworth filter, 20 Hz) after offset correction. For SIPE
analyses, the raw angular position and torque were up-sampled to
2048 Hz (by means of linear interpolation) to allow for synchronization
with the applied perturbation signal. The synchronized signals were
subsequently band-pass filtered (third order recursive Butterworth
filter, 1.25–20 Hz) and down-sampled to 128 Hz to reduce
computational effort.

Fig. 1. Overview of the experimental setup, with a close-up top view of the arm positioned in the haptic robot.

Fig. 2. Impression of the visual scenery in the six experimental conditions, with systematic manipulation of scaling factor (a,d: low; b,e: medium; and c,f: high) and optical flow density
(a–c: low; d–f: high).
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2.4.2.2. Muscle activity. Bipolar surface electromyography (EMG) was
obtained from the flexor carpi radialis (FCR) and extensor carpi radialis
(ECR) muscles of the tested arm. After preparation of the skin,
disposable surface electrodes were positioned in the center of the
muscle belly on the line from origin to insertion as determined by
palpation. EMG signals were sampled at 2000 Hz, with 22 bits A/D
conversion (Porti7 with 600 Hz low-pass filter; TMSi international BV,
Oldenzaal, the Netherlands). EMG signals were filtered to remove
movement artifacts (third order recursive Butterworth high-pass filter,
10 Hz), full-wave rectified and normalized to EMG values obtained
during maximum voluntary contraction (MVC). Subsequently the EMG
amplitude envelope was extracted by means of a third order recursive
Butterworth 20 Hz low-pass filter (see Fig. 3c and d for an example).

2.5. Data analysis

Data analysis was performed using Matlab (The Mathworks Inc.,
Natick MA, version R2014a). The first 5 s of each trial were removed in
order to eliminate any transient effects. To ensure that the length of the
analyzed time series corresponded to an exact multiple of the repeating
4-s perturbation signal (required for SIPE purposes), all analyses were
performed on the subsequent 20 s.

2.5.1. Task performance, effort and co-contraction
Task performance was defined as the percentage of time that

participants were able to keep the center of the car between the
boundaries of the road. Effort was quantified by means of the total
muscular activity and was calculated at each time point as the sum of
FCR and ECR EMG values. Co-contraction, which was defined as any
activity in the normally silent antagonist muscle, was calculated at each

Fig. 3. Example of input signals (black) and output signals (grey) for a randomly selected subject. Input signals Xref (visual; road position) and TD (mechanical; torque perturbations);
Output signals X (mechanical; angular displacement), T (mechanical; wrist rotation torque) and muscle activity (EMG amplitude envelope) obtained from the flexor carpi radialis (FCR)
and extensor carpi radialis (ECR) muscles.
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time point as the minimum value of EMG between the FCR and the ECR
[17]. The obtained values were subsequently averaged per trial.

2.5.2. Control strategy: steering delay and corrective steering
Reactive steering, in which the actual track was delayed compared

to the road (positive delay) and anticipatory steering, in which the
actual track was ahead of the road (negative delay) were identified
using a nonlinear least squares optimization algorithm that minimized
the difference between the car position and the center of the road, with
time as the optimization variable. Corrective steering was quantified by
means of the power of the angular position data. Pcorr (in %) was
calculated as the relative power within the 0.3–1.2 Hz ‘corrective
steering’ bandwidth (expressed as a percentage of total power within
the 0.01–1.2 Hz ‘voluntary steering’ bandwidth). Ideally, the full power
would be reflected in frequencies required for tracking the road (i.e., up
to 0.2 Hz), but in reality, under- and overshoots in voluntary steering
require corrective movements (up to a frequency of ca. 1 Hz in systems
with a visual delay of 200–300 ms [16]).

2.5.3. System identification and parameter estimation
In order to quantify the underlying neuromuscular properties, the

relation between the predefined torque perturbations and the resulting
responses by the participant was first quantified by system identifica-
tion methodology (SI, Section 2.5.3.1) and was subsequently broken
down into physiologically meaningful parameters (PE; section 2.5.3.2).
This two-stage procedure, which was performed for each participant in
each condition, is described in the following sections. In the first stage
(SI), a non-parametric model was fitted to the observed data to estimate
the mechanical admittance of the wrist. In the second stage (PE), a
linear neuromechanical model was used for parameterization of the
estimated admittance into neuromechanical parameters.

2.5.3.1. Non-parametric system identification – admittance. Estimation of
mechanical admittance of the wrist Hwrist(f) was performed using a
proven non-parametric procedure based on autoregressive moving
average (ARMAX) models of the 8th order [18]. As the angular
displacement is determined both by the human wrist and the
manipulator dynamics (Fig. 4), the procedure consisted of two-stages.
First, the total admittance between torque disturbance and wrist angle
was estimated according to:

H = X(k)
T (k)

= H
1+(H *H )T X

D

robot

wrist robot
D (2)

Second, the transfer function between torque perturbation and wrist
reaction torque was estimated, being:

H = T(k)
T (k)

= H *H
1+(H *H )T T

D

wrist robot

wrist robot
D (3)

Subsequently, the wrist admittance was composed from Eqs. (2) and
(3) as follows:

fH ( )= H
Hwrist,ARMAX

TDT

TDX (4)

Model estimations were based on the full bandwidth of the
perturbation signal (1.25–20 Hz). However, because task-dependent
adaptations of admittance are particularly evident at low frequencies
[15], we also calculated the average gain of Hwrist,ARMAX(f) of frequency
points between 1.25 and 4.5 Hz (i.e., low-frequency wrist admittance;
Admittance < 4.5Hz for statistical analysis. The goodness of fit of the
estimated ARMAX model was described by the Root Mean Square Error
(RMSEARMAX) between the estimated wrist torque and the measured
wrist torque.

2.5.3.2. Parametric system identification – neuromechanical parameters. A
linear neuromechanical model was used for parameterization of the
estimated admittance into neuromechanical parameters. Fig. 5 presents
a schematic of the model, which was adopted from [4] and was
extended to include a visual feedback loop (Supplemental Appendix A
provides an in-depth description of the model components). The
estimated neuromechanical parameter for HP, i.e., passive wrist
dynamics, was inertia (I). For HCE, i.e., intrinsic properties of the
contractile element, estimated parameters were damping (B) and
stiffness (K), for HMS, i.e., proprioceptive feedback, estimated
parameters were velocity reflex gain kv and time delay τd,v, and for
Hvis, i.e., visual feedback, estimated parameters were position feedback
gain kvis and time delay τd,vis. Fixed parameters were used to describe
the muscle activation dynamics (Hact with relative damping 0.7 and
eigen-frequency f0 = 2.5 Hz; [13]), an identified hardware delay
(τhw = 0.135 s) and the first order filter that was applied to the wrist
angular position signal prior to visualization on the LED screen (Hvf

with τvf = 0.1 s). This model including reflexive velocity feedback and
long-latency visual feedback was tested to be superior for parametric
analysis over other combinations of afferent feedback (position,
velocity and force) and visual feedback, based on high goodness of fit
of the model and low variability of the estimated parameters (i.e., low
RMSEPM and low nSEM; see next paragraph).

The model parameters were optimized in the frequency domain,
using a nonlinear least squares optimization algorithm that minimized
the error between the modeled wrist admittance Hwrist,model (f) and the
estimated Hwrist,ARMAX(f) according to:

⎛
⎝⎜

⎞
⎠⎟E f

H f
H f f

γ f( ) = log
( )

( )
· 1 · ˆ ( )wrist ARMAX

wrist model
DX

,

,

2

(5)

with relatively higher weight being given to lower frequencies and to
frequencies with a high coherence(γ fˆ ( )DX

2 ) between the applied pertur-
bation torque and measured wrist torque. Coherence was calculated
according to [12]:

γ f S f
S f S f

ˆ ( ) =
ˆ ( )

ˆ ( )· ˆ ( )
,DX

DX

DD XX

2
2

(6)

in which S fˆ ( )DX denotes the cross-spectral density of external torque
perturbation TD (f) and wrist angle X (f), S fˆ ( )DD denotes spectral density

Fig. 4. The (simplified) control scheme, presenting the interaction of the human wrist (Hwrist) with the robot (Hrobot) while minimizing the position of the car (X) with respect to the
position of the road (Xref) and being subjected to external torque perturbations (TD).
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of the external torque perturbation, and S fˆ ( )XX denotes spectral density
of the wrist angle. Coherence γ fˆ ( )DX

2 ranges from zero for systems with
no linear relation to one for a linear system without noise. Optimization
settings can be found in Supplemental Appendix B. The goodness of fit
of the parametric model (RMSEPM) was calculated in the frequency
domain as the RMSE of E(f). The role of parameters in the model was
evaluated by means of the normalized standard error of the mean for
the individual parameters (nSEM; normalization to the overall average
estimated parameter value), with lower values indicating higher
precision of estimation [19].

2.6. Statistical analysis

Statistical analysis was performed using IBM® SPSS® Statistics 20.0
(IBM Corp., Armonk NY).

Task performance was considered the primary outcome. Parameters
related to effort (EMGsum), co-contraction (EMGmin) and control strategy
(steering delay and corrective steering Pcorr), as well as the SIPE
parameters (Admittance < 4.5Hz, and the neuromechanical parameters
I, K,B, kv, kvis, τd,v, and τd,vis) were considered higher resolution
quantification of performance in terms of strategy and underlying
mechanisms.

Normality curves were inspected and Kolmogorov-Smirnov tests
were used to assess whether the data were normally distributed within
each condition [20]. Substantial deviations from normality were
observed for task performance, which could not be resolved by
transformations due to a ceiling effect. After 10log transformation of
RMSEARMAX, RMSEPM, Admittance < 4.5Hz and Pcorr, and after square
root transformation of kvis and τd,vis, data were normally distributed in
circa 90% of all conditions. Although transformed data were used for
statistical analysis of these parameters, for reasons of clarity the
untransformed data are presented in the Results.

Task performance was submitted to non-parametric Friedman’s
analysis of variance (ANOVA) to explore whether it was influenced
by scaling factor and/or optical flow density. Wilcoxon signed-rank
tests were used for post hoc analyses of significant effects. Parameters
related to effort (EMGsum), co-contraction (EMGmin) and control strategy
(steering delay and corrective steering Pcorr), as well as the goodness of
fit (RMSEARMAX, RMSEPM) and the SIPE parameters

(Admittance < 4.5Hz and the underlying neuromechanical parameters
I, K,B, kv, kvis, τd,v, and τd,vis) were each submitted to a repeated-measures
ANOVA to evaluate the effects of visual presentation (scaling factor (3
levels) and optical flow density (2 levels) as within-subject factors). For
all ANOVAs, degrees of freedom were adjusted if the sphericity
assumption was violated [20] and effect sizes were quantified as partial
eta squared (ηp2). Post hoc analyses of significant effects (p < .05)
were performed using two-tailed paired t-test with Bonferroni correc-
tion. All values are presented as mean ± standard deviation, except for
performance and nSEM (values presented as median [interquartile
range]).

3. Results

3.1. Task performance, effort and co-contraction

Across all participants and conditions, performance ranged from
96.6% to 100% (Fig. 6a). Task performance was slightly better with a
high scaling factor (100% [99.7–100%]) than with a low scaling factor
(99.8% [99.2–100%]), as was indicated by post hoc analysis of the
significant effect of scaling factor (χ2(2) = 7.96, p= .019). Task
performance was not influenced by optical flow density.

No significant main or interaction effects of scaling factor or optical
flow density were observed for effort (EMGsum; Fig. 6b) or co-contrac-
tion (EMGmin; Fig. 6c).

3.2. Control strategy: steering delay and corrective steering

From Fig. 6d and e it can be appreciated that steering delay and
corrective steering were significantly influenced by scaling factor. Post
hoc analysis of the main effect of scaling factor on steering delay (F
(2,34) = 99.4, p < .001, ηp2 = .85) indicated more anticipatory steer-
ing with higher scaling factor (low: −0.055 ± 0.041 vs. medium:
−0.218 ± 0.091 vs. high: −0.425 ± 0.084 s; all p < .05). Simi-
larly, post hoc analysis of the main effect of scaling factor on Pcorr (F
(2,34)=145.65, p < .001, ηp2 = .90) showed more corrective steering
with higher scaling factor (low: 1.6 ± 0.6 vs. medium: 3.8 ± 2.7 vs.
high: 14.4 ± 7.6%; all p < .001).

The significant main effect of optical flow density on Pcorr (F(1,17)

Fig. 5. Block scheme representation of the neuromechanical model. The human wrist (HP) is perturbed mechanically by the torque perturbation signal (TD) and perturbed visually by the
position reference signal (Xref). The intrinsic properties of the contractile element (HCE), muscle spindle feedback (HMS) and visual feedback (Hvis) are used to correct for these
disturbances. Hact denotes the activation dynamics of (supra)spinal muscle force input signals. Visual feedback was delayed due to a hardware delay (τhw) and was filtered prior to
visualization (Hvf). X is the measured output rotation of the wrist. An in-depth description of all model components can be found in Supplemental Appendix A.
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= 7.24, p = .015, ηp2 = .30) indicated slightly less corrective steering
in the presence of a virtual tunnel (i.e., low optical flow density:
7.2 ± 3.6 vs. high optical flow density: 5.9 ± 3.3%).

3.3. System identification and parameter estimation

The system may be assumed to be linear as the overall mean

coherence between perturbation torques and wrist rotations was
0.83 ± 0.08, with values> 0.7 in 94% of all cases. The averaged
frequency-response-curve and corresponding coherence of each condi-
tion are presented in Supplemental Appendix C. In addition, a typical
example of the fitting results is presented in Supplemental Appendix D.

Fig. 6. Effects of scaling factor and optical flow density on (a) effort EMGsum and (b) co-contraction EMGmin, on strategy, i.e., (c) steering delay and (d) corrective steering Pcorr, on (e) low-
frequency Admittance < 4·5Hz, and on estimated neuromechanical parameters of the wrist, i.e., (f) inertia I, (g) intrinsic stiffness K, (h) intrinsic damping B, (i) proprioceptive reflex gain
kv, (j) visual feedback gain kvis, (i) time delay of proprioceptive feedback τd,v, and (j) time delay of visual feedback τd,vis. Error bars represent standard deviations. * significant difference
between scaling factors; ◊ significant main effect of optical flow density (p < .05).
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3.3.1. Non-parametric system identification – admittance
Small RMSEARMAX values were obtained for all participants, indicat-

ing that the non-parametric model fitted well to the observed data
(Fig. 7a). RMSEARMAX was slightly affected by the presence of a virtual
tunnel (i.e., main effect of optical flow density F(1,17) = 6.30,
p = .023, ηp

2 = .27; low: 0.0017 ± 0.0006 vs. high:
0.0016 ± 0.0006 rad/Nm), and was slightly higher for low scaling
factor (0.0020 ± 0.0006 Nm/rad) compared to the medium and high
scaling factor (0.0016 ± 0.0007 and 0.0014 ± 0.0007 Nm/rad; post-
hoc analysis of the main effect of scaling factor (F(2,34) = 17.31,
p < .001, ηp2 = 0.51)).

Admittance < 4.5Hz (Fig. 6f) decreased with medium and high
scaling factor (0.099 ± 0.025 and 0.098 ± 0.025 rad/Nm) compared
to low scaling factor (0.11 ± 0.04 rad/Nm), as was evidenced by post
hoc analysis of the significant main effect of scaling factor (F(2,34)
=6.28, p = .005, ηp2 = .27). The main effect of optical flow density (F
(1,17) = 5.25, p = .035, ηp2 = .24) indicated that Admittance< 4.5Hz

was slightly reduced in the presence of a virtual tunnel (i.e., low optical
flow density: 0.107 ± 0.031 rad/Nm vs. high optical flow density:
0.100 ± 0.025 rad/Nm).

3.3.2. Parametric system identification – neuromechanical parameters
Although a significant main effect of scaling factor was observed for

RMSEPM (F(2,34) = 3.34, p= .047, ηp
2 = .16), post-hoc analysis re-

vealed no significant differences between the levels of scaling factor
(Fig. 7b). Overall, precision of estimation was high for K, B, kvis and
τd,vis, whereas higher nSEM values indicated lower precision of estima-
tion for I, kv and τd,v (Fig. 7c).

Stiffness K slightly increased when scaling factor increased (F(2.34)
= 4.94, p= .013, ηp2 = .23; Fig. 6h). Post hoc analysis revealed that K
was significantly higher with the highest scaling factor compared to the
lowest scaling factor (13.50 ± 3.44 vs. 12.29 ± 3.49 Nm/rad), but
not significantly so when compared to the intermediate scaling factor
(12.87 ± 3.40 Nm/rad). The scaling factor also influenced the pro-
prioceptive reflex gain (F(2,34) = 4.53, p= .018, ηp2 = .21; Fig. 6j),
with a more negative kv at the highest scaling factor
(−0.18 ± 0.11 Nms/rad) compared to the intermediate scaling factor
(−0.13 ± 0.09 Nms/rad; p < .05) and the lowest scaling factor
(−0.14 ± 0.09 Nms/rad; n.s.). Increasing the optical flow density by
means of a virtual tunnel resulted in a lower gain of visual feedback
(low optical flow density: 2.38 ± 1.05 Nm/rad vs. high optical flow
density: 1.58 ± 1.19 Nm/rad; Fig. 6k), as was evidenced by the main
effect of optical flow density on kvis (F(1,17) = 9.79, p = .006,
ηp

2 = .37). No significant main or interaction effects of scaling factor
and optical flow density were observed for damping
(B = 0.11 ± 0.03 Nms/rad; Fig. 6i). As expected, no significant main

or interaction effects were observed for the wrist inertia
(I= 0.0049 ± 0.00085 kgm2; Fig. 6g) and the neural time delays
(τd,v = 0.081 ± 0.013 s, Fig. 6l; and τd,vis = 0.155 ± 0.032 s,
Fig. 6m).

4. Discussion

This study showed that resolution and density of visual information
(i.e., higher scaling factor and optical flow density) influence task
performance and the control strategy that is adopted during a visuo-
motor tracking task in healthy adults. Task performance was high in all
conditions, with tracking accuracy ranging from 96.6% to 100%; higher
scaling factor was associated with a slight improvement of task
performance. As expected, participants did adapt their control strategy
in response to these systematic manipulations of the visual presentation
of the task (i.e., without effect on task demands).

In specific, a higher scaling factor was associated with anticipatory
steering (evidenced by a more negative steering delay) and more
corrective steering actions (evidenced by higher Pcorr). Probably, the
higher scaling factor provided better visibility of the curvature of the
upcoming road (allowing for anticipatory control) and better visibility
of the deviations from the optimal position (allowing for improved use
of visual information for the timing and magnitude of corrective
steering actions [21]). The higher scaling factor was accompanied by
a slightly higher stiffness K, which might either result from co-
contraction (however, not supported by EMG data), or, more likely,
faster alternation of agonist-antagonist activity. Proprioceptive reflex
gain (kv) was slightly more negative at the highest scaling factor,
perhaps to retain stability and/or facilitate steering actions, whereas
visual feedback gain (kvis) was not affected by the scaling. Despite task
performance already being close to 100% in the low-scaling condition,
tracking accuracy was slightly better with a higher scaling factor, which
is in line with other studies in which the error of position control [5]
and force control [6] was visually amplified.

Effects of increasing the optical flow density were less pronounced.
Whereas in other studies a higher optical flow density was associated
with improved task performance [7,8], there was a possible ceiling
effect on task performance in the present study obscuring the effect of
optical flow density. The presence of a virtual tunnel with textured
walls (i.e., high optical flow density) was associated with slightly less
corrective steering actions (evidenced by lower Pcorr) and a lower gain
of visual feedback (kvis). It can be speculated that the textured tunnel
walls increased the reliability of velocity-related visual information,
thereby making future predictions of the road position more reliable
[22]. This may have reduced the need for corrective steering actions
(resulting in lower Pcorr) and may have resulted in less intense motor

Fig. 7. Effects of scaling factor and optical flow density on (a) goodness of the non-parametric model fit, indicated by RMSEARMAX (b) goodness of the parametric model fit, indicated by
RMSEPM and (c) the normalized standard error of the mean for the individual parameters (nSEM; lower values indicate higher precision of estimation). * significant difference between
scaling factors; ◊ significant main effect of optical flow density (p < .05).
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actions in response to visual deviations from the reference position
(indicated by lower kvis). In addition, a small but significant reduction
of admittance was observed (i.e., increased resistance), but this could
not be substantiated by parameters related to co-contraction (i.e., no
significant increase of muscle stiffness K, damping B or EMGmin was
observed) or by parameters related to reflexive dynamics (i.e., no
change in kv). Optical flow density did not affect RMSEPM, which
suggests that the observed reduction of admittance was not likely
attributable to reflexive dynamics that were not included in our model
(i.e., reflexive position or force feedback).

Manipulation of visual information evoked changes in propriocep-
tive and visual feedback parameters of a neuromechanical model. To
understand how this translates to physiological mechanisms, it is
important to note that (1) the model provided a good description of
the observed data (i.e., low RMSEARMAX and RMSEPM); (2) both the
proprioceptive and visual feedback systems demonstrably contributed
to the model fit (i.e., a comparison revealed that RMSEPM of the
selected model was smaller than RMSEPM of models with other
combinations of afferent feedback (i.e., position, velocity, and force)
and visual feedback); (3) the added visual parameters provided a
reliable contribution to the model (i.e., nSEM values for kvis and
τd,vis < 1), however at the cost of a slightly reduced precision of
estimating the proprioceptive parameters (higher nSEM values for kv
and τd,v); and (4) the visual feedback parameter does not reflect
proprioceptive feedback mechanisms, given that a time delay related
to visualization of wrist movements (> 200 ms, by a hardware delay
and a first order visual filter) was incorporated in the model (see Fig. 5)
and the resulting visual pathway was too slow for proprioceptive
feedback mechanisms [23]. Hence, it is evident that the modeled
proprioceptive and visual feedback systems each contributed indepen-
dently to the observed motor behavior.

With respect to the visual feedback, it is important to note that the
value of kvis was not directly affected by the visual manipulations
because the scaling factor and optical flow density of this visual
representation were not incorporated in the model. The gain of this
long-latency position feedback loop (kvis) thus reflects the magnitude of
the motor response to a delayed, low-pass filtered representation of the
angular deviation from a reference position. Although very small values
of kvis would be suggestive of a minimal contribution of visual
information to motor control, higher values of kvis do not necessarily
implicate a larger contribution of visual information. For example, a
slight reduction of kvis (as observed in the present study for conditions
with higher optical flow density), might also indicate less over-
correction of deviations from the reference position and thus indicate
a more efficient use of the available visual information. The estimated
time delay (τd,vis = 155 ms) suggests that the provided visual feedback
may be processed by the so-called voluntary reaction-time response
(120–180 ms), which is mediated by the cortex and the spinal cord
[23]. With respect to the proprioceptive feedback, the small values for
kv suggest that reflexive proprioceptive feedback was suppressed,
presumably to retain stability in the presence of force perturbations
at the eigenfrequency of the wrist joint [12,24]. The observed negative
values for kv are suggestive of an inhibitory feedback mechanism,
where excitatory proprioceptive feedback might have been expected.
Similar values, however, have been reported in position control tasks
[15,24,25] and were suggested to have a stabilizing effect in combina-
tion with force feedback mechanisms. Studies in the cat have suggested
that negative reflexive gains may arise from an inhibitory effect on Ia
afferent input due to presynaptic inhibition [26] and an inhibitory
effect on Ib afferent input (i.e., muscle force) due to shared interneural
circuits [27]. The estimated time delay (τd,v = 80 ms) suggest that the
proprioceptive feedback was predominantly mediated by a long-latency
response, which can be modulated by supraspinal steering commands
and may be more flexible to task instructions or other sources of sensory
information than spinal short-latency responses (approximate delay
30 ms) [23]. It may be speculated that, in the present study, these long-

latency responses were used to facilitate steering actions (e.g., give way
to perturbations in the extension direction for extension movements
and vice versa).

In order to study the role of visual feedback we added visual
feedback into a neuromechanical feedback model [13] and used this
model for time-invariant ‘steady state’ analysis of motor behavior in
different visual environments. In future studies, it would be interesting
to explore the potential use of time-variant analyses [28] to gain insight
in the dynamics of changes in control strategy, e.g., during the gradual
transition from one condition to the next. Hypothetically, such time-
variant analyses could also be used to validate the visual parameter that
was added to the neuromechanical model, since the contribution of
visual feedback would be expected to drop when visual feedback of the
virtual car suddenly disappears. In future studies, it is important to
minimize the time delay in the mechanical-visual interaction, since
high time delays pose limitations to the potentially evoked steering
intermittency of participants [16]. This is highly undesirable in the
study of dynamic behavior in tracking tasks. Moreover, the suppression
of proprioceptive reflexes may be avoided by applying reduced power
to the higher frequencies in the perturbation signal [29]. Alternative
approaches using predictive simulation models might contribute to
understanding of mechanisms underlying the observed behavior.

Before drawing general conclusions from the current results, it
should be considered that this study was conducted in elderly partici-
pants to match the age of patients with neurologic disorders such as
stroke, which are associated with impaired motor adaptability. The
present results cannot be unreservedly generalized to younger persons,
because elderly might use strategies that are quite distinct [30].
Moreover, it remains to be investigated whether the (adaptations of)
control strategies that were observed in this study during a relatively
novel tracking task, are also applicable to more automatic behaviors
[31].

In conclusion, the present study showed that systematic manipula-
tions of visual presentation (scaling factor and optical flow density) that
did not affect task demands did have influence on performance, control
strategy and the use of proprioceptive and visual feedback. The
implications of these findings are twofold. On one hand, one must be
aware that the way of presenting visual information may have (possibly
unwanted) effects on the motor behavior being investigated. In design-
ing, interpreting and comparing experiments, this should thus be taken
into consideration. On the other hand, understanding of the extent and
manner in which visual information influences motor behavior can be
exploited to assess the sensory-motor adaptability in health and disease.
Manipulation of visual information and evaluation of visual and
proprioceptive feedback characteristics, as described in this study, thus
provides opportunities for high resolution quantification of (the lack of)
motor adaptability in patients, for the purpose of diagnosis as well as
tailored training.
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