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Structure-Preserving Model
Order Reduction of Slender Soft
Robots via Autoencoder-Parameterized Strain

Abdulaziz Y. Alkayas ", Anup Teejo Mathew
Thomas George Thuruthel

Abstract—While soft robots offer advantages in adaptability
and safe interaction, their modeling remains challenging. This
letter presents a novel, data-driven approach for model order
reduction of slender soft robots using autoencoder-parameterized
strain within the Geometric Variable Strain (GVS) framework.
We employ autoencoders (AEs) to learn low-dimensional strain
parameterizations from data to construct reduced-order models
(ROMs), preserving the Lagrangian structure of the system while
significantly reducing the degrees of freedom. Our comparative
analysis demonstrates that AE-based ROMs consistently outper-
form proper orthogonal decomposition (POD) approaches, achiev-
ing lower errors for equivalent degrees of freedom across mul-
tiple test cases. Additionally, we demonstrate that our proposed
approach achieves computational speed-ups over the high-order
models (HOMs) in all cases, and outperforms the POD-based ROM
in scenarios where accuracy is matched. We highlight the intrinsic
dimensionality discovery capabilities of autoencoders, revealing
that HOM often operate in lower-dimensional nonlinear mani-
folds. Through both simulation and experimental validation on a
cable-actuated soft manipulator, we demonstrate the effectiveness
of our approach, achieving near-identical behavior with just a
single degree of freedom. This structure-preserving method offers
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significant reductions in the system degrees of freedom and com-
putational effort while maintaining physical model interpretability,
offering a promising direction for soft robot modeling and control.

Index Terms—Modeling, control, learning, Reduced order
modeling, Strain parameterization, Deep Learning Methods,
Cosserat Rod.

I. INTRODUCTION

OFT robots, inspired by biological organisms and evolu-
S tionary designs [1], [2], offer advantages like adaptability
and safe interaction, making them ideal for applications in
agriculture, medicine, and inspection [3], [4], [5]. However, their
flexibility also complicates modeling and control, leading to
developments that benefit wider engineering and computational
applications.

Various modeling approaches have been developed for soft
robotic systems, including Finite Element Models (FEM), rod-
based models, and Machine Learning (ML) techniques [6],
[7]1. FEM offers high accuracy but is often computationally
intensive due to its high-dimensional nature. ML methods can
capture complex nonlinear behaviors efficiently but may lack
interpretability and generalizability. Rod-based models strike a
balance between accuracy and computational efficiency, mak-
ing them a widely used alternative. Among these, the Piece-
wise Constant Curvature (PCC) model [8] was extended to the
Piecewise Constant Strain (PCS) model to include torsion and
shear [9]. The Geometric Variable Strain (GVS) model [10],
[11] further generalized this framework using a finite set of
possibly non-constant strain bases, with a recent formulation
supporting nonlinear, state- and time-dependent strains [12].
While more compact than FEM, these models can still result in
high-dimensional systems that are computationally demanding
to solve.

To address the high dimensionality of soft robotic models,
researchers have increasingly turned to structure-preserving Re-
duced Order Modeling (ROM) techniques [13]. These methods
aim to reduce computational cost while maintaining essential
physical behavior and interpretability, which is a hybrid ap-
proach that is neither purely physics-based nor purely data-
driven. A widely used ROM tool is Proper Orthogonal De-
composition (POD), which extracts dominant orthogonal modes
from data to project high-dimensional systems onto reduced
subspaces. POD has proven particularly effective when applied
to FEM, achieving significant speedups without sacrificing accu-
racy [14]. More recently, a hybrid approach combined POD with
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Fig. 1. Overview of our proposed model order reduction approach.

the GVS model by learning optimal strain bases directly from
data to construct compact dynamic models [15]. In addition to
POD, Autoencoder (AE) neural networks have emerged as pow-
erful tools for nonlinear dimensionality reduction, providing la-
tent representations that capture complex system dynamics. AE-
based ROMs have shown promise in modeling high-dimensional
mechanical systems [16], [17] and deformable solids [18], [19],
with growing interest in developing efficient latent spaces for
planar and 3D deformable objects to enable high-fidelity sim-
ulations at reduced computational cost [20], [21], [22]. To the
best of our knowledge, AE-based dimensionality reduction has
not yet been applied to strain-based rod models, leaving an open
opportunity for exploration in this direction.

In this letter, we employ autoencoders (AEs) to learn low-
dimensional strain parameterizations for slender soft robots.
These autoencoder-based parameterizations are then utilized
to construct the reduced-order model (ROM) while preserving
the Lagrangian structure of the GVS model. It is worth noting
that our proposed ROM method is neither purely physics-based
nor purely data-driven; rather, it adopts a hybrid approach that
leverages data-driven tools to enhance physics-based models.
We demonstrate that AE-based ROMs outperform Proper Or-
thogonal Decomposition (POD)-based approach [15], achiev-
ing lower errors for the same number of Degrees of Freedom
(DOFs). To further assess their effectiveness, we compare the
behavior of multiple systems under both AE and POD formu-
lations across different number of DOFs. We also show that
our method consistently reduces computation time compared to
the high-order models and outperforms the POD-based ROM
when evaluated at equivalent accuracy levels. Additionally, we
highlight the intrinsic dimensionality discovery capability of
AEs [23]. While Higher-Order Models (HOMs) operate in a
high-dimensional state space, their essential dynamics often
live in lower-dimensional nonlinear manifolds. We illustrate
this phenomenon through visualizations and discussions of the
lower-dimensional manifolds in the latent spaces of various
slender soft robotic systems. Finally, we experimentally vali-
date the AE-based ROM on a single-tendon soft manipulator,
demonstrating near-identical behavior with just a single DOF.

II. GEOMETRIC VARIABLE STRAIN MODEL

The GVS model is a strain-based reduced-order method for
modeling Cosserat rods (Fig. 2). The generalized coordinates
q of the model are parameters that define the rod’s strain
field. We provide a summary of the model’s kinematics and
the Lagrangian form of the governing equations. A detailed

Fig.2. Cosseratrod and its discretization. The rate of change of g with respect
to X and ¢ defines the local velocity twist 77 and the rod strain &. Rod cross-
section with the actuator routing, given by dy, (X)), is shown in the inset.

derivation of the model, along with analytical expressions for
all its components, is available in [12].

A. Kinematics

The kinematics involves determining the position and orien-
tation of a reference frame associated with the cross-sections of
the rod. We represent this using a homogeneous transformation
matrix g(X) € SE(3), where, X € [0, L], L being the length
of the rod. The rod strain £ and the local velocity twist 7 are
defined by the rate of change of g with respect to X and time ¢
(Fig. 2).

g =gt (la)
g=gn, (1b)

where, @ is the isomorphism from R to se(3). The rod strain
is typically represented as a linear function of the strain basis
P (X).
£(X,q) = :(X)qg +£(X), ()

where, g € R" is the generalized coordinates of the robot and
&* represents the reference (stress-free) strain of the Cosserat
rod.

However, nonlinear or coordinate-dependent strain bases
were proposed in [12]. Accordingly, the strain field is param-
eterized as follows:

§(X,q) = ¥:(X,q) +£(X). €
Using (3) in (1a) and integrating in X we obtain the kinematic
map from q to g(X).
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Considering the equality of the mixed partial derivatives of
g, we obtain the derivatives of velocity and acceleration twists
with respect to X:

n'=€—aden, @)

i =& —adgn — aden) , (5)
where ad (., € R is the adjoint operator of se(3) and the time
derivatives of £ are given by:

oW, .

€= qu > (6)
s 0%, 0?1\ .
5—6(1q+<aq2 q)q @)

The integration of (4) and (5) leads to the deﬁniyion of the
geometric Jacobian J(g, X ) and its time derivative J(q, g, X).

B. Dynamics and Statics

The free dynamics of the Cosserat rod are projected onto the
space of generalized coordinates using the geometric Jacobian,
according to the D’Alembert-Kane method, to derive the La-
grangian form of the dynamic equations:

M(q)q + C(q,9)q + D1(q,q) + K1(q) = B(q)u + F((%))
where, M is the generalized mass matrix, C is the generalized
Coriolis matrix, D1 is the generalized damping force, K is the
generalized elastic force, B is the generalized actuation matrix,
w is the vector of actuation forces, and F' is the generalized
external force. The generalized static equilibrium equations are
obtained from (8) by setting ¢ = 0 and ¢ = 0.

Ki(q) = B(q)u + F(q) ©)
Since the free dynamics of the soft body are expressed in a

continuum (distributed) form, the projected quantities @ are
integrated along the rod domain using a quadrature method.

L p
| @y =3 wa)
i=1

where, n,, is the number of quadrature points and w; are quadra-
ture weights.

10)

C. Actuation With Frictional Dissipation

The actuation wrench in the local frame is obtained by cal-
culating the moment and force acting on the rod’s centerline:

g
Fux)=Y [d’f;; t’“] apup = Bo(q, Xu  (11)
k=1
where ®,,(q, X) € R is the actuation basis, n, is the num-
ber of actuators, dj, (X)) € R? is the distance from the center-line
to actuator k, and ¢, (X)) is the unit vector tangent to the actua-
tor’s path. In the presence of friction, the cable tension decreases
along the rod due to the interaction between the tendon and the
soft body. This effect has been studied in previous work [24]. In
such case, the reduction in cable tension is accounted for by an

attenuation factor o, (X') given by:
ap(X) = e mJo on(a)ds (12)

where 1 is the coefficient of friction, and ¢ (X)) is the curvature
of the actuator.
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III. REDUCTION VIA AUTOENCODERS

Our aim is to find the strain function W that would appropri-
ately describe the rod’s strain field. For generic soft rod systems,
selecting such a function is non-trivial. We propose to learn this
parameterization from strain data generated by a ground-truth
HOM. The decoder of a trained autoencoder then serves as the
nonlinear strain function W¢. An overview of our proposed
approach is summarized in Fig. 1. To integrate the reduction
approach with the discrete domain implementation of the GVS
model (see [12]), we sample the 6D strains at p points along
the Cosserat rod abscissa, a concatenated vector of strains and
twists can be defined as:

O * * * T
U= e &7 7 &7, e - &7 eR? (13)

where £; — &7 is the deviation from reference strain at the j th
computational point. The computational points include both the
quadrature points used for spatial integration in (10) and those
used for kinematic computations.

Now, multiple samples of \ilf generated by the HOM is the
data that will be used in training the AE. It is worth noting that the
proposed AE-based ROM is broadly applicable, requiring only
representative strain fields. The key requirement for the amount
of training data is to reflect the system’s expected operating
conditions -for instance, contact scenarios- and cover thoroughly
the actuation/input space. The AE’s function is to reconstruct the
input as follows:

‘11577“65 = D(g(‘iIE))v
while minimizing the regularized reconstruction loss:

L= ||liJ£,7‘ec - ‘i’SH% + )‘Z HWZH%v

(14)

5)

where D is the decoder function, £ is the encoder function, £
is the reconstruction loss, A is the regularization parameter, and
W, is the weight matrix of the i*" layer of the AE. We include
the L2 regularization term to avoid overfitting with A = 1074

We use tanh activation functions for all layers in the AEs
we train. Such function is convenient as the first and second
derivatives are continuous, facilitating the use of numerical
solvers and avoiding potential issues that might arise when
using discontinous functions. We use two architectures as strain
parameterizations in our examples, mainly a shallow AE of 3
hidden layers, and a deeper AE of 7 hidden layers. To systemat-
ically evaluate their performance, we analyze the reconstruction
error (RMSE) across varying latent space dimensions (1, 2,
and 3 DOFs) and AE depths (3, 5, and 7 hidden layers). The
results of this study, conducted for the cases in Sections IV-A
and I'V-B, are summarized in Table I. These two examples were
selected for their suitability for both analysis and visualization.
The findings illustrate how the theoretical minimum number of
DOFs required by a system influences the AE’s representational
capability. For example, using a single DOF for the inherently 2D
system in Section I'V-B leads to a significant reconstruction error,
as evidenced by the sharp error reduction when increasing to 2
DOFs, unlike the 1D case in Section IV-A, which is effectively
captured even with a single DOF.

The encoder and decoder are symmetric, with layer sizes
following a geometric progression: the encoder halves the
size at each layer, while the decoder doubles it. For example,
the sizes of the decoder layers of the deeper AE variant are
r, 6p/8, 6p/4, 6p/2, 6p. The “six” here is due to the six strain
modalities in general, however it can be less if some strains are
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TABLE I
RMS RECONSTRUCTION ERRORS ACROSS THE FULL DATASET FOR DIFFERENT
AE ARCHITECTURES AND LATENT SPACE DIMENSIONS (DOFS) FOR THE
SCENARIOS IN SECTIONS IV-A AND IV-B

Single Cable Manipulator

Hidden Layers 1 DOF 2 DOFs 3 DOFs
3 0.1447 0.0936 0.0870
5 0.0556 0.0336 0.0321
7 0.0383 0.0310 0.0248
Soft Beam Under External Moment
Hidden Layers 1 DOF 2 DOFs 3 DOFs
3 7.6686 2.6016 1.5544
5 6.4376 0.8733 0.6452
7 4.8100 0.5923 0.5318

not excited. The latent space layer size is chosen based on the
reduced number of generalized coordinates q,., that is r. Then
the strain parameterization would be:

é(qr) = D(qr) + é* > (16)
and from here the derivation for the whole model can begin. The
decoder’s first derivative and the vector product of the second
derivative with g, are needed as seen in (6) and (7). The first
derivative (the network jacobian) can be easily acquired analyt-
ically using the chain rule. To avoid computing the expensive
second derivative of the decoder (i.e., the network Hessian),
which s required in (7), we instead utilize the following relation:
O*We . O€
0q? 4 aq’
which is once again computed analytically using the chain rule.
The analytically computed strain gradients from smooth AE
decoders, combined with the differentiability of the GVS-based
Lagrangian formulation [25], ensured stable convergence across
all static and dynamic simulations presented in this work.

A7)

IV. SIMULATIONS

To evaluate the performance of the proposed AE-ROM
method, we conducted a series of simulation studies on three
different systems. For solving statics, we used MATLAB’s
fsolve with its default trust-region-dogleg algorithm with default
tolerances. Alternative algorithms like Levenberg-Marquardt
and trust-region were also tested and yielded identical results
with varying computation times. For dynamics, we used the
semi-implicit solver odel5 s, as explicit solvers like ode45 and
odel13 led to significantly slower simulations due to system
stiffness. The PC specifications for all computations presented
here are as follows: 13th Gen Intel(R) Core(TM) i9-13900HX,
2.20 GHz, 64.0 GB RAM. The MATLAB version used is
R2024a.

A. Single-Tendon Soft Manipulator

Here, we study the case of a soft manipulator actuated by
a single tendon under gravitational load in a cantilever posi-
tion. Table II includes the dimensions and material parame-
ters of the manipulator. Frictional effects are accounted for as
presented earlier in (11) and (12), with a coefficient of 0.88.
The cable path is linear, defined by d;(0) = [0,0,1]7 e¢m and
di(L) =[0,0,0.3]T cm at the base and tip of the manipulator,
respectively. As this is a planar deformation scenario, only three
strains will be excited: bending about y, shear along z, and
elongation. Each of these 3 strains is parameterized using a 10"

11009

TABLE II
PARAMETERS OF THE CABLE DRIVEN SOFT MANIPULATORS

Single-Actuator  Six-Actuators

Length 25 cm 60 cm
Base Radius 1.25 cm 2cm
Tip Radius 0.5 cm 1cm
Density 1121 kg/m? 1000 kg/m?
Young’s Modulus 0.617 M Pa 1 MPa
Poisson’s Ratio 0.5

Damping Constant 10% Pa - s

-0.78 -0.76 -0.74 -0.72

s 0 0

0.5
0.5
_0% 0.2
O 0.40-
-1 5 0.6
-1 038 06 0.4 02 s 0877
qi
Fig. 3. Latent space visualization for the trained AE network using a) 2 DOFs

and b) 3 DOFs. Each black dot represents the latent space coordinates for a
training sample.

order Legendre polynomial, resulting in a total of 33 DOFs for
the manipulator.

Multiple strain snapshots are collected and organized accord-
ing to the methodology discussed in Section III. Each snapshot is
associated with an actuation value, with 1000 levels of actuation
ranging from —6 N to 3 N. We define an abscissa discretization of
102 points, making each snapshot of a vector of 306 dimensions.
The snapshots are then used as the training samples for the AE
network. Three AEs are trained, with a latent space of dimension
1,2 and 3. The reconstruction errors for multiple AE depths and
latent space dimensions are detailed in Table I.

Before using the decoder of the AE as a reduced nonlinear
basis, we infer the encoder with the training samples to inspect
the latent space. We know that in the presented case of static
equilibrium that a single DOF is capable of describing the
behaviour of the system. Indeed we observe, as seen in Fig. 3(a)
and (b), that the latent space coordinates of the training samples
form a 1D curve in 2D and 3D spaces. This behaviour arises
naturally with complete unsupervision in the training process,
hinting at the AE’s ability to discover the intrinsic dimensionality
of the underlying system.

The single DOF AE is then utilized as the reduced nonlinear
basis for the manipulator, and the static equilibrium is solved at
different actuation levels. It can be seen from Fig. 4 that using
only one DOF, the ROM is able to produce almost the same strain
field as the HOM. The figure also shows how the AE-based ROM
shows superior performance compared to the POD-based ROM,
despite having 2 DOFs.

At 1 DOF, the AE-based ROM achieved less than 1% strain
error with respect to the HOM, with the Mean Absolute Error
(MAE) error evaluated at all quadrature points along the rod.
We used this as the accuracy threshold for a fair comparison and
increased the number of POD modes until the same criterion was
met. This occurred at 7 DOFs. The corresponding strain profile
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Fig. 4. Comparison between the AE-based 1 DOF and the POD-based 2, 7
DOFs ROMs to the HOM. As inset, the configurations of the manipulator at
different actuation levels using the AE ROM.

is also shown in Fig. 4. In this comparable accuracy setting, the
AE-based ROM completed the computation in 42 ms on average,
whereas the POD-based ROM required 165 ms on average,
resulting in a speed-up factor of 3.9. Both offer substantial gains
over the HOM, which took 670 ms on average.

B. Soft Beam Under External Moment

We move to a different system, where a soft beam under-
goes bending due to an applied external moment of different
magnitudes at different locations. The beam has a length of
0.8 m, a radius of 1.5 cm, and a Young’s modulus of 1 M Pa.
The beam is only subjected to a moment that acts along the
local y-axis and is distributed in the shape of a triangular pulse,
centered at a specific point with a base width equal to 10% of
the beam’s total length. The analytical strain solution to this
problem is a sigmoid function. Thus, in order to capture this
highly nonlinear strain profile, we employ local strain bases that
resemble linear FEM shape functions. Correspondingly, a 50
DOFs local strain parameterization is used to generate the HOM
strain data used for the AE training. The dataset is generated
from 5000 solutions of moment locations X/L € [0, 1] and
magnitudes M, € [—5,5] N.m.

We then move forward to test the intrinsic dimension discov-
ery property of the AE. We train AEs to see how the resulting
manifold appears, and we report the reconstruction errors across
different numbers of hidden layers and latent space dimensions
in Table I. We see that the resulting latent space is indeed a
surface in 3D space, due to having two main contributors to
the data, location and magnitude. For simplicity, we show in
Fig. 5 the latent space of a simpler shallow AE as the surface
increases in complexity when the AE becomes deeper. However,
we employ a deeper AE as the ROM strain function with better
reconstruction capabilities, and proper visualization of it’s latent
space is present in the multimedia attachment of this letter.
Fig. 5(a) and (b) show how the training samples construct the sys-
tem’s intrinsic manifolds in both 2D and 3D space respectively.
We observe that the latent space coordinates form a perfectly 2D
surface in 3D space. Symmetry can also be seen around the origin
in both latent spaces, due to the positive and negative duality
in the dataset for positive and negative moments. Additionally,
this symmetry point is the bottleneck between both positive and
negative halves, and exhibits a high density of points around
it. That is due to the fact that sigmoids of small magnitudes

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 10, OCTOBER 2025

(close to zero) look similar regardless of the location, and
consequently mapped to a similar region to the zero magnitude
point. Particularly at zero magnitude, information about the
location is completely lost, and thus mapped to a singularity,
resulting in ill-conditioning of the problem. Similar issues arise
in nonlinear strain parametrization, where at some coordinates
the basis matrix can be singular as discussed in [12]. This issue
can be avoided by using an alternative strain parameterization,
such as global or local linear bases, although this typically comes
at the expense of introducing many additional DOFs.

The decoder of the deeper AE is then employed as the nonlin-
ear strain parametrization for the system, with a 2 dimensional
latent space. The same data used for the AE training is decom-
posed using POD and the bases are to build a 2 dimensional
POD-based ROM. We then compare the performance of both
ROMs for two different loading conditions, 4 N.m applied
at X/L = 0.25, and 2 N.m applied at X/L = 0.75. Both the
AE-based and the POD-based ROMs are then solved and the
performance is compared in Fig. 6. It can be seen that the
AE-based ROM is capable of producing strains very similar to
the HOM and much better than the POD-based one using the
same number of generalized coordinates.

We used the same evaluation metric as before to assess
computational speed. For this highly nonlinear strain profile,
19 POD modes were required to achieve a comparable strain
error (< 1%), as shown in Fig. 6. In this comparable accuracy
setting, the AE-based ROM completed the computation in 37ms
on average, whereas the POD-based ROM required 239ms on
average, resulting in a speed-up factor of 6.5. Once again, both
reduction approaches offered substantial gains over the HOM,
which took 810ms on average.

Additionally, we train the autoencoder on noisy strain data
to assess its impact on the resulting latent space manifold. We
find that noise locally introduces an additional dimension to the
manifold; however, it largely retains the same global structure as
in the noise-free case. Interestingly, the performance of the AE as
a strain parameterization remains almost unaffected, which we
attribute to the inherent denoising capabilities of autoencoders.
Visualizations of the latent space manifolds for the AEs trained
on noisy data, corresponding to the scenarios in Sections IV-A
and IV-B are provided in the video attachment accompanying
this letter.

C. Six-Tendon Multisection Soft Manipulator

This section introduces a six-actuator manipulator with a
different actuation configuration: three actuators span the entire
body, while the remaining three operate over half its length. The
actuators are arranged 60 degrees apart in an alternating pattern
of full- and half-body actuation domains, with straight paths
on the manipulator’s surface. The dimensional and material
parameters for the manipulator are summarized in Table II,
and the tendon interactions with the body is assumed to be
frictionless.

Strain discontinuities arise where cables terminate midway
along the manipulator. Since continuous approximation func-
tions may fail to capture these, the HOM framework partitions
the domain of the rod into two segments, each with independent
strain bases. Torsional, elongation, and shear strains use first-
order (linear) Legendre polynomials, while bending strains use
second-order (quadratic) ones. This parameterization yields 28
DOFs for the full manipulator.
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Fig. 5.

Latent space visualization for the trained AE network using (a) 2 DOFs and (b) 3 DOFs for the soft beam under external moment. Each dot shows the

latent coordinates of a training sample, using a shallower AE than in simulation for ease of visualization. The color gradient is purely for visualization purposes
and is correlated with the value of g3. The surfaces resulting from deeper AEs can be seen in the accompanying multimedia material.
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Fig. 6. Comparison between the AE-based 2 DOFs and the POD-based 2, 19

DOFs ROMs to the HOM. As inset, the configurations of the soft beam at when
subjected to two different moments at both X /L = 0.25 and 0.75 using the
AE-based ROM.

1) Statics: As demonstrated in [15], uniform sampling -or
grid sampling- of the actuation domain is the most effective
strategy for generating HOM data in the context of POD-based
ROMs, despite its inherent exponential complexity. However,
when applied to training an AE, this approach fails to adequately
describe the underlying manifold. To illustrate this, we trained
two AEs using the same amount of data but with different
sampling strategies: one with uniform sampling of the actuation
space and the other with random sampling, both having a 6D
latent space. We then visualized the latent space by projecting
the 6D points of the training samples onto the first three principal
components. As depicted in Fig. 8, the uniformly sampled
data produces a sparse manifold with significant uncharted
regions, with no guarantees that these regions result in the
proper behavior or not. Whereas the randomly sampled data
yields a more evenly parameterized manifold. This distinction is
critically important, as a well-parameterized manifold facilitates
the iterative load ramping approach for finding static equilibrium
solutions. An important aspect to note in such systems is the
critical role of the initial guess provided to the solver. Using
well-informed initial conditions can significantly improve con-
vergence and may eliminate the need for techniques like load
ramping altogether.

We adopt the random sampling approach to generate a static
equilibrium dataset comprising 20,000 samples, with actuation
forces randomly distributed within the range of [—30, 30] V. We
trained an AE with a 6D latent space—matching the system’s
six actuators—and compared it against a POD-based ROM

with 6 modes. Simulation results for five arbitrary actuation
inputs were used to evaluate the computational performance and
accuracy of both ROMs at equal DOFs. Fig. 7 illustrates the
resulting configurations and tip position errors for both ROMs
relative to the HOM (28 DOFs). While the POD-based ROM was
slightly faster, averaging 94 ms per static equilibrium evaluation
compared to 106 ms for the AE, the AE-based ROM achieved
significantly higher accuracy. The tip position error was 2.32 cm
(3.9% of the manipulator length) for AE, versus 4.95 cm (8.3%)
for POD. For reference, the HOM required 276 ms on average.

2) Dynamics: We adopt a similar approach to [15] and use
actuator babbling to generate the dynamic simulation dataset.
Random actuation values within the range [—15, O]N are applied
to each actuator, with holding times randomly varied between
0.5 and 1s, independently for each actuator.

We simulate three minutes of variable-hold babbling, sam-
pling the strain field evolution at 100 Hz, which yields 18,000
strain snapshots. These snapshots are used to train multiple AEs
with varying latent space dimensions. The decoders of these
AEs are then integrated as the nonlinear strain parametriza-
tion. The resulting AE-based ROMs are evaluated on a new
random actuation sequence lasting 10 seconds, with changes
occurring every 1 s. Their performance is compared to that
of a POD-based ROM with the same number of DOFs and
the HOM. The results of these tests are summarized in Fig. 9,
which depicts the average tip position errors between the ROMs
and the HOM over the 10-second test. The AE-based ROM
consistently outperforms the POD-based ROM across all tested
DOFs, achieving reductions in average errors of up to 80%.
As shown in the inset of Fig. 9, the trace of the tip position
at 7 DOFs highlights the superior qualitative performance of
the AE-based ROM. In terms of computational speed, similar
trends to the static case were observed. For the same number
of DOFs, the POD-based ROM was consistently faster, with
evaluation time increasing almost linearly with the number of
modes. In contrast, the AE-based ROM exhibited comparable
runtimes at lower DOFs but showed a higher-order growth in
evaluation time as the DOFs increased. For instance, at 7 DOFs,
the POD-based ROM completed the simulation in 11.6 seconds,
while the AE-based ROM required 17.2 seconds, approximately
48% slower. However, this came with a significant improvement
in accuracy: the tip position error was reduced from 7% for POD
to 1.9% for AE. In comparison, the HOM simulation took 114.3
seconds, highlighting the substantial efficiency gains achieved
by both ROMs. Furthermore, a video comparison between the
proposed ROM and the HOM for the 10-second dynamics test
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Fig. 8. Projections of the 6D latent space coordinates for the training samples
of the six-actuator manipulator, comparing uniform (grid) and random sampling
strategies. The color gradient is for visualization purposes and represents the
value of PCl.
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Fig. 9. Comparison of computational times and average tip position errors
(expressed as a percentage of the body length) between the AE-based and POD-
based ROMs relative to the HOM, evaluated for varying numbers of DOFs!.
The inset illustrates the trace of the tip positions for the three models over a
10-second test, as discussed in Section IV-C2, specifically for 7 DOFs ROMs.

across multiple DOFs can be examined in the accompanying
multimedia material.

V. EXPERIMENTAL VALIDATION

In this section, the performance of the proposed ROM is
assessed in an experimental prototype in order to demonstrate
the validity of our approach in real scenarios. Material properties
for the prototype were identified experimentally, yielding the
parameters detail in Table II, and a friction coefficient of 0.88.

0.1 [ AE ROM - 1 DOF
T I 5 17 1 O I o Experimental tip postions
NEEENEEEL O il - POD ROM - 1 DOF
' H Il i R
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Fig. 10.  (a) Snapshots of the experimental prototype taken at different actua-
tion values. (b) Resulting configurations of the ROM using a single DOF, with the
AE-based ROM (blue) and the POD-based ROM (red). The actual experimental
tip positions are indicated with the red circles.

TABLE III
SUMMARY OF AE- AND POD-BASED ROMS COMPUTATIONAL PERFORMANCE
UNDER DIFFERENT EVALUATION CRITERIA. TIME IS IN SECONDS. T INDICATES
7 DOFs

Same Accuracy Level (<1% strain error)

POD AE
Case DOF Time DOF Time | HOM Time
IV-A 7 0.165 1 0.042 0.670
IV-B 19 0.239 2 0.037 0.810
Same DOF Study
POD AE
Case Error Time | Error Time | HOM Time
IV-CI 83% 0.094 | 39% 0.106 0.276
v-c2t | 7.0 % 11.6 1.9 % 17.2 114.3

The actuation system consists of a Blue Bird BMS-A922+
servo motor and a highly accurate Micro S-type Load Cell
B313-20 N for tension measurement at the base. Specific servo
motor rotations were commanded to exert tensions measured
at (—1.12,-2.35,—-3.7,—5.05) N. The resulting manipulator
configurations are illustrated in Fig. 10(a). Tip positions were
captured using a camera system for comparison with the ROM.

For the ROM, simulation data are generated over the same
range of actuation forces presented in Section IV-A, with both
gravity and friction taken into account. Once the AE was trained,
the ROM is constructed based on the decoder as the nonlinear
strain parametrization, and is solved and compared with the
experimental results. As seen in Fig. 10(b), the errors for the
AE-based ROM are small, with an average error of 0.87 cm
and a maximum error of 1.43 cm for the tip position, which
represents 3.48% and 5.72% of the body length respectively. In
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comparison, the POD-based ROM exhibits significantly higher
errors, with an average of 4.76 cm and a maximum of 6.42 cm,
representing 19.04% and 25.68% of the body length respec-
tively. This showcases state-of-the-art performance for modeling
such a system with a single DOF.

VI. CONCLUSION

In this letter, we introduced an autoencoder-based approach
for model order reduction of slender soft robots that preserves the
underlying Lagrangian structure of the system. By identifying
the nonlinear strain parameterizations through autoencoders,
the method achieved substantial improvements over POD-based
reduction across diverse test cases involving three systems: a
single-actuator soft manipulator, a soft beam under external
moments, and a six-actuator multisection manipulator in both
static and dynamic scenarios.

We highlighted the ability of autoencoders to naturally dis-
cover the intrinsic dimensionality of systems, as evidenced by
the emergence of lower-dimensional manifolds in the latent
space. This capability enables more efficient representations of
complex strain fields without requiring prior knowledge of the
underlying structure. Table III summarizes the performance of
the AE and POD ROMs. In the simulation studies, AE achieved
faster computation than POD when targeting the same strain
error relative to the HOM. In contrast, for the same number of
DOFs, POD was faster, but its accuracy was significantly lower
than that of AE, with both the AE- and POD-ROMs offering
speed-ups compared to the HOM.

Experimental validation on a single-cable, cable-actuated soft
manipulator demonstrated the practical applicability of our ap-
proach, achieving an average tip position error of just 3.48% of
the body length with a single DOF.

While the nonlinear parameterization inherent to AE-based
ROMs introduces additional computational complexity in
derivative calculations compared to linear models, our results
show that it performs better computationally at the same accu-
racy level, facilitating its applicability to real-time simulation
for control purposes. This trade-off, combined with the reduced
system dimensionality, is particularly beneficial for model-based
motion planning and shape estimation using limited sensing.
Future work may explore extending this approach to hybrid
soft-rigid systems, further broadening its practical impact.

REFERENCES

[11 A.T.Mathew et al., “ZodiAq: An isotropic flagella-inspired soft underwa-
ter drone for safe marine exploration,” Soft Robot., vol. 12, pp. 410422,
2025.

[2] Z. Wang, N. M. Freris, and X. Wei, “SpiRobs: Logarithmic spiral-
shaped robots for versatile grasping across scales,” Device, vol. 3, 2024,
Art. no. 100646.

[3] C. Armanini et al., “Soft robotics for farm to fork: Applications in
agriculture & farming,” Bioinspiration Biomimetics, vol. 19, no. 2, 2024,
Art. no. 021002.

[4] M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, “Biomedical appli-
cations of soft robotics,” Nature Rev. Materials, vol. 3, no. 6, pp. 143-153,
2018.

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

11013

L. Groo, A. T. Juhl, and L. A. Baldwin, “Toward soft robotic inspection
for aircraft: An overview and perspective,” MRS Commun., vol. 14, no. 5,
pp. 741-751, 2024.

C. Armanini, F. Boyer, A. T. Mathew, C. Duriez, and F. Renda, “Soft
robots modeling: A structured overview,” IEEE Trans. Robot., vol. 39,
no. 3, pp. 1728-1748, Jun. 2023.

D. Kim et al., “Review of machine learning methods in soft robotics,”
PLoS One, vol. 16, pp. 1-24, Feb. 2021.

I. Webster, J. Robert, and B. A. Jones, “Design and kinematic modeling
of constant curvature continuum robots: A review,” Int. J. Robot. Res.,
vol. 29, no. 13, pp. 1661-1683, 2010.

F.Renda, F. Boyer, J. Dias, and L. Seneviratne, “Discrete cosserat approach
for multisection soft manipulator dynamics,” IEEE Trans. Robot., vol. 34,
no. 6, pp. 1518-1533, Dec. 2018.

F. Renda, C. Armanini, V. Lebastard, F. Candelier, and F. Boyer, “A
geometric variable-strain approach for static modeling of soft manipulators
with tendon and fluidic actuation,” IEEE Robot. Automat. Lett.,vol.5,n0.3,
pp- 4006-4013, Jul. 2020.

F. Boyer, V. Lebastard, F. Candelier, and F. Renda, “Dynamics of con-
tinuum and soft robots: A strain parameterization based approach,” [EEE
Trans. Robot., vol. 37, no. 3, pp. 847-863, Jun. 2021.

A. T. Mathew, D. Feliu-Talegon, A. Y. Alkayas, F. Boyer, and F. Renda,
“Reduced order modeling of hybrid soft-rigid robots using global, local,
and state-dependent strain parameterization,” Int. J. Robot. Res., vol. 44,
pp. 129-154, 2025. doi: 10.1177/02783649241262333.

S. Sadati, S. E. Naghibi, L. da Cruz, and C. Bergeles, “Reduced order
modeling and model order reduction for continuum manipulators: An
overview,” Front. Robot. Al vol. 10, 2023, Art. no. 1094114.

0. Goury and C. Duriez, “Fast, generic, and reliable control and simulation
of soft robots using model order reduction,” IEEE Trans. Robot., vol. 34,
no. 6, pp. 1565-1576, Dec. 2018.

A.Y. Alkayas, A. T. Mathew, D. Feliu-Talegon, P. Deng, T. G. Thuruthel,
and F. Renda, “Soft synergies: Model order reduction of hybrid soft-rigid
robots via optimal strain parameterization,” IEEE Trans. Robot., vol. 41,
pp- 1118-1137, 2025.

M. Lepri, D. Bacciu, and C. D. Santina, “Neural autoencoder-based
structure-preserving model order reduction and control design for
high-dimensional physical systems,” IEEE Contr. Syst. Lett., vol. 8,
pp. 133-138, 2024.

J. S. Hesthaven, C. Pagliantini, and N. Ripamonti, “Structure-preserving
model order reduction of hamiltonian systems,” 2021, arXiv:2109.12367.
S. Shen et al., “High-order differentiable autoencoder for nonlinear model
reduction,” ACM Trans. Graph., vol. 40, Jul. 2021, Art. no. 68.

L. Fulton, V. Modi, D. Duvenaud, D. I. W. Levin, and A. Jacobson,
“Latent-space dynamics for reduced deformable simulation,” Comput.
Graph. Forum, vol. 38, no. 2, pp. 379-391, 2019.

N. Sharp et al., “Data-free learning of reduced-order kinematics,” in Proc.
ACM SIGGRAPH 2023 Conf., 2023, pp. 1-9.

Z. Zong et al., “Neural stress fields for reduced-order elastoplastic-
ity and fracture,” in Proc. SIGGRAPH Asia 2023 Conf. Papers, 2023,
pp. 1-11.

A. Lyu, S. Zhao, C. Xian, Z. Cen, H. Cai, and G. Fang, “Accelerate
neural subspace-based reduced-order solver of deformable simulation by
Lipschitz optimization,” ACM Trans. Graph., vol. 43, no. 6, pp. 1-10,
2024.

K. Zeng, C. E. P. De Jests, A. J. Fox, and M. D. Graham, “Autoencoders
for discovering manifold dimension and coordinates in data from complex
dynamical systems,” Mach. Learn.: Sci. Technol., vol. 5, May 2024,
Art. no. 025053.

1. Hussain et al., “Compliant gripper design, prototyping, and modeling
using screw theory formulation,” Int. J. Robot. Res., vol. 40, no. 1,
pp- 55-71, 2021.

A.T.Mathew, F. Boyer, V. Lebastard, and F. Renda, “Analytical derivatives
of strain-based dynamic model for hybrid soft-rigid robots,” Int. J. Robot.
Res., 2025. doi: 10.1177/02783649251346209.


https://dx.doi.org/10.1177/02783649241262333
https://dx.doi.org/10.1177/02783649251346209


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


