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Tlill RADIATION SOUND FIELD OF A RECTANGULAR PANEL SET IN .AN 
INFINI'rE W.ALL AND EXCITED BY A TURBULENT BOUNDARY LAYER. 

by 

D.E. Davies 

SUMMARY 

A flexible panel, set in an infi!1.i~e waJ.l, is subject to an exoitation 
foroe distribution whi.ch oan be desoribed by a oorrelaticn function" The panel 
vibrates and radiates sound. Expressions are derived for the intensity and 
pressure power speotrum in the sound fie2.d at points which are far away from the 
panel in oomparison with the superfioial dimensions of the panel. 

If the excitation of the panel is due to tbe flow1 over one of its faoes, 
of a turbulent bound~ layer, the thickness of vmioh is sm all in oomparison with 
the superfioial dimensions of the panel, then an approximate expres sion for the 
oorrelation funoticn of the excitation force distributicn can be used in the 
evaluation of the expressions obtained. This evaluation has been made to 
determine the intensi~J and pressure power speotrum at pcints on or near to the 
normal through the oentre of the undisturbed panel and on the other side of the 
panel from the one oontaining the boundary layer flow. In this Vlay we oan 
determine the way in whioh the intensity and pressure power speotrum at these 
points depends on the plate dimensions and material properties, on the speed of 
the flow oontaining the boundary layer l on the thickness of the boundary laye~ 
and on the density of and speed of sound in the fluid medium around the panel. 

UNCLASSIFIED 
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SYMBOLS 

speed of sound 

damping coeffioient in equaticn (28) 

length of panel in x-direotion 

length of p~~el in y-direotion 

rigidity ooeffioient 

Young t S modulus 

panel exciti~~ foroe per unit area 

mean square of panel exciting foroe per unit a!'ea 

defined in equation (41) 

panel thicJ.r..ness 

defined in equation (68) 

numerioal values of medes 

integers assooiated with m 

mass per unit area of the panel 

excess air pressure over the undisturbed pressure at 
the point x,y,z at time t 

mean square value of the excess pressure 

power spectrum of the excess pressure 

power spectrum of the .exoitation funotion f(x,y,t) 

defined in equation (21) 

defined in equation (9) 

defined in equation (12) 

defined in equation (50) 

defined in equation (57) 

time 

time 

defined in equ~tion (63) 
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SYMBOLS (Contd) 

fluid particle velooi"ties 

free stream veloci~ 

oonveotion velocity of the pressure spatial oorrelation 
pattern 

reotangular oartesian ooordinates 

displaoement at time t of a point x,y on the panel 

defined in equation (5~) 

defined in equatiol'lS (6) 

defined in equation (61) 

bound~ layer displaoement thickness 

defined in equation (20) 

defined in e~uation (46) 

defined in equation (74) 

defined in equation (48) 

oonstant appearing in equation (73) 

constant appearing in equation (73) 

defined in equation (32) · 

defined in equation (33) 

defined in equation (66) . 

defined in equaticin (49) 

defined in equation (74) 

generalised ooordinate for the mode m 

densi ty of the plate materiaJ. 

densi~ of air 

time differenoe 

sound intensity defined in equation (7) 
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snrnOLS (C ontd) 

autocorrelation function for the pressure, defined in 
equation (1) 

velocity potential given by equation (8) 

defined in equation (14) 

correlation function for the exoitation, defined in 
equation (42) 

ciroular frequenoy 

natural frequency of the panel in mode m 
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1 INTRODUCTION 

Turbulent boundary layer pressure fluotuations excite vibration in an 
aeroplane fuselage skin and the skin in turn radiates sound into the inside of 
the fuselage. The higher the speed of the aircraft, thc greater are the 
boundary layer pressure fluctuations and oonsequently the higher is the intensity 
of the sound radiated from this souree into the inside of the fuselage. 

Several v~iters have been conoerned with the determination of the intensity 
of sound ins~.de the fuselage. Owing to the complexity of the problem a great 
deal of idealis ation has been resorted tOe The fuselage skin is replaced by a 
flat surface and the boundary layer pressure fluctuation is assumed to be 
independent of the vibration of the sur~aoe. The vibration of the surf ace vdll 
be influenced by the back pressure resulting fr om the radiation of' sound on both 
sides of the surface so that, strictly, vibration of the surface and radiation 
of sound are ooupled phenomena. However, it is assumed that for a surface 
vibrating in air the back pressure can be taken into acoount by inoorporating a 
damping term into the equation of vibration of the suxfaoe. 

Ribner 1 oonsiders the surfaoe to be a flat plate w! th out any supports and 
predicts the sound intensity by oonsidering travelli~~ ripples in the plate and 
assuming that the spatiaJ. pattern of correlation in the turbulent bcundary layer 
is rigidly convected. Corcos and Liepmann2 oonsider the same problem as Ribne:r.,1 
but their method is more general and allows for a more gener al desoription cf 
the boundary layer fluctuations. 

Kraichnan3 oonsiders the flat surfaoe to be made up of an array of equal 
reotangular panels, eaoh simply supported at its edges. Tbe intensity of the 
radiation is obtained by multiplying the velocity of a point on the vibrating 
panel by the pressure at that point and integrating over the panel& Several 
approximations are made in the ensuing analy8i3 in order to get results. 

The problem considered by pyer4 is that of the radiation of sound into a 
reotangular box of which a flexible reotangular panel forms one side and the othe~ 
sides are pressure release surfaoes. The flexible rectangular panel is excited 
by a turbulent boundary layer. The reètangular box is filled with water and in 
this oase coupling of the plate vibration and sound radiation is oonsidered. 

ExperimentaJ. work has been carried out by Ludwig5 when the flat suclaoe 
oonsists of one rectangular flexible panel in a rigid surface. The sound 
pressure level in a reverberant chamber enclosing the panel was measured a.nd this 
was related to the total sound power radiated by the panel. 

In this paper the flat surf ace again consists of one reotangular flexible 
panel in a rigid surfaoe. The nature of the pressure and the intensity of the 
sound radiated are investigated at large distances from the panel and on the 
other side from the one in which the turbulent boundary layer is present. The 
turbulent boundary layer is assumed to be flowing in the direotion of one of 
the panel edges. Explicit expressions for the pressure power spectrum and the 
intensity are obtained for points on or neer to the norma.1 through the oentre of 
the undisturbed panel. 

There is not a great deal of agreement between the results given in the 
papers mentioned above. In Refs. 1, 2 and 3 the intens i ty of sound radiation 
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is equal to the power per unit area radiated. In Ref. 4 the total power radiated 
is measured. In the present paper the intensity at points near to the normal to 
the panel is obtained, and this is not simply related to the total power radiated. 
The results are therefore not direotly comparable. Nevertheless we do find 
qualitative agreement between the results of Co roos and Liepmann2 and the present 
paper. 

2 RADIATION FmD OF A VIBRATING PANEL 

A set of right-handed reotangular oartesian ooordinates x, y, z are ohosen 
with x and y-axes along two adjaoent sides of the reotangular panel and z-axis 
normal to the plane of the panel when i t is undisturbed. The origin is taken 
as any oonvenient point, for exam~)le the bottom left-hand oorner of the panel. 

Let the excess air pressure over the undisturbed pressure be p(x,~,z,t) at 
a point (x,y,z) at time t. Then the autooorrelation funotion ~(x,y,z,~) of the 
pressure at the point (x,y,z) is defined by 

T 

<p(x,y,z,~) = lim !rrJp(x,y,z,t)p (x,y,z,t+~) dt (1) 
~oo -T 

and this is an even funotion of ~. 

The power spectrum p(x,y,z,w) of the pressure at the point (x,y,z) is then 
defined by 

00 

p(x,y,z,w) = J' ~(x,y,z,~) exp (i~) d~ ( 2) 

"'W 

and since ~(x,y,z,~) is an even funotion of ~ this is a real even function of 
w which alternatively may be defined by 

00 

p(x,y,z,w) = 2J' ~~x,y,z,~) cos (~) d~ • 

o 

By Fourier inversion of (2) we get 

00 

~(xJY'z,~) = ~ .J p(x,y,z,w) exp (-i~) dw 

00 

= ~ f p(x,y,z,w) oos ~ dw • 
o 

The mean square excess pressure at the point (x,y,z) is then 

'2 
p = ~(x,y,z,O) 

00 

= ~! p(x,y,z,w) dw • 
o 
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Instrumentation is available for measuring the power speotrum of the prcs­
sure, so for that reason we shaJ.I investigate its nature in the present probleml> 

We shall also be interested in the intensity of the sound radiated at large 
distanoes from the panel. 

Ir the fluid partiele veloeities at the point (x~y,z) at time t in the 
direotions of x,y, and z are respeotively u(x,y,z,t), v(x,y,z,t) and w(x,y,z , t), 
then the average flux of energy in the direotions of x,y and z are gi ven hy 
y , y and y , respeotively, where x y z 

T 

Yx = i!: ~ J p(x}y,z,t) u(x,y,z,t) dt 

-T 
T 

Yy = lim ~T J p(x,y,z,t) v(x,y,z,t) dt 
rn i::: 
.L~ 

-T 
T 

- ~ ~ J p(x,y,z,t) 

-T 

w(x,y,z,t) dt 

\ , 

I 
J 

(6) 

These fluxes of energy are the components of the intensity veotor at the poi.nt 
x,y,z. The magnitude Y(X,9y,z) of the intensity veotor is therefore giv-cn by 

Y(x,y, z) =Jy2 + y2 + y2 (7) x y z 
Ir the displacement at time t of a point (x , y ) on the panel is given by 

o 0 
the funotion Z(x ,y ,t), then aoccrding to Rayleigh (Ref. 6 page 107) the o 0 
velocity potential cp (x,y,z,t) at the point (x,y,z) at time t is given by the 
formula 

_.1. f[ l. z (x Y t - ~ ) 
dx dy 

cp(x,y,z,t) 
0 0 

= 2?t àt 0' 0' a r 
, 0 0 pane 

(8) 

where J --.-- -- 2----------2---2' 
I' = (x- x) + (y- y) + z 

0 o 0 

and a is the speed of propagation of sound. 
0 

The pressure p(x,y,z,t) is obtained from the linearised Bernoulli equation 
and is therefore given by 

p(x,y,z,t) = - Po ~ cp(x,y,z,t) 

= ~J' J L 21t at2 
panel 

( 10) 

where Po is the densi ty of air. 

The pressure autooorrelation funotion, defined in equation (1), is then 

-8-
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0
2 

( X -2 Z ,x',y',t+'t 
' at 0 0 

-L 
r r t 

o 0 
ho dy dx dy 

000 

where 

Now 

lim 
T-too 

r 2 r f _ -2.).L z~xt y' t + 't _ ....2.) dt 
a 2 0' 0' a o ot 0 

02 02 ( r - r
l 

) 2 Z(x,y,t)-2 Zxt ,y',t+'t+ 0 0 dt 
at 0 0 ot 0 0 ao 

T 

= lim t.r f 
T~ -T 

r - r l 

Z (XI ,y' , t + 't + 0 o~ dt 
o 0 a o 

- 'IJ X Y Xl y' 't + 0 0 ( r ~ r' ) ' 
- ,.. \ 0' 0' 0' 0' a o 

where we define 

(11 ) 

( 12) 

T 2 2 ', , 

x.(x ,y ,x' ,y' ,'t') t:: lim .1.2T 'f L 2 Z(x ,y ,t) 2-2 Z(x t ,y' ,t + 't') dt. (14) 
o 0 0 0 Toioo ' at 0 0 , at 0 0 

-T ' 

If therefore we perform first the integration with respeot to t in (11) 
we obta.in 

+ 0 0 0 0 
r - r' ) dx dy 

a r o 0 
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The partiele velocity is given by the gradient of the velocity potential. 
lts components are therefore obtained from (8) as 

u(x,y,z, t) = -21 j' J [..J...... a 22 z 0 ,y ,t_~) + .1.2 aal- z(x ,y ,t ... rJTI (x- xJ dx d.y 
7t a rot 0 0 a 01.1 0 0 a r 0 0 o oor 0 

panel 0 

• •• (16) 

v(x,y,z,t) 1 II[ 1 a
2 

= ~ aoro ;~ 
panel 

••• 

w(x"y, z, t) 1 a ( 1:' O)J z + ~ -0 .... Z x ,y ,t-- -- dx dy 
~ 1.1 0 0 a r 0 0 

ro ~ 0 

••• ( 18) 

The intensity is obtained by substi tuting expressions (16) (17) and (18) 
for u(x,y,z,t), v(x,y,z,t) and w(x,;y,z,t) and the expression (10~ for p(x,y,z,t) 
into equation (6) and then using (7). 

'2 ---°2-- - -
Ir ~x + y + z2 is much greater than the diagonal of the reotangular pe,nel 

much s impli:f'ication occur s sin ce then r ohanges only li ttle over the area of the o 
panel and certain terms in the integrands aan be taken as ef'feoti vely constant. 
The expres sion for the intensity may then be approximated oy 

T 

Y(x,y,z)= ::2 La> ~ ~ f dt!! f f ::2 r{xo'Yo,t<j 
-T panel panel 

2 ( r~t a 0 
x-- \Xl y' t--2 0' 0' a at 

T 

dx dy dx' dy' + ..L lim .L J dt I I J J~fzx y t-~\ 
o 0 0 0 r 3 T-foo 2T -T at \: crcl aol 

panel panel 

xL z(x, y' t-~\ dx dJr dx' dY'J at2 \ 0' 0' aJ 0 0 0 0 

r -r') o 0 dx dy dxl dyt 
a 0 0 0 0 

o 

dx dy dx t dy' ] o 0 0 0 
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wh ere 
T 2 

[l(x,y,xt,y','t") = lim-2
1
T! -a at Z(x ,y ,t) L 2Z(x t ,y',t+'t") dt (20) 

o 0 0 0 ~ 0 0 at 0 0 
-T 

and 

r = 

Very far from the panel 

J
""--------
222 

x +y + z 

" ~2 !I f f 1( (Xo,y 0' x~,y~, r 
0 
:0 r~ ) dxo dy 0 dx~ dy~ 

o panel panel 

will dominate over 

r -r!) 
o 0 dx dy dx' dy' 

a 0 000 
o 

~ J J J f [l ~o,yo,X~,y~, 
panel panel 

(21 ) 

(22) 

and the seoond term in equation (19) may b~ " ~~g~~~.te.d. In this ~ase we shall 
Bay that we are in the far field. When ./x2+ y2 + z"2 is much greater than the 
diagonal of the reotangular panel, and the seoond term in equation (19) may not 
be negleoted, we shall say that we are in the intermediate field. In the far 
field the intensity is then given by 

Y(x,y,z) = 4~2:0 r 2 J J J ! 
o parel panel 

On oomparing equations (15) and (24) we get, in the far field, the relation 

BO that the intensity is closely related to the mean square pressure. 
intermediate field no suoh simple expression holds. 

- 11 -
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3 VIB..TtATIONS OF THE PANEL 

The olassio81 partial differential equation governing the vibration of 
the panel is 

M a2 Z + D 04 Z ) 
2 v = f(x,y,t • 

at 

In this equa+'ion M is the mass per unit area of the panel, f(x,y,t) is the 
exoiting foroe pe~ unit area and D is the rigidity ooeffioient defined by 

D = 
12(1 ... (,-2) 

(26) 

where h is the panel thiokness, E is Youngts modulus of the plate material and 
~ is the Poisson ratio. 

The exoiting foroe per unit area f(x,y,t) arises from the pressure 
fluotuations in the boundary layer and also irom the ul"1steady pressure distribu­
tion arising from the vibration of the panel in air. We sha11 assume that the 
pressure fluctuations in the boundary la~r are not affeoted by the vibration of 
the panel. The oontribution to f(x,y,t) of the unsteady pressure distribution 
arising from the vibration of the panel is a oomplioated integral expression 
in Z, and substitution of this into (26) would lead to a oomplicated integro­
differential equation. To make the problem traotable we shall make the 
assumption that the 00 nt rib uti on of this unsteady pressure oan be taken into 
aooount by adding a virtual mass to Mand bringing in a damping term 

b ~~ on the left hand. side of equation (27). The f(x,y,t) on the right-hand­

side uill then arise entirely from the p~essure fluotuations in the bounda~ 
layer. 

The values to be asoribed to the virtual mass and to the damping ooeffioient 
b are diffioult to estimate. However the virtual mass ean be expeoted to be 
small in oomparison vd. th M so that its effect is small and oan be negleoted. 
For a rigidly os a:i.llating infini te pla te the aooustio damping ooefficient b would 
have the value 2p a. This value may need modifioation for applioation to a o 0 

finite vibrating plate. There wi11 also be a oontribution to b from the 
struotural damping and this oontribution will depend on the plate thiokness. 

We take therefore, as the governing equation of the panel vibrating in 
air: 

2 
M :t; + b ~ + D V

4 
Z = f(x,y, t) 

where f(x,y,t) is the exoiting foroe arising entirely from the turbulent 
bound~ l~er pressur~ fluotuations. 

- 12 -
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The naturaJ. modes of osoillation of the panel satisfy the differential 
equation 

2 
MD + D 'V4 z = 0 

àt
2 

and also oertai.n oonditions at the edges of the panel. 

Let 

Z = e(x,y) exp (ioot) 

satisfy equation (29), and the oonditions at the edges of the panel. 

Then 

where 

(30) 

(31 ) 

Equation (31) is satisfied for only a disorete set of values of ~ for the 
given edge oonditions, and to eaoh of these values of ~ there corresponds a 
funotion e(x,y) which we eall a medal funotion. 

The disorete set of values ~ may be numbered and then the mth member is 
denoted by ~ and the oorresponding moaal funotion is denoted by e (x,y). Tbe m m 
mth natural oircular frequeney 00 is obtained from (32) and is m 

The moaal funotions Em(X,y) are orthogonal for olamped or simp~ supported 

edge oondi ti ons , and we normalise them so that 

J J em(x,y) en(x,y) dx dy = 

panel 

where 0 is Kronec~erts delta. m,n 

o m,n , 

If, for example, the panel is simply-supported at its edges the natural 
oircular frequenoies are given by _ 2 2 

00 = 'Jt2 J;,(~+~) (35) 

and the oorresponding modal 

em(x,y) 

m ~ 0 2 d2 

funotions are 

= ~ sin (m17tX) sin (m2'Jt
Y

) -ICa.. 0 d 

- 13 -
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where 0 and d are the lengths of the sides of the panel parallel to the x and 
y axes respeotively. 

The integers m
1 

and m
2 

are assooiated in a one-to-one oorrespondenoe 
with the integer m. 

If' the panels are olamped at their edges then there is no analytio 
expression for the natural frequenoies and the modal f'unotions. The natural 
frequenoies and modal funetions may nevertheless be obtained to good aeouracy 
by an approJê.mate prooedure sueh as the method of Raleigh-Ritz, provided the 
mode shape does not have too m~ peaks and troughs over the area of the 
panel. 

Following Powel17 we shall write the solution of equation (28) as an 
infin1te series in the modal funotions: 

z = ~ Bm(X,y) l;m(t) 

m 

where I; (t) are functions of time only and. may be regarded as generalis ed 
m 

eoordina'tes. 

Substituting (37) into the differential equation (28) anà. mal<ing use of 
(31) and. (33) leads to 

\' B (x,y) [M 1; (t) + b ~ (t) + 00
2 

M 1; (t)] = f(x,y,t) L mmm m m 
m 

and then using the orthonormal property (34) we get 

where 

and 

g (t) + ~ ~ (t) + 00
2 

1; (t) = f (t) 
mmm m m 

b 
= -M 

fm(t) = ~ J j' f(x,y,t) Bm(X,y) d:x: dy • 

panel 

(38) 

(40) 

(41) 

The funotion f(x~YJt) is a oomplioated funotion and there is no hope of 
determining it either experimentally or theoretioally. However the oorrelation 
funotion · of the excitation 

T 

1f (x, y, x', y, 't" ) = lim ~ [ f (x, y , t) f (x t ,y t , t + 't") d t (42 ) 
T~ -

- 14 -
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is believed to be a weIl def'ined function which is weil behaved, and which 
can be measured. We shall assume that the function 1jf(X.1Y'x',y','t) is given 
as the description or the turbulent boundary layer exoitation. 

The power spectrum Q(x,y,x',y',oo), sometimes oalled the oross power 
spectrum, or the exoitation is defined by 

00 

Q(x,y,x' ,y' ,0» = J 1jf(X.1Y'x' ,y' ,'t) exp(iOO't) d't 

"'00 

and, alternatively.1 this function might be given as a description of' the 
turbulent boundary layer excitation. 

The displaoement function Z(x,y,t) oorresponding to the exoiting funotion 
f(x~y,t) is also a oomplicated funotion, but the oorrelation funotions (14) and 
(20) are weil behaved. We oan give expressions for X and 6. in terms of 1jf or 
Q. 

By use of' eqQation (37) we get for the oorrelation funotions X and 6. the 
series 

X(x,y,x' ,y' ,'t) = LL e (x,y) 8 (x' ,y') ~ ('t) m n m,n 

m n 

6.(x,y,x',y','t) = LL · 8 (x,y) e (x' ,y') ~ ('t) m n m,n (45) 

m n 

where 

00 

a2 
~m, n ('t) 1 J 32 

(t + 't) d't = lim 2T 2 1;m(t) 2 1;n 
T-ioo at at 

(46) 
""00 

and 
00 

a2 
~m,n('t) ~~J :t 1;m(t) (t+ 't) d't • = -1; 

at2 n 
-00 

Define 
00 

6m,n(0)) = J ~m,n('t) exp (iOO't) d't (48) 

-00 

00 

Ym,n(oo) = ! ~m,n('t) exp (iOO't) d't (49) 
-00 

... 15 ... 
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= J1 I I Q(x,y,x' ,y' ,(0) em(x,y) en(x' ,y',) dx dy dx' dy' • (50) 

pan" panel 

It follows from equations (39), (41), (42) and (43), as is shown in 
Appendix 1, tha t 

e (00) 
m,n 

1 
= ;1 

004 
R (00) m,n 

2.22 2 
[-00 + ~(3oo + 00 ][ -00 - 1(300 + 00 ] m n 

v (00) m,n (52) 
2. 2 2 2 • [-w + ~(3oo + 00 J[ -w - 1(300 + 00 ] m n 

The pressure auto-oorrelation funotion is obtaine d from (15) and (44) and is 

\' \' p 
2 

J' J j' J e (x ,y ) ~(x,y,z,re) = LG 4:2 m ~o 0 

m n panel parel 

g (x' y') ~ r r'~ n 0' 0 l;. re + 0 - 0 dx dy 
r' m, n a 0 0 

o 0 

X dx' dy' (53) 
o 0 

The power speotrum of the pressure in the far and intermediate fields is 
obtained by taking the Fourier integral of ~(x,y,z,~) aooording to equation (2) 
and is 2 

= \'\\ ~:2 p(x,y,z,oo) LG't'" 
m n 

00 r _ r' 

x J l;. (~+ 0 0) eioorc 
dre m,n ao 

-00 

2 

= LL ~ am,n(W) J [ J J 
m n panel panel 

e (x y) e (x' y') [ ] m 0' 0 n 0' 0 ioo --.~-...;;- -~~...;... exp -- (r - r' ) 
r r' a 0 0 
000 

2 

x dx dy dx' dy' o 0 0 0 

= 4:~M2 II 
m n 

2. 2 2 2 
[-00 + 1(300 + 00 ]( -00 - i(3oo + 00 ] m n 

x J J em(x;:yo) 

panel 

exp (-~r) dx a 0 0 
o 

... 16 -

\

ioor, 
ex - a o 

••• 

dx' dyt 
o 0 

(54) 
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The intensity of radiated sound at the point (x)y,z) in the intermediate 
field is obtained from (19) I (44) and (1 .. 5) and is 

(55) 

In order to evaluate this expression the funotions ~ (~) and ~ (~) m,n m,n 
must be obtained. The funotion R (w) oan be determined from equation (50) m,n 
and then e (w) and \I (w) are determined from equations (51) and (52) 0 . The m,n m,n 
funotions ~ (IJ;) and ~ (~) are then obtained by taking the inverse Fourier m,n m,n 
integrals of e . (w) and \I (w). The prooess involves taking the Fourier m,n m,n 
integral of * to obtain Q at the beginning and then taking an inverse Fourier 
integral at the end. These prooesses oan be effeoted analytioally. 

On taking the Fourier inverse integral of e (w) and using (51) we get m,n 
00 

~ (~) = m)n *1 e (w) exp (-i~) doo m,n 

• (56) 

We oan show that (see Appendix 2) 

where ó(~) is Diraots delta funotion and 

- 17 -
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s h) = m,n 

tt; > 0 

00 4_ 2(32(i + @4 ... i(30. (200 2 _ (32) 
mmm m 

(58) 
with 

The right hand s ide 
integral and we obtain 

"m = J! -~-f· (59) 
of equation (56) may then be replaoed by a oonvolut ion 

00 

= ..1.2 / [ê(u) + S (u)] r (-r-u) du 
M m,n m,n 

""()O 

00 

= J [r m,n(tt;)+ / Sm,n(u) r m,n(~ - u) dU] (60) 
-co 

where 
00 

r m,n(tt;) = -t! Rm,n (00) exp (-:WY1;') dw 

-00 

= f r J r 1lr(xo'YoJx~,y~,'t") em(xo'Yo) en(x~,y~) dxo dyo dx~ dy~.(61) 
panei panei 

On tal<:ing the FJurier inverse integral of v m n (00) and using (52) we get , 
00 

= 4: J v (00) exp (-iW't") do> 
e;;1~ m,n 

-00 

1 
= - 21tM2 

/

00 iLo3 R (w) exp (-iLo'&") do> m,n 
• 

222 2 
- 00 [-00 + ~oo + 00 ]( -w - i(3oo + 00 ] n n 

- 18 -
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We aan show that (see Appendix 2) 

1 /00 _ioo3 exp (-ion) do> 

2i 2 2 2 2 
[~ + i{3w + w ] [~ - i!3oo + w ] -00 n n 

where 

( 4224 22 
00 - 213 00 +tl3 ) - ij3a. (200 -13 ) m m n m 

't < 0 • (64) 

We notioe from the definitions (57) and (63) that 

(65) 

and this aan indeed be verified by using the expressions (58) and (64). 

The right hand side of equation (62) may now be replaaed by a aonvolution 
integral so that we obtain 

00 
= 2~2 f T (~) r ('t-u) du • m,n m,n (66) 

-00 
The intensit~ of the sound at the point (x,y,z) aan then be evaluated using 

(55), (60) and (66). 

... 19 -

.. 
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If z » x and z » y then rand r' are praotiaally oonstant for all 
o 0 

points on the panel, and 

r - r' III 0 o 0 • 

This is true for points near the perpendicular through the oentre of the 
undisturbed p~~el and then sound signals leaving any points on the panel 
simultaneously will arrive at the observation point simultaneously. In this 
oase the expression (55) for the intensity simplifies to . 

"f:(x,y,z) 

where 

= ~[: 1 
1.. 2 2 
'i-1t r o 

Hm = J J em(x,y) dx dy • 

panel 

(68) 

For a panel with simply supported edges the expression for Hm oorresponding 
to the modal functions given in equation (36) is 

H = 2-fëa: [1 _ (_1)m1][1 _ (_1)m2] 
m m

1 
m

2 

= o(~) • 

In this case also the expres sion for the power spectrum given in 
equation (54) simplifies to 

p(x,y, z,w) 
H H w4 R (w) m n m,n 
222 2 [-w + i(3w + w ] ['"'Û) - i(3w + w ] m n 

and the mean square pressure, obtained from (53) by putting 't" = 0, beoomes 

2 
"2 Po 
p = ~(x,y,z,O) = ---2 

41t 

4 EVALUATION OF THE EXPRESSIONS 

(70) 

In order to evaluate the integrals we must knoweither the oorrelation 
funotion W(x~y,x',y','t") defined in eq~ation (42) or the power speotrum 
Q(x,y,x',y',W) defined in equation (43). 

The function Wex,y,x',y','t") is to be substituted into equation (61) and 
the integration carried out. It is not likely that this integral aan be 
carried out analytioally even if an analytioal expression for W(x,y,x',y','t") 
is known. Numerical integration is, hmfever, possible for any given value 

- 20 ~ 
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of '1:. Care must be exerois ed in using the numerioal :procedures when the modal 
nucibers m and n are high for then the f'Unotions e (x,y) and e (x,y) beoome m n 
highly osoi11ato~ over the extent of the panel. This oscillatory behaviour 
of e (x,y) and e (x,y) is responsible for a rapid deorease in the values of m n 
r ('1:), at a given value of '1:, when mand n inorease and leads to rapid m,n 
convergence of the series involved. 

In a turbulent boundary layer whose thickness grows only little in a 
distanee of order of a panel representative length the oorrelation funoticn 
V(x,y,x' ,yl ,'1:) may be taken to be a funotion of x- Xl, y- yt and '1: only, i.e. 
the pressure field may be taken to be homogeneous. The maximum value of 
V(x,y,x',y','1:) oocurs when x = x', y = y' and'1: = O. Also V(x,y,x l ,y','1:) 
beoomes small when 1'1:1 beoomes large. This in turn indicates that r ('1:) m,n 
beoomes small when 1'1:1 beoomes large, and in faot r ('1:) will beoome effeotively m,n 
zero outside a fini te range of '1:. The evaluation of the infini te integrals in 
equatiom (60) and (66) may then be aooomplished numerioaJ.ly for the integrands 
beoome eff'eotively zero outside a fini te range of u. The sc und intensity is 
then obtained from (55) by evaluating numerioally the integrals ooourring there. 
Also the mean square pressure oan be obtained from equation (71). 

To obtain the :power speotrum p(x,y,z,w) from equation (54) or (70) we 
must evaluate R (w). Jm expression for R (w) is found by taking the m,n m,n 
Fourier inverse of equation (61). This is . 

00 

R (w) m,n = J r m,n('1:) exp (iW't) d'1: 
-00 

and this funotion oan be evaluated numerioally onoe r ('1:) has been obtained at mn suffioient appropriate. Values of '1:. 

If the power speotrum Q(x,y,xl,yl,W) is given rather than the oorrelation 
funotion V(x,y,x' ,y' ,'1:) then R (w) may be obtained from (50) by numerioe1 m,n 
integration, so that the power speotrum.P(x,y,z,w) is obtained immediately 

from equation (54) or (70). 

Equations (51) and (52) may be us ed to de ter mine e (w) m,n 
and then ~ ('1:) m,n 
The intensity of 

and ~ (~) are obtained on inversion of (48) m,n 
the sound is again obtained from (55). 

It may be noted that the evaluation of the power speotrum p(x,y, z,w) 
is easier starting with Q(x ,y ,x',y',w) given rather. than with W(x,y,X(,yl,~) o 000 

given. However, if' V(x,y,x',y',~) deoreases rapidly as '1: moves away from 
zero then Q(x,y,x l ,y' ,w) will deorease only slowly as w inoreases. In this 
oase it is better to avoid u~ing the power speotrum Q(x,y,x',y',w) for 
evaluating the sound intensity or the mean square pressure as the numerioal 
processes involved beoome very muoh more lengthy than when V(x,y,x',yt,~)is 

- 21 .. 
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used dircotly~ If analytic approximations oan be made this method of 
evaluation m~ become the easier • 

Experiments by Willmarth8 show that the pressure oorrelation in a 
turbulent boundary layer corresponds to a downstream conveotion of a spatial 
pattern of oorrelation. For two points, one downstream of the other, the 
oorrelation ourve with respect to ~ shows a deorease in its maximum height and 
a spreading out as the distance between the two points increases. For 
oonveotion in the direotion of the x-axis pyer4 has given the oorrelation 
function, 

• 

As a fit of the experiment al data whieh ineorporates the most important f eatures 
of the eonveoted pressure field. In equation (73) the symbols have the 
follovdng meanings 

~ is 

u is 
0 

Je, e 

l; = Xl - X 
000 

= yf _ Y 
o 0 

J 
the mean square excess pressure in the bOUndary layer 

the mean conveotion speed along the direotion of the +ve x-axis 

are oonstants. 

The expres sion (73) oan be expeoted to be only an 
oorrelation curve for two points, one dovvnstream of the 

approximation. The 
other and distanoe ~ 

o 
apart, is obtained by taking TJ = 0 in expression (64). 

o 
for different values of ~ do not represent the spreading 

o ~ 
curve wi th inoreasing 1; , and there is a cusp at ~ = ....Q. • o vo 

The ourves obtained 

out of the oorrelation 

Furthermore, ourves 

of constant * on the ~, TJ plane at a given ~ are oiroles with oentre ~ = u ~, o 0 0 

TJo = 0, showing that (73) represents oonveotion of an isotropio pattern of 

turbulenoe. Experiment shows that ourves of oonstant * at given ~ are closed 
curves elongated slong the direotion of the flow s 0 that in faot there is not 
an isotropie pattern of turbulenoe. Multiplying TJ2 in expression (73) by a 

o 
constant woulè ohange the oonstant * cireles into el+ipses, and this might be an 
improvement. However for the further work in this paper expression (73) vdll 
be used as an idealisation whieh inoorporates the most important features of the 
oonveoted field. Kraichnan3 uses a field of eonveoted turbulenoe which is not 
isotropie. 

8 From experimental measurement it is known that over a wide range of 
Maoh number 

1 2 
0.006 x -2 P U o 0 

- 22 -
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where U is the free stream velocity. 
o 

Dyer4 has made the follovdng estimates 

for K, e and u based on experimental measurement: o 

2 
K COlt 

~ 305 e 
Uo 

U COl 0.82 U 
0 0 

where 5 is the boundary layer displaoement thickness. 

I 
I 
"- .(76) 
( 

I 
I 

/ 

In praotice 5 is small compared with the dimensions 
1 - is small in comparison vvith the dimensions of the panel. 
K 

of the panel so that 

Also t will be 
o 

small in comparison with the fundament al period of the panel. 

Under oertain circumstances approximations oan be made in integrals 
oontaining l/f(x ,y ,x',y','t") given by expression (73). Ir the nearest distanoe 

000 0 
f'rom the point (x + u 't", Y ) to an edge of the panel is very large compared ,,-d th o 0 0 

.1 and if e (x' ,y') does not vary much over distances of' ril) f'rom the point 
Kno 0 \K 

ex + u 't", Y ) then we oan wri te approximately if' the point (x + u 't", Y ) is on 
o 0 0 0 0 0 

the panel . 

panel 

.--.-- ----J 2 2 
- U 't") + ~ . e (x' yt) dx' dy' o 0 n 0' 0 0 0 

Cl en (xo + uo't", Yo) J f exp [-KJ(-l;o - uo~7~~Jdx~ dy~ 
whoIe. 
plane 

= ~2 e: (xo + u 't, ' y . ) 
Kno 0 

whereas if the point (x + u 't", y ) is not on the panel o 0 0 

J J exp [-K 1(l;_~'t")2 + ~2Je . (Xf ,y') dx' dy' Cl 0 • (78) 
~ 0 0 0 n 0 0 0 0 

panel 

This is equivalent to replaoing exp EK 1(~- -:-:-~~;2-J by ~2 O(l; - u 't) o(~ ) 
~ o . 0 0 . K 0 0 0 

as f'ar as these integrals are oonoerned. 

- 23 -
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Then from (61) and (73) we get 

r (~) 
m,n ~ 1tL) J J 

panel 

e (x ,y ) e (x + u ~,y ) dx
o 

dy m 0 0 n 0 000 

where e (x~y) is defined to be zero for points (x.l'y) outside the panel. The m 
errors introduced near the edges by using the approximations (77) and (78) are 
small compared with the total value provided the panel dimensions are very large 

compared with@1andthefunctionse(x,y), 8 (x,y) do not change much ove~ a m n 
distanoe of 0 t . 

If ~ moves away from zero, then while u ~ is still small in comparison wi th 

the panel dimensions, - I~I will have beoome ~ very large nurnber if e is very small 

compared with the panel fundamental period. This re ans that the integral 

J J 8m(Xo'yo) 8n (Xo + uo~'Yo) ~~o dyo (80) 

panel 

has changed very little in the interval of ~ fOT which exp (- I~I) has a 

sensible value. Henoe in evaluating R (00) from equation (72) we can take the 
m,n 

value of' the integral (80) to be the value it has when ~ = O. This gives 
approximately 

2? 
00 

R (00) IJ em(xo'Yo) en(xo'Yo) dx dy 0 f exp(-ltL) exp (i~) d~ = 2" m,n 0 
K 

panel '""00 

-
4 f2 6 1 0 (81 ) = 2 1 + 002 62 m,n K 

and this does not depend on the conveotion speed u • 
0 

The factor exp(iw~) in equation (72) will not change much near ~ = 0 when 
00 is small, but 'when 00 is large it vr.i.ll have an osci.llatory behaviour near ~ = 0 
and for this reason it must be retained. 

panel 
••• (82) 

x!! e (x' ,y') x{'oor') 
n 0 0 e ----2 dx' d ' 

r t a 0 Yo 
o 0 

- 24-
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or, near the perpendicular through the oentre of the panel we have, using 
equation (70) 

2- . 4 2 
Po f2 1 e 1 L 00 Hm 

p(x,y, z,w) = "2"2"2"2 - 2 2 2 2 2 2 2 • 
1t M r K (1+00 e) 1(-<.0 +(0) +(3 W 

m m 

The infinite series in equation (83) is rapidly convergent in the oase of 
simply supported edges !-'or when m is large the tems in the series behave like 

~ H2
• By (69) H = 0(...1-) and by (35) 00 = O(m~l) + 0(m2

2
) so the terInS tend to 

004 m m ~1 m2 m 
m 

zero rapidly as m ~oo. 

w4 H
2 

The term __ ~ __ ~m~ __ ~~ 
( 2 2)2 A2 2 

of the series has a maximum value of 
-w+w +..- 00 m 

00 
at w = mand if (3 is 

J1_ê2 

2002 

very smail this term will domina te all 

m 
the other terms of the series. The power speotrum p(x,y,z,w) 

oom 
have maxima at, or very near to, the values w = H when (3 

-~ 
200

2 
m 

Near these maxima just one term of the series in (83) will be a 
ation 'for the vmole series. 

will theref Ol'e 

is very smalle 

good represent-

~e ean evaluate ~ (~) and ~ (~) using equations (56) and (62). These m,n m,n 
funotions must then be substituted into equation (55) to get the sound intensity, 
The result still involves quadruple integrals which then have to be evaluated 
numerically. A great deal of simplifieation oocurs if the observation point is 
near to the perpendicular through the oentre of the panel and then the expression 
(67) ean be used for the ~ntensity. . 

Wi th the approximation procedure which we are us ing for dealing wi th the 
turbulent boundary layer pressure correlation we get, from substituting the 
expression (81) for R (00) into (56) end (62), the relations m,:o 

~m,n(~) = 0 m * n (84) 

~m n(~) = 0 m * n • (85) , 
Also, siooe the integrand in equation (62) is an odd funotion of w when ~ = 0, 
we have 

~m m(O) = O. , (86) 

- 25 -
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• (87) 

The integral appearing in equation (87) is evaluated in Appendix 2. 
for 4:m,m(O) is 

The result 

(88) 

The final expression for the intensi~, obtained from equation (67), is then 

) Po ~ 1 1 L H2 [ 1 + 6 (00;- (3) + 6
2 oo~ J 

ï(x,y,z = -2 '2 '2 2 2 2 2 2-2 - 2 2 4 4 
27t M K ao r m (1 + e 00 ) - (3 6 13 1 + 6 (2 (1)2 - 13 ) + e (1) 

the 

mmm m 

In the series 

H
2 

terms behave like ~ for large m. 
00 

m 

o •• (89) 

For simply supported edges 

that the series is eventually rapidly oonvergent. 

For small values of e summation over more terms will be required for a given 
aocuraoy than for large values of 6. 

In the series 

the terms behave like H
2 for large m. 
m 

2 1 
For simply supported edges H = ----2-:r-

m O(m
1 

m
2

) 

so that the series is oonvergent but not ve~ rapidly. 

Under the same oonditions the correlation ooeffioient given in equation (53) 
may be evaluated. A oase of interest is when 't" = 0 and then it is found that the 
mean square pressure ~ at the point (x,y,z) on or near the perpendioular is given 
by 

"2 . 
p = r/>(x,y,z,O) = p a Y(x,y, z) (90) o 0 

whioh is the same as the relation (25) obtained for the far field. Near the 
perpendioular through the oentre of the panel the expressions in the intermediate 
field are in faot the same as in the far field when we use the approximate . 

- 26 -
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treatment of the bound~ layer pressure oorrelation for then ~ (0) vanishes 
for all mand n. m,n 

5 DISCUSSION 

Equations have been given in Seotion 3 which enable the power spectrum 
of the pressure and the value of the sound intensity to be determined in the 
radia tion field of a single panel embedded in an infini te plane wall and 
subject to a turbulent boundary layer excitation. 

The procedures for obtaining these quantities from the equations are 
desoribed briefly at the beginning of Seotion ~ for the oase when either the 
correlation function ,y(x,y,xt,y' ,'t') or the power speotrum Q(x,y,x' ,y' ,(0) of the 
excitation is given as a general funotion, or maybe only as a se"t of numerioal 
values. These procedures could be applied directly with the correlation 
functiongiven in equation (73). 

Simplifications are possible in uSing the correlation fun0tion (73) in 
certain oircumstances and these lead to equations (82) and (83) for the power 
speotrum and ~o the equation (89) for the sound intensity in the far field. 
The val ue of - must be very small in oomparison wi th the dimensions of the 

K " 

panel and the value of 6 must be very small in oompari son wi th the fundamental 
perlod of the panel for the simplifioations to be valide Also convergence of 
the series in these equations must be suffioiently rapid so that terms of the 
series which contribute signifioantly to its sum oorrespond only to values of 
m for which the modal functions 8 m(X,y) do not ohange very much over a distanoe 

of O(~). It is not likely that this vdll oocur in praotioal cases so the full 

analysis using expression (73), or, if possible, a more representative funotion 
for the oorrelation would need to be oarried out. 

In this simplified analysis the oonveotion velocity uo of thespatial 

pattern of the excitation correlation does not appear in the results. In a more 
aocurate analysis there would be dependenoe on this velocity, but in view of the 
result af the simplified analysis the dependenoe may be expeoted to be smalle 
In the more accurate analysis the aotual form of the modal funotions 8 m(X,y) will 

have to be known, and in the first instance the modal funotions, given in 
equa'~ion (36), corresponding tosimple support edge oonditions could be used. 
If the number of terms required in the double series (67) and (70) are not very 
large, then an attempt could be made. using the modal functions corresponding 
toother edge conditions. . 

The decay vdth timeseparation 't' in the oorrelation funotion has been 

brought in by means of a faotor !3x\_I~I) in equation (73). This has led to a 

faotor 2~ --2 ' introduoed first in e quation (81) and appearing in the results 
1 + 00 6 

given in equation (82) and also influencing the result given in equation (89). 

Ir the decay TIith tirae had been brought in' by means of a faotor (1 + 1~I)expt ~l) 
then the factor 2~ 2 would be replaoed by ~ 2 2. This would not 

1+006 (1+006) 

- 27 -
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make much difference to the power speotrum p(x,y,z,oo) at low values of 00, if the 
estimate for e were halved, but it does make an appreoiable differenoe at high 

_ values of 00, and consequently makes a substantial differenoe to the intensity 
oalculated, for the oontributions to Y from p(x,y,z,oo) at the higher values of 
00 are important. This is also evident from the fact that the infinite integrals 
for 4: (0) are more powerfully oonvergent than formerly. It would appear 

m,m 
therefore that the actual shape of the oorrelation funotion near ~ = 0 is 
important. 

A somellhat more elab orate analysis than the simple one considered oould 

have been carried out on the assumption that ~ was largeenough for equation (79) 

to be valid, but e not small enough for equation (81) to be valid. If t.he 
E (x,y) are given by equation (36) then it is possible to proceed from m 
r (~) to the final results without any further approximations, but the m,n 
expressions involved are rather long and oomplicated. 

No results have been worked out from the final equations (82), (83) or 
(89). It may be observed from e~ua.:!:ion (83) that the magnitude of the power 

1 Po f 2e 
speotrum is proportional to ~ ~ -:2 at small values of w at fixed values of 

r M IC 

J.:l i5 and of (3. According to equation (75), f2 is proportional to p2 
U4 and 

according t 0 
e 03 0 0 

equations (76), ~ is proportional to ~. Henoe
4

the magnitude of 
IC 0 1P 23 

the power speotrum at small values of w is proportional to ~ ~ 0 U • 
r M 0 

There is no obvious faotor of proportionality in the expression (89) for 
the intensitYI but if (3 is very small we may write approximately 

Ylhere 

2 
Po -f2 1 1 e2Q.À2+e4~À4 

't( ) 1 \' H2 MmM'::: m 
x,y,z e! 2?t2 ;; :; a r2 n~ m 1 + 2 e212À2+e4~À4 

C! (0.006)2 

240?t2 

o mMm M2 m 

i (~)(t) 
2 

2 

(
e I~ = \' H2 ( e 

2 
~ À! + e

4 ~ À~ ~ 
g ~I-d) ·Irrr m 1 + 262 g À 2 + e4 1L44 À 4 ) 

1Jl mMm 

(91) 

(92) 

The result (91) is of the form of the main result given by Coraos and 
Liepmann2 for the sound intensity in the radiation field from an infinite 
flexible sheet subjeot to turbulent boundary layer exoitation. The form of 
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the function g(eJ ~) in Ref. 2 is, however, dii'ferent from that given in 

-equation (92). In the form (91) it would a~pear that Y(x,y,z) is proportional 
U~ 0 e2n 

to -. However, for - small we have 
Ph2 M 

(93) 

where \ eJ) = 0(1) for eJ ~ smalle A better way of wri ting equation (91), 

in our oase, is therefore 

(94) 

which shm/s that Y(x,y,z) is proportional to ~ u~ 03 for small values of eJ~ 
for a given plate material. 

In general P = ~ vdll depend on the plate thiokness. If the acoustio 

damping dominates over the s truotural demping then b is virtually independent 

of the plate thiokness so P Cl, ~. The intensity would then inorease linearly 

with h. However as h inoreases the struotural demping inoreases end P may be 
expeoted to tend asymptotioally to a constant value. The intensity is then 

independent of plate thiokness for small values of eJ ~ • 

The results obtained by Ribner1 and Kraichnan3 are different from our 
present results. The prooedures used end the form truten for the oorrelation 
funotion of the exoitation are however different from ours • . 

The experimental results obtained by Ludwig5, for a single flexible 
reotangular panel set in a wall and excited by turbulent boundary layer flow show 

5 i 
a proportionality factor of U :2 in the total power radiated. This oannot be 

oompared direotly vdth the present results for the total power is obtained by 
integrating the intensity over a hemisphere of large radius with the wall as 
diametral plane, and the intensity will vary with position on the surface of this 
hemisphere. 

To determine more aocurately how the power speotrum and intensity of sound 
radiation depend on the boundary layer displaoement thickness 0, free stream 
velooity U , plate thiokness h and oonveot1on velooity u , oaloulations should be o 0 
carried out using the prooedure desoribed at the beginning of Seotion 4 and using 
an acourate oorrela~ion function, perhaps .that given in equation (73). In this 
case the term of o~ will not disappear in the expression for the intensity in 

the intermediate field near to the perpendicular through the oentre of the panel 
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for in this case R (00) is not an even funotion of 00 giving ~ (0) * 0, so m,n m,n 
that the seoond summation in equation (67) does not vanish. The expression 
for the mean sqQare pressure ~~ll, as befare, not have this term present. 
Grapl1s could then be presented to show the variation with Ó, U , hand v • o 0 

The mean square response and the mean square stresses at points on the 
panel oan also be obtained by the methods used in this paper in a fairly straight­
forward ma~r. The mean square response is of course just the mean

2
square of 

, a z a2z 
Z(x,y, t) but the mean square stresses wiil involve mean products of 2 ' 2 ' 

ax ày 
a3z a3z a3z a3z 
.:. V 2' 2 ' 3 taken two at a time. The mean square response can be 
or ax ay axay ay 
oonsidered by the simplified procedure described in Seotion 4 but this prooedure 
will lead to divergent series in the oases of the mean square stresses and 50 

a more accurate prooedure must be used. 

The power speotrum and intensity of sound radiation from several panels 
vibrating in aplane mayalso be considered. If th ere is no correlation 
between the pressures arising from the vibration of different panels then the 
power s~ctrum and intensi ty are obtained as the ari thmetio sum of the separate 
power spectra and intensities. Otherwise the oorrelations of the pressure 
arising from pairs of vibrating panels must be taken into account. Ideally 
the number of vibrating panels could be infinite but the numerioal procedure 
then beoomes forbiddingly lengthy. 

6 GONGLUSIONS 

A theory of determining the power speotrum of the pressure and the 
intensity of radiated sound from a vibrating panel set in an infinite wall and 
excited by a turbulent boundary layer flow has been given. In a simplified 
analysis it has been shown that the intensity is proportional ta 

ó3U3 T ' where ó is the baundary layer displacement thiokness, Ua is the free 

stream velacity and ~ is a coefficient dep ende nt on the damping and mass per 
unit area of the plate. 
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APPENDIX 1 

FORMAL DERIVATION OF DEPE1~ENT POVf.ER SPE~ 

ITe oonsider the excitation function f(x,y,t) and expand it in a Fourier 
series in t in the interval -T < t < T i.e. let 

00 

fT(x,y,t) = .L AT(x,y,k)exp(_i~t) 
k=-<Xl 

where 

T 
A (x,y,k) 

Then 

T 

= ~ J f(x,y,t) 

-T 

and fT(x,y,t) has period 2T in t. 

exp T dt • ('rutt) 

-T < t < T 

(95~ 

(96) 

We shall replaoe f(x,y,t) by fT(x,y,t) when t is outside the interval 
-T < t < T. Later we shall oonsider the limiting prooess T ~ 00. We have 

T 

1/t(x,y,x~y"'t") = lim iT! f(x,y,t) r(x',y',t+ 't") dt 
T~ -T 

T 

= i;!: [t-.r J fT (x,y, t) fT(x ,y', tH) dt + i 0«)] 

-T 
00 QO T 

= d~I .. ~(X,y,k) A'I(.-,y',e) 'kj e",_ <zr~e2pt ~é'tll>~ 
... -T 
00 

= i;!: L A(x,y,-t) A(x' ,y' ,el expe~<) (98) 

t=-oo 

and passing formally to the limit T = 00 we get 

00 

V(x,y,x',y',<) = t-.rJ i;!:[2T+,y,_~)*"y.,~}xp (-1"",) drol 
-00 

•••• (99) 
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Appendix 1 

On inverting equation (43) of the main text we get 

00 

.1/r(x,y,X 1 ,yt ,'t) = it J Q(x,y,x' ,yt ,(0) exp (-ioo't) do> ( 100) 

~ 

so on comparing (99) and (100) we get the result 

. [ T ( oo~\ T( oo~\J i: 2T A "x,y, - -;:) A Xl ,y', 7t) = Q(x,y,x',y',oo) • (101 ) 

Instead of equation (39) of the main text we now consider 

(102) 

wh ere 

.. 

panel. 

It may be noted that fT(t) coincides with f (t) for -T < t < T. If expression m m 
(95) is substituted for fT(x,y,t) in (103) we get 

00 

f;(t) = L B;(k) exp (_ 1~t) 
k=ooOO 

where 

panel 

The funotion fT(t) is of period 2T and so the funotion ~T(t) satisfying m m 
equation (102) is of period 2T. Let the Fourier series of ~T(t) be 

m 
00 

~T(t) L T( ) I i7tkt) = Cm k exp (-~ m 

k=-oo 

where 

T 

CT (k)· = l..! ~T(t) exp (i;kt) dt • m 2T m 
-T 

- 33 -
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Substituting the expansions (104) and (106) for fT(t) and ç:T(t) into the 

differential equation (102) and comparing coeffioients of e~(- i~) we get 

(108) 

from which we can express CT(k) in terms of BT(k) by m m 
BT(k) 

CT (k) _~m:;.-____ _ 

m - [_(# -i~ (~) +O>! ] 
• ( 109) 

In the range -T < t < T we may wri te 

ç: (t) 
m 

T T = ç: (t) -I' 'Il (t) m m ( 110) 

where 'Il
T(t) is a complementary function of the differential equation (39) obtained 
m 

by replacirlg the right hand side of (39) by zero. This oomplementary funotion 
will take account of that faot that ç: (t) and ç:T(t) are not equal when t = -T m m 
and neither are their first derivatives. 

"~ben the damping ooefficient 13 is positive non-zero and small the comple­
mentary funotion vdll be a deoaying osoillatory funotion with amplitude of 
osoillation deoreasing exponentially as t inoreases from t = -T. This then 
leads to the equations 

1 /00 a2 
T a2 

T ?;:m n ( 't" ) = lim TT 2 ç: (t) 2 ç: (t + 't") d t 
, T~ at m at n 

(111 ) 

-00 

and 00 
I'm,n«) = i::' i.r J ft I;;;(t) :>;;!(t+<) dt ( 112) 

-00 
instead of (46) and (47). 
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Using ths expansion (106) in (111) we get 

<:m, n (~) = ~I f G~ (k) G~( t ) (~)2 (~~ 2 iT t exp (- i';.kt) exp (- ~~i.+ ~) d~ 
k=-oo.e.=-oo -T 

and passing formally to the limit T = 00 we get 

where 

Rm,n(W) = ~! [2T M
2 

B; (-~) B~ (~)J . 
Then, using the formula (105) for BT(k) we get from (115) 

m 

( 113) 

( 115) 

Rm,n(W) = ~ 2TJ J A(X,y,-~e:m(X,Y)dxdY IJ A(X1,y" ~)€n(x',yl) dxt dy' 

panel panel 

=~! f J J! 2T \X,y,- ~) \XI,yt,_~) €m(x,y) en(xl,y') dx dy dxt dy' 

panel panel 

= f f J J Q(x,y,xt,yt,w) em(x,y) en(xt,yl) dx dy o.x' dy' 

panel panel 

corresponding wi th the definition (50). 
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On inverting equation (48) we get 

00 

~ ('r) = 4:- J e (Ol) exp (-dw-t") dw mln Q, m~n 
( 117) 

and on comparing (114) and (117) we get 

1 00
4 

Rm.n(W) 
e (Ol) ="2 2 2 2 2. (118) 

m, n NI [-Ol + i(3w + Ol J [-w - i(3w + Ol J 
m n 

Similarly using the expansion (106) in (112) we get 

00 00 2 T 

~m,n(~) = d~Io t~C;(k) C~(k)E~~(i;e) +.r_l e~-~1expe1tt~t"<))dt ] 
00 -i B T (t) B T ( -e,) ZSf exp _ i7tt'r) 

= ~J:'[{fY + i;(~)+:;JE<~f- i<~) +OO!] 

= ~ JOO - i<.o3 Rmt n (Ol) exp (-:Îûl't) dw 

27tM [2. (.l. 2J [ 2 . (.l. 2J 
-00 -Ol + ~I-'w+w -w -~I-'w+w m n 

• 

But on invers ion of (49) we get 

00 

!-1 m,n ('r) = it J Y m,n (Ol) exp( -iW'r) dw • (120) 

-00 

Henoe 

Y (Ol) m,n 
= _..L iw

3 
Rm,n(W) 

M
2 

2 2 2 2 [-00 + 1.(300+ Ol J[-w - 1(300+ Ol ] m n 

(121 ) 
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APPENDIX..1 

EVALUATION OF INTEGRALS 

(i) It is required to evaluate 

(122) 

] exp ( -ioo,.) dro 

= 5(,.) + S ('t") m,n 
( 123) 

where 5('t") 

( 124) 

The integral for S (,.) will be evaluated by means of oomplex oontour 
m,n 

integration and an application of Cauchy's theorem of residues. 

Consider the funotion 

00 2(002 + 002 _ f3 2) + if300 (002 _ (0
2) _00 2 002 

m n m n m n 
F (00) m,n = exp (-:ll.o't") 

where 00
1

, 00 2, ooy (),)4 are the zeroes of the denominator given by 

001 = i:!? + a. 00 2 = 1ê. - a. 
2 m 2 m 

( 126) 

00
3 = _ .2:ê. + a. 

2 n 00
4 = - ~ - a. 2 n 

and 

<Lm = J,; ~f 
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Fm,n(oo) has simple poles at the zeroes ooi' w2, w
3 

and(J)4 of the denominater. 

Let the residues at these poles be Ri' R2' R3 and R4 respeotivelYe Then 

w
2
1 (oo

2
+w

2 -13 2
)+i(3W

1 
«l_oo 2)_t02 w2 

P. = m n m n m n e:q) (-iW
1 
.. ) 

-1 (t'.l1- w2) (001 -00
3

) (w1 -O)4) -

= 
w4 _ 2(32 0)2 + -2

1 13 4 + i~ 
mmm 

2a, [w~_'w2 - (32 + 2if3 :]--
m n m 

222 
20. [w - w - 13 - 2i13 a. ] n n m n 

422 1 4 . 2 2 
00 - 2f3 00 + -2 13 + ~13 a. ( 2w - f3 ) n n n n 

( 128) 

( 129) 

( 130) 

The oontour ohosen for the evaluation of S ( .. ) is the real axis and en 
m,n 

infinite semi-oirole wi th oentre origin and real axis as diameter. When .. > 0 
the integral over the semi-oircle in the lower half-plane vanishes so 

.. > 0 • ( 132) 

vVhen .. < 0 the integral over the semi-oirole in the upper half-plane vanishes 
sa · 

S ( .. ) = i (R1 + R2) m,n 

The equations (132) and (133) lead to 
to (131) are us ed fa r the residues Ri 

the equations (58) when the expl'essions (128) 
to R4. 

(ii) It is required to evaluate 

00 _ioo3 exp (-iw .. ) dw 

= * J -[ -w~2~+-il3-(J-~ -+-oo~2-][--w~2-_-~-. f3-<o-+-w~2] 
-00 m n 

• (134) 
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(-:wn) éloo 

(135) 

-e 00 

= 1im..1.. J + J _.! exp (-iw't") del> 
0 27t 00 e .... 

-00 e: 

-e: 00 2( 2 2 2) , (2 2) 2 2 
1 j' J 00 00 + W - ~ + ~~w 00 - 00 - w w 

I ' ,m n mmm n 
= ~m2i - ~ 2 2 2 2 

e-+O 00(00 - w + i~w)(w - 00 - i(3w) m n 
-00 e 

exp ( -ion) doo. 

••• (137) 

Evaluation of (136) is straightforward and gives 

't" > 0 

( 138) 
't" < 0 

The integral for V ('t") will be evalua. ted by means of oomp1ex integration m,n 
and app1ication of Cauchy's theorem of residues. 

exp (-i<.O'1:) 

W2 (W 2 +W
2

_(32)+ i(3w (00
2

_00 2)"'00
2

00
2 

• m n m n mn 
= - . ~ w(w-w

1
)(w-W

2
)(W-W

3
)(W-W

4
) exp (-iW't") ( 139) 

where 00
1

, 00
2

, 00
3

, 00
4 

are given by equations (119). 
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Gm,n(oo) has simple poles at the origin and at 001' (1)2' 00
3 

andoo
4

" Let 

the residues at these poles be Ro' Ri' R2' R3 and R4 respectively. Then 

Ro = - i (140) 

( 4 2 2 1 4) • (200 2 _ (3 2) • 00 - 213 00 + 2' 13 + if3a. . 
exp (% - io.m) ~ Ri 

k mmm m (14-1) = - --2 
C(, (iê. +0. J (00

2 
_00

2 _. 13 2 -I- 2i(3 c, ) 
m 2 m 'm n m 

4 2 2 1 4 2 2) 
i (00 - 213 00 + 2' 13 ) - 1130. (2 00 - 13 

exp (~ + iam) ~ (142) R2 
mmm m. = "2 
(~ J( 2 2 2 • 'I " a •. a c.o - 00 - 13 - 2:l13 a I m 2 m m n m 

4 2 2 1 4). (2 2 
(00 - 213 00 + -2 13 - :1130. 2<..>·. 13 ) (ft n n n n 
~ -- - -ex-;::J-

(
;A ~ 2 2 2 - 2 a -.:t:.+o. (00 -00 -13 -2:430. ) n 2 n n m n 

( 143) 

42214 . 22 
( til - 2 13 00 + -2 13 ) + i(3a. ( 2 00 - 13 ) n n n n 

~ jA ~ (2 2 2 . ) a - ~ + a 00 - 00 - 13 + 2:113 a. n 2 n m n 

- (ê. . ) exp - 2 + l.CLn 1: 

The oontour chosen for the evaluation of V ('T:) is the real axis, indented 
m,n 

by a semicircle of radius Band oentre origin, ap~ an infinite semi-oircle with 
centre origin and real axis as diameter. When 'T: > 0 th,e integral over the 
infinite semicircle in the lower half-plane vanishes, so we integrate over a 
contour in the lower half-plane end then on making e .... 0 we get 

(145) 

When 1: < 0 the integrAl over the infini te semioircle in the upper half-plane 
vanishes, so we integrate over e contour in the upper half-plane and. then on 
maJdng e .... 0 we get 

~. > 0 • ( 146) 

Henoe 
- i (R3 + R4) 'T: > 0 

[ . 
= 

. i (R1 + R
2

) ~ < 0 

( 147) 

• 
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The equations 047) lead to the equations 
are used for the residues Ri to R4. 

(64) when the expressions (141) to (144) 

(iii) It is required to evaluate 

I _..1.[ 1 
m - 27\ 1+oo2e2 

-00 

Consider the function 

F (00) m 

( 2 2) 2 Q 2 2 
-<.û +00 +1-' 00 m 

2 2 2 2 (-w +00 )+13 00 
m 

dw. (148) 

• 

The denominator of this funotion has six simple zeroes, 001' 00 2, 003' 004 , 00
5 

and 
006 where 

OOi = 

00
2 = 

00
3 = 

004 = 

005 = 

006 = 

and a. is given by equation (127) • m 

i - -e 
i -e 

ifi + a. 
2 m 

iê. - a. 2 m 

_lii+a. 
2 m 

- i:ê. - a. 
2 m 

I 
I 
I 
I 

I 
~ 
( 

J 

( 150) 

In this oase the integral over the infinite semioircle in either the upper 
or lower half-plane vanishes. If we take a contour in the upper half plane we 
find that the value of the integral is 

where R2' R3 and R4 are the residues of Fm(oo) at the poles 00 2 , 00
3 

and 004 
respectively. 

Now 
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(154) 

Henoe 

( 2 (.).2) e 2 4-1 <.0 - ... + W + _ _ _____ ~_,_ _ m 

213 
[ 2 ( 2 2, l:- Lr-1 + e ai) - p ) + e (l~ J 

Cl I:l 

• ( 155) 

.. 
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