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SUMMARY

A flexible panel, set in en infinite wall, is subject to an excitation
force distribution which can be described by a correlation function, The panel
vibrates and radiates sound, Expressions are derived for %he intensity and
pressure power spectrum in the sound field at points which are far away from the
panel in comparison with the superficial dimensions of the panel,

If' the excitation of the panel is due to the flow, over ome of its faces,
of a turbulent boundary layer, the thickness of whioch is small in comparison with
the superficiel dimensions of the panel, then an approximate expression for the
correlation function of the excitation force distributicn can be used in the
evaluation of the expressions obtained, This evaluation has been made to
determine the intensity and pressure power spectrum at pcints on or near to the
normal through the centre of the undisturbed panel and on the other side of the

» panel from the one containing the boundary layer flow, In this way we san
determine the way in which the intensity and pressure power spectrum at these
points depends on the plate dimensions and materisl properties, on the speed of
the flow containing the boundary layer, on the thickness of the boundary layer
and on the density of and speed of sound in the fluid medium around the panel,
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SYMBCLS

speed of sound

damping coefficient in equation (28)
length of panel in x=-direction
length of panel in y~direction
rigidity coefficient

Young's modulus

panel exciting force per unit area
mean square of panel exciting force per unit area
defined in equation (41)

panel thickness

defined in equation (68)

numerical values of modes

integers associated with m

mass per unit area of the panel

excess air pressure over the undisturbed pressure at
the point x,y,z at time t

mean square value of the excess pressure
power spectrum of the excess pressure
power speotrum of the excitation function f£(x,y,t)
defined in equation (21)

defined in equation (9)

defined in equation (12)

defined in equation (50)

defined in equation (57)

time

time

defined in equation (63)
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SYMBOLS (Contd)
fluid particle velocities
free stream velocity

convection velocity of the pressure spatial correlation
pattern

rectangular cartesian coordinates
displacement at time t of a point x,y on the panel

defined in equation (59)

defined in equatioms (6)

defined in equation (61)

boundary layer displacement thickness
defined in equation (20)

defined in equation (46)

defined in equation (74)

defined in equation (48)

constant appearing in equation (73)

constant appearing in equation (73)

defined in equation (32)

defined in equation (33)

defined in e quation (66)

defined in equation (49)

defined in equation (74)

generalised ooordinate for the mode m

density of the plate material

density of air

time difference

sound intensity defined in equation (7)
R g
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SYMBOLS (Contd)

autocorrelation function for the pressure, defined in
equation (1)

velocity potential given by equation (8)
defined in equation (14)

correlation function for the exoitetion, defined in
equation (42)

circular frequency

natural frequency of the panel in mode m
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1 INTRODUCTION

Turbulent boundary layer pressure fluctuations excite vibraticn in an
aeroplane fuselage skin and the skin in turn radiates sound into the inside of
the fuselage, The higher the speed of the airoraft, the greater are the
boundary layer pressure fluctuations and consequently the higher is the intensity
of the sound radiated from this source into the inside of the fuselage,

Several writers have been concerned with the determination of the intensity
of sound inside the fuselage, Owing to the complexity of the problem a great
deal of idealisation has been resorted to, The fuselage skin is replaced by a
flat surface and the boundary layer pressure fluctuation is assumed to be
independent of the vibration of the surface., The vibration of the surface will
be influenced by the back pressure resulting from the radiation of sound on both
sides of the surface so that, strictly, vibration of the surface and radiation
of sound are coupled phenomena, However, it is assumed that for a surface
vibrating in air the back pressure can be teken into account by incorporating a
damping term into the equation of vibration of the surface.

Ribner1 considers the surface to be a flat plate without any supports and
predicts the sound intensity by considering travelling ripples in the plate and
assuming that the spatial pattern of correlation in the turbulent boundary layer
is rigidly convected, Corcos and Liepmann® consider the seme problem as Ribner
but their method is more general and allows for a more general description cf
the boundary layer fluctuations,

Kraichnan3 considers the flat surface to be made up of an array of equal
rectangular panels, each simply supported at its edges. The intensity of the
radiation is obtained by multiplying the velocity of & point on the vibrating
panel by the pressure at that point and integrating over the panel, Several
approximations are made in the ensuing analysis in order to get results.

The problem considered by Dyer# is that of the radiation of sound into a
rectangular box of which a flexible rectangular panel forms one side and the other
sides are pressure release surfaces. The flexible rectangular panel is excited
by a turbulent boundary layer, The rectangular box is filled with water and in
this case coupling of the plate vibration and sound radiation is oconsidsred,

Experimental work has been carried out by Ludwig5 when the flat surface
consists of one rectangular flexible panel in a rigid surface, The sound
pressure level in a reverberant chamber enclosing the panel was measured and this
was related to the total sound power radiated by the panel.

In this paper the flat surface again consists of one rectangular flexible
panel in a rigid surface, The nature of the pressure and the intensity of the
sound radiated are investigated at large distances from the panel and on the
other side from the one in which the turbulent boundary layer is present. The
turbulent boundary layer is assumed to be flowing in the direstion of one of
the panel edges., Explicit expressions for the pressure power spectrum and the
intensity are obtained for points on or near to the normel through the ocentre of
the undisturbed panel,

There is not a great deal of agreement between the results given in the
papers mentioned above, In Refs, 1, 2 and 3 the intensity of sound radiation

o
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is equal to the power per unit area radiated. In Ref, 4 the total power radiated
is measured, In the present paper the intensity at points near to the normal to
the panel is obtained, and this is not simply related to the total power radiated,
The results are therefore not direotly comparable, Nevertheless we do find

qualitative agreement between the results of Corcos and Liepmann® and the present
paper, .

-

2 RADIATTION FIELD OF A VIBRATING PANEL

A set of right-handed rectangular ocartesian coordinates X, ¥, 2z are chosen
with x and y-axes along two adjacent sides of the reotangular panel and z-axis
normal to the plane of the panel when it is undisturbed, The origin is taken
as any oonvenient point, for example the bottom left-hand corner of the panel,

Let the excess air pressure over the undisturbed pressure be p(x,y,z,t) at
a point (x,7,z) at time t, Then the autocorrelation funotion ¢(x,y,z,1:§ of the
pressure at the point (x,y,z) is defined by

i
ke
¢(X,Y:z"c) = lim E&.‘[p(X,y,Z,t)P (x,y,z,t+ 'E) at (1)
Too T X
and this is an even function of =,
The power spectrum P(x,y,2,0) of the pressure at the point (x,y,z) is then .
defined by
5
P(x,7,2,0) = / $(x,7,2,7) exp (ior) du (2)
-0

and since ¢(x,y,z,t) is an even function of T this is a real even function of
w which alternatively may be defined by

o0
R(5,3,2,0) = 2f $(x,7,8,%) oos (wr) ar . (3)
o
By Fourier inversion of (2) we get

2 o0
$(x,3,2,%) = 2= [ P(x,7,2,0) exp (-iwr) d
! ;
00
= %j P(x,y,2,0) cos wt dw . (&)
o}

The mean square excess pressure at the point (x,y,z) is then

0

i
P = ¢(x,y,2,0) = %fP(x,y,z,w) do (5)
o

P
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Instrumentation is available for measuring the power spectrum of the pres=
sure, so for that reason we shall investigate its nature in the present problem,

We shall also be interested in the intensity of the sound radiated at large
distances from the panel,

If the fluid particle velocities at the point (x,7,2) at time t in the
directions of x,y, and z are respectively u(x,y,z,t), v(x,y,z,t) and w(x,y,2,t),
then the average flux of energy in the direotions of X,y and z are given by
Yyr ¥y and ¥,» respectively, where

b 4
T
e ™ 1im'g"T‘ /P(X3YJZ:t) u(x,y,2,t) dt ,
o0 3
r
P | \
Yy = llm'z“'T' fp(x,y,z,t) v(x,y,z,t) at ’ (6)
o0 |
Tg }
R, | ; )
Yg = llm'é",f p(%,¥,2,%) w(x,y,2,%) dt e
T
=T

These fluxes of energy are the components of the intensity veotor at the point
XyYs%e The magnitude Y(x,y,z) of the intensity veotor is therefore given by

Tlragya) 2 4?2 @
If the displacement at time t of a point (xo, yo) on the panel is given by
the function Z(xo,yo,t), then according to Rayleigh (Ref, 6 page 107) the
velocity potential ¢ (x,y,z,t) at the point (x,y,z) at time t is given by the

formula
r dx dy
_—— 2. i X it
9(x,7,2,%) = 2% 3t 4 xo’yo’t a T, (8)
pane
where
wumuwiﬂmenwwE,_é.
: r, = J(x—xo) * (y=y,)+ 2 (9)

and a, is the speed of propagation of sound.

The pressure p(x,y,z,t) is obtained from the linearised Bernoulli equation
and is therefore given by

3
p(x,7,2,8) = ~p_ 57 0(x,5,2,t)

e 1 [ 2¢ Yo\ o Fo
g g )
ot 0
panel

where p is the density of air,
The pressure autocorrelation function, defined in equation (1), is then

~8~
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1 o
¢(x,7,2,7) = l:un-—/d / / Z(x v t...—->
il i Be ™ IR a0 L

i panel panel

2 r ;
9 $ia 8 90 i
il B . (Jco’yo’JG Vit a.;> % e e SRy Wy (11)
where
J(X-X') +(y -3 Ve (12)
Now
1 2 r a2 r;
lim -Z-T-f i Z(o’yo t -3.—>-—§ Z(x',y' t+7 -;—) dat
L ot o/ ot o
r
Premal
ra 2 2 r -r!
B d s o
= 1inm o= S 7(x_,¥y_,t) =3 Z<x‘,y',t+ T+ )d‘b
Moo ar _T_.f.‘l a132 o bl at2 o’vo e,
%
1 4 3 4 il
=lim-—/ s Z(x _,¥y ,t) == Z(x',y‘,t+'r+ > dt
iy 27 8 a-‘_’2 ol at2 o’ o a,
/ ro—. I"o
% '\xosyoyx:),y:); I a > (13)
o
where we define
i A ) iy ) )
% (x Y ,x',y','r) = lim f Z(x 3Y o9 t Z(x‘,y' t+)dt o (14
0807 0% 0 Toco 2T at t

If therefore we perform first the integration with respect to t in (11)
we obtain

2
P r -rt\ dx dy dx!ay!
¢(x,y,z,'c) * __0_2_ // ff X(oyyo,xo:y 3T+ oao O> Or =2 Or'o (15)

panel panel 2 4

»
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The particle velocity is given by the gradient of the velocity potential,
Its components are therefore obtained from (8) as

oI 2 r r o (x- xo)
e e g <o s SN O | wends
U(X:Y;zat) 21 / j\:aor 2 Zéco,yo,twa> T3 9% Z<xo’yo’t"ac>] Ty d'xodyo

|

oot (6] r
pane. o
ser (16)
2 r T
wdf e 30 oy ¢ i o\ (y-¥
v(x,y,z,t) T 2R [[[a r 2 Z<ko’yo’t“aa> t "3 5¢ 2 xc)".yo"t"'a, o)dx dy
~ o oot r 0 T oo
panel ° _ ' o
ies KAT)
2 r r
1 AT, 0 o 0
W(X;Y9Zat) = ox [ jl:a r .. 2 Z<xo)yo,t"‘"a‘:> & "172_‘ 3% Z<Xo’yo,t‘;->]'§' dxo dyo
o oot r o 0
panel 0
eea (18)

The intensity is obtained by substituting expresslons (16), (17) and (18)
for u(x,y,2,t), v(x,y,2,t) and w(x, ,%,t) and the expression (105 for p(x,y,2z,%
into equation (6) and then using (7).

If JxT+y s ;2 is much greater than the diagonal of the rectangular pensl
much simplification occurs since then r, changes only little over the area of the

panel and certain terms in the integrands can be teken as effectively constant.
The expression for the intensity may then be approximated by

T
P 42 . 82 : 3
Y(x,y,2)= —%L;LITQ llm-g-;l: at f[ [f—-é- Z<x°,y°,t--;§>
L 0" Too Lo ot

panel panel

T
2 rt ; : , r
3 / o & . & ) o
%o 7 xt gt b= =2) dx_dy dx'dy! + =3 lim 3= dtjf f/—(z:: t—-:>
a1_,2 ot o? a G0 £u0. o0 r3M2T_ 3t P "a
panel panel
5% o
[ 1 - e 1 1
><at2 Z(xo,y & = dxo d;yo dxo dyo‘t\
L "ro-rédXd ax! ay?
> _2L 2 fj j/x(xo,yo,xo,yo, a > o Yo “o Yo
Ly a,r 0
parel panel
1 - 50 ro_rio
+ ~% / ] / j A<xo,yo,x:),ys, . > dxo dyo d.xé dyé] (19)
Yo
parel panel >
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where
P
' . d a*
Syt = Mady [ Fale,y,t) Liaatrten) st (20)
Tooo </, at
and
r = \/x2+y2+ 22 (21)
Very far from the panel
1 [ ro-r;
t | 1 L §
b r2 // // X<xo’yo’xo’yo’ &, >d.x° dyo d'xo d'yo (22)
e panel panel
will dominate over
1 s ; Fartd
S 1 t 1 4 | n
r3[./ // A(xo’yo’xo’yo’ e, > d'xo dyo dxo dyo (23)

panel panel

and the second term in equation (19) may be neglected, In this case we shall
say that we are in the far field, When ,]x2+ y2+ z2 1s much greater than the
diagonal of the reotangular panel, and the second term in equation (19) may not
be negleoted, we shall say that we are in the intermediate field, 1In the far
field the intensity is then given by

r -pr!

Po T g "a
1(x,y,2) = ———-—// // x<x o % SN )dx dy_dx'dy' .(24)
lmza. r2 0’V 0’ 0?p? a, 0 V0 D e
B parel panel

On ocomparing equations (15) and (24) we get, in the far field, the relation

P ~ (25)

so that the intensity is closely related to the mean sqﬁare pressure, In the
intermediate field no such simple expression holds,
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3 VIBRATIONS OF THE PANEL

The olassical partial differential equation governing the vibration of
the panel is

2
B 51—% +DVZ = £(x,3,%) (26)

ot

In this equation M is the mass per unit area of the panel, f(x,y,t) is the
exciting force per unit area and D is the rigidity occefficient defined by

E ho
12(1 = 0°)

where h is the panel thickness, E is Young's modulus of the plate material and
o is the Poisson ratio,

(27)

The exoiting force per unit area f(x,y,t) arises from the pressure
fluotuations in the boundary layer and also from the unsteady pressure distribu-
tion arising from the vibration of the panel in air, We shall assume that the
pressure fluctuations in the boundary layer are not affeoted by the vibration of
the panel, The contribution to f£(x,y,t) of the unsteady pressure distribution
arising from the vibration of the panel is a complicated integral expression
in Z, and substitution of this into (26) would lead to a complicated integro-
differential equation. To make the problem tractable we shall make the
assumption that the contribution of this unsteady pressure can be taken into
account by adding a virtual mass to M and bringing in a damping term
b %% on the left hand side of equation (27), The f(x,y,t) on the right-hand-
side will then arise entirely from the pressure fluotuations in the boundary
layers

The values to be ascribed to the virtual mass and to the demping coefficient
b are difficult to estimate, However the virtual mass ean be expected to be
small in comparison with M so that its effeoct is small and can be negleoted.
For a rigidly osaillating infinite plate the acoustioc damping coefficient b would
have the value Zpo age This value may need modification for application to a

finite vibrating plate, There will also be a contribution to b from the
structural damping and this contribution will depend on the plate thickness,

We take therefore, as the governing equation of the panel vibrating in

air:
4%5 A 4
M == +b== +DV'Z = f(x,y,%) (28)
352 ot

where f(x,y,t) is the exoiting force arising entirely from the turbulent
boundary leyer pressure fluctuations,

“ A2
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The natural modes of oscillation of the panel satisfy the differential
equation

2
udfinvtz = o (29)
3t

and also certain conditions at the edges of the panel,
Let
Zz = e(x,y) exp (iwt) (30)
satisfy equation (29), and the conditions at the edges of the panel,
Then

v* e(x,7) - 22 e(x,y) = O (31)

where i
Sl
7\ o JD ] w . (32) .

Equation (31) is satisfied for only a disorete set of values of A for the
given edge conditions, and to each of these values of A\ there corresponds a .
function e(x,y) which we call a modal function,

The disorete set of values A may be numbered and then the mth member is
denoted by A and the corresponding modal funotion is denoted by em(x,y). The

mth natural circular frequenmoy w is cbtained from (32) end is

o = J% o (33)

The modal functions em(X,Y) are orthogonal for clamped or simply supported
edge conditions, and we normalise them so that

| / f e, (%,7) en(xy) ax ¥ = Sy | (34) .
panel

where 6m 3 is Kronecker's delta,
9

If, for example, the panel is simply-supported at its edges the natural
circular frequencies are given by

i m2 m2
o = ﬂz\g(-;“g) (35)
o .

d
and the corresponding modal funotions are

m, Tx B 7Y
em(x,y) = .W/'-cz—:?d sin <—16—> sin( i ) (36)

- 13 =
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where o and d are the lengths of the sides of the panel parallel to the x and
y axes respectively,

The integers m, and m, are associated in a one-to—one ocorrespondence
with the integer m,

If the panels are clamped at their edges then there is no analytio
expression for the natural frequencies and the modal funotions, The natural
frequencies and modal functions may nevertheless be obtained to good accuracy
by an approximate procedure such as the method of Raleigh-Ritz, provided the
mode shape does not have too many peaks and troughs over the area of the
panel,

Following Pawell’ we shall write the solution of equation (28) as an
infinite series in the modal functions:

2= ) elny) () (57)
n
where E,m('b) are functions of time only and may be regarded as generalised

coordinates,

Substituting (37) into the differential equation (28) and making use of
(31) and (33) leads to

zsmcc,y) {M E(8) + 5 £,(8) s 02 HE(D)] = £(x,0) (38)

and then using the orthonormal property (34) we get

E (6) +8 & () + 0’ £ (%) = £_(5) (39)
where
B = (40)
and
£.(8) = %f] £(x,y,t) e_(x,y) dx dy . (1)
panel

The function f(x,y,t) is a complicated function and there is no hope of
determining it either experimentally or theoretically. However the correlation
function of the excitation

4
VY(x,7,x47,%) = lim-%ﬁl £(x,y,t) f£(x',yt,t+7) dt (42)
Tooc

ae Al
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is believed to be a well defined function which is well behaved, and which
can be measured, We shall assume that the function ¥(x,y,x',5",%) is given
as the description of the turbulent boundary layer excitation.

The power spectrum Q(x,y,x',y',w), sometimes called the oross power
spectrum, of the excitation is defined by

Q(x,y,x',y',w) # / W(x,y,x'aY"T) exP(iw'r) az (14'3)

and, alternatively, this function might be given as a description of the
turbulent boundary layer excitation,

The displacement function Z(x,y,t) corresponding to the exoiting funetion
£(x,y,t) is also a complicated function, but the correlation functions (14) and
(205 are well behaved, Ve ocan give expressions for ¥ and A in terms of ¥ or

Qe

By use of equation (37) we get for the correlation funotions X and A the
series

X(5,35x',3",7) = E z ea(x7) eg(x,31) 5, () (1)

A(x:y:x' :y':":)

z Z oY) e (x'yt) wy L (n) (45)

.

where
(<) L[ & ) & (46)
Z (1) = limgs | =5 E (t) =5 E_ (t+) dr L6
myn Moo 2'.[‘-00 a,l_‘2 m atZ n
and h
1 3 g
ty,ol®) = m'ﬁf T &® 258, (44 as (47)
Define i
@ = [ %, (%) exp (1) s (48)
vm,n(w) = f p.m’n('r) exp (iwr) dt (49)

- 15 -
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and

LR l Qx,y,x',5t,0) & (%) e (x',y",) dx dy ax' dy* « (50)
panel panel

Tt follows from equations (39), (41), (42) and (43), as is shown in
Appendix 1, that :
L

o Ll AR ® T, (51)
w) = —=
e s 12 [—w2+ iBw + wi][—wz— 18w+ wi]
-
3 in” R n(w)
vy (@) === 2 5 (52)
B 2 [-w2+ iBw + wi][-—wz- 1Bw+ wi]

The pressure auto-correlation function is cbtained from (15 end (bk) and is

2
P i U (X »y ) € (xé,y") ro-r
i =Xz 4:2 ” ” . 30 = %o ) ém»”(“ % )%
m n

penel parel
x ax! ay!  (53)

The power spectrum of the pressure in the far and intermediate fields is
obtained by taking the Fourier integral of ¢(x,y,s,T) according to equation (2)
and is

5 i e (x,7,) en(xL,v})
P(x,y,2,0) = ZZ«-—Z- ]4 ff - o ax dy  ax! dy!
— L b péné ) o

panel

-0
— 0 o ) it
=Z =50, [ | i e . it 08 (ro”é)]
W w b panel panel ¢ v "

1 t
X dxo dyo dxo dyo
5 . wl"

P 7 Z R (@)
ln-')tzMz Lo b [-oo2 + ifw+ wi][—m2- iBw+ w121]

e (x_,7.) g (=l ') iwr
Moo _iw ntiatro ‘ t
X [ f T, exp < 2 r() dxo dyo / [ - C: exp( a dxo dyo

(54)
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The intensity of radiated sound at the point (x,5,2) in the intermediate
field is cbtained from (19), (44) and (45) and is

Y(x,y,2) = h—ﬂ"[a i Zz // / em(xo’yo) en(xé,y;)

n panel panel

x & ( >d.x dy, dax} dy'+——-ZX / // en(x,¥,)

panel panel

T - !
x e (x5,yt) uy ( s °> dx, dy, dx! dyg] . (55)

a
(o)

In order to evaluate this expression the functions . ('1:) end p_ ('l:)
must be obtained, The function Rm (w) can be determlned from equatlon (50)
and then 6 i (w) and v n(w) are determined from equations (51) and (52), The
funotions Z, ('l:) and p. ('1:) are then obtained by teking the inverse Fourier
integrals of,e (w) and v n(w). The process involves taking the Fourier
integral of to obtain Q at the beginning and then teking an inverse Fourier
integral at the end, These processes oan be effected analytically,

On taking the Fourier inverse integral of 6. n(m) and using (51) we get
2

o0
fan@ = [0, (0) exp () a0
o
o 4 .
3 ) Rm,n(w) exp (-diwr) dw i
- / 2 - PR il (56)
2rM” [~0+ 1Bw + wm][-w - 18w + w ]
We can show that (see Appendix 2)
° b
i @ exp (wr) du = 8(1) +5_ _(7) (57)
27‘_00 [-w2+ iBw+ wi][-—wz-—iﬁw+ wﬁ] o“wr

where 8(7) is Dirac's delta funotion and
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2
“’ﬁ" 28%02 +ip" - 180, (27 -p?)
Sm,n(T) = s 2 2 E e exp (” % ~ o )T
2i o,n[wn—wm-ﬁ - 2:.ﬁa.n]
2.9 .
wi-— 87w + %(34+ iBa (aoi—ﬁz)
- exp i + 3 1w
210, [mz-w2-62+ 2iBa, ] s B
AYn n n
>0
wg‘- 2{32002 + —12-;3["- iBa (2002-32)
8, n('r) = 3'32 iy Z L exp <% + da_ )fc
’ 240, [u)m—-wn-ﬁ -ZiBa.m]

L 2 ad gl el 2 2
© =28 w"+ BT+ 180 (2w°=p%)
L i z i exp(g—ia.m)'r

2 2 D .
240, [wm~wn~B + ZZLBCLm]

—

>0 (58)
with e —_—
2
2
Cbm = \Lim Lt % ° (59)
The right hand side of equation (56) may then be replaced by a convolution
integral and we obtain

San® = L [180) v, @I r, (r-u) o
- L {rg.0 [ 8a,u00) Ty o) o] (60)
where -
Tpa(® = 22 [ Ry () exp (<o) @
- 1 | [ ¥ (g3 0 x88,7) &, (e ) &, (xl,y8) ax, dy, axt ayt. (61)
panel pane

On taking the Fourier inverse integral of v o o(@) and using (52) we get
2
ocQ
1
pm,n(ﬂ:) = 5 vm’n(w) exp Ciwt) dw

-

- R ’
W dw Rm,n(w) exp (~iwt) dw . (62)

2
o o 2+ iBm-vazl][-wz- iBw+wi]

oo['-(n

Al i
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We oan show that (see Appendix 2)

°° —:i.oo3 exp (=iwt) dw
.217.;. / 5 5 5 e T ('l.') (63)
2, [=07+ ipw+ mn][-w - iBw + wn] e
where & :
(6= 28%07 +46%) 1pa (2" =) -
Tm,n('c) = - exp (— R ian/ T

2an< "™ é‘é% (wn— wi- B = 2iBo.n)
( L

2{3w+ L")+iBa, (Zw—B) <
e -

2a.n a.n+-2-§>(w -w -B +2:Lea.)

T 500

(0F = 28202 $18%) = 1 2w
. : (T) (Dm 0) +"B ) ‘30» ( -B ) o (g i iq,m>

2a, a.m--ég>(wm~wn-{3 +25.Ban)

m

(0!~ 25202 + 36*) + 62 (202= %) Trige
+ - 20
2a_(a +5@->(w g L~ B +2:I.Ba.) exp<2 m>T
s <0 . (64)

We notice from the definitions (57) and (63) that

d Tm’n('r) = 8(t) + Sm’n('c) (65) .

and this can indeed be verified by using the expressions (58) and (6L).

The right hand side of equation (62) ﬁlé,y now be replaced by a convolution
integrel so that we obtain

o™ = =3 f 7, n(®) T, () au . (66)

=00

The intensity of the sound at the po:Lnt (x,y,2) can then be evaluated using
(55), (60) and (66y. il

19 =
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If v x andoz >3 ¥ then T, and r; are praotically oconstant for all

points on the panel, and
r =rt=0 ,
0 )

This is true for points rear the perpendicular through the centre of the
undisturbed panel and then sound signals leaving any points on the panel
simultaneously will arrive at the observation point simultaneously, In this
case the expression (55) for the intensity simplifies to

p s Sy S
) = gt V) 4,0+ L) Y nnu, @) @)
b " . ¥ @0

(o)

where

H = “ e (x,y) & dy (68)

panel

For a panel with simply supported edges the expression for Hm corresponding
to the modal functions given in equation (36) is

o= 2 )i - (0
m m1 m2

- o<m11m2> . (69)

In this case also the expression for the power spectrum given in
equation (54) simplifies to

|

2 L

2 o Py . H H o Rm,n(w)
TSN T SRR 1 2 Sor. .o 2

L [~ +iﬁw+wm][-<» - 1Bw+ wn]

(70)

s>~

and the mean square pressure, obtained from (53) by putting © = O, becomes

2
—'2' pO L e
p=Mmm®=;§ZL%%%ﬁ% (71)
m n

L EVALUATION OF THE EXPRESSTIONS

In order to evaluate the integrals we must know either the correlation
function V(x,y,x',y',7) defined in equation (42) or the power spectrum
Q(x,y,x‘,y',ws defined in equation (L43).

The funotion ¥(x,y,x',y',%) is to be substituted into equation (61) and
the integration carried out, It is not likely that this integral can be
carried out analytically even if an analytical expression for w(x,y,x',y',w)
is known, Numerical integration is, however, possible for any given value
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of T, Care must be exercised in using the numerical procedures when the modal
nunbers m and n are high for then the funotions em(x,y and en(x,y) become

highly osocillatory over the extent of the panel, This oscillatory behaviour 4
of em(x,y) and en(x,y) is responsible for a rapid deorease in the values of

D n('c), at a given value of 7, when m and n inorease and leads to rapid
H

convergence of the series involved,

In a turbulent boundary layer whose thickness grows only little in a
distance of order of a panel representative length the correlation functicn
¥(x,y,x',y',7) may be taken to be a function of X=x', y=y! and © only, i,e.
the pressure field may be taken to be homogeneous, The maximum value of
¥(x,y,%x',y',7) oocurs when x = x', y = y' and © = O,  Also y(x,y,x!,y',7)
becomes small when |v| becomes large, This in turn indicates that o n('1:)

2
becomes small when l’tl becomes large, and in fact I‘m n('v:) will become effectively
b4

zero outside a finite range of ©, The evaluation of the infinite integrals in
equations (60) and (66) may then be accomplished numerically for the integrands

become effectively zero outside a finite range of u, The sound intensity is

then obtained from (55) by evaluating numeriocally the integrals ocourring there,

Also the mean square pressure can be obtained from equation (71). A

To obtain the power spectrum P(x,y,z,w) from equation (54) or (70) we
nust evaluate Rm n(w + An expression for Rm n(oo) is found by teking the
b ]
Fourier inverse of equation (61). This is :
o0
Rm’n(w) = f rm,n(") exp (iwt) dv (72)
-00
and this function can be evaluated numeriocally once I' _(t) has been obtained at
" mn
sufficient appropriate values of =,
If the power spectrum Q(x,y,x',y',») is given rather than the correlation
function ¥(x,y,x!',y',7) then R o(®) may be obtained from (50) by numeriocal
’
integration, so that the power sPeotrum_P(x,y,z,w) is obtained immediately
from equation (54) or (70),

Equations (51) and (52) may be used to determine o, n(u)) and v_ n(m)
H L
and then Z_ n(fc) and p_ n(’l?) are obtained on inversion of (48) and (49).
3 b "
The intensity of the sound is again obtained from (55).

It may be noted that the evaluation of the power spectrum P(x,y,,z,m)
is easier starting with Q(xo,yo,xé,yé,w) given rather. than with ¥(x,y,x!,y',v)

given, However, if \l:(x,y,x',y','c) decreases rapidly as T moves away from
zero then Q(x,y,x',y',w) will deorease only slowly as w increases, In this
case it is better to avoid using the power speotrum Q(x,y,x',y',w) for
evaluating the sound intensity or the mean square pressure as the numerical
processes involved become very much more lengthy then when ¥(x,y,x',y!',7)is
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used dircetly, If analytic approximations can be made this method of
evaluation may become the easier,

Experiments by W’illmarth8 show that the pressure correlation in a
turbulent boundary layer corresponds to a downstream convection of a spatial
pattern of correlation., For two points, one downstream of the other, the
correlation curve with respect to v shows a deorease in its maximum height and
a spreading out as the distance between the two points increases, For
convection in the direction of the x-axis Dyer* has given the correlation
function,

Ilr(xo,yo,xc'),yé,fr) = £° exp L-x J(Eo—uow)z +;§ - -l-g-l-] ‘ (73)

As a fit of the experimental data which incorporates the most important features
of the conveoted pressure field, In equation (73) the symbols have the
following meanings

[t

E’O x<‘) - xo
: } (7%)
m Ve =¥y

|t}

0

f2 is the mean square excess pressure in the boundary layer
ug is the mean convection speed along the direction of the +ve x=-axis
x,0 are constants.,

The expression (73) oan be expected to be only an approximation. The
correlation curve for two points, one downstream of the other and distance Eo
apart, is obtained by taking N, = 0 in expression (64)s The ourves obtained
for different values of go do not represent the spreading out of the correlation

: i g
curve with inoreasing o2 and there is a cusp at 7 = ;3 o Furthermore, ocurves

)
of constant ¥ on the &, no plane at a given T are circles with centre Eo = U, T,
Ny = 0, showing that (73) represents conveotion of an isotropic pattern of

turbulence, Experiment shows that curves of constant § at given t© are closed
curves elongated along the direction of the flow so_that in fact there is not
an isotropic pattern of turbulence, Multiplying n% in expression (73) by a

constant would change the constant ¥ circles into ellipses, and this might be an
improvement, However for the further work in this paper expression (73) will
be used as an idealisation which incorporates the most important features of the
conveoted field, Kraichnan3 uses a field of convected turbulence which is not
isotropic,

From experimental measurement8 it is known that over a wide range of
Mach number

2

- 1
«j £~ = 0,006 x 5 Py Uo

(75)
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where Uo is the free stream velocity, DyerL" has made the following estimates

for x, © and u, based on experimental measurement: 3

&
R

(76)

o
R
odr-a oo
&>
L

1 o082 U
0 o

where & is the boundary layer displacement thickness.

In praotice & is small compared with the dimensions of the panel so that

1

s is small in comparison with the dimensions of the panel, Also 2> will be

U
o
small in comparison with the fundamental period of the panel,
Under certain circumstances approximations can be made in integrals
containing \[t(xo,yo,xé,yé,'r) given by expression (73). If the nearest distance
from the point (xo + U T, yo) to an edge of the panel is very large compared with ‘

j]_l; and if sn(x('),yé) does not vary much over distances of ((-:;) from the point

(xo +u T, yo) then we can write approximately if the point (xo +uT, yo) is on

the panel.

[ f exp [—n J (8, - um)? + nﬂen(xg,yg) ax! dy!

panel
#g (xcvusiy) exp | -k [(§ ---u't:)2+'r|2 axt dy!
n.eo g.° *g (o) o 0 8.0

whole

plane 3
i - P
o 1c2 ®n (xo Sl yo) i (77) 4

whereas if the point (xo + U T, yo) is not on the panel

[ seffe e T o
panel »

This is equivalent to replacing exp EKJ(EO—uO'r) E+ 'n‘z) ] by -2% 6(5,0- uo'v) S(no)
' K
as far as these integrals are conoerned,

- 2% o
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Then from (61) and (73) we get

A7) = ZK—*;?- exp (igi) f [ e (x,y ) e (x +u vy ) dax dy (79

panel

where em(x,y) is defined to be zero for points (x,y) outside the panel, The

errors introduced near the edges by using the approximations (77) and (78) are
small compared with the total value provided the panel dimensions are very large

compared with d and the Fanations em(x,y), sn(x,y) do not change much over a
distance of O@.

If ¢ moves away from zero, then while uT is still small in comparison with
the panel dimensions, = g will have become a very large number if 6 is very small

compared with the panel fundamental period. This mans that the integral
[f em(xo,yo) en(xo + uo'r,yo) dx  dy (80)
panel

has changed very little in the interval of « for which exp (- JL;.L) has a

sensible value, Henoe in evaluating R (w) from equation (72) we can take the

value of the integral (80) to be the value it has when © = O, This gives
approximately

'—é co
I el ;
Rm’n(w) = [[ em(xo,yo) en(xo,yo) ax  dy f exp( 3 > exp (iwt) dv
panel s
= et & s 8 (81)
K 1+w © '

and this does not depend on the convection speed u .

The factor exp(iwt) in equation (72) will not change much near © = O when
®w is small, but when w is large it will have an osdci llatory behaviour near © = O
and for this reason it must be retained,

From equation (54) it then follows that the power spectrum P(x,y,z,w) of
the pressure in the intermediate and far fields is given by

2 ==
P f' &) em(xo’yo) iwro
s M2 xz (1+m ) ) Z(—mzmz 2+62w2 To & ge

panel

e_(x',y') ior!
/f = ? S o) dx! dy!
r :q:( a o "Vo

0 0

panel
-2 - sis TR2)
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or, near the perpendicular through the centre of the panel we have, using
equation (70) "

4 2

Pare) = BE LG LY e (85)
POV R | W °
i (1+c:o2 62) mf(-w2+ w§)2+ Bzwz T

The infinite series in equation (83) is rapidly convergent in the case of
simply supported edges for when m is large the terms in the series behave like

2
-jil-_ H. By 69 H = O@JE;> and by (35) W = O(m12) + O(mg) so the terms tend to
m

zero rapidly as m - oo

wl" H2
The term ( 2‘;5 >3 of the series has a maximum value of
-0+ W +B W
i
wi 1 “n
s B2 at w = = and if B is very small this term will dominate all .
B i1“ 2 > .@._.
1-
Lo 2(031

the other terms of the series, The power speotrum P(x,y,2,») will therefore
w

m
ﬁ_.ﬁiz
2w
m

Near these maxima just one term of the series in (83) will be a good represent-
ation for the whole series,

have maxima at, or very near to, the values w = when B is very small,

We can evaluate £ n("!:) and n('c) using equations (56) and (62), These
3 ]

funotions must then be substituted into equation (55) to get the sound intensity.

The result still involves quadruple integrals which then have to be evaluated
numerically, A great deal of simplification occurs if the observation point is

near to the perpendicular through the centre of the panel and then the expression

(67) can be used for the intensity, q

With the approximation procedure which we are using for dealing with the

turbulent boundary layer pressure correlation we get s from substituting the 5
expression (81) for R n(w into (56) and (62), the relations
b B

Z (1) = 0 m#n (84)

m,n

pm’n(‘r) = 0O m*n. (85)

Also, since the integrand in equation (62) is an odd function of w when T = O,
we have

4y a(® = 0. (86)

@25 -
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Finally, from (56) and (81) we have

n

b

2& B w dw
ém’m(O) b ;‘--2-::2-/[1+w262][(m2~w2)2 (32 5 Al e

The integral appearing in equation (87) is evaluated in Appendix 2, The result
for Z m(o) is
’

R T %
(‘Dg'-B )+ 0 i } (88)
[1+6%(20> %) + 6" ']

l’-bml

i 1
M 2{[(nez 2 - B°.6%]

The final expression for the :Lntens:n.w, obtained from equation (67), is then

s 2 L
R A o el o A ]
2r? U° & a, r? - 2L+ ezwi)z—ﬁz g2 P ® i o el"wi'l'

5]
*B

N

Shnl® = 2

In the series

ZHZ 1

" [(1+6%02)% - g% 67
2 m m

H

the terms behave like % for large m, For simply supported edges

w
m

o 1
X" 22 -l o
oM O(m,}mz) » O(m1 + m2)

For small values of © summation over more terms will be required for a given
accuracy than for large values of 6,

g N

so that the series is eventually rapidly convergent,

In the series
gy 24
ZZG (wm-ﬁ )+ 0 W
H -— e
m B
m [1+ 62(2m2 - (32) + o wl"]
m m
: 2 x 2 1
the terms behave like Hm for large m, For simply supported edges Hm = et

O(mf mz)
so that the series is convergent but not very rapidly.

Under the same conditions the correlation coefficient given in equation (53)
may be evaluated, A case of interest is when 7 =0 and then it is found that the
%ean square pressure pé at the point (x,y,z) on or near the perpendicular is given

B4

— _
p- = ¢(xy,2,0) = p_ a T(xy,2) (90)

which is the same as the relation (25) obtained for the far field, Near the
perpendicular through the centre of the panel the expressions in the intermediate
field are in faot the same as in the far field when we use the approximate

-06 -
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treatment of the boundary layer pressure correlation for then p n( 0) vanishes

for all m and n. s
5 DISCUSSION ’

Equations have been given in Section 3 which enable the power spectrum
of the pressure and the value of the sound intensity to be determined in the *
radiation field of a single panel embedded in an infinite plane wall and
subject to a turbulent boundary layer excitation.

The procedures for obtaining these quantities from the equations are
desoribed briefly at the beginning of Seotion 4 for the case when either the
correlation function ¥(x,y,x!,y',7) or the power spectrum Q(x,y,x',y',w) of the
excitation is given as a general function, or maybe only as a set of numerical
values, These procedures could be applied directly with the correlation
function given in equation (73).

Simplifications are possible in using the correlation fumtion (73) in
certain circumstances and these lead to equations (82) and (83) for the power
spectrum and ‘}"o the equation (89) for the sound intensity in the far field,
The value of - must be very small in comparison with the dimensions of the

panel and the value of 6 must be very small in comparison with the fundamental
period of the panel for the simplifications to be valid. Also convergence of
the series in these equations must be sufficiently rapid so that terms of the
series which contribute significantly to its sum correspond only to values of *
nm for which the modal functions em(x,y) do not change very much over a distance

of 0(1-1-). It is not likely that this will occur in practical cases so the full

analysis using expression (73), or, if possible, a more representative function
for the correlation would need to be carried out.

In this simplified analysis the convection velocity u 6 of the spatial

pattern of the excitation correlation does not appear in the results. In a more
accurate analysis there would be dependence on this velocity, but in view of the
result of the simplified analysis the dependence may be expected to be small,

In the more accurate analysis the actual form of the modal functions em(x,y) will

have to be known, and in the first instance the modal functions, given in
equation (36), corresponding to simple support edge conditions could be used.
If the number of terms required in the double series (67) and (70) are not very
large, then an attempt could be made using the modal functions corresponding

to other edge conditions,

The decay with time separation ¥ in the ocorrelation funotion has been
brought in by means of a factor e:q:(— g) in equation (73). This has led to a

, introduced first in e quation (81) and asppearing in the results

factor 55
1+0 0
given in equation (82) and also influencing the result given in equation (89).

If the decay with time had been brought in by means of a faotor <1 + ; >exp< |;l>
262 5 would be replaced by ol o o« This would not

1408 | (1+w=08°)°
&l -

then the faotor
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meke much difference to the power speotrum P(x,y,z,w) at low values of w, if the
estimate for 6 were halved, but it does meke an appreciable difference at high
values of w, and consequently mekes a substantial difference to the intensity
calculated, for the contributions to ¥ from P(x,y,z,0) at the higher values of
w are importent, This is also evident from the fact that the infinite integrals
for ém m(O) are more powerfully convergent than formerly. It would appear

2

therefore that the actual shape of the correlation function near T = O is
important.

A somevhat more elsborate analysis than the simple one considered could
have been carried out on the assumption that -;1- was large enough for equation (79)

to be valid, but 0 not small enough for equation (81) to be valid, If the
em(x,y) are given by equation (36) then it is possible to proceed from

B ,(%) to the final results without any further spproximations, but the
3

expressions involved are rather long and complicated,

No results have been worked out from the final equations (82), (83) or
(89). It may be observed from egua_t_:;on (83) that the magnitude of the power

. P 2
spectrum is proportional to -j§ -—g f—-g at small values of w at fixed values of
r M K

and of B. According to equation (75), :f’2 is proportional to pi U): and

—

i

‘ D
according to equations (76), -9-2- is proportional to %— . Henoell_the magnitude of
K ) p
the power speotrum at small values of w is proportional to -1—2- —3 62 U3 .
M

There is no obvious factor of propertionality in the expression (89) for
the intensity, but if B is very small we may write approximately
2
e i) 2 4D .4
Y(ry,) « L4 R e T
2y = 2
& el m1+26227\.§1+6h'p—-7»';

o m M M2

SO Laps

. 2L0R (o} h r
where
2

P2 WDl

B 70 G M?Lm+6 ﬁ?)\m
. m 58 5" L oF

m 1420 =2 +0 = A
M m Mll- m

The result (91) is of the form of the main result given by Corcos and
Liepmann? for the sound intensity in the radiation field from an infinite
flexible sheet subject to turbulent boundary layer exoitation., The form of

- B
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the function g<6 \/ P—) in Ref, 2 is, however, different from that given in

M
equagion (92).  In the form (91) it would appear that Y(x,y,z) is proportional "
U2 &
to — . However, for 2.2 small we have
ph .

D 0°D D
{o/8) =5 = (o) o
where 1{'(6\/‘%) = 0(1) for 9 %% small, A better way of writing equation (91),

in our case, is therefore

2 1 /P3\3 E 3. 3 D\ 1
Y(x,y z) <o (0,006) ..<....> ez (J7 87 I (0 | 22 commmemeems (9)_,_)
e 16x° B\p (1_0_2) 0 M 8, 2
which shows that Y(x,y,z) is proportional to é- Uz 63 for small values of 6\/%

for a given plate material,

In general B = %7[- will depend on the plate thickness, If the acoustic
damping dominates over the structural damping then b is virtually independent
of the plate thickness so f a & o The intensity would then increase linearly

with h, However as h increases the structural demping inoreases end B may be
expected to tend asymptotically to a constant value, The intensity is then

independent of plate thickness for small values of 6 ﬁ- .

The results obtained by R:‘Lbner1 and Kra:n'.c:hna,n3 are different from our
present results. The procedures used and the form tsken for the correlation
funotion of the excitation are however different from ours,

The experimental results obtained by Lud.wig5, for a single flexible
rectangular panel set in a wall 1and excited by turbulent boundary layer flow show

D sz
H—f— in the total power radiated, This cannot be 2
compared directly with the present results for the total power is obtained by
integrating the intensity over a hemisphere of large radius with the wall as
diametral plane, and the intensity will vary with position on the surface of this
hemisphere,

a proportionality factor of

To determine more accurately how the power spectrum and intensity of sound
radiation depend on the boundary layer displacement thickness & s free stream
velocity Uo’ plate thickness h and convection velocity uo, calculations should be

carried out using the procedure described at the beginning of Section 4 and using

an acourate correlation function, perhaps thet given in equation (73). In this

case the term of 0(:3-) will not disappear in the expression for the intensity in
/

the intermediate field near to the perpendicular through the eentre of the panel

20 =
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for in this case R n(w) is not an even function of w giving M n(O) * 0, so
b ’

that the second summation in equation (67) does not vanish., The expression
for the mean square pressure will, as before, not have this term present,
Graphs could then be presented to show the variation with A Uo’ h and Voo

The mean square response and the mean sQuere stresses at points on the
panel can also be obtained by the methods used in this paper in a fairly straight-
forward manner. The mean square response is of course Just the mean_square of

; 2 2
Z(x,y,t) but the mean square stresses will involve mean products of i—% ; g—%-,
X v

3 3 3 b
2 Z, 62Z . 5 ZZ - 2—% taken two at a time, The mean square response can be
ax° ax%dy axdye oy
considered by the simplified procedure described in Seotion 4 but this proocedure
will lead to divergent series in the cases of the mean square stresses and so
a more accurate procedure must be used,

The power spectrum and intensity of sound radiation from several panels
vibrating in a plane may also be considered. If there is no correlation
between the pressures arising from the vibration of different panels then the
power spectrum and intensity are obtained as the arithmetic sum of the separate
power spectra and intensities, Otherwise the correlations of the pressure
arising from pairs of vibrating panels must be teken into account. Ideally
the number of vibrating panels could be infinite but the numerioal procedure
then becomes forbiddingly lengthy,

6 CONCLUSIONS

A theory of determining the power spectrum of the rressure and the
intensity of radiated sound from a vibrating panel set in an infinite wall and
excited by a turbulent boundary layer flow has been given. 1In a simplified
analysis it has been shown that the intensity is proportional to

-
é?gg s Where & is the boundary layer displacement thickness, Uo is the free

stream velocity and B is a coefficient dependent on the damping and mass per
unit area of the plate,
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APPENDIX 1
FORMAL, DERTVATION OF DEPENDENT POWER SFECTRA

We consider the excitation function f(x,y,t) and expand it in a Fourier
series in t in the interval -T < t < T i.e., let

o0
fT(x:y:t) = L AT(X:Ysk) exp <"' i7g<t> it (95)
k=0
where
Jis
2 Geyk) = -%,_:ff(x,y,t) exp <y-%c3> at . (96)
-T
Then
‘ £T(x,y,t) = f£(x,y,t) T <t<T (97)

and fT(x,y,t) has period 2T in t.

We shall replace f(x,y,t) by f‘T(x,y,t) when t is outside the interval
~T <t < T, Later we shall consider the limiting process T -+ . We have

Qs
¥xy,1t) = lngs [ £(x,y,t) £(x',y7,t4 1) at
Too
X
T
- T gfffT(x,y,t) £,y b 1) dt + o o(T)]
Tooo
-T ; .
. g T
T | rlcf\ i
3 = 1i Z ZA (x,5,k) A?x",y‘,&) -é%/ exp,/- &.”.%‘.E) exp(— IMT L >dﬂ
S hﬂ;;;.;o' =, S il i
L _
? = lim z A(x,y,-¢) Alx',y',8) exP(' i’;’“) (98)
Tooo ' : ‘ : :
£ =m0 '

and passing formally to the limit T = oo we get

o0
V(x,y,x',y',T) = -235/ 1lim {2'1‘ A(x,y,-%) A<x',y‘, %Bexp (=iwv) dx»}-
Tooo
-0

chan k0
- 32 -
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Appendix 1
On inverting equation (43) of the main text we get
o0
\l!(x,y,x',y','r) = 'g;[ Q(x,y,x',y',w) €xp ("‘iw":) dw (100)
so on comparing (99) and (100) we get the result
o
lim {ZT AT<x,y,-(-;)-§> AT\x',y', %)} = Qlx,y,x',¥',0) (101)
Tooo
Instead of equation (39) of the main text we now consider
T AN 2 T T
€ (t) +B E () +o ME(t) = £ (%) (102)
where
£(8) = [ [ £(xy,1) )
n i (X;Y.at sm(x,y dx dy . (103)

panel

It may be noted that f (t) coincides with f (t) for =T < t < T, If expression
(95) is substituted for f (x,y,t) in (103) we get

£2(t) = ZBg(m exp (—- i’%—‘% (104)
k==c0
where
B0 = §[ [ My ey e (105)
panel

The funotion £~ (t) is of period 2T and so the function E (t) satisfying
equation (102) is of penlod 2T, Let the Fourier series of £ (t) be

o0 / ;
T(t) = Zci(k) exp (- -’%k% (106)
where
T
) = & [ £y(t) exp <——-”;;‘t>dt : (107)
=T

33 -
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Substituting the expansions (104) and (106) for fT(t) and Ei(t) into the
differential equation (102) and comparing coefficients of exp(- St

5 we get

H{5) -6 (8) + 2] %0 = o (108

from which we can express Ci(k) in terms of Bf](k) by

B (k)

il
c (k) = 5 g (109)
-\ -1iB T )t
In the range =T < t < T we may write
g (8) = E(t) + mi(t) (110)

where 'n?n(t) is a complementary function of the differential equation (39) obtained

by replacing the right hand side of (39) by zerg, This complementary function
will take account of that faot that E,m(t) and E,;ﬁ(t) are not equal when t = =T

and neither are their first derivatives,

When the damping coefficient 8 is positive non-zero and small the comple—
mentary function will be a decaying osoillatory funoction with amplitude of
oscillation deoreasing exponentially as t inoreases from t = =T, This then
leads to the equations

o0
2 2
i . PR e
£ (v) = 11m—] & g%(t) & £5(t+ 1) at (111)
myn - 2T at2 m a1_‘2 n
-0
and
i 2
Sl ag g .1 a7
T n('r) = lim "21‘[ 3T Ea(%) e En(t-a-'v) dt (112)
> oot T 4 3t

instead of (46) and (47).

- B v
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Using the expansion (106) in (111) we get

IR
B
N
i
-
|}

—"DO"-OO

(oe]

& =00

izz ) ¢ (z)<1"'k>2 i e)"“zif [: oxp (- ) e (- 222 s dr,_‘

(113)

°° B(MB(@)(
BLL 6]

and passing formally to the limit T = o we get

00 L
w R (w) exp (iwt) dw
g (x) = = . e (1)
s 2eM° § [~0°+ 180+ 0°][ ~0° = 480+ ©°]
4o + iB u)m - - Bw+wn
where
D 2 T/ Tw\ T /Dw
R,n(@) = %_::1:{2TM B < 7t) Bn<ﬂ>} : (115)

Then, using the formula (105) for Bi(k) we get from (115)

=
ta
—~
g
P
il

panel

panel panel

1]

panel panel

1in ZTf[ <,y, >e (x,y)dxdy/f A(x',y', %) e (x',y') dx' dy'

panel

11m / f[zfr A(x,y,-lh)—> A(x';y' __m£> e (%,7) el‘ J(x,y!) ax dy dx* dy*

// [/Q(x,y,x',y',w) e, (x,7) e_(x',y') ax dy ax' dy" (116)

corresponding with the definition (50),

- 35 =
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Appendix 1
On inverting equation (48) we get
co
N
8,0 = B [ 0,,,00) exp () am (117)
-0
and on comparing (114) and (117) we get
L
w R _(w)
1 m,n
(w) = -5 2 . (118)
e M2 [-<»2+ ifw+ wfl][-w?‘- iBw+ wr21]

Similarly using the expansion (106) in (112) we get

s I 5 et ol ol e |

—-OO

1im 2, -4 BT(e) BT(-&)("T-ﬁj‘ - p<_ iw;)

S ORI ORIOR

© o307 R (w) exp(=iwt) dw

by ()

1]

1
= Y - A (119)
ol b [0+ iBw+w ][-wz-iBw+w ]
n n
But on inversion of (49) we get
1 "
bpa® = & / ¥, n(®) exp(-iwr) av (120)
Hence
3
in” R _(w)
PR € m,n
n(w) ey 2 . (121)

=

[-w2+ iBw+ wi][—wz- iBw + wi]

R
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APPENDIX 2

EVALUATION OF INTEGRALS

(i) It is required to evaluate

ot exp (~iws) dw (122)
m, n i 2
[-oa + iBw + w ][-w - 1fw +w_ ]

e can write the integral as

_.,[ T

w (w + W -{32)+iﬁw (w ot -—wi wi
Wexp (=iwT) dw

"

Im,n(w) (co —w2+ 1[30))((.0 - —iﬁw)

i

8(v) + Sm’n('r) (123)

where 8(%) is Dirads delta function and S, o(7) is given by
2

][—‘w (w +w2~[3 ) + ifw (w w) wiwn

exp wt) dw o (124)

|
5,07 = = :
(c.o il Bw)(w -0 = 1ipw)

The integral for Sm n(q:) will be evaluated by means of complex contour

integration and an application of Cauchy's theorem of residues.

Consider the function
2ar 2 2 2 2 2. 2
0 W+ =)+ 1pw (W =0’)-w
m n m n m n exp (-iQ)T)

il

F_(w)
" (wi- 0>+ iﬁw)(uorz1 BIpe. iBw)

w (w +w 2) + iBw (w - )-—m;?1 i

(=0, (0=0,) (0=05) (@ ~a,)

where Wy Woy w5, ), are the zeroes of the denominator given by

i AR
By * "29""‘::1 Qo BT Py
(126)
Ty cir o M
003 = +C(.n w1+ G,n
2 ats D SR SR e S S L R L e
b2 -8
- a’m gl m_l_l_ (127)
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Fm n(w) has simple poles at the zeroes W5 Wo, w3 and @), of the denominater,

Let the residues at these poles be R1, RZ’ R3 and R4 respeotively, Then .
2

VAT S O R SV
W, (wm+wn-(3 )+1§w1 (wm-—wn)-(om o 4
il (W, =w,) (0, =w,) (W, -~ ) i (-19.)1’5) 3
1 2 1 5 1 4

(A)h'— 262 0)2+-;- BL"_l_ 1P, (2002- 32)
o g e ar : 4 S <%- i-‘:bm)'r (128)
ZG.m [wm"‘*’n"ﬁ + 2iB a,m]

B g Al i 7 - BN
oo =B 0w +g B =i o (=)
R, = ® m_2 - = exp Ei1a Ve (129)
44 m

2 2 2 .
-2 [(»m-wnnﬁ - 2i8 cx,m]

Ty ity k. b il - SR
W -8 0w +sp =if a (W ~p°) .
Rl B2 3 Nen exp(—%-' \ (130)

R 7
2 2 2 2 n
2°'n [wn—wm-B - 28 a,n] )

2 ;
wﬁ- 28 wﬁ+% BL"+ ig a (2@);—{32) ] (_ B,

ia,n>'c « t13)

2 2 & .
-2 [wn—-wm—ﬁ + 2ip o,n]

The contour chosen for the evaluation of Sm n('r) is the real axis and an
3

infinite semi-circle with centre origin and real axis as diameter. When vt > O
the integral over the semi~circle in the lower half-plane vanishes so

Sm,n(’”)' = =i (R3 + RA) L Je-h ¢ (132)

When v < O the integral over the semi-circle in the upper half-plane vanishes
s0

Sm,n("’) = i(R +R) 7<0. (133)

The equations (132) and (133) lead to the equations (58) when the expressions (128)
to (131) are used for the residues R1 to RL(

(ii) It is required to evaluate

) 5 F
~iw” exp (=iwt) dw
P
T,n('r) 5 o z . (134)

5
: [—w2+ 18w + w‘][—wz—i3(0+oo
- 00 m

n

-
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We write the integral as
) 2 2
o (W +w -B )+:|.(3w(w—co)
7 (q:):-l— il oy n’ ’n mnexp(-w'r)dw
m,n an w 2. o5
e w(com-w +:.ﬁw)(u>n-w —1(3(0)

—
i S wz(w2+w2-B2)+iBw (wz--mz)-u)2 P
: . &R i e T - _
= 11m-é-/+[ -l i oy :lexp(-im'r)dw
g>0 w(w =0+ ipw) (@ =0 - ipw)
- e m n
=H(z) + V n(’t) (135)
where
-g oo
H(r) = 1im-21-£f+/ -;i exp (=iwt) dw (136)
&0
=00 €
and
-& oo 2, 2 2 2 2 2 2 2
-. 0 W+ =)+ 1w (Wi=w)mn® w
Vn('r)=1im-%-€/ /-—i g E ;—‘Lm L exp (~iwT) do,
’ g0 w(w” =0+ ipw) (W = 0 = ipw)
m n
was 15D)

Evaluation of (136) is straightforward and gives

-% a>0
H(w) = (138)
%<0

The integral for Vm n('r) will be evaluated by means of complex integration
?

and application of Cauchy's theorem of residues.

Consider the function
2(u)+w— )+ Bw(w-oo)- 5e
G (W) = =1

o w(wm+ oale-r iBw)(oo —wz-iﬁm)

B

“n exp (~iws)

2, 2 2.2
w (w o B)+1{3w (w —w)-w ®
= =3 w?m—w1)(w-wz)(w~w3)(w-w4? = exp (~dwr) (139)

w, are given by equations (119).

where Wy, Wy w3,
- 39 =
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Gm,n(w) has simple poles at the origin and at w,, ©,, wz and @ . Let

the residues at these poles be Ro’ R1, R2, R3 and RL_r respsctively., Then

R, & e (140)
, @i-28%024d 8% 1100 (202-p2)
SR T ot Bl exp(%-iam\\'r (141)
. (wh~262w2+1ﬁh)-i{3a (2 w2—52)
R2 = -;- Lt B 2 2 L exp (% + iﬁ.m> T (142)
cx,m<-:1‘fi - a >(w2—m2-—62-—245 & ) e
2 RISHE N sl
R e §. .
v (0 =28% w 45 pT) ~iBa_ (20 - g°)
Ry = -3 —2 n_2 S exp <“%‘i‘”n>" (14:3)
i I & ;
o <— %+ a,n> (wn-wm-Bz- 2ipa )
2 e
5 (wi-ZBzwn-:--;-BL*) + 1B (Zw:i-ﬁz) 6 \
R1+ = -2- €exp <— 5 + mn) T ('Mlp)

i 2
°‘n<‘ 'Jf?_@' + a,’> (wi-wm-62+ 2iB cx.n)

The contour chosen for the evaluation of Vm n('r) is the real axis, indented
2

by a semicircle of radius e and centre origin, and an infinite semi~circle with
centre origin and real axis as diameter, Whent > O the integral over the
infinite semicircle in the lower half-plane vanishes » 80 we integrate over a
contour in the lower half-plane and then on meking € » O we get

Vm,n(fv) =. -1 <R3+ R)+ - % R°> 50 (145)

When © < O the integral over the infinite semicirecle in the upper half-plane
vanishes, so we integrate over a contour in the upper half~plane and then on

making € -+ O we get
’\rm,n(ri:) = i <Ri + Ré "';12' R°>' T > 0 . ’ (146)
Henoce : o
: - i (R3 + Rl,.) 'r.> 0
'l‘m’n('s) = (147)
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The equations (147) lead to the equations (6k4) when the expressions (141) to (144)

are used for the residues R1 to R,+.

(1ii) It is required to evaluate

. L
1 4 W
el dw . (148)
m 2% 1+w262 (-(»2+m2)2+(32 w2
e m
Consider the function
F (@) = =—— o (149)

1+0°0 (-wz+w§1)+(32w

The denominator of this function has six simple zerces, Byp Vo Bgy 0, Bg and
we where

i
Wy B =g
i
vs ® 8
- 38
w3 e 2 +a,m \
i (150)
Wy, = G e,
- a8
(.05 = 5 +a,m
i)
w6 = "—29"'01111
)

and a_ is given by equation {127),

In this case the integral over the infinite semieircle in either the upper
or lower half'-plane vanishes, If we take a contour in the upper half plane we
find that the value of the integral is

I, = 4 [R2+ R3+ RLF] (151)
where R, Ry ond R, are the residues of Fm(w) at the poles w,, w5 and @)
respectively.

Now
B i ‘ (152)

20 [(1+ e2 wi)Z_BZ 62]

3
R, = ngwﬂ) ¢153)

3 i
L4ig an [1 + 62 <-12é + a,m>2]

i 2 e
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. 3
(35:% - 3
y m/

<

RL.. e L e TR (154.)
| 4 18 o 1+62~i~6—-a\
l_ hul} 2 m/ ,
Hence
L BT
[(1+0‘c\>m) -B° 6°]

2 2 4

4 (w” =B )+62w'
+ 26 : (155)
% ¢ anbroglaiglen s e 2
[1+0 (&a)m-p‘)-i-@" w ]

v i





