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Blind identification of overlapping communities
from nodal observations
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Abstract—Identifying overlapping communities from data is
crucial for grasping the complex structure and dynamics of
networks, amongst others in fields such as computational neu-
roscience. Research using fMRI has demonstrated that brain
regions can change their functional network membership over
time using temporal independent component analysis (tICA).
However, reproducibility of such overlapping communities re-
mains a challenge. Recently, several alternative approaches have
been proposed to identify such overlapping communities. While
results are promising, less is known about the model and
assumptions that underlie these approaches. This paper shows
that the bilinear model, combined with the assumption of quasi-
stationary and uncorrelated sources, underlies novel methods for
identifying overlapping brain networks. Furthermore, we propose
a new algorithm, and through simulations, we investigate the
robustness of our algorithm and several existing methods to solve
the problem in noisy conditions with few available data samples.
We conclude that quasi-stationary blind source separation-based
techniques can have a promising advantage over tICA in terms
of identifiability of overlapping communities and thus have the
potential to contribute towards greater reproducibility of results.

Index Terms—Dynamic functional connectivity, overlapping
communities, blind source separation, canonical polyadic decom-
position, block-term decomposition

I. INTRODUCTION

Blind source separation (BSS) techniques such as inde-
pendent component analysis (ICA) have been frequently em-
ployed in brain network research. While the popularity of
spatial ICA (sICA) has dominated temporal ICA (tICA) in
functional magnetic resonance imaging (fMRI) studies, the
work of [1] demonstrated that brain regions can be part of
multiple networks that are temporally independent. However,
the reproducibility of such overlapping communities remains
challenging due to either a lack of temporal samples or strong
non-Gaussianity assumptions on the source distributions. Nev-
ertheless, [2] reached similar conclusions using a state-based
analysis of stacked covariance matrices, illustrating that brain
regions can indeed shift their network membership over time.
While state-based methods thus allow for brain regions with
changing network membership and capture valuable insights
into the dynamics of brain region network memberships, it has
been shown that the underlying assumption of having only one
particular active network within a data window does not hold
[3].

This work is part of the GraSPA project (project 19497 within the TTW
OTP programme), which is financed by the Netherlands Organization for
Scientific Research (NWO).

Following these developments, another line of research
started investigating spatial patterns or communities that un-
derlie the functional connectivity network matrices, including
but not limited to the often-used covariance and Pearson
correlation coefficient matrices. Several works [4]–[7] focus
on stacked functional connectivity matrices that are obtained
either by using a sliding window on subject-specific data or
are gathered from multi-subject static functional connectivity
matrices. Either way, the goal is to jointly identify com-
munities in the brain that shape the observed connectivity
patterns and infer the temporal activity information associated
with an identified community. To name a few, [4] uses a
tensor decomposition method to identify communities in the
brain. Furthermore, sparse basis learning methods have been
proposed in [5] that incorporate a rank-1 assumption on the
communities underlying the functional connectivity matrices.
Finally, instead of the last mentioned rank-1 assumption, [6],
[7] impose a low-rank assumption on the underlying commu-
nities. We note that, in essence, the methods described above
solve a BSS problem. However, up until now, the relation
between the two-way matrix factorization model and the
methods described above remains unclear. More importantly,
the assumptions that underlie novel overlapping community
identification methods need to be made more explicit.

In this paper, our contributions are as follows. First, we
show the generative model with corresponding assumptions
that form the base of state-of-the-art methods for overlap-
ping community identification. Consequently, we provide in-
sight into the physical interpretation of estimated parameters,
thereby enhancing the interpretability of findings in the liter-
ature. Furthermore, we propose a new algorithm and conduct
simulations to evaluate the performance of several methods
that can solve the BSS problem. Through these simulations,
we also investigate if these methods can be advantageous
compared to tICA in noisy domains with fewer available data
samples.

We adopt the following notation, based on matrix X =
[x1, ...,xT ]. We use vec(·) for the vectorization operator such
that vec(X) = [xT1 , ...,x

T
T ]

T; vec−1(·) denotes the inverse
operation of vec(·); diag(·) takes the diagonal elements of a
matrix such that diag(X) = [x1,1, ..., xT,T ]

T; Diag(·) creates
a diagonal matrix such that matrix Diag(x1) contains x1 on
its diagonal; ⊙ denotes the Khatri-Rao product; ⊗ denotes the
Kronecker product; ◦ denotes the outer product; ⊛ denotes the
Hadamard product.
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II. GENERATIVE SIGNAL MODEL

We start with the following noiseless bilinear data model

X = AS, (1)

that decomposes the data X = [x1, ...,xT ] ∈ RN×T into low-
rank factor matrices. Here, N and T are the number of nodes
and time points, respectively. Furthermore, the community
matrix A = [a1, ...,aR] ∈ RN×R encodes the memberships of
nodes to R functional networks or communities. Then, each
row in the source matrix S = [s1, ..., sR]

T ∈ RR×T contains
the temporal information of each column in A. We absorb
any noise or artifact sources into the signal model and aim
to identify either the sources of interest or noise components
because modeling noise sources present in neuroimaging data
is hard, if not impossible. After blind identification of A, we
thus resort to ad-hoc methods for selecting sources of interest
versus noise components. Also, we limit ourselves to the case
of over-determined mixtures, i.e., N > R. In literature, A has
been referred to as a mixing matrix, node-to-cluster or node-
to-community assignment matrix, spatial maps [8], temporal
functional modes (TFMs) [1], or basis vectors [5]. Note that
A could also be viewed as a weighted hypergraph incidence
matrix, where a source signal sr describes the activity of nodes
in a corresponding hyperedge ar.

Now, following the work of [9], we perform blind source
separation based on the assumption that the sources are quasi-
stationary. By quasi-stationary sources (QSS), we mean that
the second-order statistics of the sources do not vary within
a short time window of length L but vary from window to
window. Under this assumption, we compute multiple sample
covariance matrices in a sliding-window fashion:

Ri =
1

L
XiX

T
i =

1

L
ASiS

T
iA

T, (2)

where windowed data Xi = [xo(i−1)L+1, ...,xo(i−1)L+L] is
assumed zero mean, and Si = [so(i−1)L+1, ..., so(i−1)L+L]
represents the sources within a window. In this context,
i ∈ [1, ..., Tw], where Tw represents the total number of time
windows, and o ∈ (0, 1] denotes an overlap factor. For a single
window i, we vectorize the sample covariance matrix Ri and
assume the sources are uncorrelated1:

yi = vec(Ri)

= vec(
1

L
ASiS

T
iA

T)

= (A⊗A)vec(
1

L
SiS

T
i )

= (A⊙A)diag(
1

L
SiS

T
i )

= (A⊙A)pi.

(3)

Note that each entry in pi represents the estimated signal
power of a source within the time window. Finally, we
horizontally stack the vectorized sample covariance matrices:

1For simplicity, we assume that Tw is large enough to consider a diagonal
source sample covariance matrix.

Y = [y1, ...,yTw ] = (A⊙A)P. (4)

Now, from Y, the goal is to identify (possibly overlapping)
communities encoded in the columns of A, assuming quasi-
stationary and uncorrelated sources sr, without knowing P =
[p1, ...,pTw ] ∈ RR×Tw .

A. Relation to tensor methods

As previously mentioned, several works implicitly work
with the bilinear model and corresponding assumptions de-
scribed above. We now show that (4) is equivalent to the
canonical polyadic decomposition (CPD) of a tensor with
stacked covariance matrices, used in [4], [5]. First, let us
rewrite (4) as:

Y = (A⊙A)P =
R∑

r=1

(ar ⊗ ar) ◦ pr, (5)

where pr denotes a row of P, which we call a power time
course that is associated with a community ar. If we apply
the vec−1(·) operation on each vectorized sample covariance
matrix:

Ri = vec−1(yi)

=

R∑
r=1

vec−1((ar ⊗ ar)pr,i)

=

R∑
r=1

(ar ◦ ar)pr,i,

(6)

we arrive at the rank-1 assumption on the components that
shape the functional connectivity matrices made in [5]. Fi-
nally, by stacking the covariance matrices into a tensor R ∈
RN×N×Tw , we observe that the made assumptions on (1) result
in a CPD of a tensor composed of stacked covariance matrices,
used in [4]:

R =

R∑
r=1

ar ◦ ar ◦ pr. (7)

Furthermore, the low-rank assumption in the works [6],
[7] corresponds to the assumption that multiple uncorrelated
sources have the same power time courses, represented by
matrix C ∈ {0, 1}R×Rc , containing only a single 1 on each
row, and P ∈ RRc×Tw :

Y = (A⊙A)CP. (8)

By following the steps in (5)-(7), (8) can be proven equivalent
to the block-term decomposition (BTD) with rank Rc.
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III. METHODS

In the remainder of this work, we aim to identify a suitable
method for accurately identifying overlapping networks and
investigate the necessity of data pre-whitening.

Several methods are listed in the literature that solve the
overdetermined BSS-QSS problem, which can be grouped as
joint diagonalization (JD) and CPD (a.k.a. PARAFAC or CAN-
DECOMP) based approaches. We will consider the case of
having a large number of nodes N , which is a realistic scenario
when analyzing neuroimaging data on the voxel level or data
segmented using detailed brain atlases. For such cases, pre-
whitening of the data can be beneficial (and often necessary)
in terms of memory requirements, decreasing from O(N2Tw)
to O(R2Tw). Moreover, we specifically limit ourselves to
methods that do not impose orthogonality assumptions on A
or assume Ri to be positive-definite. We identified the pre-
whitened alternating projections algorithm (PAPA) [9], [10],
the tri-linear alternating least squares (TALS) algorithm [11],
and the fast Frobenius diagonalization (FFDiag) algorithm
[12] as potential candidate algorithms to solve the BSS-QSS
problem.

We will begin by describing the pre-whitening procedure.
Then, we present the different algorithms we will consider. We
start with non-negative TALS (NN-TALS), which consists of
TALS under a non-negativity constraint on P. We also propose
a pre-whitened version of this algorithm, labeled as pre-
whitened non-negative TALS (P-NN-TALS). Then, we detail
the PAPA, which is also based on the pre-whitened matrices.
We label this algorithm as pre-whitened alternating projections
(P-AP). The last algorithm we briefly outline is a pre-whitened
version of FFDiag (P-FFDiag). Finally, we will argue for using
covariances over Pearson correlation coefficients in [4], [6].

A. Pre-whitening
In [9], a pre-whitening matrix is found by computing

the square-root factorization of the time-averaged covariance
matrix:

R =
1

Tw

Tw∑
i=1

ADiag(pi)A
T = BBT, (9)

where B ∈ RN×R which can be found by computing the
eigenvalue decomposition of R; more specifically, when R =
UΣ2UT we can set B = UΣ. We can then (approximately)
whiten the observations by a subsequent decorrelation and
rescaling of the data: R̃i = B†Ri(B

†)T ∈ RR×R, with
B† = (BTB)−1BT = Σ−1UT. Note that we reduce the
dimensionality of the problem by only using the first R
eigenvectors, which is beneficial for efficiently storing all
covariance matrices. After pre-whitening, we are left with
estimating an unknown orthogonal rotation Ã ∈ RR×R and
the power time courses in P. Stacking the vectorized pre-
whitened covariances matrix, we obtain

Ỹ = (Ã⊙ Ã)P. (10)

After estimating Ã, we can restore A easily by A = BÃ.

B. Identification of communities
NN-TALS The first algorithm we consider is TALS, the

classical workhorse for solving the CPD. Typically, the three
factor matrices in (4), A, A, P are considered as separate
entities, which we denote by A1, A2, P, respectively. We
implement TALS by solving two least-squares problems for
A1 and P in an alternating fashion, where we set the duplicate
factor matrix A2 equal to its updated version A1. Additionally,
we note that P is non-negative by construction and thus
include this constraint in the update.

P-NN-TALS To establish a second algorithm, note that (10)
has a form similar to (4), which in turn can be rewritten to
a similar form as the CPD in (7). Thus, it is also possible
to perform NN-TALS on a tensor R̃ of stacked pre-whitened
covariance matrices, where the first two factor matrices should
be constrained to be orthogonal. Writing R̃ in its first-mode
unfolding R̃(1), and solving for Ã1 while fixing the other
matrices, results in the following optimization problem:

min
Ã1

||R̃(1) − Ã1(P
T ⊙ Ã2)

T||F

s.t. ÃT
1Ã1 = I,

(11)

which is the orthogonal Procrustes problem. The solution of
this problem can be found by computing the compact SVD of
R̃1(P

T⊙Ã2) = DEFT, and setting Ã1 = DFT, which is the
closest orthogonal approximation. Then, we update the second
duplicate factor matrix by Ã2 = Ã1 to ensure symmetry.
Finally, we update P by solving the following non-negative
least squares problem:

min
P

||R̃(3) −PT(Ã1 ⊙ Ã2)
T||F

s.t. P ≥ 0,
(12)

where ≥ denotes element-wise non-negativity, R̃(3) is the
third-mode unfolding of R̃, and both Ã1 and Ã2 are fixed.

P-AP For the third algorithm, we use the algorithm pro-
posed in [10]. Let us consider matrix Ỹ in (10), which allows a
compact singular value decomposition (SVD) Ỹ = UsΣsV

T
s ,

where Us ∈ RN2×R, Σs ∈ RR×R, and VT
s ∈ RR×Tw . Then,

the method uses the fact that range(Ã ⊙ Ã) = range(Us),
and uses an alternating projection algorithm to find suitable
orthonormal vectors ãr ∀ r ∈ [1, ..., R] that lie in range(Us)
by deflation.

P-FFDiag The final algorithm we consider is a pre-whitened
version of the FFDiag algorithm [12]. This algorithm is a well-
known JD algorithm, which we now apply to the pre-whitened
data. It basically minimizes the following cost function:

min
Ã

Tw∑
i=1

∑
j ̸=k

((ÃTR̃iÃ)jk)
2

s.t. ÃTÃ = I.

(13)

C. Pearson correlation coefficients versus covariance
Assuming the data Xi within window i is demeaned, the

Pearson correlation coefficient matrix Rp
i is computed as

follows:
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Rp
i =

1

L
WiXiX

T
iW

T
i = WiRiW

T
i , (14)

where matrix Wi = Diag(diag( 1
LXiX

T
i )

−1/2) contains the
inverse standard deviations on the diagonal and varies per
window. Then, by substituting the bilinear model, we have

Rp
i = WiADiag(pi)A

TWT
i . (15)

Crucially, the inferred networks in the columns of A will
change by scaling their individual node memberships in each
window. Consequently, the power time courses become de-
pendent on the standard deviations of the data, as (the now
distorted) node-membership matrix A is fixed. Furthermore,
transforming covariances to Pearson correlation coefficients
appears as a rather unconventional pre-whitening method,
where one attempts to rescale the source covariances from the
observations without first decorrelating the observations, as
done in Sec. III-A. We believe that using Pearson correlation
coefficients in single-subject data is suitable only when a
single network is active in a window i, resembling state-based
modeling. For the above reasons, we opt to utilize covariances
when performing a CPD on single-subject data. Note that
for the studies decomposing multi-subject static connectivity
matrices [5], [7], using Pearson correlation coefficients may be
inevitable due to the necessity for proper data standardization.
Nevertheless, the fundamental assumptions outlined in Sec. II
remain unchanged.

IV. SIMULATIONS

We perform simulations to analyze algorithm robustness to
several noise intensities and different amounts of available
temporal samples T . We include all algorithms described
previously. Furthermore, we apply tICA using the FastICA
algorithm described in [13].

Concerning synthetic data, we generate white noise se-
quences Sn ∈ RR×T by sampling a normal distribution.
Furthermore, we generate slowly time-varying power profiles
P′ = [p′

1, ...,p
′
T ] with p′

t ∈ RR×1 following an AR-1 process,
where each entry p′

t = α1p
′
t−1 + ϵt with α1 = 0.999 and

ϵt ∼ N (0, σ2
ϵ I) with σϵ = 0.05. Then, we create sources by

point-wise multiplication: S = Sn⊛|P′|. This way, the sources
are uncorrelated and have a quasi-stationary power profile.
Finally, we generate noisy observations by X = AS + N,
where nt ∼ N (0, σ2I). Then, the signal-to-noise ratio is
defined by SNR = 1

T ||AS||2F /Nσ2.
We use a window size L = 20 with 50% (o = 0.5) overlap

to create the covariance matrices. All algorithms are initialized
randomly. We allow the TALS-based methods, P-FFDiag, and
P-AP to perform 300 iterations, which is sufficient for conver-
gence in practice. For tICA, we allow for 1000 iterations.

To measure algorithm performance, we first undo the per-
mutation ambiguity by matching the time courses in P and
its estimate. In case a method does not explicitly solve for P,
we estimate P using (12). Then, we use the average absolute
cosine similarity (AACS) as a performance metric:

AACS(A, Â) =
1

R

R∑
r=1

∣∣∣∣ aTr âr
||ar||2||âr||2

∣∣∣∣. (16)

We start with a simple small-scale simulation, setting R = 2
and N = 4. We construct binary valued communities in A
with 67% overlap. Figs. 1a-b show the performance of various
algorithms under varying noise intensities for T = 500 and
varying sample sizes for an SNR of 3 dB.

As a second simulation example, we slightly increase the
complexity by setting R = 5 and N = 10. Now, we construct
binary valued communities in A randomly, having an expected
pairwise overlap of 25%. In Figs. 1c-d, the results for varying
SNRs with T = 500 and sample sizes with an SNR of 3 dB
are illustrated.

V. DISCUSSION

From Fig. 1a, we observe that NN-TALS performs well
under noisy conditions. Also, all the pre-whitening-based
methods appear more or less on par, while tICA performs the
worst in the range of the more challenging SNRs. It is clear
that pre-whitening-based methods have limited performance
due to their two-stage nature [14], [15]. In Fig. 1b, it is visible
that tICA also suffers under small sample sizes. Several ICA
implementations, such as FastICA [13], also incorporate a pre-
whitening step applied to the matrix X. Given that the slowly
changing power time courses in |P′| do not significantly alter
the cross-correlations among the rows of Sn, both the pre-
whitening procedures in the BSS-QSS methods and tICA are
expected to unveil similar left eigenvectors U, a fact we have
confirmed. However, in the final stage, where the rotation
matrix is determined, tICA encounters challenges due to the
limited sample size and non-Gaussianity assumptions.

In Fig. 1c, we observe that when increasing N and R,
surprisingly, NN-TALS suffers for higher SNRs (this result
is also found in [9]). Note that very accurate solutions can
still be obtained; however, the average performance is lower.
We can see that increasing N makes the NN-TALS algorithm
more prone to obtaining ill-conditioned factor matrices during
the alternating updates. At this point, the necessity of pre-
whitening becomes apparent, as pre-whitening-based methods
outperform NN-TALS. For high-dimensional columns of A,
pre-whitening thus adds a layer of robustness by sacrificing
performance. Moreover, our proposed method P-NN-TALS
marginally outperforms P-FFDiag, as anticipated, due to in-
corporating a non-negativity constraint on P. Also, it can be
seen that P-AP has lower performance over a wide range of
SNRs, which likely originates from its deflation-style nature,
where accurate identification of the first ãr is key for the
identification of others. Finally, we note that in our second
simulation example, P-AP requires more samples to match
with the other pre-whitening-based methods, as visible in
Fig. 1d.

We leave further analysis on experimental neuroimaging
data sets for future work, in which the potential improvement
in reproducibility of overlapping communities between sub-
jects has to be demonstrated.
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Fig. 1. Algorithm performance for (a) varying SNRs with fixed T = 500
and (b) varying number of samples T with fixed SNR = 3. Idem dito for (c)
and (d), respectively. For (a,b), R = 2 and N = 4, while for (c,d), R = 5
and N = 10. Error bars display the asymmetric 75% percentiles over 100
Monte Carlo runs, which are slightly offset for better visualization.

VI. CONCLUSION

We conclude that assumptions such as quasi-stationarity and
uncorrelatedness of the hidden source signals form the basis of
state-of-the-art methods that perform overlapping community
detection. Furthermore, we briefly analyzed the robustness
and performance of several methods that solve the BSS-QSS
problem using simulations. Our simulations confirm that tICA
suffers under a low number of samples and SNR. Moreover,
the proposed algorithm marginally outperforms state-of-the-
art methods, and is a viable and robust alternative for accu-
rately identifying overlapping communities in scenarios with
challenging SNRs and a low number of samples. Given that
the assumptions mentioned earlier hold, the evaluated BSS-
QSS-based methodology might improve the reproducibility of
overlapping communities between experimental neuroimaging
data sets through improved identification accuracy.
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