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Abstract
Finite elements with polynomial basis functions on the simplex with a symmetric distribution
of nodes should have a unique polynomial representation. Unisolvence not only requires that
the number of nodes equals the number of independent polynomials spanning a polynomial
space of a given degree, but also that the Vandermonde matrix controlling their mapping
to the Lagrange interpolating polynomials can be inverted. Here, a necessary condition for
unisolvence is presented for polynomial spaces that have non-decreasing degrees when going
from the edges and the various faces to the interior of the simplex. It leads to a proof of a
conjecture on a necessary condition for unisolvence, requiring the node pattern to be the
same as that of the regular simplex.

Keywords Unisolvence · Simplex · Node patterns · Polynomial · Finite elements

Mathematics Subject Classification 05B35 · 65D05 · 65N30

1 Introduction

Mass-lumped finite elements with a symmetric distribution of nodes on the simplex enable
explicit time stepping when solving the wave equation by avoiding the inversion of a large
sparse mass matrix. The elements of the lumped mass matrix are proportional to quadrature
weights. To avoid zero or negative weights that make time stepping unstable, the elements are
enriched with higher-degree polynomials in the interior. Elements of degree 2 [1–4], 3 [5, 6],
4 [7], 5 [8], 6 [9], 7 and 8 [10, 11] have been found. The last two papers also contain degree-9
elements, but the one in [11] has degree 10 instead of 9 on the edges. In 3D, elements of
degree 2 [7], 3 [8], and 4 [12] were found. In the last paper, some of the elements only involve
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a subset of the higher-degree polynomials on the faces or in the interior of the tetrahedron.
Elements of that type will not be considered in this paper.

The construction of these elements involves several steps. Nodes in a symmetric node
pattern can be classified according to their equivalence class. For a given degree on the
edges, a node pattern has to be chosen, as well as degrees for the faces and interior. All
elements found so far include the vertices. Then, a set of equations has to be formed that
require quadrature to be exact for a certain set of polynomials. The resulting system may be
inconsistent, zero-dimensional with a finite number of solutions, or infinitely many solutions
may exist. Among these solutions, only the real-valued ones with positive weights and nodes
that do not lie outside the element, or move outside their symmetry class or coincide with
another node are of interest, if they exist and can be found. Finally, the basis polynomials have
to be mapped to Lagrange interpolating polynomials. It may happen that the Vandermonde
matrix of the linear system that governs the mapping may be rank deficient and the element
has to be discarded because it is not unisolvent.

To avoid that problem, it helps to know in advance which node patterns for given degrees
on edges and interior, and faces in 3D, can provide unisolvence. As degenerate cases such as
coinciding nodes may still occur, a necessary condition is all one can ask for. Conjecture 3.1
in [11] states that a node pattern or orbits of a symmetric set of nodes can be unisolvent only
if it is the same as the pattern of the simplex with a regular symmetric distribution of nodes,
placed on a uniform grid or lattice. A proof of this conjecture as a necessary condition for
unisolvence on triangles was presented in [13], for arbitrary polynomial degrees on edges
and in the interior, the latter not smaller then the degree on the edges. Triangles and tetrahedra
are considered up to degree 10 and 7, respectively, in [14], which only came to my attention
when the current paper was almost finished—all part of the game.

The basic principle is that the Lagrange interpolating polynomial of a node of an equiv-
alence class or orbit with a higher degree of symmetry should be invariant under the same
coordinate permutations that leave that node invariant. A Lagrange interpolating polyno-
mial can be said to belong to the node where it is one, while zero on all other nodes. This
principle was applied in [13] for 2D and allows a straightforward generalization to higher
dimensions—the subject of the current paper.

Section 2 describes the equivalence classes or orbits that define the symmetric node pat-
terns on the simplex. Section3 defines the polynomial spaces in terms ofmonomials, possibly
with different degrees on the m-faces. It is shown that the invertibility of the Vandermonde
matrix that defines the Lagrange interpolating polynomials can be decomposed into subprob-
lems that only involve the interior nodes for simplices in m dimensions, with m up to the d
space dimensions of the d-simplex.

A necessary condition for unisolvence is that the number of unknown coefficients in
the Lagrange interpolating polynomials should equal the number of equations obtained by
requiring the interpolants to be one on one node and zero on the others. Section4 contains an
example that illustrates how the number of independent coefficients for a given polynomial
degree depends on the symmetry class of the node where the interpolant is one and howmany
equations are available for each class. This leads to a set of linear constraints on the node
pattern.

Section 5 provides a formal definition of the linear system, with a matrix depending on
the dimension and acting on a vector that defines the node pattern, the latter describing the
number of generating nodes per equivalence class or orbit. The right-hand side depends on
the maximum degree of the polynomial space. It is subsequently proven that this system has a
unique solution. Since the regular symmetric distribution of nodes is known to be unisolvent
[15], this proves Conjecture 3.1 of [11]. Section 6 summarizes the main result.
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Fig. 1 The 3 equivalence classes
for the interior of the triangle and
an example of the corresponding
nodes

1  [3]
2  [2,1]
3  [1,1,1]

2 Node Patterns

In d dimensions, the d-simplex has d +1 vertices and nface,m(d) = (d+1
m+1

)
m-faces, in partic-

ular,
(d+1

1

) = d+1 vertices,
(d+1

2

)
edges,

(d+1
3

)
faces,…,

(d+1
d

)
facets, and

(d+1
d+1

) = 1 interior.
Nodes on the unit simplex can be represented by barycentric coordinates (x0, x1, . . . , xd)
with x0 = 1 − ∑d

k=1 xk and 0 ≤ xk ≤ 1.
Symmetric node sets are represented by the symmetry group Sd+1 containing the (d +1)!

permutations of the coordinates of a generating or reference node xg. They can be divided
onto equivalence classes by selecting subsets for which two or more of the xk are equal.

Keast [16] denotes the equivalence classes by n = [n1, n2, . . . , nk], with n1 ≥ n2 ≥ . . . ≥
nk > 0, where nk is the number of repetitions of a node parameter ak for a generating inte-
rior node with barycentric coordinate xg(n) = (a1, a1, . . . , a1, a2, . . . , a2, . . . , ak, . . . , ak),
where all a�, � = 1, . . . , k, are distinct and positive and

∑k
�=1 n� = d + 1. The number of

nodes per class characterised by n for an interior node is

ν(d,n) = (d + 1)!
∏

�
(n�!) . (1)

The equivalence classes on the m-face can be obtained from the lower-dimensional m-
simplex by zero padding of the barycentric coordinates of the interior nodes to a length d +1
and by replacing x0 = 1 − ∑m

k=1 xk with its d-dimensional extension x0 = 1 − ∑d
k=1 xk .

The other facets then follow from the coordinate permutations. For the m-faces, the number
of generated nodes for a class n is

nface,m(d)ν(m,n) = (d + 1)!
(
d + 1 − ∑k

�=1 n�

)
!∏�(n�!)

. (2)

By usingm+1 = ∑k
�=1 n�, the right-hand side does not explicitly refer to the face dimension

m.
In what follows, it is assumed that the equivalence classes n j for the interior nodes are

sorted in descending order, starting in the first column and moving to the next in case of
equality. Then, n1 = [d + 1], n2 = [d, 1], n3 = [d − 1, 2] and n4 = [d − 1, 1, 1] if d ≥ 3,
etc., up to nnc(d) = [1, . . . , 1], where the number of equivalence class for the interior nodes
in d dimensions is denoted by nc(d). The latter equals the number of partitions pd+1 of d+1.
In particular, nc(d) = 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, . . . for d increasing from 0.

Below, the equivalence class or orbit defined by n j will sometimes be loosely referred to
as class j .

123
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Table 1 Classes for the interior of the tetrahedron

j Class n j Generating node ν j Remark

1 [4] ( 14 , 1
4 , 1

4 , 1
4 ) 1 Centroid

2 [3,1] (a, a, a, 1 − 3a) 4 Line through vertex and centroid

3 [2,2] (a, a, 1
2 − a, 1

2 − a) 6

4 [2,1,1] (a, a, b, 1 − 2a − b) 12 Plane through 2 vertices and centroid

5 [1,1,1,1] (a, b, c, 1 − a − b − c) 24

Thegeneratingnodes are expressed in barycentric coordinates. Thenumber of generated nodes isν j = ν(3, n j )

Figure 1 shows an example of the interior nodes for d = 2 and Table 1 lists the equivalence
classes and generating nodes for d = 3. For each class, the symmetric set of nodes consists
of the ν(d,n j ) permutations of the generating or reference node xg(n j ).

A symmetric node pattern defines the number of generating nodes for each equivalence
class. For the interior, the pattern is denoted by a vector Kd of length nc(d), where Kd

j ,
j = 1, . . . , nc(d), is the number of generating nodes xg(n j ) in class n j (d). Note that the
notation Kd

j rather than kdj is used to avoid confusion with an index k. Concatenation of
the interior node patterns Km for the m-faces, with m increasing from 0 to d , provides
the overall node pattern (K0,K1, . . . ,Kd) for the d-simplex. For the mass-lumped finite
elements mentioned in the introduction, the vertices were always included, implying that
K0 = (1).

3 Polynomials

Polynomials basis functions are chosen to have a degree pd in the interior and degree pm
when restricted to them-face. Themass-lumped finite elementsmentioned in the introduction
generally have pk ≥ pk−1 for k = 1, . . . , d . On a vertex, p0 = 1. The overall degree of the
element is taken as p1 on the edges, with the vertices at the endpoints included.

Define an operator S[ f ] that, when acting on a function f (x0, x1, . . . , xd), produces a
set of functions obtained by permuting its arguments. The same notation will be used if f
is not a single function but a set of functions. In that case, the operator is applied to each
element of the set and the results are combined into a single set with duplicates removed.
Alternatively, let Sk be a permutation matrix, with k = 1, . . . , (d + 1)!, corresponding to an
element Sk of the set of permutations operators S, in the sense that Sk[ f (x)] = f (Skx)when
the arguments are expressed as a vector x. Another approach is a set of index arrays sk that
lets Sk,�x = xsk,� for each row � of the matrix Sk . Then, Sk,�,sk,� = 1 and the other elements
are zero.

The bubble function on one of the m-faces, the one with xk = 0 for m < k ≤ d , is ηm =∏m
k=0 xk . The bubble functions on the other m-faces follow from S[ηm]. The coordinates in

the interior of the m-faces have m + 1 non-zero and d −m zero entries of xk in their interior.
On them′-faces withm′ < m, at least one additional xk is zero, causing each bubble function
on an m-face to become zero on all the m′-faces.

Consider the polynomials

Vm = {ηm} ⊗ Ppm−m−1(x0, x1, . . . , xm), (3)
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containing products of the bubble function with the monomials in the set

Pp(x0, . . . , xm) =
{

m∏

k=0

x�k
k

∣
∣
∣
∣

m∑

k=0

�k = p, �k ∈ N0

}

. (4)

Note that (x1, . . . , xm) defines a point on the m-face, but that x0 = 1 − ∑d
k=1 xk is defined

on the d-simplex.
The polynomial space is given by

U (p1, . . . , pd) =
d⋃

m=0

S[Vm] = S[x0] ⊕ S[V1] ⊕ S[V2] ⊕ . . . ⊕ Vd , (5)

using S[Vd ] = Vd for m = d , whereas η0 = x0, p0 = 1 and Pp0−1 = {1} for m = 0.
For a node pattern (K0,K1, . . . ,Kd), eachm-face contains nodesxm,k , k = 1, . . . , nx(m),

with

nx(m) =
nc(m)∑

j=1

ν(m,n j )K
m
j , (6)

resulting in a total of ntotalx (d) = ∑d
m=0 nface,m(d)nx(m) = ∑d

m=0

(d+1
m+1

)
nx(m) points on

the d-simplex.
The Vandermonde matrix A relates the polynomials φ j (x) in U (p1, . . . , pd) to the

Lagrange interpolating polynomials ψi (x), defined through ψ j (xk) = δ j,k , by

Aψ = φ, Ai, j = φi (x j ). (7)

The element characterized by a set of nodes and polynomials is unisolvent ifA is not singular,
i.e., det(A) �= 0 or rank(A) = ntotalx (d).

Theorem 1 The Vandermonde matrix for the polynomial space U (p1, . . . , pd) and node
pattern (K0,K1, . . . ,Kd) on the m-faces of the d-simplex is non-singular if and only if
the Vandermonde matrices for the interiors of all m-simplexes, m = 0, . . . , d, each with
polynomial space Vm and node pattern Km are non-singular.

Proof If the nodes are sorted according the m-faces that contain them, with increasing m,
and the polynomials as well, the Vandermonde matrix is block diagonal:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

A0,0 A0,1 A0,2 . . . A0,d−1 Ad,1

0 A1,1 A1,2 . . . A1,d−1 A1,d

0 0 A2,2 . . . A2,d−1 A2,d

...
...

. . .
...

...

0 0 0 . . . Ad−1,d−1 Ad−1,d

0 0 0 . . . 0 Ad,d

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (8)

If the blocks Am,m of size nx(m) × nx(m) are non-singular, applying its inverse to the set of
rows where it is located results in an upper triangular matrix with ones on the main diagonal.
Therefore, A is non-singular if and only if each block Am,m is non-singular.

ThematrixAm,m only involves the polynomials of the set S[Vm] and nodes on them-faces.
Because of the symmetry among faces, Am,m is a block-diagonal matrix, if necessary after
reordering rows and columns, with nface,m(d) = (d+1

m+1

)
identical blocks, one for eachm-face.

Each block corresponds to a lower-dimensional interior problem, in m space dimensions. 	
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Corollary 3.1 In Theorem 1, the polynomial space Vm on the m-simplex can be replaced by
Ppm−m−1(x0, x1, . . . , xm).

Proof On the right-hand side of equation (7), the polynomials φm
j for the m-face have a

bubble functions ηm as factor, which is shared by the polynomials ψm′
j on the m′-faces with

m′ > m. Because of the block upper triangular structure, the bubble function ηm is inherited
by the ψm

i on the m-face, that is, ψm
i = ηmψ

m
i , consistent with Lemma 3.1.10 in [17].

Factoring out ηm provides the result. 	

Given a generating node x j = xg(n j ) for equivalence class n j , its symmetric counterparts

are obtained by Skx j for all permutation matrices Sk . Depending on the amount of symmetry,
a subset of these permutation matrices may already suffice.

The Lagrange interpolating polynomial that is one at x j and zero at all other nodes on
the simplex can be expressed as ψ j (x) = ψ(x, x j ) with ψ j (xk) = δ j,k . It can be loosely
referred to as the Lagrange polynomial for node x j . After applying a permutation matrix Sk ,
ψ j (Skx) will be one for Skx = Skx j and zero at the other nodes, defined by x j ′0 = Skx j0

,
where j ′ corresponds to the node x j ′ = Skx j . In summary,

ψ(x, x j ) = ψ(Skx,Skx j ), (9a)

or

ψ j (x) = ψ j ′(Skx), x j ′ = Skx j . (9b)

If x j is one of the generating nodes for equivalence class j and x j ′ is one of its symmetric
counterparts, then equation (9b) provides the Lagrange interpolating polynomial ψ j ′(x) for
that node if ψ j (x) is known. This relation is convenient when coding up a finite element,
because it reduces the number of explicit functions and their gradients, needed in for instance
[18], to functions for the generating nodes only, which then can be called for the other nodes
by rearranging the function arguments.

4 Counting Coefficients

Assuming that the VandermondematrixAd,d for the interior nodes is invertible, the Lagrange
polynomial for x j with ψ j (xk) = δ j,k can be expressed as

ψ j (x) =
∑

�

b j,�x� =
∑

�

b j,�

d∏

k=0

x�k
k ,

� = (�0, . . . , �d),

d∑

k=0

�k = p,

(10)

where the coefficients are taken from row j of B = (
Ad,d

)−1
. If a permutation Sk is applied

to a node that stays invariant, equation (9b) with j ′ = j states that ψ j (x) should also be
invariant under Sk . The monomials x�, however, may or may not stay invariant. Equating
ψ j (x) = ψ j (Skx) for all permutations that leave x j invariant provides additional equations
for the b j,m and decreases the number of independent coefficients.

Example 1 In 2D for degree p = 3, the 10 monomials are φ = {x0x1x2, x20 x1, x20 x2, x0x21 ,
x0x22 , x

2
1 x2, x1x

2
2 , x

3
0 , x

3
1 , x

3
2 }. TheLagrange polynomial for the centroid x1 = (1/3, 1/3, 1/3)
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should be invariant under all coordinate permutations. Using this invariance to eliminate
several coefficients produces ψ1 = c1,1φ1 + c1,2

∑7
k=2 φk + c1,3

∑10
k=8 φk , leaving only 3

independent coefficients. Each of the 3 terms in ψ1 is invariant under the permutations for
class 1 with n1 = [3] (Fig. 1).

A generating node for class 2 with n2 = [2, 1] is of the form (a, a, b)with b = 1−2a. The
permutations that leave the node invariant are {1, 2, 3} and {2, 1, 3}, leading to a Lagrange
interpolant ψ2 = c2,1x0x1x2 + c2,2x0x1(x0 + x1) + c2,3(x20 + x21 )x2 + c2,4(x0 + x1)x22 +
c2,5(x30 + x31 ) + c2,6x32 with 6 coefficients. For the other two nodes, (a, b, a) and (b, a, a),
the Lagrange interpolants ψ3 and ψ4 follow from ψ2 by using equation (9). Class 3 with
n2 = [1, 1, 1] has no invariant nodes except for the identity permutation and therefore has a
Lagrange interpolant ψ5 with 10 coefficients, one for each monomial. The functions ψ6 to
ψ10 follow from ψ5 by equation (9).

The number of coefficients per class can be summarized by a vector r = (3, 6, 10)T.
The terms of the Lagrange interpolants that contain only one coefficient per monomial

are c1,1x0x1x2 for class 1, c2,1x0x1x2 and c2,6x32 for class 2, and all terms for class 3. These
numbers can be summarized by a vector f = (1, 2, 10)T.

The coefficients for each Lagrange polynomial should follow from the requirement that
it is one on one node and zero on the others. For class 2, substitution of a class-2 node of
the form x = (a, a, b) and its permutations into ψ2 produces 3 equations, ψ2(a, a, b) = 1,
ψ2(a, b, a) = 0 and ψ2(b, a, a) = 0, of which the last 2 are the same. Likewise a class-
3 node of the form x = (a, b, c) provides 3 equations for 6 nodes. Repeating this for ψ1

produces 1 equation for a node of class 1, 2 or 3. For ψ5, the number of equations are 1, 3,
and 6, respectively. Substitution of the centroid provides one equation for each ψk .

Requiring the number of equations to be the same as the number of coefficients as a
necessary condition for unisolvence providesWK = r, with

W =
⎛

⎝
1 1 1
1 2 3
1 3 6

⎞

⎠ ,

where r counts the number of coefficients for a given degree and W counts the number of
available equations for the nodes of each class. The current example has K = (1, 1, 1)T as
solution, one generating node for each class.

A subset is formed by the coefficients of the Lagrange interpolants that involve a single
monomial. These are counted by f . The corresponding subset of W is denoted by V and
leads to the set of conditions VK = f . The above term c1,1x0x1x2 has class-1 symmetry and
results in v1,1 = 1, since there is only one such term. The term c2,1x0x1x2 also has class-1
symmetry and is counted by v2,1, and c2,6x32 has class-2 symmetry is accounted for by v2,2.
The third row of V count how the monomials for ψ5 are distributed over the equivalence
classes and is the same as the last row ofW. All together,

V =
⎛

⎝
1 0 0
1 1 0
1 3 6

⎞

⎠ .

A necessary condition for unisolvence is that the total number of nodes equals the number
of independent polynomials spanning a polynomial space, in this case the monomials of
equation (4) with m = d . The example reveals additional requirements for each equivalence
class, as a number of linear constraints on K of the form

VK = f(p), (11)

123
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or

WK = r(p). (12)

Formal definitions will be given in the next section.
Simple cases are d = 0 and 1. For d = 0, K1 = 1 if the vertices are included and K1 = 0

if not.
In the 1-D case, there is a unique polynomial of degree p that interpolates p + 1 distinct

points. The number of interior nodes nx = K1 + 2K2, where subscript 1 corresponds to the
midpoint of an edge and subscript 2 to a different point, excluding the endpoints. The factor
2 is due to symmetry. The number of nodes should equal the number of coefficients in the
polynomial: nx = K1+2K2 = p+1, implying that K1 = 1 if p is even, whereas K1 = 0 for
odd p. Furthermore, K2 = 1

2 (p+1−K1) = floor( 12 (p+1)) and K1+K2 = 1+floor( 12 p).
The expressions in equations (11) and (12) become

V =
(
1 0
1 2

)
, f(p) =

(
mod2(p + 1)

p + 1

)
, (13)

and

W =
(
1 1
1 2

)
, r(p) =

(
1 + floor( 12 p)

p + 1

)
. (14)

5 Necessary Conditions for Unisolvence

According to Corollary 3.1, it suffices to consider unisolvence for polynomials of degree
p = pm − m − 1 and the node pattern Km for the interior nodes of the simplex in m
dimensions, for m = 0, . . . , d . From here onwards, a fixed spatial dimension m = d will be
considered and the related sub- or superscript or argument will often be dropped.

One necessary condition for unisolvence is that the number of nodes nx(d) in the interior
of the d-simplex equals the number of monomials np(d, p) in the set defined by equation (4)
for m = d . This provides one linear constraint, detailed as Property A.1 in Appendix A.
Other necessary conditions in the form of constraints are the related to the symmetry of the
equivalence classes, one condition for each class, leading to matricesV andW of size nc×nc
and vectors f and r of length nc. The conditions (11) are obtained by counting terms in the
Lagrange interpolant with a single coefficient for a monomial. The conditions (12) involve
a count of these coefficients as well as the number of terms with more than one monomial
per coefficient. Before going to formal definitions of the matrices and right-hand sides, two
more examples may help to understand what they represent.

Example 2 Consider the Lagrange interpolant for the centroid. According to equation (9),
it should be symmetric with respect to the centroid and, therefore, can only depend on
polynomials that are symmetric in x0 to xd . The number of coefficients required to represent
these polynomials in terms of the monomials of equation (4) withm = d is counted by r1(p),
for class 1 with n1 = [d + 1] that describes the symmetry of the centroid.

The first row ofW describes how these polynomials are distributed over the nodes of the
various symmetry classes. Symmetric polynomials for each class can be obtained by either
taking monomials with the same symmetry or by adding the least number of monomials
that provide the desired symmetry. For class 1, this results in only one coefficient per class,
and hence, the first row of W has w1,k = 1 for k = 1, . . . , nc. Property B.3 lists additional
details.

123
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A subset of these polynomials share the symmetry of class 1 and do not have to be added.
Their number is counted by f1(p) and the way they are distributed over the classes by the
first row of V, which then will have 1 on the diagonal and zeros elsewhere, spelled out as
Property A.2.

Example 3 Another example is the hyperplane defined by x0 = x1 = · · · = xd−1. A node on
that plane either can be taken as a generating node for class nc − 1, or it belongs to a class
j < nc − 1 with a higher degree of symmetry. The centroid is among them. The right-hand
side fnc−1(p) counts how many monomials have the same invariance as the nodes on the
chosen hyperplane and row nc − 1 of V describes how these are distributed over the classes
these nodes belong to.

Nodes outside the plane have mirror symmetry w.r.t. the chosen hyperplane. Therefore,
only half of the number of nodes outside the hyperplane can contribute to define the coef-
ficients of the Lagrange interpolants that are one on a node of the hyperplane and have the
same mirror symmetry, as stated by equation (9). This determines row number nc − 1 of
W, whereas rnc−1(p) counts the number of contributing monomials. Details are given in
Properties A.5, B.4 and B.5 and their proofs.

For unisolvence, the necessary conditions on the node pattern K are summarized by
VK = f(p), where V is a square matrix with nc(d) rows and columns and f(p) is a vector
that depends on the degree p = pd − d − 1. The matrix is defined by the following.

Recall that K j is the number of generating nodes xg(n j ) in equivalence class n j for the
interior of the d-simplex. The other nodes are obtained as the permutations Sixg(n j ) of the
generating node.

A subset L j of the set S of all the permutations on the simplex is defined by those that leave
the nodes of equivalence class n j invariant. The entry v j,k is defined as the number of nodes
of the same or another equivalence class nk that are also invariant under the permutations of
L j . Stated in another way: if

N j (x) = {
Six

∣∣Si ∈ L j
}

(15)

is the set of nodes obtained from node x by applying the permutations of L j , then the set

X j,k =
⋃

x∈class k, |N j (x)|=1
N j (x) (16)

contains the nodes of class nk that remain invariant under L j and v j,k = ∣∣X j,k
∣∣ is defined as

its cardinality.

Example 4 The node (a, a, b, b) with b = 1
2 − a in Table 1 for 3D belongs to class 3 with

n3 = [2, 2]. Among its 6 permutations, (a, a, b, b), (a, b, a, b), (a, b, b, a), (b, a, a, b),
(b, a, b, a) and (b, b, a, a), there are two that remain invariant under L3, namely the node
itself and (b, b, a, a), implying v3,3 = 2. From the other classes, only the centroid is invariant
under L3. Therefore, row 3 of V is (1, 0, 2, 0, 0).

The components f j (p) on the right-hand side of equation (11) are defined as the number
of monomials in the set Pp(x0, . . . , xd) of equation (4) that are invariant under the coordinate
permutation L j . Before going to a formal definition, the following is worth noting.

Theorem 2 The powers of the monomials in the set Pp of equation (4) in d dimensions share
their equivalence classes with a regular, unisolvent set of nodes on the d-simplex.
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Proof The distribution of powers in equation (4) for m = d follows that of the regular d-
simplex with sides of length p in natural coordinates, after multiplying the length of its edges
by p. In this way, �k/p is identified with the xk-axis for k = 0, . . . , d . This regular simplex
with nodes on a uniform grid is unisolvent [15] and has the same number of nodes as the
number of monomials, specified by equation (A1). An index permutation s j,k corresponding
to Sk ∈ L j for class j , applied to both the node coordinates and the powers, leaves the
monomial the same:

d∏

i=0

x
�s j,k,i
s j,k,i =

d∏

i=0

x�i
i . (17)

Because interchanging coordinates simultaneously with their powers does not alter the
monomial, the generating nodes for the coordinates and for the powers belong to the same
equivalence class. If some of the coordinates of a node in class j are the same, the corre-
sponding powers appear as a sum in themonomials, which is invariant under the permutations
from the set L j . If some of the powers are the same in agreement with class j , the product
of the coordinates is invariant under the permutations from the set L j . 	

Note that thismatch between the equivalence classes of the powers ofmonomials and those of
the interpolating nodes has awider applicability to other symmetric nodes sets in combination
with symmetric sets of polynomials or other types of symmetric basis functions.

With Theorem 2, f j (d) can be defined analogously to equations (15) and (16). Let

Od
p =

{

� = (�0, . . . , �d)

∣∣∣∣

d∑

i=0

�i = p, �i ∈ N0

}

(18)

characterize the monomials by their powers. The set of sets

Mj (�) =
{
Si�T

∣∣Si ∈ L j

}
, (19)

characterizes monomials obtained from the powers � ∈ Od
p by applying the permutations of

L j and

f j (d) = ∣∣Y j
∣∣ , Y j =

⋃

�∈Od
p , |Mj (�)|=1

Mj (�). (20)

The matrixW and the related right-hand side vector r(p) are not needed in what follows.
Appendix B contains their definitions as well as various properties.

Theorem 3 The matrix V can be inverted.

Proof Entry v j,k ofV represents the number of nodes of equivalence classnk that are invariant
under the permutations L j that leave nodes of class n j invariant.

A node of class n j is by definition invariant under L j , implying that v j, j ≥ 1. Classes
with a higher degree of symmetry have k < j if the equivalence classes are ordered according
to Sect. 2, implying v j,k ≥ 0, whereas nodes with a lower degree of symmetry are excluded,
implying v j,k = 0 for k > j . Therefore, the matrix is lower triangular with non-negative
integers on the diagonal. Because its determinant is the product of the diagonal values, the
linear system VK = f has a unique solution. 	

Theorem 4 A necessary condition for unisolvence of a node pattern for degree p on the
d-simplex is that it is the same as the node pattern of the regular degree-p element on the
d-simplex.

123



Journal of Scientific Computing            (2023) 95:45 Page 11 of 25    45 

Proof The regular simplex is unisolvent [15] and satisfies equation (11). Because this system
has a unique solution according to Theorem 3, this proves Conjecture 3.1 of [11], stating that
a necessary condition for unisolvence in the interior of the d-simplex is a node pattern or
orbit that is the same as that of a regular symmetric distribution of nodes. 	


From the monomial powers for degree p in d dimensions, not only f can be determined,
but also K. The Mathematica [19] code fragment in Listing 1 computes these node patterns
as Kreg on a regular element from degree 0 to pmax on the simplex in ndim dimensions,
without referring to f .

Listing 1 Mathematica code fragment for node patterns on the regular element.

Needs["Combinatorica ‘"]; ndim=pmax=-1;
While[! IntegerQ[ndim] || ndim <0,

ndim = Input["Number of dimensions for the simplex: "]];
While[! IntegerQ[pmax] || pmax <0,

pmax = Input["Maximum polynomial degree: "]];
nnclass = IntegerPartitions [ndim +1]; (* classes *)
Kreg = Array[{},pmax +1];
For[p=0, p<=pmax , p++,

xpgen = IntegerPartitions [p,ndim +1];
(* padd with 0 to ndim+1 columns; *)
xpgen = PadRight[xpgen ,{ Length[xpgen],ndim +1}];
(* generating nodes: xgen =(1+ Reverse@xpgen )/(p+ndim +1); *)
xpclasses = Map[Reverse ,Map[Sort ,

Map[Tally ,xpgen ][[All ,All ,2]] ] ];
Kreg[[p+1]] = Count[xpclasses ,#]& /@ nnclass;

];
Print["K up to degree ",pmax ," in ",ndim ,"D:"]; Print[Kreg];

More properties of V and f can be found in Appendix A. Appendix C lists examples of V
and f for dimensions 1 to 6 up to degree 23. The Mathematica kernel script sympat.m that
generated these results with the option to include W and r, for limited values of the degree
p and a small number of dimensions d , is included as supplemental file.

6 Conclusions

For a polynomial space on the d-simplex with non-decreasing degrees on its m-faces as m
increases, a necessary condition on the symmetric node pattern for unisolvence has been
presented. It leads to a proof of the conjecture that the node pattern should be the same as
that of the regular d-simplex for a given degree, with nodes on a uniform grid. The line of
reasoning, in particular of Theorem 2 stating that the symmetry of the equivalence classes
or orbits for the nodes should match that of the monomial powers in the polynomial basis,
may be generalized to other symmetric distributions of nodes and polynomial spaces or other
types of basis functions with analogous symmetry properties.
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Appendix A Properties of V and f

Some additional properties of the system (11) are presented.

Property A.1 The last row of V has entries vnc(d),k = ν(d,nk) for k = 1, . . . , nc(d). The
last entry of f is given by fnc(d)(p) = (p+d

d

)
for p ≥ 0.

Proof The bubble function ηd = ∏d
k=0 xk vanishes on the boundary of the simplex. The

np(d, p) = (p+d
d

)
basis functions in the interior are elements of {ηd} ⊗ Pp , where p =

pd − (d + 1) ≥ 0. To represent these polynomials with the available nx(d) interior points, a
necessary condition for unisolvence is np(d, p) = nx(d) or

np(d, p) =
(
p + d

d

)
=

(
pd − 1

d

)
= nx(d) =

nc∑

j=1

K jν(d,n j ). (A1)

Identifying this with the last row, numbered nc(d), of the linear system (11) provides
vnc(d),k = ν(d,nk) for k = 1, . . . , nc and fnc(d)(p) = (p+d

d

)
. Note that the only per-

mutation that leaves a node of class nnc invariant is the identity, and therefore, all the nodes
are involved. 	

Property A.2 The first row of V has v1,k = 1 and v1,k = 0 for k = 2, . . . , nc(d). The
right-hand side f1(p) = 1 if modd+1 p = 0 and zero otherwise.

Proof The only node that is symmetric under all (d + 1)! permutations of the coordinates is
the centroid, with xk = 1/(d + 1) for k = 0, . . . , d . Therefore, v1,1 = 1 and v1,k = 0 for
k > 1. The only monomials that are invariant under these permutations are powers of the
bubble function: ηmd , m = 0, 1, . . ., with a degree (d + 1)m. Only for the above condition on
f1(p) is p = (d + 1)m. 	

Property A.3 K1 + K2 = f2(p) = 1 + floor(p/max(2, d)).

Proof If d > 1, class 2 represents nodes on a line through a vertex and the centroid. If a
generating node is chosen on one of these d + 1 lines, that line also contains the centroid,
implying v2,1 = v2,2 = 1 and K1 + K2 = f2(p). The corresponding monomial powers are
of the form (�0, . . . , �0, �d+1) with sum equal to p. They should satisfy �0d + �d+1 = p
with �0 ≥ 0 and �d+1 ≥ 0. The solutions are �0 = 0, . . . ,floor(p/d) and �d+1 = p − �0, a
total of 1 + floor(p/d).

The 1-D case with K1 + K2 = 1 + floor(p/2) was treated at the end of Sect. 4. 	
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Property A.4 The first column of V contains ones. For zero degree, f j (0) = 1 for j =
1, . . . , nc(d).

Proof The coordinates of the centroid are invariant under all permutations and there is only
one centroid, so v j,1 = 1 for j = 1, . . . , nc(d). For degree p = 0, there is only one degree of
freedom. The only node that has ν(d,n j ) = 1 in equation (1) is the centroid in class j = 1
with n1 = [d + 1], implying K j = δ1, j and r j (0) = 1 for all j = 1, . . . , nc(d). 	

Property A.5 The number of monomials fnc(d)−1(p) obeys the recurrence relation

fnc(d−1)(p) =
(
p + d − 1

d − 1

)
= fnc(d)−1(p) + fnc(d)−1(p − 1), p ≥ 1, (A2)

with fnc(d)−1(0) = 1. Its generating function is Gd
nc(d)−1(x) = 1/[(1 + x)(1 − x)d ].

Proof Class nc(d) − 1 with nnc(d)−1 = [2, 1, . . . , 1] has a generating node with x0 = x1.
Monomials with this symmetry are elements of

Pnc(d)−1
p (x0, . . . , xd) =

{

(x0x1)
�0

d∏

k=2

x�k
k

∣
∣
∣∣ 2�0 +

d∑

k=2

�k = p, �k ≥ 0

}

, (A3)

with fnc(d)−1(p) elements. This set is a subset of all the monomials in Pp(x0, . . . , xd−1)

having fnc(d−1)(p) elements, characterized by powers �′ = (�′
0, . . . , �

′
d−1). The subset con-

tains the even values, with �′
0 = 2�0. Its complement has the odd values �′

0 = 2�0 + 1 and

can be expressed as {x0} ⊗ Pnc(d)−1
p−1 (x0, . . . , xd), with fnc−1(p − 1) elements. The starting

value fnc(d)−1(0) = 1 follows from Property A.4.
The generating function for the total number of nodes in equation (A1) is Gd

nc(d) =
1/(1 − x)d+1. According to the above, Gd−1

nc(d−1) = Gd
nc(d)−1 + xGd

nc(d)−1, from which

Gd
nc(d)−1 follows. 	

The same arguments can be applied to prove the following.

Property A.6 For class nnc(d)−2 = [2, 2, 1, . . . , 1] and d ≥ 3, there is a recurrence relation

fnc(d−1)−1(p) = fnc(d)−2(p) + fnc(d)−2(p − 1), p ≥ 1, (A4)

with fnc(d)−2(d, 0) = 1. The generating function is Gd
nc(d)−2(x) = 1/[(1+ x)2(1− x)d−1].

Appendix B Properties of W and r

In [13], a different criterion was used to prove the 2-D case on triangles. Although not
explicitly stated in that paper, the linear system is that of equation (12) instead of equation (11).
The matrix W has nc(d) rows and columns and the vector r(p) depends on the degree p =
pd −d−1. Thematrix is defined as follows. Recall the definition of N j (x) = {

Six
∣∣Si ∈ L j

}

in equation (15). Then,

w j,k = ∣∣Z j,k
∣∣ , Z j,k = {

N j (xi )
∣∣ xi ∈ class nk, i = 1, . . . , ν(d,nk)

}
. (B5)

The right-hand side r is given by

r j (p) =
∣∣∣
{
Mj (�)

∣∣ � ∈ Od
p

}∣∣∣ , (B6)
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with Od
p from equation (18) and Mj (�) = {

Si�T
∣
∣Si ∈ L j

}
from (19).

The main difference with the system (11) is that not only those nodes are counted that are
invariant under the permutations that leave the generating node invariant, but also polynomials
with the same invariance, constructed by adding the least number of monomials to obtain
that invariance.

Some properties ofW are listed next.

Property B.1 r j (d, 0) = 1 for degree p = 0 and r j (d, 1) = w j,2 for degree p = 1, where
j = 1, . . . , nc(d) in d dimensions.

Proof For degree zero (p = 0), there is only one degree of freedom. The only node that has
ν(d,n j ) = 1 in equation (1) is the centroid of class j = 1 with n1 = [d + 1], implying
K j = δ1, j and r j (d, 0) = 1 for all j = 1, . . . , nc.

A degree one element with p = 1 requires d + 1 nodes. This only can be obtained for
class 2 characterized by n2 = [d − 1, 1] and having ν(d,n2) = d + 1. Then, K j = δ2, j
leading to r j (d, 1) = w j,2. 	


Property B.2 The last row ofW is the same as that ofV and last row of r obeys rnc(d)(d, p) =
fnc(d)(d, p), where p ≥ 0.

Proof Because the only permutation for nnc that leave a node invariant is the identity,
Nnc(xi ) = xi for any node i and, therefore, X j,k in equation (16) and Z j,k(B5) coin-
cide for j = nc, proving vnc,k = wnc,k for k = 1, . . . , nc. The same argument provides
rnc(d)(d, p) = fnc(d)(d, p). 	


Property B.3 The first row of r has entries r1(d, p) = p≤p(d + 1) for p = 0, 1, . . ., where
p≤k(n) is the number of partitions of n into at most k parts.

Proof The Lagrange interpolating polynomial related to the centroid in class n1 should be
invariant under all permutations of the nodes and, therefore, only depend on polynomials that
are symmetric in x0 to xd . Let these be given by λk , with λ0 = 1, λ1 = ∑d

k=0 xk = 1 = λ0,
λ2 = ∑d

k=0
∑d

�=k+1 xkx� up to λd+1 = ηd = ∏d
k=0 xk . Then, the Lagrange interpolant can

be expressed as

ψ1(x1, . . . , xd) =
∑

m

bm

d+1∏

�=2

λ
m�−1
� , m = (m1,m2, . . . ,md), (B7a)

where mk ≥ 0 for k = 1, . . . d and

d+1∑

�=2

�m�−1 ≤ p, (B7b)

or

d∑

�=1

(� + 1)m� ≤ p. (B7c)

The number of coefficients bm is r(d, p). In the 1-D case, m1 = 0, . . . ,floor(p/2) and
there are r1(1, p) = 1 + floor(p/2) = floor(pd/2) coefficients. For md = 0 in (B7c), there
are r1(d − 1, p) coefficients. In the remaining cases with md > 0, let md = m′

d + 1. The
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corresponding number of coefficients then equals r1(d, p − d − 1). Together, this leads to
the recurrence relation

r1(d, p) = r1(d, p − d − 1) + r1(d − 1, p), (B8)

with starting values from property B.1 and equation (14).
The number of partitions of n into at most k parts has a recursion

p≤k(n) = p≤k(n − k) + p≤k−1(n), (B9)

with special cases p≤2(n) = ceil((n + 1)/2) = 1 + floor(n/2) and p≤3(n) =
round

(
(n + 3)2/12

)
[20, e.g.]. Clearly, r1(d, p) = p≤d+1(p) = p≤d+1(pd − d − 1).

Because each reference node contributes only once and its symmetric counterparts are
included by the use of symmetric polynomials, the number of coefficients should obey

r1(d, p) = p≤d+1(p) =
nc(d)∑

j=1

Kd
j . (B10)

	

Property B.4 The last two rowsofv are related toW byvnc,k = wnc,k and

1
2

(
wnc,k + vnc−1,k

)

= wnc−1,k , with k = 1, . . . , nc.

Proof Let U = W − V. Because the nodes of class nc have no subset that is invariant
under permutations, unc,k = 0 and vnc,k = wnc,k . The nodes of class nc − 1 have mirror
symmetry w.r.t. to one of the hyperplanes through the centroid and d − 1 vertices of the
d-simplex, for instance, the one defined defined by x1 = x0. With a coordinate transform
x̃0 = 1

2 (x0 + x1), x̃1 = 1
2 (x1 − x0), and x̃k = xk for k > 1, a Lagrange interpolant

for nodes on the hyperplane should be symmetric in x̃1 and only contain monomials with
even powers of x̃1. Therefore, effectively only half the nodes of the simplex outside the
hyperplane x̃1 = 0 contribute, either for x̃1 < 0 or x̃1 > 0. The total number of nodes is∑

k wnc,k Kk = ∑
k vnc−1,k Kk + 2unc−1,k Kk for all K and wnc−1,k = unc−1,k + vnc−1,k by

definition. Eliminating unc−1,k provides the result. 	

Property B.5 The number of monomials rnc−1(d, p) that can contribute to the Lagrange
interpolant of a node of class nc − 1 obeys the recurrence relation

rnc(d, p) =
(
p + d

d

)
= rnc−1(d, p) + rnc−1(d, p − 1), p ≥ 1, (B11)

with rnc−1(d, 0) = 1. Its generating function is Gd
nc−1(x) = 1/[(1 + x)(1 − x)d+1].

Proof The distribution of powers in equation (4) for m = d follows that of the regular
d)-simplex with sides of length p in natural coordinates, after multiplying the length of its
edges by p. In this way, �k/p is identified with the xk-axis for k = 0, . . . , d . According
to Property B.4, only even powers of �1 occur. If the nodes with odd �1 are removed, there
should be rnc−1(d, p) nodes left. The nodes that have been removed cover a simplex of similar
shape, but lack one node for the longest edge in the �1 direction, leaving rnc−1(d, p − 1) of
them. With a total of rnc(d, p), this geometrical approach proves the property.

Alternatively, the relevant monomials are elements of the set

Pnc−1
p (x̃0, . . . , x̃d) =

{

x̃�0
0 x̃2�11

d∏

k=2

x̃�k
k

∣∣∣∣ �0 + 2�1 +
d∑

k=2

�k = p, �k ≥ 0

}

, (B12)
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with rnc−1(d, p) elements. The remaining polynomials are elements of the set

{x̃1}⊗Pnc−1
p−1 (x̃0, . . . , x̃d) =

{

x̃�0
0 x̃2�1+1

1

d∏

k=2

x̃�k
k

∣
∣
∣
∣ �0 + 2�1 +

d∑

k=2

�k = p − 1, �k ≥ 0

}

.
(B13)

Its number of elements is the same as that of Pnc−1
p−1 , with rnc−1(d, p − 1) elements, since

the only difference is a factor x̃1 in the monomials.
The generating function for the total number of nodes in equation (A1) is Gd

nc = 1/(1 −
x)d+1. According to the above, Gd

nc = Gd
nc−1 + xGd

nc−1. 	


The following is based on observations, but remains to be proven:

Conjecture 1 The matrixW is symmetric and invertible.

Conjecture 2 The node patterns obtained for the system (12) are the same as those resulting
from (11).

This alternative approach was useful for the 2-D case and its generalization to 3D, but did
not help to treat the problem in an arbitrary number of dimensions.

Appendix C Numerical Examples

The matrices up to 6 dimensions are

d = 1, V =
(
1 0
1 2

)
,

d = 2, V =
⎛

⎝
1 0 0
1 1 0
1 3 6

⎞

⎠ ,

d = 3, V =

⎛

⎜⎜⎜⎜
⎝

1 0 0 0 0
1 1 0 0 0
1 0 2 0 0
1 2 2 2 0
1 4 6 12 24

⎞

⎟⎟⎟⎟
⎠

,

d = 4, V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 2 1 2 0 0 0
1 1 2 0 2 0 0
1 3 4 6 6 6 0
1 5 10 20 30 60 120

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

123



Journal of Scientific Computing            (2023) 95:45 Page 17 of 25    45 

d = 5, V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
1 2 1 2 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 0 0 0
1 1 1 0 2 1 0 0 0 0 0
1 3 3 6 2 3 6 0 0 0 0
1 0 3 0 0 0 0 6 0 0 0
1 2 3 2 4 4 0 6 4 0 0
1 4 7 12 8 16 24 18 24 24 0
1 6 15 30 20 60 120 90 180 360 720

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

d = 6, V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 2 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 3 3 6 1 3 6 0 0 0 0 0 0 0 0
1 1 0 0 2 0 0 2 0 0 0 0 0 0 0
1 0 2 0 1 0 0 0 2 0 0 0 0 0 0
1 2 2 2 3 2 0 4 2 2 0 0 0 0 0
1 4 6 12 5 12 24 8 6 12 24 0 0 0 0
1 1 3 0 3 3 0 0 6 0 0 6 0 0 0
1 3 5 6 7 9 6 12 14 12 0 18 12 0 0
1 5 11 20 15 35 60 40 50 80 120 90 120 120 0
1 7 21 42 35 105 210 140 210 420 840 630 1260 2520 5040

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Tables 2, 3, 4, 5, 6, 7, 8 list the right-hand sides f for dimensions d from 1 to 6 and degrees
p from 0 to 23 as well as the resulting node patternsK, the rows of V−1f . The node patterns
are useful, e.g., as candidates for mass-lumped finite elements for the wave equation.
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Table 2 Interior degree p, the
corresponding columns of f and
the rows of V−1f , representing
the node patterns K, in 1
dimension

p fT K

0 1 1 1 0

1 0 2 0 1

2 1 3 1 1

3 0 4 0 2

4 1 5 1 2

5 0 6 0 3

6 1 7 1 3

7 0 8 0 4

8 1 9 1 4

9 0 10 0 5

10 1 11 1 5

11 0 12 0 6

12 1 13 1 6

13 0 14 0 7

14 1 15 1 7

15 0 16 0 8

16 1 17 1 8

17 0 18 0 9

18 1 19 1 9

19 0 20 0 10

20 1 21 1 10

21 0 22 0 11

22 1 23 1 11

23 0 24 0 12
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Table 3 As Table 2, but in 2
dimensions p fT K

0 1 1 1 1 0 0

1 0 1 3 0 1 0

2 0 2 6 0 2 0

3 1 2 10 1 1 1

4 0 3 15 0 3 1

5 0 3 21 0 3 2

6 1 4 28 1 3 3

7 0 4 36 0 4 4

8 0 5 45 0 5 5

9 1 5 55 1 4 7

10 0 6 66 0 6 8

11 0 6 78 0 6 10

12 1 7 91 1 6 12

13 0 7 105 0 7 14

14 0 8 120 0 8 16

15 1 8 136 1 7 19

16 0 9 153 0 9 21

17 0 9 171 0 9 24

18 1 10 190 1 9 27

19 0 10 210 0 10 30

20 0 11 231 0 11 33

21 1 11 253 1 10 37

22 0 12 276 0 12 40

23 0 12 300 0 12 44
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Table 4 As Table 2, but in 3
dimensions p fT K

0 1 1 1 1 1 1 0 0 0 0

1 0 1 0 2 4 0 1 0 0 0

2 0 1 2 4 10 0 1 1 0 0

3 0 2 0 6 20 0 2 0 1 0

4 1 2 3 9 35 1 1 1 2 0

5 0 2 0 12 56 0 2 0 4 0

6 0 3 4 16 84 0 3 2 3 1

7 0 3 0 20 120 0 3 0 7 1

8 1 3 5 25 165 1 2 2 8 2

9 0 4 0 30 220 0 4 0 11 3

10 0 4 6 36 286 0 4 3 11 5

11 0 4 0 42 364 0 4 0 17 6

12 1 5 7 49 455 1 4 3 17 9

13 0 5 0 56 560 0 5 0 23 11

14 0 5 8 64 680 0 5 4 23 15

15 0 6 0 72 816 0 6 0 30 18

16 1 6 9 81 969 1 5 4 31 23

17 0 6 0 90 1140 0 6 0 39 27

18 0 7 10 100 1330 0 7 5 38 34

19 0 7 0 110 1540 0 7 0 48 39

20 1 7 11 121 1771 1 6 5 49 47

21 0 8 0 132 2024 0 8 0 58 54

22 0 8 12 144 2300 0 8 6 58 64

23 0 8 0 156 2600 0 8 0 70 72
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Table 5 As Table 2, but in 4 dimensions

p fT K

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 0 1 0 2 1 3 5 0 1 0 0 0 0 0

2 0 1 1 3 3 7 15 0 1 1 0 0 0 0

3 0 1 1 5 3 13 35 0 1 1 1 0 0 0

4 0 2 1 7 6 22 70 0 2 1 1 1 0 0

5 1 2 1 9 6 34 126 1 1 0 3 2 0 0

6 0 2 2 12 10 50 210 0 2 2 3 2 1 0

7 0 2 1 15 10 70 330 0 2 1 5 3 2 0

8 0 3 2 18 15 95 495 0 3 2 5 4 4 0

9 0 3 2 22 15 125 715 0 3 2 7 4 7 0

10 1 3 2 26 21 161 1001 1 2 1 10 8 7 1

11 0 3 2 30 21 203 1365 0 3 2 11 7 13 1

12 0 4 3 35 28 252 1820 0 4 3 12 9 17 2

13 0 4 2 40 28 308 2380 0 4 2 15 10 23 3

14 0 4 3 45 36 372 3060 0 4 3 17 13 28 5

15 1 4 3 51 36 444 3876 1 3 2 21 14 36 7

16 0 5 3 57 45 525 4845 0 5 3 22 17 44 10

17 0 5 3 63 45 615 5985 0 5 3 25 17 56 13

18 0 5 4 70 55 715 7315 0 5 4 28 21 65 18

19 0 5 3 77 55 825 8855 0 5 3 32 22 79 23

20 1 6 4 84 66 946 10,626 1 5 3 35 27 91 30

21 0 6 4 92 66 1078 12,650 0 6 4 38 26 110 37

22 0 6 4 100 78 1222 14,950 0 6 4 42 32 124 47

23 0 6 4 108 78 1378 17,550 0 6 4 46 32 146 57
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Table 7 Degrees p and the corresponding columns of f in 6 dimensions

p fT

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 2 0 1 3 1 0 2 4 1 3 5 7

2 0 1 1 3 0 2 6 1 2 4 10 4 8 16 28

3 0 1 0 4 1 2 10 3 1 7 21 4 16 40 84

4 0 1 1 5 1 4 16 3 3 11 39 10 30 86 210

5 0 1 1 7 0 4 24 3 2 16 66 10 50 166 462

6 0 2 1 9 1 6 34 6 5 23 105 20 80 296 924

7 1 2 1 11 1 6 46 6 3 31 159 20 120 496 1716

8 0 2 1 13 1 9 61 6 7 41 231 35 175 791 3003

9 0 2 1 15 1 9 79 10 5 53 325 35 245 1211 5005

10 0 2 2 18 1 12 100 10 9 67 445 56 336 1792 8008

11 0 2 1 21 1 12 124 10 7 83 595 56 448 2576 1237

12 0 3 2 24 2 16 152 15 12 102 780 84 588 3612 18,564

13 0 3 1 27 1 16 184 15 9 123 1005 84 756 4956 27,132

14 1 3 2 30 1 20 220 15 15 147 1275 120 960 6672 38,760

15 0 3 2 34 2 20 260 21 12 174 1596 120 1200 8832 54,264

16 0 3 2 38 2 25 305 21 18 204 1974 165 1485 11,517 74,613

17 0 3 2 42 1 25 355 21 15 237 2415 165 1815 14,817 100,947

18 0 4 2 46 2 30 410 28 22 274 2926 220 2200 18,832 134,596

19 0 4 2 50 2 30 470 28 18 314 3514 220 2640 23,672 177,100

20 0 4 3 55 2 36 536 28 26 358 4186 286 3146 29,458 230,230

21 1 4 2 60 2 36 608 36 22 406 4950 286 3718 36,322 296,010

22 0 4 3 65 2 42 686 36 30 458 5814 364 4368 44,408 376,740

23 0 4 2 70 2 42 770 36 26 514 6786 364 5096 53,872 475,020

Table 8 Degrees p and node
patterns K for 6 dimensions

p K

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

4 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

5 0 1 1 2 0 2 0 1 0 0 0 0 0 0 0

6 0 2 1 2 1 2 1 1 1 0 0 0 0 0 0

7 1 1 0 4 0 4 1 2 1 1 0 0 0 0 0

8 0 2 1 4 1 5 2 1 2 3 0 0 0 0 0

9 0 2 1 5 1 5 4 3 1 5 0 1 0 0 0

10 0 2 2 6 1 7 5 3 2 7 1 2 0 0 0
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Table 8 continued

p K

11 0 2 1 8 1 8 7 3 2 13 1 2 1 0 0

12 0 3 2 8 2 9 10 4 3 15 3 4 2 0 0

13 0 3 1 10 1 11 13 5 3 22 4 4 5 0 0

14 1 2 1 12 0 16 15 6 6 24 8 5 9 0 0

15 0 3 2 13 2 13 21 7 3 36 10 8 12 1 0

16 0 3 2 15 2 18 24 7 6 41 16 10 18 2 0

17 0 3 2 17 1 19 30 8 5 55 20 11 26 4 0

18 0 4 2 18 2 22 36 10 8 60 29 15 35 7 0

19 0 4 2 20 2 22 44 10 6 80 35 17 46 12 0

20 0 4 3 22 2 27 50 10 9 91 47 22 58 19 0

21 1 3 1 26 1 30 58 15 9 102 61 22 83 23 1

22 0 4 3 27 2 33 67 14 11 120 76 30 97 37 1

23 0 4 2 30 2 34 78 14 10 146 91 31 124 50 2
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