TU Delft | aE Intecture Studio | P2 Presentation Tutors: ir. A. Snijders & dr. ir. M. Stellingwerf

popUP SUPERstructure

Manuella Borges | 4521463

01 Introduction	02 Research	03 Design	04 Next Steps
Fascination	Methodology	Context	Strategy
Temporary Architecture	Problem statement	Project Phasing	Planning
Design Goal	Materials	Program	Questions
Design Question	Sizes	Possible Locations	
Thechnical Question	Connections	Vision	
	Research x Design		

Introduction | Fascination

Introduction | Fascination

Images: by author

Some causes that drive temporary architecture

Types of temporary architecture

According to Robert Kronenburg, mobile and temporary building systems can be divided into three specific types:

1) Portable buildings

2) Relocatable buildings

Introduction | Temporary Architecture

Temporary architecture as addition to existing building/context

IN TIME

The stairs to Kriterion by MVRDV, Rotterdam Images: online source

Introduction | Temporary Architecture

"However, portable (moveable) buildings, though temporary in location, are not temporary in use. Their portability is precisely what makes them not disposable. The fact that they can be re-used means that they can represent an efficient use of materials and resources, and should therefore be designed with care. They are high-quality products tuned to a specific need if not a specific location."

Kronenburg, Robert. Architecture in Motion. : Taylor and Francis, 2013. ProQuest Ebook Central. Web. 24 October 2016.

Overall Design Question

How can temporary architecture for large scale international events be designed to be easily assembled and disassembled in order to adapt to different programmatic needs and project scales, or re-used in a different setting when its temporary need has ceased to exist?

Introduction | Technical Question

Main Thematic Research Question

Which technologies and techniques will allow for the creation of eco-friendly temporary and flexible architecture?

Sub-questions

- What **materials** will be most suitable for the creation of lightweight and demountable structures that have low environmental impact?

- What would be the optimal **sizes** for ease of handling and transportation?

- What assembly/disassembly methods and **connections** will be most suitable?

01 Introduction	02 Research	03 Design	04 Next Steps
Fascination	Methodology	Context	Strategy
Temporary Architecture	Problem statement	Project Phasing	Planning
Design Goal	Materials	Program	Questions
Design Question	Sizes	Possible Locations	
Thechnical Question	Connections	Vision	
	Research x Design		

2 Research | Methodology

14 | 65

Research | Methodology

Research | Problem statement

Embodied Energy of Materials as a Rising Issue

Embodied Energy Analysis. Source: http://www.bdonline.co.uk/

The Pure Cicle as the Key for Material Re-use &

Less Embodied Energy

Four Principles for Circular Economy Source: Ellen MacArthur Foundation Design for Disassembly Modular Lightweight Temporary

Wetals and alloy Metals and a

Material Universe before boundary conditions Source: CES Edupack (author's analysis) Density x Flexural Strength boundary conditions Source: CES Edupack (author's analysis) Density x Embodied energy boundary conditions Source: CES Edupack (author's analysis)

Research | Materials

Materials Pre-Selection Choice

	Most Used Materials	Alternative Materials
1) Metals & Alloys - Steel (AISI 8630) - Aluminum (Al 6061)	2) Composites - Fiber Reinforced Composite (EP-CF70) - Cardboard (CES Edupack standard)	
	3) Natural Materials - Wood (Radiata Pine) - Bamboo (CES Edupack standard)	
		4) Engineered Materials - Laminated Wood (acetylated Radiata Pine) - Laminated Bamboo (Moso)

ty)

Criteria I

Material Performance
Density (kg/m3)
Flexural Strength - MoR (Mpa)
Strength-to-weight ratio (MoR/dens
Young's Modulus – MoE (GPa)
Compressive Strength (Mpa)
Tensile Strength (Mpa)
Thermal Conductivity (W/m.oC)

Criteria II

Material Health
Embodied Energy (MJ/kg)
CO2 footprint (kg/kg)
Water Usage (l/kg)
Recycle fraction current supply (%)
Combust for Energy Recovery (yes/no)
Biodegradable (yes/no)
Renewable Content (%)

Criteria III

Criteria I: Material Performance

Criteria II: Material Health

Criteria III: Cost

Criteria I: Material Performance

Criteria II: Material Health

Criteria III: Cost

Research | Materials

Final results per material & possible scenarios

Criteria I: Material Performance	Criteria II: Material Health	Criteria III: Cost
Poor: 1 – 18 points	Poor: 1 – 18 points	Expensive: 1 – 18 points
Good: 19 – 36 points	Good: 19 – 36 points	Reasonable: 19–36 points
Excellent: 37 – 56 points	Excellent: 37 – 56 points	Cheap: 37 – 56 points

Source: Information based on the EMS (European Modular System) by ACEA. Diagrams by author

Source: Mainfreight, Global Supply Chain Logistics. Diagrams by author

Research | Sizes - up to 6m span

26 | 65

Research | Sizes - up to 12m span

Calculations Methodology

W = 3KN/m for Class C5 (areas where people may congregate	e). Source: Formichi, P. (2008). EUROCODE	1, Actions on Building Structures
FORMULAS:		
1) Beam designed for maximum moment:	5) Compare allowed deflections with the deflections of each member	
$M_{max} = W^*L^2/8$ (KN.m)	Deflection $_{max} = 5W*L^4/384*E*I_{xx}$	E= Young's Modulus (Gpa)
		$l_{xx} = b^*h^3/12 (10^{-3} m^4)$
2) Required Section Modulus	Allowed deflection = $L/200$ for roof beams = 0.30m (for span up to 6m)	
S_x required = $M_{max}/MoR (10^{-3} m^3)$		= 0.60m (for span up to 12m)
	Source: BSI Standards Publication	
3) MoR is the Modulus of Rupture or bending strength		
and it depends on the material	6) Find the weight in <i>kg</i> of each mem	ber
	Mass = area profile * lenght * density	,
4) Compute Section Modulus to check if member passes		Units Reference:
or fails the required Section Modulus	7) Find the final price in Euros	GPa= 10 ⁹ N/m ²
Square/Rectangular beams: $S_x = b^* d^2/6 (10^{-3} m^3)$	Final price = price/kg * mass	$MPa = 10^{6} N/m^{2}$
Other shapes: $S_x = I_{xx}/y (10^{-3} \text{ m}^3)$		MPa= 10 ³ KN/m ²
I_{xx} = Moment of Inertia (10 ⁻³ m ⁴)		$KPa = 10^3 N/m^2$
y = distance to neutral axis (m)		Pa= N/m ²

27 | 65

Research | Connections

CONNECTIONS USING THE SAME MATERIAL AS STRUCTURE

Clamped Connections

Slotted Connections

Fitting Connections

Connections that use a clamp or ring as a means to attatch multiple elements.

Connections that allow elements to fit into each other my means of a slot or tenon.

Connections that allow elements to fit into each other my means laps that are similar in size and shape.

different elements to be

fastened to each other by the

use of fittings, ties or rope.

Fastened Connections

Connections that

Bolted Connections

Connections that have different

elemts such as steel plates that

NOTE: All figure references can be found on the appendix of the Design Manual (Research Paper).

CONNECTIONS USING DIFFERENT MATERIAL FROM STRUCTURE

allow

Inserted Connections

Connections that link different

elemts by inserting them into it.

Design Principles

FLEXIBLE AND

Span sizes informed by transportation methods

Shortlisted materials

Chosen scenario

Qualitative Analysis Chosen Material

Production of Acetylated Wood

Acetylation Process

Images by Accoya Wood

Diagram showing products and by-products of the acetlylation process. Source: by author based on interview

Qualitative Analysis Chosen Material

Structural Performance Enhancement

Performance	untreated wood	acetylated wood	acetylated & laminated wood	
Durability	Class 4	Class 1	Class 1	*
Quality	variable	consistent	consistent	
Density	100%	110%	110%	**
Flexural Strength (MoR)	100%	120%	120%	***
Strength-to-weight ratio	100%	108%	108%	
Young's Modulus (MoE)	100%	90%	105%	****
Compressive Strength	100%	100%	114%	****
Tensile Strength	100%	100%	137%	****

by author

* Classification presented in BS-EN 350-2 Class 1 - very durable Class 2 - durable Class 3 - moderately durable Class 4 - slightly durable Class 5 - not durable

****** some sources say that density increases during acetylation process due to vinegar, while others consider density increase irrelevant.

******* 20% increase between untreated wood and acetylated wood based on Accoya performance report. Source: Accoya, 2016c

Laminated Accoya wood is stronger in bending than solid Accoya wood but structural report shows same numbers. Source: Accoya, 2016b

******** 10% decrease between untreated wood and acetylated wood based on Accoya performance report. Source: Accoya, 2016c

***** Information based on Accoya structural report. Source: Accoya, 2016b

Angular Connections

Bracing for Radial Variation
Analysis of a Pavilion Design

using Laminated Wood

S (3m members) 0

ŕŕ

or or

M (6m members) W 6m x H 6m x D 10m \mathbf{O} € E 3294 MJ 🗡 6588 MJ ŤŤ or or

L (9m members)

XL (12m mem-

Chosen connection category

CONNECTIONS USING THE SAME MATERIAL AS STRUCTURE

Clamped Connections

Slotted Connections Fitting Connections

· _ _ _ _ _ _ _ _ /

CONNECTIONS USING DIFFERENT MATERIAL FROM STRUCTURE

Fastened Connections Inserted Connections

Bolted Connections

- Same material as structure - 100% renewable materials
- Lightweight material
- Minimize number of parts
- Simplified design

Combination of different connection angles and modular sizes

Tenon and Mortise joint @ corners

Bracing for Radial Variation

Bracing of different sizes allow for radial variation

Tusk Tenon and Mortise joint

Introduction

02 Research

Design Context Project Phasing Program Possible Locations Vision

03

04Next Steps

41 | 65

Why IBA Parkstad?

International Event/Expo to be held in 2020 in order to showcase future-proof, innovative and experimental projects that will draw attention to the region and help boost its economy and restore the pride of its citizens.

The Parkstad Region Challenge

The Parkstad Region Challenge

Dutch nature as seen by Tourists

What makes the Parkstad Region unique?

The cultural and historic heritage of the Parkstad Region

SUPERstructure capacity of structure to be flexible and adapt to various scales and programs

Design | Project Phasing

Project Phasing

Design | Project Phasing

IS

Design | Project Phasing

Design | Program

Typologyical Comparison - Leisure & Cultural precedents

Mining & Industrial Heritage EXHIBITIONS

Recreational Gatherings FESTIVAL & CONCERT

Local Produce

MARKET

Interaction with Site History INSTALLATION

Interaction with Landscape BARE NATURE

Heerlen is considered the Heart of the Parkstad Region. Rich Roman heritage at Via Belgica. City is situated strategically betweem main roads leading to Belgium and Germany. Image: Google Earth

54 | 65

Schinveldse Bossen - Folly (Observatory)

a pale

Schinveld

Clay pits excavated during Roman times for production of pottery. Elevated pond location is a viewing point for surrounding landscape.

Image: Image: online

55 | 65

escapes

pop

Design | Possible Locations

Schutterspark - Folly (Bridge)

"From Black to Green": project at the intersection between the Park and the waste left behind by the mining industry now aims to bring back to surface the Rode Beek stream and create a green corridor. Image: by author

56 | 65

Design | Possible Locations

A former waste hill from the Wilhelmina state mine. Located close to some leisure attractions such as SnowWorld and Mondo Verde

Image: online source

One of the top 100 UNESCO monuments of The Netherlands. Rich Cultural, religious and architectural heritage. Today has hotel, restaurant, vineyards. Image: online source

02 Research	03 Design	04 Next Steps
		Strategy
		Planning
		Questions

Next Steps | Strategy

MSc3		SEPTEMBER				OCTOBER					NOVEMBER					DECE	MBER		JANUARY				
		05-Sep	12-Sep	19-Sep	26-Sep	03-Oct	10-Oct	17-Oct	24-Oct	31-Oct	07-Nov	14-Nov	21-Nov	28-Nov	05-Dec	12-Dec	19-Dec	26-Dec	02-Jan	09-Jan	16-Jan	23-Jan	30-Jan
Others:	Research Methods									Paper 03/11			Paper 24/11	1		Paper 15/12							
	TISD											TiSD	TiSD	TiSD	TiSD	TiSD	TiSD				TiSD		
	Holiday																??	Christmas	Christmas				
Studio:	Graduation Plan	Pavillion	Poster	Grad Plan	Grad Plan				Grad Plan											Grad Paper			
	Research																						
	Case Studies																						
	Site Visits								Amsterdam?			IBA Site											
	Design																						
	Presentation Preparation																						
	Presentation								P1													P2	
	Presentation Reflection																						
	Modeling																						
	Analysis																						

MSc4	/Sc4 FEBRUARY			MARCH				APRIL				MAY						JUNE					
		06-Feb	13-Feb	20-Feb	27-Feb	06-Mar	13-Mar	20-Mar	27-Mar	03-Mar	10-Mar	17-Mar	24-Mar	01-May	08-May	15-May	22-May	29-May	05-Jun	12-Jun	19-Jun	26-Jun	03-Jul
Others:																							
	TiSD																						
	Holiday	Break																					
Studio:	Building Technology																						
	Research																						
	Case Studies																						
	Site Visits																						
	Design																						
	Presentation Preparation																						
	Presentation								P3							P4							P5
	Presentation Reflection																						
	Modeling																						
	Analysis																						

