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Abstract: Kendall’s tau and conditional Kendall’s tau matrices are multivariate (conditional) dependence
measures between the components of a random vector. For large dimensions, available estimators are com-
putationally expensive and can be improved by averaging. Under structural assumptions on the underlying
Kendall’s tau and conditional Kendall’s tau matrices, we introduce new estimators that have a significantly
reduced computational cost while keeping a similar error level. In the unconditional setting, we assume that,
up to reordering, the underlying Kendall’s tau matrix is block structured with constant values in each of the
off-diagonal blocks. Consequences on the underlying correlation matrix are then discussed. The estimators
take advantage of this block structure by averaging over (part of) the pairwise estimates in each of the off-
diagonal blocks. Derived explicit variance expressions show their improved efficiency. In the conditional
setting, the conditional Kendall’s tau matrix is assumed to have a block structure, for some value of the
conditioning variable. Conditional Kendall’s tau matrix estimators are constructed similarly as in the uncondi-
tional case by averaging over (part of) the pairwise conditional Kendall’s tau estimators. We establish their
joint asymptotic normality and show that the asymptotic variance is reduced compared to the naive estima-
tors. Then, we perform a simulation study that displays the improved performance of both the unconditional
and conditional estimators. Finally, the estimators are used for estimating the value at risk of a large stock
portfolio; backtesting illustrates the obtained improvements compared to the previous estimators.

Keywords: Kendall’s tau matrix, block structure, kernel smoothing, conditional dependence measure

MSC 2020: Primary: 62H20, Secondary: 62F30, 62G05

1 Introduction

In dependence modeling, the main object of interest is the copula, which is a cumulative distribution function
on [0, 1]p with uniform margins, describing the links between elements of a p-dimensional random vector X.
However, the copula belongs to an infinite-dimensional space, and it is not easy to represent it as soon as p is
larger than 3 or 4. In such cases, finite-dimensional statistics becomes more useful to understand the depen-
dence, the most well known of them being Kendall’s tau matrix.

Kendall’s tau between two random variables Xi and Xj , denoted by �( )=τ τi j i j, ,
, is defined as the prob-

ability of concordance between two independent replications from the distribution �i j, of ( )X X,i j minus the

probability of discordance. The equality �( ) ∫= −τ C dC4 1i j i j i j, , ,
relates Kendall’s tau with the copula Ci j, of Xi

and Xj; we refer to the previous study [32] for an extensive introduction to Kendall’s tau and copulas.
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When a covariate �∈Z d is available, we can extend the definition of Kendall’s tau to the conditional
setting. Conditional Kendall’s tau is then defined as �( )( )≔∣ = ∣ =τ τi j i jZ z Z z, ,

, where �( ) ∣ =i j Z z,
denotes the conditional

law of ( )X X,i j given =Z z, for some �∈z d. In the previous studies [10,20,45], smoothing-based estimators of
conditional Kendall’s tau are studied. In [9], it is shown that the estimation of conditional Kendall’s tau can be
written as a classification task; they proposed to use classification algorithms to estimate conditional Kendall’s
tau. In [11], a regression-type model is used to estimate conditional Kendall’s tau in a parametric conditional
framework. [3] uses conditional Kendall’s tau for hypothesis testing.

For a random vector X, we define Kendall’s tau matrix by [ ]≔ ≤ ≤τT i j i j p, 1 ,
, which contains all pairwise

Kendall’s taus; respectively, in the conditional framework, a natural counterpart is conditional Kendall’s
tau matrix, denoted by [ ]≔∣ = ∣ = ≤ ≤τT i j i j pZ z Z z, 1 ,

. Kendall’s tau matrix is especially useful for elliptical graphical
models and their generalizations, see [4,26]. In the study by Lu et al. [28], a time-varying graphical
model is studied using an estimate of conditional Kendall’s tau matrix. Kendall’s tau matrix plays an
important role since it allows robust estimation of the dependence, and can be used to fit an appropriate
copula [19]. In an elliptical distribution framework, it can also be used to estimate the Value at Risk of a
portfolio, see [37,42].

Estimation of the ×p p Kendall’s tau matrix T becomes particularly challenging in the high-dimensional
setting when p is large. Simple use of the naive Kendall’s tau matrix estimator of all pairwise sample Kendall’s
taus will result in noisy estimates with estimation errors piling up due to the estimates’ individual imprecision
[15]. Over the past two decades, various regularization strategies have been proposed to reduce the aggrega-
tion of estimation errors. Ultimately, these methods all make certain assumptions on the underlying depen-
dence structure, hereby reducing the number of free parameters to estimate.

In many instances, sparsity of the target matrix is assumed. For such settings, various (combinations of)
thresholding and shrinkage methods have been proposed [5,21,39]. However, such assumptions are certainly
not appropriate for the modeling of most financial data, e.g., market risk is reflected in all share prices, and
therefore, their returns are certainly correlated. To this end, factor models are usually imposed, where the
correlations depend on a number of common factors, which may or may not be latent [15,16].

In studies by Perreault [34,35], an alternative approach to estimating large Kendall’s tau matrices was
introduced. They studied a model in which it is assumed that the set of variables could be partitioned into
smaller clusters with exchangeable dependence. As such, after reordering of the variables by cluster, the
corresponding Kendall’s tau matrix is block structured with constant values within each block. Following
naturally is an improved estimation by averaging all pairwise sample Kendall’s taus within each of the blocks.
In addition, they have proposed a robust algorithm identifying such structures (see also [36] for testing for the
presence of such a structure).

In this article, we study a similar framework as in previous studies [35], where we relax the partial
exchangeability assumption: we only assume that off-diagonal blocks of Kendall’s tau matrix are constant.
One of the drawbacks of the estimator studied in [35] is its computational cost, which is close to the one of the
naive Kendall’s tau matrix estimator: the number of pairwise sample Kendall’s taus that are to be computed
scales quadratically with the dimension p.

Naturally, the idea of averaging among several Kendall’s taus can be applied to part of the blocks, which
allows for faster computations. As such, we propose several estimators that average among part of the
Kendall’s tau per off-diagonal block and study their efficiencies and computational costs. For every off-diag-
onal block, we will consider averaging over elements in the same row, averaging over elements on the
diagonal and averaging over a number of randomly selected elements. We will be referring to these estimators
as the row, diagonal and random estimators; the estimator that averages over all elements is referred to as the
block estimator.

We then extend this model to the conditional setup: conditional Kendall’s taus are depending on z and are
assumed to be clustered such that for all �∈z d, the Kendall’s tau conditionally on =Z z between variables of
different groups is only depending on group numbers and on the value of z. In view of applications to finance,
the conditional version of our structural assumption could, for example, be seen as assuming that the correla-
tions between European stocks of two different groups are equal and react equally to changes of some other
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American stock or portfolio. Furthermore, in previous studies [2,14,27], it was shown that stock returns
actually exhibit higher correlations during market declines than during market upturns, and moreover that
the same applies to exchange rates in [33]. In such a model, it is also important to limit computation times and
study improved estimators that can take advantage of the block structure of the Kendall’s tau matrix.

In this framework, we adopt nonparametric estimates of the conditional Kendall’s tau based on kernel
smoothing. On the basis of these nonparametric estimates, we introduce conditional versions of the averaging
estimators and study their asymptotic behavior as the sample size n tends to infinity. It is worth noting
that conditional estimates of Kendall’s tau using kernel smoothing carry significantly more computational
cost than their unconditional counterparts, especially when the covariate’s dimension d is large. Therefore,
faster computations of conditional Kendall’s tau matrices will be of particular use in the conditional, non-
parametric setup.

The rest of this article is structured as follows. In Section 2, we present the unconditional framework, and
detail a few consequences on the correlation matrix. Then we construct the different estimators in this
framework and derive variance expressions. Similarly, Section 3 is devoted to the improved estimation of
the conditional Kendall’s tau matrix, where we propose averaged conditional estimators and we derive the
estimators’ joint asymptotic normality. In Section 4, we perform a simulation study in order to support
the theoretical findings. Finally, in Section 5, we examine a possible application to study the behavior of
the estimators in real data conditions. The estimators are used for the robust inference of the covariance
matrix to estimate the value at risk of a large stock portfolio. Proofs are postponed to the Appendix.

Notations. We denote by 1 be the vector and the matrix with all entries equal to 1, where the dimensions
can be inferred from the context. For a matrix M of size ×p p, and a set of indices { }⊂J p1, …,

2, we denote by
[ ]M J the submatrix ( ) ∈Mj j J .

2 Fast estimation of Kendall’s tau matrix

2.1 The structural assumption

Let ≥n 2 and assume that we observen i.i.d. replications ( )= X XX , …,i i i p,1 ,
of a randomvector �( )= ∈X XX , …, p

p
1

,
for =i n1,…, . Moreover, assume that the Kendall’s tau matrix [ ]≔ ≤ ≤τT i j i j p, 1 ,

of X satisfies the following structural
assumption.

Assumption 1. (Structural assumption) There exists >K 0, a partition � � �{ }= , …, K1
of { }p1, …, , a set

{ }⊂J K1, …,

2 and some constants ( ) [ ]( ) ∈ −∈τ 1, 1k k k k J
J

, ,
1 2 1 2

such that for all ( ) ∈k k J,
1 2

,

� �[ ] = ⋅× τT 1.k k,k k
1 2

1 2

Note that after reordering of the variables by group, the corresponding Kendall’s tau matrix is block
structured with constant values in some of the off-diagonal blocks. The interest in investigating this structural
assumption originates from applications in stock return modeling. In this context, the clustering of the
variables could be considered as grouping companies by sector or economy. It then seems at least intuitive
to assume that companies from different groups have correlations that depend only on the groups they are in,
without making any assumptions on the correlations between companies from the same group. We will
therefore call τk k,

1 2

the intergroup Kendall’s tau between groups � k
1

and � k
2

.
This can be clearly seen in Figure 1: in each of the off-diagonal blocks, the Kendall’s tau is mostly

homogeneous, but significant differences can be seen in the fourth diagonal block. Indeed, it gathers compa-
nies whose link to other groups is constant, but with different relationships inside the group. This may be
explained by the presence of subgroups inside this fourth group, even if the relationship with variables from
other groups do not seem to be related to these subgroup structures.

Fast estimation of Kendall’s Tau and conditional Kendall’s Tau matrices  3



Obviously, the structural assumption is satisfied for any set of variables by using only groups of length 1.
Therefore, assuming larger groups will make the assumption more constraining. Indeed, in this framework,
Kendall’s tau matrix depends on

� �( ) ∣ ∣(∣ ∣ )∑− + −
=

K K
1

2

1

1

2

1

k

K

k k

1

free parameters. For a dimension of 100, assuming we can split into =K 10 groups of equal size, this translates
to a reduction by factor of 10 of the number of free parameters to estimate (from 4950 to 495). Such a reduction
suggests that the use of appropriate estimators can lead to significant estimation improvements. We will define
estimators of the Kendall’s tau matrix T under Assumption 1 for some known partitions � of { }p1, …, . Note that
such partition can also be inferred from the data, see [35,36] and the thesis [34]. Even if Assumption 1 is not
satisfied, the estimators that we will propose can still be of interest, for example, to do linear shrinkage.

Note that although our results are only interesting when ≠k k
1 2

, they also hold if a pair of form ( )k k,
1 1

belongs to J . Indeed, in this case, we must have =τ 1k k,
1 1

, and then all pairs of observations in the block will be
concordant, so all our estimators will be equal to 1.

In this article, we are interested in the estimation of the intergroup Kendall’s tau τk k,
1 2

for some pair ( )k k,
1 2

belonging to J , i.e., such that the block � �[ ] ×T
k k

1 2

is a constant block. This means that the random vector

� �( )⊤ ⊤ ⊤X X,

k k
1 2

satisfies the following assumption.

Assumption 2. (Simplified Structural assumption) Let X be a p-dimensional random vector of interest.
Kendall’s tau matrix of the random vector X can be written in the block form

= ⎛⎝
⋅

⋅
⎞
⎠

τ

τ
T

1

1
,

where τ1 represents a block filled with the value [ ]∈ −τ 1, 1 and the symbol ⋅ represents any matrices of
respective sizes ×b b

1 1
and ×b b

2 2
for some { }∈b p1, …,

1
and ≔ −b p b

2 1
.

Under Assumption 2, we call τ the intergroup Kendall’s tau, as a particular case of the previous frame-
work. As discussed earlier, Assumption 2 may seem more constraining than the previous Assumption 1, but
both assumptions are actually equivalent insofar as we are only interested in the estimation of each interblock

Figure 1: Heatmap plots of the sample Kendall’s tau matrix computed on the daily log returns from 01 January 2007 until 14 January 2022
of all 240 portfolio stocks (whose list is available in Appendix C). (a) Unclustered and (b) clustered.
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Kendall’s tau τk k,
1 2

. Therefore, and in order to simplify the notations, we will choose to assume Assumption 2.
Similarly as the more general Assumption 1, Assumption 2 can be tested using the framework developed
in [36].

Note that [35] proposed a similar model with a more restrictive version of Assumption 1, the partial
exchangeability assumption, by assuming that the variables could be partitioned into K clusters with
exchangeable dependence.

Assumption 3. (Partial exchangeability assumption) For { }∈j p1, …, , let ( )=U F Xj j j , where Fj is the cumulative
distribution function of Xj, and C be the copula of X. For any partition � �{ }= G, …, K1

of { }p1, …, , let ( )π G be
the set of permutations π of { }p1, …, such that for all { }∈j p1, …, and all { }∈k K1, …, , �( ) ∈π j k if and only
if �∈j k .

A partition � �{ }= G, …, K1
satisfies the partial exchangeability assumption if for any [ ]∈u u,…, 0, 1p1

and
any permutation ( )∈π π G , one has

( ) ( )( ) ( )=C u u C u u, …, , …, ,p π π p1 1

or, equivalently, ( ) ( )( ) ( )=U U U U, …, , …,p π π p1

law

1
.

Note that the partial exchangeability assumption imposes restrictions on the underlying copula, whereas
Assumption 1 only does so on the underlying Kendall’s tau matrix, making it a lot less restrictive. Further,
under Assumption 3, Kendall’s tau matrix is fully block structured including constant diagonal blocks as well,
after reordering of the variables. In contrast to [35], we are more interested in a model where we do not
consider partial exchangeability nor constant interdependence of marginal variables within the same cluster.
Particularly in view of the aforementioned application of stock returns, the partial exchangeability assump-
tion seems quite restrictive and a model without partial exchangeability in which companies from the same
cluster have different mutual dependence is more plausible (see Figure 1). For these reasons, we opt for a more
flexible variant of this model.

2.2 Consequences of the block structure on the correlation matrix

As explained in [24, Chapter 3], if X follows a multivariate Gaussian distribution with exchangeable depen-
dence and correlation ( )∈ −ρ 1, 1 , then ( )XCorr is positive definite if and only if ( )> − ∕ −ρ p1 1 . In terms of
Kendall’s tau, this constraint translates as ( ) ( ( ))> − ∕ ∕ −τ π p2 Arcsin 1 1 . Assumption 1 is weaker than exchange-
able dependence, and even in the Gaussian setting with two groups of variables, it allows for arbitrary
negative correlation in the off-diagonal block. The results presented in this section are related to the results
of [6] who study the eigenstructure of such block structured correlation matrices, but without giving precise
constraint on the allowed values of the correlation. McNeil et al. [30] discuss attainability of Kendall’s tau
matrices in a general framework, i.e., without discussing the block structure specifically.

Proposition 1. Let ≥b b, 2
1 2

be integers. Let ( )∈ −ρ ρ ρ, , 1, 1
1 2 3

, and define the block matrix �( )∈ +M b b
1 2

2

with
blocks of size b

1
and b

2
by

≔
⎛

⎝
⎜
+

+

⎞

⎠
⎟

∼
∼M

I ρ I ρ

ρ I ρ I

1

1
,

1 3

3 2

where I is the identity matrix and ≔ −∼
I I1 is the matrix with 1 at each off-diagonal entry and 0 on the diagonal.

Then M is positive definite if and only if

( ) ( ) ( )− − + − + − + − + >b b b b ρ ρ b b ρ b ρ b ρ1 1 1 1 0.
2 1 1 2

1 2
1 2

3

2

2
2

1
1

(1)

Furthermore, this inequality is satisfied as soon as
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( )

( )

⎧

⎨
⎪

⎩
⎪

>
− − −

− − + + −

> −
−

− − +

ρ
b b ρ b ρ

b b b b ρ b

ρ
b

b b b b

1 1

1 1

,

1

1

.

1

1 2
3

2

2
2

1 2 1 2
2

1

2

1

1 2 1 2

This result is proved in Appendix B.1. We can remark that the constraint (1) is always satisfied as soon as

≥ρ ρ ρ ,
1 2 3

2 (2)

i.e., the absolute value of ρ
3

has to be smaller than the geometric mean of ρ
1

and ρ
2

. Furthermore, in the high-
dimensional setting, where → +∞b b,

1 2
and ρ ρ,

1 2

are fixed and positive, (1) actually becomes equivalent to the
simplified constraint (2). Note that (1) allows for situations, where ρ

3

is arbitrarily close to −1, for any choice of
block sizes. This is possible, for example, by setting ∣ ∣= =ρ ρ ρ

1 2 3

. Concretely, if all variables of one group have
a high correlation with all variables of the second group, then in each group, the intragroup correlation should
be high. Such a result translates directly for Kendall’s tau matrix by using the relationship ( ) ( )= ∕τ π ρ2 Arcsin ,
allowing for Kendall’s tau matrix with arbitrary entries in the off-diagonal blocks.

Rather surprisingly, as soon as the group sizes b
1
and b

2
are large enough, they don’t appear anymore in

the constraint (2). This phenomenon is in fact typical of block-structured matrices and will appear again in the
performance of our estimators in the next sections. We now give a lower bound for the intergroup Kendall’s
tau in the setting, where K groups are present, with equal intergroup Kendall’s tau. It is proved in
Appendix B.1.

Proposition 2. Let ≥K 2 and let b b,…, K1
be positive integers. Let ( )∈ −ρ 1, 1 , Σ ,…, ΣK1

be K correlation matrices
of size b b,…, K1

, respectively, and let �( )∈ + +⋯+M b b bK1 2

2

be the block matrix defined by

≔

⎛

⎝

⎜
⎜
⎜

⋯
⋱ ⋮

⋮ ⋱ ⋱
⋯

⎞

⎠

⎟
⎟
⎟

M

ρ ρ

ρ

ρ

ρ ρ

1 1

1

1

1 1

Σ

Σ

Σ

.

K

1

2

Then

{ ( ) }∈ − ∃ =
−
−

ρ such that M is a correlation matrix
K

inf 1, 1 : Σ ,…, Σ

1

1

.K1

Interestingly, this bound does not depend on the sizes of the blocks b b,…, K1
. This shows that, for such a

matrix, the structure of each block does not have a strong influence on the possible choice of intergroup
Kendall’s tau. The constraint ( )≥ − ∕ −ρ p1 1 for exchangeable correlation matrices becomes in this framework

( )≥ − ∕ −ρ K1 1 for exchangeable intergroup dependence, suggesting that the number of blocks becomes the
relevant dimension for this problem (instead of the number of variables). Nevertheless, the knowledge of
the intragroup correlations matrices Σ ,…, ΣK1

will still constrain the range of possible values of ρ, as this was
the case in Proposition 1 for the particular case =K 2 and exchangeable dependence in each block.

2.3 Construction of estimators

First, note that we can naturally rely on the usual estimator of Kendall’s tau between X j
1

and X j
2

defined by


( )

(( )( ))∑≔
−

− −
<

τ
n n

X X X X
2

1

sign ,j j

i i

i j i j i j i j, , , , ,
1 2

1 2

1
1

2
1

1
2

2
2

(3)

for any ≤ ≤j j p1 ,
1 2

. We denote the corresponding Kendall’s tau matrix estimator by  [ ]= ≤ ≤τT j j j j p, 1 ,
1 2 1 2

, which
serves as a first step estimator for obtaining a better estimator of the Kendall’s tau matrix. This estimated
Kendall’s tau matrix T does not make any use of the underlying structure and will therefore be a rather naive
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tool in practice. As discussed in the previous section, we will introduce several estimators in the setting of
Assumption 2, with straightforward generalizations under Assumption 1. More precisely, for every estimator
τ A2 of τ under Assumption 2, we define a corresponding matrix estimator T A1 under Assumption 1 by




 � � � �
[ ]

( ) ( )
≔ =

⎧
⎨
⎩

∈ ∈ ∈
≤ ≤T

τ j j k k J

τ
T

, , if , and , ,

, else.

A

j j

A

j j p

A
k k k k

j j

1

,

1

1 ,

2

1 2
1 2

,

1 2 1 2

1 2 1 2

1 2

(4)

Remember that J is the set of pairs ( )k k,
1 2

of block indices such that Kendall’s tau τj j,
1 2

does not depend on
�∈j k

1 1

, �∈j k
2 2

. Since we assume that the Kendall’s taus in (some of) the off-diagonal blocks are equal, the
idea of averaging the pairwise sample Kendall’s tau follows naturally. Let us introduce the block estimator τ B

that averages all sample Kendall’s taus within each of the off-diagonal blocks. Formally, we have

 ∑ ∑≔
= = +

τ
b b

τ
1

.

B

j

b

j b

p

j j

1 2
1 1

,

1

1

2
1

1 2

We define TB the corresponding estimator under Assumption 1 by Equation (4).

Under the partial exchangeability assumption, Perreault et al. [35] showed that the estimator TB is
asymptotically normal and optimal under the Mahalanobis distance. However, in terms of computational

efficiency, the block estimator TB does not show any improvement over the usual estimator T, as both
estimators require the computation of the usual Kendall’s tau between all pairs of variables anyway.

To reduce the computation time, we propose not averaging over all Kendall’s taus in the block but only
over some of them. This would lead to computationally cheaper estimates. Naturally, the question arises over
which elements then to average over. For this purpose, we introduce several estimators that average over
different subsets of elements within each of the off-diagonal blocks.

We introduce two estimators that each average { }∈ ∨N b b1, …,
1 2

pairs in the off-diagonal block under
Assumption 2, so that we can compare estimators that either average pairs in the same row/column, or pairs
on the diagonal. Without loss of generality, since we can switch both blocks of variables, we assume that
≤b b

1 2
, and we will average over the row. For averaging pairs on the diagonal, it is moreover required that

≤ ∧N b b
1 2

. The number of Kendall’s tau estimates is then reduced to scaling linearly with group size, which is
a significant improvement over the previous quadratic growth. We set

   ∑ ∑≔ ≔
=

+
=

+τ
N

τ τ
N

τ
1

, and

1

.

R

j

N

b j
D

j

N

j b j

1

1,

1

,
1 1

Then, the “row-based” Kendall’s tau matrix estimator TR and the “diagonal-based” Kendall’s tau matrix
estimator TD are defined by Equation (4) for the choices  =τ τA R2 and  =τ τA D2 . As such, for each of the off-
diagonal blocks, TR averages only the pairs on the first line along the largest side, whereas TD averages only
the pairs along the first diagonal.

Finally, we introduce the estimator that randomly selects pairs to average over per block. We denote the
(deterministic) number of averaged pairs per block by { }∈ ×N b b1, …,

1 2
and the corresponding estimator by

TU . The pairs are selected with uniform probability and without replacement. We define

 ∑ ∑≔
= =

τ
N

W τ
1

,

U

j

b

j

b

j j j j

1 1

, ,

1

1

2

2

1 2 1 2

where W is a ×b b
1 2

matrix of random weights that selects N pairs per off-diagonal block with uniform
probability and without replacement. =W 1j j,

1 2

corresponds to selecting pair ( )X X,j j
1 2

and =W 0j j,
1 2

corre-

sponds to passing over it. The corresponding matrix estimator is then denoted by TU with W defined as
selecting N pairs in each of the averaged blocks.
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2.4 Comparison of their variances

Before we proceed with the main theoretical results on the estimators’ variances, let us introduce some
auxiliary notations. For every { }∈j j p, 1, …,

1 2

, we set �(( )( ) )≔ − − >P X X X X 0 .j j j j j j, 1, 2, 1, 2,
1 2 1 1 2 2

The quantity
P j j,

1 2

is equal to the probability of concordance of the variables X j
1

and X j
2

, and thus, = −τ P2 1j j j j, ,
1 2 1 2

. As
such, the structural assumption 2 ensures that P j j,

1 2

is independent of the choice of pair whenever j
1

and j
2

are
not in the same block. Alternatively we can write P j j,

1 2

in terms of the copula Cj j,
1 2

of ( )X X,j j
1 2

by

( ) ( )
[ ]
∫=P C u u C u u2 , d , .j j j j j j,

0,1

, 1 2 , 1 2
1 2

2

1 2 1 2

By extension, we define

�

�

�

(( )( ) ( )( ) )

(( )( ) ( )( ) )

(( )( ) ( )( ) )

≔ − − > − − >
≔ − − > − − >

≔ − − > − − > =

P X X X X X X X X

Q X X X X X X X X

S X X X X X X X X P P

0, 0 ,

0, 0 ,

0, 0 ,

j j j j j j j j j j j j

j j j j j j j j j j j j

j j j j j j j j j j j j j j j j

, , , 1, 2, 1, 2, 1, 2, 1, 2,

, , ,
1, 2, 1, 2, 1, 3, 1, 3,

, , , 1, 2, 1, 2, 4, 3, 4, 3, , ,

1 2 3 4 1 1 2 2 3 3 4 4

1 2 3 4
1 1 2 2 3 3 4 4

1 2 3 4 1 1 2 2 3 3 4 4 1 2 3 4

for every { }∈j j j j p, , , 1, …,
1 2 3 4

. Note that both P and Q quantities can be understood as some kind of “cross-
concordance measures,” but there is an important difference between them: for the Q measure of cross-
concordance, there is a third copy X p3,1:

needed. When =j j
1 3

and =j j
2 4

, we obtain =P Pj j j j j j, , , ,
1 2 3 4 1 2

. Q-type
measures of cross-concordance naturally appears in the asymptotic variance of the usual estimator of
Kendall’s tau through the particular case

�(( )( ) ( )( ) )

( ( ) ( )) ( )

[ ]

∫
≔ = − − > − − >

= +

Q Q X X X X X X X X

C u u C u u C u u

0, 0

, ¯ , d , ,

j j j j j j j j j j j j j j

j j j j j j

, , , ,
1, 2, 1, 2, 1, 3, 1, 3,

0,1

, 1 2 , 1 2

2

, 1 2

1 2 1 2 1 2
1 1 2 2 1 1 2 2

2

1 2 1 2 1 2

(5)

where C̄ denotes the survival function of a copula C . For S , a fourth independent copy is needed, but by
independence, it reduces to the product P Pj j j j, ,

1 2 3 4

. For completeness, this expression is derived in Appendix B.2.
Note that this equality was already given in [19, Equation (8)]. Note that both P and Q can be written as eight-
dimensional integrals involving the copula of ( )X X X X, , ,j j j j

1 2 3 4

. As a consequence, they are functions of the
joint law �( )j j j j, , ,

1 2 3 4

of the random vector ( )X j j j j, , ,
1 2 3 4

. Note further that even under Assumption 1, they both
depend on the choice of pairs within the considered off-diagonal block. Obviously, this is not the case if we
assume the stronger Assumption 3.

To give explicit expressions for our estimators, we need to average P , Q, and S quantities. We need to
separate these averages depending on the number of common variables in the cross-concordance terms. We
define

( ) ( )

( ) ( )

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

≔

≔
− + −

⎛

⎝
⎜ +

⎞

⎠
⎟

≔
− −

= = +

= = + = ≠ = = + = + ≠

= = + = ≠ = + ≠

P
b b

P

P
b b b b b b

P P

P
b b b b

P

1

,

1

1 1

,

1

1 1

,

B

j

b

j b

p

j j

B

j

b

j b

p

j j j

b

j j j j

j

b

j b

p

j b j j

p

j j j j

B

j

b

j b

p

j j j

b

j b j j

p

j j j j

,2

1 2
1 1

,

,1

1 1 2 2 2 1
1 1 1,

, , ,

1 1 1,

, , ,

,0

1 1 2 2
1 1 1, 1,

, , ,

1

1

2
1

1 2

1

1

2
1

3 3 1

1

1 2 3 2

1

1

2
1

4
1

4 2

1 2 1 4

1

1

2
1

3 3 1

1

4
1

4 2

1 2 3 4

and similarly, we define Pα β, , Q
α β,

, Sα β, for { }∈α B R D, , and { }∈β 0, 1, 2 . In the latter expression, α denotes the
type of averaging (respectively, over the block, over the row and over the diagonal) and β denotes the number
of common variables, i.e., the size of { } { }∩j j j j, ,

1 2 3 4

. This means that for =β 2, PB,2
is the average of the P j j j j, , ,

1 2 3 4

over the set of ( )j j j j, , ,
1 2 3 4

such that =j j
1 3

and =j j
2 4

(2 common variables, since both variables are the same).
PB,1

is the average of the P j j j j, , ,
1 2 3 4

over the set of ( )j j j j, , ,
1 2 3 4

such that =j j
1 3

or =j j
2 4

(1 common variable, since
one is the same and one is different). Finally, PB,0

is the average of the P j j j j, , ,
1 2 3 4

over the set of ( )j j j j, , ,
1 2 3 4

such
that ≠j j

1 3

and ≠j j
2 4

(0 common variables, all variables are different). To deal with the random estimator, we
need to define the corresponding weighted quantities for a ×p p matrix w:
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( ) ( )

( ) ( )

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

≔

≔
− + −

⎛

⎝
⎜ +

⎞

⎠
⎟

≔
− −

= = +

= = + = ≠ = = + = + ≠

= = + = ≠ = + ≠

P
b b

w P

P
b b b b b b

w w P w w P

P
b b b b

w w P

1

,

1

1 1

,

1

1 1

,

j

b

j b

p

j j j j

j

b

j b

p

j j j

b

j j j j j j j j

j

b

j b

p

j b j j

p

j j j j j j j j

j

b

j b

p

j j j

b

j b j j

p

j j j j j j j j

w

w

w

,2

1 2
1 1

, ,

,1

1 1 2 2 2 1
1 1 1,

, , , , ,

1 1 1,

, , , , ,

,0

1 1 2 2
1 1 1, 1,

, , , , ,

1

1

2
1

1 2 1 2

1

1

2
1

3 3 1

1

1 2 3 2 1 2 3 2

1

1

2
1

4
1

4 2

1 2 1 4 1 2 1 4

1

1

2
1

3 3 1

1

4
1

4 2

1 2 3 4 1 2 3 4

and similarly for Q
βw,

and S βw,
for { }∈β 0, 1, 2 .

Now that we have all auxiliary notations in place, let us start by showing that each of the estimators is in
fact a U-statistic.

Lemma 3. Under Assumption 2, the estimators τj j,
1 2

, τ B, τ R, τ D, and τ U are all second order U-statistics, in the
sense that they can be written as ( ( )) ( )− ∑− ≤ ≠ ≤n n g X X1 ,i i n i i

1

1
1 2

1 2

, for some real-valued function g. We denote these
functions, respectively, by g*, g B, g R, g D, and gU .

This lemma is proved in Appendix B.3 where the expressions of the kernels g*, g B, g R, g D, and gU are

given. From Lemma 3 and the fact that �[ ( )] =g τX X,
1 2

for each kernel g , it follows that T, TB, TR, TD, and TU

are all unbiased estimators of the Kendall’s tau matrix under Assumption 1. The finite sample variances are
given in the following theorem, proved in Appendix B.4.

Theorem 4. Let ≤ ≤j j p1 ,
1 2

, ≤ ≤b p1
1

and let ≔ −b p b
2 1

. The variances of τj j,
1 2

, τ B, τ R, τ D, and τ U , and the
conditional variance of τ U conditionally to W are given by
(i)

� [ ]
( )

( )( )=
−

⎛
⎝ − − + − ⎞

⎠τ
n n

n Q P P Par

8

1

2 2 ,j j j j j j j j j j,
, ,

2

, ,

2

1 2
1 2 1 2 1 2 1 2

(ii)

� [ ]
( )

( )( ) ( )( )( )

( ) ( )( ) ( )( )( ))

=
−

⎛
⎝ − + + − − + − − −

+ − ( − + + − − + − − − ⎞
⎠

τ
b b n n

P S b b P S b b P S

n Q S b b Q S b b Q S

ar

8

1

2 1 1

2 2 2 1 1 .

B
B B B B B B

B B B B B B

1 2

,2 ,2 1 2 ,1 ,1 1 2 ,0 ,0

,2
,2 1 2

,1
,1 1 2

,0
,0

(iii)

� [ ]
( )

( )( ) ( )( ( )( ))=
−

⎛
⎝ − + − − + − − + − − ⎞

⎠τ
Nn n

P S N P S n Q S N Q Sar

8

1

1 2 2 1 .

R
R R R R R R R R,2 ,2 ,1 ,1

,2
,2

,1
,1

(iv)

� [ ]
( )

( )( ) ( )( ( )( ))=
−

⎛
⎝ − + − − + − − + − − ⎞

⎠τ
Nn n

P S N P S n Q S N Q Sar

8

1

1 2 2 1 .

D
D D D D D D D D,2 ,2 ,0 ,0

,2
,2

,0
,0

(v)

� [ ∣ ]
( )

( )( ) ( )( )( )

( )( ( )( ) ( )( )( ))

=
−

⎛
⎝ − + + − − + − − −

+ − − + + − − + − − − ⎞
⎠

τ
b b n n

P S b b P S b b P S

n Q S b b Q S b b Q S

War

8

1

2 1 1

2 2 2 1 1 .

U
W W W W W W

W W W W W W

1 2

,2 ,2 1 2 ,1 ,1 1 2 ,0 ,0

,2
,2 1 2

,1
,1 1 2

,0
,0

(vi)

� �[ ] [ ]
( )

( )

( ( )( ) ( )( )( ))

( ( )( ) ( )( )( ))⎟

= +
−

⎛
⎝ −

× − +
−
−

+ − − +
−
−

− − −

+ − +
−
−

+ − − +
−
−

− − − ⎞
⎠

τ τ
b b n n

n

Q S
N

b b
b b Q S

N

b b
b b Q S

P S
N

b b
b b P S

N

b b
b b P S

ar ar

8

1

2 2

1

1

2

1

1

1 1

1

1

2

1

1

1 1 ,

U
J J

B B B B B B

B B B B B B

,

1 2

,2
,2

1 2

1 2
,1

,1

1 2

1 2
,0

,0

,2 ,2

1 2

1 2 ,1 ,1

1 2

1 2 ,0 ,0

1 2
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where J
1

and J
2

are independent random variables, uniformly distributed on { }b1, …,
1

and { }+b p1, …,
1

,
respectively.

Note that the variance of the usual Kendall’s tau estimator τj j,
1 2

is already known [19]. We can also remark
that this theorem always holds, even if Assumption 2 is not satisfied. However, in such a case, the estimators
will have different expectations: this would be the average of the considered Kendall’s tau over the corre-
sponding pairs. Note that the conditional variance � [ ∣ ]τ War

U is the variance of the estimator τ U for a fixed
choice of pairs to average; it only measure the variability due to the randomness of the sample. On the
contrary, the unconditional variance � [ ]τar

U takes into account both the randomness of the sample and
the randomness of the choice of the pairs.

Remark 5. If Assumption 2 holds, the first term in the variance of τ U vanishes, and = = =P P P PB R D j j,2 ,2 ,2 ,
1 2

and
all S terms become equal to P j j,

2

1 2

. If the stronger Assumption 3 holds, all quantities P j j j j, , ,
1 2 3 4

and Q
j j j j, , ,
1 2 3 4

becomes independent of the choice of indices ( )j j j j, , ,
1 2 3 4

. Therefore, all P-type averages becomes equal, as
well as all Q-type averages.

Corollary 6. Under Assumption 2, ≔P P j j
2

,

2

1 2

does not depend on the choice of j j,
1 2

, and it holds that as → ∞n

 �( ) ( )− ⟶∕n τ τ V0, .

1 2

law

Here τ denotes any of the estimators τj j,
1 2

, τ B, τ R, τ D, τ U given W, τ U , and the corresponding asymptotic
variances V are, respectively, given by

�( ) ( )= ≔ −V V Q P16 ,j j j j j jX, ,
,

2

1 2 1 2
1 2

(6)

�( ) ( ( )( ) ( )( )( ))= ≔ − + + − − + − − −V V
b b

Q P b b Q P b b Q P
16

2 1 1 ,

B B
B B BX

1 2

,2

2

1 2
,1

2

1 2
,0

2 (7)

�( ) ( ( )( ))= ≔ − + − −V V
N

Q P N Q P
16

1 ,

R R
R RX

,2

2

,1

2 (8)

�( ) ( ( )( ))= ≔ − + − −V V
N

Q P N Q P
16

1 ,

D D
D DX

,2

2

,0

2 (9)

�( ) ( ( )( ) ( )( )( ))= ≔ − + + − − + − − −∣ ∣V V
N

Q P b b Q P b b Q P
16

2 1 1 ,

U UW W
X W W W,2

2

1 2
,1

2

1 2
,0

2 (10)

�( ) (( )( ) ( )( )( ))⎜ ⎟= ≔ ⎛
⎝ − +

−
−

+ − − + − − − ⎞
⎠

V V
N

Q P
N

b b
b b Q P b b Q P

16 1

1

2 1 1 ,

U U
B B BX

,2

2

1 2

1 2
,1

2

1 2
,0

2 (11)

where�X denotes the law of the random vector X. Furthermore, these distributions are degenerate whenever the
corresponding Q-type averages are equal to P2. A sufficient condition for this to happen is when all Kendall’s tau
are equal to 1.

This corollary can straightforwardly be derived by combining Theorem A of [43, Section 5.5.1] and the
computations of the corresponding ζ

1
’s in the proof of Theorem 4. The asymptotic normality of τ B was already

known to hold under the stronger assumption of partial exchangeability [34, Theorem 1.2]. From the lengthy
expressions in Theorem 4, we can derive the asymptotic variances in the setting where → +∞n b b N, , ,

1 2
.

Corollary 7. Under Assumption 2, as → +∞n b b N, , ,
1 2

, we have the following equivalents:

• � �[ ] ( ) ( )− = ×τ Q P Var ~ ,j j n j j n j j X,

16

,

2

1

,
1 2

1 2
1 2

• � �[ ] ( ) ( )− = ×
→+∞

τ Q P Var ~ lim ,

B

n B n
b b

B
X

16

,0

2

1

,
1 2

• � �[ ] ( ) ( )− = ×
→+∞

τ Q P Var ~ lim ,

R

n R n
N

R
X

16

,1

2

1

• � �[ ] ( ) ( )− = ×
→+∞

τ Q P Var ~ lim ,

D

n D n
N

D
X

16

,0

2

1
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• � �[ ∣ ] ( ) ( )− = ×
→+∞

∣τ Q P VWar ~ lim ,

U

n n
b b N

U
W

W
X

16

,0

2

1

, ,
1 2

• � �[ ] ( ) ( )− = ×
→+∞

τ Q P Var ~ lim ,

U

n B n
b b N

U
X

16

,0

2

1

, ,
1 2

assuming, respectively, that Q Q Q Q Q, , , ,
j j B R D W, ,0 ,1 ,0 ,0
1 2

, and Q
B,0

are strictly larger than P2. If this is not the case,

the corresponding variances converges to 0 at a rate faster than ( )∕O n1 .

Surprisingly, note that the variances do not depend on the block dimensions as soon as they are large
enough. This is also true if the block dimensions tends to the infinity at different rates. In the limit, the quality of the
estimator will therefore not improve by averaging over additional elements in general. Note that this is coherent,
since we do not assume the dependence to converge to 0, which would correspond to some mixing assumption.
Therefore, averaging must have only a limited effect, as in the simpler statistical model = +Y θ εi i where

( )=ε ε ε, …, n1
follows a centered exchangeable Normal distribution with correlation >ρ 0. In this case, the average

Yn is inconsistent for estimating θ since � �[( ) ] [ ] ( )− = ∑ = ∕ + − ∕ →−
=Y θ n ε ε n n ρ n ρ1 1n i j

n

i j
2 2

, 1
as → ∞n .

For large sample sizes, only theQ-type averages determine the levels of variance. For the diagonal, random and
block estimators, the number of terms corresponding to non-overlapping combinations grow faster than the
number of overlapping combinations. However, for the row estimator only pairs within the same row are
averaged, and thus, the limiting variance contains the quantity Q

R,1

(instead of a hypothetical Q
R,0

).

Open problem 1. As all asymptotic variances are equal up to a constant, it seems logical to ask which is the best
estimator. For this, we need to compare these constants. However, these constants are defined using eight-
dimensional integrals, making explicit computations difficult.

Interestingly, the block estimator and the random estimator perform equally well in the limit. Hence, we
can greatly reduce computation time by using the random estimator instead of the block estimator, while still
maintaining a low asymptotic variance.

This is coherent with Theorem 1 of [35] which shows that under Assumption 3 the block averaging
estimator is optimal with respect to the Mahalanobis distance. Furthermore, since the diagonal estimator
averages solely over non-overlapping combinations, note that it should converge faster than that of the
random estimator. Therefore, if computation costs are to be reduced, the diagonal estimator is preferable
to both the random and the row estimator.

Finally, we note that if only part of the row or diagonal is averaged, the asymptotic variances of the
resulting estimators do not change. By doing so we can further lower computation times, but at the cost of
attaining the limiting variances at slower rates. Therefore, it makes sense to choose N large enough to attain
the asymptotic regime, but not too large to keep a low computation time.

3 Fast estimation of conditional Kendall’s tau matrix

We extend the aforementioned setting to the conditional setup, when a d-dimensional covariate Z is available
taking values in �� ⊂ d. Formally, this means that we observe a sample ( ) =X Z,i i i n1, … ,

of n independent and
identically distributed replications of a random vector �( ) ∈ +X Z,

p d. The objective is now to estimate the
×p p conditional Kendall’s tau matrix [ ]=∣ = ∣ = ≤ ≤τT j j j j pZ z Z z, 1 ,

1 2 1 2

for a given point �∈z .

3.1 Estimation of conditional Kendall’s tau

For construction of nonparametric estimates of the conditional Kendall’s tau, let us start by recalling the
expression of the conditional Kendall’s tau, following [10]:

� �(( )( ) ∣ ) (( )( ) ∣ )= − − > = = − − − < = =∣ =τ X X X X X X X XZ Z z Z Z z0 0 .Z z1,2 1,1 1,2 2,1 2,2 1 2 1,1 1,2 2,1 2,2 1 2
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Following the approach of [10], we introduce a kernel-based estimator of ∣ =τ Z z1,2
as follows:

 ( ) ( ) ( )( ) ( )∑ ∑≔
−∣ =

= =
τ

s
w w gz z X X

1

1

, ,

n i

n

i

n

i n i n i iZ z1,2

1 1

, , , 1,2 , 1,2

1 2

1 2 1 2

(12)

( ) (( )( ))( ) ( ) ≔ − −g X X X XX Xwhere , signi i i i i i, 1,2 , 1,2 ,1 ,1 ,2 ,2
1 2 1 2 1 2

with Nadaraya-Watson weights wi n, given by

�

�
( )

( )

( )
≔

−
∑ −=

w z
Z z

Z z
,i n

h i

k

n

h k

,

1

(13)

and ( )≔ ∑ =s w z ,n i

n

i n1 ,

2 for some kernel � on�d and a bandwidth sequence ( )=h h n converging to zero as → ∞n .
In this sense,  ∣ =τ Z z1,2

is a smoothed estimator of �[ ( )∣ ]= = =∣ =τ g X X Z Z z,Z z1,2 1 2 1 2
. The factor ( )∕ − s1 1 n tends to 1

as → ∞n , and ensures that the estimated conditional Kendall’s tau takes values in the whole interval [ ]−1, 1 .
We adapt the simplified structural Assumption 2 by assuming that the underlying structural pattern

applies to the conditional Kendall’s tau matrix given =Z z.

Assumption 4. (Simplified structural assumption conditionally to �= ∈Z z ) Kendall’s tau matrix of the
random vector X can be written in the block form

⎜ ⎟= ⎛
⎝
⋅

⋅
⎞
⎠∣ =

∣ =

∣ =

τ

τ
T

1

1
Z z

Z z

Z z

for some value [ ]∈ −∣ =τ 1, 1Z z , where ∣ =τ 1Z z represent a block filled with the value [ ]∈ −∣ =τ 1, 1Z z and the ⋅
represent any matrices of respective sizes ×b b

1 1
and ×b b

2 2
for some { }∈b p1, …,

1
and ≔ −b p b

2 1
.

In terms of stock return modeling, Assumption 4 has the following interpretation: conditionally on a given
market state or portfolio movement, the stocks of companies from different sectors/countries have equal rank
correlations with every other pair from the respective groups. This could for instance be used for the compu-
tation of conditional risk measures.

Note that Assumption 4 only concern a fixed value of z, and is quite general in the sense that it allows the
existence of different block structures depending on the value of the conditional variable z.

Let us denote the naive (unaveraged) conditional Kendall’s tau matrix estimator as  [ ]=∣ = ∣ = ≤ ≤τT j j j j pZ z Z z, 1 ,
1 2 1 2

with  ∣ =τj j Z z,
1 2

as in (12). As in the unconditional framework that was studied previously, we define averaged

versions of the conditional estimators ∣ =τ
B
Z z, ∣ =τ

R
Z z, ∣ =τ

D
Z z, ∣ =τ

U
Z z, that, respectively, average over the whole block,

the first row, the first diagonal, and uniformly chosen entries of the off-diagonal block.

3.2 Comparison of their asymptotic variances

Before proceeding with the asymptotic results, we need to formalize some regularity assumptions on the kernel � ,
the covariateZ and the bandwidth sequence ( )h n . Since we will give similar results as in [10, Proposition 9], where
the case of the (bivariate) conditional Kendall’s tau was treated, we give an adapted version of their assumptions.

Assumption 5.
(a) The kernel � is bounded, compactly supported, symmetrical in the sense that � �( ) ( )= −u u for every

�∈u d and satisfies � � �∣ ∣∫ ∫ ∫= < ∞ < ∞1, ,

2 .
(b) The kernel is of order α for some integer >α 1, i.e., for all = −k α1,…, 1 and every indices j j,…,

k1

in { }d1, …, ,

�( )∫ =u uu u… d 0.j jk1
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(c) In addition, � �[ ( )]− >Z z 0h for every >h 0.

These assumptions are classical in nonparametric statistics to obtain convergence rates of kernel-based
estimators. The assumption of compactness of the support means that the estimators taken at different points
in � are independent if the sample size is large enough, since the bandwidth hn tends to 0. The assumptions
that the kernel is bounded and that �∣ ∣∫ and �∫ 2 are finite rule out too much irregular kernels that have fat
tails or irregular behavior. Higher-order kernels allows to obtain estimators that converge faster, under the
assumption below that the joint density f

X Z,
is smooth enough, see Section 1.2.1 of [44]. Assumption 5(c) ensures

that the weights that appear in Equation (13) are well-defined asymptotically since the denominator will
converge to a strictly positive value by the law of large numbers.

Assumption 6. For every � ( )∈ ↦ fx z x z, ,

p
X Z,

is continuous and almost everywhere differentiable on a
neighborhood of z up to the order α. For every ≤ ≤k α0 and every ≤ ≤j j d1 ,…,

α1

, let

� ( ) ( ) ( )
[ ]

≔
∂

∂ ∂
+

∂
∂ ∂

+→
∈

−

+

f

z z
th

f

z z
thu v x x z x z u x z v, , , , sup

…

,

…

,
k j

t

k

j j

α k

j j

X Z X Z

,
1 2

0,1

,

1

,

2

k k α1 1

denoting ( )
→ =j j j, …, .

α1

Assume that � ( )→ u v x x z, , , ,
k j, 1 2

is integrable and there exists a finite constant >C αXZ,
0

such that, for every <h 1,

� � �∣ ∣( )∣ ∣( ) ( )∣ ∣∫ ∑ ∑⎛
⎝
⎞
⎠

= =
→

+

α

k
u u v vu v u v x x z u v x x, , , , … … d d d d

k

α

j j

d

k j j j j j

0 , … , 1

,
1 2 1 2

α

k k α

1

1 1

is less than C αXZ,
.

The regularity condition on f
X Z,

can be interpreted in the classical way: smoother functions are easier to
estimate than very irregular ones. Therefore, densities f

X Z,
that are α-times differentiable allows to use a larger

range of bandwidths for large α; this can be seen in the following Assumption 7.
Note that ‖ ‖ ‖ ‖{ } { }≤ ∂ ∕∂ ∂∞ ∈ →∈ ∞C C K f z zsup sup …α α p k α j d

k
j jXZ X Z, ,

2

0, … , 1, … , ,

2

k
k1

, where Cα p, is a constant that only
depends on α and p. In this sense, the second part of Assumption 6 can be seen as a relaxed version of a
uniform control on the higher-order derivatives of the density. Therefore, Assumption 6 is implied by
Assumption 5 and by the (stronger) assumption that all partial derivatives of f

X Z,
with respect to components

of z exist up to the order α and are bounded.

Assumption 7. → ∞ → → ∞+
nh nh nand 0 as .n

d
n
d α2

This assumption controls the rate at which the sequence ( )hn tends to 0. It should tend to 0 fast enough but
not too fast: the second condition controls the bias (see Equation (A16) in the proof), while the first condition
ensures that the rate nhn

d is meaningful and allows us to verify Lyapunov’s condition (second part of [10,
Section A.10]). We now present our main theoretical result on the joint asymptotic normality at different points
of the conditioning variable Z, at the nonparametric rate ( ) ∕nhn

d 1 2.

Theorem 8. (Joint asymptotic normality at different points) Let ′ >n 0, and let ′ ′ ′z z,…, n1
be a collection of ′n

points of � ⊂ Rd such that Assumptions 4–7 are satisfied for any choice { }∈ ′ ′ ′z z z, …, n1
. Then, as → ∞n ,

 �( ) ( ) ( )− ⟶∕
∣ = ∣ = ′=′ ′ ′′ ′nh τ τ H0, ,n

d
k k j n k kZ z Z z

1 2

, 1, … ,

law

,j j1 2 1 2

where the diagonal matrix H is given by

�
�

�

( )
( )

{ }∫
=
⎡

⎣
⎢ ′

×
⎤

⎦
⎥

=
∣ =

≤ ≤ ′

′ ′

′
′

′ ′
′f

VH
z

,

j j

j
j j n

Z

X Z z

2

1 ,

j

1 2

1

1

1 2
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and the asymptotic variance functions V are, respectively, defined in Equations (6)–(11).

The proof of this result is given in Appendix B.5.

Remark 9. Under the assumptions of Theorem 8, we have for a given �∈z ,

  �
�

( ) ( )
( )

( ( ) )
∫

− = × −
→+∞

∕
∣ = ∣ =

→+∞
∕

∣ = ∣ =nh τ τ
f

n τ τ
z

lim lim ,

n
n
d

n
Z z Z z

Z

X Z z Z z
1 2

law

2

1 2

where on the left-hand side ∣ =τ Z z denotes any of the estimators  ∣ =τj j Z z,
1 2

, ∣ =τ
B
Z z, ∣ =τ

R
Z z, ∣ =τ

D
Z z,  ∣ =τk k

U
Z z,

1 2

, and on the
right-hand side,  �( )∣ =τ X Z z denotes the similarly-averaged estimated Kendall’s tau if we had observed a sample
of size n from the distribution � ∣ =X Z z.

Corollary 10. Under the same assumptions as in Theorem 8 and by letting the sample size and dimensions tend to
infinity, the following holds for �Z-almost all �∈z ,

• �
�

[ ] ( )
( )

−∫
∣ = ∣ = ∣ =τ Q Par ~ ,j j nh f j jZ z

z Z z Z z,

16

,

2

d
Z

1 2

2

1 2

• �
�

[ ] ( )
( )

−∫
∣ = ∣ = ∣ =τ Q Par ~ ,

B

nh f BZ z z Z z Z z

16

,0

2

d
Z

2

• �
�

[ ] ( )
( )

−∫
∣ = ∣ = ∣ =τ Q Par ~ ,

R

nh f RZ z z Z z Z z

16

,1

2

d
Z

2

• �
�

[ ] ( )
( )

−∫
∣ = ∣ = ∣ =τ Q Par ~ ,

D

nh f DZ z z Z z Z z

16

,0

2

d
Z

2

• �
�

[ ∣ ] ( )
( )

−∫
∣ = ∣ = ∣ =τ Q PWar ~ ,

U

nh fZ z z W Z z Z z

16

,0

2

d
Z

2

• �
�

[ ] ( )
( )

−∫
∣ = ∣ = ∣ =τ Q Par ~ ,

U

nh f BZ z z Z z Z z

16

,0

2

d
Z

2

assuming, respectively, that ∣ = ∣ = ∣ = ∣ = ∣ =Q Q Q Q Q, , , ,
j j B R DZ z Z z Z z Z z W Z z, ,0 ,1 ,0 ,0
1 2

, and ∣ =Q
B Z z,0

are strictly larger than ∣ =P Z z

2 ,
where conditional versions of P, Q, and their averages are defined with the same expression as in the previous
section, but applied to the conditional law � ∣ =X Z z.

If these assumptions are not met, the corresponding variances converges to 0 at a rate faster than
( ( ))∕O nh1

d .

As seen earlier, we remark that the asymptotic variances have analogous expressions to that of their
unconditional counterparts. Therefore, all averaging estimators exhibit a lower asymptotic variance than the
naive conditional Kendall’s tau estimator. Also, the row averaging estimator intuitively performs worse than
the block, diagonal and random estimators and for growing dimensions the block, diagonal and random
estimator perform (almost) equally in the limit, assuming that the averages of Q are not far apart. Again,
we can greatly reduce computation time by using either one of the diagonal or random averaging estimator
instead of the block averaging estimator, since then only part of all conditional Kendall’s taus have to be
computed. Finally, it again holds that if only part of the row or diagonal is averaged, the asymptotic variances
of the resulting estimators do not change. By doing so, we can further decrease computation time, but at the
cost of attaining the limiting variances at slower rates.

4 Simulation study

We perform a simulation study to assess the finite sample properties of our estimators. First, in Section 4.1, we
compare the unconditional estimators by studying their variances and computation times for varying block
and sample sizes. In Section 4.2, we focus on the conditional versions of the diagonal and block estimators and
we let the Kendall’s taus depend on a one-dimensional covariate. Similarly, we compare their accuracy and
computational efficiency for varying sample size and block dimensions. In addition, we examine the
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estimators’ optimal bandwidths under varying conditional dependencies of the Kendall’s tau matrix. The
simulations are all executed with the help of the statistical environment R [38] on the DelftBlue supercom-
puter [7]. For simplicity, we choose ( )=N b bmin ,

1 2
, so that diagonal, row and random estimators average over

the same number of terms.

4.1 Unconditional Kendall’s tau

In the unconditional framework, we compare the block, row, diagonal, random, and naive Kendall’s tau
matrix estimators. We will examine how the estimators’ variance changes as a function of the block dimen-
sions and the sample size. For this purpose, we consider mean squared errors (MSEs), which is a measure of
variance here as all unconditional estimators are unbiased. Furthermore, we measure computation times for
comparing the computational efficiency. For computing the pairwise sample Kendall’s taus, we use the func-
tion wdm in the R package wdm [31], which can efficiently calculate sample and weighted Kendall’s tau with time
complexity ( ( ))O n nlog . The row, diagonal, random, and block estimators are now available as part of the
package ElliptCopulas [13] and can be computed using the function KTMatrixEst.

In each simulation, data is generated using a meta-elliptical copula [1,12,17,18]. A copula is said to be meta-
elliptical if it is the copula of a distribution with density ∣ ∣ ( )− ∕ ⊤gΣ x xΣ

1 2 for a covariance matrix Σ (here chosen
to be a correlation matrix) and a function � �→+ +g : , called the generator of the meta-elliptical copula. This
means that we simulate data from the Gaussian copula, or from other meta-elliptical copulas with different
generators. Note that for meta-elliptical copulas, the matrix Σ can be directly obtained from the Kendall’s tau
matrix. We let the underlying Kendall’s tau matrix be block structured corresponding to two groups of equal
size, which we will refer to as the block size. This results in two diagonal blocks and a single distinct off-
diagonal block due to symmetry.

Open problem 2. Simulating from meta-elliptical copulas is easy, for example, using the ElliptCopulas

package [13] as they rely on elliptical distributions, which are well-understood distributions. Constructing
explicit nonmeta-elliptical models of dependence that satisfy Assumption 2 seems difficult (unless both groups
are independent) and is left for future research. Indeed, even in the low-dimensional case, where = =b b 2

1 2

(so that the two blocks are { }1,2 and { }3,4 ), a D-vine (for example) would give a decomposition of the copula
= ∣ ∣ ∣c c c c c c c

1,2,3,4 1,2 2,3 3,4 1,3 2 2,4 3 1,4 2,3
of ( )X X X X, , ,

1 2 3 4
. So Kendall’s tau τ

2,3
can be easily chosen through the specifica-

tion of the copula c
2,3
. However, this would not give an explicit expression for the other interblocks Kendall’s

taus τ τ τ, ,
1,3 1,4 2,4

. Indeed, they depend in a complicated way of all the copulas’ and conditional copulas’ para-
meters through integration.

As obtained in Theorem 4, the variances depend on the averages of the auxiliary quantities P Q, , and S of
pairs either along the row, the diagonal, or over the entire block. For a fair comparison of the different
estimators, we need all different averages of these auxiliary quantities to be equal. As such, in addition to
having identical Kendall’s tau values in the off-diagonal block, we take the values within the diagonal blocks to
be identical as well. In that case, all auxiliary quantities are independent of the choice of pairs within the off-
diagonal block, and moreover, the partial exchangeability assumption holds.

For performance analysis, we will focus on estimates of the single off-diagonal block, as all estimators treat
the diagonal blocks equally. As such, computation times and MSEs result from only estimating the single off-
diagonal block.

4.1.1 Effect of the sample size

In the first experiment, we study the dependency of the MSE on the sample size. To this end, the sample size is
varied and the block size is fixed to ×32 32. The true Kendall’s tau values are fixed in the following way: the
intragroup Kendall’s tau are = =τ τ 0.5

1,1 2,2
and the intergroup Kendall’s tau is =τ 0.3

1,2
. We examine data

generated from the Gaussian distribution. For each estimator, the MSEs are calculated using 3,000 replications.
The results can be found on a log–log scale in Figure 2.
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In Figure 2, we clearly observe almost straight lines for all of the estimators, with slopes indicating an inverse
relationship. This not only confirms that the limiting variances are inversely proportional to the sample size but
also that this applies accurately for small sample sizes. In addition, we see that averaging the sample Kendall’s taus
does indeed lead to better estimates. This applies to any given sample size, as all estimates depend equally on it. As
expected, the block estimator behaves best, only closely followed by the diagonal estimator.

Next, we study the dependency of the computation times on sample size. For this experiment, we compute
the average computation time. The results are shown in Figure 3 on a log–log scale. It shows that the computation
times gradually increase with the sample size, to a point where they appear to scale almost linearly with each
other. These observations are in line with the computation time ( ( ))O n nlog of the pairwise sample Kendall’s tau
estimator. As expected, the computation times of the block and sample Kendall’s tau matrix estimator are very
similar, as are the computation times of the row and diagonal estimators, with the latter two being significantly
more efficient for any given sample size.

4.1.2 Effect of the block size

We first study the behavior of the MSE with respect to varying block sizes with off-diagonal block Kendall’s
taus of 0.3 and diagonal block Kendall’s taus of 0.5. In this experiment, we set the sample size to 4 to reduce the
computational cost of running a sufficient number of replications. Again, we examine data generated from the
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Figure 2: Log–log plots of the MSE of the estimators τj j,
1 2

(“naive”), τ B (“block”), τ R (“row”), τ D (“diag”) and τ U (“random” with uniform
selection of pairs) as a function of the sample size. The diagonal block Kendall’s taus are set at 0.5 and the off-diagonal block values
at 0.3.

16  Rutger van der Spek and Alexis Derumigny



Gaussian distributions. The MSEs are calculated using 3,000 replications. See Figure 4 for a log–log plot of the
MSEs as a function of the block size.

Figure 4 shows that all of the averaging estimators perform increasingly better than the sample Kendall’s
tau estimator for growing block dimensions. For large block dimensions, MSEs seem to reach constant values,
confirming that the asymptotic variances do not depend on block dimensions. As expected, the block and
diagonal averaging estimators both converge to the lowest limiting variance, approached fastest by the block
averaging estimator. The row and the random averaging estimator perform considerably less.

Furthermore, we find that the relative difference between the diagonal and block estimator is largest for small
dimensions, but they are still well within a factor of 1.5 of each other. As the dimension increases, the MSEs of the
diagonal estimator converge rapidly to that of the block estimator, again confirming that the block and diagonal
estimators have close variances for large block dimensions. A more detailed presentation of the interplay between
the sample size n and the size b

1
and b

2
of the blocks is available in the Supplementary file “MSE_n,b1,b2.pdf.”

4.1.3 Effect of the value of the true Kendall’s taus

In this section, we fix the sample size =n 16 and the block sizes = =b b 4
1 2

, and we change the value of
Kendall’s tau. The MSE is displayed in Figure 5 for different combinations of τ τ,

1,1 1,2
, and τ

2,2
. Note that some

combinations are not present due to the constraints presented in Section 2.2.
As expected, the relative order of the estimator is the same for all values of the Kendall’s tau. A more

detailed version of this figure is available as supplementary material (File “MSE_tau.pdf”), showing the same
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Figure 3: Log–log plot of the mean computation time [ms] of the estimators τj j,
1 2

(“naive”), τ B (“block”), τ R (“row”), τ D (“diag”), and τ U

(“random” with uniform selection of pairs) as a function of the sample size, calculated using a block size of 32.
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phenomena for a larger range of value for the Kendall’s taus. Interestingly, the performance of all estimators is
very similar when both intragroup Kendall’s taus are equal to 0.9. Indeed, in this case, the variables in each
blocks are mostly the same, and then averaging does not change the situation anymore.

4.1.4 Effect of the copula

In this section, we fix the sample size, block sizes, and Kendall’s tau value. We vary instead the copula of the
distribution. For this, we use different meta-elliptical copulas, because of their natural relationships between
Kendall’s tau and the underlying correlation matrix. These meta-elliptical copulas are defined as the copulas of
the distributions with densities ∣ ∣ ( )− ∕ ⊤gΣ x xΣ

1 2 for a covariance matrix Σ (here chosen to be a correlation
matrix) and a function � �→+ +g : respectively, chosen as
• ( )∕ +x x1

3 ,
• ( )∕ + x1 1

2 ,
• ( ) ∣ ( )∣− ×x xexp cos ,
• ( ) ( ) ∣ ( )∣− ∕ + − ×x x xexp 2 exp cos ,
• ( ) ( ) ( )− + − ∕ ×x x xexp exp 3 cos

2.

The results are displayed in Figure 6. We can observe that the relative order of the estimators is mostly the
same as mentioned earlier, with the averaging estimator the best and the no-averaging estimator having the
highest mean square error.
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Figure 4: Log–log plots of the mean squared error of the estimators τj j,
1 2

(“naive”), τ B (“block”), τ R (“row”), τ D (“diag”), and τ U

(“random” with uniform selection of pairs) as a function of the block size. The diagonal block Kendall’s taus are set at 0.5 and the off-
diagonal block values at 0.3.
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4.2 Conditional Kendall’s tau

In this section, we study the conditional versions of the block and diagonal estimators. Since the estimators
make use of kernel regression, a larger sample size is needed for obtaining stable results. We therefore
consider only a one-dimensional covariate Z , so that we do not need to increase the sample size even further
and can run a sufficient number of replications. Kernel estimation is carried out with the Epanechnikov kernel
[44], and the estimation procedures are now available in the function CKTmatrix.kernel of the R package
CondCopulas [8].

In each of the experiments, we let the covariate Z be uniformly distributed on the interval [ ]0, 1 . We will
estimate conditional Kendall’s taus for points z ranging from 0 to 1 in steps of 0.1. We generate data with the
Gaussian distribution, as other distribution yield similar results. All variables will have a mean of Z and
variance of + Z1

2. The Kendall’s tau matrix is again block-structured corresponding to two groups of equal
size. Similarly to the unconditional case, we only focus on the estimates of the single off-diagonal block. We set
all Kendall’s taus within the diagonal blocks to a constant value of 0.3, which is independent of Z . Finally, we
let the Kendall’s taus within the off-diagonal block depend on the covariate Z .

In Section 4.2.1, we examine the accuracy and computational efficiency of the estimates under varying
sample size. A similar analysis for the effect of the block size is done in Appendix A.1. To this end, we set
Kendall’s tau in the off-diagonal blocks to Z0.1 . As Z is distributed on [0, 1], the conditional Kendall’s taus range
from 0 to 0.1. As such, the underlying variables are again partially exchangeable conditionally to =Z z for any

[ ]∈z 0, 1 . It follows that the biases of the pairwise estimates in the off-diagonal block are all equal and thus
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Figure 5: MSE as a function of the intergroup Kendall’s tau τ
1,2

for different combinations of τ
1,1

and τ
2,2
. We use the sample size =n 16

and the block sizes = =b b 4
1 2

.
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that averaging over them does not change the total bias. Since therefore all estimators have equal biases, we
focus on the sample variances instead of the MSEs for a comparison of accuracies.

Then, in Section 4.2.2, we study optimal bandwidths where we vary the way in which the off-diagonal
block Kendall’s taus depend on Z . We consider a model in which we let the off-diagonal block conditional
Kendall’s taus be given by

�[ ] ( ( ) )= +∣ = πωzT 10.1 cos 0.5 1 ,Z z
1,2

with frequenciesω in { }1, 2, 3, 4 . As such, these conditional Kendall’s taus range from 0 until 0.2. For comparing
the accuracies under varying bandwidths, we study mean integrated squared errors (MISEs) computed by
averaging the MSEs of conditional estimates computed at conditioning points ranging from 0 to 1 in steps of 0.1.

4.2.1 Effect of the sample size

In this experiment, we study the dependency of the variances on the sample size. To this end, we vary the
sample size under a fixed block size of 4 and a bandwidth of 0.5. We use this relatively large bandwidth to

ensure stable results even at lower sample sizes. The integrated variance � [ ]∫≔ = ∣ =τ zIVAR ar d

z Z z
0

1

is estimated
as the average of sample variances for the grid points = ∕z i ni , =i 0,…, 10, using 3,000 replications.
Supplementary plots showing the influence of the sample size on each term � [ ]∣ =τar zZ i

are available in the
Appendix A, Figure A1 while the influence of the sample size on IVAR is shown in Figure 7.
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Figure 6: MSE for different meta-elliptical copulas and different estimators.
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Unsurprisingly, the conditional variances are also inversely related to the sample size. It follows that if
bandwidths are kept constant, MSEs converge to the bias. As such, appropriate bandwidths are naturally
smaller for larger sample sizes. Furthermore, it is seen that the estimates near the edges of the interval [0, 1]
are less accurate than those in the middle. This can be attributed to the fact that there are fewer observations
of Z near grid points close to the edges than near grid points in the middle, since the observations can be found
there on both sides. Evidently, a change in the distribution of Z also changes the level of the variances.

Next, let us study the dependency of the computation time on the sample size. We leave the setting
unchanged, though the results correspond to the calculation of the conditional block estimates on a single
grid point. The results are computed using 500 replications and are represented on log–log scale in Figure 8.
Here, it is seen that the computation times gradually increase with the sample size to a point where they
appear to scale quadratically with each other. This behavior follows from the fact that the conditional
estimates require the calculation of a double sum of n terms. Note that the computation times of the diagonal
and block estimators are relatively close since only a block size of 4 is used here.

4.2.2 Bandwidth selection

Let us compare the estimators’ MISEs for different bandwidths. In this experiment, we set the diagonal block
Kendall’s taus to 0.3 and the off-diagonal block Kendall’s taus conditionally at =Z z to

( ( ) )+πωz0.1 cos 0.5 1 ,

with frequencies { }∈ω 1, 2, 3, 4 . The block size is fixed at 8 and the sample size at 200. The MISEs and 95%
confidence intervals are estimated using 100 replications (Figure 9).

The figure confirms that indeed the averaging estimators have smaller optimal bandwidths than the naive
estimator. It should be noted that only a block size of 8 is used here, and that the optimal bandwidth decreases with
block size until the limit values are reached. Furthermore, the figure shows that as the frequency increases, the
optimal bandwidth is reduced. This is fully consistent with kernel regression theory: increasing the frequency
increases the difference in Kendall’s tau values conditionally on adjacent points of z, and therefore, we need to pick
a smaller bandwidth. Finally, it should be noted that as the bandwidth increases the effect of averaging is less and
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Figure 7: Log–log plots of the conditional estimators’ integrated variance as a function of the sample size, using a block size of 4 and a
bandwidth of 0.5.
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less visible. This can be attributed to the fact that by increasing the bandwidth, the variance term within the MISE
becomes less and less prominent, while the bias term generally increases.

5 Application to real data

In this section, we study the behavior of the estimators under real data conditions and provide value at risk (VaR)
computations of a large stock portfolio as an example of possible applications. In Section 5.2, we describe the
methods used to estimate the VaR input parameters. The results are presented in Section 5.3, where backtesting is
applied to asses the viability. All computations have been done using the R statistical environment [38].

5.1 Value at risk for elliptical distributions

The value at risk (VaR) is a widely used risk measure in a variety of financial fields, ranging from auditing and
financial reporting to risk management and the calculation of regulatory capital [29]. It is used to quantify
potential losses over a specific time frame of some financial entity or portfolio of assets. We will follow the
approach of [37,42], in which explicit expressions for the VaR of elliptical distributions was derived. For the
reader’s convenience, we recall these expressions in the present section.

Let X be the loss of a given portfolio, i.e., >X 0 means that the portfolio manager is loosing X euros. The VaR at
level ( )∈α 0, 1 is defined as the quantile of X at level ( )− α1 . To estimate the VaR of a given portfolio of assets, it is
often assumed that the portfolio’s profits and losses are a linear function of the returns of the individual consti-
tuents. More formally, a portfolio with value ( )tΠ at time t is called linear if its profit and loss ( ) ( ) ( )= −t tΔΠ Π Π 0

over a time window [ ]0, t is a linear function of the returns ( ) ( )X t X t,…, p1
:

( ) ( ) ( ) ( )= + + +t δ X t δ X t δ X tΔΠ … .p p1 1 2 2

This clearly applies to any common stock portfolio by using the ordinary returns of the individual shares and
when considering the log returns, this holds to a good approximation provided that the time window [ ]t0, is
small, e.g., for daily log returns. The time window t will be kept constant and will therefore be omitted from
future notations.
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Figure 8: Log–log plot of the estimated mean computation time [ms] of the conditional estimator as a function of the sample size, for a
block size of 4.
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Furthermore, we will assume that the Xj are elliptically distributed with mean μ, covariance matrix Σ with
Cholesky decomposition =Σ AAT and density generator g . Thus, the probability density function f

X
of

( )= X XX , …, p1
is given by

( ) ∣ ∣ (( ) ( ))= − −− ∕ −μ μf gx Σ x Σ x .

T
X

1 2 1

When considering elliptically distributed risk factors, we cannot simply use the delta-normal approach to
calculate the VaR, as it relies on the stronger assumption of normality. A generalization of the delta-normal
method was derived for the class of elliptical distributions in [42].

Let us start by noting that the VaR of the portfolio profits and losses ( )tΔΠ can be rewritten as
�( )< − = αΔΠ VaR .α Then, given the linearity of the portfolio and the fact that X follows an elliptical distribu-
tion, the VaR is obtained by solving the following equation:

∣ ∣ (( ) ( ) )

{ }

∫= − −− ∕

≤−

−μ μα gΣ x Σ x xd ,

δ

T

x

1 2

VaR

1

T
α

where δ denotes the vector of weights ( )δ δ, …, p1
. After several changes of variables, we obtain

∣ ∣ ( )

∣ ∣

∫ ∫= +−

∞
−

−∞

− −

α S r g z r z rd d ,

δμ

δ

p
p

A

2

0

2

VaR

1

2 2

1

T
α

(14)

Figure 9: Log-plots of the conditional estimators’ MISEs as a function of the bandwidth for different frequencies ω including 95%
confidence intervals, for a sample size of 200 and a block size of 8. “Conditional KT estimate” refers to the naive estimator of conditional
Kendall’s tau  ∣ =τ

Z z1,2
.
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where ∣ ∣ ( )≔ ∕−
−−

S π2 Γ .p

p

2

1

2

p 1

2 Let us now introduce the function

( )
( )

( )
( )

( ) ( )∫∫ ∫∫= + = −−
−∞

− ∞
−

−

∞∞− −
−

G s
π

r g z r r z
π

u z g u u z
2

Γ

d d

Γ

d d ,

p

s

n

p

s z

1

2 0

2

1

2 2

1
1

2

2

p p

p

1

2

1

2 3

2 (15)

where we have changed variables to = +u r z2

1

2 and = −z z
1
. Let us denote by q

α p

g

,

the unique solution of the
transcendental equation

( )=α G q .

α p

g

,

(16)

It then finally follows from expressions (14) and (15) that the Delta-Elliptic VaR is given by

∣ ∣= − + = − +δμ δ δμ δ δq qA ΣVaR .α
T

α p

g T

α p

g T

, ,

(17)

Note that this equation has a clear financial interpretation: the portfolio’s average return is given by δμT and the
portfolio’s standard deviation by δ δΣ T . Further note that the result is analogous to that of
the delta-normal VaR, in which we simply replace q

α p

g

,

with the − α1 quantile of the standard-normal distribution.

5.2 Estimation procedure

To test the estimators in real data conditions, we consider a portfolio consisting of 240 different stocks. All
stocks are listed on the Euronext markets and data has been downloaded from Yahoo Finance. The complete
list of all shares involved is available in Appendix C. We will estimate the portfolio’s daily VaR assuming that
the price is set at a level of 100 and that all stocks in the portfolio are equally weighted. To this end, we model
the daily log returns of the individual stocks, assuming they follow an elliptical distribution.

To achieve a proper clustering, we compute the pairwise Kendall’s tau matrix over a long time period from
01 January 2007 to 14 January 2022, after which we reorder the variables in order to obtain the intended block
structure. Since we have not proposed a clustering method, we simply use the method GW_Ward method from
package seriation [22], along with a few manual adjustments. The resulting reordering corresponds to four
large groups, which are specified further in Appendix C. See Figure 1 for a heatmap of the pairwise Kendall’s
tau matrix before and after reordering the variables by group. To indicate the groups, lines have been drawn
around the diagonal blocks. It should be noted that, if studied carefully, the large groups can be broken down
into smaller and more accurate groups. Nevertheless, these large groups already seem to be quite useful, and
therefore, we will simply use them for our further analysis.

Based on the groups displayed in Figure 1, the objective is to compute the VaR at 30 June 2017, leaving
sufficient future data for backtesting the results. To this end, we estimate the Kendall’s tau matrix of the log
returns using the block, row, diagonal, and sample Kendall’s tau matrix estimators using data points over the
period 01 August 2015 to 30 June 2017. To estimate the standard deviations and averages over the same period,
we use the sample mean and sample standard deviation.

Following the elliptical assumption, we can now obtain covariance matrix estimates from each of the
Kendall’s tau matrix estimates. Subsequently, we can compute nonparametric estimates of the density gen-
erator for each of these inputs. To this end, we make use of the function EllDistrEst from the ElliptCopulas
package [13], which implements Liebscher’s procedure [25].

For the density generator estimation, we require a complete data set with no missing values. As such, the
interval on which we estimate the density generator will be chosen as shorter (01 June 2016 to 30 June 2017).
The kernel function will be chosen as the Epanechnikov kernel. Choice of tuning parameters in this setting is
discussed in [41]. For simplicity, we use Silverman’s rule of thumb for bandwidth selection to estimate elliptical
density generators [37], which for a sample size of n is given by

[ ]= ∕ξh n1.06 Var ,

1 5 (18)
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where

 ( (( ) ( )) )= − + + − −− ∕ ∕μ μξ x Σ x1 1 ,i i i
p p1

2 2

for =i n1,…, and =p 240. Here, xi stands for the vector of log returns at the ith date, Σ stands for one of the
covariance matrix estimates and μ stands for the log returns’ sample mean. Clearly, by using this bandwidth
selection method, the use of different Kendall’s tau matrix estimators yields different values for the band-
width. To get a better idea of the effects of the bandwidth choice, we also consider several deterministic
bandwidths, and compare the performance of the estimators for each of them.

Finally, we can numerically solve the transcendental equation as given in (14) to arrive at the corre-
sponding quantiles. As such, we have discussed all ingredients for calculating the VaR as in (17). To test the
results, we perform backtesting on two intervals, one in the future from 1 July 2017 to 14 January 2022 and one
during the period on which the estimations are based, from 01 August 2015 to 30 June 2017.

5.3 Results

We compute the portfolio’s 5 and 10% VaR values by following the estimation procedure described in Section
5.2. Table 1 shows the quantile estimates obtained by solving the transcendental equation for each of the
different density generator estimates. The density generators were estimated using each of the block, row,
diagonal, and naive Kendall’s tau matrix estimators and using varying values of the bandwidth.

The table shows that the averaging estimators yield very similar quantiles which are all relatively constant
for different choices of the bandwidth. In contrast, the quantiles of the naive estimator lie substantially higher
and vary significantly for the different bandwidths. In that sense, the estimates obtained with the averaging
estimators seem to be much more stable. Moreover, the Silverman’s bandwidths of the averaging estimators
are also all very similar, while that of the naive estimator is again considerably larger.

Table 2 shows the VaR estimates for each of the different estimators and bandwidths, and also the back-
tested VaR values. As discussed in Section 5.2, backtests were conducted at two intervals, interval 1 refers to the
upcoming interval from 1 July 2017 until 14 January 2022, and interval 2 refers to the interval on which the
estimation is based, from 01 August 2015 until 30 June 2017.

This clearly shows that the averaging estimators have performed significantly better than the naive
estimator when compared to both backtesting intervals. For both α-levels, it can be seen that the VaRs
generated using the naive estimator are considerably larger than those using the averaging estimators, which
themselves produce relatively similar values. Furthermore, it can be seen that the 5% VaRs of the averaging
estimators agree fairly well with the results of the backtesting, unlike those of the naive estimator.

Table 1: Estimated quantiles corresponding to the 5 and 10% VaRs calculated by estimating an elliptical distribution for the daily log
returns using each of the different Kendall’s tau matrix estimates and several values of the bandwidth

Quantiles 
q

α p

g

,
h Estimated

α Estimator ==h 20 ==h 40 ==h 100 Silverman’s h

5% Naive 2.11 1.94 1.98 2.12 ( =h 586.8)
Block 1.60 1.60 1.60 1.60 ( =h 40.8)
Row 1.60 1.60 1.60 1.60 ( =h 41.1)
Diagonal 1.59 1.59 1.60 1.59 ( =h 40.5)

10% Naive 1.48 1.38 1.40 1.53 ( =h 586.8)
Block 1.23 1.23 1.23 1.23 ( =h 40.8)
Row 1.24 1.24 1.23 1.24 ( =h 41.1)
Diagonal 1.23 1.23 1.23 1.23 ( =h 40.5)

Fast estimation of Kendall’s Tau and conditional Kendall’s Tau matrices  25



However, the 10% VaR estimates are not as accurate and all estimators yield considerably higher VaRs
than those obtained by backtesting. This could indicate that the log returns are not elliptically distributed, or
that the interval at which we estimate the density generator is too short. Recall that the interval on which we
estimate the density generator is merely from 01 June 2016 until 30 June 2017. This lack of performance is hard
to relate directly to the block sizes. Indeed, the “naive” estimator of Kendall’s tau (i.e., without any averaging)
corresponds to the case where all the blocks have size 1, so all block sizes are as small as possible. Still the VaR
estimates from this estimator are the worst.

To obtain a better understanding of how well the VaR estimates correspond with the backtesting results,
we examine how often the estimates are exceeded by the portfolio’s losses in each of the backtesting periods.
Tables 3 and 4 show the number of exceedances in interval 1 and interval 2, respectively.

Both tables show that the difference between the theoretical and the observed number of exceedances
is much larger when using the naive sample Kendall’s tau matrix estimator than when using any of
the averaging estimators and this applies to both α-levels as well as to all bandwidths. As such, the averaging
estimators are overall significantly better performers than the naive estimator. In addition, although there
are subtle differences in the performance of the block, row, and diagonal estimators, there is no clear winner
in this example. This shows that computing all Kendall’s tau using the block estimators incur no clear addi-
tional benefits compared to using only the row or diagonal estimators, which are computationally much
cheaper.

Table 3: The number of exceedances of the estimated 5 and 10% VaRs during backtesting interval 1, from 1 July 2017 until 14
January 2022

# Exceedances Estimated Backtested

α Estimator ==h 20 ==h 40 ==h 100 Silverman’s h Interval 1

5% Naive 47 53 53 46 ( =h 586.8) 58
Block 58 58 58 58 ( =h 40.8)
Row 58 58 58 58 ( =h 41.1)
Diagonal 61 61 59 61 ( =h 40.5)

10% Naive 76 85 83 72 ( =h 586.8) 116
Block 94 94 94 94 ( =h 40.8)
Row 91 91 92 91 ( =h 41.1)
Diagonal 100 100 100 100 ( =h 40.5)

Table 2: Estimated 5 and 10% VaRs including the corresponding backtesting results on two intervals. Interval 1 corresponds to 01 July
2017 until 14 January 2022 and interval 2 to 01 August 2015 until 30 June 2017

VaR Estimated Backtested

α Estimator ==h 20 ==h 40 ==h 100 Silverman’s h Interval 1 Interval 2

5% Naive 1.647 1.512 1.544 1.655 ( =h 586.8) 1.392 1.262
Block 1.320 1.320 1.320 1.320 ( =h 40.8)
Row 1.332 1.332 1.332 1.332 ( =h 41.1)
Diagonal 1.284 1.284 1.292 1.284 ( =h 40.5)

10% Naive 1.147 1.083 1.068 1.187 ( =h 586.8) 0.861 0.839
Block 1.008 1.008 1.008 1.008 ( =h 40.8)
Row 1.026 1.017 1.026 1.026 ( =h 41.1)
Diagonal 0.987 0.987 0.987 0.987 ( =h 40.5)
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6 Conclusion

We have provided an alternative approach to the generally challenging task of estimating Kendall’s tau and
conditional Kendall’s tau matrices in high-dimensional settings. By imposing structural assumptions on the
underlying (conditional) Kendall’s tau matrix, we have introduced new estimators that have significantly
reduced computational costs without much loss in performance.

For the unconditional case, a model was studied in which the set of variables could be grouped in such a
way that the Kendall’s taus of variables from different groups depend only on the group numbers. After
reordering the variables by group, the underlying Kendall’s tau matrix is then block-structured with constant
values in the off-diagonal blocks. We have proposed several (unbiased) estimators that take advantage of this
block structure by averaging over the usual pairwise Kendall’s tau estimates in each of the off-diagonal blocks:
the block estimator averages over all pairwise estimates, whereas the row, the diagonal, and the random
estimators only average over part of the off-diagonal blocks (respectively, over the pairs on the first row, on
the first diagonal and over a random selection of pairs).

We have formally derived variance expressions, which showed not only that all estimators are improve-
ments over the usual sample Kendall’s tau matrix estimator but also, interestingly, that the asymptotic
variances do not depend on the block dimensions. Furthermore, we have seen that the block, the diagonal,
and the random estimators have similar asymptotic variances, whereas that of the row estimator was dif-
ferent. In most examples, the diagonal estimator performed the best, but a formal characterization of the set of
such copulas is left for future work. Under light assumptions, we have shown that asymptotic variances are
equal and that it is approached fastest by the block estimator, followed by the diagonal estimator and then the
random estimator. Hence, if the computational costs were to be reduced, the diagonal estimator is preferable
to both the random and the row estimator.

Furthermore, a model was studied in which the Kendall’s taus depend on a conditioning variable. Here it
was assumed that the conditional Kendall’s tau matrix has the aforementioned block structure and, moreover,
that it is preserved under fluctuations of the conditioning variable. We have adopted nonparametric, kernel-
based estimates of the conditional Kendall’s tau to construct the conditional versions of the block, row,
diagonal, and random estimators. Under some additional regularity assumptions, we have shown that the
estimators are all asymptotically normal conditionally to different values of the covariate. Following from
these expressions, we have seen that the asymptotic variances have analogous expressions to their uncondi-
tional counterparts. As such, all estimators are again improvements over the naive estimator, with the block
estimator having the best performance. Similarly, if computational costs were to be reduced, the diagonal
estimator is preferable to both the random and the row estimator. Moreover, the reduction of computing costs
becomes particularly relevant in the conditional setting, as the use of kernel smoothing introduces additional
complexity.

Table 4: The number of exceedances of the estimated 5 and 10% VaRs during backtesting interval 2, from 01 August 2015 until 30
June 2017

# Exceedances Estimated Backtested

α Estimator ==h 20 ==h 40 ==h 100 Silverman’s h interval 2

5% Naive 9 12 12 9 ( =h 586.8) 25
Block 20 20 20 20 ( =h 40.8)
Row 20 20 20 20 ( =h 41.1)
Diagonal 22 22 21 22 ( =h 40.5)

10% Naive 30 32 32 30 ( =h 586.8) 49
Block 35 35 35 35 ( =h 40.8)
Row 35 35 35 35 ( =h 41.1)
Diagonal 35 35 35 35 ( =h 40.5)
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We have performed a simulation study in order to support the theoretical findings. In the unconditional
setting, simulations were performed with different meta-elliptical copulas. It was furthermore confirmed that
the diagonal and the block estimator indeed have the lowest asymptotic variance in most cases, with the block
estimator converging the fastest, though closely followed by the diagonal estimator. This emphasizes the
practical use of the diagonal estimator.

We remarked again that the conditional estimators’ variances decrease in a similar fashion for growing
block dimensions. As a consequence, the averaging estimators allow for a reduced optimal bandwidth; this
was indeed confirmed in the simulations. This makes the averaging estimators perfectly suited for practical
applications, as reducing the bandwidth goes hand in hand with reducing the estimation bias.

Finally, we have demonstrated the use of the estimators in a real world application. The estimators were
used to model the daily log returns of a large stock portfolio consisting of 240 Euronext listed stocks. After
clustering the sample Kendall’s tau matrix, the proposed block structure was clearly visible. Building on these
groups, robust estimates of the correlation matrix were obtained by assuming that the log returns follow an
elliptical distribution. Using each of these estimates, the portfolio’s 5 and 10% VaR values were estimated. The
results of the averaging estimators were much more stable under changes in the bandwidth used for
the estimation of the density generator. Moreover, the averaging VaRs were significant improvements over
the naive estimates. This example confirmed that the proposed block structures are well reflected in real data
conditions and that the averaging estimators lead to significantly more stable and accurate results.
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Appendix

A Additional figures

Figure A1

A.1 Effect of the block size in the conditional framework (Section 4.2)

We first study the estimators’ variance under varying block dimensions. To run a sufficient number of
replications, we set the sample size to 20 and consequently the bandwidth to 0.5. The variances and 95%
confidence intervals are estimated using 30,000 replications. For each grid point z, the resulting sample
variances are displayed on log–log scale in Figure A2.

From the figure, we observe that the estimators’ variances behave similarly to the unconditional setting
under varying block dimensions, for each of the grid points. That is, both estimators are improvements over
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Figure A1: Log–log plots of the conditional estimators’ variances as a function of the sample size on several conditioning points, using a
block size of 4 and a bandwidth of 0.5.
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the naive estimator, both limiting variances are identical, and the block estimator converges slightly faster
than the diagonal estimator. It further follows that since averaging reduces variance, it also reduces the
optimal bandwidth. This is studied in Section 4.2.2. Again, as there are fewer observations of Z near grid
points close to the edges of [ ]0, 1 , the variance levels vary slightly over the different grid points.

As for the computation times, there is clearly no fundamental change in how these depend on the block
size when compared to the unconditional setting. However, since the conditional estimators are kernel based,
it should be noted that they generally require more computation time than their unconditional counterparts,
as was also seen in Figure 8. For the sake of completeness, we still include a plot of the average computation
time against the block size, see Figure A3. The results correspond to estimating the off-diagonal block condi-
tional Kendall’s taus simultaneously on the 11 grid points and follow from 10,000 replications with a sample
size of 150. As expected, the block estimator scales quadratically with the block size, while the diagonal
estimator scales linearly with block size. Therefore, as in the unconditional case, one may prefer the diagonal
estimator over the block estimator to gain substantial computational efficiency and lose only little precision.

B Proofs
B.1 Proofs for Section 2.2

Proof of Proposition 1. In this proof, we will need the following notation: for an integer { }∈i p1, …, , we define
the vector 1i as the vector with a 1 at the ith component and 0 elsewhere. For a set { }⊂I p1, …, , we define
≔ ∑ ∈1 1I i I i, which the vector with 1 at the components in I and 0 elsewhere. Note that

Figure A2: Log–log plots of the conditional estimators’ variances as a function of the block size on several conditioning points including
95% confidence intervals, for a sample size of 20 and a bandwidth of 0.5.
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Proof of Proposition 2. Assume that M is a correlation matrix, and let �( )MX ~ 0, . Take one random variable
from each block. Their correlation matrix is ( )+I ρJ and must therefore be positive semidefinite. This yields
the constraint ( )≥ − ∕ −ρ K1 1 .

Figure A3: Log–log plot of the conditional estimators’mean computation time [s] as a function of the block size, for a sample size of 150.
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Conversely, this bound is reached by choosing the correlation matrices = 1Σk for all =k K1,…, and
considering M as the correlation matrix of �( ) ∈ + +⋯+X X X X X X, …, , , …, , …, , …,K K

b b b
1 1 2 2

K1 2 , where ( )X X, …, K1

follows an exchangeable normal distribution with correlation arbitrarily close to ( )− ∕ −K1 1 . □

B.2 Derivation of Equation (5)
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1, , 2, , 1, , 3, , 1, , 2, , 1, , 3, ,

1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Let us write these probabilities in terms of the copula Cj j,
1 2

of ( )( ) = X XX ,j j j j,
1 2 1 2

. This gives

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ( ) ( )) ( )

[ ] ( )

( )

( )

( )

[ ] ( )

( )

( )

( )

[ ] ( )

( )

( )

( )

[ ] ( )

( )

( )

( )

[ ] [ ]

[ ] [ ]

[ ]

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫

∫

=

+

+

+

= +

+ +

= +

Q C u u C u u C u u

C u u C u u C u u

C u u C u u C u u

C u u C u u C u u

C u u C u u C u u C u u C u u

C u u C u u C u u C u u C u u

C u u C u u C u u

d , d , d ,

d , d , d ,

d , d , d ,

d , d , d ,

¯ , d , ¯ , , d ,

, ¯ , d , , d ,

, ¯ , d , ,

j j

u u u u

j j j j j j

u u

u u

j j j j j j

u u

u u

j j j j j j

u u u u

j j j j j j

j j j j j j j j j j

j j j j j j j j j j

j j j j j j

,

0,1 ,

1,1

,

1,1

, 5 6 , 3 4 , 1 2

0,1 0,0

,

,

1,1

, 5 6 , 3 4 , 1 2

0,1 ,

1,1

0,0

,

, 5 6 , 3 4 , 1 2

0,1 0,0

,

0,0

,

, 5 6 , 3 4 , 1 2

0,1

,

2

1 2 , 1 2

0,1

, 1 2 , 1 2 , 1 2

0,1

, 1 2 , 1 2 , 1 2

0,1

,

2

1 2 , 1 2

0,1

, 1 2 , 1 2

2

, 1 2

1 2

2

1 2 1 2

1 2 1 2 1 2

2

1 2

1 2

1 2 1 2 1 2

2

1 2

1 2

1 2 1 2 1 2

2

1 2 1 2

1 2 1 2 1 2

2

1 2 1 2

2

1 2 1 2 1 2

2

1 2 1 2 1 2

2

1 2 1 2

2

1 2 1 2 1 2

as claimed.

B.3 Proof of Lemma 3

Proof. First check that, trivially, the sample Kendall’s tau τj j,
1 2

is a U-statistic of order 2 with (symmetric) kernel

( ) (( )( ))( ) ( ) ≔ − −g X X X XX X* , sign .i j j i j j i j i j i j i j, , , , , , , ,
1

1 2
2

1 2
1

1
2

1
1

2
2

2

Consequently,

 

( )
( )

( )
( )

( ) ( )

( ) ( )

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

=

=
−

=
−

= = +

= = + <

< = = +

τ
b b

τ

b b n n
g

n n b b
g

X X

X X

1

1 2

1

* ,

2

1

1

* , ,

B

j

b

j b

p

j j

j

b

j b

p

i i

i j j i j j

i i j

b

j b

p

i j j i j j

1 2
1 1

,

1 2
1 1

, , , ,

1 2
1 1

, , , ,

1

1

2
1

1 2

1

1

2
1 1 2

1
1 2

2
1 2

1 2
1

1

2
1

1
1 2

2
1 2
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and it follows that τ B is a U-statistic with kernel

( ) ( )( ) ( )∑ ∑=
= = +

g
b b

gX X X X,

1

* , .

B
i i

j

b

j b

p

i j j i j j

1 2
1 1

, , , ,
1 2

1

1

2
1

1
1 2

2
1 2

In a similar manner, it is easily seen that τ R, τ D, and τ U are all U-statistics as well with respective kernels

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

∑

∑

∑ ∑

=

=

=

=

=
+ +

= = +

g
N

g

g
N

g

g
b b

W g

X X X X

X X X X

X X X X

,

1

* , ,

,

1

* , ,

,

1

* , .

R
i i

j

N

i j i j

D
i i

j

N

i j b j i j b j

U
i i

j

b

j b

p

j j i j j i j j

1

, 1, , 1,

1

, , , ,

1 2
1 1

, , , , ,

1 2 1 2

1 2 1 1 2 1

1 2

1

1

2
1

1 2
1

1 2
2

1 2

Note that the kernel g
U is random by depending on the weights W. □

B.4 Proof of Theorem 4

Recall from Lemma 3 that     τ τ τ τ τ, , , ,j j
B R D U

,
1 2

can all be written as U-statistics of order 2 with the symmetric
kernels defined earlier. To compute the variance of these U-statistics, we will use Hoeffding’s formula
[23] (see also [43, Section 5.2.1]) that we recall for reader’s convenience. For a second-order U-statistic

( )≔ ⎛⎝
⎞
⎠
∑

−

≤ ≠ ≤U g X X,n

n

i i n i i
2

1

1
1 2

1 2

with symmetric kernel � �→g :

p satisfying �∣ ( )∣ < +∞g X X,
1 2

, the variance is

given by

� [ ]
( )

( ( ) )∑= ⎛⎝
⎞
⎠

⎛
⎝
⎞
⎠
⎛
⎝
−
−

⎞
⎠ =

−
− +

−

=
U

n

c

n

c
ζ

n n
n ζ ζar

2

2 2

2

2

1

2 2 ,n

c

c

1

1

2

1 2

(A1)

where � [ ( )]≔ζ g Xar
1

1

, � [ ( )]≔ζ g X Xar ,
2 1 2

, and �( ) [ ( )]≔g gx X x,
1

1
. Further, note that �[ ( )] =g X

1

� �[ ( )] [ ]=g UX X, n1 2
.

We proceed to evaluate ζ
1
and ζ

2
for the different kernels, and then substitute them into (A1). Since the

kernels g*, g B, g R, and g D are all deterministic, this leaves us with the variances of the corresponding
estimators. First, we prove items (i)–(iv) of Theorem 4 and then proceed with the proof of (v), where we
deal with the randomness of gU .

B.4.1 Proof of (i)

Under Assumption 2, we have for every ( ) { } { }∈ × +j j b b p, 1, …, 1, …,
1 2

1 1
,

�[ ( )]( ) ( ) = = −g τ PX X* , 2 1.j j j j j j1, , 2, , ,
1 2 1 2 1 2

Also,

� � �( ) [ ( { } { }) ] ( )= < < + < < − = −g x x x X x X X x X x P x x* , 2 , , 1 2 , 1,j j j j j j j j j j
c

j j
1

1, 1, 1, 1,
1 2 1 1 2 2 1 1 2 2 1 2

where ( )P x x,

c
j j
1 2

denotes the probability of concordance of two versions of ( )X X,j j
1 2

given that one pair equals
( )x x,j j

1 2

. Then,
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�

�

� �

[ ( )]

[( ( ) ) ]

[ ( ) ] ( ) [ ( )] ( )

=
= − −
= − + + +

ζ g X X

P X X τ

P X X τ P X X τ

ar * ,

2 , 1

4 , 4 1 , 1 .

j j

c
j j

c
j j

c
j j

1
1

2

2 2

1 2

1 2

1 2 1 2

Note that �[ ( )] =P X X P,

c
j j j j,
1 2 1 2

and �[ ( ) ] =P X X Q,

c
j j j j

2

,
1 2

1 2

. Furthermore, substitution of = −τ P2 1j j,
1 2

gives us

( )= −ζ Q P4 .
j j j j1

, ,

2

1 2 1 2

(A2)

For ζ
2
, we find

�

� � �

� � �

� � �

[ ( )]

[( ( { } { }) ) ]

[( { } { }) ]

( ) [ { } { }] ( )

( ) ( )=
= < < + < < − −
= < < + < <
− + < < + < < + +

ζ g

X X X X X X X X τ

X X X X X X X X

τ X X X X X X X X τ

X Xar * ,

2 , , 1

4 , ,

4 1 , , 1 .

j j j j

j j j j j j j j

j j j j j j j j

j j j j j j j j

2 1, , 2, ,

1, 2, 1, 2, 2, 1, 2, 1,

2

1, 2, 1, 2, 2, 1, 2, 1,

2

1, 2, 1, 2, 2, 1, 2, 1,

2

1 2 1 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

Furthermore, note that

� �{ } { } { }< < + < < ∈X X X X X X X X, , 0, 1 ,j j j j j j j j1, 2, 1, 2, 2, 1, 2, 1,
1 1 2 2 1 1 2 2

and that therefore the expression is equal to its square. We obtain

� � �

� � �

� � �

[( { } { }) ]

( ) [ { } { }] ( )

[ { } { }] ( )

( ) ( )

( )

= < < + < <
− + < < + < < + +

= − < < + < < + +
= − − + + −

= −

ζ X X X X X X X X

τ X X X X X X X X τ

τ X X X X X X X X τ

P P P

P P

4 , ,

4 1 , , 1

4 , , 1

4 2 1 1 2 1

4 ,

j j j j j j j j

j j j j j j j j

j j j j j j j j

j j j j j j

j j j j

2 1, 2, 1, 2, 2, 1, 2, 1,

2

1, 2, 1, 2, 2, 1, 2, 1,

2

1, 2, 1, 2, 2, 1, 2, 1,

2

, , ,

2

, ,

2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2 1 2

1 2 1 2

(A3)

where in the second step we have used that

� � �[ { } { }]< < + < < =X X X X X X X X P, , .j j j j j j j j j j1, 2, 1, 2, 2, 1, 2, 1, ,
1 1 2 2 1 1 2 2 1 2

Substitution of (A2) and (A3) into (A1) gives us the final expression

� [ ]
( )

( ( )( ) )=
−

− − + −τ
n n

n Q P P Par

8

1

2 2 .j j j j j j j j j j,
, ,

2

, ,

2

1 2
1 2 1 2 1 2 1 2

B.4.2 Proof of (ii)

We have

�[ ( )] = −g PX X, 2 1,

B B
1 2

,1

and for any �( )= ∈x xx , …, p
p

1
,

�( ) ( ) ( )( ) ( )∑ ∑ ∑ ∑=
⎡

⎣
⎢

⎤

⎦
⎥ = −

= = + = = +
g

b b
g

b b
P x xx X x

1

* ,

1

2 , 1.

B

j

b

j b

p

i j j j j

j

b

j b

p

c
j j

1

1 2
1 1

, , ,

1 2
1 1

1

1

2
1

1
1 2 1 2

1

1

2
1

1 2

For ζ
1
, we then obtain
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c
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c
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c
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3 4
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Now check that for any { }∈j j j j p, , , 1, …,
1 2 3 4

,

�[ ( ) ( )] =P X X P X X Q, , .

c
j j

c
j j j j j j, , ,

1 2 3 4
1 2 3 4

We then have
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Therefore, we have
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For ζ
2
, we have
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2
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Remark that

�[ ( ) ( )]( ) ( ) ( ) ( ) =g g PX X X X* , * , 4 .j j j j j j j j j j j j1, , 2, , 1, , 2, , , , ,
1 2 1 2 3 4 3 4 1 2 3 4

Therefore,
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and we obtain the expression

( ( )( ) ( )( )( ))= − + + − − + − − −ζ
b b

P S b b P S b b P S
4

2 1 1 .B B B B B B2

1 2
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(A5)

Finally, by substituting (A4) and (A5) into (A1), we find
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B.4.3 Proof of (iii)

In a similar manner to the proof of (ii), we obtain
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Note that there is one less summation compared to the expressions in (ii) since { } { }+ ∩ + ≠ ∅b j b j1, 1,
1

1
1

2

for
every j j,

1 2

. Therefore,
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Similarly, we find that
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B.4.4 Proof of (iv)

Again, in a similar manner to the proof of (ii), we obtain
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Note that there is one less summation compared to the expressions in (ii), as in (iii). Therefore,
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N
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Similarly, we find that
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Hence,
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B.4.5 Proof of (v)

This proof is very similar as the one of (ii), except that we replace all expectations by conditional expectations
given =W w. Note that  ∣τ Wk k

U
,

1 2

is a U-statistic with (deterministic) kernel ∣g W
k k

U

,
1 2

. As mentioned earlier, we
obtain the corresponding ζ
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and ζ

2
,
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which lead to the result as claimed.

B.4.6 Proof of (vi)

Finally, for obtaining the variance of τ U , we need to deal with the random kernel gU . To this end, we use the
law of total variance and find
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We can thus obtain the desired variance by first evaluating the variance of τU under a given W and then by
taking the expectation with respect to W. Therefore,
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By inserting the expression of ζ
1
and ζ

2
found in (v) into (A6), we obtain
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Recall that we select N pairs out of the b b
1 2

possible pairs with uniform probability and without replacement.
Therefore, for every distinct pairs ( )j j,

1 2

and ( )j j,
3 4

, we can compute the following expectations:
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Finally, by combining this with Equation (A7), we establish the desired formula
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B.5 Proof of Theorem 8

Proof. In [10] (see p. 299), it was already shown that the conditional Kendall’s tau estimator defined in (12) is
asymptotically normal at different points of the conditioning variable. However, the asymptotic normalities of
the averaging estimators remain to be proven. To this end, we follow their approach of studying the joint
distribution of U-statistics at several conditioning points, and give a detailed proof for completeness. The
asymptotic covariance matrices are then obtained by combining the results with the appropriate kernels
under Assumption 4.
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Remember that the averaged conditional Kendall’s tau are conditional U-statistics with kernels given by
Lemma 3, which treats the unconditional case. Furthermore, for any measurable function � �→g :

d2 , let us
define the second-order U-statistic
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It follows easily that the averaging estimators can be written in terms of ′Un j, by
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where we write ∣ = ′ ′τ Z z j
for any of the estimators ∣ = ′ ′τ

B

Z z j
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to be the equivalent of (A9) with the term ′εn j, removed. This is a simpler version of (A9) that will be easier to
analyze theoretically. We now show that ∣ = ′ ′τ Z z j

and ∼∣ = ′ ′τ Z z j
are close. Under Assumption 5, we replace both
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because ∣ ∣∣ = ′ ′τ Z z j
is bounded by 1 and ( )′U 1n j, is asymptotically normal, hence convergent by Lemma 17 of [10].
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Now let us apply Lemma 17 again from [10] on the joint asymptotic law of U-statistics of the form ′Un j, . That
is, under Assumptions 5–7 and for any two bounded measurable functions g
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Let us investigate the expectation of ( )′U gn j, . We write by (A8)
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with the change of variable = ′ +′ huZ z j1 1
and = ′ +′ huZ z j2 2

. Let us define the function ( ) ≔ϕ t
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After substituting (A14) into (A13), we obtain
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where in the first equality we have used the fact that �( )∫ =u uu u… d 0j jk1

for all = −k α1,…, 1 as stated in
Assumption 5(b), which results in the elimination of all the terms in the sum except the first one. In the second
equality, we replaced ϕ and ( )ϕ α by their expressions. In the last equality, we factor out ( )′ ′f z jZ

2 and recognize
that the corresponding integral is a conditional expectation.
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We now bound the second term of the previous display. By Assumption 6, we have
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where ∣ ∣ ≤′r C hn j
α

, 0
for some constant C

0
independent of ′j . Then, by Assumption 7,
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Therefore, the asymptotic law of (A11) still holds after replacing �[ ( )]′U gn j, with �[ ( )∣ ]= = ′ ′g X X Z Z z, j1 2 1 2
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as → ∞n , where we have used that �[ ( )∣ ]= = ′ =′ ∣ = ′ ′g τX X Z Z z, j Z z1 2 1 2 j
under Assumption 4.
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( ) [ ( ) ( )]= − −− − − −
′ ′ ′J y y x y x yx y, Diag , …, , Diag , …, .

γ n n n1

1 1

1
1

2 2

Hence, as → ∞n
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∣
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M g M g
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J τH e e,

, 1

, 1 1

, ,
γ γ

T
Z Z

where →∣τ Z and e denote ′n -dimensional vectors filled with respectively ∣ = ′ ′τ Z z j
and 1. This gives

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − → − → + → →
∞ ∣ ∞ ∞ ∣ ∣ ∞ ∣M g g τ M g M g τ τ M τH , Diag , 1 , 1 Diag Diag 1, 1 DiagZ Z Z Z

and for ≤ ′ ′ ≤ ′j j n1 ,

1 2

, we find
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Finally, by substituting the appropriate kernels and by similar steps as in the derivation of the corresponding
ζ

1
’s from the proof of Theorem 4, it is easily seen that under Assumption 4, we obtain the desired asymptotic

covariance matrices. □

C List of stocks used

Group 1
1. Cafom (CAFO)
2. Techstep (TECH)
3. Gold by Gold (ALGLD)
4. Fonciere Inea (INEA)
5. NSC Groupe (ALNSC)
6. Hofseth BioCare (HBC)
7. GC Rieber Shipping (RISH)
8. Aega (AEGA)
9. i2S (ALI2S)

10. Moury Construct (MOUR)
11. Gascogne (ALBI)
12. Thunderbird (TBIRD)
13. Hydratec Industries (HYDRA)
14. Sparebank 1 Ostfold Akershus (SOAG)
15. Altareit (AREIT)
16. Unibel (UNBL)
17. Cheops Technology France (MLCHE)
18. Zenobe Gramme Cert (ZEN)
19. Indel Fin (INFE)
20. Artois Nom (ARTO)
21. IDS (MLIDS)
22. Musee Grevin (GREV)
23. Robertet (CBE)
24. Aurskog Sparebank (AURG)
25. Alliance Developpement Capital (ALDV)
26. Fonciere Atland (FATL)
27. FREYR Battery (FREY)

28. Hotels de Paris (HDP)
29. Phone Web (MLPHW)
30. Maroc Telecom (IAM)
31. Sporting (SCP)
32. MG International (ALMGI)
33. Ucar (ALUCR)
34. Cumulex (CLEX)
35. Televerbier (TVRB)
36. Alan Allman Associates (AAA)
37. Serma Group (ALSER)
38. Planet Media (ALPLA)
39. Philly Shipyard (PHLY)
40. Augros Cosmetic Packaging (AUGR)
41. Sequa Petroleum (MLSEQ)
42. EMOVA Group (ALEMV)
43. Streamwide (ALSTW)
44. Accentis (ACCB)
45. Smalto (MLSML)
46. Signaux Girod (ALGIR)

Group 2
47. Interoil (IOX)
48. Ensurge Micropower (ENSU)
49. Idex Biometrics (IDEX)
50. SD Standard Drilling (SDSD)
51. SpareBank 1 Nord-Norge (NONG)
52. Bonheur (BONHR)
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53. Eidesvik Offshore (EIOF)
54. DOF (DOF)
55. Solstad Offshore (SOFF)

56. Havila Shipping (HAVI)
57. Awilco LNG (ALNG)
58. FLEX LNG (FLNG)
59. Avance Gas Holding (AGAS)
60. Hunter Group (HUNT)
61. Itera (ITERA)
62. Q-Free (QFR)
63. Photocure (PHO)
64. PCI Biotech Holding (PCIB)
65. Hexagon Composites (HEX)
66. Nel (NEL)
67. McPhy Energy (MCPHY)
68. Vow (VOW)
69. Axactor (ACR)
70. Magseis Fair Fairfield (MSEIS)
71. NRC Group (NRC)
72. Petrolia (PSE)
73. Ctac (CTAC)
74. StrongPoint (STRO)
75. Crescent (OPTI)
76. Magnora (MGN)
77. Rec Silicon (RECSI)
78. Questerre Energy Corp (QEC)
79. ElectroMagnetic GeoServices (EMGS)
80. ABG Sundal Collier Holding (ABG)
81. Nekkar (NKR)
82. SeaBird Exploration (GEG)
83. Wilh. Wilhelmsen Holding (WWI)
84. Golden Ocean Group (GOGL)
85. Frontline (FRO)
86. Euronav (EURN)
87. Norwegian Air Shuttle (NAS)
88. Atea (ATEA)
89. Vopak (VPK)
90. Orkla (ORK)
91. Corbion (CRBN)
92. Otello Corporation (OTEC)

Group 3
93. Aures Technologies (AURS)
94. Keyrus (ALKEY)
95. Nextedia (ALNXT)
96. Cabasse Group (ALCG)
97. Groupe Guillin (ALGIL)
98. Guillemot (GUI)
99. Solutions 30 (S30)
100. Esker (ALESK)
101. Wavestone (WAVE)

102. Groupe Open (OPN)
103. Envea (ALTEV)
104. Stern Groep (STRN)
105. IT Link (ALITL)
106. Lectra (LSS)
107. Groupe CRIT (CEN)
108. Aubay (AUB)
109. Sword Group (SWP)
110. NRJ Group (NRG)
111. Van de Velde (VAN)
112. Hunter Douglas (HDG)
113. Oeneo (SBT)
114. Axway Software (AXW)
115. SES-imagotag (SESL)
116. Ateme (ATEME)
117. Infotel (INF)
118. Sergeferrari Group (SEFER)
119. Umanis (ALUMS)
120. Corticeira Amorim (COR)
121. Pharmagest Interactive (PHA)
122. Asetek (ASTK)
123. ID Logistics Group (IDL)
124. Scana (SCANA)
125. Acheter Louer fr (ALOLO)
126. Adomos (ALADO)
127. Glintt (GLINT)
128. Inapa (INA)
129. Cegedim (CGM)
130. Lavide Holding (LVIDE)
131. TIE Kinetix (TIE)
132. Alumexx (ALX)
133. Ober (ALOBR)
134. Cibox Interactive (CIB)
135. Evolis (ALTVO)
136. Proactis (PROAC)
137. Visiodent (SDT)
138. Fashion B Air (ALFBA)
139. Adthink (ALADM)
140. Innelec Multimedia (ALINN)
141. Herige (ALHRG)
142. Egide (GID)
143. U10 Corp (ALU10)
144. Mr. Bricolage (ALMRB)
145. Coheris (COH)
146. Pcas (PCA)
147. Rosier (ENGB)
148. Itesoft (ITE)
149. Gea Grenobl.Elect. (GEA)
150. Immobel (IMMO)
151. IGE+XAO Group (IGE)
152. Koninklijke Brill (BRILL)
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153. Argan (ARG)
154. Fonciere Lyonnaise (FLY)
155. Covivio Hotels (COVH)
156. Electricite de Strasbourg (ELEC)
157. Robertet (RBT)
158. Norway Royal Salmon (NRS)
159. Olympique Lyonnais Groupe (OLG)
160. GeoJunxion (GOJXN)
161. Hybrid Software Group (HYSG)
162. Cast (CAS)
163. Acteos (EOS)
164. HF Company (ALHF)
165. Vranken-Pommery Monopole (VRAP)
166. Generix Group (GENX)
167. Union Technologies Infor. (FPG)
168. Diagnostic Medical Systems (DGM)
169. Capelli (CAPLI)
170. EXEL Industries (EXE)
171. Groupe LDLC (ALLDL)
172. genOway (ALGEN)
173. CBo Territoria (CBOT)
174. Aurea (AURE)
175. EO2 (ALEO2)
176. RAK Petroleum (RAKP)

Group 4
177. DNO (DNO)
178. Archer Limited (ARCH)
179. Odfjell Drilling (ODL)
180. BW Offshore (BWO)
181. Panoro Energy (PEN)
182. PGS (PGS)
183. TGS (TGS)
184. Subsea 7 (SUBC)
185. Equinor (EQNR)

186. Aker BP (AKRBP)
187. Aker (AKER)
188. Aker Solutions (AKSO)
189. Akastor (AKAST)
190. Etablissements Maurel et Prom (MAU)
191. Vallourec (VK)
192. CGG (CGG)
193. TechnipFMC (FTI)
194. Fugro (FUR)
195. SBM Offshore (SBMO)

196. Galp Energia (GALP)
197. TotalEnergies (TTE)
198. Royal Dutch Shell B (RDSB)
199. Schlumberger Limited (LSD)
200. Alten (ATE)
201. Capgemini (CAP)
202. Atos (ATO)
203. STMicroelectronics (STM)
204. ASML Holding (ASML)
205. ASM International (ASM)
206. BE Semiconductors (BESI)
207. Banco Comercial Portugues (BCP)
208. Mota-Engil (EGL)
209. Altri (ALTR)
210. The Navigator Company (NVG)
211. Semapa (SEM)
212. Trigano (TRI)
213. Ipsos (IPS)
214. Barco (BAR)
215. TomTom (TOM2)
216. PostNL (PNL)
217. TF1 (TFI)
218. Derichebourg (DBG)
219. Heijmans (HEIJM)
220. Koninklijke BAM Groep (BAMNB)
221. Aegon (AGN)
222. AXA (CS)
223. Agaas (AGS)
224. Bouygues (EN)
225. VINCI (DG)
226. Eiffage (FGR)
227. Faurecia (EO)
228. Valeo (FR)
229. Michelin (ML)
230. Ackermans & Van Haaren (ACKB)
231. Royal Boskalis Westminster (BOKA)
232. Imerys (NK)
233. Solvay (SOLB)
234. Umicore (UMI)
235. AkzoNobel (AKZA)
236. Air Liquide (AI)
237. Koninklijke Philips (PHIA)
238. Aperam (APAM)
239. Eramet (ERA)
240. Norsk Hydro (NHY)
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