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this acoustic property could lead to improvements in current state-of-
the-art methods for sound field estimation, where prior information
can be used to improve the conditioning of the problem. In this thesis,
robust and computational efficient methods are developed for identi-
fying first order reflections to estimate the room geometry using small
microphone arrays. Furthermore, as the estimation of such reflections
becomes even more challenging in actual audio reproduction systems,
this work aims to develop methods capable to deal with complications
that might arise due to the employed drivers. This is done by consid-
ering the estimation problem in two different scenarios. Firstly, the
first order reflections estimation problem is posed as a sorting prob-
lem. For this case, a set of echoes, received at different microphones,
must be grouped accordingly to the wall which originated them. This
problem is solved by using a greedy subspace-based algorithm. The
proposed approach provides similar performance compared with the
state-of-the-art method at a reduced computational cost. For the sec-
ond scenario, instead of echoes, only raw microphones measurements
are available. This instance of the problem is posed under an esti-
mation theory framework, and solved by sequential minimization of
a non-linear cost function based on the propagation of waves. Ex-
perimental results, evaluated in simulated shoe-box shaped rooms,
demonstrate the performance and applicability of the proposed meth-
ods for room geometry estimation.
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Abstract

Echoes generated by the sound reflected off the walls of a room carry information about
the geometry of the enclosure. Capitalization of this acoustic property could lead to im-
provements in current state-of-the-art methods for sound field estimation, where prior
information can be used to improve the conditioning of the problem. In this thesis,
robust and computational efficient methods are developed for identifying first order re-
flections to estimate the room geometry using small microphone arrays. Furthermore,
as the estimation of such reflections becomes even more challenging in actual audio
reproduction systems, this work aims to develop methods capable to deal with compli-
cations that might arise due to the employed drivers. This is done by considering the
estimation problem in two different scenarios. Firstly, the first order reflections estima-
tion problem is posed as a sorting problem. For this case, a set of echoes, received at
different microphones, must be grouped accordingly to the wall which originated them.
This problem is solved by using a greedy subspace-based algorithm. The proposed
approach provides similar performance compared with the state-of-the-art method at
a reduced computational cost. For the second scenario, instead of echoes, only raw
microphones measurements are available. This instance of the problem is posed under
an estimation theory framework, and solved by sequential minimization of a non-linear
cost function based on the propagation of waves. Experimental results, evaluated in
simulated shoe-box shaped rooms, demonstrate the performance and applicability of
the proposed methods for room geometry estimation.

v



vi



Acknowledgments

Looking back people always wonder how they arrived to a particular moment in their
life. Luckily, the past has all the answers. It is just question of connecting the dots.
Thinking of these last two years, I can only be grateful towards the amazing people
that has surrounded me. I arrived the Netherlands without a clue of what I was going
to do in Delft. However, during my stay I met wonderful people who made those windy
and rainy days great experiences. A big share of what I have achieved until now has
been due to them, and for that, I will always be in their debts. Thanks.

This work would not have been possible without the education I received from all
my professors in Delft, whose teaching increased my interest in signal processing. In
particular, I want to express my appreciation to Richard and Geert. The trust and
confidence of Richard, my Delft thesis supervisor, gave me the opportunity to conduct
my thesis at Bang & Olufsen. In addition, his feedback and support through the project
made my work way easier. On the other side, the mentoring I received from Geert the
past summer helped me to gain confidence in my work and to be more prepare to carry
out independent research. I appreciate what both have done for me. Thanks.

During my project, I spent most of my time in Struer, Denmark (where Bang &
Olufsen is located). In this small town in west Jutland, I came to appreciate things I
have never thought about. My whole gratitude goes to the town that hosted me, such
a peaceful and lovely place.

Few words are not enough to describe the experience at Bang & Olufsen. The
atmosphere, the work, the passion. It was wonderful to experience a company whose
employees bleed the brand. My respect and gratitude to all the people in the company
which made my stay such a nice experience. Particularly, I would like to extend my
gratitude to both Martin and Jesper, my company supervisors. The sharp insights in
my thesis, and their knowledge in signal processing and acoustic shaped the thesis I am
presenting today. Thanks to them I have learned the specifics of acoustics and sound
experience unknown before to me. In addition, I would like to thank Søren, head of
the research department, for all the help with respect to my time in Bang & Olufsen.

It has to be said that the winter was hard on me. Tons of rain, wind and very short
(and dark) days, but thanks to the rest of the interns in the company my days were
never boring. Thanks for such nice days and great experiences. Particularly for those
days in which we gathered to have diner and discuss anything that crossed our minds.
Those were great times.

Finally, I want to say that this work is dedicated to my family and the important
people that I have left behind in Mexico. They know how deeply grateful I am to
them for everything they have done/given up for me. They always think highly of me,
supporting me in every step. The result of my hard work is the least I can offer to
repay all their kindness.

Mario Alberto Coutiño Minguez

Delft, The Netherlands, 26th August 2016

vii



N̊ar man føler hvor lidet
man n̊aer med sin flid,

er det nyttigt at mindes, at
Ting Tar Tid.

-Piet Hein

When you feel how depressingly
slowly you climb,

it’s well to remember that
Things Take Time.

-Piet Hein

viii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Research statement and outline . . . . . . . . . . . . . . . . . . . . . . 2

2 Problem Description 3
2.1 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Image Source Model . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Room Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Sound Field Estimation . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Room Boundary Estimation . . . . . . . . . . . . . . . . . . . . 9

2.3 How to efficiently find the first-order reflections? . . . . . . . . . . . . . 9

3 Acoustic Echo Sorting for Source Localization 11
3.1 Acoustic echo labeling problem . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Graph-based (state-of-the-art) approach . . . . . . . . . . . . . . . . . 13
3.3 Subspace-based (Greedy) Approach . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Subspace Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Avoiding the Graph Problem . . . . . . . . . . . . . . . . . . . 21

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Number of Sources . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Number of Receivers . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Number of Measurements . . . . . . . . . . . . . . . . . . . . . 26
3.4.4 Comparison Greedy Approach vs (modified) Graph-based method 26
3.4.5 Uncertainty in the Microphone Positions . . . . . . . . . . . . . 29

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Wideband CLEAN/RELAX for Source Localization 35
4.1 Why is a different approach needed? . . . . . . . . . . . . . . . . . . . 35
4.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Localization of First Order Reflections . . . . . . . . . . . . . . . . . . 38
4.4 Wideband CLEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Wideband RELAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Theoretical performance . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6.1 On the selection of parameters . . . . . . . . . . . . . . . . . . . 50
4.7 Inclusion of higher order reflections . . . . . . . . . . . . . . . . . . . . 52
4.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8.1 Effect of Loudspeaker Transfer function and Simulated RIR . . 54

ix



4.8.2 Reverberation Time of the Room . . . . . . . . . . . . . . . . . 55
4.8.3 Number of Sources . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8.4 Additive noise on final configuration . . . . . . . . . . . . . . . 57
4.8.5 Comparison Wave-based Model vs EDM-based Model . . . . . . 58

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusions 61
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Euclidean Distance Matrices 65
A.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B Graph Theory 69
B.1 General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2 Independent Sets and Cliques . . . . . . . . . . . . . . . . . . . . . . . 69
B.3 Complement of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C Estimation Theory 73
C.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.2 Fisher Information and Cramér-Rao Lower Bound . . . . . . . . . . . . 74

C.2.1 Fisher Information . . . . . . . . . . . . . . . . . . . . . . . . . 74
C.2.2 Cramér Rao Lower Bound . . . . . . . . . . . . . . . . . . . . . 74

D Cramér-Rao Lower Bound for Source Localization 75
D.1 Near field - Single Source CRLB . . . . . . . . . . . . . . . . . . . . . . 75
D.2 Far field - Single Source CRLB . . . . . . . . . . . . . . . . . . . . . . 76
D.3 Near Field - Multiple Source CRLB . . . . . . . . . . . . . . . . . . . . 77

E Article for submission to ICASSP 2017 80

x



List of Figures

1.1 Configuration of individual sound zones in an arbitrary room . . . . . . 1

2.1 Illustration of a room impulse response . . . . . . . . . . . . . . . . . . 4
2.2 Illustration of the image source model for a room. By mirroring the

original source with respect the walls, the image sources are defined . . 5
2.3 Boundary plane of the j-th wall . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Illustration of the problem of estimating the transfer function (TF) of a

region of interest given a set of other TFs outside it . . . . . . . . . . . 8

3.1 Example for the, possible, different order of arrival of boundary reflections 11
3.2 Ambiguity in the sorting of the received echos . . . . . . . . . . . . . . 13
3.3 Normalized functional (3.26) for an instance of the columns D̃ in the

noise free case sorted in ascending order. In this example M = 9 and
N = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Normalized functional (3.26) for different noise levels in distances be-
tween sources and microphones . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Illustration normalized norm of projection and noise threshold for σw =
1.5cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 General flow of the greedy strategy for sorting the acoustic echos . . . . 22
3.7 RMSE of room reconstruction as function of number of sources and TOA

uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Computation time for different TOA uncertainties and number of sources 25
3.9 RMSE of room reconstruction as function of number of microphones and

TOA uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 Computation time for different TOA uncertainties and number of micro-

phones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.11 RMSE of room reconstruction as function of number of measurements . 26
3.12 Error comparison between the proposed greedy strategy and the modified

graph-based method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.13 Computation time comparison between proposed method and the mod-

ified graph-based approach . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.14 RMSE of room reconstruction as function of number of measurements . 28
3.15 Relative error comparison between the proposed greedy strategy and the

graph-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16 Computation time comparison between proposed method and the graph-

based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17 RMSE of the vertices vector for different uncertainties in the microphones 29
3.18 Computation time for different uncertainties in the microphones . . . . 29
3.19 RMSE of the vertices vector for different uncertainties in the microphones

using random sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.20 Computational time for different uncertainties in the microphones using

random sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



3.21 Average RMSE per vertex of the shoe-box shaped room when random
sampling is used to estimate them . . . . . . . . . . . . . . . . . . . . . 31

3.22 Example of a noisy reconstruction for the room vertices using the pro-
posed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Example of loudspeaker impulse response measured at 96kHz . . . . . . 36
4.2 Frequency response of measured loudspeaker . . . . . . . . . . . . . . . 36
4.3 Sparse (ideal) RIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Measured RIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Sound reproduction setup illustrating the practicalities of the arrangement 37
4.6 Beam pattern for a six-element UCA with 6cm of radius. . . . . . . . . 40
4.7 Beam pattern for a six-element UCA with 6cm of radius when two

sources at θ = [−π/3, π/3]T are present. . . . . . . . . . . . . . . . . . 41
4.8 CLEAN non-linear cost function in range and DOA . . . . . . . . . . . 42
4.9 Estimated locations of the source and the image sources using CLEAN 42
4.10 Illustration of the reduction in the feasible set for the image source lo-

calization problem. The already estimated source si (blue) defines the
first boundary of the room. . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 Cost function at Step 1 of RELAX using a six-element UCA with radius
of 6cm. The simulated scene contained a source and four wall reflections. 44

4.12 Iterative process for RELAX. In each step the number of sources in-
creases and recalculation of previous estimates occurs. . . . . . . . . . . 45

4.13 CLEAN estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.14 RELAX estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15 Influence of M in estimation accuracy . . . . . . . . . . . . . . . . . . . 46
4.16 Influence of T in estimation accuracy . . . . . . . . . . . . . . . . . . . 46
4.17 Illustration of curvature of likelihood function L(θ) for cases with large

Fisher information (left) and low Fisher information (right) . . . . . . . 46
4.18 Influence of B in estimation accuracy for fix grid size . . . . . . . . . . 47
4.19 Computational complexity as function of B . . . . . . . . . . . . . . . 47
4.20 Influence of B in estimation accuracy for adjusted grid sizes . . . . . . 48
4.21 Simulated scene for estimation of first-order reflections . . . . . . . . . 49
4.22 Performance comparison between CLEAN and RELAX . . . . . . . . . 49
4.23 Comparison of computational load of CLEAN and RELAX . . . . . . . 49
4.24 Variance-Bias of CLEAN estimator . . . . . . . . . . . . . . . . . . . . 50
4.25 Variance-Bias of RELAX estimator . . . . . . . . . . . . . . . . . . . . 50
4.26 Effect of loudspeaker directivity in image sources . . . . . . . . . . . . 51
4.27 Second order reflections in room with respect the l-th wall . . . . . . . 52
4.28 RELAX estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.29 2nd Order RELAX estimates . . . . . . . . . . . . . . . . . . . . . . . 53
4.30 Estimation results from the different methods when the loudspeaker

transfer function is considered . . . . . . . . . . . . . . . . . . . . . . . 55
4.31 Computation time of the different methods . . . . . . . . . . . . . . . . 55
4.32 Room reconstruction error comparison for different reveberation times . 56
4.33 Standard deviation of reconstruction error for different reverberation times 56

xii



4.34 Computation time as function of reverberation time . . . . . . . . . . . 56
4.35 Room reconstruction error comparison for different number of sources . 57
4.36 Computation time with respect number of sources . . . . . . . . . . . . 57
4.37 Average RMSE per vertex comparison considering loudspeaker transfer

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.38 Standard deviation of error for the different methods . . . . . . . . . . 57
4.39 Estimation results from 2nd Order RELAX method . . . . . . . . . . . 58
4.40 Estimation results from 2nd Order CLEAN method . . . . . . . . . . . 58
4.41 Room reconstruction error comparison for the different methods . . . . 58
4.42 Computation time for each of the compared methods . . . . . . . . . . 58
4.43 Configuration used for the comparison of the methods . . . . . . . . . . 59

B.1 Graph G(V,E) with |V (G)| = 5 and |E(G)| = 6 . . . . . . . . . . . . . 69
B.2 Simple graph G(V,E). Neither loops or multiple edges present. . . . . . 70
B.3 Sets taken from a given graph G(V,E). a) Maximum independent set,

b) Not independent set, c) Maximal independent set . . . . . . . . . . . 70
B.4 Sets taken from a given graph G(V,E). a) Not a clique, b) Maximal

clique, c) Maximum clique . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.5 a) Graph G, b) Graph H : Complement of graph G . . . . . . . . . . . 71

xiii



xiv



List of Tables

3.1 Complexity comparison of the steps of the graph-based and the greedy
alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Graph-based RMSEs used as baseline values . . . . . . . . . . . . . . . 28

xv



xvi



Introduction 1
In the last years, the way in which we experience sound has started to change. Interest
in extending the spatial properties of the current sound systems has increased, and
along the way, so has the difficulty in achieving such goals. For example, beyond the
traditional stereo systems, currently there is the possibility of developing individual
sound experiences through sound zones [5][23]. In order to achieve this, a set of loud-
speakers, distributed in a room, are employed to control the sound field in different
spatial locations. This provides the possibility of isolating acoustic events in space. An
example of a sound zone setup is shown in Fig. 1.1. In this instance three different
sound zones allow people to enjoy two different programs in the chair and sofa, without
disturbing the on-going conversations at the dining table.

Establishing such acoustic zones is a challenging problem that requires knowledge
of the enclosure where the sound is reproduced. Boundaries in the reproduction envi-
ronment introduce reflections that create standing waves, especially at low frequencies.
The knowledge of how these reflections occur is crucial to the control of the sound field
at the sound zones. In order to describe how the enclosure contributes to establish a
sound field, current approaches measure the room impulse response (RIR) at different
spatial locations. The RIRs describe the propagation of sound from the source loca-
tion to a point in the space. They summarize the interaction of the direct path and
the reflections occurring in the enclosure. These RIRs are then used to define filters
to control the sound field at the zones of interest. However, in practical situations
this will imply that it would be necessary to measure every distinct room to set up a
system. Furthermore, as the zones of interest are not constrained to a single point in
space, a large quantity of measurements will be required to completely cover the zones
of interest. This proves itself to be a costly task in both time and resources.

Therefore, it would be of interest, in an audio reproduction setup, to be able to esti-

Sound Zone A

Sound Zone B

Sound Zone C
Silence

Program A

Program B

TV

Figure 1.1: Configuration of individual sound zones in an arbitrary room
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mate the sound field in a room given a set of measurements acquired using microphones
embedded in the available loudspeakers. With this information the RIRs at any point
in the enclosure could be estimated and then used to design the filters for controlling
the sound field. This can be achieved considering that the sound field in a room is
defined by the contributions of the direct path and the reflections due to its boundary.
Hence, if we are able to estimate the shape of the reproduction environment, i.e., walls
locations, it is possible to predict how the sound field is at an arbitrary point inside
the room. This idea is the main motivation for the work presented in this thesis. In
particular, this research is focused in estimating the room geometry by means of small
distribute microphone arrays as this problem can be seen as fundamental towards pre-
dicting the sound field in a room. Furthermore, as one of the most common spaces for
audio reproduction are shoe-box shaped rooms, the results are evaluated on this type
of room. However, the methods from this thesis can, in principle, be generalized to
accommodate arbitrary room shapes.

1.1 Research statement and outline

In this thesis, the following general research question is addressed:

How can the boundary of a shoe-box shaped room be efficiently identified from
measured data using small microphone arrays?

in two different scenarios:

• Room impulse responses are known

• Raw microphones measurements are available

The rest of the thesis continues as follows. Chapter 2 provides the problem de-
scription, highlights the importance of estimating the room geometry, and presents the
contributions of this thesis. In Chapter 3 the state-of-the-art solution for the case of
known RIRs is discussed and an alternative approach with lower complexity is presented
as the first contribution of this thesis. Chapter 4 introduces the second contribution of
this thesis as a practical solution for the problem of room geometry estimation when
real-life considerations are made. Results from simulations are presented in both chap-
ters to evaluate the proposed methods. Finally, Chapter 5 presents the conclusions and
future research directions.

2



Problem Description 2
Estimating the sound field at an arbitrary point in an enclosure means being able to,
from a set measurements, describe the emitting source and propagation environment.
In typical acoustical reproduction settings, the source can be considered known. That
is, the reproduced content is controlled by the user, and the specification of the drivers,
i.e., loudspeakers, is known by the manufacturer. Hence, the challenge is to adequately
describe the reproduction environment. Usually, the space in which the content is
reproduced is considered unknown as it can greatly change from user to user.

This chapter addresses the background theory needed for the work in this thesis
and a brief literature review of prior art for sound field estimation and room boundary
identification. In addition, the particular research questions and contributions of this
thesis are presented.

2.1 Background Theory

2.1.1 Wave Equation

Any complex sound field can, in principle, be considered as the superposition of an
infinite set of simple sound waves, e.g., plane, cylindrical, spherical, etc. Furthermore,
the propagation of such waves can be considered linear if the medium where they travel
is homogeneous and independent of the wave amplitude [29].

The wave equation is the expression that governs the propagation of waves through
fluids, i.e., gas or liquid. This equation, based on second order partial differential
equations (PDE) [53], describes the evolution of the sound pressure p(r, t) as a function
of space r = [x, y, z]T ∈ R3 and time t ∈ R.

For the case of an homogenous medium with no viscosity, it is possible to linearize
several relations in order to state the well-known wave equation [43]

∇2p(r, t)− 1

c

∂2p(r, t)

∂t2
= 0, (2.1)

where the c is the speed of sound in the medium and ∇2 is the Laplacian in Cartesian
coordinates (x, y, z) given by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.2)

In real situations, inhomogeneities can occur in the medium. The most common are due
to temperature changes and fluid movements due to air circulating systems. However,
these perturbations are so small that they can usually be ignored.

Besides the relation of the homogenous PDE in (2.1), the source function and the
boundary conditions for the PDE, describing the reflections at the walls, are needed in

3



Diffuse partEarly part

t

RIR

Figure 2.1: Illustration of a room impulse response

order to calculate the sound field established by a given source in a specific room. The
inhomogenious wave equation, including the source function, is given by

∇2p(r, t)− 1

c

∂2p(r, t)

∂t
= −s(r, t), (2.3)

where s(r, t) is the sound pressure function of the source. Notice that (2.3) cannot be
solved until the boundary conditions for the PDE are completely defined.

Now, consider a source function describing an harmonic disturbance given by

s(r, t) = S(r;ω)ejωt, (2.4)

the solution of (2.3), in the frequency domain, for arbitrary boundary conditions is
given by [43]

P (r;ω) =

∫ ∫ ∫

Vs
H(r, s;ω)S(s;ω)ds, (2.5)

where H(r, s;ω) is the room transfer function (RTF) (Green’s function), Vs denotes
the source volume, ds = (dxs, dys, dzs) is the differential volume element, and s is the
position of the differential contribution. The time domain counterpart of the solution
p(r, t) can be found by computing the inverse Fourier transform of (2.5).

The main challenge of sound field estimation, when the source function is known,
comes from the fact that H(r, s;ω) is not only dependent on the position of the source
s, but also from the position of interest (POI) r. As there is no reason to believe that,
in an arbitrary enclosure VR, the set of RTF Hω = {H(r, s;ω)}r∈VR has a particular

structure, trying to estimate H(r∗, s;ω) from a set H̃ω ⊂ Hω, which does not contain
H(r∗, s;ω), can prove itself a challenging task.

In order to avoid this problem, in this work attention is given to the image source
model [1]. This model provides a reasonable parametrization of the RTFs based on
the positions of the boundaries in the case of a room with flat walls. It considers re-
flections to be specular and that reflection coefficients are frequency-independent. In
addition, air absorption is neglected. Hence, the spatial information from the early part
of the RIR (see Fig. 2.1) is properly maintained. However, as it only considers specular
reflections, at high frequencies, where objects in the room have similar size to the wave-
lengths of sound, and diffraction occurs, the method fails to accurately represent the
sound propagation. Notice that this geometrical interpretation for acoustic propagation
is only valid for the limiting case of vanishingly small wavelengths [29]. This condition
is usually met in acoustics when the dimensions of the listening room and its walls
are large compared with the wavelength of sound. The vanishingly small wavelengths
assumption often holds, in typical rooms, at frequencies larger than 1000Hz [29].
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Figure 2.2: Illustration of the image source model for a room. By mirroring the original
source with respect the walls, the image sources are defined

In the following section, the image source model and the induced RTFs parametriza-
tion are properly introduced.

2.1.2 Image Source Model

The main idea behind the model proposed by Allen and Berkley in [1] is that the
reflections in a room can be interpreted as contributions of virtual sources located at
positions that provide an equivalent propagation’s path length. That is, the image
source model allows us to replace a reflection coming from a wall by a virtual source
mirrored in the boundaries of the room. Fig. 2.2 illustrates the creation of equivalent
image sources by mirroring the original source with respect to the walls. As shown
in the same figure, higher order reflections are result of the mirroring of other image
sources in the generated virtual walls.

Consider the time delay of arrival (TOA) at a location r of a sound ray from the
source s be given by

τ =
d

c
=
‖s− r‖2

c
, (2.6)

where s ∈ R3 is the position of the source s.
For an omnidirectional point source s in free space, with Green’s function given

by [53]

Hfree(r, s;ω) =
exp(jωτ)

4π‖r− s‖2

, (2.7)
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the image source model provides a RTF given by

H(r, s;ω) = Hfree(r, s;ω) +
∑

i∈I

γi
exp(jωτi)

4π‖r− si‖2

, (2.8)

where I is the set of reflections considered in the model, si the i-th reflection of source
s, τi is the associated TOA of the reflection si, and γi is the attenuation coefficient
related with the i-th wall.

Considering s0 , s, γ0 = 1, and taking the inverse Fourier transform of (2.8), the
time domain counterpart of the RTF, the RIR, is obtained

h(r, s, t) =

|I|∑

i=0

γi
δ(t− τi)

4π‖r− si‖2

. (2.9)

The RIR in (2.9) can be seen as a train of pulses, each corresponding to a delayed version
of the original source s, i.e., reflection. Notice that in this model only the attenuation
coefficient, associated with the surface material of the walls, and the distance between
source position and POI affect the amplitude of the delta function.

The resulting filter from (2.9) modifies any sound emitted in the room. At any
arbitrary location r, the observed sound pressure p(r, t) is the result of the convolution
of the original source function s(t), located at position s, with the RIR, i.e.,

p(r, t) = s(t) ∗ h(r, s, t). (2.10)

Even though the model in (2.10) still depends on the POI r, the image source model
provides a parametrization of the RTF (RIR) based on image sources, which are directly
obtained from the room walls. For example, a first-order reflection coming from the
j-th wall can be expressed in terms of the source location and the wall it is mirrored
in by

sj = s + 2〈pj − s,nj〉nj, (2.11)

where sj is the position of the first-order image source corresponding to the j-th wall,
pj is an arbitrary point on the j-th wall, and nj is normal pointing outward from the
room with respect the j-th wall. Hence, the RIR in (2.9) can be described for any
arbitrary position r given that the position of the source and the walls are known. This
is the reason why, as first step towards sound field estimation, this work focuses on the
estimation on the boundaries of the room using the image source model.

2.1.3 Room Reconstruction

An important property of the image source model is its geometrical duality. In the
same way that the reflections can be found from the source and walls locations, the
walls can be found from the positions of the image sources.

Let s denote the location of the source and sj the location of the first-order image
source with respect to the j-th wall. The normal vector of the j-th wall is given by

nj =
s− sj
‖s− sj‖2

. (2.12)
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Figure 2.3: Boundary plane of the j-th wall

By using the normal vector nj and a point from the j-th wall given by

oj = (s + sj)/2, (2.13)

the boundary plane from the j-th wall can be reconstructed. The equation of this plane
given by

〈nj,p− oj, 〉 = 0, (2.14)

describes the points p found on the wall plane shown in Fig. 2.3.
The vertices of the room can be found as the intersections of the boundary planes.

Generally, the accuracy in the estimation of the position of the j-th wall increases as
more points of the boundary plane are estimated. These points can be generated by
either using more sources or moving the original source inside the enclosure.

2.2 Prior Art

2.2.1 Sound Field Estimation

The idea of sound field estimation approaches the fundamental problem of transfer
function interpolation/extrapolation [21]. For example, consider the situation shown in
Fig. 2.4. A set of loudspeakers (gray circles) measure the sound emitted by a TV (black
rectangle) using the microphones mounted on them. In this situation, it is desirable
to know how the sound propagates from the TV to the listener position (region of
interest) to enhance the listening experience. Therefore, the sound field at the listener
location has to be estimated using the measurements of the sound field acquired at the
positions of the microphones. This problem can be posed as one that uses the RIRs at
the microphones locations, estimated through measurements, to create an estimate of
the RIR that describes the sound propagation from the source to the listener location.
This problem is of high interest in the field of acoustics as this information could
improve user experience [4], i.e., if the transfer function from the source is known for
every point in a room, corrections for the room acoustics can be made in order to
enhance reproduction quality at any position.
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Figure 2.4: Illustration of the problem of estimating the transfer function (TF) of a region of
interest given a set of other TFs outside it

Classic approaches physically sample the space in dense clusters to compute such
transfer functions in different spatial regions, leading to usage of expensive equipment
and/or a time consuming process [38]. These methods are highly dependent on how
dense the sampling is, rendering the approach useless for a sparse distributed network
of sensors as the one shown in Fig. 2.4. Different methods, spanning from classic filter
theory, have been proposed in the past to deal with sparse measurements, however
it has been shown that acceptable results can only be achieved when the point of
interest is found near the measurements positions [37]. Hence, this kind of approach
becomes unfit for large spaces as the ones found in typical audio reproduction set-
ups. In addition, those methods assume a reference signal at the desired position to
fit a model, which is equivalent to perform a survey of the sound field at the point
of interest. Recently, the estimation problem has been approached through arbitrary
array geometries by means of an equivalent source model [8][15][36]. Under this model,
common for source imaging [4], the problem is being solved by claiming a perceptual
equivalence with respect to the original sound signal. Such methods limit the scope
of the application as their outputs are perceptual equivalent signals, and the sound
field is not properly estimated. That is, the output of these kind of methods does not
represent the actual physical state of the field, i.e., physically correct pressure values
at the points of interest. These results remove the possibility of driving a secondary
source to interact, by constructive or destructive interference, with the field present at
the desired position.

Besides classical methods, recent methods have tried to combine the strength of
data-driven and model-based approaches [50][51][3]. These methods lever on the mea-
surements acquired at the receivers locations and constraint the reconstructed field with
a physical model described in terms of a partial differential equation (PDE). These ap-
proaches result in the minimization of a cost function under linear constraints. Even
though these kind of methods promise good results, they suffer from the same sampling
problems as the classical approaches. As they are based on finite elements or finite dif-
ferences, they require a dense grid of measurements in order to provide good estimates
for complex fields.
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2.2.2 Room Boundary Estimation

Considering the limitations of the methods for estimating directly the sound field, this
thesis addresses the problem of room geometry. Instead of directly trying to predict
the sound pressure at a given position, the parametric description of the propagation
of sound, given by the image source model, is employed for finding the room geometry.
By finding the locations from which the reflections occur in a room, it is possible to
simulate how the sound propagates in the enclosure until it arrives at the point interest.
Hence, the work in this thesis is mainly concerned with estimating the position of such
boundaries.

In the literature, there are several methods available for obtaining the shape of an
enclosure. Most of those methods assume knowledge of the room impulse responses.
In [10], the shape in the 2D case is estimated by a single RIR. Antonacci et al. [2]
solve the 2D problem assuming multiple sources and microphones. Dokmanić et al.
in [12] exploits the properties of Euclidean distance matrices (EDMs) to find the room
geometry in the general 3D case. More recently, a newly proposed method [25] by
Jager et al. has been shown to provide the same accuracy as Dokmanić’s method at a
much lower computational complexity. This approach recasts the labeling problem of
the acoustic echoes problem into a graph problem.

Even though the state-of-the-art methods for room geometry estimation provide an
accurate solution to the problem, they suffer from two main issues: (i) high computa-
tional complexity and (ii) dependency of an oracle capable of identify the peaks of the
RIRs that represent proper reflections. Motivated by these issues, this thesis aims to
(i) reduce the computational complexity of the state-of-the-art methods by exploiting
the subspace properties of the data model, and (ii) to devise methods capable of being
used in real applications where, most of the time, RIRs are not available and general
methods capable to use arbitrary signals are desired. Even though the room shape esti-
mation problem can be addressed for arbitrary room geometries, the work is restricted
to shoe-box shaped rooms as they are commonly found in typical audio reproduction
situations. In addition, as we aimed to develop methods applicable in audio reproduc-
tion systems, consisting of multiple loudspeakers with built-in microphones, our main
interest is to explore up to which extend small microphone arrays can be employed
to estimate such boundaries. This auto-imposed constraint sets the general research
question as a feasibility study rather than a designing task. That is, differently from
solutions that could be devised to solve the same problem for controlled situations, i.e.,
acoustic consulting with ad hoc instruments, this project is focused on the ability of a
small set of microphone arrays to solve the room geometry estimation problem.

2.3 How to efficiently find the first-order reflections?

So far the challenging task of sound field estimation has been discussed, and the impor-
tance of the identification of the room boundary for this problem highlighted. However,
the question of how to find the first-order reflections needed for room reconstruction,
using measured data, has not been addressed.

This work aims to develop efficient methods for identifying first-order reflections ca-
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pable of delivering equivalent performance compared to current state-of-the-art meth-
ods while reducing the computational complexity involved. Furthermore, as in actual
sound systems the estimation of the first-order reflections becomes even more challeng-
ing, the part of our interest resides on robust methods capable to deal with complica-
tions that might appear in real situations, i.e., loudspeaker transfer functions, absence
of oracle, impossibility of measuring RIRs, etc.

As a result, the particular questions addressed in this thesis include:

• (i) Is it possible to find a faster alternative to the graph-based strategy for acoustic
echoes sorting problem? If so, can we guarantee the same estimation performance?

• (ii) When the RIRs are not available, or the TOA estimates for all microphone-
image source pair cannot be properly identified, is it possible to devise an estimator
capable to find the first-order reflections from the raw microphone measurements?

Therefore, in this thesis, the following contributions towards solving the problem
of estimating the room geometry for sound field estimation using a set of distributed
microphone arrays are made:

• A fast greedy subspace-based algorithm for efficient echo labeling and source lo-
calization in the case of known RIRs

• Sequential iterative algorithms based on a non-linear cost function capable of
estimating the room geometry in the case of raw measurements, possibly from
arbitrary transmitted signals

In theory, going from the raw measurements to known RIR should be possible. However,
there is no guarantee that the signal used during transmission is able to provide a
proper estimation of the RIRs. Furthermore, the assumptions made in the acoustic
echoes sorting problem do not necessary hold in all circumstances. Both situations,
though closely intertwined, are in principle different and require distinct approaches
in order to extract the first-order reflections positions form the available data. As a
result, this thesis focuses on the how to for finding the reflections in each scenario.
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Acoustic Echo Sorting for
Source Localization 3
The aim of this chapter is twofold: (i) to introduce the current state-of-the-art solution
for the acoustic echo sorting problem for shoe-box shaped rooms, and (ii) to present
the first contribution of this thesis. The contribution is a subspace-based method
for acoustic echoes sorting which provides the same accuracy as the state-of-the-art
solution at a reduced computational complexity. This is achieved by omitting an NP-
hard graph problem through a greedy strategy, and using a subspace condition to reduce
the number of feasible combinations of echoes. In addition, when the positions of the
sources, i.e., first-order reflections, are estimated using known microphones locations,
the proposed method only requires measurements from a single source. This contrasts
with the current state-of-the-art approach which requires more than one source in order
to disambiguate its results.

3.1 Acoustic echo labeling problem

As explained in the previous chapter, in order to estimate the boundaries of a shoe-box
shaped room, the source and the six first-order reflections, i.e., four walls, floor, and
ceiling, must be located. Even though the estimation of the source locations from known
labeled TOAs could be seen as a straightforward problem, the labeling of the TOAs,
i.e., relating the peaks in different RIRs with a unique boundary, is not. This challenge
arises from the fact that reflections can arrive in different order at the microphones
locations. This ambiguity issue is illustrated in Fig. 3.1.

b

b
m1

wall i

wall j

m2

s

m2

m1

time

time

i

j

j

i

Figure 3.1: Example for the, possible, different order of arrival of boundary reflections

In order to solve this problem, this chapter deals with an instance of the acoustic
echo labeling problem where the following assumptions hold:

• (A.1 ) Oracle
From given RIRs, it is possible to identify the peaks in the response corresponding
to the room boundaries, i.e., TOAs from the reflections are always available.
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• (A.2 ) Synchronization
It is assumed that either the TOAs are absolute, i.e., the microphones and sources
are precisely synchronized, or that it is possible to obtain absolute TOAs by means
of least squares.

• (A.3 ) TOAs Accuracy
It is possible to estimate the TOAs up to an arbitrary accuracy σ2

TOA.

• (A.4 ) Known Source Position
The source position is either known a priori, or it is assumed that is possible to
localize it by trilateration using the first peak of the different RIRs.

• (A.5 ) Known Microphones Positions
The relative position between microphones is known up to a rigid transformation,
i.e., translation, rotation, etc.

From these set of assumptions, the most restrictive in practice is (A.1 ). However,
for well-behaved rooms it is possible to assume that the peaks can be easily found by
selecting the highest peaks in the RIRs. For cases in which (A.1 ) is not a feasible
assumption, or the peak picking problem proves itself harder than the acoustic echo
labeling problem, the next chapter provides an alternative approach to room geometry
estimation. For the rest of the assumptions, there are either methods already proved in
the literature to deal with the problems or they can be guaranteed by system design.
For example, in the case of (A.2 ) either a single interface is used for microphones
and loudspeakers (perfect synchronization) or the offset in the measured RIRs can be
estimated. Assumption (A.3 ) can be considered to hold in most of the instances as
the uncertainty in the estimation method used for finding the TOAs can be known a
priori [45]. As it is considered that there are no peaks before the one corresponding
to the direct path, the assumption (A.4 ) always holds. The relative positions of the
microphones (A.5 ) can either be known by construction of the measuring setup or
using state-of-the-art methods available in the the literature [40][42][7].

Considering this, the echo sorting problem, after converting TOAs into distances,
can be defined as follow:

Echo Sorting Problem (P.1 )
From a set D containing the unlabeled squared distances between the M mi-
crophones and the N sources, obtain the distance matrix D ∈ RM×N , where
the n-th column contains the squared distances between the M microphones
and the n-th source ∀ n ∈ 1, . . . , N .

To illustrate how this problem can be approached, let us consider the following set of
unlabeled squared distances

D = {dmn} ∀ (m,n) ∈ [1, . . . ,M ]× [1, . . . , N ], (3.1)

where |D| = NM and dmn represents the squared distance between the m-th micro-
phone and the n-th source. As the subindex n is hidden, i.e., the source or reflection
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Figure 3.2: Ambiguity in the sorting of the received echos

which originated the echo is unknown, all the possible echoes combinations need to be
generated to find the correct combination. This process leads to a set of NM possible
combinations. Notice that the definition employs the squared of the distances instead
of the Euclidean distance. This choice becomes clear in the following sections when the
EDMs are introduced (see Appendix A).

For the sake of clarity, consider the case of M = 3 and N = 2 (see Fig. 3.2). All
the possible combinations for this instance listed in matrix form, where each column
represents an echo combination, are given by

D̃ =



d11 d12 d11 d12 d11 d12 d11 d12

d21 d21 d22 d22 d21 d21 d22 d22

d31 d31 d31 d31 d32 d32 d32 d32


 ∈ RM×NM

. (3.2)

In this situation, a set of TOAs is available, but it is ignored to which boundary they
belong. Hence, a strategy to group the echoes accordingly to the wall that originated
them is required. Following this idea, the problem (P.1 ) can then be solved by finding a

strategy that retrieves the N columns of D̃ which contains the true echo combinations.
In this particular example, the correct combinations are the columns {1, 8}. It is
important to point out that the matrix in (3.2) is just an instance of the combination
generation process. The reader must not be confused with the fact that in this example
the true combinations are in the first and last columns. In a real problem instance,
when D̃ is generated from D, D̃ becomes a shuffled version, in the columns, of (3.2).

In the following sections, the state-of-the-art method to solve the problem and the
first contribution of the thesis are introduced as column picking strategies.

3.2 Graph-based (state-of-the-art) approach

The current state-of-the-art method for column picking from D̃ was recently proposed
by Jager et al. in [25]. This approach is a fast alternative to the method proposed
by Dokmanić et al. in [12] based on multidimensional scaling (MDS). It provides the
same estimation accuracy as Dokmanić method at a reduced computational cost. In
this approach the rank constraint of the EDMs is exploited to reduce the number of
combinations that should be considered. Furthermore, when the set of combinations
has been reduced, a key observation is made: it is very unlikely that two feasible
combinations share elements in common. This observation is used to shown that it
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is possible to recast the original problem into a graph problem where the maximum
independent sets of a graph lead to a tractable strategy to select the columns from D̃.

As it is not intended in this work to give an in-depth treatment of Jager’s method,
the overall flow of this approach for echo labeling is summarized in the following steps:

• Pre-filtering
Following the result of Theorem 1 in Appendix A, an EDM E with affdim(E) = 3
(see Definition 1 in Appendix A), has at most a rank of 5. Consider E ∈ EDM,
where EDM represents the set of all EDMs, be built by using the squares of the
relative distances between microphones, i.e.,

E =



dr1r1 · · · dr1rM

...
. . .

...
drMr1 · · · drMrM


 ∈ RM×M , (3.3)

where drirj denotes the squared Euclidean distance between the i-th and j-th
microphones. Using Theorem 1, the feasibility (as a true echo combination) of

the c-th column of D̃ can be tested by forming the augmented matrix

Ec =

[
E D̃c

D̃
T

c 0

]
∈ R(M+1)×(M+1), (3.4)

where D̃c ∈ RM×1 denotes the c-th column of D̃, and checking the rank constraint
for EDMs over Ec. In practice, due to the uncertainties in the TOA estimates, it
is not realistic to apply a hard threshold over the columns of D̃. Instead, in [25]
the ε-rank [16], which is defined by

rank(Ec, ε) = min
‖Ec−X‖2≤ε

rank(X), (3.5)

is used as a realistic surrogate. This condition filters out singular values from
the SVD lower than ε, which most probably are due to perturbations in the
measurements. In the case of noiseless measurements this step provides a perfect
column picking strategy. However, as this is not realistic in practice, the pre-
filtering step generates a set of indexes for the columns of D̃ given by

Cε = {c : rank(Ec, ε) ≤ 5}, (3.6)

which most probably contains false positives. The output of this step can be
considered as

D̃Cε ∈ RM×|Cε|, (3.7)

which denotes the matrix of possible echo combinations built by selecting the
columns of D̃ listed in Cε. Note that in most the cases, when there is noise in the
measurements, |Cε| � N .

• Maximum Independent Sets
For the cases where |Cε| > N a way to identify the elements that correspond to
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the feasible echos combinations is required. In [25] it is noticed that the vectors
containing feasible combinations are very unlikely to have elements in common.
Hence, the number of columns of D̃Cε can be further reduced by selecting a subset
with vectors with no elements in common. For this purpose, a simple graph
G(V,E) is constructed considering each column of D̃Cε as a node. Two vectors
(nodes) are considered adjacent in the graph if they share at least one element
in common. Extracting the maximum independent sets SGmax (see Appendix B)

from G(V,E) is shown to be tantamount to selecting the columns of D̃Cε with no
elements in common. As in most of the instances the cardinality of SGmax is greater
than one, an additional step is required in order to decide which set corresponds
to the correct set of echo combinations.

• Pollefey’s method
At this point, the method requires to choose one of the sets in SGmax to provide
the correct labels for the echos. This is achieved using Pollefey’s method [41] and
selecting the set that provides the best fit in the reconstruction, i.e., provided the
distances, Pollefey’s method is able to estimate (up to a non-singular transform)
the location of the sources and microphones. The fit is considered as the error
between the true and estimated microphone locations after a Procrustes analy-
sis [17]. For this step, due to the computationally cost of the previous step, i.e.
the number of microphones are restricted, in [25] the usage of Q ≥ 2 sources
is required in order to meet the requirements of Polleyfey’s method. This step

requires to try all combinations of the sets in {SG1
max, . . . ,S

GQ
max}.

At the end of the processing chain, the correct echoes labels and sources (first-order
reflections) locations are obtained. With this information is then possible to reconstruct
the room boundary by straightforward geometrical methods as described in Chapter 2.
The graph-based approach proposed by Jager et al. provides a fast alternative for
solving the echo sorting problem compared with the method of Dokmanić et al. using
MDS. While the method based on MDS could take hours to run for small instances
of M and N , the graph-based method only requires several seconds. This is a large
improvement in terms of computational cost without compromising accuracy in the
estimation. However, as the maximum independent set problem is a NP-hard problem,
in instances where the pre-filtering stage, based in the ε-rank constraint, is not able to
considerably reduce the number of feasible combinations the graph problem becomes
intractable. These large instances of the problem can arise when the distances of
echoes are not properly estimated, i.e., high uncertainty. Hence, a different approach
capable to deal with high uncertainties or a strategy able to further reduce the feasible
combinations would of interest. In the next section, an alternative method, based on a
greedy strategy, is introduced in order to alleviate the problem’s complexity.

3.3 Subspace-based (Greedy) Approach

In this section, an alternative solution to the acoustic echo labeling problem is presented.
Similarly to the graph-based approach, a filtering strategy capable to perfectly select
the correct columns of D̃ under noise-free conditions is proposed. For the case of
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uncertainty in the TOAs estimates, a greedy strategy is employed to avoid the maximum
independent set problem of the graph-based approach.

Consider an arbitrary set M of M receivers located at random positions. That
is, M = {rm = [xm, ym, zm]T ∈ R3}Mm=1. These locations are considered known
up to a non-singular transformation. Furthermore, consider the set S = {sn =
[Xn, Yn, Zn]T ∈ R3}Nn=1 of N sources. The squared distances D = {dm,n}∀ (m,n) ∈
[1, . . . ,M ] × [1, . . . , N ] between the sources S and receivers M are assumed to be
known, i.e., the time-of-arrival can be estimated at the receivers. Hence, the squared
distance dm,n for the (m,n)-th pair can be written as

(xm −Xn)2 + (ym − Yn)2 + (zm − Zn)2 = dm,n. (3.8)

This can be expressed in a vector notation as [41]

RT
mSn = dm,n, (3.9)

where

Rm = [rTmrm − 2xm − 2ym − 2zm 1]T ∈ R5×1, (3.10)

Sn = [1 Xn Yn Zn sTnsn]T ∈ R5×1. (3.11)

Collecting all the squared distances dm,n for the pairs (m,n) leads to the distance matrix
D ∈ RM×N , and the model can be written in matrix form as

RTS = D ∈ RM×N , (3.12)

where R = [R1 . . . ,RM ] and S = [S1, . . . ,SN ] are the microphone and source positions
matrices respectively. Even when the positions of the microphones are known up to an

arbitrary non-singular matrix H ∈ R5×5, and R̂
T

= RTH is known instead of R, the
model in (3.12) still holds as

R̂
T
H−1HŜ = D, (3.13)

where Ŝ = H−1S is the transformed matrix of sources positions.
From the model in (3.12), when the positions of the receivers and the distance matrix

D are known, the only unknown is the matrix S with the position of the sources. This
problem could be solved by means of least squares given that M ≥ 5. However, as
instead of (3.12) the available matrix is D̃, which contains all possible combinations of
the distances in D, the modified data model is given by

D̃ = [RTS A]PΠ (3.14)

= [D A]PΠ ∈ RM×NM

, (3.15)

where A ∈ R5×(NM−N) is an arbitrary matrix with unknown structure and PT
Π ∈

RNM×NM
is a random permutation matrix which shuffles the columns of D̃ allocating

in its first N columns the true echo combinations.
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From the model in (3.15) several strategies to identify D can be devised. For
example, a straightforward approach, considering M ≥ 5, could use the pseudoinverse
of RT to find the correct combinations, i.e.,

(RT )†D̃ = (RT )†[D A]PΠ = [S (RT )†A]PΠ, (3.16)

where (B)† is the Moore-Penrose pseudoinverse of B. Using the structure of the matrix

S, defined by (3.11), it is possible to discard columns from D̃ which when multiplied
by (RT )† do not meet the following constraints:

• (i) First element of the column equal to one

• (ii) Last element of the column has to be positive

However, in most of the cases the pseudoinverse of RT behaves as an expansive operator,
i.e., ‖(RT )†‖2 > 1, potentially increasing any existing measurement noise. In addition,
due to the unknown structure of the matrix A, the conditions (i) and (ii) are only
necessary conditions (in the noise free case) for identifying columns of D.

Therefore, a method that exploits the structure of the space spanned by the columns
of RT is proposed to estimate D from the unsorted data D. Assuming proper diversity
in R3 for the receivers positions, i.e., non co-located receiver positions, the only con-
straint needed in the method to ensure the rank-5 property of the distance matrix D
is M ≥ 5 [41][18].

3.3.1 Subspace Filtering

Let the SVD of the receivers position matrix R be given by

R = UΣVT . (3.17)

With this, the complementary orthogonal projection Π⊥R into ker(R) can be computed
from the SVD in (3.17) as

Π⊥R = IM − ṼṼ
T
, (3.18)

where Ṽ ∈ RM×5 is the economy-size V matrix from the SVD of R. This projection
can be shown to hold the following property

Π⊥RD = Π⊥RRTS = 0, (3.19)

which can be used to estimate D from D.
An interesting property of the complementary projection matrix is that

‖Π⊥R‖2 = 1, (3.20)

which implies that there is no amplification of errors, i.e.,

‖Π⊥R(D + N)‖2 = ‖Π⊥R(RTS + N)‖2 (3.21)

= ‖Π⊥RN‖2 (3.22)

≤ ‖N‖2 (3.23)

= σmax(N), (3.24)
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where σmax(N) is the maximum singular value of noise matrix N. This makes the
projection particularly useful in cases where the elements of D are perturbed with
noise.

In order to apply the projection given in (3.18), consider the matrix D̃, described
in (3.2), as the distance matrix generated by all the possible combinations of the ele-
ments in D, e.g.,

D̃ =




d1,1 · · · d1,2 · · · d1,N

d2,1 · · · d2,1 · · · d2,N
...

. . .
...

. . .
...

dM,1 · · · dM,2 · · · dM,N


 ∈ RM×NM

. (3.25)

In the ideal case, i.e., perfect measurements free from noise, the results are straight-
forward. By defining the functional

f(c) = ‖Π⊥RD̃c‖2
2 ∀ c ∈ [1, . . . , NM ], (3.26)

with D̃c denoting the c-th column of D̃, the subset of feasible columns is given by

C = {c : f(c) = 0}. (3.27)

It provides an estimate of the feasible distance matrix given by

D̂ = D̃C ∈ RM×N , (3.28)

where D̃C represents the trimmed distance matrix which only retains the columns spec-
ified by the set C. The functional is illustrated in Fig. 3.3 for a problem instance with
M = 9 microphones and N = 5 sources. From this figure the region where the true
combinations are found can be clearly seen. In the noise-free case the knee of the graph
is perfectly identified.
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However, in real applications there is no guarantee that the true distances D are
measured perfectly, hence the set in (3.27) is, most likely, the empty set. In order
to deal with noisy measurements, a column-dependent upper bound for the proposed
functional, which considers the effect of perturbations, is provided. The effect of noise in
the measured distance for the proposed functional is illustrated in Fig. 3.4. Differently
from the noise-free case, under the presence of noise in the measurements the knee
in the plots of the functional becomes less pronounced. This problem poses natural
limitations to the application of the functional.

Let us illustrate this. Consider the complementary projection being applied to the
c-th column of measured data D̂ containing additive noise. The norm of this functional
is bounded similarly as in (3.24). That is,

‖Π⊥
RT D̂c‖2 = ‖Π⊥

RT (Dc + Nc)‖2 ≤ ‖Nc‖2. (3.29)

This column dependent bound becomes clear when we realize that, originally, what is
estimated is the TOAs and not the squared distances D. Consider a measurement of
the TOA τ̂m,n, with uncertainty σTOA (A.3 ), i.e.,

τ̂m,n = τm,n ± σTOA, (3.30)

where τm,n is the true TOA. Transforming this quantity into the squared distance as

d̂m,n = (cτ̂m,n)2 = (cτm,n)2 ± 2c2τm,nσTOA + (cσTOA)2 (3.31)

= dm,n ± 2c
√
dm,nσTOA + c2σ2

TOA (3.32)

= dm,n ± σDist(dm,n), (3.33)

where
σDist(dm,n) = 2c

√
dm,nσTOA + c2σ2

TOA. (3.34)
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It is observed that each square distance measurement experiences a different uncer-
tainty. However, there is no clear way to compute ‖Nc‖2 from the measured data for
each column. Therefore, a different model for considering the noise is needed to bound
the norm in (3.29).

Consider that the measured squared distance d̂m,n can be expanded as

d̂m,n = dm,n + 2
√
dm,nwm,n + w2

m,n, (3.35)

where wm,n is the perturbation in the (m,n)-pair measurement. After the orthogonal
projection is applied to a stacked version of (3.35), the following residual is obtained

Π⊥RD̂c = Π⊥R

[
2diag(wc)D

◦ 1
2
c + diag(wc)wc

]
∈ RM×1, (3.36)

where A◦p denotes the p-th Hadamard power of the matrix A and diag(a) a diagonal
matrix which non-zero entries are given by the vector a.

Therefore, it is possible to provide a selection rule similar to (3.27) by upper bound-
ing the square norm of the expression in (3.36). An appropriate upper bound for the
residual norm can be given by

‖Π⊥RD̂c‖2
2 = ‖Π⊥R[diag(wc)(2D

◦ 1
2
c + wc)]‖2

2 (3.37)

≤ ‖Π⊥R‖2
2‖diag(wc)‖2

2‖2D
◦ 1
2
c + wc‖2

2 (3.38)

≤ 4σ2
max

(
diag(wc)

)
‖D◦

1
2
c + 0.5wc‖2

2 = κc, (3.39)

where the fact that ‖Π⊥R‖ = 1 has been used. Levering in (3.39), the subset of feasible
combinations can be selected as

C = {c : f(c) ≤ κc}, (3.40)

and an estimate of the distance matrix can be obtained using expression (3.28). Even
though the bound in (3.39) always holds, it is not directly available from the measure-
ments. In practice, only realizations of the measurement process are available, so in
order to utilize the bound in (3.39) we introduce

κ(i)
c = 4γiσ2

w‖D̂
◦ 1
2

c ‖2
2, γ ≥ 1, (3.41)

as surrogate to provide a practical iterative threshold for the functional. In this expres-

sion σ2
w and ‖D̂◦

1
2

c ‖2
2 denote the noise power and the norm squared from the Hadamard

root of the c-th column of the measured distances matrix, respectively. The power of
the noise can be safely considered known as it is assumed that the accuracy of the
estimation method employed for the TOAs is known. For simplicity, it is assumed that
all columns are subject to the same noise level σw. This assumption affects the per-
formance of the bound as sources located at different positions have different accuracy
levels. However, this can be seen as a reasonable assumption as the ordering of TOAs
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Figure 3.5: Illustration normalized norm of projection and noise threshold for σw = 1.5cm.

is unknown. In practice, it has been observed that κ
(0)
c is enough for the method to

deliver adequate results.
Finally, in contrast with the noise-free case, when measured data is available there is

no guarantee that |C| = N . In most of the cases, the threshold in (3.40) is overestimated
(see Fig. 3.5). Despite this, the method is able to reduce the number of columns of the
distance matrix, up to the noise accuracy, with a lower computational cost ∼ O(M2)
in comparison with the ∼ O(M3) from the SVD decomposition for augmented EDMs.

3.3.2 Avoiding the Graph Problem

As discussed before, under real measurements the cardinality of C differs from the
number of sources. Therefore, if the functional threshold is overestimated, further
processing will be required to only select the appropriate columns. For this step two
possible strategies can be applied: (i) the graph-based method discussed in the previ-
ous section, where the sorting problem is formulated as a maximum independent set
problem, or (ii) a greedy approach based on the observation that two columns from
D must not share elements in common and on the rank constraint for the augmented
EDMs. As it is desired to avoid solving the NP-hard problem of listing all maximal
independents sets, this subsection only focuses on the greedy solution of the problem.

After a filtered version of the distance matrix D̂ ∈ RM×|C|, where |C| � NM is
obtained, it is possible to use the rank constraint of the augmented EDMs to further
reduce the number of columns of D̂ as in the pre-filtering step of the previous section.
This step excludes TOAs combinations that, approximately, violate the rank constraint
without checking the rank constraint over all the set of NM combinations. However,
establishing an initial (or fixed) threshold ε is not as straightforward as for the subspace
functional of (3.26). Therefore, an iterative approach is used to obtain the optimal ε
starting at a low ε0.

Combining two key observations, it is possible to develop a greedy strategy which
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Figure 3.6: General flow of the greedy strategy for sorting the acoustic echos

overcomes the need of solving the maximum independent set problem. Firstly, the fact
that it is very unlikely for the columns of D̂ to have elements in common (starting point
for the maximum independent set problem of the graph approach) is used. Secondly,

by using the functional f(c) for sorting the columns of D̃, it is seen that the columns
with the lowest normalized functional value, meeting the ε-rank constraint, has to be
part of the true distance matrix. The rank constraints alleviates the problem shown
in Fig. 3.4 where the sharp knee in the graph of the sorted values of f(c) starts to
become smoother by the presence of noise. The algorithm combining these two key
observations is presented in Algorithm 1 and the general flow of the method in Fig. 3.6.
In Algorithm 1, the parameter η > 1 controls the growth of the rank constraint. This
allows the method to only introduce the best ranked columns to the solution.

Furthermore, in Table 3.1 a comparison between the graph-based and the subspace-
based methods, in terms of of the computational complexity for each step, is shown.
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This summary is not, by any means, strict. It is intended to provide a sense of the
complexity for each of the main steps in the methods, in order to highlight the reduction
achieved by using subspace filtering to reduce the set of feasible combinations.

Algorithm 1 Subspace-based Greedy TOA Sorting

Input: D, Π⊥R, E, ε0, N , σw

Output: D
Initialization: Generate D̃ and κ(0), D = {}, ε = ε0

1: C = {c : f(c) ≤ κ
(0)
c }

2: Cs = sort(C, f(c)/‖D̃c‖22, ”ascending”)
3: D̂ = D̃Cs
4: while numCols(D) < N do
5: for c = 1 to |Cs| do

6: Ẽ =

[
E D̂c

D̂
T
c 0

]

7: if rank(Ẽ, ε) ≤ 5 and D̂c ∩D == ∅ then
8: D = [D, D̂c]
9: end if

10: end for
11: if numCols(D) < N then
12: ε = ηε
13: end if
14: end while

It is important to remark that contrary to the graph-based method, where more
than one maximum independent set can be found in the graph, this greedy alternative
provides a unique solution. The unique solution allows the method to sort the TOAs
even when the constraint imposed by Polleyfey’s method is not met.

Finally, after the matrix D is estimated by the greedy approach, the least squares
solution for the estimates of the source locations, for M ≥ 5, can be directly obtained
by

Ŝ = (RT )†D. (3.42)

Notice that if distances matrices estimates from Q acoustic sources are available,
i.e.,

DTot =
[
D1,D2, . . . ,DQ

]
= RT

[
S1, . . . ,SQ], (3.43)

a combination of the Polleyfey’s method, using the SVD of DTot, and Procrustes anal-
ysis could be performed to estimate the image source positions instead of using (3.42).
This approach could lead to better reconstruction results for cases in which the pseudo-
inverse of RT is not well conditioned. As commented in the graph-based approach, after
the (image) sources locations in Ŝ are obtained, the room boundaries can be obtained
by straightforward geometrical methods.
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Graph-based Subspace-based (Greedy)

Step Complexity Step Complexity
Rank filter NMO((M + 1)3) Subspace filter NMO(M2)

Maximum Ind. Sets O(20.276|Cε|) Rank filter |C|O((M + 1)3)

Pollefey’s + Procrustes

[
∏Q
i=1 |SGimax|

]
O(49MQ2) Least Squares O(NM2)

Table 3.1: Complexity comparison of the steps of the graph-based and the greedy alternative

3.4 Experimental Results

In this section, results from a set of simulations are presented to evaluate the per-
formance of the greedy approach proposed in this chapter with respect to number of
sources, number of microphones, and number of measurements. In addition, the cur-
rent state-of-the-art method, based on graph theory, is compared with the proposed
greedy alternative.

For each evaluated parameter a set of 500 Monte Carlo simulations are performed
using synthetic data created by placing sources and microphones randomly in a room.
The distances between the microphones and the image sources are computed and per-
turbed with white Gaussian noise with power σ2, i.e.,∼ N (0, σ2), to simulate the un-
certainties in the TOA estimates. The experiments are run in Matlab on a Macbook
Air (Mid 2013) 1.7 GHz Inter Core i7 processor.

The room used in these experiments has a constant volume of 280m3 with dimensions
8m× 6m× 5m. Furthermore, the RMSE used to quantify the methods performance is
the expectation of the square root of the error squared between estimated and true 3D
room vertices. That is,

RMSE(θ̂) ,
√
E
[
‖θ̂ − θ‖2

2

]
(3.44)

where θ ∈ R8 represents the 3D room vertices and θ̂ ∈ R8 the estimates of the vertices
given by the method.

3.4.1 Number of Sources

As discussed in the previous section, the uncertainty in the TOA estimates, i.e., σTOA,
imposes an intrinsic limitation to the estimation of the room reconstruction. This leads
to degradation in the method performance.

One alternative to diminish the effect of the TOAs uncertainty is to rely on more
than one source. By averaging the different vertices estimates, obtained by using L
sources, it is possible to increase the estimate accuracy. For these simulations, we con-
sider the case of M = 7 microphones distributed randomly in our shoe-box shaped
room. The vertices estimates θ̂l are obtained from the image sources locations esti-
mates, for each of the L sources, and then averaged. The RMSE is then defined as

RMSE(θ̂) ,

√√√√E

[∥∥∥ 1

L

L∑

l=1

θ̂l − θ
∥∥∥

2

2

]
(3.45)
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Figure 3.8: Computation time for different
TOA uncertainties and number of sources

By averaging the vertices estimates, across the available sources, the RMSE can be
reduced. This result is shown in Fig. 3.7. Furthermore, notice how for higher σ = cσTOA
the RMSE of the estimates also increases. As the number of estimates used to averaging
increases, the RMSE start reaching the maximum position uncertainty, i.e., σDist ≈
cσTOAdmax. This is the approximate uncertainty that the farthest image source has.
Fig. 3.8 shows that the reduction in RMSE requires a linear increase in computational
time. The increase in computation time due to TOA estimates uncertainty is explained
by the adaptive threshold ε of the rank-constraint. Larger uncertainties require more
iterations to find an appropriate threshold.

3.4.2 Number of Receivers

Increasing the number of receivers does not reduce the uncertainty due to the TOA
estimates, but provides a more selective kernel for the complementary projection matrix
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Figure 3.9: RMSE of room reconstruction
as function of number of microphones and
TOA uncertainty
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Figure 3.11: RMSE of room reconstruction as function of number of measurements

reducing the error in the estimation. Due to the constraint in the rank of our matrices,
the minimum number of receivers that can be employed is 5. However, as seen in
Fig. 3.9, the ker(R) for M = 5 does not provide a very selective subspace, leading to
higher RMSE. As the number of receivers increases the ker(R) becomes better defined
and filters out many more vectors that could cause ambiguities in the solution. However,
by increasing the number of microphones the number of combinations to test increases
exponentially and so does the computation time of the method as shown in Fig. 3.10.

The counter intuitive behavior in Fig. 3.10, where convex curves are seen is explained
by the selectivity of the kernel. As the kernel in M = 5 is not selective at all, many
more combinations have to be checked compared to the cases M = 6 and M = 7 where
more selective kernels are available, increasing the time that the method consumes.

3.4.3 Number of Measurements

Instead of increasing the number of receivers or sources to obtain more measurements,
another alternative is to perform multiple estimations of the TOAs. This is equivalent
to estimate the RIRs, at each microphone, several times. If the used RIR estima-
tor is unbiased, averaging over several realizations will provide better estimates of the
TOAs. Contrary to the graph-based approach, where more than one source is needed,
the greedy strategy can rely on several measurements of the same distribution of mi-
crophones and source to improve its estimation performance. Fig. 3.11 shows how by
increasing the number of times that the TOAs are estimated the RMSE of the recon-
struction diminish. In this case, the only increase in computation time will be due to
the multiple estimates of the TOAs.

3.4.4 Comparison Greedy Approach vs (modified) Graph-based method

In this part we compare the performance of the proposed greedy alternative and the
graph-based method. Since the graph-based approach requires more than one source to
disambiguate its results, a version of it using an oracle is employed in the experiments.
The oracle has as output the maximum independent set with the minimum estimation
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Figure 3.13: Computation time comparison
between proposed method and the modified
graph-based approach

error with respect to the true distance matrix. This allows the graph-based approach
to deliver a result using a single source, always returning the best candidate in terms
of reconstruction error. In addition, as the graph-based approach is unable to provide
results in reasonable time for M > 7, the method has been modified by including the
subspace filtering to significantly reduce its running time. The configuration of the
experiments, for both methods, includes M = 9 microphones and N = 1 source.

In Fig. 3.12 and Fig. 3.13 the error and the computation time of both methods are
shown for different TOA uncertainties. For low uncertainties in the TOA estimates,
both methods present the same performance. However, at higher uncertainties, the
greedy approach presents worse performance than the modified graph-based method.
This difference in performance can be explained by the rejection rate of the methods.
This rate is the percentage of rejected datasets, which can not be used to produce source
estimates by the methods. In Fig. 3.14 the rejection rate for both methods is compared.
Notice how the graph-based approach has a very high rejection percentage when the
TOA uncertainty is high. This occurs in situations in which no maximum set are found
or, due to time constraints, when the process halts as result of the large number of
nodes in the graph. In the latter case the solution could have been found, however the
time needed to find the solution of the NP-hard problem renders the approach infeasible
in acceptable time. On the contrary, the greedy alternative only rejects a dataset if the
positions of the microphones are collocated. Note that in this case, the graph-based
approach also rejects the dataset.

Notice that in Fig. 3.13 the modified graph-based approach shows a similar compu-
tation complexity as the greedy strategy. This is explained by the subspace pre-filtering
stage. As the subspace filtering removes a large quantity of infeasible combinations,
most of the computational load is due to this stage. If the same experiment were
to be tested without the subspace filtering, evaluating the 69 combinations using the
graph-based method becomes infeasible as reported in [24].

Finally, to illustrate the trade off between computational time and performance
when using the suboptimal greedy strategy, a comparison between the graph-based
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Figure 3.14: RMSE of room reconstruction as function of number of measurements
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between proposed method and the graph-
based methods

method, the modified graph-based method (subspace filtering added) and the proposed
greedy alternative is presented. In this comparison, the limiting case of small errors in
the RIRs peaks, i.e., σRIR = 0.5mm, is considered. The comparison, in terms of relative
computational complexity and relative RMSE is shown in Fig. 3.15 and Fig. 3.16.

The relative computational time and relative RMSE are computed by normalizing
the performance results of each method to the respective performance of the graph-
based method when M = 5 microphones are employed. The baseline RMSEs, provided
by the (original) graph-based are given in Table 3.2.

Microphones 5 6 7

RMSE 171.6mm 0.5mm 0.2mm

Table 3.2: Graph-based RMSEs used as baseline values

From Fig. 3.15, the effect caused by the selectivity of the kernel for M = 5 and the
usage of the pseudo inverse of RT , as described in previous subsections, is seen. This
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Figure 3.17: RMSE of the vertices vector
for different uncertainties in the microphones
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Figure 3.18: Computation time for different
uncertainties in the microphones

issue makes the error of the greedy alternative three times larger than the graph-based
method. However, as the number of microphones increases, the RMSE of the greedy
alternative reaches the RMSE of the graph-based methods. Notice that adding the
subspace filtering does not affect the RMSE of the graph-based method. In addition,
in Fig. 3.16 the reduction in the computational time when the subspace filtering is
applied is clearly seen. While the computational time of the greedy approach and the
modified graph-based method remains almost unchanged, the computational time of
the original graph-based explodes in an exponential fashion. These results show two
main things: (i) the greedy alternative does reach the performance of the graph-based
method for increasing number of microphones at a reduced computational cost, and
(ii) if the the graph-based approach is preferred for any particular reason, the inclusion
of the subspace filter reduces the computational time of the original method while
preserving its optimality. Further comparisons considering M > 7 are not performed
as the (original) graph-based, most of the times, becomes intractable.

3.4.5 Uncertainty in the Microphone Positions

The weakest point of the proposed method is its dependency on the precise locations
of the microphones. The whole approach is based on the premise that these positions
are known with high accuracy. In this section, it is shown how uncertainties in the
positions of the microphones affect the estimation of the room vertices. A set of 500
Monte Carlo simulations were performed using M = 9 microphones and a single source.
An uncertainty of σRIR = 2mm in the peaks of the RIRs is assumed. The reconstruction

is performed using the pseudo inverse of the microphones positions matrix R̃
T

built
with the noisy microphones locations.

From Fig. 3.17 it is seen that the performance of the greedy strategy degrades fast
as the uncertainty in the positions of the microphones increases. As the estimated
subspace is not representative for the distance matrix, the assumption that the first
columns in the sorted distance matrix belong to the true combinations of echoes does
not hold anymore. This issue heavily affects the estimation of the room vertices even
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at low uncertainties in the positions of the microphones. Fig. 3.18 shows the increased
in computational time due to the noise in the TOA estimates and positions of the
microphones.

To alleviate this problem, it is possible to rely on multiple measurements using
more than one acoustic source and the combination of Pollefey’s method with Pro-
crustes analysis. However, a straightforward implementation of this approach does not
guarantee the proper reconstruction of the room vertices. This is due to the subopti-
mality of the greedy strategy, i.e., if many of the combinations of echoes are wrongly
estimated, the Pollefey’s method will not deliver adequate results. Despite this issue,
it is possible to use a technique based on bagging [44][6], i.e., bootstrap aggregating, to
improve the stability and accuracy of the reconstruction of the vertices. This involves
a sampling process to diversify (increase) our data set to perform the estimation. That
is, by randomly sampling the columns from the estimated distance matrices, multiple
estimates for the microphone positions using the Pollefey’s method can be created. By
selecting the best position estimates, when the error is considered as the difference with
respect to the noisy locations of the microphone after Procrustes analysis, the image
sources, and hence the room vertices can be estimated. This process is summarized in
Algorithm 2.

Algorithm 2 Random sampling strategy for improving stability of room vertices estimates

Input: {Di}Qi=1, micPos, maxTrials, nSrcs2Use
Output: estVertices

Initialization: Generate D = [D1, . . . ,DQ]
1: [∼,nImgSrc] = size(D)
2: for i = 1 to maxTrials do
3: v = randperm(1 : nImgSrc)
4: v = v[1 : nSrcs2Use]
5: [R,S] = pollefeys(D[:,v] )
6: [T, fit] = estimateRigidTransform(micPos,R)
7: estMicPos = applyTransform(T,R)
8: micErr(i) = ‖micPos− estMicPos‖2
9: imSrcList{i} = S

10: listT{i} = T
11: listMics{i} = estMicPos
12: end for
13: bestC = find(micErr == min(micErr))
14: bestMicPos = listMics{bestC}
15: estImSrc = applyTransform(listT{bestC}, imSrcList{bestC})
16: estVertices = findVertices(bestMicPos, estImSrc,D)

Results from applying the proposed alternative based on random sampling for Q = 4
acoustic sources and M = 9 microphones are shown in Fig. 3.19 and Fig. 3.21. In this
instance, it is assumed that the peaks in the RIRs are estimated with an accuracy of
σRIR = 1cm. From these figures, it is possible to observe how the proposed approach
considerably reduces the error in the reconstruction. By using more than one source
and stabilizing the estimation using random sampling it is possible to achieve estimates
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Figure 3.19: RMSE of the vertices vector
for different uncertainties in the
microphones using random sampling
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Figure 3.21: Average RMSE per vertex of the shoe-box shaped room when random sampling
is used to estimate them

for the room vertices with an average error below 10cm for different uncertainties in the
positions of the microphones. Notice that this method reduces the effect of both RIRs
peaks and microphones positions uncertainties. The computational time increases as
the uncertainty in the locations of the microphone increases. These results show that
even if the microphone positions are not known with high accuracy, the greedy strategy
can still be used to estimate the room vertices. An example for the reconstruction of
the 3D room vertices is shown in Fig. 3.22.
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Figure 3.22: Example of a noisy reconstruction for the room vertices using the proposed
method

3.5 Discussion

In this chapter a greedy alternative for the problem of acoustic echo sorting problem
was presented. The method was motivated by the rank-5 factorization of the distance
matrix D. By exploiting the kernel of the matrix R positions of the microphones a
strategy to identify columns of D was devised. It was shown that by using a greedy
strategy, based on the uniqueness of columns of D and the rank constraint of EDMs, it is
possible to identify columns of D even under the presence of noise. The greedy strategy
was shown to outperform, in terms of computational complexity, the current state-of-
the-art method based on a graph problem without compromising accuracy. In addition,
the proposed method only requires one source, and its performance was shown to be
bounded by the accuracy of the TOA estimates. In case of large uncertainties in both
RIRs and microphone locations, a method based on random sampling was introduced
to improve the stability of the estimation. This method was able to produce estimates
with an average error smaller than 10cm by using Q = 4 sources. Finally, it should be
noted that the subspace filtering, introduced in this thesis, can be used to enhance the
graph-based method in terms of speed. However, even though these methods are able to
estimate the room walls from a set of peaks in the RIRs, selecting these peaks can be a
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challenging task. This step can be even harder than the sorting of the peaks. Motivated
by this issue, the next chapter discusses a general method, based on estimation theory,
to estimate the image sources positions from microphone measurements, not necessary
from measured RIRs. This approach solves both problems of finding and sorting the
peaks only requiring the relative positions of the microphones and a controlled source.
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Wideband CLEAN/RELAX
for Source Localization 4
In this chapter, an alternative approach, spanning from estimation theory, is presented
to find the positions of the first order reflections in a room. This problem is solved
in an iterative manner by using a nonlinear least square (NLS) estimator, which is a
surrogate for the maximum likelihood estimator (MLE) under white Gaussian noise.
Even though this work is focused in the case of shoe-box shaped rooms, the proposed
approach is applicable for arbitrary rooms shapes with flat walls.

4.1 Why is a different approach needed?

In the previous chapter it was shown that it is possible to find the first-order reflections,
and estimate the room geometry, by means of an efficient technique based on the
properties of the distance matrix D. However, the methods were devised considering
that the assumptions (A.1 )-(A.5) always hold. These assumptions, although plausible
in some circumstances, do not hold in many practical situations. Let us consider (A.1)
for example. In this case, it is assumed that it is possible to easily find the peaks in a
RIR which corresponds to the first-order reflections. However, in most measured RIRs
this can be a challenging task. Not only the reverberation in the room, which partially
buries the weaker reflections in the RIRs, affects the peaks picking task. Effects from
the loudspeaker transfer function and directivity also hinder the ability to properly
find the peaks in the RIRs. Inevitably, the loudspeaker colors and shapes the original
RIR by mixing and attenuating several peaks. This makes harder to detect which
peaks belong to the walls reflections. To illustrate this, a typical impulse response for a
loudspeaker is shown in Fig. 4.1. In Fig. 4.2 the frequency response of the loudspeaker
is shown, which resembles a band-pass filter for signals within the audible frequency
band.

It can be argued that if the loudspeaker impulse response is known beforehand, as
in the case of loudspeaker manufacturers, a deconvolution process can be carried out
in order to obtain the original RIR. However, besides the fact that the convolution
process losses information, i.e., depending on the impulse response the original signal
could not be retrieved completely, the loudspeaker is not an omnidirectional source.
Hence, reflections originated from different angles with respect the loudspeaker suffers
different attenuation and/or changes of phase that are difficult to account for in practice.
This poses a challenging problem for correctly selecting the peaks that belongs to the
first-order reflections. As a result, the methods for sorting echoes need to consider as
many peaks as possible. This explodes the computation time required for finding the
correct combination of echoes. A comparison between an (ideal) sparse RIR and an
actual measured RIR is shown in Fig. 4.3 and Fig. 4.4.

Besides the complications that a real loudspeaker could add to the problem of finding
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Figure 4.1: Example of loudspeaker
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Figure 4.2: Frequency response of measured
loudspeaker

first-order reflections, it is necessary to consider some other practical matters. In the
previous chapter, it is assumed that the TOAs are available through measured RIRs
(A.2 ). However, most of the products on the market, aimed for reproduction purposes,
do not measure the RIRs, and the ones capable of measuring the RIRs require probe
signals unpleasant to the occupants in the room. Hence, it is of interest to develop
methods capable to perform the estimation of the first-order reflections using amenable
sounds for the people inside the room.
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Figure 4.4: Measured RIR

Therefore, this chapter is aimed to develop general methods, based on estimation
theory, to find the first-order reflections. The approaches use raw measurements from
the available microphones in the room to iteratively search for the first-order reflections.
In principle, these methods can employ an arbitrary signal for finding the locations of
the reflections. In addition, knowledge of the loudspeaker transfer function can be
added in order to cope with effects induced by the drivers in the transmitted signal.
Furthermore, due to our interest in common audio reproduction systems, setups as the
one depicted in Fig. 4.5 are our main focus. In this scenario, a set of loudspeakers
are equipped with microphone arrays. Particularly, a uniform circular arrays of 6cm
radius, consisting of M = 3 microphones, is considered for each of the loudspeakers.

In the following section, the data modal used to develop the iterative method is
introduced.
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4.2 Data Model

Consider a setM of M microphones randomly distributed in a shoe-box shaped room.
For a given excitation signal s(t), the data acquired by the m-th microphone is given
by

xm(t) =

|I|∑

i=0

γiβmis(t− τmi) + wm(t), (4.1)

where βmi ∈ R and τmi ∈ R represent the attenuation and propagation delay at the
m-th microphone related to the i-th (image) source, and γi ∈ R is the attenuation due
to the reflective surface. The set I, as defined in (2.9), is the set of reflections in the
room considered in the model and the case i = 0 is reserved for the contribution of the
direct path, i.e. γ0 = 1. In this model, the noise wm(t)∀m is considered to be white
Gaussian noise with power σ2

w.
Considering spherical isotropic radiators as in Chapter 2, the attenuation and delay

at the m-th microphone with respect the i-th source are given by

βmi =
1

4π‖rm − si‖2

, τmi =
‖rm − si‖2

c
, (4.2)

where rm ∈ R3 and si ∈ R3 are the spatial positions of the m-th microphone and
the i-th source, and c is the speed of sound. The model in (4.1) is obtained from the
convolution of the RIR in (2.9) and an excitation signal s(t).

Furthermore, as this work is focused in audio reproduction setups, where there is
control over the excitation signal s(t), it is assumed that s(t) is a zero-mean, real-valued
and periodic signal. That is, the sampled transmitted signal allows an expansion in
harmonic functions given by [26]

s[n] =

Q∑

k=1

Ak cos(ω0kn+ φk) =

Q∑

k=−Q

αkexp(jω0kn), (4.3)

for n = 0, 1, . . . , N − 1 where Ak > 0, φk ∈ [−π, π), ω0 ∈ (0, π/Q), and αk = α∗k =
Akexp(jφk)/2 are the amplitude, phase, fundamental frequency, and complex ampli-
tude, respectively. As it is considered that the signal is zero-mean, there is no DC
component in the expansion (4.3), i.e., α0 = 0.

b
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Figure 4.5: Sound reproduction setup illustrating the practicalities of the arrangement
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Under this model, if the source signal is delayed by a delay ηmi = fsτmi, where fs
denotes the sampling frequency, the following is obtained

s[ηmi] , s[n− ηmi] =

Q∑

k=−Q

αkexp(jω0kn)exp(−jω0ηmi). (4.4)

Using matrix-vector notation, it is possible to rewrite a stacked version of (4.4), for
n = 0, 1, . . . , N , as

s[ηmi] = Z(ω0)D(ηmi)α, (4.5)

where the following has been defined

z(ω) , [1 exp(jω) · · · exp(jω(N − 1))]T , (4.6)

Z(ω0) , [z(−Qω0) · · · z(−ω0) z(ω0) · · · z(Qω0)], (4.7)

D(ηmi) , diag(exp(jQω0ηmi), . . . , exp(jω0ηmi),

exp(−jω0ηmi), . . . , exp(−jQω0ηmi))
(4.8)

α , [α−Q · · · α−1 α1 · · · αQ]. (4.9)

If N samples for each microphone are recorded, and M data vectors stacked, the
recorded sampled data can be expressed as

x = [xT1 xT2 · · · xTM ]T (4.10)

=

|I|∑

i=0

γiH(ηi,βi)α + w ∈ RMN×1, (4.11)

with H(ηi,βi) = [HH
1i HH

2i · · · HH
Mi]

H , where

Hmi = βmiZ(ω0)D(ηmi). (4.12)

Finally, as both βmi and τmi are dependent on the position si of the i-th source, the
dependency of H can be expressed in terms of the sources positions instead. Thus, the
model in (4.11) can be rewritten as

x =

|I|∑

i=0

γiH(si)α + w. (4.13)

In the next sections, the model in (4.13) is used to estimate the positions of the image
sources.

4.3 Localization of First Order Reflections

To accurately estimate the positions of the first order reflections, the wideband signal
parameter estimation problem of the previous section needs to be solved. That is, from

the measured data x, the signal parameters {si}|I|i=0 corresponding to the source position
and the modeled room’s reflections must be estimated.
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In order to make use of model (4.13) the relative distances between the microphones
are required. As in our particular application the microphones are located on the
loudspeakers (sources) (see Fig. 4.5), it can be assumed that the position of the source
is known due to a prior calibration step [40][7]. As a result, only the positions of the

first order reflections S1st = {si}|I|i=1 need to be estimated. That is, the modified data
model, after removing the direct path contribution, is now given by

x̃ =

|I|∑

i=1

γiH(si)α + w. (4.14)

Despite that the setup depicted in Fig. 4.5 allocates the microphones in a plane, i.e.,
affdim(E) = 2, and only horizontal reflections can be found, the method presented here
can be applied to 3D microphones arrays which allow the localization of the reflections
of the floor and ceiling.

In general, the estimation problem from (4.14) can be solved by using a nonlinear
squares (NLS) estimator given by

{Ŝ1st, γ̂} = arg min
{S1st,γ}

‖x̃−
|I|∑

i=1

γiH(si)α‖2
2, (4.15)

where γ = [γ1, . . . , γ|I|]
T is the attenuation parameter vector. The expression in (4.15)

would yield the maximum likelihood estimates [27] of the image sources locations if the
noise vector w is both spatially and temporally white and Gaussian.

To minimize the expression in (4.15), consider first minimizing with respect γ for
fixed S1st. This yields a new minimization where γ has been concentrated out. That
is,

Ŝ1st = arg min
S1st

‖Π⊥Hx̃‖2
2, (4.16)

where
Π⊥H = I−H(HHH)−1HH . (4.17)

While the estimator in (4.16) provides optimal performance [54], in terms of es-
timation variance under white Gaussian noise, notice that it is a highly nonlinear
3|I|-dimensional optimization problem. Due to its noncovexity and high dimensional-
ity, (4.16) becomes very expensive to implement in practice. Therefore, the following
sections approach the estimation problem in (4.15) by decoupling it into a sequence of
simpler optimization problems.

4.4 Wideband CLEAN

The original CLEAN algorithm was first introduced by Högbom in [22] for applications
in radio astronomy. In his paper, Högbom devised CLEAN to deconvolve sky intensity
distributions under the assumption that the target space can be represented by a sparse
set of point sources. CLEAN considers the intensity map obtained via the delay-and-
sum (DAS) beamformer [4] as the result of convolving the true source intensity with
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Figure 4.6: Beam pattern for a six-element UCA with 6cm of radius.

the beam pattern. Due to finiteness and irregularities in the sampling process, the
beam pattern contains undesirable sidelobes. Hence, the intensity map from the DAS
beamformer (often referred as ”dirty map” [22]) is polluted with contributions from
the sidelobes. An example of the DAS beampattern for a six-element uniform circular
array (UCA) with radius of 6cm is shown in Fig. 4.6

The CLEAN algorithm aims to deconvolve the dirty map to produce an estimate
of the true source intensity distribution by means of a decoupled iterative approach.
In posterior work [33][46][52], extensions and modifications for the wideband signal
and multiple-snapshot case have been made. In Fig. 4.7 the beampattern from the
previous UCA is depicted when the data contains two sources at the directions-of-
arrival (DOAs) θ = [−π/3, π/3]T . Due to the varying mainlobe width as a function
of frequency, the performance of the typical DAS beamforming method for wideband
signals degrades. The mainlobe’s problem is also present in adaptive algorithms [13][19]
even though these methods present much better interference suppression and enhanced
resolution. Moreover, the small number of segments to process and highly correlated
sources, as in reverberant conditions, degrade even more the performance of adaptive
algorithms. On the other hand, CLEAN eliminates the varying mainlobe width and
sidelobes problems suffered from the DAS-based approaches. In addition, the single
snapshot case, infeasible for adaptive algorithms, can be addressed without problems
by CLEAN.

Motivated by these issues, in the following, the CLEAN algorithm described in [52]
is used to solve (4.15). First, let us introduce the modified observed signal vector

x̃r = x̃−
R∑

i=1
i 6=r

γ̂iH(ŝi)α, (4.18)
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Figure 4.7: Beam pattern for a six-element UCA with 6cm of radius when two sources at
θ = [−π/3, π/3]T are present.

where the estimates {ŝi, γ̂i}Ri=1,i 6=r are assumed to be known, and R ≤ |I|. Therefore,
the parameters estimate γr and sr can be estimated using simpler estimators, i.e.,

γ̂r =
Re{αHH†(sr)x̃r}

‖α‖2
2

, (4.19)

ŝr = arg min
sr

‖x̃r − γ̂rH(sr)α‖2
2. (4.20)

The expression from (4.19) and (4.20) estimate the positions of the |I| image sources
disjointly, leading to a conceptually and computationally simpler solution than the one
from (4.15).

The CLEAN algorithm can be summarized as follows

• Step 1: Initialize with r=1, R = 1 and let x̃1 = x̃.

• Step 2: Estimate γi and sr by using (4.19) and (4.20).

• Step 3: Compute the contribution of the estimated source. Subtract its contri-
bution from x̃r to produce x̃r+1 as in (4.18).

• Step 4: Add the current estimated signal location to the list of estimated signals
and increase R by one.

• Step 5: Increase the iteration index r by one.

• Remaining Steps: Repeat Steps 2 to 5 until r = Rmax or the process works
down to the noise level.
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If it is desired to apply CLEAN under the assumption of point sources, Rmax should
represent the maximum number of reflections of interest, i.e., Rmax = |I|. Otherwise,
CLEAN works down the dirty map until it reaches the noise floor. This fact makes the
CLEAN algorithm suitable for imaging distributed sources [52]. An example for source
localization using CLEAN is shown in Fig. 4.8 and Fig. 4.9. The left figure shows the
cost function for a single six-microphone UCA, with white noise as transmitted signal
and a sampling frequency of 20kHz.

Finally, note that the feasible set of the optimization problem in (4.20), for the flat
wall case, can be reduced by making the following considerations (see Fig. 4.10):

1. As the position of the true source s is known, the feasible set excludes all the
points belonging to the set

A =
M⋃

m=1

Bm (4.21)

where Bm = {p : ‖rm − p‖ < ‖s− rm‖2}.

2. In consecutive iterations the feasible set excludes the points behind, i.e. posi-
tive inner product, with respect to the boundary plane constructed using (2.14)
defining a room wall.

4.5 Wideband RELAX

An alternative to the CLEAN algorithm, is the RELAX method. Instead of working
down the dirty map until the noise floor or the maximum number of sources in a
sequential fashion, RELAX uses the knowledge of estimated sources to improve previous
estimates.

Originally, RELAX was first proposed in [33] as a asymptotically efficient method
for mixed spectrum estimation. Later, RELAX was extended for other applications
such as DOA and waveform estimation [32]. Finally, in [52] an extension for wideband
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signals was applied in aeroacoustic imaging. In general terms, the RELAX method can
be seen as an improved version of CLEAN, which trade computational complexity for
estimation performance. The difference between these two methods lays in an inner loop
that RELAX adds in order to refine the first estimates. Similar to CLEAN, RELAX
does not suffer from effects of varying mainlobe and sidelobe problems[33].

Using the estimators from (4.19) and (4.20) and the update equation (4.18), the
RELAX algorithm can be summarized as follows

• Step 1: Assume R = 1. Estimate {γ̂r, ŝr}r=1 using (4.19) and (4.20) with x̃1 = x̃.

• Step 2: Assume R = 2. Compute x̃2 with (4.18) using {γ̂r, p̂r}r=1 obtained in
the previous step. Estimate {γ̂r, ŝr}r=2 from x̃2. Next, compute x̃1 using (4.18)
with {γ̂r, ŝr}r=2, and redetermine {γ̂r, ŝr}r=1 using (4.19) and (4.20). Repeat the
step until convergence of the estimates {γ̂r, ŝr}r=1,2 or the maximum number of
iterations is reached.

• Step 3: Assume R = 3. Compute x̃3 using the estimates {γ̂r, ŝr}r=1,2 from the
previous step. Estimate {γ̂r, ŝr}r=3 from x̃3. Then, re-estimate {γ̂r, ŝr}r=1 from x̃1

computed using {γ̂r, ŝr}r=2,3. Repeat these substeps until convergence of estimates
or maximum number of iterations is reached.

• Remaining Steps: Continue similarly until R is equal to maximum number of
sources to estimate.

The convergence of the estimates can be checked by computing the cost function at
the i-th iteration of each step as

J(i) = ‖x̃−
R∑

r=1

γrH(sr)α‖2
2. (4.22)

When the change in the cost function between two consecutive iterations is smaller than
a given threshold, i.e., ‖J(i)− J(i− 1)‖2

2 ≤ ε, practical convergence is reached. Similar
to CLEAN, the feasible set for RELAX can be reduced by applying the considerations
discussed in the previous section.
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Figure 4.11: Cost function at Step 1 of RELAX using a six-element UCA with radius of 6cm.
The simulated scene contained a source and four wall reflections.

An example of the output for the iterative processes described is shown in Fig. 4.11
and Fig. 4.12. The source and image sources locations are estimated using the RELAX
algorithm and six-microphone UCA with radius of 6cm. Only the four reflections
are considered in the simulation, i.e., ceiling and floor were considered covered with
absorbent material. From Fig. 4.12 can be noticed how RELAX identify some of the
weakest reflections that were shadowed by the sidelobes of stronger reflections. Fig. 4.13
and Fig. 4.14 illustrates the difference in the estimation between CLEAN and RELAX.
In this case, CLEAN exhibits a heavy bias in one of the image sources, leading to a
poor estimation of its position. However, due to its multiple iterations, RELAX is able
to properly find the source and the four reflections in the scene. The simulation was
made considering three 3-microphones UCAs with a radius of 6cm randomly placed in
a shoe-box shaped room. The sampling frequency used was fs = 96kHz. A measured
loudspeaker transfer function is used to include the effects of the employed driver. The
response of the loudspeaker is considered to be omnidirectional.

4.6 Theoretical performance

It is of interest to understand how accurate the image sources locations can be esti-
mated. In order to do so, the Cramér-Rao lower bound (CRLB) [27] is used to provide
a theoretical lower bound for the variance of any unbiased estimator. Appendix D de-
rives the Fisher information closed expression for the cases of single source and multiple
sources in white Gaussian noise under the assumption of near and far-field propagation
and isotropic radiation.

From Appendix D, the (i, j)-th entry for the Fisher information in the case of a
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Figure 4.12: Iterative process for RELAX. In each step the number of sources increases and
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Figure 4.14: RELAX estimates

single source in the near field of an array is given by (D.14)

[
J(s)

]
ij

=
T

π
SNR

[
B

M∑

m=1

[rm − s]i[rm − s]j
‖s− rm‖6

+

(Bω2
c +B3/12)c−2

M∑

m=1

[rm − s]i[rm − s]j
‖s− rm‖4

]
, (4.23)

where J(s) ∈ RD×D is the Fisher information matrix and s ∈ RD the parameter vector
containing the spatial location of the source. This Fisher information has been derived
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Figure 4.17: Illustration of curvature of likelihood function L(θ) for cases with large Fisher
information (left) and low Fisher information (right)

considering a signal with constant power inside the frequency band [ωc − B/2, ωc +
B/2]rads and with a duration of T seconds.

The expression in (4.23) provides great insight into the parameters that play a role
in the estimation accuracy. As the CRLB is given by [27]

CRLB(s) = J(s)−1, (4.24)

it is seen that by increasing the following parameters, besides the SNR, the CRLB(s)
can be reduced

• Listening time (T )

• Bandwidth (B)

• Central frequency (ωc)

• Number of microphones (M)

To illustrate the influence of these parameters, and some of the issues that might
arise using a MLE, experiments are carried out for the problem of estimating the
source position when additive noise is present. In Fig. 4.15 and Fig. 4.16 the effect of
number of microphones (M) and listening time (T ) is shown respectively. By increasing
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the number of microphones and listening time the CRLBs decrease. In addition to the
CRLBs, the root mean square error (RMSE) of the estimator from (4.15) is shown. The
non-uniform spacing between the CRLBs lines is due to the weighting of the random
located microphones, i.e., the sums in (4.23) have in the denominator the distance
between microphone and source. These simulations were performed using a uniform
grid with spacing h = 5cm for obtaining a coarse estimate. Posterior refinement of the
estimate is done by using a derivative-free method [30].

A clear trade-off for fixed T = N/fs occurs when the sampling frequency of the
system has to be selected. If all parameters are held fixed, in order to provide the same
performance guarantees when the sampling frequency fs increases it is required that
the number of samples N also increases. These increments the computational burden
of the estimation method.

As signals with constant magnitude across a frequency band are being considered,
the effect of B and ωc can be observed jointly. In Fig. 4.18 the RMSE of the estimation
is shown for different bandwidths. The central frequency is selected as ωc = B/2. By
observing the CRLBs it is expected that an increase in B leads to a decrease of the
RMSE. However, Fig. 4.18 shows that this is not necessary the case when the same
estimation grid is used for all bandwidths. Higher bandwidths show worse performance
than lower bandwidths when the grid size is fixed to h = 5cm. This behavior can
be explained by using intuition derived from the CRLB itself (see Fig. 4.17). As B
increases, the curvature of the likelihood function, defining the local spread around the
parameter of interest, becomes much more pronounced. As a result, in order to avoid
getting caught in a local minimizer of (4.15) a finer grid is required. Strategies to adjust
the grid spacing in different scenarios have been discussed in [14] and [39]. Taking this
issue in consideration, in Fig. 4.20 the RMSE is shown for increasing bandwidths with
non-fix grid size. When an appropriate grid size is used for the estimation task, it is seen
how the decrease in error follows the trend of the CRLB. However, this improvement
in performance increases the computational cost (orange curve) of the method. The
grids size used are [5e−2, 2e−2, 1e−2, 3e−3]m for the bandwidths [4, 8, 16, 48]kHz
respectively.

Similar to the single source case, the multiple source scenario, e.g., set of first-
order reflections, is examined using the CRLB as theoretical limit for our estimators.
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From the results in Appendix D, the (k, l)-th entry of the (i, j)-th block of the Fisher
information J(S1st) ∈ R|I|D×|I|D is given by (D.34)

[
Jij(S1st)

]
kl

=
T

π
SNR

M∑

m=1

A
(m)
ij (k, l)

[
B

(m)
ij

ωc+B/2∫

ωc−B/2

cos(ωα
(m)
ij )dω+

c−2

ωc+B/2∫

ωc−B/2

ω2 cos(ωα
(m)
ij dω)− c−1C

(m)
ij

ωc+B/2∫

ωc−B/2

ω sin(ωα
(m)
ij )dω

]
, (4.25)

where α
(m)
ij , A

(m)
ij (k, l), B

(m)
ij and C

(m)
ij have been defined in (D.28)-(D.31) and are

functions of the distances between the m-th microphone and the i-th and j-th sources.
Observing (4.25), it is noticed that the parameters that influence the Fisher in-

formation in the single source case also affect the Fisher information in the multiple
source instance. This is an expected behavior as the diagonals blocks, i.e., i = j, of the
Fisher information matrix are the Fisher information matrix of the single source case
(see Appendix D).

To illustrate the difference between CLEAN and RELAX a set of Monte Carlo
simulations is performed. The intention of these experiments is to observe whether
the estimators, for the multiple sources case, are capable of attaining the CRLB. The
simulation setup is shown in Fig. 4.21. The scene depicts the situation of a set of
loudspeakers equipped with three-element UCAs of 6cm radius. In this setup, the
goal is to estimate the positions of the first-order reflections created by one of the
loudspeakers using the other three, i.e., M = 9 available microphones. The loudspeaker
is considered an isotropic source emitting a signal of length N = 801 samples with flat
spectrum of bandwidth B/2π = 4kHz and central frequency ωc = B/2.

From Fig. 4.22 it is seen that both methods present the same performance for low
SNR, however after the region of low SNR is crossed, CLEAN is not able to follow the
CRLB trend while RELAX continues decreasing its RMSE. In addition, Fig. 4.23 shows
a comparison between the computational cost of the methods for the different SNR.
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Figure 4.20: Influence of B in estimation accuracy for adjusted grid sizes
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The reduced bias of RELAX requires at least twice the computational time of CLEAN.
Notice that while CLEAN remains stable for all the SNR range, RELAX performs more
iterations at low SNR. However, these iterations do not provide any improvement as
the results in Fig. 4.22 indicate that CLEAN and RELAX obtain a similar performance
in this region.

To provide an explanation to the difference in the high SNR regime between CLEAN
and RELAX, let us look closer into the mean square error (MSE) of our estimators.

Following the MSE definition for an estimate θ̂ [27]

MSE(θ̂) = E
[
(θ̂ − θ)2

]
, (4.26)

it is possible to express the MSE in terms of its components as

MSE(θ̂) = E
[(
θ̂ − E(θ̂)

)2]
+
(
E(θ̂)− θ

)2
(4.27)

= Var(θ̂) + Bias(θ̂, θ)2. (4.28)
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Figure 4.25: Variance-Bias of RELAX
estimator

The CRLB is a lower bound for the variance of an unbiased estimator, hence if
the methods are indeed unbiased estimators of the unknown parameter vector, their
MSEs cannot be lower than the CRLB. In Fig. 4.24 and Fig. 4.25 both terms in (4.28)
are computed for each estimator. It can be observed that CLEAN is heavily biased
compared to RELAX. Hence, even though CLEAN variance continuously decreases, its
MSE gets stuck due to its built-in bias. The bias in CLEAN is a well-known result in
radioastronomy literature [49][35], where CLEAN has been recognized as a matching
pursuit algorithm [34]. The bias in RELAX (Fig. 4.25), which becomes evident at
higher SNR is considered to be due to the tolerance of the derivative-free optimization
method used to refine the coarse estimates.

4.6.1 On the selection of parameters

To finalize the theoretical evaluation of the methods, the selection of the parameters
affecting the CRLB of the estimates is discussed.

The model used to describe the propagation of the emitted acoustic signal considers
isotropic radiators. However, in practice, a loudspeaker can not be considered as one
for the whole frequency range. This is because the directivity pattern of a loudspeaker
depends on the relation between the size of the loudspeaker and the wavelength of the
reproduced sound. Therefore, it is expected that the directivity of the loudspeaker
degrades the performance of the methods discussed in this chapter. This problem is
illustrated in Fig. 4.26 where the effect of the beam pattern in the intensity of the image
sources is shown. Assuming a loudspeaker with irregular directivity pattern for a single
frequency, as depicted in Fig. 4.26, it can be seen that the image sources, representing
each reflection from the walls, are attenuated differently. In this particular case, as the
loudspeaker has almost no radiation in its rear direction, the image source behind the
loudspeaker is severely attenuated. This attenuation is combined with the attenuation
due to path length and wall absorption reducing the SNR of our available data. As a
result, the estimation performance of the image sources degrades.

To alleviate this problem, the loudspeaker can be used in a region where it has low
directivity. This not only provides a better distribution of the radiation pattern, but
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Figure 4.26: Effect of loudspeaker directivity in image sources

also allows us to have a coarser estimation grid which results in lower computational
complexity. Furthermore, due to the low frequency region of operation, a low fs suffices
to sample the process. This reduces the number of samples N needed to be able to
receive the contribution of all image sources, i.e.,

N ≥
⌈dmaxfs

c

⌉
, (4.29)

where c is the speed of sound and dmax is the largest distance between any microphone
and any image source. Expression (4.29) implies that the number of samples depends
on the size of the room which boundaries are going to be estimated. In this work,
as a good compromise between loudspeaker directivity, computational complexity, and
validity of the geometrical acoustic model, frequencies F ≤ 4kHz are recommended for
performing image source estimation.

In the case of the number of microphones, following the CRLB, more does not
necessary imply better. Even though increasing the number of microphones reduces
the CRLB, their location has a much higher impact in the estimation performance.
Unfortunately, in a typical reproduction environment, where the microphones are built
into on the loudspeakers, the distribution of the devices is decided by the users following
aesthetic reasons. As a result, almost nothing can be done in this respect.

Although in practice the number of microphones is constrained by the number of
devices distributed in the room, a typical reproduction setup with four loudspeakers
provides M = 9 microphones for processing if a three-element UCA is included in each
loudspeaker and only three of them are used to estimate the sources created by the
fourth loudspeaker. From Fig. 4.15 and Fig. 4.22 it is seen that, in the ideal case,
accuracy below centimeters can be achieved using this number of receivers.

Finally, when in principle these methods can use an arbitrary signal to estimate the
image source locations, it is recommended to employ zero mean white Gaussian noise
as probing signal s(t). The reason behind this is that its autocorrelation function is
the delta function, i.e.,

r(τ) = E
[
s(t)s(t− τ)

]
= δ(τ), (4.30)

which provides the best performance for identifying delays between shifted signals [28].
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4.7 Inclusion of higher order reflections

Given that from a set of reflective walls it is possible to compute any reflection of a
given order in a shoe-box shaped room, an alternative estimation procedure for the
estimation of the first order reflections is proposed in this section.

Assuming the image source model for modeling the room’s reflections and a shoe-
box shaped room, every time a new reflection is estimated knowledge of higher-order
reflections can be included in the minimization problem (4.15) to refine the estimate
of the reflection location. To illustrate this, consider the 2D case shown in Fig. 4.27.
After sl (blue) has been estimated, the boundary defining the l-wall (dotted) can be
estimated and used to generate the 2nd-order reflections from the other image sources.
Suppose the source sr, r ∈ {i, j, k} is going to be estimated next. The modified observed
signal vector from (4.18) is given by

x̃r = γrH(sr)α +
∑

n≤R
n6=r

γrnH(srn)α + wr, (4.31)

where wr contains the modeling and additive errors by the previous estimates, and the
uncorrelated measurement noise. The 2nd-order reflection position srn can be computed
by

srn = sr + (sn − s). (4.32)

Noticing that γrn is the product of the attenuation of the r-th and n-th walls [1], (4.31)
can be rewritten as

x̃r = γr

(
H(sr) +

∑

n≤R
n6=r

γnH(srn)

)
α + wr. (4.33)

At this point the estimates {γ̂n} ∀ n ≤ R, n 6= r are available, hence to provide an
estimate of {γr, sr} the unknown attenuation coefficients can be substituted by their
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Figure 4.28: RELAX estimates
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Figure 4.29: 2nd Order RELAX estimates

estimates. Therefore, the estimates for the attenuation and position for the r-th image
source are given by

γ̂r =
Re{αHH̄

†
(sr)x̃r}

‖α‖2
2

, (4.34)

ŝr = arg min
sr

‖x̃r − γ̂rH̄(sr)α‖2
2, (4.35)

where

H̄(sr) = H(sr) +
∑

n≤R
n6=r

γ̂nH(srn). (4.36)

By changing the estimators in (4.19) and (4.20) for the ones in (4.34) and (4.35), the
steps described in the previous sections for both CLEAN and RELAX can be followed
to obtain the locations estimates for images sources. If the image model holds for
the data, it is expected that the estimators taking into consideration the 2nd-order
reflections achieve a better performance as in every iteration, for each step, a joint
estimation process is performed, i.e., even though the contributions of the sources
{ŝn} ∀ n ≤ R, n 6= r are removed from the data, their locations are used to estimate
ŝr.

In Fig. 4.28 and Fig. 4.29 an example comparing RELAX and RELAX using second-
order reflections is shown. In this example, a white Gaussian noise signal was convolved
with the measured transfer function of a loudspeaker and sampled at 96kHz. Three
3-microphone UCAs were randomly placed in the room. From Fig. 4.29 it is clear that
the farthest image source is better localized when the higher-order reflections are used.

Finally, when all the image sources are known, similarly as the in echo sorting
problem, the boundaries of the room can be estimated by the geometrical method
described in Chapter 2.
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4.8 Experimental Results

In this section results from experiments are presented to evaluate the performance
of the proposed iterative methods in this chapter. Similar to the previous chapter,
in this section the performance of the proposed methods is studied for varying SNR,
reverberation time, and number of sources. In addition, a comparison between the
EDM-based methods (discussed in the previous chapter) and the methods introduced
in this chapter is presented.

A set of 500 Monte Carlo simulations are performed for each parameter subject to
study placing loudspeakers equipped with microphones in a room close to walls and/or
corners. This kind of configuration is used for the experiments as it is one of the most
common distribution for the loudspeakers in typical audio reproduction setups. Using
the position of the loudspeakers and microphones as input, for each receiver-source
pair a 3D room impulse response is generated using [20]. The data is generated by
convolving the simulated RIRs with a white Gaussian noise signal of 4kHz bandwidth
and a measured loudspeaker impulse response. The listening time is considered as three
times the largest distance between a microphone and an image source. The experiments
are run in Matlab on a Macbook Air (Mid 2013) 1.7 GHz Inter Core i7 processor.

The room used in these experiments has a constant volume of 280m3 with dimensions
8m × 6m × 5m. As the tested setup allocates the microphones in a plane, the RMSE
used to quantify the methods performance is the expectation of the square root of the
error squared between estimated and true 2D room vertices. That is,

RMSE(θ̂) ,
√
E
[
‖θ̂ − θ‖2

2

]
, (4.37)

where θ ∈ R4 represents the 2D room vertices and θ̂ ∈ R4 the estimates of the vertices
given by the method.

4.8.1 Effect of Loudspeaker Transfer function and Simulated RIR

So far only data following the proposed model in (4.14) has been considered. By
doing so, it has been shown that the proposed RELAX estimator can be an efficient
and consistent estimator, attaining the CRLB. However, the synthetic data generated
following the model (4.14) represents the ideal case of our problem. That is, it does
not consider that the attenuation coefficients are frequency dependent, the noise is not
only white Gaussian noise, and that phase changes in the signals are induced by their
reflections in the walls. Furthermore, the assumption of an ideal isotropic radiator is
not valid anymore when a loudspeaker is used to reproduce sound.

To demonstrate the effect of deviations from the ideal case, simulations using the
RIR generator [20] and the measured transfer function of a loudspeaker shown in Fig. 4.1
are performed. In Fig. 4.30 and Fig. 4.31 the RMSE of the estimated vertices posi-
tions vector θ̂ and the computation time for the different methods are shown. For this
simulation, only one loudspeaker is considered as source, and the other three are used
to estimate the first-order reflections. As it would be expected, the increase of the
model mismatch by using simulated 3D RIRs and coloring the signal with the loud-
speaker transfer function, degrades the estimators performance. Now, instead of sub-
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centimeter accuracy as in Fig. 4.22, due to the model mismatch with respect to (4.14)
our estimation error is now around half a meter. In addition, from Fig. 4.30 is seen
that the four methods performance very similarly. However, the computation time for
the RELAX-based methods is higher than for the CLEAN-methods. Furthermore, a
large gap between in the computational time 2nd-Order RELAX and RELAX is found.
By observing the estimation results, it is suggested that the additional computational
cost from evaluating the modified cost function does not provide in average significant
improvements in terms of estimation accuracy.

4.8.2 Reverberation Time of the Room

Reverberation can be generally defined as the persistence of sound after a sound is
produced, and it is present in almost all situations where the first-order reflections
are to be estimated. Furthermore, it is well-known that it causes negative effects in
source localization methods, as it contributes with correlated noise. These effects lead
to degradation on the performance of the proposed methods.

Considering the same scenario, i.e., one loudspeaker as source and three loudspeakers
used for estimate the first-order reflections, a set of simulations with a SNR of 40dB are
performed for different reverberation times (T60). The RMSE of the estimated vertices
positions vector and its variance are shown in Fig. 4.32 and Fig. 4.33. In general, an
increasing trend in the estimation error can be observed from these results, particularly
the variance of our estimates seems to steadily increase with higher reverberation time.
As reverberation adds correlated noise, a worse performance is expected with respect
the uncorrelated noise case. This correlated noise not only spreads our estimation,
as white Gaussian noise, but in addition it adds bias to our estimate depending on
the particular realization of the reverberation tail, i.e. as the RIR simulator generates
the reverberation tail of the RIR using a stochastic method, all RIR realizations are
inherently different.
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Figure 4.34: Computation time as function of reverberation time

4.8.3 Number of Sources

As in this setup more than one loudspeaker is available to produce measurements, the
effect of the number of sources on the estimation error is evaluated. In this experiment,
a shoe-box shaped room with T60 = 0.2 and a SNR of 40dB is considered. In Fig. 4.35
and Fig. 4.36 the reconstruction error and the computation time for each of the methods
are shown respectively.

From each source a set of vertices locations are estimated from the first-order re-
flections. The vertices are then grouped on clusters and the centroid of each cluster
is considered as the final vertices locations estimate. Adding more sources decreases
the estimation error as we compensate for estimation errors of the first-order reflec-
tions. However, the computation time increases almost linearly, being the RELAX-
based methods the ones with the highest computational time. In general, adding more
sources further decreases our estimation error, however this is constrained to the num-
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ber of loudspeaker available on the audio reproduction setup.

4.8.4 Additive noise on final configuration

Considering the previous results, the estimation performance of the methods is eval-
uated for different signal-to-noise ratios. For this experiment each of the four loud-
speakers is used as source, while the other three are used to estimate the first-order
reflections. The same procedure as in the previous part is used to obtain the final ver-
tices positions estimates. The simulated RIRs have a reverberation time of T60 = 0.2s.

In Fig. 4.37 and Fig. 4.38 the average RMSE per vertex and its standard deviation,
for each of the methods, are shown. From these results is seen that the RELAX-
based methods offer the best performance. As it would be expected, the RMSE and it
standard deviation decrease as the SNR increases. From all the methods the 2nd-Order
RELAX seems to provide the best estimation performance. Even though RELAX has
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Figure 4.40: Estimation results from 2nd Order
CLEAN method

a comparable performance to the 2nd-Order RELAX, its standard deviation is higher
than the standard deviation of the latter. In Fig. 4.39 and Fig. 4.40 results of a single
realization from two of the methods are shown. The estimated vertices are annotated
in the images, and the true vertices are {[0, 0], [8, 0], [0, 6], [8, 6]}.

4.8.5 Comparison Wave-based Model vs EDM-based Model

Finally, here the performance of the methods discussed in this chapter, based on the
propagation of waves, are compared with the ones discussed in Chapter 3, based on
the properties of EDMs. In principle both representations are equivalent, i.e., through
the TOA estimates a matrix can be constructed and used to estimate the locations of
the image sources. However, while the methods based on EMDs solve a combinatorial
problem, the methods presented in this chapter approach the problem using estimation
theory. Basically, the iterative methods try to find the mixture of complex exponentials
that produces the acquired data.

The results of this comparison are shown in Fig. 4.41 and Fig. 4.42. The configu-
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ration used for the experiment is given in Fig. 4.43, where M = 9 microphones, three
in each loudspeaker, are used to estimate the image sources generated by a fourth
loudspeaker.

From these plots the effect of uncertainties in the TOA estimates in the estimation
performance can be seen. Specially, the EDM-based methods are the most affected. In
particular, the graph-based approach is not able to deliver results for most of the tested
uncertainties due to the complexity of the maximum independent set listing problem.
The high number of nodes of the graph render the NP-hard problem unfeasible to solve
in reasonable time.

In the tested setup, the microphones are not distributed completely random, affect-
ing the diversity of the TOA estimates. For this test, the microphones are allocated
in UCAs with a radius of 6cm in each of the loudspeakers. This poses a difficulty
for the EDM-based methods as the microphones positions are not sufficiently diverse
to provide better results. Hence, they perform worse compared with the wave-based
methods.

4.9 Discussion

In this chapter alternative methods, based on estimation theory, to estimate the first-
order reflections were presented. The methods solve a high dimensional non-linear
optimization problem by sequentially solving a set of two-dimensional optimization
problems. It is shown that the estimator based on RELAX is a consistent and efficient
estimator when there is complete agreement between the data and the assumed model.
This property allows the estimators to outperform the methods based on EDMs when
solving the problem of room geometry estimation for known TOA of first-order reflec-
tions. Furthermore, the performance of these estimators was evaluated when the data
model is not met due to practical issues and the TOAs of the first-order reflections
are not available. It was shown that it is possible to estimate the room geometry with
a precision of circa 12cm in matter of several minutes. As all the results presented
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here consider simulated data, it should be noted that the estimation performance is
expected to degrade even further when real measurements are used instead. These
issues could be alleviated by increasing the number of sources and by only estimating
first-order reflections within the directivity pattern of the driver, i.e., if a driver with
cardiod directivity pattern is considered, the rear reflections should not be taken into
consideration. Furthermore, in this work all the derivations are based on the assump-
tion that the first-order reflections are the strongest contributions in our data model,
however in real situations this is not necessary the case. Violations of this assumption
further degrades the performance of the proposed methods in practice.
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Conclusions 5
Inference of the room geometry is crucial for improvement of current methods for sound
field estimation. Knowledge of the reproduction enclosure provides a natural way to
address this problem by means of the parametrization of the RIRs. As a first step
towards a general solution for sound field estimation in enclosures, we have presented
two kind of methods capable to estimate the shape for shoe-box shaped rooms. These
methods, closely related in principle, address the room geometry estimation problem
from different perspectives.

In Chapter 3, it was shown that it is possible to solve the combinatorial problem of
acoustic echoes labeling by means of a greedy strategy based on subspace techniques
and the maximum rank property for EDMs. The proposed method shows comparable
accuracy with respect to the current state-of-the-art method based on graph theory, at
a reduced computational cost. Furthermore, it was shown that the devised subspace
filtering can be used to further reduce the computational complexity of the graph-
based approach. Under the assumptions established in Chapter 3, it was shown that
the greedy method is able to estimate the vertices of the rooms with centimeters accu-
racy within seconds even in the presence of uncertainties in both TOA estimates and
locations of the microphones.

Considering issues that could arise in practice, in Chapter 4 the room geometry
estimation is done by posing the problem under an estimation theory framework. It was
found that the efficient estimators developed in this chapter outperform the methods
based on EDMs when the TOAs of each microphone-image source pair are known.
Furthermore, the methods based on a mixture of complex exponential are more resilient
to uncertainties in the TOA estimates compared to the ones based on EDMs. However,
when we move away from the scenario of known RIRs, with identifiable first-order
reflection peaks, and effects seen in a practical setup are included in the data, e.g.,
loudspeaker transfer function and reverberation, the estimators performance degrades
considerably. In situations like these the proposed iterative methods provides estimates
of the vertices of the rooms with an average error of 12cm within a couple of minutes.

5.1 Discussion

Through this thesis two different instances of the first-order reflections estimation prob-
lem for identifying the room geometry were considered. In each case different assump-
tions were made in order to shape the problems into relevant ones in both theory and
practice. However, these assumptions might generate divided opinions leaving space
for discussion. Hence, in this section a brief comment is made in order to clarify some
of the decision made in this work.

In Chapter 3, the acoustic echoes sorting problem is discussed. In this chapter
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the existence of an oracle is assumed. This consideration can, perhaps, be the most
arguable one. In most of real environments finding the peaks in the RIRs can be
extremely hard. However, in some cases, when the early part of the RIRs is sparse
enough, i.e., first-order reflections are perfectly identified, the sorting problem becomes
relevant. In addition, the sorting problem is not only limited for acoustic echoes. The
problem of sorting TOAs in a wireless sensor network could arise if there is no handshake
between the anchor nodes and emerging nodes.

Besides the assumption of an oracle, through this thesis diversity in the microphones
positions is considered. This assumption, as shown in Chapter 4, might not hold in
standard audio reproduction setups, as it is assumed that the loudspeakers are found
in a common horizontal plane. However, in home sound entertainment, despite existing
recommendations for loudspeaker layouts, most of the users place the devices following
aesthetics reasons. Hence, the loudspeakers, and as a result the microphones, most
probably will be placed in arbitrary positions in the room, providing the necessary
diversity for the methods to deliver appropriate results.

In Chapter 4, the estimation problem was treated as a joint estimation problem
in the near field of a large array. However, it can be argued that the problem could
have been tackled using individually each array under far field conditions. Under this
approach, the UCA structure could have been exploited for fast computation of the
cost function, i.e., for every DOA a fast Fourier transform can be employed to evaluate
the range grid. However, the constraints in the number of microphones provide a poor
angular resolution due to the width of the main lobe of the beam pattern. This situation
hinders the ability to locate the first-order reflections by intersecting rays defined by
the DOAs at each of the arrays.

5.2 Future Directions

The following ideas, which build upon the work presented in this thesis, could be useful
for possible extensions and future research topics:

• Sparse Acoustic Echoes Sorting

Due to my inclination towards convex optimization as a tool for approximat-
ing combinatorial problems, I would encourage the pursuit of a solution for the
acoustic echoes sorting problem through sparse reconstruction and convex opti-
mization. At this point, I can not provide any guarantee that such alternative
exists, however the modeling of the problem as a (non-negative) matrix factor-
ization problem could lead to further understanding of the underlying structure
of the combinatorial problem. A possible model that could be explored is the
following

V = PSTDRD, (5.1)

where V ∈ RN×M is a permuted version of the transpose matrix of the true
combinations of echoes D ∈ RM×N , P ∈ RN×(NM) is a sparse matrix containing
the concatenation of permutation matrices {Pm ∈ RN×N}Mm=1, SD ∈ R(NM)×(5M) a
block diagonal matrix which diagonal blocks are the structured S ∈ R5×N matrix
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containing the positions of the (image) sources, and RD ∈ R×5M×M a sparse
matrix with the known microphone positions.

• Estimation outliers
While keeping the geometry of the room fixed to shoe-box shaped rooms, a natu-
ral extension of this work would be to deal with outliers in the iterative methods
estimates. As the different image sources have distinct uncertainties, the image
source with the lowest signal-to-interference-plus-noise ratio (SINR) usually is
wrongly estimated. This heavily biases the vertices estimates degrading the over-
all performance of the approach. This issue becomes of great importance when
dealing with directional loudspeakers, i.e., the rear first-order reflection is heavily
attenuated due to the directivity of the loudspeaker.

• Exploiting loudspeaker directivity
Considering that the loudspeaker directivity can be known beforehand, i.e., as
product manufacturer the full characterization of the loudspeaker is known, it is
possible to add this knowledge to the iterative methods in Chapter 4 in order to
try to search for further improvements in practical performance.

• Non-convex rooms
Even though the work in this thesis was focused in shoe-box shaped rooms, the
methods presented here can be extended to any arbitrary room shape. The exten-
sion to non-convex boundaries could be possible by mapping the room at different
locations. This is possible as any room boundary can be described by a piece-wise
continuous function. A possible way to reconstruct the boundary of a non-convex
room could require a moving source. This is done in order to find the reflex
interior angles of the polygon describing the non-convex shape.

• A different representation

Through this work a fundamental assumption was made: there is no intuitive
structure in the RIRs. However, this might be true for RIRs defined as FIR filters
based on finite number of taps but not for other type of models, such as the
ones based on orthonormal basis functions (OBFs) [48][47]. Hence, it would be of
interest to explore the possibility to relate this kind of room modeling to the room
geometry estimation problem, as these models could offer a different approach to
RIRs re-parametrization in terms of common room resonances.
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Euclidean Distance Matrices A
This appendix contains the basic theory behind Euclidean distance matrices. For more
information of this topic and its applications, the reader is referred to [11].

A.1 Generalities

An Euclidean Distance Matrix (EDM) D ∈ RM×M is a matrix of squared Eu-
clidean distances between a set of M points in a N -dimensional Euclidean space. Con-
sider a set X = {xm ∈ RN}Mm=1, ascribed to the columns of the matrix X ∈ RN×M ,
X = [x1, . . . ,xM ]. The entries of D ∈ EDM are the squared Euclidean distances
between the (i, j)-th pair of element given by

[D]ij = dij = ‖xi − xj‖2, (A.1)

where ‖ · ‖ is the Euclidean norm. Expanding the previous expression yields

dij = (xi − xj)
T (xi − xj) = xTi xi − 2xTi xj + xTj xj. (A.2)

From (A.2) the matrix equation for the elements in D can be expressed as

edm(X) , D = 1diag(XTX)T − 2XTX + diag(XTX)1T , (A.3)

where 1 is a column vector of all ones and diag(A) is a column vector of the diagonal
entries of A.

Theorem 1. (Rank of EDM) The rank of D ∈ EDM corresponding to points in a
N-dimensional space is at most N + 2.

Proof. Observe that rank(XTX) ≤ N as rank(X) ≤ N and that the other two terms
has rank one. Using the rank inequality for sum of matrices the following is obtained

rank(D) ≤ rank(1diag(XTX)T ) + rank(2XTX) + rank(diag(XTX)1T )

≤ N + 2
(A.4)

Definition 1. (Affine Dimension of EDM) For a matrix D ∈ EDM, its embedding
or affine dimension affdim(D) is the dimension of the smallest subspace that contains
points capable of generate D.

The definition of affdim(D) provides an insight on how the points are structure in the
space. Consider the set X2 of 2D points distributed along a line. The EDM generated
by these points, is also generate by a set X1 which contains 1D points maintaining the
same distances as in the 2D case. Hence, it can be concluded that are infinitely many
points sets able to generate a given EDM.
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Theorem 2. (Rigid Transformation Invariance of EDMs) The set of points X of di-
mension equal to the affdim(D) that generates D can only be reconstructed from D upto
a rigid transformation.

Proof. First notice that D is a function of XTX ∈ RM×M . Then, consider any rota-
tion/reflection acting over the points X ∈ RN×M , represented by an orthogonal matrix
Q ∈ RN×N . The Gram matrix of the rotated/reflected points Xr = QX is given by

XT
r Xr = XTQTQXT = XTX (A.5)

where the fact that Q is an orthogonal matrix, i.e., QTQ = I has been used. This
proves that rotations and reflections does not alter the distances in D. Now, consider
a translation of the points, i.e.,

Xt = X + b1T , b ∈ RN . (A.6)

By observing that diag(XT
t Xt) = diag(XTX) + 2XTb + bTb1, it can be verified that

this translation does not make any changes in (A.4). This proves its invariance with
respect translations. Finally, the following result can be stated

edm(QX) = edm(X + b1T ) = edm(X) (A.7)

A direct consequence of this theorem is the impossibility to reconstruct the absolute
coordinate of the generating points. Every distinct reconstruction procedure to retrieve
X from D leads to different a realization of the set of points only differing by a rigid
transform.

Finally, let us introduce the last theorem that provides the necessary and sufficient
conditions for an arbitrary matrix to be an EDM. In order to state the theorem, two
definitions should be presented before.

Definition 2. (Symmetric hollow subspace) Denoted by SNH , the symmetric hollow
subspace is a proper subspace of symmetric matrices SN with zero diagonal.

SNH
def
= {A ∈ SN | diag(A) = 0}. (A.8)

Definition 3. (Positive semi-definite cone) Denoted by SN+ , the positive semi-definite
cone is the set of all symmetric positive semi-definite matrices of dimensions N ×N

SN+
def
= {A ∈ SN |A � 0}. (A.9)

Theorem 3. (GOWER [18]) Let be a geometric centering matrix be given by

L
def
= I− 1

N
11T , (A.10)
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where IN is a N ×N identity matrix. Then,

D ∈ EDM ⇐⇒
{
−LDL ∈ SN+
D ∈ SNH

(A.11)

Proof. Found in reference [18].
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Graph Theory B
In this appendix a brief introduction to the concepts of graph theory needed for this
thesis is presented. This is not, by any means, an in-depth discussion of graph theory,
for a more thorough treatment of these concepts the reader is referred to [9].

B.1 General Definitions

In general, a graph is formed by vertices (nodes) and edges connecting the vertices.

Figure B.1: Graph G(V,E) with |V (G)| = 5 and |E(G)| = 6

Formally, a graph G = (V,E) is defined as a pair consisting of a vertex set V (G),
an edge set E(G), and a relation that associates with each edge, two vertices called its
endpoints. When a graph does not distinguish between the ordering of the endpoints,
it is known as undirected graph, otherwise it is considered as a directed graph.
In practice, a vertex can be used to represent anything, e.g., candidates of sorted
distances, and edges are used to indicate relations between vertices, e.g., candidates
sharing elements in common. Fig. B.1 shows a typical graphical representation of a
graph.

A simple graph is a graph having no loops or multiple edges. This means that
there is no more than one edge sharing the same endpoints and that the endpoints of an
edge are not the same vertex. In a simple graph each edge e ∈ E(G) can be uniquely
identified by its endpoints u, v ∈ V (G). Two vertices u, v ∈ V (G) are considered
adjacent if they define an edge in the graph as e = uv. A simple graph that contains
every possible edge between all the vertices is called a complete graph.

B.2 Independent Sets and Cliques

A set of vertices V ′(G) ⊂ V (G) that are not pairwise adjacent is known as indepen-
dent set. In Fig. B.2 the subset V ′(G) = {1, 3, 7} is an independent set, as these three
vertices does not share any edge in common. In addition, all the subsets of an inde-
pendent set are also considered independent sets, e.g. Ṽ (G) = {1, 7} ⊂ V ′(G). When
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Figure B.2: Simple graph G(V,E). Neither loops or multiple edges present.

a set Ṽ (G) cannot include any other vertex without forcing it to have an edge, the
set is known as maximal independent set. The maximal independent sets with the
largest allowable cardinality in the graph are called maximum independent sets. An
example of these types of sets is shown in Fig. B.3, where three different sets denoted
by blue vertices are selected from the same graph.

Figure B.3: Sets taken from a given graph G(V,E). a) Maximum independent set, b) Not
independent set, c) Maximal independent set

A clique can be seen as a complementary definition of an independent set, as it is
a set of pairwise adjacent vertices. In other words, a clique is a set of vertices which
induced graph is a complete graph. Analogously to the independent sets, a maximal
clique can be defined as a clique that cannot be extended by including one more
adjacent vertex. A maximum clique is a maximal clique with the largest allowable
cardinality. Fig. B.4 exemplifies the clique concepts by taking three different vertices
subsets denoted by blue nodes.

Figure B.4: Sets taken from a given graph G(V,E). a) Not a clique, b) Maximal clique, c)
Maximum clique
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B.3 Complement of a Graph

The complement or inverse of a graph G is a graph H on the same vertices such
that two different vertices in H are adjacent if and only if they are not adjacent in
G. In order to build H from G it is only needed to add the missing edges until G
becomes complete, and then remove the original edges existing in G. By using the
complementary nature of cliques and independent sets, it is seen that any independent
set in the graph G is a clique in the graph H and vice versa. A graph G and its
complement H are shown in Fig. B.5, where the set of blue vertices represent a clique
and independent set in the original and complement graph respectively.

Figure B.5: a) Graph G, b) Graph H : Complement of graph G

Due to this complementary property of the independents sets and cliques, the max-
imal independent set listing problem can be cast as a maximal clique listing problem
instead. By transforming the original graph into its complement H, algorithms that
finds all maximum cliques can be employed to solve the echo disambiguation problem
presented in this thesis.
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Estimation Theory C
This appendix contains a brief introduction to estimation theory. For more information
of this topic and its applications the reader is referred to [27].

C.1 Generalities

The field of estimation theory deals with estimating the values of unknown parameters
based on measured data which contains a random component. Using the assumption
that the unknown parameters interact with the measurements by modifying their dis-
tribution, it is possible to design estimators capable to approximate these parameters
from the available data.

For example, consider the temperature of a room being measured. The intrinsic
noise of the employed thermal sensor randomly distributes the measured values, so
that the true temperature must be estimated. If the noise is not random, the problem
could be considered deterministic, i.e., removing an offset, and estimation would not
be necessary.

In order to apply estimation theory to a given problem, it is required to have knowl-
edge of the measured data x with dim(x) = N , and the model that describes the
interaction between the data and the unknown parameters θ with dim(θ) = M . To
illustrate this, consider again the example of measuring the temperature of a room.
The sampled measured signal from the thermal sensor can be modeled as

x[n] = θ + w[n] ∈ R, n = 0, . . . , N − 1, (C.1)

where θ is the true temperature and w[n] is considered to be additive zero-mean white
Gaussian noise with variance σ2, i.e., p(w[n]) ∼ N (0, σ2), representing the sensor noise.
By using the model in C.1 it is possible to express the likelihood function, defining how
the parameter θ affects the distribution of the data x, by using the original distribution
of the noise. That is, if

p(w[n]) ∼ N (0, σ2), (C.2)

the measured data would be distributed accordingly with

p(x[n]) ∼ N (θ, σ2), (C.3)

and the likelihood function p(x[n]; θ) would be given by

p(x[n]; θ) =
1

σ
√

2π
exp
(
− 1

2σ2
(x[n]− θ)2

)
. (C.4)

The expression in (C.4) shows how the unknown parameter θ affects the distribution
of our measured data. The goal of estimation theory is the estimation of θ, given that
there is knowledge of measured data {x[n]}N−1

0 .
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One of most widely used estimators, is the one known as the maximum likelihood
estimator (MLE) [27]. This estimator selects the parameter θ which maximizes the
likelihood function. Intuitively, the MLE maximizes the agreement of the observed data
with the employed model. This kind of estimator, due to its properties of consistency
and efficiency [27], is used as foundation for the estimators proposed in Chapter 4.

C.2 Fisher Information and Cramér-Rao Lower Bound

C.2.1 Fisher Information

In general terms, the Fisher information (FI) is a mathematical descriptor of the amount
of information a measurement x contains about a unknown parameter vector θ that
contributes to its statistical behavior.

By defining the likelihood function of x due to the parameter θ as p(x|θ), the
elements of the Fisher information matrix (FIM) J(θ) are given by

Ji,j(θ) = −E{∂
2 ln p(x|θi)
∂θi∂θj

}. (C.5)

From a geometrical point of view, considering the log likelihood function as a score
that indicates how sensitive p(x|θ) is to θ and assuming that certain regularity condi-
tions hold, the FIM represents the curvature of the support near the MLE of θ. This

can be mathematically expressed as the covariance of the score function ∂ ln p(x|θ)
∂θi

given
by

Ji,j(θ) = E{∂ ln p(x|θ)

∂θi

∂ ln p(x|θ)

∂θj
}. (C.6)

Intuitively, a sharp peak around the MLE has a high curvature, hence high infor-
mation is carried by x. On the other hand, a flat log likehood function reveals a small
curvature rendering the variate insensitive to θ.

C.2.2 Cramér Rao Lower Bound

H. Cramer and C.R Rao introduced this bound as the lowest attainable variance [27]

of any unbiased estimator θ̂, i.e.,

Bias(θ̂,θ) = (E{θ̂} − θ)2 = 0. (C.7)

The Cramér Rao lower bound (CRLB) is given by

Var(θ̂) ≥ CRLB(θ) = J−1(θ), (C.8)

which is nothing more than the inverse of the FIM. Hence, the mean square error,

MSE(θ̂) = E{(θ̂ − θ)2}, (C.9)

for an efficient unbiased estimator, i.e., unbiased estimator achieving the CRLB, is
given by

MSE(θ̂) = Bias(θ̂,θ)2 + Var(θ̂) (C.10)

= Var(θ̂) = CRLB(θ). (C.11)
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Cramér-Rao Lower Bound for
Source Localization D
In this appendix the Cramér-Rao lower bound (CRLB) for source localization with
known deterministic source signal is derived. The bounds for both near field and far
field cases are presented.

D.1 Near field - Single Source CRLB

Consider the following model

y(ω) = a(x, ω)s(ω) + n(ω) ∈ CM×1, (D.1)

where x ∈ RD denotes the unknown vector parameter, containing the position of the
source in a D dimensional space. Assuming that

E{y(ω)} = a(x, ω)s(ω), (D.2)

Ryy(ω) = σ2
NI, (D.3)

the Fisher information, for a single frequency ω, is given by1

J(x, ω) =
2

σ2
N

Re

{(
∂a(x, ω)

∂x

)H(
∂a(x, ω)

∂x

)}
‖s(ω)‖2 (D.4)

= 2SNR(ω)Re

{(
∂a(x, ω)

∂x

)H(
∂a(x, ω)

∂x

)}
∈ RD×D. (D.5)

For the near field case, the m-th element of the array vector response is given by

[a(x, ω)]m =
1

rm(x)
exp(−jωrm(x)/c) ∈ C. (D.6)

where c is the speed of sound and rm(x) = ‖x−pm‖ is the distance between the source
x and the m-th array element at coordinate pm ∈ RD.

To provide a close form for the expression in (D.5), the m-th row of the steering
vector gradient matrix is found to be given by
[
∂

∂x
a(x, ω)

]

m

=

(
∂

∂x
r−1
m (x)

)
exp(−jωrm(x)/c)+r−1

m (x)

(
∂

∂x
exp(−jωrm(x)/c)

)
∈ C1×D,

(D.7)
where

∂

∂x
r−1
m (x) =

pm − x

‖x− pm‖3
∈ C1×D, (D.8)

1Chen, et al ”A maximum-likelihood parametric approach to source localizations.” ICAASP 2001
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∂

∂x
exp(−jωrm(x)/c) = −jω/c

(
x− pm
‖x− pm‖

)
exp(−jωrm(x)/c) ∈ C1×D, (D.9)

∴
[
∂

∂x
a(x, ω)

]

m

=
pm − x

‖x− pm‖2
exp(−jωrm(x)/c)

[
1

‖x− pm‖
+ jω/c

]
∈ C1×D. (D.10)

Now, the (i, j)-th entry of the gradient product matrix is found to be

[(
∂a(x, ω)

∂x

)H(
∂a(x, ω)

∂x

)]

ij

=
M∑

m=1

[pm − x]i[pm − x]j
‖x− pm‖4

(
1

‖x− pm‖2
+
ω2

c2

)
. (D.11)

Hence, the (i, j)-th entry of the Fisher information for a single frequency ω can be
expressed as

[
J(x, ω)

]
ij

= 2SNR(ω)

[ M∑

m=1

[pm − x]i[pm − x]j
‖x− pm‖4

(
1

‖x− pm‖2
+
ω2

c2

)]
. (D.12)

Assuming constant power density for the signal and the noise inside a certain frequency
band [ωc−B/2, ωc +B/2], and some processing window of length T , the (i, j)-th entry
of the Fisher information over all the frequency band can be calculated as

[
J(x)

]
ij

=
2T

2π
SNR

∫ ωc+B/2

ωc−B/2

[ M∑

m=1

[pm − x]i[pm − x]j
‖x− pm‖4

(
1

‖x− pm‖2
+
ω2

c2

)]
dω, (D.13)

leading to

[
J(x)

]
ij

=
T

π
SNR

[
B

M∑

m=1

[pm − x]i[pm − x]j
‖x− pm‖6

+

(Bω2
c +B3/12)c−2

M∑

m=1

[pm − x]i[pm − x]j
‖x− pm‖4

]
. (D.14)

Finally, the CRLB for the parameter x is given by

CRLB(x) = J(x)−1. (D.15)

D.2 Far field - Single Source CRLB

For the far field case the model in (D.1) and the assumptions in (D.2) and (D.3) are
considered. Then, the Fisher information matrix has the same form of (D.5) given by

J(x, ω) = 2SNR(ω)

(
∂a(x, ω)

∂x

)H(
∂a(x, ω)

∂x

)
∈ RD×D. (D.16)
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However, in the far-field case, the i-th element of the array vector response is given
instead by

[a(x, ω)]m = exp(−jωrm(x)/c). (D.17)

Following a similar procedure as in the near-field case, the Fisher information over all
the frequency band [ωc −B/2, ωc +B/2] is found to be2

J(x) =
T

π
SNR(Bω2

c +B3/12)

[(
∂R
)T (

∂R
)]
∈ RD×D, (D.18)

with the following definition

∂R , 1

c




∂r1(x)
∂x
...

∂rM (x)
∂x


 ∈ RM×D,

where
∂rm(x)

∂x
=

x− pm
‖x− pm‖

.

D.3 Near Field - Multiple Source CRLB

In the case that more than one source is present, e.g., direct path and first order
reflections, the CRLB for more than one source in the near field is derived.

Consider the following model for a single frequency

y(ω) =

[ N∑

n=1

a(xn, ω)

]
s(ω) + n(ω). (D.19)

Using similar assumptions as in the single source case, the following signal’s statistics
are considered in the model

E{y(ω)} =

[ N∑

n=1

a(xn, ω)

]
s(ω), (D.20)

Ryy(ω) = σ2
NI. (D.21)

The Fisher information for the multiple source case given in (D.22) is a block matrix
whose diagonal elements are the single source Fisher matrices for each source, i.e.,

J(x, ω) =



J11(x, ω) · · · J1N(x, ω)

...
. . .

...
JN1(x, ω) · · · JNN(x, ω)


 ∈ RND×ND, (D.22)

2Similar expression as in: Tervo, Sakari. ”Localization and tracing of early acoustic reflections.” (2011).
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where x = [xT1 , . . . ,x
T
N ]T ∈ RND is the unknown parameter vector containing the

positions of the sources xi ∈ RD ∀ i ∈ {1, . . . , N}. The (i, j)-th block from J(x, ω) is
given by

Jij(x, ω) =
2‖s(ω)‖2

σ2
N

Re

{(
∂

∂xi

N∑

n=1

a(xn, ω)

)H(
∂

∂xj

N∑

n=1

a(xn, ω)

)}
(D.23)

= 2SNR(ω)Re

{(
∂

∂xi
a(xi, ω)

)H(
∂

∂xj
a(xj, ω)

)}
∈ RD×D. (D.24)

As in the single source, the gradient of the steering vector, for the m-th array element,
is given by
[
∂

∂xi
a(xi, ω)

]

m

=
pm − xi
‖x− pm‖2

exp(−jωrm(xi)/c)

[
1

‖xi − pm‖2
+jω/c

]
∈ C1×D. (D.25)

Hence, the (k, l)-th entry of the (i, j)-th block of J(x, ω) can be expressed as

[
Jij(x, ω)

]
kl

= 2SNR(ω)Re

{ M∑

m=1

[pm − xi]k
‖xi − pm‖2

exp(jωrm(xi)/c)

[
1

‖xi − pm‖
− jω/c

]
×

[pm − xj]k
‖xj − pm‖2

exp(−jωrm(xj)/c)

[
1

‖xj − pm‖
+ jω/c

]}
. (D.26)

Collecting terms and introducing new variables, the condensed expression for[
Jij(x, ω)

]
kl

is given by

[
Jij(x, ω)

]
kl

= 2SNR(ω)Re

{ M∑

m=1

A
(m)
ij (k, l)exp(jωα

(m)
ij )

(
B

(m)
ij + j

ω

c
C

(m)
i,j +

ω2

c2

)}
,

(D.27)
where the following definitions has been made

α
(m)
ij , c−1

(
rm(xi)− rm(xj)

)
, (D.28)

A
(m)
ij (k, l) , [pm − xi]k[pm − xj]l

‖xi − pm‖2‖xj − pm‖2
, (D.29)

B
(m)
ij , 1

‖xi − pm‖‖xj − pm‖
, (D.30)

C
(m)
ij , 1

‖xi − pm‖
− 1

‖xj − pm‖
. (D.31)

Using Euler’s formula to express the complex exponential in terms of its real and
imaginary terms, (D.27) can be expressed as

[
Jij(x, ω)

]
kl

= 2SNR(ω)
M∑

m=1

A
(m)
ij (k, l)

[
cos(ωα

(m)
ij )

(
B

(m)
ij +

ω2

c2

)
− sin(ωα

(m)
ij )C

(m)
ij

ω

c

]
.

(D.32)
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From expression in (D.32) the single source, i.e., i = j, Fisher information is readily
derivable. For the diagonal blocks of the multiple sources Fisher information the equal-

ity α
(m)
ii = 0 ∀ i,m holds. Hence, these elements can be obtained directly from (D.13).

Similarly as in the previous CRLBs, the power density for the signal and noise inside
the frequency band [ωc−B/2, ωc +B/2] is assumed constant, and a processing window
of length T is considered. As a result, the (k, l)-th element from the (i, j)-th block of
the Fisher information over all the bandwidth ∀ i 6= j is given by

[
Jij(x)

]
kl

=
T

2π

ωc+B/2∫

ωc−B/2

[
Jij(x, ω)

]

kl

dω. (D.33)

Substituting (D.32) in (D.33)

[
Jij(x)

]
kl

=
T

π
SNR

M∑

m=1

A
(m)
ij (k, l)

[
B

(m)
ij

ωc+B/2∫

ωc−B/2

cos(ωα
(m)
ij )dω+

c−2

ωc+B/2∫

ωc−B/2

ω2 cos(ωα
(m)
ij dω)− c−1C

(m)
ij

ωc+B/2∫

ωc−B/2

ω sin(ωα
(m)
ij )dω

]
. (D.34)

By solving the integrals in (D.34), the following expression can be evaluated to find the
value of

[
Jij
]
kl
∀ i 6= j

[
Jij(x, ω)

]
kl

=
T

π
SNR

M∑

m=1

A
(m)
ij (k, l)

[
B

(m)
ij

α
(m)
ij

sin
(
ωα

(m)
ij

)
+

c−2

(
2ω

(α
(m)
ij )2

cos
(
ωα

(m)
ij

)
+

(
ω2

α
(m)
ij

− 2

(α
(m)
ij )3

)
sin
(
ωα

(m)
ij

))
−

c−1C
(m)
ij

(
sin
(
ωα

(m)
ij

)

(α
(m)
ij )2

−
ω cos

(
ωα

(m)
ij

)

α
(m)
ij

)]ωc+B/2

ωc−B/2

. (D.35)

The CRLB is the given by
CRLB(x) = J(x)−1. (D.36)
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Abstract— In this paper, we present a greedy subspace method for
the acoustic echoes labeling problem, which occurs in applications such
as source localization and room geometry estimation. The orthogonal
projection into the kernel of the microphones position matrix is used
to filter and sort all possible combinations of echoes. A greedy strategy,
based on the rank constraint of Euclidean distance matrices (EDMs),
is used on the sorted subset of combinations of echoes to extract
the feasible combinations. Numerical simulations using room impulse
responses (RIRs) from shoe-box shaped rooms show that the method
provides improvements in terms of computational complexity and
number of required measurements with respect to a recently published
graph-based method.

Index Terms— acoustic echoes, room geometry, sorting reflections,
greedy algorithm, source localization

I. INTRODUCTION

In the past years there has been an increasing interest in mapping
the shape of a room using acoustic echos [1]-[3]. Knowledge of the
room shape can benefit a large number of applications. For example,
in the creation of personal sound zones [4][5] one needs to know
the room impulse response (RIR) in different locations, which could
be modeled if the geometry information of the room is available. In
autonomous navigation, knowledge of the enclosure boundary aids
collision avoidance. For speech enhancement, knowledge of walls
reflections is desirable to compensate for reverberation.

Echoes generated by sound reflected from the room walls carry
information about the geometry of the enclosure. By modeling
room reflections using virtual sources [6], it is possible to exploit
the geometry duality of this representation to estimate the room
boundaries. For this purpose, several methods have been proposed
to estimate the room geometry with high accuracy. Most of these
methods assume knowledge of the RIRs. In [7], the shape in the
2D case is estimated by a single RIR. Antonacci et al. [8] solve
the 2D problem assuming multiple sources and microphones.

In instances where multiple microphones, randomly placed in the
room, are used to detect the acoustic echos in the RIRs, ambiguities
arise at the moment of labeling the echoes according to the wall
which produces them. This problem is illustrated in Fig. 1. In
order to deal with this issue, Dokmanić et al. in [9] exploits the
properties of EDMs to find the room geometry in the general 3D
case. More recently, a newly proposed method [2] by Jager et al. has
been shown to provide the same accuracy as Dokmanić’s method
at a much lower computational complexity. This approach recasts
the labeling problem of the acoustic echoes problem into a graph
problem, which can be solved in reasonable time for instances with
a small number of microphones. However, both [9] and [2] become
intractable for increasing number of microphones.

In this paper, we aim to build on previous work to further
improve the current state-of-the-art solution for the acoustic echo

This work was partially supported by CONACYT
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Fig. 1: Ambiguity in the echoes labels due to different order of
arrival of wall reflections

labeling problem. We propose a subspace-based filtering to reduce
the computational complexity of the graph-based approach of [2].
Furthermore, we devise a greedy strategy which attains comparable
performance to the graph-based method at a reduced computational
cost. In addition, the proposed method only requires measurements
from a single source, in contrast to the current state-of-the-art
method that requires more than one source. In this work, we restrict
ourselves to shoe-box shaped rooms as they are commonly found
in typical audio reproduction scenarios. However, the proposed
method can be extended to arbitrary room geometries.

II. DATA MODEL

First, let us consider an arbitrary set M of M microphones lo-
cated at random positions. That is, M = {rm = [xm, ym, zm]T ∈
R3}Mm=1. These locations are assumed known up to a non-
singular transformation. Furthermore, consider the set S = {sn =
[Xn, Yn, Zn]T ∈ R3}Nn=1 of N image sources. The squared
distances D = {dm,n}∀ (m,n) ∈ [1, . . . ,M ]×[1, . . . , N ] between
the image sources S and receivers M can be measured, i.e., the
time-of-arrival (TOA) of the reflections can be estimated at the
microphones. Hence, the squared distance dm,n for the (m,n)-th
pair can be written as

(xm −Xn)2 + (ym − Yn)2 + (zm − Zn)2 = dm,n (1)

This can be expressed as an inner product as [10]

RTmSn = dm,n (2)

where the two vectors Rm and Sn are given by

Rm = [rTmrm − 2xm − 2ym − 2zm 1]T ∈ R5×1, (3)

Sn = [1 Xn Yn Zn sTn sn]T ∈ R5×1 (4)

Collecting all the squared distances dm,n for the pairs (m,n) leads
to the distance matrix D ∈ RM×N , and the model can be written
in matrix form as

RTS = D ∈ RM×N (5)
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where R = [R1, . . . ,RM ] and S = [S1, . . . , SN ] are known
the microphones and unknown image sources positions matrices,
respectively. Even when the positions of the microphones are
known up to an arbitrary non-singular matrix H ∈ R5×5, and the
transformed microphones positions matrix R̂

T
= RTH is known

instead of R, the model in (5) still holds as

R̂
T

H−1HŜ = D. (6)

where Ŝ = H−1S is the transformed matrix of sources positions.

III. LABELING ACOUSTIC ECHOES

From the model in (5), the unknown matrix S with the position
of the sources can be estimated by means of least squares given that
rank(R) ≥ 5 when the positions of the receivers and the distance
matrix D are known. However, in most cases, the squared distances
in D are not grouped accordingly to the sources that originate them.
That is, the subindex n from the elements in D is unknown to us.
Therefore, an approach to generate D from the unlabeled set D is
needed.

In this work, we consider the projection into the ker(R), i.e.,
kernel of R, to filter and sort all possible combinations of echoes.
This projection exploits the structure in the model (5) to estimate
the matrix D from the unlabeled data D. The goal of this approach
is to deliver a complexity reduction similar to the one achieved
in [2] allowing us to deal with larger instances of the problem
generated either by a larger number of microphones and sources,
or by uncertainties in the set D.

When proper diversity in R3 is assumed for the microphone
positions, i.e., non co-located locations for the receivers, the only
constraint needed in the method to ensure the rank-5 property of
the distance matrix D is M ≥ 5 [10][11].

A. Subspace Filtering

Let the rank-5 economy-sized SVD of the known receivers
position matrix R be given by

R = UΣVT . (7)

The complementary orthogonal projection Π⊥R into ker(R) can then
be computed from the SVD in (7) as

Π⊥R = IM − VVT (8)

This projection can be shown to have the property

Π⊥R RT = 0, (9)

hence from (5) it follows that

Π⊥R RTS = Π⊥R D = 0, (10)

for D-matrices with the correct sorting. In this work (10) is used to
estimate D from D. An interesting property of the complementary
projection matrix is that

‖Π⊥R ‖2 = 1 (11)

which implies that there is no amplification of errors, i.e.,

‖Π⊥R (Dc + n)‖2 = ‖Π⊥R (RTSc + n)‖2 (12)

= ‖Π⊥R n‖2 (13)

≤ ‖n‖2 (14)

where Dc is the c-th column of the matrix D. This makes the
projection particularly useful in cases where the elements of D
are perturbed with noise.
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Fig. 2: Normalized functional (16) for the columns D̃, in the noise
free case, sorted in ascending order. In this example M = 9 and
N = 5.

In order to apply the projection given in (8), we first consider
the matrix D̃ defined as the distance matrix generated by all the
possible combinations of the elements in D, e.g.,

D̃ =




d1,1 · · · d1,2 · · · d1,N
d2,1 · · · d2,1 · · · d2,N

...
. . .

...
. . .

...
dM,1 · · · dM,2 · · · dM,N


 ∈ RM×N

M

(15)

In the ideal case, i.e., measurements without any kind of noise, the
results are straightforward. By defining the functional

f(c) = ‖Π⊥R D̃c‖22 ∀ c ∈ [1, . . . , NM ] (16)

we can select the subset of feasible columns as

C = {c : f(c) = 0}, (17)

and provide an estimate of the feasible distance matrix given by

D̂ = D̃C ∈ RM×N (18)

where D̃C represents the trimmed distance matrix, which only re-
tains the columns specified by the set C. The functional is illustrated
in Fig. 2 for a problem instance with M = 9 microphones and
N = 5 (image) sources.

However, in real applications there is no guarantee that the true
distances D are measured perfectly, hence the set in (17) will, most
likely, turn out empty. In order to deal with noisy measurements,
we provide a column-dependent upper bound for the proposed
functional which considers the effect of perturbations.

Consider that the measured squared distance d̂m,n can be ex-
panded as

d̂m,n , (
√
dm,n+wm,n)2 = dm,n+2

√
dm,nwm,n+w2

m,n (19)

where wm,n is the perturbation in the (m,n)-pair measurement.
After the projection is applied to a stacked version of (19), the
following residual is obtained

Π⊥R D̂c = Π⊥R

[
2diag(wc)D◦

1
2

c + diag(wc)wc
]
∈ RM×1 (20)

where A◦p denotes the p-th Hadamard power of the matrix A.
Therefore, it is possible to provide a selection rule similar to (17)
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by upper bounding the square norm of the expression in (20). An
appropriate upper bound for the residual norm can be given by

‖Π⊥R D̂c‖22 = ‖Π⊥R [diag(wc)(2D◦
1
2

c + wc)]‖22 (21)

≤ ‖Π⊥R ‖22‖diag(wc)‖22‖2D◦
1
2

c + wc‖22 (22)

≤ 4 max2(wc)‖D◦
1
2

c + 0.5wc‖22 (23)

= κc (24)

where max(a) denotes the maximum absolute value of the vector
a, and the fact that ‖Π⊥R ‖ = 1 has been used. Using the derived
upper bound, we can build the subset of columns for the distance
matrix as

C = {c : f(c) ≤ κc} (25)

and estimate the distance matrix using expression (18). Although
the bound always holds, κc is not directly available from the
measurements. As in practice, we deal with realizations of the
measurement process, in order to use the bound in (24) we introduce

κ(i)
c = 4γiσ2

w‖D̂
◦ 1

2
c ‖22, γ ≥ 1 (26)

as surrogate to provide a practical iterative threshold for the
functional. In this expression, σ2

w denotes the noise power. The
power of the noise can be assumed known as it is considered
that the accuracy of the method employed for obtaining the TOA
estimates is known. For simplicity, we consider that all columns
are subject to the same noise level σw. This assumption affects the
performance of the bound as sources located at different positions
have different accuracy levels. However, this can be considered a
reasonable assumption as the ordering of echoes is unknown. As
in simulations it has been observed that κ(0)

c is sufficient for the
method to deliver adequate results, our algorithm fixes κic to κ0

c .

B. Avoiding the Graph Problem

For real measurements, |C| � N . Therefore, further processing is
required to only select feasible columns. For this step two possible
strategies can be applied: (i) the recently proposed graph-based
method from [2], where the problem is recast as a maximum
independent set problem, or (ii) a greedy approach that sequentially
selects feasible combinations. In the following, we solely focus on
(ii) as we want to avoid solving the NP-hard problem of listing all
maximal independents sets.

To avoid the graph-problem, firstly we make the observation that
when using the functional f(c) for sorting the columns of D̃, the
columns of the lowest normalized functional value, meeting the rank
constraint for EDMs, most likely belong to the true distance matrix.
For this, consider the matrix E ∈ RM×M as the EDM constructed
from the relative distances between receivers. The matrix Ẽc ∈
RM×(M+1) denotes an augmented EDM built by adding the column
vector D̂c. The rank of Ẽ is larger than five, if E is augmented
with distances to different sources. As suggested in [2], the ε-rank
defined as [12]

rank(Ẽ, ε) = min
‖Ẽ−X‖2≤ε

rank(X) (27)

can be employed to sequentially exclude echoes combinations that,
approximately, violate the rank constraint. As the threshold ε is
unknown a priori, an iterative approach is employed to obtain the
suitable candidate for ε.

Secondly, as pointed out in [2], the columns in D̂ have unique
elements, so in addition to the sequential exclusion of columns
by the ε-rank constraint, columns sharing elements with already
selected feasible columns are rejected. The sub-optimal algorithm

combining these two observations is presented in Algorithm 1. The
η > 1 parameter controls the growth of the rank constraint. This
allows the solution to only include the best ranked columns.

Algorithm 1 Subspace-based Greedy Acoustic Echoes Sorting

Input: D, Π⊥R , E, ε0, N , σw

Output: D
Initialization: Generate D̃ and κ(0), D = {}, ε = ε0

1: C = {c : f(c) ≤ κ
(0)
c }

2: Cs = sort(C, f(c)/‖D̃c‖22, ”ascending”)
3: D̂ = D̃Cs
4: while numCols(D) < N do
5: for c = 1 to |Cs| do

6: Ẽ =

[
E D̂c

D̂
T

c 0

]

7: if rank(Ẽ, ε) ≤ 5 and D̂c ∩ D == ∅ then
8: D = [D, D̂c]
9: end if

10: end for
11: if numCols(D) < N then
12: ε = ηε
13: end if
14: end while

Finally, after the matrix D is estimated by the greedy approach,
the least squares solution for the estimates of the source locations,
for M ≥ 5, can be directly obtained by

Ŝ = (RT )†D. (28)

Contrary to (i), where more than one maximum independent set can
be found in the graph, (ii) provides a unique solution. The unique
solution allows the echoes to be sorted even when the constraint
imposed by Polleyfey’s method [10] used in [2] is not met.

Notice that if measurements from Q acoustic sources are avail-
able, i.e.,

DTot =
[
D1,D2, . . . ,DQ

]
= RT

[
S1, . . . , SQ]. (29)

A combination of Polleyfey’s method, using the SVD of DTot, and
Procrustes analysis can be performed to estimate the image source
positions instead of using (28). This approach could lead to better
reconstruction results for cases in which the pseudo-inverse of RT

is not well conditioned.

IV. NUMERICAL SIMULATIONS

In this section results from numerical simulations comparing
the proposed greedy method and a modified version of [2] are
presented. First, to evaluate the proposed method we generated a
set of 500 Monte Carlo simulations for different uncertainties in
the measured distances. The simulation illustrates the acoustic echo
labeling problem from multiple room reflections, i.e., N = 6 for a
3D shoe-box shaped room. The number of microphones considered
is M = 9. The noise-free distances from the reflections of the walls
are taken from the peaks in the simulated impulse responses (RIRs)
generated by the acoustics simulation software [13]. As the graph-
based method requires multiple sources to provide an estimate of
the source positions, a version with an oracle is used instead, i.e.,
if more than one maximal independent set is found, the closest set
(in the least square sense) with respect to the noisy distance matrix
is considered as the solution of the method. To provide a speed up
to the method, the subspace filtering step is added in this modified
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version. The addition of the subspace filtering to the method shows
that it is possible to deliver a feasible implementation of the graph-
based approach for relatively large number of microphones, contrary
to the intractability statement given in [14].

In Fig. 3 the estimation error of both methods is compared.
The error is computed as the norm of the Euclidean distance
between the true sn and estimated position ŝn of the sources,
i.e., ‖e‖2 = ‖ [distE(s1, ŝ1) , . . . , distE(sN , ŝN )]T ‖2, where the
estimated positions are found by (28) assuming R known (up to a
non-singular transform). Notice how the accuracy of the estimation
decreases as the uncertainty in the distances increases. For low
uncertainties, i.e., σ < 0.01m, their accuracy is identical. However,
as the uncertainty increases, the results in Fig. 3 show higher
degradation of the greedy approach due to its sub-optimality.

A comparison of the relative running time of each method
with respect the baseline case of M = 5 using the graph-based
approach is shown in Fig. 4. For this comparison 500 Monte Carlo
simulations were made using different number of microphones.
The time consumed by the methods with subspace filtering is
considerable lower than the graph-based approach. This result
shows that it is possible to find tractable solutions for larger
instances of the graph problem by adding subspace filtering. By pre-
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filtering the combinations using the proposed functional, the number
of computed SVDs reduces drastically. In addition, by removing
combinations that might not be rejected by the rank constraint,
the number of nodes in the graph, used to find the maximum
independent sets, is reduced. Hence, the method gains an additional
speed up. The reduction in time when the number of microphones
increases from M = 5 to M = 6 for the methods with subspace
filtering is explained by the selectivity of the kernel of R. As more
combinations of echoes are rejected by the subspace filtering, less
ε-rank checks are performed to obtain a feasible distance matrix D.

Finally, Fig. 5 illustrates the performance of the proposed method
for different uncertainties in the locations of the microphones.
For this experiment, 500 simulated measurements were produced
from four different acoustic sources. The reconstruction of the
image sources positions is done using the noisy locations of the
microphones and Pollefey’s method [10]. In this experiment, it
is assumed that distances between each microphone-image source
pair contain additive white Gaussian noise with standard deviation
σRIR = 1cm. Notice how even in the presence of noise, in both
RIRs peaks and microphones locations, the method provides vertex
estimates with average RMSE close to 5cm. The high dependency
on the accuracy of the positions of the microphones is seen in the
increased standard deviation of the RMSE and its mean value.

All numerical simulations were run on a Macbook Air (Mid
2013) 1.7 GHz Inter Core i7 using non-optimized MATLAB code.

V. CONCLUSIONS

In this paper we proposed an alternative approach for the acoustic
echoes labeling problem. Using a complementary orthogonal pro-
jection related with the receivers locations, it is possible to elucidate
a filtering and sorting criteria for the columns of the distance
matrix built from all possible combinations of available echoes. It
is shown, that in the noise free case perfect identification of the true
columns can be achieved. Furthermore, for the noisy case, a greedy
alternative is proposed to avoid the solution of the NP-hard problem
of listing all maximal independent sets in a graph. Numerical
simulations show the applicability of the method and the benefits of
applying the subspace filtering to the original graph-based method.
In addition, effects of uncertainties in the distance measurements,
not discussed in literature before, were shown through numerical
experiments.
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[3] Dokmanić, Ivan, Laurent Daudet, and Martin Vetterli. ”From acoustic
room reconstruction to slam.” 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016.

[4] Betlehem, Terence, et al. ”Personal Sound Zones: Delivering interface-
free audio to multiple listeners.” IEEE Signal Processing Magazine
32.2 (2015): 81-91.

[5] Jacobsen, Finn, et al. ”A comparison of two strategies for generating
sound zones in a room.” 18th International Congress on Sound and
Vibration. 2011.

[6] Allen, Jont B., and David A. Berkley. ”Image method for efficiently
simulating small room acoustics.” The Journal of the Acoustical
Society of America 65.4 (1979): 943-950.
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[3] Niccoló Antonello, Toon van Waterschoot, Marc Moonen, and Patrick A Naylor.
Source localization and signal reconstruction in a reverberant field using the fdtd
method. In Signal Processing Conference (EUSIPCO), 2014 Proceedings of the
22nd European, pages 301–305. IEEE, 2014.

[4] Jacob Benesty, Jingdong Chen, and Yiteng Huang. Microphone array signal pro-
cessing, volume 1. Springer Science & Business Media, 2008.

[5] Terence Betlehem, Wen Zhang, Mark A Poletti, and Thushara D Abhayapala.
Personal sound zones: Delivering interface-free audio to multiple listeners. IEEE
Signal Processing Magazine, 32(2):81–91, 2015.

[6] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[7] Marco Crocco, Alessio Del Bue, and Vittorio Murino. A bilinear approach to the
position self-calibration of multiple sensors. Signal Processing, IEEE Transactions
on, 60(2):660–673, 2012.

[8] Giovanni Del Galdo, Oliver Thiergart, Tobias Weller, and Emanuël AP Habets.
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