
 
 

Delft University of Technology

Physics-Informed Neural Networks to Model and Control Robots
A Theoretical and Experimental Investigation
Liu, Jingyue; Borja, Pablo; Della Santina, Cosimo

DOI
10.1002/aisy.202300385
Publication date
2024
Document Version
Final published version
Published in
Advanced Intelligent Systems

Citation (APA)
Liu, J., Borja, P., & Della Santina, C. (2024). Physics-Informed Neural Networks to Model and Control
Robots: A Theoretical and Experimental Investigation. Advanced Intelligent Systems, 6(5), Article 2300385.
https://doi.org/10.1002/aisy.202300385

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/aisy.202300385
https://doi.org/10.1002/aisy.202300385


Physics-Informed Neural Networks to Model and Control
Robots: A Theoretical and Experimental Investigation

Jingyue Liu,* Pablo Borja, and Cosimo Della Santina

1. Introduction

Deep learning (DL) has made significant strides across various
fields, with robotics being a salient example. DL has excelled in
tasks such as vision-guided navigation,[1] grasp-planning,[2]

human–robot interaction,[3] and even design.[4] Despite this,
the application of DL to generate motor intelligence in physical
systems remains limited. Deep reinforcement learning, in par-
ticular, has shown the potential to outperform traditional
approaches in simulations.[5–7] However, its transfer to physical
applications has been primarily hampered by the prerequisite of
pretraining in a simulated environment.[8–10]

The central drawback of general-purpose DL lies in its sample
inefficiency, stemming from the need to distill all aspects of a
task from data.[11,12] In response to these challenges, there is

a rising trend in robotics to specifically
incorporate geometric priors into data-
driven methods to optimize learning
efficiency.[13–15] This approach proves espe-
cially advantageous for high-level tasks that
need not engage with the system’s physics.

Physics-informed neural networks
(PINNs),[16–18] infusing fundamental phys-
ics knowledge into their architecture and
training, have found success in various
fields outside robotics, from earth science
to materials science.[19–22] In robotics, inte-
gration of Lagrangian or Hamiltonian
mechanics with DL has yielded models like

Lagrangian neural networks (LNNs)[23] and Hamiltonian neural
networks (HNN).[24] Several extensions have been proposed in
the literature, for example, including contact models[25] or pro-
posing graph formulations.[26] The potential of LNNs and
HNNs in learning the dynamics of basic physical systems has
been demonstrated in various studies.[18,27–29] However, the
exploration of these techniques in modeling intricate robotic
structures, especially with real-world data, is still in its early
stages. Notably,[30] applied these methods to a position-controlled
robot with four degrees of freedom, which represents a relatively
less complex system in comparison to contemporary
manipulators.

This work deals with the experimental application of
PINN to rigid and soft continuum robots.[31] Such endeavor
required modifying LNN and HNN to fix three issues that pre-
vented their application to these systems: 1) the lack of energy
dissipation mechanism; 2) the assumption that control actions
are collocated on the measured configurations; and 3) the need
for direct acceleration measurements, which are noncausal and
require numerical differentiation. For issue (3), we borrow a
strategy proposed in refs. [32,33], which relies on forward inte-
grating the dynamics, while for (1) and (2), we propose innovative
solutions.

Furthermore, we exploit a central advantage of LNNs and
HNNs compared to other learning techniques; the fact that
the learned model has the mathematical structure that is usually
assumed in robots and mechanical systems control. By forcing
such a representation, we use model-based strategies originally
developed for first principle models[34–36] to obtain provably sta-
ble performance with guarantees of robustness.

The use of PINNs in control has only recently started to be
explored. Recent investigations[33,37,38] focused on combining
PINNs with model predictive control (MPC), thus not exploiting
the mathematical structure of the learned equations. Indeed, this
strategy is part of an increasingly established trend seeking the
combination of (non-PI and nondeep) learned models with

J. Liu, C. Della Santina
Department of Cognitive Robotics
Delft University of Technology
2628 CD Delft, The Netherlands
E-mail: J.Liu-14@tudelft.nl

P. Borja
School of Engineering, Computing and Mathematics
University of Plymouth
PL4 8AA Plymouth, UK

C. Della Santina
Institute of Robotics and Mechatronics German Aerospace Center (DLR)
82234 Oberpfaffenhofen, Germany

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.202300385.

© 2024 The Authors. Advanced Intelligent Systems published by Wiley-
VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.

DOI: 10.1002/aisy.202300385

This work concerns the application of physics-informed neural networks to the
modeling and control of complex robotic systems. Achieving this goal requires
extending physics-informed neural networks to handle nonconservative effects.
These learned models are proposed to combine with model-based controllers
originally developed with first-principle models in mind. By combining standard
and new techniques, precise control performance can be achieved while proving
theoretical stability bounds. These validations include real-world experiments of
motion prediction with a soft robot and trajectory tracking with a Franka Emika
Panda manipulator.

RESEARCH ARTICLE
www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (1 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

mailto:J.Liu-14@tudelft.nl
https://doi.org/10.1002/aisy.202300385
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faisy.202300385&domain=pdf&date_stamp=2024-02-23


MPC.[39,40] Applications to control partial differential equations
are discussed in refs. [41–44], while an application to robotics
is investigated in simulation in ref. [45].

Preliminary investigations in other model-based techniques
are provided in refs. [30,46], where, however, controllers are pro-
vided without any guarantee of stability or robustness and formu-
lated for specific cases.

To summarize, in this work, we contribute to state of art in
PINNs and robotics with the following: 1) an approach to include
dissipation and allow for non-collocated control actions in LNNs
and HNNs, solving issues (1) and (2); 2) controllers for regulation
and tracking, grounded in classic nonlinear control that exploit
the mathematical structure of the learned models. For the first
time, we prove the stability and robustness of these strategies;
and 3) simulations and experiments on articulated and soft con-
tinuum robotic systems. To the authors’ best knowledge, these
are the first validation of PINN and PINN-based control applied
to complex mechanical systems.

2. Preliminaries

2.1. Lagrangian and Hamiltonian Dynamics

Robots’ dynamics can be represented using Lagrangian or
Hamiltonian mechanics. In the former, the state is defined by
the generalized coordinates q ∈ ℝN and their velocities
q̇ ∈ ℝN , where N represents the configuration space dimension.
The Euler–Lagrange equation dictates the system’s behavior
d
dt

∂Lðq,q̇Þ
∂q̇

� �
� ∂Lðq,q̇Þ

∂q ¼ Fext, where Lðq, q̇Þ ¼ Tðq, q̇Þ � VðqÞ with

potential energy VðqÞ ∈ ℝ and kinetic energy T ¼ 1
2 q̇

TMðqÞq̇,
where MðqÞ ∈ ℝN�N is the positive definite mass inertia matrix.
External forces, denoted as Fext ∈ ℝN , include control inputs and
dissipation forces.

In Hamiltonian mechanics, momenta p ∈ ℝN replace the
velocities, with q̇ ¼ M�1ðqÞp. The Hamiltonian equations

q̇ ¼ ∂Hðq,pÞ
∂p , ṗ ¼ � ∂Hðq,pÞ

∂q þ Fext, where Hðq, pÞ ¼ Tðq, pÞ þ
VðqÞ is the total energy. The kinetic energy in this case is defined
as Tðq, pÞ ¼ 1

2 p
TM�1ðqÞp.

2.2. LNNs and HNNs

LNNs employ the principle of least action to learn a Lagrangian
function Lðq, q̇Þ from trajectory data, with the learned function
generating dynamics via standard Euler–Lagrange machinery.[34]

The loss function for the LNN in ref. [23] is given by the mean
squared error (MSE) between the actual accelerations q̈ and the
ones that the learned model would expect ˆ̈q

LLNN ¼ MSEðq̈, ˆ̈qÞ: (1)

HNNs, conversely, are designed to learn the Hamiltonian
function H p, qð Þ. Once learned, this Hamiltonian function pro-
vides dynamics through Hamilton’s equations. The loss function
for HNN is similar an MSE but between the predicted and actual
time derivatives of generalized coordinates and momenta:

LHNN ¼ MSEððq̇, ṗÞ, ð ˆ̇q, ˆ̇pÞÞ (2)

We use fully connected neural networks with multiple layers
of neurons with associated weights to learn the Lagrangian or the
Hamiltonian, as shown in Figure 1.

2.3. Limits of Classic LNNs and HNNs

Note that both loss functions rely on measuring derivatives of the
state q̈ and ṗ, which—by definition of state—cannot be directly
measured. This issue is easily circumvented in simulation by the
use of a noncausal sensor. Yet, this is not a feasible solution with
physical experiments. An unrobust alternative is to estimate
these values from measurements of positions and velocities
numerically. This relates to issue (3) stated in the introduction.

Moreover, existing LNNs and HNNs assume that Fext ∈ ℝN is
directly measured. This is a reasonable hypothesis only if the sys-
tem is conservative, fully actuated, and the actuation is collocated.
The first characteristic is never fulfilled by real systems, while the
second and the third are very restrictive outside when dealing
with innovative robotic solutions as soft[31] or flexible robots.[47]

Note that learning-based control is imposing itself as a central
trend in these nonconventional robotic systems.[48] These consid-
erations relate to issues (1) and (2) stated in the introduction.

3. Proposed Algorithms

3.1. A Learnable Model for Nonconservative Forces

In standard LNNs theory, nonconservative forces are assumed to
be fully known and to be equal to actuation forces directly acting
on the Lagrangian coordinates q. This is very restrictive, as
already discussed in the introduction.

In this work, we include external forces given by dissipation
and actuator forces, i.e., Fext ¼ Fdðq, q̇Þ þ FaðqÞ. We propose the
following model for dissipation forces:

Fdðq, q̇Þ ¼ �DðqÞq̇ (3)

where DðqÞ ∈ ℝN�N is the positive semi-definite damping
matrix. Besides, we model the actuator force as

FaðqÞ ¼ AðqÞu (4)

Figure 1. Fully connected network.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (2 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


where u ∈ ℝW is the control input signal to the system, and
AðqÞ ∈ ℝN�W is an input transformation matrix. For example,
A could be the transpose Jacobian associated with the point of
application of an actuation force on the structure. With this
model, we take into account that in complex robotic systems,
actuators are, in general, not collocated on the measured config-
urations q. Note that, even if we accepted to impose an opportune
change of coordinates, for some systems, a representation
without A is not even admissible.[49] With Equation (4), we also
seemingly treat underactuated systems.

Note that ref. [46] uses a dissipative model but considers it in a
white-box fashion.

Hence, we rewrite the Lagrangian dynamics as follows:

q̈ ¼ ∂2Lðq, q̇Þ
∂q̇2

� ��1
AðqÞu� ∂2Lðq, q̇Þ

∂q ∂q̇
q̇þ ∂Lðq,q̇Þ

∂q
� DðqÞq̇

� �

(5)

which can be alternatively expressed as follows:

q̈ ¼ M�1ðqÞðAðqÞu� Cðq, q̇Þq̇� GðqÞ �DðqÞq̇Þ (6)

where Cðq, q̇Þ ∈ ℝN�N and GðqÞ ∈ ℝN .
Similarly, the Hamiltonian takes the form

q̇
ṗ

� �
¼ 0 I

�I �DðqÞ
� � ∂Hðq,q̇Þ

∂q
∂Hðq,q̇Þ

∂p

2
664

3
775þ 0

AðqÞ
� �

u (7)

3.2. Nonconservative Noncollocated Lagrangian and
Hamiltonian NNs with Modified Loss

Figure 2 reports the proposed network framework, which builds
upon Lagrangian and Hamiltonian NNs discussed in Section 2.2.
Our work incorporates the damping matrix network, input
matrix network, and a modified loss function into the original
framework. The damping matrix network is used to account
for the dissipation forces in the system via Equation (3), while
the input matrix network corresponds to A(q) in Equation (4).
We predict the next state by integrating Equation (5) or (7) with
the aid of the Runge–Kutta 4 integrator. Clearly, different inte-
gration strategies could be used in its place.

The dataset D ¼ ½Dk, T kjk ∈ f0, : : : , kendg� contains informa-
tion about the state transitions of the mechanical system. With
this compact notation, we are not exclusively referring to a single
trajectory of the system’s behavior, but we aggregate data from
multiple system trajectories. The input data Dk is composed of
either ½qk, q̇k, uk,Δt�, for Lagrangian dynamics, or ½qk, pk, uk,Δt� in
the case of Hamiltonian dynamics. Similarly, the corresponding
label T k is either qkþ1, q̇kþ1

� 	
, for the Lagrangian case, or

½qkþ1, pkþ1� for Hamiltonian dynamics. Here, k and kþ 1 refer
to consecutive time steps in the dataset, where k provides input
data at one time step, and kþ 1 corresponds to the label data at
the subsequent time step Δt.

The values of M(q,θ1), V(q,θ2), D(q,θ3), and A(q,θ4) are esti-
mated by four subnetworks, namely, the mass network (M-NN),
potential energy network (V-NN), damping network (D-NN),
and input matrix network (A-NN), as shown in Figure 2.

Figure 2. The overview of Lagrangian and Hamiltonian neural networks: the yellow part—i.e.,Dk and T k—represents the input and label data used in the
network; in red, the data and calculation process required for Lagrangian dynamics; and the green parts represent the corresponding data and calculation
associated with the Hamiltonian dynamics.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (3 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


The parameter θi, where i∈ {1,2,3,4}, represents the subnet-
works’ model parameter.

The kinetic energy can be calculated once the values of q̇ or p
are obtained. Then, the Lagrangian or Hamiltonian functions can
be derived from the kinetic and potential energies. The derivative
of the states ¨̂q or ½ ˙̂q ˙̂p�T can be computed using (5) or (7), respec-
tively. The predicted next state ˙̂q or ½q̂ p̂�T can be obtained using
the Runge–Kutta 4 integrator. We thus employ the following
modified losses:[32,33]

LLNN ¼ 1
#D

X
k∈D

ðkqkþ1 � q̂kþ1k22 þ kq̇kþ1 � ˆ̇qkþ1k22Þ (8)

for LNNs, where #D is the cardinality of D, and

LHNN ¼ 1
#D

X
k∈D

ðkqkþ1 � q̂kþ1k22 þ kpkþ1 � p̂kþ1k22Þ (9)

for HNNs. Thus, compared to (1) and (2), we are calculating the
MSE of a future prediction of the state—simulated via the
learned dynamics—rather than of the current accelerations,
which cannot be measured. Note that we also include a measure
of the prediction error at the configuration level for LHNN because

the information on ∂Hðq,q̇Þ
∂p appears disentangled from D and A

(which are also learned) in the first n equations of Equation (7).

3.2.1. Subnetwork Structures

Constraints based on physical principles can be imposed on the
parameters learned by the four subnetworks. Specifically, the
mass and damping matrices must be positive definite and posi-
tive semidefinite, respectively. To this end, the network structure
of the dissipation matrix can follow the prototype established for
the mass matrix in ref. [50]. This structure can be decomposed
into a lower triangular matrix LD with nonnegative diagonal
elements, which is then computed using the Cholesky
decomposition[51] as D ¼ LDLDT. The representation of D(q) is
illustrated in Figure 3.

The output of M-NN and D-NN is calculated as (N2þN)/2,
with the first N values representing the diagonal entries of the
lower triangular matrix. To ensure nonnegativity, activation func-
tions such as Softplus or ReLU are utilized as the last layer.
Furthermore, the constant ε is introduced to guarantee that
the mass matrix is positive definite. Note that ε is a hyperpara-
meter that should be selected to be small-enough but strictly

positive. The remaining (N2�N)/2 values are placed in the lower
left corner of the lower triangular matrix.

The calculation of the potential energy is performed using a
simple, fully connected network with a single output, which is
represented as V(q,θ2). Moreover, A-NN, depicted in Figure 4,
calculates A(q,θ4) with dimensions ℝN�W .

3.3. PINN-Based Controllers

We provide in this section two provably stable controllers by com-
bining the learned dynamics with classic model-based
approaches. Before stating these results, it is important to spend
a few lines remarking on the potential relationships between the
outcomes obtained through proposed LNN and the ground truth,
as well as their implications for controller design. Due to the
inclusion of the actuator matrix and the inherent nonuniqueness
of the Lagrangian, we assume that the Lagrangian LLðq, q̇Þ
learned by LNN can be represented as follows:

LLðq, q̇Þ ¼ aLðq, q̇Þ þ b (10)

where a is a nonzero constant, and b is another constant term. In
this section, we highlight the components that have been learned
by adding an L as a subscript to provide a clearer illustration. The
LNN enables us to discover an oridinary differential equation
(ODE) with a solution that matches that of the real ODE

M�1ðqÞðAðqÞτ � Cðq, q̇Þq̇� GðqÞ � DðqÞq̇|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q̈

Þ

¼ M�1
L ðqÞðALðqÞτ � CLðq, q̇Þq̇� GLðqÞ � DLðqÞq̇|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q̈L

Þ (11)

Also, by construction, ML, GL, AL, and DL will have all the
usual properties that we expect from these terms, like ML and
DL being symmetric and positive definite, and GL being a poten-
tial force. Yet, this does not imply that M=ML, G=GL, A= AL,
and D=DL. Indeed, there could exist a constant matrix P such
that PM(q), PG(q), PA(q), and PD(q) have all the properties dis-
cussed above while simultaneously fulfilling:

Lðq, q̇;PM,PG,PA,PDÞ ¼ aLðq, q̇;M,G,A,DÞ þ b (12)

So, controllers must be formulated and proofs derived under
the assumption of the learned terms being close to the real ones
up to a multiplicative factor.

Figure 3. Diagram of the damping matrix including a feed-forward neural
network, a nonnegative shift for diagonal entries, and the Cholesky
decomposition.

Figure 4. Diagram for actuator matrix: The fully connected network output
is a vector in ℝNW , which is reshaped to a matrix in ℝN�W . A sigmoid
activation function can be applied to the matrix elements for value
constraint.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (4 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


3.3.1. Regulation

The goal of the following controller is to stabilize a given config-
uration qref

u ¼ A�1
L ðqÞGLðqÞ þ A�1

L ðqÞðKPðqref � qÞ � KDq̇Þ (13)

where we omit the arguments t and θi to ease the readability.
GL(qref ) is the potential force which can be calculated by taking
the partial derivative of the potential energy learned by the LNN;
KP and KD are control gains.

For the sake of conciseness, we introduce the controller, and
we prove its stability for the fully actuated case. However, the
controller and the proof can be extended to the generic under-
actuated case using arguments in ref. [36, p. 50]. This will be
the focus of future work.

Proposition 1: Assume that W=N, with A and AL both full rank,
and the existence of a constant matrix P ∈ ℝN�N such that
jjGLðqÞ � PGðqÞjj < δG, for some finite and positive δG. We
assume that:

jjA�1ðqÞP�1½ALðqÞ � PAðqÞ�jj < 1 (14)

and that the gains KP, KD are chosen such that:

P�1KP ≻ 0, and; P�1KD ≻ 0 (15)

Then, given a maximum admitted error δq, the closed loop of (5)
and (13) is such that

lim
t!∞

qðtÞ ¼ qss with jjqss � qref jj < δq (16)

Remark 1: Assumption (14) is a request on the learned matrix AL(q)
being close enough to A(q) up to a multiplicative factor P, which is
something we need to ensure, as discussed in Section 3.3. Indeed, if
ALðqÞ ≃ PAðqÞ, then (14) is fulfilled.

Remark 2: Note that there always exist KP and KD that fulfill
assumption (15). Specifically, they can be expressed as KP ¼ PK̂P

and KD ¼ PK̂D, where K̂P and K̂D denote positive definite matrices.

Proof. Let us introduce the matrix ΔA ∈ ℝN�N such that
ALðqÞ ¼ PAðqÞ þ ΔAðqÞ. This matrix is small enough by assump-
tion as detailed in Remark 1. We now want to bound the differ-
ence between the inverse of A(q) and PAL(q). The goal is to write
A�1
L ðqÞ ¼ ðPAðqÞÞ�1 þ ΔIðqÞ, with jjΔIðqÞjj < δI.
Because of Equation (14), we can use the Neumann series—

see, for instance, in ref. [52, p. 20]—to obtain the following:

A�1
L ðqÞ ¼ ðPAðqÞ þ ΔAðqÞÞ�1

¼
X∞
k¼0

ð�ðPAðqÞÞ�1ΔAðqÞÞkðPAðqÞÞ�1
(17)

Rearranging terms, we get that:

ΔIðqÞ ¼ A�1
L ðqÞ � ðPAðqÞÞ�1

¼
X∞
k¼1

ð�ðPAðqÞÞ�1ΔAðqÞÞkðPAðqÞÞ�1
(18)

Therefore, we can bound the norm of ΔIðqÞ as follows:

jjΔIðqÞjj ≤
X∞
k¼1

jjðPAðqÞ�1ΔAðqÞÞjjkjjðPAðqÞÞ�1jj

¼ jjðPAðqÞÞ�1ΔAðqÞjjjjðPAðqÞÞ�1jj
1� jjðPAðqÞÞ�1ΔAðqÞjj

< δI

(19)

Hence, the generalized forces produced by the controller
AðqÞu are given by:

AðqÞA�1
L ðqÞ½GLðqÞ þ ðKPðqref � qÞ � KDq̇Þ�

¼ AðqÞðA�1ðqÞP�1 þ ΔIðqÞÞ½ðPGðqÞ þ ΔGðqÞÞ
þKPðqref � qÞ � KDq̇�

¼ ðP�1 þ AðqÞΔIðqÞÞ½ðPGðqÞ þ ΔGðqÞÞ þ KPðqref � qÞ � KDq̇�
¼ GðqÞ þ ΔallðqÞ þ K̂Pðqref � qÞ � K̂Dq̇

(20)

whereΔallðqÞ ¼ P�1ΔGðqÞ þ AðqÞΔIðqÞPGðqÞ þ AðqÞΔIðqÞΔGðqÞþ
AðqÞΔIKPðqref � qÞ � AðqÞΔIKDq̇ is a bounded term, as sum and
product of bounded terms. The gains K̂P and K̂D are positive def-
inite matrices, resulting from the products P�1KP and P�1KD,
respectively, as indicated in Remark 2. Thus, the closed-loop sys-
tem takes the form:

MðqÞq̈þ Cðq, q̇Þq̇ ¼ ΔallðqÞ þ K̂Pðqref � qÞ � ðDðqÞ þ K̂DÞq̇
(21)

To conclude, replicating the arguments provided in
ref. [53, Theorem 1] yields the result. In turn, that work was
adapted from the seminal paper.[54] Alternatively, Equation
(21) can be rewritten as:

MðqÞq̈þ Cðq, q̇Þq̇þ ðDðqÞ þ K̂DÞq̇þ K̂Pðq� qref Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nominal system

¼ ΔallðqÞ

(22)

Thus, considering the Lyapunov candidate function:

Vðq, q̇Þ ¼ 1
2
q̇TMðqÞq̇þ 1

2
ðq� qref ÞTK̂Pðq� qref Þ (23)

a simple stability analysis shows that the nominal system has an
asymptotically stable equilibrium point at the desired configura-
tion. Therefore, the closed-loop system can be interpreted as a
perturbed system, where the perturbation is given by Δall(q).
Hence, the result can be proven following arguments for per-
turbed systems—see, for instance, in ref. [35, Chapter 9].

Note that even if we provided the proof using a Lagrangian
formalism, the Hamiltonian version can be derived following
similar steps. Also, note that the bounds on the learned matrices
are always verified for any choice of δA and δG at the cost of train-
ing the model with a large enough training set.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (5 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


We conclude with a corollary that discusses the perfect learn-
ing scenario.

Corollary 1: Assume that W=N and A is full rank. Then, the closed
loop of Equation (5) and (13) is such that:

lim
t!∞

qðtÞ ¼ qref (24)

if it exists a matrix P ∈ ℝN�N such that ML(q)= PM(q),
AL(q)= PA(q), GL(q)= PG(q).

Proof. Note that Δall= 0 as the deltas are now all zero. So, the
closed loop of Equation (21) is always the equivalent of a mechan-
ical system, without any potential force, controlled by a PD. Note
that the gains K̂P and K̂D are positive definitive. The proof of
stability follows standard Lyapunov arguments (see, for example,
in ref. [34, p. 186]) by using the Lyapunov candidate given in
Equation (23)).

3.3.2. Trajectory Tracking

The goal of the following controller is to track a given trajectory in
configuration space qref∶ ℝ ! ℝn. We assume qref to be bounded
with bounded derivatives. We also assume the system to be fully
actuated—i.e., W=N, det(A) 6¼ 0, det(AL) 6¼ 0. Under these
assumptions, we extend Equation (13) with the following control-
ler to follow the desired trajectory:

u ¼ A�1
L ðqÞðMLðqref Þq̈ref þ CLðqref , q̇ref Þq̇ref þDLðqref Þq̇ref

þGLðqref ÞÞ þ A�1
L ðqÞðKPðqref � qÞ þ KDðq̇ref � q̇ÞÞ (25)

where we omit the arguments t and θi to ease the readability. We
highlight the components that have been learned from the ones
that are not by adding an L as a subscript. We can obtain the
Coriolis matrix CLðqref , q̇ref Þ from the learned Lagrangian by tak-
ing the second partial derivative of the Lagrangian with respect to

the desired joint position qref and velocity q̇ref , i.e.,
∂2Lðqref , q̇ref Þ
∂qref ∂q̇ref

.

Corollary 2: The closed loop of Equation (5) and (25) is such that, for
some δq≥ 0

lim
t!∞

jjqðtÞ � qref ðtÞjj < δq (26)

If it exists a matrix P ∈ ℝN�N such that AL(q)= PA(q),
ML(q)= PM(q), CL(q)= PC(q), GL(q)= PG(q), and DL(q)=
PD(q).

Proof. We can rewrite Equation (25) by substituting the values
of the learned elements in terms of P. The result is

AðqÞu ¼ ðMðqref Þq̈ref þ Cðqref , q̇ref Þq̇ref þDðqref Þq̇ref þGðqref ÞÞ
þ P�1ðKPðqref � qÞ þ KDðq̇ref � q̇ÞÞ

(27)

Moreover, with the Assumption (15) in Corollary 1, the closed
loop is equivalent to the one discussed in ref. [55]. Therefore, the
proof follows the same steps as discussed there.

Finally, note that we provided here only proof of stability for
the perfectly learned case. Similar hypotheses and arguments to

the ones in Proposition 1 would lead to similar results in the track-
ing case, with jjPALðqÞ � AðqÞjj < δA, jjPMLðqÞ �MðqÞjj < δM,
jjPCLðqÞ � CðqÞjj < δC, jjPGLðqÞ � GðqÞjj < δG, and jjPDLðqÞ�
DðqÞjj < δG, for some finite and positive δA, δM, δC, δG, δD ∈ ℝ.

4. Methods: Simulation and Experiment Design

To evaluate the efficacy of the proposed PINNs and PINN-based
control, we apply them in three distinct tasks: (T1) learning the
dynamic model of a one-segment spatial soft manipulator, (T2)
learning the dynamic model of a two-segment spatial soft manip-
ulator, and (T3) learning the dynamic model of the Franka Emika
Panda robot. We selected (T1) and (T2) because they have a non-
trivial A(q), and (T3) because it has several degrees of freedom.
Furthermore, we employ the learned dynamics to design and test
model-based controllers for T2 and T3.

In a hardware experiment, the LNN is utilized to learn the
dynamic model of the tendon-driven soft manipulator, as
reported in ref. [56], and the Panda robot. We show for the first
time experimental closed-loop control of a robotic system
(the Panda robot) with a PINN-based algorithm.

4.1. Data Generation

Training data for T1 and T2 are generated by simulating the
dynamics of one-segment and two-segment soft manipulators
in MATLAB. For these two cases, a random sampling strategy
is employed in data generation due to the unbounded configu-
ration space inherent to soft manipulator models in simulation.
For T1, ten different initial states are combined with ten different
input signals to generate data using the one-segment manipula-
tor dynamics model. Each combination produces ten-second
training data with a time step of 0.0002 s. For T2, we use a vari-
able step size in Simulink to generate datasets from the mathe-
matical model of a two-segment soft manipulator. With this
approach, we create twelve different sixty-second trajectories,
which are subsequently resampled at fixed frequencies of
50, 100, and 1000Hz. Concerning T3, the PyBullet simulation
environment is used to generate training data corresponding
to the Panda robot. Then, different input signals are applied
to the joints to create the data of 70 different trajectories with
a frequency of 1000Hz. These trajectories are thoughtfully
designed to encompass a significant portion of the robot’s
workspace.

Regarding experimental validation, we propose the following
experiments. For the tendon-driven continuum robot, we provide
sinusoidal inputs with different frequencies and amplitudes to
the actuators—four motors—and record the movement of the
robot. An inertial measurement unit (IMU) records the tip ori-
entation data with a 10Hz sampling frequency. As a result,
122 trajectories are generated, and four more are collected as
the test set. For the Panda robot, we provide 70 sets of sinusoidal
desired joint angles with different amplitudes and frequencies.
We collect the torque, joint angle, and angular velocity data using
the integrated sensors, considering a sampling frequency of
500Hz.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (6 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


4.2. Baseline Model and Model Training

To provide a basis for comparison, baseline models are estab-
lished for all simulations and hardware experiments. These mod-
els, which serve as a control, are constructed using a fully
connected network and trained using the same datasets as the
proposed models, however, with a larger amount of data and
a greater number of training epochs. These baseline models
aimed to demonstrate the benefits of incorporating physical
knowledge into neural networks.

In this project, all the neural networks utilized are constructed
using the JAX and dm-Haiku packages in Python. In particular,
the JAX Autodiff system is used to calculate partial derivatives

and the Hessian within the loss function. The optimization of
the model parameters is carried out using AdamW in the
Optax package, which inherently include regularization terms
within the optimization process, eliminating the need for addi-
tional explicit regularization terms in the loss function.

5. Simulation Results

5.1. One-Segment 3D Soft Manipulator

To define the configuration space of the soft manipulator, we
adopt the piecewise constant curvature (PCC) approximation,[57]

Figure 5. PCC approach illustration: a) two-segment soft manipulator is shown, where Si is the end frame, the blue parts are the orientated plane, and li is
the original length of each segment; b) the length of the four arcs whose ends connected to the frame Si.

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

(a)

(b)

Figure 6. One-segment soft manipulator-learned model comparison results: a) the predictions generated by the black-box model (Δ), the Lagrangian-
based learningmodel (⋯), and the ground-truth (�) arising from the dynamic mathematical equations; b) the prediction error of these two learnedmodels.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (7 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


as shown in Figure 5. Customarily, this approximation describes
the configuration of each segment as qi= [ϕi, θi, δli], where ϕi is
the plane orientation, θi is the curvature in that plane, and δli is
the change of arc length. In this work, the configuration-defined
method reported in ref. [58] is used to avoid the singularity
problem of PCC. Hence, the configuration of each segment is
given by ½Δxi,Δyi,Δli�, where Δxi and Δyi are the difference of
arc length.

Figure 6 indicates that the model trained by LNNs exhibits a
high degree of predictive accuracy, manifesting near-infinite pre-
diction capabilities with over 50 000 consecutive prediction steps
in this example. While some areas exhibit less precise fits, such
errors do not accrue over time. These outcomes suggest that
LNN-based models can effectively capture the underlying dynam-
ics of the one-segment soft manipulator (Figure 6). In contrast,
the black-box model converges during the training process but
lacks the generalized predictive ability outside the training data-
set. Its performance reveals its inability to capture and generalize
the underlying dynamics. This system is also learned using
HNNs by providing momentum data. HNNs yield similar
quality prediction results as LNNs, as shown in Figure 7.
The HNN outperforms the LNN with identical training sample

size and network dimensions, primarily due to two key factors.
First, the nature of the optimization problem favors HNN,
which benefits from a unique solution. Second, HNN’s input
data, momentum, provide a more comprehensive description
of system dynamics. The detailed information regarding the
one-segment soft manipulator simulation is elucidated in
Table 1. The MSE shown in Table 1 and Figure 8 over a 5 s
duration reveals substantial performance advantages for both
the Lagrangian-based and Hamiltonian-based learned models
in comparison to the black-box model. Notably, the
Hamiltonian-based model demonstrates a remarkable superior-
ity, yielding an average prediction error of 0.0220� 0.0210 for
the 5 s simulation period. This underscores the model’s efficacy
in adeptly capturing and predicting the intricate dynamics of the
system.

The matrices obtained from these two physics-based learning
models are shown in Table 2 and 3, where G(q) represents the

potential forces, i.e., ∂VðqÞ
∂q . As Table 3 shows, HNNs can learn the

physically meaningful matrices, while LNNs only learn one of
the solutions satisfying the Euler–Lagrangian equation.
Comparing the corresponding matrices in Table 2 and 4, we
can find that the matrices and vectors learned by the LNNs

0 5 10 15 20 25 30
-4

-2

0

2

4

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

(a)

(b)

Figure 7. One-segment soft manipulator HNN and LNN comparison: a) the Lagrangian-based learned model prediction results (⋯), Hamiltonian-based
learned model prediction results (○), and the ground-truth prediction (�); b) error of the two models with the ground truth.

Table 1. One-segment soft manipulator simulation detailed information.

Black-box model Lagrangian-based learned model Hamiltonian-based learned model

Model (width� depth) 128� 5 32� 3, 5� 3, 16� 2 32� 3, 5� 3, 16� 2

Sample number 19 188 8000 8000

Training epoch 15 000 6000 6000

Training error 6.891� 10�5� 4.63� 10�4 8.418� 10�7� 1.77� 10�5 5.374� 10�11� 7.74� 10�10

Prediction error [m2] 7.647� 10.413 (5 s) 0.171� 0.272 (5 s) 0.0220� 0.0210 (5 s)

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (8 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


are related to the real parameters through a transformation P.
Notably, P manifests subtle variations across different states;
however, in theory, P is anticipated to remain constant. The
observed discrepancies are attributed to inherent learning errors
within the network.

5.2. Two-Segment 3D Soft Manipulator

The two-segment soft manipulator model is simulated in
MATLAB, where the configuration space is also defined as in
the one-segment case. The training and testing information
for this task is presented in Table 5. In the 100 Hz dataset,
the Lagrangian-based learned model outperforms the black-
box model with a notably lower prediction MSE of
1.690� 0.673m2 with less training data. Figure 9 summarizes
the prediction results of the 50, 100, and 1000Hz learned
model. From the simulations, we conclude that the higher the
sampling frequency within a certain range, the more
accurate the learned model is. This phenomenon is attributed
to the sensitivity of the integration algorithm to step size.
Employing more accurate integration algorithms or shorter time
steps in future experiments is expected to enhance model
precision.

Based on the learned model trained at 1000Hz, we devise a
PINN-based control loop as in Equation (13). To demonstrate the
performance of the designed controller, we employ it to control
the two-segment soft manipulator in MATLAB. The proportional
gains KP and derivative gains KD are set to 10 and 50, respec-
tively, for all six configurations. The alterations in the states of
the two-segment manipulator under control are depicted in
Figure 10, whereas the performance of the controller is

Figure 8. One-segment soft manipulator LNN-based and HNN-based
learned models’ prediction MSE results.

Table 2. Lagrangian-based learning model matrices of one-segment soft manipulator.

q ML(q) DL(q) GL(q) AL(q) P

1.20
�0.20
0.15

2
4

3
5 4.23� 10�3 1.20� 10�3 �0.03

1.20� 10�3 5.99� 10�3 �0.02
�0.03 �0.02 0.59

2
4

3
5 0.16 �0.02 0.0

�0.02 0.33 �0.01
0.0 �0.01 0.35

2
4

3
5 2.44

�0.61
�5.25

2
4

3
5 0.12 �1.72 �0.21

3.05 �0.19 �0.13
�0.34 1.01 3.40

2
4

3
5 0.61 �0.02 0.03

�0.02 0.28 0.01
0.33 0.15 0.25

2
4

3
5

0.80
0.20
0.30

2
4

3
5 6.93� 10�3 1.84� 10�3 �0.03

1.84� 10�3 0.01 �0.02
�0.03 �0.02 0.50

2
4

3
5 0.17 �0.01 �0.0

�0.01 0.33 �0.01
�0.0 �0.01 0.35

2
4

3
5 1.62

0.81
�4.67

2
4

3
5 0.19 �1.66 �0.20

2.97 �0.25 �0.13
�0.40 1.01 3.43

2
4

3
5 0.62 �0.02 0.03

�0.02 0.31 0.01
0.21 0.10 0.26

2
4

3
5

Table 3. Hamiltonian-based learning model matrices of one-segment soft manipulator.

q M�1
L ðqÞ DL(q) GL(q) AL(q)

1.20
�0.20
0.15

2
4

3
5 600.32 16.90 15.67

16.90 622.92 �1.34
15.67 �1.34 11.61

2
4

3
5 1.02� 10�1 3.44� 10�3 8.12� 10�5

3.44� 10�3 1.05� 10�1 �4.39� 10�4

8.12� 10�5 �4.39� 10�4 9.91� 10�2

2
4

3
5 1.33

�0.18
�1.15

2
4

3
5 �0.06 �0.94 0.05

0.83 0.02 �0.04
0.0 0.01 0.78

2
4

3
5

0.80
0.20
0.30

2
4

3
5 285.01 11.08 6.65

11.08 292.46 2.06
6.65 2.06 10.59

2
4

3
5 1.01 � 10�1 3.48� 10�3 6.56� 10�4

3.48� 10�3 1.03� 10�1 �7.45� 10�5

6.56� 10�4 �7.45� 10�5 9.87� 10�2

2
4

3
5 0.93

0.25
�1.10

2
4

3
5 0.03 �0.96 0.05

0.92 �0.03 �0.02
�0.01 0.0 0.89

2
4

3
5

Table 4. Mathematical model matrices of one-segment soft manipulator.

q M(q) M�1(q) D(q) G(q) A(q)

1.20
�0.20
0.15

2
4

3
5 1.73� 10�3 �3.12� 10�5 �1.96� 10�3

�3.12� 10�5 1.55� 10�3 3.26� 10�4

�1.96� 10�3 3.26� 10�4 9.29� 10�2

2
4

3
5 593.09 9.35 12.47

9.35 647.61 �2.08
12.47 �2.08 11.04

2
4

3
5 0.1 0 0

0 0.1 0
0 0 0.1

2
4

3
5 1.29

�0.22
�1.15

2
4

3
5 �0.04 �1.0 0.07

0.78 0.04 �0.01
0: 0: 0.77

2
4

3
5

0.80
0.20
0.30

2
4

3
5 3.64� 10�3 4.52� 10�5 �1.94� 10�3

4.52� 10�5 3.47� 10�3 �4.84� 10�4

�1.94� 10�3 �4.84� 10�4 9.67� 10�2

2
4

3
5 277.76 �2.84 5.55

�2.84 288.42 1.39
5.55 1.39 10.46

2
4

3
5 0.89

0.22
�1.09

2
4

3
5 0.03 �0.99 0.06

0.90 �0.03 0.02
0: 0: 0.89

2
4

3
5

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (9 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Table 5. Two-segment simulated soft manipulator training and testing detailed information.

Black-box model Lagrangian-based learned model

100 Hz 50 Hz 100 Hz 1000 Hz

Model (width� depth) 152� 3 42� 3, 5� 3, 42� 3 42� 3,5� 3,42� 2 42� 3,5� 3,42� 3

Sample number 59 200 45 000 45 000 45 000

Training epoch 15 000 5500 5500 5500

Training error 3.536� 10�4� 1.08� 10�3 5.916� 10�4� 8.61� 10�3 1.652� 10�4� 2.12� 10�2 1.822� 10�7� 6.67� 10�6

Prediction error [m2] 44.683� 4.518 (10 s) 2.098� 1.253 (10 s) 1.690 � 0.673 (10 s) 0.089� 0.278 (10 s)

0 5 10
0

2

4

6

8

10

0 5 10
0

2

4

6

8

10

0 5 10
0

2

4

6

8

10

0 5 10
-1

0

1

2

3

4

0 5 10
-1

0

1

2

3

4

0 5 10
-1

0

1

2

3

4

(a) (b) (c)

Figure 9. Two-segment soft manipulator prediction performances under different sampling frequencies: a) 50 Hz, b) 100 Hz, and c) 1000 Hz.

Figure 10. The sequence of movements at the times 0.0, 0.1, 0.3, 0.6, and 1.0 s executed by the two-segment soft robot as a result of the implementation
of the LNN-model-based controller. The red line represents the tip’s position.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (10 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


demonstrated in Figure 11. Results indicate that the controller is
capable of tracking a static setpoint within 1 s while keeping the
root mean square error (RMSE) less than 0.23%, and exhibits a
stable and minimal overshoot performance. These performances
underscore the reliability and efficiency of the designed control-
ler based on the learned model.

5.3. Panda Robot

Table 6 presents the training and testing results of the simulated
Panda in PyBullet, while Figure 12 displays the prediction results
obtained from the learned model. In comparison to the dynamics
models formulated inMATLAB, the simulator’s dynamics model
is characterized by increased complexity, influenced by the
inherent physical constraints in robotic systems, including
restrictions on acceleration and velocity. This heightened com-
plexity presents challenges in learning the dynamics model.
Nevertheless, the LNN-based model demonstrates a smaller
prediction MSE than the MSE of the black-box model.
Notably, limitations emerge in long-term predictions.
Consequently, in Figure 12c, we adopted a continuous prediction
approach—forecasting 50 steps consecutively and updating the
model state to effectively illustrate its performance.

Based on this learned model, we build the tracking controller
discussed in Section 3.3. The results are depicted in Figure 13,
where we observe that our controller has a fast response time and

Figure 11. Two-segment soft manipulator model-based controller performance: a) the evolution of the configuration variables and the desired state with
dotted lines; b) the error between the desired states and current states; and c) control effort.

Table 6. Panda simulation detailed information (1000Hz, prediction error
in Panda case is accumulated error for 2 s).

Black-box model Lagrangian-based
learned model

Model (width� depth) 120� 4 40� 3,20� 2

Sample number 550 000 25 000

Training epoch 10 000 10 000

Training error 1.476� 10�4� 2.69� 10�3 1.424� 10�4� 2.90� 10�3

Prediction error [rad2] 110.610� 8.809 (2 s) 8.884� 6.323 (2 s)

Figure 12. Franka Emika Panda learned model prediction results: a) 1500 steps prediction in a row; b) the angle errors of the prediction concerning the
ground truth; and c) the long prediction results with 50-step window size.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (11 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


can quickly adapt to changes in the reference signal. It can main-
tain high accuracy and low phase lag, which makes it well-suited
for tracking fast-changing signals.

6. Experimental Validation

6.1. One-Segment Tendon-Driven Soft Manipulator – NECK

We validate the proposed approach in the platform depicted in
Figure 14, which is constructed based on refs. [56,59]. We consider
two different data preprocessing methods: 1) moving average
method: this method reduced the noise and outliers in the data,
generating a more stable representation of underlying trends.
However, it may overlook intricate relationships between variables,
resulting in some information loss; and 2) polynomial fitting: this
method captured nonlinear patterns in the data. However, it was
susceptible to the influence of outliers, resulting in spurious infor-
mation that may compromise the quality of the trained model.

The training and testing information is shown in Table 7.

Figure 13. Performance of the model-based controller designed using the model learned by the LNNs. The desired trajectories are plotted with dotted
lines: a) shows the trajectory tracking performance and b) visualizes the torque input generated by the controller.

Figure 14. Experiment platform: one-segment tendon-driven soft manipulator equipped with IMU.

Table 7. The tendon-driven soft robot: NECK training and testing
information.

Black-box model Lagrangian-based
learned model

Smoothing Model 60� 3 21� 2,25� 2,10� 2

Sample number 69 426 69 426

Training epoch 10 000 3000

Training error 1.985� 10�2

� 1.85� 10�1

2.277� 10�2

� 2.39� 10�1

Prediction error [°2] 13.229� 60.762 (5 s) 2.429� 1.259 (5 s)

Fitting Model 60� 3 21� 2,25� 2,10� 2

Sample number 57 950 48 200

Training epoch 5000 5000

Training error 4.431� 10�3

� 3.07� 10�2

2.758� 10�3

� 2.84� 10�2

Prediction error [°2] 8.368� 12.575 (5 s) 6.426� 36.237 (5 s)

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (12 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


The method of moving average is implemented in MATLAB
through the utilization of the movmean function, with a
prescribed window size of 50 points. The processed data are
used for training the LNNs. In Figure 15, we compare the
continuous prediction ability of black-box and Lagrangian-
based learning models. The prediction performance in this
figure indicates that the Lagrangian-based learning model
exhibits superior predictive accuracy in this sample.

Furthermore, Figure 15c shows that the learning model
can realize long-term predictions under the short-term
update.

The polynomial fitting of the data is done in MATLAB using
the function polyfit. The prediction results of the model are
shown in Figure 16. The learned model exhibits a decent perfor-
mance when the window size is reduced, as shown in Figure 16c.
In contrast to the previous model, this model exhibits significant

0 2 4 6 8
-5

0

5

0 2 4 6 8
-4

-2

0

2

0 2 4 6 8 10 12 14 16 18
-15

-10

-5

0

(a) (b)

(c)

Figure 15. The smoothing data black-box model (Δ) and physics-based learning model (- -) continuous prediction results: a,b) the 43 prediction steps in a
row; c) depicts the prediction results with 5-step window size.

0 1 2 3 4 5

-6

-4

-2

0

0 1 2 3 4 5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18
0

5

10

15

(a) (b)

(c)

Figure 16. The fitting data black-box model (Δ) and physics-based learning model (⋯) continuous prediction results: a,b) 25 prediction steps in a row;
c) the prediction results with 5-step window size.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (13 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


prediction errors shown in Table 7. This can be caused by the
significant noise in the sensors and misinformation caused by
the approximation used to fit the data.

6.2. Rigid Robot—Franka Emika Panda

The collected data are processed through a Butterworth filter in
MATLAB to reduce noise. Further details are provided in Table 8.
In the experiment, we observe small joint acceleration, which
results in minimal velocity change. To prevent the network from
focusing solely on learning a large mass matrix and neglecting

other important factors, we utilize a scaling sigmoid function.
This function ensures that the elements in the mass matrix
are scaled within a specific range. For this particular case, we
have set the scaling factor to 3.50.

Figure 17 illustrates the predictive performance of our
physics-based model, where Figure 17b depicts the continuous
prediction error within 2 s or 1000 prediction steps and
Figure 17c shows that updating the model’s input with real-time
state data can help us make a long prediction.

A controller based on the equation presented in (25) is pro-
posed for the actual robot. The proportional gain matrix, KP,
is set to a diagonal matrix with entries 600, 600, 600, 600,
250, 150, and 50, respectively. The derivative gain matrix, KD,
is set to a diagonal matrix with entries 30, 30, 30, 30, 10, 10,
and 5, respectively. Figure 18 illustrates a series of photographs
depicting the periodic movement used to track a sinusoidal tra-
jectory within a time frame of 10 s. The whole tracking perfor-
mance is shown in Figure 19.

Furthermore, we have presented the trajectory of the end-
effector, which is a helical motion shown in Figure 20, and its
resultant control effect has been visually demonstrated in
Figure 19.

Table 8. Panda experiment detailed information (500 Hz).

Black-box model Lagrangian-based
learned model

Model (width� depth) 120� 5 40� 3,20� 2

Sample number 550 000 25 000

Training epoch 10 000 3000

Training error 1.371� 10�5� 2.03� 10�5 1.68� 10�7� 6.64� 10�6

Prediction error [rad] 182.495� 64.645 (2 s) 2.681� 1.383 (2 s)

0 0.5 1 1.5 2

-2

-1

0

1

2

0 0.5 1 1.5 2
-0.1

-0.05

0

0.05

0 1 2 3 4 5 6 7 8

-2

-1

0

1

2

(a) (b)

(c)

Figure 17. Panda physics-based learning model prediction results: a,b) the prediction of about 800 steps in a row; c) the prediction results with a 5-step
window size.

Figure 18. Photo sequence of one periodic movement resulting from the application of the LNN-model-based controller tracking trajectory.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (14 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Figure 19. Performance of the model-based controller that is designed using the learned model: a) shows the trajectory tracking performance and
b) visualizes the torque input generated by the controller.

Figure 20. Photo sequence of helical motion of the end-effector by using LNN-model-based controller.

0 10 20 30

0.3

0.35

0.4

0 10 20 30
0.46

0.51

0.56

0 10 20 30
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 10 20 30
-30

-20

-10

0

10

20

30
(a) (b) (c)

Figure 21. Performance of the model-based controller that is designed using the learned model: a) the desired end-effector trajectory; b) the corre-
sponding joints’ angle and the control results; and c) the controller’s input torques for such motion.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (15 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


In these figures, we can observe that the designed controller
has satisfactory performance, as evidenced by its ability to track a
desired trajectory. The tracking error, while presents in some
joints, remains within acceptable bounds and does not signifi-
cantly impair the overall performance of the controller in practi-
cal applications. An examination of the controller’s performance
reveals that, while generally effective, its performance exhibits
some degree of variability across different joints. The overall per-
formance of the controller remains within acceptable levels and
suggests its potential for effective use in real-world applications
(Figure 21).

7. Conclusion

This article presented an approach to consider damping and the
interaction between robots and actuators in PINNs—specifically,
LNNs and HNNs—improving the applicability of these neural
networks for learning dynamic models. Moreover, we used
the Runge—Kutta4 method to avoid acceleration measurements,
which are often unavailable. The modified PINNs proved suitable
for learning the dynamic model of rigid and soft manipulators.
For the latter, we considered the PCC approximation to obtain a
simplified model of the system.

The modified PINN approach exploits the knowledge of the
underlying physics of the system, which results in a largely
improved accuracy in the learned models compared with the
baseline models, which were trained using a fully connected net-
work. The results show that PINNs exhibit a more instructive and
directional learning process because of the prior knowledge
embedded into the approach. Notably, physics-based learning
models trained with fewer data are more general and robust than
the traditional black-box ones. Therefore, continuous long-term
and variable step-size predictions can be achieved. Furthermore,
the learned model enables decent anticipatory control, where a
naive PD can be integrated for a good performance, as illustrated
in the experiments performed with the Panda robot.

Acknowledgements
This work is supported by the EU EIC project EMERGE (grant no.
101070918). The authors are grateful to Bastian Deutschmann, the inven-
tor of the NECK experimental platform, which greatly facilitated the work.
The authors would also like to express their deepest gratitude to Francesco
Stella and Tomás Coleman for their invaluable guidance and help in the
experiments. Finally, the authors extend their appreciation to their col-
leagues for insightful feedback and constructive criticism, which helped
refine the ideas and methods. [Correction added on 24 March 2024 after
online publication: Typos in Title were updated in this version.]

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
dissipation, Euler–Lagrange equations, Hamiltonian neural networks,
Lagrangian neural networks, model-based control, physics-informed
neural networks, port-Hamiltonian systems

Received: July 7, 2023
Revised: November 16, 2023

Published online: February 23, 2024

[1] A. I. Chen, M. L. Balter, T. J. Maguire, M. L. Yarmush, Nat. Mach.
Intell. 2020, 2, 104.

[2] J. Ichnowski, Y. Avigal, V. Satish, K. Goldberg, Sci. Rob. 2020, 5,
eabd7710.

[3] D. Mukherjee, K. Gupta, L. H. Chang, H. Najjaran, Rob. Comput.
Integr. Manuf. 2022, 73, 102231.

[4] F. Stella, C. Della Santina, J. Hughes, Nat. Mach. Intell. 2023, 5, 561.
[5] L. Buşoniu, T. De Bruin, D. Tolić, J. Kober, I. Palunko, Annu. Rev.

Control 2018, 46, 8.
[6] P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan,

K. Subramanian, T. J. Walsh, R. Capobianco, A. Devlic, F. Eckert,
F. Fuchs, L. Gilpin, P. Khandelwal, V. Kompella, H. Lin,
P. MacAlpine, D. Oller, T. Seno, C. Sherstan, M. D. Thomure,
H. Aghabozorgi, L. Barrett, R. Douglas, D. Whitehead, P. Dürr,
P. Stone, M. Spranger, H. Kitano, Nature 2022, 602, 223.

[7] N. Rudin, D. Hoeller, P. Reist, M. Hutter, in Conf. Robot Learning,
PMLR, Auckland, New Zealand, December 2022, pp. 91–100.

[8] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider,
N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
L. Zhang (Preprint), arXiv:1910.07113, v1, submitted: Oct. 2019.

[9] W. Zhao, J. P. Queralta, T. Westerlund, in 2020 IEEE Symp. Series on
Computational Intelligence (SSCI), IEEE 2020, pp. 737–744.

[10] P. Kulkarni, J. Kober, R. Babuška, C. Della Santina, Adv. Intell. Syst.
2022, 4, 2100095.

[11] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford, P. Corke, Int. J. Rob.
Res. 2018, 37, 405.

[12] G. Antonelli, S. Chiaverini, P. Di Lillo, Nonlinear Dyn. 2023, 111,
6487.

[13] H. Beik-Mohammadi, S. Hauberg, G. Arvanitidis, G. Neumann,
L. Rozo (Preprint), arXiv:2106.04315, v2, submitted: Jul. 2021.

[14] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez,
P. Agrawal, V. Sitzmann, in 2022 Int. Conf. on Robotics and
Automation (ICRA), IEEE, Philadelphia, USA, December 2022,
pp. 6394–6400.

[15] J. Urain, N. Funk, G. Chalvatzaki, J. Peters, in 2023 Int. Conf. on
Robotics and Automation (ICRA), IEEE, London, UK, May 2023,
pp. 5923–5930.

[16] A. Daw, A. Karpatne, W. Watkins, J. Read, V. Kumar (Preprint),
arXiv:1710.11431, v1, submitted: Oct. 2017.

[17] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang,
L. Yang, Nat. Rev. Phys. 2021, 3, 422.

[18] F. Djeumou, C. Neary, E. Goubault, S. Putot, U. Topcu, in Learning for
Dynamics and Control Conf., PMLR, Stanford University, Stanford, CA,
June 2022, pp. 263–277.

[19] M. Chen, R. Lupoiu, C. Mao, D.-H. Huang, J. Jiang, P. Lalanne, J. Fan
(Preprint), v1, submitted: Aug. 2021, https://doi.org/10.21203/rs.3.
rs-807786/v1.

[20] B. Huang, J. Wang, IEEE Trans. Power Syst. 2022, 38, 572.
[21] Z. Mao, A. D. Jagtap, G. E. Karniadakis, Comput. Methods Appl. Mech.

Eng. 2020, 360, 112789.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (16 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.21203/rs.3.rs-807786/v1
https://doi.org/10.21203/rs.3.rs-807786/v1
http://www.advancedsciencenews.com
http://www.advintellsyst.com


[22] S. A. Niaki, E. Haghighat, T. Campbell, A. Poursartip, R. Vaziri,
Comput. Methods Appl. Mech. Eng. 2021, 384, 113959.

[23] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, S. Ho
(Preprint), arXiv:2003.04630, v2, submitted: Jul. 2020.

[24] S. Greydanus, M. Dzamba, J. Yosinski, Adv. Neural Inf. Process. Syst.
2019, 32.

[25] Y. D. Zhong, B. Dey, A. Chakraborty, Adv. Neural Inf. Process. Syst.
2021, 34, 21910.

[26] R. Bhattoo, S. Ranu, N. A. Krishnan,Mach. Learn.: Sci. Technol. 2023,
4, 015003.

[27] M. A. Roehrl, T. A. Runkler, V. Brandtstetter, M. Tokic, S. Obermayer,
IFAC-PapersOnLine 2020, 53, 9195.

[28] Y. D. Zhong, B. Dey, A. Chakraborty, Learning for Dynamics and
Control, PMLR 2021, pp. 1218–1229.

[29] R. Bhattoo, S. Ranu, N. Krishnan, Adv. Neural Inf. Process. Syst. 2022,
35, 29789.

[30] M. Lutter, J. Peters, Int. J. Rob. Res. 2023, 42, 83.
[31] C. Della Santina, M. G. Catalano, A. Bicchi, M. Ang, O. Khatib,

B. Siciliano, Encyclopedia of Robotics, Vol. 489, Springer Berlin
Heidelberg, Berlin, Germany 2020.

[32] J. K. Gupta, K. Menda, Z. Manchester, M. J. Kochenderfer (Preprint),
arXiv:1902.08705, v2, submitted: Mar. 2019.

[33] J. K. Gupta, K. Menda, Z. Manchester, M. Kochenderfer, Learning for
Dynamics and Control, PMLR 2020, pp. 328–337.

[34] R. M. Murray, Z. Li, S. S. Sastry, S. S. Sastry, A Mathematical
Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL
1994.

[35] H. K. Khalil, Nonlinear Control, Pearson, New York, NY 2015.
[36] C. Della Santina, C. Duriez, D. Rus, IEEE Control Syst. Mag. 2023, 43,

30.
[37] Y. Zheng, C. Hu, X. Wang, Z. Wu, J. Process Control 2023, 128, 103005.
[38] S. Sanyal, K. Roy, in 2023 Int. Conf. on Robotics and Automation

(ICRA), IEEE 2023, pp. 1019–1025.
[39] L. Hewing, J. Kabzan, M. N. Zeilinger, IEEE Trans. Control Syst.

Technol. 2019, 28, 2736.
[40] I. Mitsioni, P. Tajvar, D. Kragic, J. Tumova, C. Pek, IEEE Trans. Rob.

2023, 39, 3242.

[41] S. S.-E. Plaza, R. Reyes-Baez, B. Jayawardhana, in Learning for
Dynamics and Control Conf., PMLR, Stanford University, Stanford,
CA, June 2022, pp. 520–531.

[42] S. Sánchez-Escalonilla, R. Reyes-Báez, B. Jayawardhana, in 2022 IEEE
61st Conf. on Decision and Control (CDC), IEEE, Cancun, Mexico,
December 2022, pp. 2463–2468.

[43] F. Arnold, R. King, Eng. Appl. Artif. Intell. 2021, 101, 104195.
[44] S. Mowlavi, S. Nabi, J. Comput. Phys. 2023, 473, 111731.
[45] J. Nicodemus, J. Kneifl, J. Fehr, B. Unger, IFAC-PapersOnLine 2022,

55, 331.
[46] M. Lutter, K. Listmann, J. Peters, in 2019 IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), IEEE, The Venetian Macao,
Macau, November 2019, pp. 7718–7725.

[47] C. Della Santina, Encyclopedia of Robotics, Vol. 20, Springer Berlin
Heidelberg, Berlin, Germany 2021.

[48] C. Laschi, T. G. Thuruthel, F. Lida, R. Merzouki, E. Falotico, IEEE
Control Syst. Mag. 2023, 43, 100.

[49] P. Pustina, C. Della Santina, F. Boyer, A. De Luca, F. Renda (Preprint),
arXiv:2306.07258, v1, submitted: Jun. 2023.

[50] M. Lutter, C. Ritter, J. Peters (Preprint), arXiv:1907.04490, v1, submit-
ted: Jul. 2019.

[51] L. N. Trefethen, D. Bau, Numerical Linear Algebra, Vol. 181, Siam,
Trefethen, Philadelphia, USA 2022.

[52] K. B. Petersen, M. S. Pedersen, The Matrix Cookbook, Technical
University of Denmark, Copenhagen, Denmark 2008.

[53] M. Montagna, P. Pustina, A. De Luca, in I-RIM Conf., Rome, Italy,
October 2023.

[54] P. Tomei, IEEE Trans. Autom. Control 1991, 36, 1208.
[55] R. Kelly, R. Salgado, IEEE Trans. Rob. Autom. 1994, 10, 566.
[56] B. Deutschmann, J. Reinecke, A. Dietrich, in 2022 IEEE 5th Int. Conf.

on Soft Robotics (RoboSoft), Edinburgh, Scotland, UK, April 2022,
pp. 54–61.

[57] M. W. Hannan, I. D. Walker, J. Rob. Syst. 2003, 20, 45.
[58] C. Della Santina, A. Bicchi, D. Rus, IEEE Rob. Autom. Lett. 2020, 5,

1001.
[59] B. Deutschmann, https://github.com/DLR-RM/TendonDriven

Continuum (accessed: August 2022).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300385 2300385 (17 of 17) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300385 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/DLR-RM/TendonDrivenContinuum
https://github.com/DLR-RM/TendonDrivenContinuum
http://www.advancedsciencenews.com
http://www.advintellsyst.com

	Physics-Informed Neural Networks to Model and Control Robots: A Theoretical and Experimental Investigation
	1. Introduction
	2. Preliminaries
	2.1. Lagrangian and Hamiltonian Dynamics
	2.2. LNNs and HNNs
	2.3. Limits of Classic LNNs and HNNs

	3. Proposed Algorithms
	3.1. A Learnable Model for Nonconservative Forces
	3.2. Nonconservative Noncollocated Lagrangian and Hamiltonian NNs with Modified Loss
	3.2.1. Subnetwork Structures

	3.3. PINN-Based Controllers
	3.3.1. Regulation
	3.3.2. Trajectory Tracking


	4. Methods: Simulation and Experiment Design
	4.1. Data Generation
	4.2. Baseline Model and Model Training

	5. Simulation Results
	5.1. One-Segment 3D Soft Manipulator
	5.2. Two-Segment 3D Soft Manipulator
	5.3. Panda Robot

	6. Experimental Validation
	6.1. One-Segment Tendon-Driven Soft Manipulator - NECK
	6.2. Rigid Robot-Franka Emika Panda

	7. Conclusion


