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Abstract

A Monte Carlo approach to the ship-centric Markov decision process (SC-MDP)

is presented for analyzing whether a container ship should convert to LNG power

in the face of evolving Emission Control Area regulations. The SC-MDP model

was originally developed as a means to analyze uncertain, sequential decision

making problems. However, the original model is limited in its handling of

uncertainty by only using discrete probabilistic values to account for the uncer-

tainty. This paper extends the model to include Monte Carlo simulations to gain

a deeper understanding of how uncertainty affects decision making behavior. A

case study is presented involving the impact of evolving Emission Control Ar-

eas on the design and operation of a notional 13,000 TEU container ship. The

decision of whether to invest in a dual fuel LNG engine is analyzed given uncer-

tainties in economic parameters, regulatory scenarios, and supply chain risks.

The case study is used to show how variations in uncertain parameters can have

a drastic effect on optimal decision strategies.
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1. Introduction

Understanding the importance of decision making has been recognized as one

of the fundamental constructs in engineering design for decades (Kana et al.,

2016b; Le Masson et al., 2013). However, understanding the impacts of design

decisions for engineering projects that involve physically large and sometimes5

complex structures is difficult due factors that vary with time, can be frag-

mented, and are inherently uncertain (Fet et al., 2013; Hastings & McManus,

2004; Kana et al., 2016b; ONR, 2011; Seram, 2013). In regard to marine de-

sign specifically, uncertainty arises in decision making from not only endogenous

factors, such as technological or engineering uncertainty, but also from exoge-10

nous factors, such as regulatory, economic (Niese & Singer, 2013), or weather

and climate uncertainty (Vanem, 2015). Due to the complex and sometimes in-

tractable nature of large scale strategic planning and decision making problems,

practitioners typically omit the uncertain or stochastic elements when modeling

the problem (Fagerholt et al., 2010).15

However, Zayed et al. (2002) showed that differing and sometimes conflicting

results may arise when comparing deterministic and stochastic methods for the

same problem. Zayed et al. (2002) studied the economics of maintenance and

scheduling of bridge painting by comparing a deterministic economic analysis

using net present value to a stochastic model using a Markov decision process20

(MDP). They concluded that while the deterministic method may show more

promising results at times, its advantages are, “offset by the MDP’s ability to

incorporate the inherent stochastic nature of the phenomenon being modeled”

(Zayed et al., 2002). Thus, properly accounting for the uncertainty is necessary

in any decision aiding model.25

Accounting for uncertainty is especially true in situations involving uncer-

tain environmental regulations. This paper discusses one specific instance; that

is whether a container ship should convert to LNG power in the face of evolving

Emission Control Area (ECA) regulations. Studying the impact of ECA and

developing models to help ship owners and operators plan for these regulations30
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has been studied since ECA was first introduced (Lin & Lin, 2006). Nielsen

& Schack (2012) examined compliance strategies for vessels facing ECA regu-

lations. Their work included a deterministic economic analysis with sensitivity

studies. Balland et al. (2013) looked into the effects of uncertainty over the

actual emission reductions of certain emission abatement technologies. They35

employ a two stage optimization technique to address the uncertainty in the

decision making. (Rehn et al., 2016) used a systems engineering approach that

employed both Monte Carlo simulations and a real options type approach to

incorporate flexibility. Kana et al. (2015) employed the ship-centric Markov de-

cision process (SC-MDP) to study temporal effects of regulatory and economic40

uncertainty on life cycle planning.

This paper extends the work of Kana et al. (2015) and introduces original

content by applying Monte Carlo simulations to the SC-MDP model. This is

done to gain a deeper understanding of the effects of uncertainty and how they

may change optimal decision making behavior. The SC-MDP model is defined45

as applying Markov decision processes to ship design and decision making. The

SC-MDP model has been beneficial in analyzing decision making in the mar-

itime domain due to its ability to handle time-varying uncertainty in both the

endogenous and exogenous factors. The model has previously been used to ex-

amine decision making scenarios in the maritime domain involving ballast water50

treatment methods (Kana et al., 2016a; Niese & Singer, 2013), various design

options to meet the Energy Efficiency Design Index (Niese et al., 2015), and

studying personnel movement during emergency situations on board the vessel

(Kana & Singer, 2016).

These previous SC-MDP studies, however, have assumed discrete probabilis-55

tic values for the uncertainty in the model. These assumptions can be limiting

when applied to conversion issues in the face of evolving environmental regula-

tions because of the difficulty in precisely defining the specific stochastic values.

For example, what is the exact probability that a vessel is able to obtain LNG as

a bunker fuel at a given port during early stages of infrastructure development?60

Monte Carlo simulations are used in this paper as a means to properly handle

3



this type of stochastic uncertainty. These Monte Carlo simulations run through

a range of uncertainties and input parameters to determine their respective ef-

fect on the overall solution. Monte Carlo simulations have been used by others

studying the impact of environmental regulations on ships, including Coraddu65

et al. (2014) who used this technique to examine ship energy efficiency measures

to meet both the Energy Efficiency Design Index (EEDI) and the Energy Effi-

ciency Operational Indicator (EEOI). Their technique differs from this work as

this research uses the SC-MDP model as the underlying model with which we

run the Monte Carlo simulations.70

While design methods exist that provide a methodical process for ship de-

sign decision making, such as set based design or epoch era analysis (Rader

et al., 2010; Singer et al., 2009), the SC-MDP model can be one tool (out of

possibly many) that can be used to these support processes. The SC-MDP

model provides a perspective on the sets of decisions that enable the decision75

maker to determine the percentage of time it is best to convert engines, given

a large suite of economic, technological, and regulatory scenarios, as opposed

to finding the best option for one static scenario. This helps decision makers

understand if and when it is most likely to convert engines, even in the face

of large uncertainty. Understanding the effect of uncertainty on the life cycle80

costs is also very important. Monte Carlo methods enable the decision maker

to calculate the range of expected costs both through time and through various

system scenarios. Understanding the probability that a given cost expectation

will be met through time is possible. Traditional sensitivity analyses are also

possible using this model to discern influences of specific aspects of the model.85

The goal of this research is to understand how uncertainty affects the decision

to convert a container ship to LNG power, as opposed to identifying what the

specific uncertainty level is for specific aspects of the problem. The objective of

the overall method is to draw from the strengths of MDPs in handling uncertain

temporal decision making, and the strengths of Monte Carlo simulations in90

enabling true stochastic analysis.
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2. Methods

A brief discussion of the methods is presented here, while the specifics of how

it was applied to this specific case study is given to detail in the following section.

The underlying mathematical model behind the SC-MDP model is the Markov95

decision process (MDP). An MDP is a state-based, stochastic decision making

model that consists of four parts: (1) a set of states, S, of the environment,

(2) a set of actions, A, that the agent can take, (3) a set of probabilities, T,

of transitioning from one state to another, and (4) a set of rewards, R, that

are received from landing in a given state after taking a given action. The100

objective of an MDP is to identify the sequence of actions that maximizes the

cumulative, long term expected utility of the decision process. This sequence

of actions, π, can be obtained via Equation 1, while the expected utility, U, is

found by solving Equation 2, known as the Bellman equation (Puterman, 2005).

Here, a is a given action, s is the current state, s’ is the state of the following105

time step, and γ is the discount factor.

π(s) = arg max
a

∑
s′

T (s, a, s′)U(s′) (1)

U(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)U(s′) (2)

MDPs are commonly solved via backward induction (i.e. dynamic program-

ming) to evaluate the expected utilities. That is, the model is solved backward

in time, by starting at the desired end state, and then moving backwards to find110

the optimal route and expected value. This method is used to ensure that the

sequence of decisions prescribed is optimal (Puterman, 2005; Sheskin, 2011).

Monte Carlo simulations are used to handle the uncertainty associated with

defining the rewards and transition probabilities. Value ranges are determined

for each parameter and the simulations iteratively selects values at random from115

each input variable distribution. Thousands of simulations may be run to ensure

convergence to a stable distribution. The maximum incremental change is used

to show that the system has stabilized and that additional simulations do not
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affect the solution in any significant manner. This convergence is defined as the

cumulative incremental change, ∆(i), in both the states and actions after each120

run. Physically, this means that the probability of being located in any given

state or taking any given action varies by less than ∆(i) for each additional

simulation run. The convergence metric is defined in Equation 3 where i is the

indexed simulation run.

∆(i) = | 1
n

n∑
i=2

xi −
1

n− 1

n∑
i=2

xi−1| (3)

Here xi is the maximum probability of being in a given state or taking a125

specific action at a given time (Equation 4).

xi = arg max
a,s

[P (s), P (a)] (4)

Sensitivities on specific variables may then be performed to determine which

system parameters may be driving its behavior. The sensitivity analysis used

in this paper involves setting all the Monte Carlo variables to their mean value,

except for the variable of interest, which is allowed to vary through its original130

range. A detailed case study of this method is presented in the following sections.

3. Case Study: Design for Evolving Emission Control Area Regula-

tions

This case study is designed to show the utility of the Monte-Carlo approach

to the SC-MDP model in a maritime example that involves design and operating135

considerations in the face of uncertain evolving Emission Control Area (ECA)

regulations.

3.1. Fixed model parameters

A notional 13,000 TEU containership routed between Rotterdam and China

is examined. The route covers 22,000 nm, of which 1100 nm is a designated ECA140

zone (IMO, 2008). This ECA coverage increases to 6800 nm of the total route

in a single year. The specifics behind when exactly the regulation changes is
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Table 1: The vessel principal characteristics for the notional 13,000 TEU containership

Length Greater than 300 m

Beam Less than 45 m

Draft - full load 13.0 m

Draft - partial load 11.5 m

Block coefficient 0.61

Displacement - full load 112,000 MT

Displacement - partial load 99,000 MT

Ship brake power Greater than 67,000 kW

described in Section 3.3. Two drafts are studied to simulate a full load traveling

to Rotterdam, and a partial load (or back-hauling) back to China (Table 1).

The vessel is at sea for a total of 290 days per year, to account for lost time in145

port and dry-docking.

The Holtrop & Mennen (1982) method was used to estimate the required

brake power for speeds between 12 and 24 knots, while estimates from MAN

B&W and Wartsila were used to estimate base specific consumption (MAN

B&W, 2012; Wartsila, 2014). Combining both the fuel consumption was calcu-150

lated for all three fuels and for both drafts (Figure 1). When operating in dual

fuel mode, the engine burns 95% LNG and 5% HFO as a pilot fuel, which is in

line with estimates made by both MAN B&W and Wartsila (MAN B&W, 2012;

Wartsila, 2014).

3.2. The Markov decision process155

The details of how the individual states, s, actions, a, transition probabilities,

T , and rewards, R, are defined is presented in the following section. These

variables are used in Equations 1 and 2 to determine the best decisions and the

associated expected costs.
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Figure 1: Fuel consumption curves for three different fuels and two drafts. The curves were

developed using both the Holtrop and Mennen method as well as estimates from MAN B&W

and Wartsila.

3.2.1. States160

There are eight possible states, s, split between three state variables. The

three state variables are:

1. The amount of ECA coverage. The two possibilities for ECA coverage are

1,100 nm and 6,800 nm.

2. The engine installed. The two types of possible engines are a single fuel165

fuel engine that burns either HFO or MDO and a dual fuel engine that

burns a combination of LNG and HFO.

3. The bunker fuel type. The two fuel options are: 1) a combination of LNG

and HFO, and 2) a combination of MDO and HFO. The LNG and HFO

option is only valid when the dual fuel engine is installed. When LNG170

is not available, the dual fuel engine will burn MDO and HFO instead

(El-Gohary, 2012). The MDO and HFO option is valid for either en-

gine. When running this fuel combination, the engine alternates between

burning MDO in the ECA zones, and HFO elsewhere.
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3.2.2. Starting State175

The simulation begins with an ECA coverage of 1100 nm and a single fuel

engine installed that burns MDO and HFO. Selecting the correct starting state

is important because the resulting decision paths may be sensitive to these

initial conditions (Kana et al., 2016a; Niese et al., 2015). Since this case study

examines decisions regarding retrofitting an existing vessel, the starting state is180

designed to reflect the current design of the vessel as well as current regulatory

environment.

3.2.3. Actions

Four possible actions, a, are available to the vessel operator when the vessel

arrives in port:185

1. Do not switch engines, and try to purchase LNG fuel.

2. Do not switch engines, and purchase MDO fuel.

3. Switch to a dual fuel engine, and try to purchase LNG fuel.

4. Switch to a dual fuel engine, and purchase MDO fuel.

The action “Do not switch engines, try to purchase LNG fuel” is only avail-190

able once a dual fuel engine is installed. The action “Switch to a dual fuel

engine, and purchase MDO fuel” is included to account for possible situations

where the preferred decision is to retrofit engines immediately in preparation

for future lower LNG prices. The preferred decision is the one that minimizes

cumulative life-cycle cost.195

3.2.4. Transition Probabilities

The state transition probabilities, T , are defined as follows:

• The probability of transitioning between an ECA coverage of 1100 nm and

an ECA coverage of 6800 nm happens according the inputs selected from

the Monte Carlo simulations, as described in Section 3.3.200

• The probability of transitioning from the single fuel engine to the dual

fuel engine is deterministic based on the preferred action.
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Table 2: Summary of the MDP states and their transition probabilities.

State Initial Potential Future Transition

Variable Value Value Probability

ECA coverage 1,100 NM 6,800 NM [0, 1]

Engine single fuel dual fuel 1

Fuel (in Rotterdam) HFO or MDO LNG and HFO [0.5, 1]

Fuel (in China) HFO or MDO LNG and HFO [0, 1]

• The preferred fuel type is chosen according to both the preferred decision

and the supply chain risk. When the vessel wishes to purchase LNG fuel,

but it is unavailable, it will purchase MDO instead.205

The relationship between the states and the transition probabilities is sum-

marized in Table 2.

3.2.5. Rewards

The rewards, R, are defined by the cost function given in Equation 5, where

f is the fuel costs, o is the opportunity costs, and c is the conversion costs210

of installing the LNG engine. The costs are calculated after each leg and are

accumulated across the life cycle of the vessel.

R(s) = min(f + o+ c) (5)

• f , the fuel cost, is calculated via Equation 6. b is the fuel consumption, d

is the number of days at sea, e is the fuel price, and p is a given percentage.

p accounts for either the size of the ECA coverage or the dual fuel mixture.215

f = b ∗ d ∗ e ∗ p (6)

• o, the opportunity cost, accounts for the lost potential revenue from the

LNG fuel tanks.

• c, the conversion cost, is the cost of converting to a dual fuel LNG engine.
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3.3. Monte Carlo parameters

Various economic, regulatory, and supply chain scenarios were modeled as220

part of the Monte Carlo simulations. The economic parameters that were varied

include engine conversion costs, fuel prices, freight rates, and interest rates.

The cost of converting to a dual fuel engine was estimated between $220/kW

and $340/kW (Banawan et al., 2010). This estimate includes all the auxiliary

equipment necessary to fully install and operate on LNG fuel. With an engine225

power greater than 67,000 kW, total engine retrofit cost was modeled with a

uniform distribution between $14 million and $23 million.

The fuel prices for HFO, MDO, and LNG were assigned normal distributions

with means of US $650/ton, $950/ton, $500/ton respectively, and standard

deviations of US$50/ton. While more advanced fuel projection models exist,230

for the purposes of this case study, this fuel cost model is sufficient in showing

both the utility of Monte Carlo simulations as well as conclusions regarding

sensitivity of the fuel prices.

Freight rates were developed from historical data from UNCTAD (2014)

shown in Figure 2. Rates from China to Rotterdam were modeled as a normal235

distribution with a mean of US$1500 and a standard deviation of US$285. Like-

wise, the rates from Rotterdam to China were also set as a normal distribution,

however, with a mean of US$800 and a standard deviation of US$125.

In addition to the freight rate uncertainty, there is also uncertainty associated

with the lost revenue stemming from installation of the LNG fuel tanks that240

reduce cargo capacity. To model this, the capacity for 244 TEUs is assumed to

be lost to accommodate the required LNG fuel tanks and equipment. This lost

capacity, however, may not necessarily lead to lost revenue potential. Ships are

rarely fully laden due to market conditions or port draft restrictions (Almeida,

2014; Schuler, 2014). For this case, 244 TEUs represent less than 2% of total245

TEU capacity. According to Alphaliner (2015), the average vessel capacity for

traveling from China to Northern Europe is 88% with a standard deviation of

7.5% (Figure 3). Back haul load capacities are typically much less in the range

of 50-70% (Søndergaard et al., 2012). Thus, lost revenue only comes into play
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Figure 2: Historical average of freight rates (UNCTAD, 2014). The Monte Carlo simulations

assumed a normal distribution of freight rates from Asia to Europe with a mean of US$1500

and standard deviation of US$285. From Europe to Asia the mean was set to US$800 with a

standard deviation of US$125.

when market conditions dictate that vessel load conditions are above 98%. The250

Monte Carlo simulations were structured to match this.

Interest rates were modeled as a normal distribution with a mean of 7% and

a standard deviation of 1%. The discount factor used in the MDP is related to

the interest rate by Equation 7 (Puterman, 2005) where i is the interest rate

and γ is the discount factor.255

i = (i/γ)− 1 (7)

Modeling the regulatory uncertainty was more difficult due to the challenge

in quantifying the probability of when the ECA regulation will actually change.

The attempt at quantifying this uncertainty stems from the desire to examine

its sensitivity on the recommended decisions, as opposed to claiming that this

particular uncertainty model is actually how the regulations will behave. At the260

start of the simulation, ECA covers 1100 nm of the total route. The specific

year in which the ECA coverage increases from 1100 nm to 6800 nm varies

depending on the simulation run. The range is uniformly distributed between

3 years and 10 years. There is also uncertainty associated with whether the

regulation actually changes at that given year. This uncertainty is uniformly265
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Figure 3: Average vessel load factors from 2010 to 2015 (adapted from Alphaliner (2015).

Vessel load factors have averaged 88% with a standard deviation of 7.5%.

distributed between 0% and 100%. For example, one scenario may be that there

is a 75% probability that the ECA regulation will increase 5 years from now.

While infrastructure and regulations are being developed for LNG bunkering

facilities, there is great uncertainty whether the fuel will be available should

a ship go into port and want to purchase LNG. While other literature aims270

to quantify this development (Danish Maritime Authority, 2012; Lee, 2014),

this research is instead focused on the implications of supply chain risk on

the decisions. To simulate supply chain risk associated with uncertainty of

LNG availability, the probability of obtaining LNG in Rotterdam is modeled

uniformly between 50% and 100%, while the probability of obtaining LNG in275

China is uniformly distributed between 0% and 100%.

4. Results

Three sets of results were explored, covering an examination of the decisions,

the economic costs, and the specific design drivers leading to both the decisions

and economic costs. Before examining the results, the system was tested for280

convergence using Equations 3 and 4. For each simulation run, there is some

uncertainty that at any given time the system may be in a given state or that

a given action may be selected. This uncertainty is in the set [0, 1], and a
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simulations, the model has consistently converged to a value less than 10 ∗ 10−4, which is

deemed an acceptable range.

running average of this uncertainty is calculated for each successive simulation

run. The cumulative incremental difference between the ith simulation run and285

the ith − 1 run is then calculated. For Figure 4, the maximum cumulative

difference between all actions, all states, and all speeds is plotted. As is shown,

1000 simulations were run to ensure confidence of convergence. The inset of the

figure shows that after 1000 simulations the model has consistently converged

to a value less than 10 ∗ 10−4, meaning that the probability of being located290

in any given state or taking any given action varies by less than 10 ∗ 10−4 for

each additional simulation run. Since the uncertainty variables in this model

have only been estimated to a value of 10 ∗ 10−3, the authors have deemed this

acceptable convergence.

4.1. Decisions295

The key decision defined in this problem is not just whether the ship owner

should convert to an LNG engine, but also when it may be best to perform the

conversion. The SC-MDP is able to identify when specific actions are preferred

throughout the life cycle of the vessel (see Equation 1), while the Monte Carlo

simulations provide the likelihood that a given operating environment may be300
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Table 3: Percent of time a given action is optimal. The “convert engines eventually” action

means that it is best to convert to an LNG engine at a time after the first two voyages.

Speed Never Convert engines Convert

(kts) convert as soon as engines

engines possible eventually

12 67% 33% 0%

14 30% 70% < 1%

16 8% 92% < 1%

18 3% 96% < 1%

20 < 1% 99% < 1%

22 < 1% 100% 0%

24 0% 100% 0%

in place to yield such actions. Thus, the model presented in this paper enables

the ability to identify the percent of time a given action is optimal, and when

throughout the life cycle of the vessel it may be optimal. To show this, Table

3 presents the percent of time it is optimal for the vessel to (a) never convert

engines, (b) convert engines as soon as possible, and (c) convert engines eventu-305

ally. “Convert engines as soon as possible” is defined as converting the engines

within the first two voyages, while “convert engines eventually” is defined as

converting engines at some point after that. “Convert engines eventually” is

included to account for those situations where it may be best to hold off on

converting the vessel until the ECA regulation has increased.310

As speeds are increased, the probability that it is best to convert engines

increases. For 12 knots it is best to keep the single fuel engine for 67% of

the simulations, and this percent drops significantly with only a small increase

in speed. For 16 knots and faster the percent of time it is best to keep the

single fuel engine is less than 8%, and at the highest speed of 24 knots, it is315

never optimal to keep the single fuel engine. The probability that it is best to

convert to a dual fuel LNG engine as soon as possible follows nearly the exact

15



opposite trend, with the probability increasing with increasing speed. Rarely

is it preferable to delay converting the engines. Kana et al. (2015) discussed

in detail the situations where it is preferred to convert engines later in the life320

cycle, such as when the regulation changes. This analysis, however, shows that

those situations are rare, occurring less than 1% of the time in only four of the

speeds tested. No matter the speed, there is always a possibility that converting

to an LNG engine is preferred; however, as the speed increases eventually there

is a point where it is never preferred to keep the single fuel engine.325

4.2. Economic Costs

Understanding what decisions will likely be made is only part of the problem;

the decision maker must also understand the range of costs that are likely to

occur given each decision scenario. The expected net present life cycle costs are

given in Figure 5, as calculated by Equation 2. Figure 5a shows the results for330

a speed of 12 knots, where it is clear there is a large spread of potential costs,

given differing starting scenarios. The large beige region signifies the extreme

limits, displaying the maximum and minimum, while the blue region shows one

standard deviation above and below the mean. The high costs at year zero come

from the conversion costs during those situations when it is best to convert to335

an LNG engine as soon as possible. The solid black line is the mean cost, while

the dashed red line is the median cost of all simulations.

Figure 5b shows the costs for a speed of 22 knots. Even at the higher speeds,

there is still a possibility that it is best to keep the single fuel engine installed.

This is shown by the small beige area around US$0 during the first year. This340

is also shown in Table 3, where it is apparent that this situation occurs < 1%

of the simulations. The costs for speeds of 14, 16, 18, and 20 knots follow a

similar trend as that of 22 knots, however, their specific values vary with the

speed. Figure 5c shows the costs for 24 knots, where it is apparent that it is

never beneficial to keep the single fuel engine installed.345

The final accumulated life cycle costs after 20 years for all speeds is given in

Figure 6. The edges of the box represent the 25th and 75th percentile respec-
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Figure 5: The expected net present cost (US$) for the range of speeds. (a) shows the expected

range of costs for the slowest speed tested of 12 knots. (b) shows the range of potential costs

for a high speed of 22 knots, where there is a small possibility that is it preferable to keep

the single fuel engine. (c) displays the costs for the highest speed of 24 knots where is always

preferable to switch to a dual fuel engine as soon as possible. Note the variations in the y-axis

between figures to show specifics within each speed.
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Figure 6: The accumulated life cycle cost varies greatly both between speeds and within

individual speeds. The spread of possible costs grows both in magnitude and in percent as

speeds increase. Outliers tend to fall on the upper end of costs for the faster speeds.

tively, while the centerline is the median. The red marks that extend beyond the

whiskers are labeled as outliers that fall outside 2.7 standard deviations of the

data. As seen, the costs do not grow linearly with speed, instead they increase350

similar to the speed power consumption curves given in Figure 1. The variation

of costs within each speed is large, and increases with increasing speed. That

is, for a speed of 12 knots, there is just over a 45% variation between the lowest

possible cost and the highest cost, while at 24 knots, that variation grows to

nearly 68%. Thus, both the percent variation and the gross magnitude of the355

variation grow with increasing speed. For 12 knots, the variation is between

US$52 million for the lowest cost and US$83 million on the high end with a

median of US$68 million. For 24 knots, that variation increases to a minimum

of US$265 million for the lowest cost and US$536 million for the highest cost

with a median of US$400 million. Finally, the outliers for the faster speeds all360

lay on the high end of the costs. Since these costs were calculated via the MDP

model, each result is considered the best scenario given the set of inputs. Thus,

should a decision maker not follow the best decision pathway, they can expect

their costs to be higher than what is displayed here.
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Table 4: Average savings and payback periods for all speeds. Savings are increased and

payback periods are reduced as speeds are increased.

Speed Average savings Average payback

(kts) (US$MM) period (years)

12 2 18.1

14 7 14.4

16 16 10.6

18 29 7.5

20 49 5.1

22 76 3.5

24 108 2.7

For each speed the average savings and time to pay back the engine conver-365

sion costs was calculated against a baseline scenario where the vessel continues

to operate on a single fuel engine throughout its life cycle and alternates be-

tween operating on MDO and HFO fuel. This calculation only accounts for

those simulations where it is best to convert to an LNG engine. Thus, for situ-

ations where converting engines is only preferable a small portion of the time,370

the savings only account for those times when it is preferable to convert engines.

As shown in Table 4, for speeds less than 16 knots the average savings are less

than US$16 million with a payback time of longer than 10 years. For the highest

speed of 24 knots, the savings are over US$100 million with a payback of less

than 3 years. Due to the large variation in costs, the actual savings and payback375

period may vary from this average.

4.3. Decision Drivers

Sensitivity studies were performed on the ECA regulation, the supply chain

risk, and the fuel prices to determine the drivers behind the decisions. The anal-

yses were performed by holding constant each parameter except the variables380

of interest. The constant parameters were fixed near their designated mean

value, as given in Table 5. 1000 simulations were run for each sensitivity test
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to remain consistent with the original analysis. Since there is inherently has

less total variation in the model for the sensitivity runs, 1000 simulations also

provide sufficient convergence.385

4.3.1. ECA Regulation Sensitivity Study

The ECA regulation sensitivity showed clear results. First, there is no vari-

ation in the individual speeds in regard to the best decision. A clear bifurcation

becomes apparent at 14 knots (Table 6). Below 14 knots it is always best to

maintain the single fuel engine, while at and above 14 knots it is always best to390

convert to a dual fuel LNG engine. There were no instances during this study

when it is best to delay converting engines beyond the first two voyages. This

study also showed almost no variation in the cost both through the life cycle,

and as a cumulative amount (Figure 7). The median cost for each speed re-

mained unchanged in this study. Thus, this study shows that the variation in395

the results, both in the decisions and the costs, is not due to the uncertainty

in the ECA regulation implementation. There were no significant changes in

the average savings or payback period as compared to the full analysis. This

result that uncertainty regarding the regulation is not a significant driver of the

decision to convert to LNG power agrees with the results by Rehn et al. (2016),400

even though they used a different mathematical model.

4.3.2. LNG Supply Chain Risk Sensitivity Study

The effect of the LNG supply chain risk was tested as to its impact on the

results. The decisions are similar to that from the full simulation (Table 7).

For the slow speeds of 12, 14, and 16 knots, the probability of it being best405

to never convert engines is reduced between 3% and 13%, thus increasing the

probability it is best to convert engines as soon as possible. For 18 knots and

faster, the results were very similar to the original results, varying at most 3%

from the original simulation. No instances arose where it is preferable to delay

retrofitting the engine until later.410

Varying the availability of LNG in port causes a large spread in life cycle
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Table 5: Parameters used for the sensitivity studies. The variables for the regulation and

LNG supply chain sensitivity were uniformly distributed, while the fuel price sensitivity used

a normal distribution.

Parameter ECA LNG Supply Fuel Price

Regulation Chain Sensitivity

Sensitivity Sensitivity

Engine conversion cost $18.8M $18.8M $18.8M

Interest rate 7% 7% 7%

Lost TEUs to fit LNG equipment 18 18 18

(to Rotterdam)

TEU freight rate to Rotterdam $1,500 $1,500 $1,500

TEU freight rate to China $800 $800 $800

Probability of obtaining LNG 0.5 [0,1] 0.5

in China

Probability of obtaining LNG 0.75 [0.5,1] 0.75

in Europe

HFO price $650 $650 µ = $650, σ = $50

MDO price $950 $950 µ = $950, σ = $50

LNG price $500 $500 µ = $500, σ = $50

Year ECA coverage may increase [3,10] 5 5

Probability that ECA will increase [0,1] 0.5 0.5

at given year
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Table 6: Sensitivity due to uncertainty in the ECA regulation implementation. For 12 knots

it is always best to keep the original engine, while above 12 knots it is always best to convert

to a dual fuel LNG engine as soon as possible.

Speed Never Convert engines Convert

(kts) convert as soon as engines

engines possible eventually

12 100% 0% 0%

14 0% 100% 0%

16 0% 100% 0%

18 0% 100% 0%

20 0% 100% 0%

22 0% 100% 0%

24 0% 100% 0%
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Figure 7: The sensitivity study on the ECA regulation showed almost no variation in the

accumulated life cycle costs for individual speeds. The median cost for each speed, however,

remained unchanged as compared to the original analysis.
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Table 7: Sensitivity due to LNG supply chain risk. The probability of it being best to never

convert engines is reduced between 3 and 13%, compared to the original analysis.

Speed Never Convert engines Convert

(kts) convert as soon as engines

engines possible eventually

12 64% 36% 0%

14 17% 83% 0%

16 2% 98% 0%

18 0% 100% 0%

20 0% 100% 0%

22 0% 100% 0%

24 0% 100% 0%

costs (Figure 8). This variation, however, does not account for the full variation

that is present in the original simulation. The percent variation for 12 knots is

just over 10%, while for 24 knots the variation is only 36%. Across all speeds,

the cost variation only accounts for just over 60% of the total variation shown415

in the full simulation. There are also very few outliers. Lastly, as with the ECA

regulation sensitivity study, there were no significant changes in the average

savings or payback period as compared to the full simulation.

4.3.3. Fuel Price Sensitivity Study

The fuel prices were tested as to their effect on both the decisions and the420

life-cycle costs. This study revealed that fuel price variation is one of the reasons

it may be best to delay retrofitting the engine until after the first two voyages

(Table 8). Sensitivity studies on the ECA regulation and LNG supply chain

did not reveal any instances when it would be best to delay retrofit, while this

studied showed the opposite. Variations in the fuel prices displayed a similar425

trend to that of the original analysis, in that for speeds between 14 knots and

20 knots, there are instances-albeit rare-that delaying the engine retrofit is the

best option.
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Figure 8: The sensitivity study on the LNG supply chain risk shows a slightly smaller spread

than the original analysis. The median cost for each speed also remained unchanged as

compared to the original analysis.

Table 8: Fuel Price sensitivity. Fuel price variability may be one of the causes leading to

delaying engine retrofits beyond the first two voyages.

Speed Never Convert engines Convert

(kts) convert as soon as engines

engines possible eventually

12 72% 28% 0%

14 11% 89% < 1%

16 < 1% 99% < 1%

18 < 1% 99% < 1%

20 < 1% < 100% < 1%

22 0% 100% 0%

24 0% 100% 0%
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Figure 9: The sensitivity study on the fuel prices shows a slightly smaller spread than the

original analysis. The median cost for each speed remained unchanged as compared to the

original analysis.

This study also showed large variation in regard to the life cycle costs (Figure

9). Unlike the previous analyses, the variation here was consistent across all430

speeds, averaging between 25% and 29% between lowest and highest quartile.

Combined, this variation accounts for roughly 70% of the total variation in the

model. This sensitivity study also had outliers present, meaning that while

most of the data is spread through a consistent distribution, variable fuel prices

can lead to life cycle costs that are far outside what is expected. The result435

that uncertainty in fuel prices is a large driver for uncertainty in the decision to

convert engines and life cycle costs agrees with the results of Rehn et al. (2016).

5. Discussion

There are several points worthy of discussion following the results of the

model:440

1. This model is intended to provide insight into decisions concerning retrofits,

not necessarily the decision itself. It is still up to the individual decision

maker to decide whether or not to follow the results of the model. For

instance, it is not expected that the decision maker will actually follow
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the results in situations where the savings are small and the payback time445

is long, as is the case for the slower speeds. As the savings increase and

payback time decreases with higher speeds, it is at the discretion of the de-

cision maker to decide for themselves whether they wish to convert engines

or not.

2. This model does not cover all uncertainties associated with converting a450

container ship to LNG power. Despite giving the best decision pathway

for each scenario, this model does not remove all risks that vessel owners

face. As with all probabilistic models, there is still a chance that the

actual situation may vary from the normal bounds of the results, possibly

causing great economic harm.455

3. The model is dynamic. It can be adapted to include any sub models for

this given case study. It would be beneficial to include a more advanced

fuel cost and freight rate model, supply chain risk model, and measured

vessel fuel consumption curves for commercial use. While these underlying

models appear simplistic, the overarching theory and methods still hold.460

4. There is more risk at higher speeds. The spread of potential costs is much

greater at higher speeds, increasing the risk. This is logical because there

is greater fuel consumption at higher speeds, causing fuel price to have

more effect.

5. The specific case study provides key insights despite not being fully inclu-465

sive. The case study did not account for the potential profit loss from

slow steaming. Also, this paper only discussed decisions related to LNG

fuel; however, other ways of meeting upcoming ECA regulations include

the use of distillate fuels, or installation of scrubbers. Decisions are also

severely impacted by whether the vessel is under charter, and the type470

of charter. These points do not, however, negate the applicability of the

insights gained from the model.

The objective of this model was to provide the quantitative information

necessary for helping decision makers plan for uncertain and evolving Emission
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Control Area regulations.475

6. Conclusion

This paper demonstrated how Monte Carlo simulations applied to the ship-

centric Markov decision process can be used to help decision makers decide

whether to convert a container ship to LNG power in the face of evolving Emis-

sion Control Area regulations. The SC-MDP model was used to identify when480

the decision to convert engine is preferred throughout the life cycle of the ves-

sel as well as the life cycle costs associated with making those decisions. The

study was focused on how to include operation considerations in regard to regu-

latory and technology uncertainties in the decision making process, as opposed

to designing a specific vessel that can be adapted to future requirements in a485

cost efficient way. Monte Carlo simulations were used to move beyond individ-

ual probabilistic values that had limited previous applications of the SC-MDP

model in approaching this problem. The Monte Carlo simulations enable a bet-

ter stochastic analysis than individual probabilistic values. These simulations

were also used to develop probabilistic distributions of not only the decisions490

themselves but also the life cycle costs associated with them.

New insights were gained regarding life cycle decision making for container

ships facing upcoming emissions regulations. Uncertainty regarding the regula-

tion showed to have little effect on when certain decisions should be made as

well as contributing little to the uncertainty in the life cycle costs. Uncertainty495

over the availability of LNG as a bunker fuel and fuel prices showed to be more

significant drivers causing large variations in the distribution of results.
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