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Compiler Assisted Runtime Adaptation
Vlad-Mihai Sima

Abstract

IN this dissertation, we address the problem of runtime adaptation of the ap-
plication to its execution environment. A typical example is changing the
processing element on which a computation is executed, considering the

available processing elements in the system. This is done based on the infor-
mation and instrumentation provided by the compiler and taking into account
the status of the environment. The work focuses on heterogeneous multicore
embedded architectures. We address three aspects of application optimiza-
tions: hardware software mapping, memory allocation and parallel execution.
For each aspect, an algorithm is developed and, using a suitable application, it
is tested on the hardware platform. The programming paradigm on which this
work is based is the Molen programming paradigm, extended and adapted for
our specific platform and operating environment.

The hardware software mapping algorithm objective is to choose at runtime,
on which processing element it is more efficient to execute a function. For the
memory allocation we propose an algorithm, that using compile-time gathered
information and the current execution environment, decides on the best alloca-
tion for memory, at runtime. For dealing with parallel applications we devel-
oped an algorithm that selects the best trade-off between area and speedup and
decides on the number of concurrent units that execute.

The experiments were performed on an embedded multicore heterogeneous
platform, namely the hArtes Hardware Platform (hHP). This platform con-
tains an ARM processor as General Purpose Processor (GPP), an Atmel
Magic Diopsis Digital Signal Processor (DSP) and a Xilinx Virtex4 Field Pro-
grammable Gate Array (FPGA). The applications used to validate the algo-
rithms are real life applications from the multimedia field: a video encoder/de-
coder and a wavefield synthesis application. The mapping algorithms obtains
improvements between 5% and 43%. We showed this is an adaptable algo-
rithm, that will adapt the execution in case the execution overhead increases.
The memory allocation algorithm obtained a speedup of 18% on the selected
application. For this algorithm we show that the solution is within 14% of the
optimal solution, computed using Integer Linear Programming (ILP). The sce-
nario based selection of parallel computations, is between 21% to 92% better
than existing solutions.
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1
Introduction

EMBEDDED systems are a constant presence in our daily life. These sys-
tems support and fulfill essential roles in our modern society. From
transport infrastructure, to providing communication facilities, allow-

ing doctors to make better diagnostics, entertain people, almost any aspect of
our life is related to them. Embedded electronic devices proved to be an invalu-
able asset in many aspects of life. Starting from the first microprocessor, the
Intel 4004 developed in 1971, the spread of such devices has been exponen-
tial. The exponential use is mirrored by an exponential growth in the number
of transistors present on a chip. This number doubled almost every 2 years
as predicted by the Moore’s law - an empirical law postulated in 1965 by the
Intel co-founder, Gordon E. Moore. To take full advantage of the large number
of transistors and, thus, the available resources, applications constantly evolve
and have higher computational demands. Every year, new applications are de-
veloped, which require more and more computation power, as, for example,
newer video and audio protocols, executing on smaller devices, that consume
less power. To show a representative example, nowadays, the volatile memory
available in a mobile phone is in the range of hundreds of megabytes, where,
20 years ago, the memory available for a standard desktop system was in the
range of megabytes.

The increase in frequency played an important role in the overall performance
improvement. The increasing number of transistors was exploited to increase
the memory capacities and to move the memory closer to the processing units.
Nevertheless this trend is changing: due to the physical limitations it becomes
much harder to further increase the frequency. Other paths to improve per-
formance have to be explored by the engineers developing the embedded sys-
tems of the future. In modern devices, the main direction of development is
heterogeneous multicore computing where, one or multiple specialized cores
are used in order to outperform by orders of magnitude the performance of

1
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a single core General Purpose Processor (GPP). One of the disadvantages of
heterogeneity is that each core has to be designed with an application field in
mind. Tasks with a high level of parallelism can take advantage of the mul-
ticore and increase by orders of magnitude the throughput of the system. Of
course, some platforms might choose to implement only heterogeneous com-
puting, with dedicated cores for each type of task, while others might choose
to implement only homogeneous multicores. It is the author’s belief that by
combining the two approaches, the best results can be obtained.

Performance is not the only aspect which needs to be taken into consideration
when dealing with embedded systems. Some systems have high deployment
costs and may require additional infrastructure work that can not be performed
often. Examples are rail signaling systems and surveillance systems in build-
ings or metro among others. As a result, upgrade capabilities of these systems
need to be taken into account at design time as well. Traditionally this was
a task accomplished by software upgrades, relying on the possibilities of the
GPP, which is many different tasks with a good level of performance. If soft-
ware upgrades are not possible, a newer system needs to replace the old one.
Over the last years, Field Programmable Gate Array (FPGA)s [75] have be-
come very popular and can be used to address this problem. By using this
technology, hardware components can be upgraded in place, extending in this
way, the life span of existing products. Additionally, this improves reliability,
as bugs in the hardware design can be corrected even after the deployment of
the system.

The development of software for such systems would be very hard without the
availability of tools and operating systems. The role of tools is to help the
developer to focus on the relevant aspects of the problem, while the tools take
care of all the specific details related to the platform in use. During the devel-
opment of a product, many aspects play an important role. For example, the
translation of the high-level description of the problem to an implementation,
the verification of the implementation, the profiling of the application. For each
of these tasks, tools have been developed to ease the work of the developers.
At runtime, it is the responsibility of an operating system to manage the var-
ious resources and, possibly, the multiple applications running concurrently.
This further increases the level of flexibility during the design of applications,
and it facilitates even more the work of the developers.

In this thesis, we propose improvements to the interaction between the
compile-time tools used by developers, the operating environment and the
hardware platforms. The purpose of these improvements is to take full ad-
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vantage of all the possible optimizations, that might be hidden if the analysis
is performed only at compile-time, only for one hardware platform or only by
the operating system.

1.1 Problem Overview

Existing computing platforms come in families. This is mainly due to the con-
siderable efforts involved during the development of a platform, and different
needs for different computing areas. These families share a general architec-
ture and processing elements, but are customized for different scenarios. For
example, some of these platforms are low-cost models with less functionality,
or they are hardened platforms, which can work in a wider temperature range.
Having a family of platforms has both advantages and disadvantages. An ex-
ample of such an advantage is that the expertise for developing for a family of
platforms can be reused. A disadvantage is that the process of choosing a vari-
ation and then the mapping of an application becomes more complex. Some
examples of variations that can make the mapping problem more complex are:
the presence or absence of a specific processing core, the different operating
frequencies of the various components, the different sizes for memory and/or
caches, and the different input/output ports available.

The developers, usually divide the applications in several parts and assign each
of them to a processing core, while managing the communication needed be-
tween the different elements. This process is usually based on an analysis
performed on a specific platform variant and with a particular data set. The
tools provide guidance for each aspect of the process and allow the designer
to perform critical choices. Usually, the adaptability to platform variants is
not the primary concern. This happens because at the moment of development
time, the different variants might not even be available on the market. All of
this can result either in an increased development time or in an inefficient use
of resources. Additionally, in dynamic systems, the interaction between ap-
plications is a deciding factor in the overall system performance. This can be
managed manually, by the developer or the system administrator. Special poli-
cies can be implemented in the operating system to cope with each type of sit-
uation. Anyhow, with a manual approach, such efforts are targeted to instances
of the problem and do not give a comprehensive solution. A more comprehen-
sive solution would be to provide tools producing applications which adapt to
the platform and the execution environment. By using compile-time informa-
tion, these tools can improve the efficiency and they can reduce the time spent
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in the development process.

In this dissertation we will address specific sub-problems of the embedded sys-
tems development. These are specific because of the architecture choice (het-
erogeneous) and optimization methods used (runtime). A high level overview
of these problems is:

• Mapping - what is the most efficient resource to map a computation on,
taking into account the current state of the execution environment?

• Communication - how can we reduce communication between the vari-
ous processing elements?

• Parallelism - how can we exploit the parallelism provided by heteroge-
neous platforms?

Each of these problems will be outlined in more details in Chapter 3. Besides
these problems, the field of embedded computing faces several other problems
among which we would mention scheduling, energy consumption optimiza-
tion, data representation optimization, choosing the model of computations,
etc. Although these problems are important for the field, we focused on that
set of problems that were the most stringent for our platform and applications.

It should be noted that the work in this thesis was done in the context of hArtes
project [16], a project focused primarily on performance and toolchain devel-
opment rather than, for example, power efficiency. The hArtes project was an
Integrated Project funded by the European Union, whose purpose was to lay
the foundation for a holistic approach used when developing complex embed-
ded systems. A high-level sketch of the content of hArtes project is given in
Figure 1.1. The work in this thesis influenced mostly the modules/tools repre-
sented in green.

1.1.1 Dissertation Scope

An application can be optimized in many ways. In this dissertation, we only
focus on optimizations involving compile-time analysis coupled with runtime
decisions. We consider that a platform can change in time and thus runtime
optimizations decisions are beneficial. The platform changes could include
hardware upgrades or additional software installation. As we focus on em-
bedded devices, the runtime decision algorithms that we develop have to run
in a constrained environment and, therefore, need to be computationally fast.
Summarizing, we focus on algorithms with the following chrachteristics:
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Figure 1.1: The hArtes project toolchain and platform

• The algorithms need a significant analysis of the application at compile-
time, which can only be performed by a compiler. Examples are, the
identification of parameters, that influence the control structure of the
function, or parameters only used to access data.

• Optimization decisions can not be taken at compile-time. This can hap-
pen due to multiple reasons. We outline the main two reasons in the
following. First, the execution time of a function cannot be completely
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determined at compile-time, where, for example, loop bounds or con-
ditional flags are not known. Second, the execution environment can
change at runtime, in a way that is not easily controllable. Examples of
this are multiple applications running concurrently, hardware changes in
the platforms, or changes in operational parameters (battery level).

• The algorithms are affected by the heterogeneity of the platform. Exam-
ples of this include different types of processing elements or non uniform
memory hierarchies.

One set of applications which benefit from the optimization algorithms with
the above characteristics are complex media applications that run on embedded
systems, for example in-car audio and video systems.

Additionally, for experimental purpose, the validation of the proposed algo-
rithms assumes the following:

• The platform used follows the Molen machine organization (outlined in
Chapter 2).

• The tools used to compile the applications for such a platform adhere to
the Molen programming paradigm.

• Access to the source code of the compilers and operating system of the
platform is available.

• The applications can be executed on the target platform and profiled
using real data.

• The designer can manually control the tools to a certain extent assuming
a semi-automatic procedure.

We furthermore exclude from the scope of the thesis a number of topics, not
because they are not important but would make the complexity of the prob-
lem unmanageble. More specifically we do not look at: hardware/software
co-design, partitioning, run-time reconfiguration area management, schedul-
ing, power optimizations, etc. Some of these issues were studied in the hArtes
project but were never included in the final toolchain. This thesis focuses pri-
marily on some of the operational and implementable results of the hArtes
project.
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1.1.2 Contribution of the thesis

The main contributions of the work proposed in this dissertation are the fol-
lowing:

• The definition and development of a mapping algorithm able to identify
on which processing element a particular computation can be computed
in the shortest amount of time. Compared to existing mapping algo-
rithms, the mapping decision is delayed until runtime, when, by using
data gathered at compile-time, a decision that will minimize the execu-
tion time can be made. We will show later in this dissertation that this
organization allows an algorithm to take advantage of some optimiza-
tion possibilities lost in case the analysis is performed only at compile-
time, even if the analysis is done by an expert developer. In terms of
experimental results, the application of the mapping algorithms results
in improvements between 5% and 43% for the whole application, when
compared to a static decision algorithm which can only decide for a spe-
cific computation to either run it in hardware or software. The wide
variation is due to the fact that the application execution time is strongly
linked to the input data, for example, in our case, videos containing a
variable level of motion. Additionally, we outline the behavior of the
algorithms in case the characteristics of the platform change at runtime.
The characteristic that we analyze is the overhead involved in invoking
a processing element. This situation might arise if, for example, other
applications use the same communication resources between the GPP
and the FPGA. Our finding is that the obtained performance gradually
degrades and it is close to the maximum performance achievable given
the circumstances.

• The development of a memory allocation algorithm targeted to heteroge-
neous platforms. This algorithm uses the application execution history
and the characteristics of the computations, to decide, at runtime, the
best memory allocation in the current memory hierarchy.The use of the
memory allocation algorithm results in an overall speedup of 18% of
the H.264 video encoding application. We present two variations of the
same algorithm. The first can be executed very fast, while the second
provides better application performance. By using synthetic applica-
tions, we have shown that both algorithms are within 14% and respec-
tively 5% of the optimal solution, computed using an ILP approach for
the same problem. The application speedup obtained for the synthetic
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application was between 2x and 6x.

• The development of a scenario based selection algorithm for parallel ap-
plications. This algorithm decides which combinations of parallelism
is better, in case multiple applications or threads are competing for the
same resources (i.e. FPGA area). For the selection of the scenario used
in a system with multiple threads applications, we first give an ILP for-
mulation of the problem. Then, with the ILP as a reference we give a
runtime algorithm which is within 7% of the ILP solution and is better
than existing solution by 21% to 92% in terms of application perfor-
mance.

• The description of the integrated toolchain that uses these algorithms to
improve performance on a heterogeneous platform, based on the Virtex4
FPGA. The problems that appeared during the development of such a
framework are discussed and the chosen solutions are presented in detail.

1.2 Dissertation Organization

The work proposed in this dissertation is organized in chapters. Chapter 2 anal-
ysis the existing related work. The three main domains for our work, namely
computing platforms, toolchains and execution environments, as well as the
Molen programming paradigm and machine organization are described in de-
tail. The chapter continues with the analysis of the mapping and the memory
allocation algorithms. Finally, we present the work related to the parallel exe-
cution of applications on heterogeneous reconfigurable architectures.

In Chapter 3, we present the work done in the context of the hArtes project.
The work includes supporting the development of a custom heterogeneous
board and developing a toolchain that supports such a board. First, we present
the hardware platform and then continue with the essential ideas behind the
toolchain. We will also present a thorough analysis of the applications used
as motivational examples for the algorithms presented in this thesis. These
are real-world applications, and the evaluation process is the same process that
was used during the development of the hArtes toolchain. All the informa-
tion is collected at runtime, by using realistic input data. Finally, the chapter
provides a list of problems that will be addressed in the following chapters.

In Chapter 4, we present a mapping algorithm, which decides if a computation
should be performed on the GPP of the platform, or on any other of the process-
ing elements. The computations used as a motivational examples are dynamic
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by nature and their execution time varies a lot depending on the parameters
with which the computation is called. These are not the typical applications
that were implemented in the embedded systems in the past, but with these
devices becoming more and more used, more high level applications have to
be targeted using automated tools to embedded platforms. Building flexibil-
ity into applications lowers the development cost associated with re-targeting
to a new platform. Based on the execution time obtained for various input
data, a runtime module decides if a function should be executed either on one
co-processing element or on the GPP. To do this, it uses a ’software’ cache in
which the execution time for each processing element is stored. Then, based on
this information, it makes the decision on where to run the computation. The
benefit of such an approach is that it can adapt to various conditions changes,
like, for example, frequency lowering of a processing element in case of low
power, or even a complete shutdown of some of the processing elements.

A runtime memory allocation algorithm that relies on instrumented code is pre-
sented in Chapter 5. When allocating a memory block, for a complex memory
hierarchy there can be several memories where the block can be allocated. The
decision of which memory to place the block to obtain the best performance
is not an obvious task. The memory block will be used during the application
execution by one or more computations. At their turn, each of those compu-
tations can use multiple blocks. For each computation, multiple implementa-
tions for different processing elements can be available. However, in order to
run on some processing elements, all the used memory blocks have to be in
the scratch pad memory of the element before the computation can start. The
result is that transfers between memories have to be performed during the ex-
ecution, which will affect the total execution time. By tracking at runtime the
memory used in each computation, we can determine an efficient way of allo-
cating it to the various scratch pad memories. By using a simple persistence
mechanism, we can improve subsequent application executions by performing
future allocation, based on the saved profiling data.

We continue in Chapter 6, by presenting the issues that emerge when trying to
map an application with multiple threads to a heterogeneous reconfigurable
platform. An important difference from a platform with multiple identical
cores is that, for a reconfigurable platform, the number of cores and memory
organizations can be different and vary over time.

Conclusions are presented in Chapter 7, where we summarize the main con-
tributions of this thesis and we discuss the relation between the presented al-
gorithms. Finally, we propose a list of open questions and future research
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directions.



2
Background and Related Research

IN this chapter, we define the research context of the work presented in the
following chapters. More specifically, we discuss the relations between
the problem analyzed and the relevant concepts involved, such as plat-

forms, toolchains and operating systems. We present the machine organization
and the programming paradigm on which the following chapters are based on.
Finally, we present the related research in the field.

2.1 Research context

The problems presented in the following chapters are part of a complex re-
search context, which in the following is discussed from three points of view:
the hardware platforms, seen at the level of processing elements and memories,
the applications that have to run on those platforms and, finally the toolchain
which has to transform the application into binary code suitable for a platform.
We address each of these aspects separately.

2.1.1 Computing Platforms

Computing platforms have evolved in time from basic platforms with Central
Processing Unit (CPU) and one type of memory to complex systems with mul-
tiple heterogeneous components inter-connected by various elements such as
buses and networks-on-chip. These heterogeneous components fulfill many
roles, and, usually provide an interface between the various peripherals while
increasing performance. A classical example of components used to increase
performance are the Graphics Processing Unit (GPU)s [26], which represent a
highly customized type of Single Instruction Multiple Data (SIMD) proces-
sors. These processors are specialized for different types of computations
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which they perform much faster than to classical CPU. Another hardware
component used for processing is the Field Programmable Gate Array (FPGA)
[75]. One of its biggest advantages over hardwired circuits is its capability to
change the hardwired connections even after it has been shipped to customers.
This means improvements and bug fixes are possible both for the hardware
and the software part of the system. Over the years, memory systems evolved
as more transistors could be integrated easily on the same die. Caches be-
came larger and multilevel cache hierarchies appeared [70] [33]. Nevertheless,
the increase in number of transistors had also made communication inside the
chips a serious bottleneck [89]. One solution to this problem is the devel-
opment of networks-on-chip capable of providing support for fast data trans-
fers [76]. Another solution, used also in this thesis, is to optimize the memory
allocation and thus reduce the need of transfers.

The Molen Machine Organization

Well-known problems for heterogeneous computing platforms are the integra-
tion of different components and the programmability of the system. In our
research, we are following the Molen machine organization to address these
issues [82]. This organization is generic and not restricted to any particular
architecture. Its main purpose is to allow a virtually unlimited number of ex-
tensions of a base General Purpose Processor (GPP) to be implemented with
the least amount of effort compared to redesign manually the system to include
each new extension. The Molen machine organization is presented in Figure
2.1.

This architecture is build on the processor - coprocessor model. A core proces-
sor, which is a GPP, executes the programs and, for certain computations, it in-
vokes other processing elements. In Figure 2.1, we see a generic processing el-
ement that could be, for example, a FPGA or a Digital Signal Processor (DSP).
The ”Arbiter” block represents the component responsible for the identifica-
tion of the special Molen primitives, and it is responsible for redirecting them
to the processing elements. An Exchange Registers (XREG) block is tightly
connected between all the processing elements and the GPP for fast data ex-
change. The tightly integration of the XREG block enables a fast communica-
tion path between the GPP and the different processing elements, avoiding the
high latencies imposed by the memory accesses.
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Figure 2.1: The Molen machine organization.

2.1.2 Toolchains

The notion of a tool to help developers to use computing system appeared as
early as 1954 [7]. Compilers were the first tools that appeared. The compiler’s
task is to translate the code from a high-level description to a low level de-
scription, specific to a machine or platform in use. Later, as the development
process become more complex, monolithic tools were divided in sub-tools ad-
dressing specific tasks. They evolved, for example, into frameworks for life-
long program analysis and transformation as, for example the Low Level Vir-
tual Machine (LLVM) [52], compilers that target multiple architectures as the
GCC! (GCC!) [34], assemblers, and linkers among others. The connection
of all these tools together, resulted in the creation of a toolchain. Nowadays
more and more tools are added to toolchains, in order to improve the develop-
ment process. With increasingly complex architectures and applications, the
toolchains are seen today as one of the key enabler of a specific platform and
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even architectural paradigm [47].

The traditional compilation toolchains consider the architecture to be fixed,
without significant changes during the lifetime of the product. With the current
platforms, this is not always the case. The best examples are the reconfigurable
architectures in which most of the components of the platform can change in
different ways. The development of separate toolchain for each possible com-
binations is not a viable approach. On the other hand, the development of
a toolchain for a specific platform means that optimization opportunities are
limited. By loosing optimization opportunities, the platform can not be fully
utilized, which, in turn, means that resources are lost, and the economic viabil-
ity of the whole system is less than possible. A solution to these problems is to
extend the current toolchains in such a way that adaptability to different plat-
forms can be taken into consideration. This, usually, involves modifications at
multiple levels. For example, by inserting new annotations at the programming
languages level, or by providing a linker able to link the different processing
elements.

One partial solution to the problem of developing tools for different architec-
tures and paradigms are the reconfigurable compilers frameworks. These are
compilers frameworks that allow developers to build compilers for a new ar-
chitecture in a short amount of times. In this category we mention the open
source compiler GCC! [34] which targets a large sets of architectures, the
CHESS compiler which focuses on fixed point DSP processors [80], RECORD
compiler [55] and CoSy compiler development system [24].

The Molen Programming Paradigm

The Molen programming paradigm was developed in order to efficiently ex-
ploit the Molen machine organization. This programming paradigm relies
on five primitives that link the processor of a system with the heterogeneous
cores [82]. Although special consideration was given to FPGAs in its initial de-
sign, the paradigm can be successfully employed for other types of processing
elements as well as as shown later in Chapter 3. The programming paradigm
relies on the sequential consistency model for memory access.

A set of predefined instructions added to the instruction stream of the GPP
manages the computations executed on the different processing elements.
These five primitive instructions are SET, MOVET, MOVEF, EXECUTE and
BREAK. The original proposal included two SET instructions, namely a par-
tial SET and a complete SET. Anyhow we consider them as one entity as their
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role is similar. In the following, we summarize in short the role of each in-
struction:

• SET - it configures/loads the computation on the processing element.
This is an information the runtime system can use to prepare in advance
for the actual execution;

• MOVET/MOVEF - it transfers the parameters/result to/from the XREG.

• EXECUTE - it starts the execution.

• BREAK - it checks if the execution has finished.

A detailed discussion on these primitives in the context of research is presented
next, in Chapter 3.

2.1.3 The Applications

Another aspect that has to be taken into account during the analysis of the
problem is represented by the applications, which are the input of toolchains.
Despite a lot of research in the field of programming languages and modeling
languages many applications for embedded systems are still written in plain
C [83]. This is because the programmers need a lot of control on the inner
workings of the system, to obtain performance and to adapt to new platforms,
without relying on complex and, possibly, unreliable middle-ware. The com-
panies are reluctant to rewrite the code in a new language that works for some
niche platforms as the adaptation of the legacy code to new architectures can
be problematic.

The C language was developed between 1969 and 1973 as a programming
language for system software [74]. Due to the fact that at the moment of its
conception the architectures were rather different from today architectures, two
concepts are totally missing from C, which are needed when porting an appli-
cation to modern embedded systems. These concepts are mapping (of memory
and processing) and parallelism. This can be seen as an advantage as programs
remain generic, but also as a disadvantage as programs must be adapted to meet
performance. Additionally, even if not present in the language, several solu-
tions exist to augment existing C applications with this kind of information.

To summarize in one phrase our problem we can say: how can we imple-
ment complex C applications on heterogeneous platforms, which may evolve
in time, without loosing flexibility or performance?
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As porting an application to a new platform involves many problems, in the
following we limit our analysis to a limited subset: partitioning, memory allo-
cation, and scheduling. Our solutions are specific to each objective discussed,
although the main idea is the same for all: to integrate parts of the optimization
algorithms in the application and to delay the decision-making process, when
possible, until runtime. Then, when the exact architecture is known, the best
decision can be taken giving the best performance for the application.

2.2 Related Research

Recently, frameworks [25] [3] were proposed to make applications more adapt-
able to the platforms. The framework presented in [25] proposes a system that
follows the cycle ”sense, reason, react”. The system is organized as a deci-
sion engine coupled with software and hardware components. When using an
FPGA, the framework can hide the details of the implementation from the de-
veloper. Examples of such implementation detail is the partial reconfiguration
capability. Nevertheless, the exact decision engine has to be implemented on
a per application basis. One such example is presented in [29], where a pulse
detection system uses the reconfigurability of the FPGA to adapt to changes
in the environment. The framework presented in [3] adapts the thread model
to heterogeneous embedded systems by defining a Hardware Thread Interface.
This type of interface enables platform independent user level semantics that
promote thread migration across the system.

Independent of the frameworks mentioned, there is a large volume of research
related to the problem this dissertation addresses. Classifying this work will
help in providing a clear image of the related research. As our work is focused
on runtime optimization, we consider a classification based on the moment at
which the optimization is done, coupled with a classification based on the area
in which the optimization is applied.

From a time point of view, optimizations can be divided in off-line (compile-
time) optimization and on-line optimization. Then, according to the problems
defined in the previous section, we have related work dealing with the mem-
ory optimization in embedded systems and we can divide this optimization
into memory related problems (cache and scratch pad memory), partitioning
problems and parallelism and scheduling problems.
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2.2.1 Memory Related Problems and Solutions

An ideal processing element would have an infinite amount of memory with
instant access. However in reality, as the access time of the memory decreases,
its cost increases and size decreases. The typical scenario is that in a system,
the fastest memories are the smallest [39]. Various mechanisms are used to
map parts of the application data to the memories present in the system. In the
following we will explain the techniques used and their application to the case
of reconfigurable heterogeneous hardware.

Cache Memories

Cache memories are a mechanism used to hide the long access time needed to
access external memories [39]. This is achieved by relying on the spatial and
temporal locality of the data accessed by a program. One of the biggest ad-
vantages of the caches is that they improve the execution time in a transparent
way. The programmer does not need to make any modification in the source
code of the application to take advantage of a cache. This advantage comes at
the cost of a larger area occupied on the chip.

When used together with an FPGA, caches can enable speedups of up to 7.8x
(geometric mean) and up to 4.1x reduction in power when compared to a gen-
eral purpose processor [71]. This is achieved by performing a static alias anal-
ysis on the code, with the help of the ’restrict’ keyword. The obtained results
are good as the authors target HPC applications that do not contain complex
aliasing. As the analysis is performed at compile-time and relies on static
analysis, it is not able to deal with the complex situation encountered in our
test applications. In our case, depending on the input data, different memory
blocks are used during the program execution.

When compared to scratch pad memories, caches can be less efficient in terms
of power and performance. This is shown in [9], where, by using an instruction
simulator and power estimator, it is shown that Scratch Pad Memory (SPM) are
on average 40% more energy efficient than caches. This is a an implication of
the fact that a cache contains more transistors compared to an SPM of the same
size, needed to implement the various extra logic, for example, tag arrays.
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Virtual Memories

Virtual memory is a technique invented to manage multiple levels of memories,
especially when a program can not fit completely in the first level of memory.
It organizes the memory in pages and provides address translation between the
virtual addresses used by the processor and the real address where the data
can be found. Other advantages of virtual memory are protection of processes
and sharing of memory and program relocation [39]. For Virtex and Altera
platforms, in [86], Vuletic et al. present a unified virtual memory manager.
This manager allows both hardware and software processing elements to use
the benefits of virtual memory when accessing memory.

Scratch Pad Memory

SPMs have the same function as caches, although they are managed by the ap-
plication developer/toolchain directly. If they are used efficiently, they perform
better than caches in speed, energy efficiency, and in the area occupied [2] [9].

For the specific case of loop nests, where dependencies can be analyzed at
compile-time, [48] provides an algorithm to design a custom SPM hierarchy.
In case the memory hierarchy is already given, an algorithm that transforms
the loop to better fit the hierarchy is presented. Both algorithms rely on the
availability of information about dependencies in the loops, and can not be
used for generic C code.

For specific cases, static solutions exist which provide significant performance
improvements (more than 6x) by using a careful allocation of memory re-
sources on the FPGA [13].

A low level partitioning algorithm between several SPM memories of the sys-
tem is presented in [92]. The application model is a Data Flow Graph (DFG),
where each node represents a coarse grained task. A special edge is inserted
in the graph to model a loop carried dependency. Each node accesses a set of
variables. By using two algorithms, HAFF (High Access Frequency First) or
GVP (Global View Prediction), the algorithm maps each variable to one of the
SPMs in the system, and then schedules the tasks in the DFG on each process-
ing element. Additionally, they utilize a loop pipeline scheduling algorithm
(RSVP) to reduce dependencies for scheduling. However, in the paper they
do not consider heterogeneous architectures, and external memories are not
included in the presented partitioning and scheduling schemes.

A big part of the previous work on SPMs, usually considers just one processing
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element, like [6], which gives an Integer Linear Programming (ILP) formula-
tion of the problem of mapping program variables to the SPMs. The first class
of variables considered is the class of global variables. Two variants of the al-
gorithms are presented for the stack variables. The stack variables differ from
the global variables because they have a limited lifetime. The first variant of
the algorithm considers the stack of one procedure as one ’aggregated’ vari-
able. The second approach allows each variable to be allocated to a different
memory. The authors compare the execution time using a SPM capable of
holding all the application variables to the execution time using an SPM 20%
smaller than the previous one. The execution time for the small SPM is only
1.5x bigger compared to the use of a bigger SPM, which shows the effective-
ness of presented techniques.

[40] presents a static method to determine the memory bank where a vari-
able should be placed, based on the number of accesses and conflicts with the
other variables. The proposed algorithm supports a complex memory hier-
archy, which can be composed by a combinations of caches and application
managed SRAMs. For caches, a 90% hit rate is assumed by the partitioning
algorithm. In a similar way to the previous approach [6], the information used
as input to the partition algorithm is provided by a detailed profiling, which
gives the number of accesses for each variable. For the studied application the
authors test that by changing the input data, the results are not affected more
than 5%. Nevertheless, this does not hold for any application, as we will show
in Chapter 3.

In [79], an algorithm is presented that determines the program points where lo-
cal (stack) variables have to be transferred to/from main memory to the SPM.
Program points candidates are the start of each procedure and the start of every
loop in the program. Timestamps are given to each node, based on the order
of their execution. Next, by using an iterative algorithm, the set of variables
that are brought to the SPM and the set of variables that are written back to the
DDR are determined for each program point, based on a cost model. This al-
gorithm does not take into account dynamically allocated memory, and it does
all the computations at compile-time. If the system configuration changes, the
algorithm has to be applied again and the application recompiled.

In contrast to previous work, [14] instruments just the dynamic memory man-
agement primitives, such as malloc and free, along with all accesses to mem-
ory. Then, the developers collect data by providing the application with rel-
evant inputs. An algorithm identifies block transfers and determines for each
block transfer if it is better to perform it using DMA or using normal mem-
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ory transfer. The disadvantage of this approach is that it targets only dynamic
variables and it relies on static information.

A method at the boundary between static and dynamic allocation is presented
in [62]. The authors perform a load time optimization that places the stack
data in one of the memories using information computed at compile-time. The
method starts with a profiling phase where, for each variable, a frequency per
byte is measured using multiple input sets. The second phase consists of com-
piling and linking, which do not embed the actual variable addresses in the
code, as these will be determined at runtime. The last phase is represented by
the embedded loader, which determines the size of the SPM and, then, decides
where each variable should be placed.

A dynamic SPM stack manager that reduces power consumption is presented
in [49]. This manager operates at the granularity of function stack frames. The
main advantages are that it does not need profile information, and it can adapt
to different SPM sizes. Based on the stack frame sizes and on the SPM size, it
can determine for which function calls the SPM stack manager calls needs to
be inserted. These calls manage the swap-in/swap-out of stack frames to/from
the SPM memory. Another dynamic SPM manager is presented in [23]. This
work targets multi-application environments, but assumes there is only one
processing element.

By providing both the heap and the stack management, [22] describes an itera-
tive algorithm that determines the allocation of stack, global and heap variables
and introduces transfer code when necessary. The method uses only compile-
time heuristics to determine which is the best place to allocate blocks and
where to transfer them from fast SPM to slower DDR.

In [65], the authors focus on multiple applications that share a SPM. The ar-
chitectural abstraction is represented by a multi-core system, with identical
cores that share a SPM. The problem is that the SPM must be shared between
all the applications running in the system. To solve this, they present an ap-
proach, which relies on compile-time information to decide how to divide the
SPM. The compile-time information is represented by the loop type and the
frequency of use for each array. At runtime, based on the system status and on
the amount of space requested by each application, the SPM manager divides
the existing space among the applications. A second level of distributing the
space is performed in the application, which distributes the space between the
arrays. This work considers identical computing cores, so it can not be used if
differences in execution times exist between cores.

All the solutions presented so far are software based solutions. The other pos-
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sibility is to implement management solutions directly in hardware. These
solutions are similar to cache solutions, although the granularity at which the
management of memory is performed is coarser than for caches.

For example, [69] uses a MMU to manage the mapping to SPM of the stack
of the program. The MMU tries to keep always mapped to SPM the top of
the stack. For this purpose, it uses a fault mechanism. The memory outside
the range mapped to SPM is protected and the MMU receives a fault if any
of these addresses are accessed. Depending on the type of access, the SPM
performs a transfer or a new mapping. This solution works for an architecture
with a single processor and it heavily relies on the idea that the most accessed
data is the one present in the top stack frame.

In [18], a hybrid system is proposed composed of SPMs and data cache. By
using profiling, a dynamic call graph of the application is obtained, together
with the number of memory accesses. ILP formulations are then used to de-
termine which memory pages should be placed in the SPM to minimize the
energy consumption. This information is inserted before and after each func-
tion call and, at runtime, a SPM Manager loads the appropriate pages. The
conclusion of the authors is that the best combination of data cache size, SPM
size and page size is dependent on the application.

The addition of a DMA engine together with high-level functions to access
scratch pad is proposed in [28]. This method has the advantage that the pro-
cessor does not need to waste cycles transferring data from the main memory to
SPM. A big disadvantage is that it requires both a rewriting of the applications
and a change of the hardware platform.

2.2.2 Partitioning Related Problems and Solutions

Partitioning is the process in which it is decided, either by the toolchain, by
the runtime or by the developer, which parts of the applications are executed
on which processing elements. The processing elements are either GPPs that
execute software programs or hardware accelerators. Of course, this involves
more than just deciding the processing element on which a function will exe-
cute as, for example, that function needs its data in an appropriate memory, the
processing elements execution needs to be controlled, etc.

An important part of the work done in the hardware/software partitioning field
considers static partitioning done at compile-time. A mathematical formula-
tion of the problem is presented in [4]. The authors formulate two problems,
by using a graph to represent the application where the hardware and software
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costs are associated to the nodes and the edges represent the communication
costs. The first problem consists of mapping each node to software or hardware
while minimizing the total cost, seen as a linear combination of the hardware,
software, and communication costs. This problem can be solved in polyno-
mial time. The second problem consists of mapping each node to software or
hardware, while minimizing the total cost, and keeping one of the cost below
a set bound. This is showed to be a NP-complete problem and two heuristics
are proposed to solve the problem. The results of this work can not be directly
applied in the general case as both the model of the application and the plat-
form are generic. For example, it is not always possible to model a hardware
node using only one cost factor, as a hardware node in a reconfigurable system
has multiple characteristics such as area, energy usage, and performance.

Simulated annealing was used as a heuristic in [12] to solve the hardware/-
software partitioning problem. In this work, the application is modeled as a
direct acyclic graph. The platform is modeled as a software processor and a
hardware unit connected by a system bus. One important limitation of this ar-
chitecture is that the authors assume that the two processors can not execute
simultaneously.

Ant colony optimization was used in [87] to partition direct acyclic graphs to
heterogeneous multicore platforms. The optimization objective used is critical
path execution time of the task graph under the constraint of fixed area.

In [59], a simulated annealing approach is used to determine the spatio-
temporal mapping of an application onto a heterogeneous architecture. The
application is also described as a directed acyclic graph. The architecture is a
typical processor/co-processor architecture, where the processor is represented
by the reconfigurable array. Additionally, the authors assume that the recon-
figurable array supports contexts to speedup reconfigurations. The existence
of contexts implies the need of a temporal partition.

[57] uses as an input an application represented as a directed acyclic graph,
and then creates a hierarchical decomposition on it in order to speedup the
mapping algorithm execution.

The problem of allocating the area inside the FPGA is addressed in [68]. By
assuming that multiple operations need to be configured in the FPGA, and
the sum of their areas is greater than the total available area, some of them
need to be reconfigured. This problem is formulated as an ILP problem, with
the objective of minimizing the reconfiguration area. This has the effect of
improving the total execution time as, in such a system, the reconfiguration
time represents an important overhead. In this work, the communication costs
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are not considered during the mapping.

By taking into account more aspects of the system, [61] solves the mapping
problem using a mixed ILP algorithm. The application is represented as a Hi-
erarchical Control Data Flow Graph that, besides data and control dependen-
cies, includes timing constraints. The architecture is considered to be highly
heterogeneous with FPGAs, DSPs and GPPs. The objective of the mixed ILP
formulation is to minimize the resources employed, while satisfying the timing
constraints. Dealing with two types of reconfigurable fabric, the work in [31]
proposes a mapping algorithm that relies on static analysis and dynamic anal-
ysis to map kernels to either an FPGA or a coarse grain reconfigurable array.
As other works, once a decision is made at compile time, it can not be adjusted
at runtime.

Another approach that minimizes the resources used while satisfying con-
straints of execution time and power consumption is presented in [46]. In
this work, by using a simple architecture model, where software and hardware
can not work in parallel, the knapsack algorithm is used to determine the best
area utilization, given the execution time and power constraints. An algorithm,
based on dynamic programming that computes the exact solution, is also pre-
sented. The disadvantage of this approach is that it can only be applied to small
problems as, for bigger problems, the memory used by the algorithm is larger
than the available memory in current computer systems.

Different other problems were considered when doing the partitioning, such as
area allocation [68], granularity selection [38], and scheduling [59] [36].

A common characteristic for all these approaches is that they rely on the fact
that the profile information and execution trace are available at compile-time
and they optimize just for one specific set of cases [68] [59] [38].

From the runtime and operating system point of view, the work in [20] focuses
on online scheduling for tasks that are already mapped to hardware. By using
a cache and software dispatch is proposed in for the cases when the contention
on the hardware resources is too high.

An online hardware/software partitioning for image processing was proposed
in [72]. However, as in other works, the algorithm used ’performance profiles’
that have to be computed at compile-time. A similar problem is described
in [42] where the problem is defined considering all the information, such as
execution time on the processor, execution time when an FPGA coprocessor
is used, the area used on the FPGA by each coprocessor, among other, are
known. Several online heuristics are given and compared to an optimal, offline
algorithm. In [30], multiple applications are considered and an algorithm is
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given to select the most efficient set of functions while taking into account
function speed and area constraints. Once the selection is made, the decision
is changed when the application gets into a new execution phase.

Applications can also be described with other models of computation, for ex-
ample Kahn Process Networks (KPN). For this cases different mapping algo-
rithms exists, like for example [77] which proposes a runtime mapping algo-
rithm for reconfigurable architectures. The algorithm requires the application
to be expressed as a KPN and takes into account the available area and recon-
figuration time to execution time ratio.

2.2.3 Parallelism and Scheduling Related Problems and Solutions

The problem of automatic parallelization is a difficult problem when the input
is a sequential programming language, such as, for example C. One solution to
this problem is to specify the parallelism in the source code. Several paradigms
and corresponding API-s, the most prominent ones being message passing
represented by MPI API [60] and shared memory represented by OpenMP
API [64] and OpenCL [50]. Research indicates that both OpenMP and MPI
paradigms can be used to achieve the same performance on shared memory
platforms [51]. From the programming effort point of view it is shown [41]
that the shared memory paradigm is more efficient when dealing with novice
programmers.

When configuring multiple instances of the same computation, one important
overhead is the reconfiguration time. Algorithms to reduce the overhead intro-
duced by the reconfiguration time are presented in [37], [66] and [67]. They
all have an application model of a control flow/call graph and they introduce
prefetch instructions to try to hide the reconfiguration time by making the re-
configuration in parallel with the computations executed on the main processor.

Task chains are the focus of the work of [10]. A task chain models an applica-
tion were processing is done by independent tasks, and each tasks uses as input
the output of the previous task in the chain. The architecture model assumes
a reconfigurable area organized in columns. The application is composed of
several tasks in the chain that process data. It is assumed that the data can be
processed at once by any number of parallel, identical tasks. By using these
assumptions, a heuristic algorithm is given, which provides a schedule of the
configuration on the FPGA of tasks, and for each task provides the amount of
data that it has to process. Due to the restrictive application model and assump-
tions about the data, these algorithms can only be used for limited number of
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complex applications.

The problem of splitting the data between multiple instances of the same com-
putation is addressed also in [85]. Compared to the previous work, the data
transfer is considered in two cases: when the data transfer is performed af-
ter the configuration has finished and when data transfer can be performed in
parallel with the configuration. Based on a number of parameters, such as
reconfiguration time, available bandwidth, computation time, available area,
etc., algorithms are given which determine the best possible load-distribution.
Similarly to the previous approach, this algorithm can be applied only to one
call of an accelerator, as it does not take into account the global properties of
the application.

The configuration of multiple instances will affect the management of recon-
figurable area. Spatio-temporal allocation algorithms are given in [78] and [27]
for a set of dependent tasks. The algorithms assume that the tasks are orga-
nized as a directed acyclic graph and all the needed information is known at
compile-time. By using a rectangular task and area model, several problems
are formulated and solved using a novel method named ’packing classes’. The
problems include finding the smallest needed chip area given a time bound and
finding the smallest time given an area bound. The communication is consid-
ered part of the total task execution time.

All the approaches described until now consider static analysis. In [63], run-
time algorithms are presented that schedule the execution and reconfiguration
of tasks using a tile based model of the reconfigurable area. Two of the algo-
rithms presented process events sequentially, but can overleap reconfiguration
with the actual execution. The other two algorithms presented allow also paral-
lel execution of multiple computing units. The application model is a directed
graph.

A methodology that addresses the dynamic nature of embedded systems at
both design time and runtime is presented in [32]. This methodology ex-
ploits the different execution behavior of an applications for different data
sets. Based on the representative data sets, provided manually by the appli-
cation designer, it can decide at runtime which mapping is the best for the
current system state. An application of this methodology is presented in [58],
where scheduling is performed both at compile-time and at runtime, based on
the scenarios identified in the wavelet subdivision surfaces application. The
scenarios are represented by the 3D-scene that has to be rendered and the po-
sition of the camera. As their use-case contains 3 virtual scenes and there are
4 possible camera positions for each scene, the total number of scenarios iden-
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tified is 12. The main issue with this approach is that it has to identify apriori
all the possible scenarios and it will be difficult to adapt to new scenarios.

Bandwidth is also very important when considering parallelism in applications.
On a reconfigurable device multiple computing units can be configured to run
in parallel and the result is that communication with the memory becomes the
true bottleneck. This problem is studied in [11]. The focus of this work is to
provide an algorithm for resource allocation, while taking advantage of all the
capabilities of modern devices, such as independent clock domains and run-
time reconfiguration. The main idea is to balance the usage of the system bus
by reducing the frequency of some of the computation units. It is shown that
the execution time is minimum when all the computing units finish the work
at the same time and each of them has a different clock frequency. The appli-
cation model used is a task chain, suitable for image processing applications.

2.3 Summary

The problem of building complex computer systems, using more and more het-
erogeneous architectures, has to be solved via improvements in the toolchains
provided for these platforms. The work in the next chapters focuses on im-
proving the state of the art by combining compile and runtime information and
providing fast decision algorithms to make applications flexible and adaptable
to dynamic changes in the execution platform. As a result, in this chapter we
reviewed the related research in the fields of partitioning algorithms, memory
allocation, parallelism and scheduling.



3
Research Context

THE main target of the work presented in this dissertation is identifying
and solving some of the issues that arise when developing applica-
tions for heterogeneous hardware platforms. We do this work in the

context of the hArtes project, as it offers the necessary infrastructure for such
an endeavor. The hArtes project addresses research and development issues of
embedded systems, namely, it investigates hardware/software integration and
its main objective was to develop a holistic approach for developing a hetero-
geneous embedded system. In order to improve the toolchain, the problems
emerging during the development must be clearly identified. In this chapter
we present the hardware platform used during the experiments, the program-
ming paradigm followed by the program, the platform and the structure of the
hArtes toolchain. Then, we focus on the analysis of the applications, with the
purpose of identifying the possibilities for improvements of the toolchain.

The hardware platform is presented in detail in Section 3.2. We describe the
high-level organization of the platform and the used components and con-
clude by identifying the issues in this approach. Closely related, Section 3.3
presents the Molen abstraction layer, which represents the implementation of
the Molen programming paradigm in the context of the hArtes platform. The
Molen programming paradigm is a paradigm based on the sequential consis-
tency model that allows multiple processing elements to act as coprocessors
to a central General Purpose Processor (GPP). In order to take full advantage
of the platform, the applications have to express and take advantage of the
parallelism provided by the platform. At programming language level paral-
lelism can be expressed in several ways, each way having different possible
implementations. As we involve in the process also the Molen paradigm, we
have studied in the next section what adjustments have to be done either to
Molen paradigm or the parallel implementations of the applications when us-
ing Molen paradigm. For this purpose we focus on two ways of expressing

27
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and implementing parallelism, namely OpenMP and OpenCL. After that, Sec-
tion 3.4 presents the hArtes toolchain. The toolchain goal is to generate a
semi-automatic best fit mapping of any application on the platform. This way,
it is possible to provide a rapid development trajectory from application cod-
ing to a working reconfigurable embedded computing system. By having a
semi-automatic process the developer can always choose among various so-
lutions other than the one proposed by the toolchain. The issues emerging
during the development of the toolchain are highlighted, together with the im-
plemented solutions. The chapter continues with a detailed analysis of the
real-life applications provided in the context of the project. We present the
used methodology to analyze the applications and observe the problems that
appear. In Section 3.6 we give an overview of the identified problems, which
are further analyzed in the following chapters. In Section 3.7 we summarize
our contributions. Finally, Section 3.8 concludes the chapter.

3.1 Methodology overview

Our methodology for analyzing applications includes:

• Identify the hardware platform on which the applications have to be ex-
ecuted.

• Select the suitable real life applications.

• Profile the selected applications, on both the desktop computers and the
real platform, if possible.

• Identify from the profile information hot-spots, which take a significant
portion of the total application execution time.

• Select a function or only a part of a code, for mapping to another pro-
cessing element. This should be done only if this move will bring a
performance improvement.

3.2 hArtes Hardware Platform (hHP)

We will introduce in this section the hArtes Hardware Platform (hHP). The
hHP was designed to represent a reference target for the hArtes toolchain,
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while providing computing resources for several high-performance applica-
tions in the audio domain. We present, briefly, the main characteristics of this
platform. The emphasis is put on aspects such as the performance capabilities
of the platform, which affect the development of the toolchain, and optimiza-
tion algorithms.

The requirement for high-performance audio means that particular attention
has to be paid to the audio input and outputs from the platform. In order to
keep flexibility, a Field Programmable Gate Array (FPGA) is used to handle,
at least partially, the massive number of input and output channels. For further
processing, an obvious choice is a Digital Signal Processor (DSP) processor
that can take advantage of the specialized instruction set. As both FPGA and
DSP are computation oriented, a GPP processor is added to coordinate the
activities of the platform.

The board design was developed by University of Ferrara, in cooperation with
ATMEL Roma and TU Delft. ATMEL Roma provided a DSP daughter board
that was integrated in the hHP. TU Delft supported the University of Ferrara
in designing an infrastructure that supports the Molen machine organization.

3.2.1 General Platform Description

The basic independent block of the system includes a Reduced Instruction Set
Computing (RISC) GPP ARM9, a DSP processor (ATMEL mAgic) and an
application-specific reconfigurable block (Xilinx Virtex4 XC4VFX100 FPGA.
This block is called, in hArtes terminology, a Basic Configurable Element
(BCE). The ATMEL mAgic processor is a Very Long Instruction Word
(VLIW) processor, that can execute 15 operations per cycle and supports float-
ing point operations. The Xilinx Virtex4 XC4VFX100 FPGA is a high perfor-
mance model from the Virtex4 family, having 42,176 slices and 6,768 kB of
Block RAM.

In case these resources are insufficient for an application, an extension mech-
anism was designed, which allows multiple BCEs to be connected together.

For the actual hardware implementation, two BCEs were put on one hardware
board, the hHP. The architecture of the hHP is shown in Figure 3.1. The
current boards contain two BCEs each, and multiple BCEs can be chained
if required by the application. The BCE-s are independent, and can run any
selected thread or application mapped by the hArtes toolchain. In case an ap-
plication running on one BCE needs to transfer data to an application running
on another BCE, the data can be transferred through a high bandwidth direct
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Figure 3.1: Top level architectural structure of the hArtes Hardware Platform. The
system has two independent heterogeneous and configurable processors, which com-
municate among each other and with an audio I/O subsystems supporting several
ADAT channels.

data link (approximately 200 MB/sec).

For massive data streaming, dedicated hardware is available on the board,
namely the “Audio I/O subsystem” block in, Figure 3.1. Eight input and eight
output ADAT Lightpipe interfaces are available on the board. ADAT Light-
pipe is a standard for the transfer of digital audio that uses fiber optic cables
and has Toslink connectors at either end. Each ADAT interface supports 8 au-
dio channels. As a result, the hHP supports 64 input channels and 64 output
channels. Of course, driving 64 speakers requires additional hardware, which
demultiplexes the optical cables into multiple electric cables suitable for ordi-
nary speakers.

Figure 3.2 provides a detailed overview of a BCE. The two main blocks are a
RISC/DSP processor, the D940HF produced by Atmel, and a reconfigurable
processor, the Xilinx Virtex4 XC4VFX100) [19]. The RISC processor is an
ARM926EJ-S ARM processor, running at a frequency of 160MHz. It has a 16
kB instruction cache and a 16 kB data cache. The DSP processor is running
at 80 MHz. It has 200 kB SRAM memory, a data cache of 16k x 40bit words,
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Figure 3.2: Detailed block digram of the Basic Configurable Element (BCE) of the
hArtes Hardware Platform. The BCE is the basic building block of the platform,
supporting several processing architectures. One or more BCEs work in parallel to
support a hArtes application.

and an instruction cache of 8k x 128 bits instructions [5].

The memory is organized into private memory blocks and shared memory
blocks. “Mem1” and “Mem3” in the figure are private to D940HF and to
XC4VFX100, respectively. “Mem2” is a shareable memory bank that can be
shared on several levels. It can be used by all computing elements on a BCE,
and by processors on different BCEs, through the high speed inter-BCE link.
A Flash memory is present to drive the initial configuration of the FPGA. This
memory can be programmed using a Joint Test Action Group (JTAG) connec-
tor at design time [1]. For the filesystem of the operating system a Secure
Digital (SD) card reader is available. Several standard input/output interfaces
are also present on a BCE, from which we mention Ethernet (both for the
ARM processor and for FPGA), Universal Serial Bus (USB) and Universal
Asynchronous Receiver/Transmitter (UART) (used mainly for debugging pur-
poses).

Figure 3.3 shows a picture of a physical platform in which we clearly distin-
guish the elements listed above. A physical board contains two BCEs, one on
the left and one on the right. The big daughter board in the middle right part
of the hHP contains the FPGA (Xilinx Virtex4-FX400). The smaller daughter
board contains the D940F processor block. The 16 ADAT connectors (8 in-
puts and 8 outputs) are visible on the top of the board. The physical size of the
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Figure 3.3: Picture of the hArtes Hardware Platform. The two BCEs use two daugh-
ters boards each, one for the D940HF processor and one for the FPGA based infras-
tructure. The ADAT interfaces and several standard I/O connectors are clearly visible
at the top and at the bottom of the picture, respectively. [83].

board is 370mm x 370 mm. Although this might not be suitable for embed-
ded use, our focus was on fast prototyping, and, therefore the layout was not
optimized for area. If components are packed closer together, the dimensions
of this board would reduce dramatically. A schematic overlay showing all the
elements is presented in Figure 3.4.

3.2.2 Hardware Platform Issues

The hardware platform developed for the hArtes project was designed specifi-
cally for audio processing. The initial design decisions were taken considering
the use of a FPGA for the audio processing of input or output. For this rea-
son, a good transfer bandwidth was ensured between the audio buffers and
the FPGA. The connection between the FPGA and the ARM or the main
memory was not considered to be crucial. The implication is that there is no
DMA available when transferring between main memory and FPGA Scratch
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Figure 3.4: Overlay of components over a picture of the hArtes Hardware Platform.

Pad Memory (SPM). Even if the absence of DMA is acceptable for reading
or writing of audio data, this limits the efficiency of the FPGA when deal-
ing with generic applications or applications that have their input data stored
somewhere else than the audio buffers.

This is not a core architecture problem. Rather, it is a design decision, deter-
mined by the objective of the hardware board and its uses. We performed a
series of experiments in order to evaluate the memory speed.

Since the DMA was not available to access the FPGA memory, all the transfers
between the main memory and the FPGA local memory had to be performed
by the GPP. Table 3.1 illustrates the results obtained when transferring a block
of 32 kB between various memories. As we can see, the transfer speed be-
tween the Synchronous Dynamic Random Access Memory (SDRAM) and the
FPGA SPM is 2.85 times slower than the transfer speed between SDRAM and
SDRAM. Experiments have shown that the bandwidth is the same for both
larger and smaller memory block sizes.

The slow transfer speed between SDRAM and SPM, 24.28 MB/s compared to
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SDRAM to SPM 1287 µs
SPM to SDRAM 1349 µs
SDRAM to SDRAM 451 µs
Transfer speed SDRAM to SPM 24.28 MB/s
Transfer speed SDRAM to SDRAM 69.29 MB/s

Table 3.1: Transfer speed of a memory block of 32 kB size between SPM and
SDRAM for hArtes Hardware Platform.

the transfer speed from SDRAM to SDRAM, 69.29 MB/s, imposes constraints
on the type of kernels that can be accelerated, when executed on the FPGA
compared to the GPP.

For example, let us consider a kernel that has as input data and output data size
of 16 kB. According to Table 3.1, the total time needed for memory transfer
is 1287/2 + 1349/2 = 1318µs . We are interested in the speedup including
the overhead of transfer, when the computation time varies. We consider the
computation time to be measured on the ARM processor. The computation
speedup is the ratio between the computation time on the ARM processor and
the computation time measured for the same kernel on the FPGA. In Figure
3.5, we plot the total speedup for a set of computation times, ranging from 0
to 10000 µs and assuming computation speedups between 2x and 8x. We can
see that obtaining a considerable speedup for a computation will not help if the
execution time is in the range of the memory transfer overhead. For example,
for a computation speedup of 7 and a computation execution time of 3000 µs ,
the total speedup is less than 2x. Only when the computation time is 5 times
larger than the memory overhead, significant total speedup can be obtained.

3.3 The Molen Abstraction Layer

The Molen programming paradigm targets machines that adhere to the Molen
machine organization [82]. As described in Section 2.1.1 the Molen machine
organization is based on the processor-coprocessor model and it allows the pro-
cessor to control the execution of the coprocessor via a set of fixed primitives.
By using these primitives, a virtually unlimited number of operations can be
implemented as accelerated components. Started as an extension for recon-
figurable architectures, Molen can be used for any heterogeneous architecture
like the hArtes hardware platform.
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Figure 3.5: Possible speedups including memory transfer of 16kb function of speedup
and execution time, for the hArtes hardware platform.

3.3.1 The Molen Programming Paradigm

The Molen programming paradigm is a paradigm based on the sequential con-
sistency model that allows multiple processing elements to act as coprocessors
to a central GPP. The paradigm was developed for tightly coupled processor-
coprocessor systems. The instruction set of the GPP is modified to add in-
structions for controlling the coprocessor. The instructions used are partial set,
complete set, execute, break, set prefetch, execute prefetch, movtx and movfx.

The instructions set prefetch and execute prefetch are used when the coproces-
sor has the capability of prefetching the binary data needed to run a computa-
tion. In the case of FPGAs, the binary ’program‘ is represented by a bitstream,
and, in case of a DSP, this binary data is represented by an Executable and
Linkable Format (ELF) file [56]. The FPGA on the hHP platform does not
have the capability of prefetching bitstreams. The DSP has a local code mem-
ory which allows it to load all the needed data when the application starts. As
a result, there is no need for set prefetch and execute prefetch in our scenario.

The instruction partial set is meant to reduce the reconfiguration time, by con-
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figuring the common parts of multiple computations at the same time. As
stated already, the DSP has enough local memory to accommodate all the
needed data. The FPGA can take advantage of such a feature. In any way, the
identification of common parts at Register Transfer Level (RTL) level between
multiple applications is a complex problem. In the context of the research pre-
sented in this dissertation, we do not support this feature. As a result, we will
only use one complete set instruction instead of two set instructions.

To summarize, our platform, needs the following instructions: complete set,
execute, break, movtx and movfx. As the platform does not support tight inte-
gration between the GPP and the coprocessors, we utilize the term “primitive”
to describe these instructions in the rest of the thesis. We will discuss each of
them in detail and we will show how we modified and extended them in the
context of the hArtes project.

The SET Primitive

The SET primitive’s role is to start the configuration of the processing element
with the operation that has to be executed. This represents different actions for
different processing elements. For a FPGA, it represents a reconfiguration of
the area available for custom functionality. For a DSP processor, it represents
the loading of an executable file into the memory. These operations can take
a different amount of time depending on the characteristics of the processing
element and on the operation. Thus, by having an independent primitive to
manage the configuration allows a compiler to perform scheduling of recon-
figurations. A good scheduler, by making a configuration in parallel with other
useful computations would be able to hide the configuration time.

Original instruction:
SET address

Extended primitive:
SET processing element, address

The SET primitive is extended by adding, as a parameter, a processing element
identification. In the original proposal this was unnecessary, as there was only
one co-processing element.
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The MOVET, MOVEF Primitives

The role of the MOVET and MOVEF primitives is to send (MOVET) and
to receive (MOVEF) parameters and memory blocks to/from the processing
element respectively.

Original instruction:
MOVET xreg, register

Extended primitives:
MOVET processing element, xreg, register
MOVET ADDR processing element, xreg, address, size, type

Original instruction:
MOVEF register, xreg

Extended primitives:
MOVEF processing element, register, xreg
MOVEF ADDR processing element, address, size, type

The current implementation of MOVET and MOVEF differs from the origi-
nal in two aspects. First, two versions are implemented for both MOVET and
MOVEF: a version for parameters representing values and a version for pa-
rameters representing addresses. The second difference is represented by the
information provided to the primitives, such as the type of the parameter. This
was done for two reasons:

• Each processing element can have a different memory size for a data
type. This is, in part, because the C standard does not specify the exact
type sizes, but rather it specifies the smallest bit size for each type. For
example, the float type for the DSP processor float type size is 40 bits
while Advanced RISC Machine (ARM) processor’s float type size is 32
bits. When transferring between two processing elements, a conversion
might be needed to convert the data from one format to another.

• Even if the GPP can access all the memory areas, the processing ele-
ments can physically access only a part of the whole memory. In case a
processing element needs data from a memory area it can not access, the
GPP has to explicitly transfer that memory block. The size parameter
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has to be added to the MOVET and MOVEF primitives in order to be
able to perform the transfer .

The EXECUTE Primitive

From the programmer’s perspective the EXECUTE primitive starts the execu-
tion of one computation. This operation is an asynchronous operation. The
semantics is that the operation will start on a processing element, while the
execution continues on the GPP. It is the responsability of the programmer to
check for the status of the execution, by using the BREAK primitive.

Original instruction:
EXECUTE address

Extended primitive:
EXECUTE processing element, address

As the current implementation includes more than one processing element,
and it is designed to allow any number of processing elements, we extended
the original implementation by adding the processing element parameter to the
execute call.

The BREAK Primitive

The role of BREAK primitive is to synchronize the execution of the GPP with
the execution of the FPGA.

Original instruction:
BREAK

Extended primitive:
BREAK processing element, address
BREAK CHECK processing element, address

There are several differences between the primitive and the instruction:

• The instruction performs full synchronization (i.e. among all executing
computations on the FPGA). As there are cases where waiting for one
computation can improve the scheduling, we added the address param-
eter. This parameter identifies the computation that has to finish before
BREAK gives the control back to the processor.
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• The instruction completely blocks the GPP. This is not a problem in a
single application environment but, in a multithreaded system, this is not
a desirable behavior. We decided to implement the primitives in such a
way that allows thread switching, even when the BREAK instruction did
not finish its execution.

• In case of parallel unbalanced workloads, some computations will finish
earlier, and, depending on the application, it might be possible to restart
them before the others have finished (see the example in Section 3.3.3).
For these cases, we extended the original BREAK instruction and cre-
ated a non-blocking BREAK CHECK primitive that returns true in case
the computation has finished and false otherwise.

Source Annotations

The Molen programming paradigm can be used with any compilation flow able
to partition an application in different processing elements. The partition is
done between a master controller, the GPP, and the other processing elements.
The C language and compilation flow was chosen for the hArtes toolchain, as
it is one of the most used languages in the embedded system world. It was
decided that functions offer the necessary level of abstraction to model the
computations that run on the processing elements, because:

• The developers already understand the underlying concepts and they can
use it directly.

• The syntax of a function definition and function call are part of the lan-
guage.

• The input and output can be clearly defined.

• Existing tools can be used for profiling and debugging.

The standard directive extension mechanism of C, the pragmas [44], was used
to specify which functions are to be mapped onto which processing element.
Two pragmas are introduced as it can be seen in Listing 3.1 and Listing 3.2:

• On a function declaration: the semantics is that all calls to that function
are translated to Molen primitives. The Molen backend compiler then
provides an implementation for the corresponding processing element.
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• On a function call: the semantics is that the call is replaced by the cor-
responding Molen primitives. The Molen backend compiler then pro-
vides an implementation for the corresponding processing element for
that call. This gives more opportunities for optimization, as specific im-
plementations can be generated for that call, for example, by taking into
account constant function parameters.

The map pragma includes two pieces of information:

• The name of the processing element to which the computation is
mapped.

• The implementation identifier: this makes a link between the implemen-
tations and the function declaration or function call to which the pragma
applies.

Listing 3.1: Molen pragma on function definition, mapping function func to process-
ing element Virtex4 with implementation identifier 1.
#pragma map c a l l h w VIRTEX4 1
i n t f unc ( char ∗p , i n t l e n ) {

. . .
re turn v ;

}

Listing 3.2: Molen pragma on function call, mapping that specific call to function
func to processing element Virtex4 with implementation identifier 2.
i n t f unc ( char ∗p , i n t l e n ) {

. . .
re turn v ;

}

void main ( ) {
. . .
# pragma map c a l l h w VIRTEX4 2
r e s u l t = func ( v a r i a b l e , 1 0 0 ) ;
. . .

}
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3.3.2 hArtes Implementation of The Molen Programming
Paradigm

Two implementations of the Molen Abstraction Layer (MAL) for the hArtes
Hardware Platform were necessary: one for the Virtex4 FPGA and one for
the mAgic DSP. Each implementation had its own peculiarities and we will
discuss them in detail separately. The transformation from source annotations
to Molen primitives will be discussed in Section 3.4.1.

The MAL Implementation for Virtex4 FPGA

Given the organization of the FPGA in the hHP, the SET primitive will perform
a full reconfiguration of the reconfigurable part.

The computation that is configured on the FPGA has only access to a lo-
cal scratch pad memory of size 128 kB. The primitives MOVEF ADDR and
MOVEF ADDR manage the transfer to/from this local memory. As the hard-
ware compiler uses the C language type sizes used by the GPP compiler, no
conversion is needed when moving data to/from the FPGA part of the system.

A tight coupling with the FPGA was impossible as the GPP processor re-
sides physically on a daughter board. The EXECUTE and BREAK primitives
are implemented using the memory mapped control registers of the Molen
controller found in the FPGA. EXECUTE writes a 1 at physical address
0x30000006. BREAK is implemented by checking the value found at address
0x30000007.

The internal FPGA structure is presented in Figure 3.6. The GPP processor is
located in the ATMEL D940HF module. The controller block in the FPGA
module controls the computations on the FPGA.

In Figure 3.6, we can see the hardware blocks that represent the Molen ma-
chine organization. The Reconfigurable processor component which contains
the computation has access, through a memory arbiter to the D940 memory
interface. The ARM, located on the ATMEL D940HF board, can access the
controller which manages the execution of computations through the data ex-
change links.

MAL Implementation for mAgic DSP

Even if it is not essential for our work described in this thesis, we present the
implementation of the MAL for the mAgic DSP to show the generality of the
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Figure 3.6: Internal organization of firmware used for Xilinx Virtex4 FPGA.

approach presented and the kind of customization that needs to be done for var-
ious platforms. The most important differences with the MAL implementation
for the Virtex4 FPGA are that the mAgic DSP has general purpose processor
functionality and the transfers to and from its memory are managed by a Direct
Memory Access (DMA) controller.

For the mAgic processor, the code has to be loaded in a local memory before
being executed. As memories are much cheaper than reconfigurable area, the
local program memory can easily store all the code needed for the compu-
tations, and the loading operation will be performed at the beginning of the
program. This is in contrast with the FPGA, where only a small number of
Custom Computing Unit (CCU)-s can be configured at the same time.

The DMA configuration adds an additional overhead. It is more efficient to
perform it once for all the memory blocks that need to be transferred. The
result is that the MOVET primitives will only construct a list of blocks that
need to be transferred. The EXECUTE instruction will start the transfers and
the end of the DMA operation will be signalled to the mAgic, which will start
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the computation.

3.3.3 The Molen Paradigm and OpenMP

The Molen programming paradigm can not be used directly by the developer
to express parallelism. On the other hand, the compiler can schedule Molen
primitives to take advantage of the existing parallelism. When both OpenMP
and Molen annotations are present in the same program, the compiler can use
one of the following scenarios:

• Use Molen parallelism instead of the thread parallelism present in
OpenMP, where possible. The advantage of this approach is that the
overhead of thread management is eliminated (Molen overhead is much
smaller than the thread creation/switching overhead).

• Generate a multithreaded application based on the OpenMP annotations
and the use of Molen primitives in each thread. The Molen primitives
have to be thread safe for this scenario to be supported.

We give details about each of the scenarios in the following sections.

Using Molen Primitives Directly

In order to support parallel execution we introduce OpenMP pragma’s and we
generate Molen primitives. Listing 3.3 gives an example where it is specified
that 2 kernels can execute in parallel. For this case, the compiler understands
the parallelism structure and, instead of creating and synchronizing threads,
it generates and schedules the Molen primitives. The results are presented in
Listing 3.4. Similar examples can be constructed for other OpenMP constructs.

Listing 3.3: A Molen pragma in the context of OpenMP sections.
# pragma omp s e c t i o n s now a i t
{

# pragma omp s e c t i o n
{

# pragma map c a l l h w VIRTEX4 1
f f t ( p , n ) ;

}
# pragma omp s e c t i o n
{
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# pragma map c a l l h w VIRTEX4 4
v a l u e = sad ( d , l ) ;

}
}

Listing 3.4: Molen primitives generated for the OpenMP sections example.
SET ( 1 ) ;
SET ( 4 )
MOVTX ADDR( 1 , p , n ) ;
MOVTX( 1 , n ) ;
EXECUTE ( 1 ) ;
MOVTX ADDR( 4 , p , n ) ;
MOVTX( 4 , n ) ;
EXECUTE ( 4 ) ;

BREAK ( ) ;

The use of Molen Primitives in OpenMP Threads

The second option is to use the Molen primitives in the OpenMP generated
code. This implies that it is possible that Molen primitives will be invoked
with the same computation identifier. This is a case not explicitly covered by
the parameters sent to the primitives.

This scenario was not implemented for the hHP, due to the fact that the area al-
located for the computations on the FPGA was not sufficient to allow multiple
kernels to run in parallel. This scenario was implemented on the next gener-
ation Xilinx platform, the Virtex5 FPGA. We give a high-level description of
the implementation as an argument to the flexibility of the Molen approach.

When multiple computations are run in parallel, a computation identifier will
not uniquely identify a running computation anymore, but only the type of the
computation. On the ML510 platform, the reconfigurable area is partitioned in
multiple slots and each slot can run a different computation. To support this,
a level of indirection is added between the computation identifier and the slot
number, based on the thread identifier. When invoked, SET primitive will call
an atomic function int MOLEN get slot(int identifier) that will return the slot
that has to be used by the current thread for that computation. The BREAK
primitive will invoke an atomic function void MOLEN relase slot(int slot) that
will allow other threads to use that slot.



3.3. THE MOLEN ABSTRACTION LAYER 45

3.3.4 The Molen Paradigm and OpenCL

The OpenCL standard defines, in an abstract way, a platform and the way
of specifying applications for that platform. The platform is composed of a
host processor and several computational devices each of them containing one
or more computing units. These, in turn, contain one or more processing ele-
ments. This platform is considered to have four memory regions: global, local,
constant and private. The management of the transfers between these regions
is entirely controlled by the programmer.

The application consists of code to be run on the host processor and code
for the computational devices (kernels). The host program code assembles
commands into command-queues that are then executed on the computational
device. Examples of commands are the setup of the computational device, the
memory transfers to and from the local memories of the computational device
to the main memory, the start of parallel execution of multiple instances of the
same kernel.

OpenCL is more platform dependent than the Molen programming paradigm.
It specifies the memory hierarchy that the platform has to implement and the
programmers have to manage manually, when they develop applications.

As both paradigms have the same scope, it is natural to analyze the possibility
to use either of them. We will do this in the next sections.

The Generation of Molen Primitives from OpenCL Programs

The Generation of only Molen primitives from OpenCL programs is a difficult
task as OpenCL provides more information and extensions to the C language
than Molen. Also, some concepts are not present at all in Molen and that
implementation would transform Molen completely. As a result, we present a
mapping between a subset of OpenCL and Molen. This subset allows OpenCL
programmers to target Molen enabled platforms.

The implementation of command queues, events and contexts into Molen rep-
resents a significant change of the paradigm. As a result, even if they allow a
great flexibility in describing an application, we choose to simplify them into
in order, blocking execution with one single context.

Device information is useful to allow OpenCL applications to make adjust-
ments depending on the different parameters of the architecture (for example
cache sizes and maximum local memory available) and could be directly im-
plemented for a Molen platform as well.
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OpenCL concept Molen equivalent/notes
Context not available
Queues not available
Events not available

Memory objects implemented internally in Molen
Program objects transformed at compile-time
Kernel objects transformed to pragma annotations
Vector types not supported
Image types not supported

OpenGL API sharing not supported

Table 3.2: The Molen concepts and their corresponding OpenCL concepts.

The memory management is not directly specified by the Molen programming
paradigm. The implementation of the Molen runtime will contain functions
that operate on different memory areas.

Functions related to program loading have to be extracted at compile-time and
the identifier information needed by Molen will be generated from them. The
program execution functions can be transformed into calls to the kernels anno-
tated by a pragma. In the case of clEnqueueNDRangeKernel, a loop containing
the call will be generated.

The OpenCL extensions of vector types could be implemented in a Molen
backend compiler. Without these extensions and some other minor issues, the
OpenCL language is compatible with C and, as a result the current Molen
backends are able to generate code from it.

All is summarized and shown in Table 3.2.

The Generation of OpenCL Functions from Molen Annotated Programs

In this scenario, a Molen annotated application exists and the task of the de-
veloper is to port it to an OpenCL enabled platform. As Molen was devel-
oped with embedded systems in mind, while OpenCL implementations exist
currently for high performance oriented platforms such as NVIDIA GPU-s
and Cell BE [54], an application annotated with only Molen pragmas will
not be able to take fully advantage of the range of possibilities provided by
OpenCL. Anyhow we present the generation process, as it shows the general-
ity of Molen, which enables the developers to work with multiple platforms,
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Molen primitive OpenCL functions used
SET clCreateProgramWithSource

clBuildProgram
clCreateKernel

MOVTX clSetKernelArg
clCreateBuffer

clEnqueueWriteBuffer
MOVFX clEnqueueReadBuffer

EXEC clEnqueueTask
BREAK clFinish

Table 3.3: Molen primitives and their corresponding OpenCL functions.

even if not in an optimal way.

We will assume in the following description that the initialization of the
OpenCL process is already made. This assumption does not affect in any way
the process of generating OpenCL functions from Molen pragmas. For a ker-
nel invocation, the Molen primitives map almost 1-to-1 to OpenCL functions,
as shown in Table 3.3

As OpenCL delays the compilation of kernels until the actual execution, the
SET primitive should be extended to load and compile the program. Of course,
this should be done only once per execution and the results should be stored
in the internal cache. Then, for each SET invocation, a call to clCreateKernel
will be made.

The MOVTX primitive corresponds directly to the clSetKernelArg function.
However, in the Molen programming paradigm, the MOVTX primitive is also
responsible for transferring memory to the local computing element memory
so, for those operations two other OpenCL functions have to be used clCreate-
Buffer and clEnqueueWriteBuffer. The corresponding MOVFX primitive will
use clEnqueueReadBuffer.

The EXEC and BREAK primitives correspond directly to similar functions
that have the same semantics as in the Molen programming paradigm.
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3.4 hArtes Toolchain

The hArtes toolchain’s main objective is to support the entire process of map-
ping an existing application onto a specific reconfigurable heterogeneous sys-
tem. The application has to be described either at a high algorithmic level or in
a high level programming language. For the algorithm description, the devel-
oper has the choice of using a graphical entry interface or a signal processing
oriented language. As high level programming language, the most obvious
choice as input is the C programming language.

The toolchain is organized in several toolboxes, which provide different func-
tionalities and, together, realize the main objective. A schematic representa-
tion of the toolchain is presented in Figure 3.7. Highlighted in green are the
components improved as a result of our work. Our work resulted also in im-
provements to the runtime system, not represented in this figure.

The high level design alternatives (either a graphic entry interface, a signal
processing or a computation oriented language, or just general purpose C lan-
guage) are offered by the hArtes AET (Algorithm Exploration and Translation)
toolbox. For the graphical part, NU-Tech was adopted as Graphical Algo-
rithm Exploration (GAE) solution and Scilab was adapted as the computation-
oriented language. NU-Tech [53] is a platform which supports the develop-
ment of algorithms for real-time scenarios, emphasizing on the strict control
over time and latencies. Scilab is a free and open source software for numerical
computation, similar to Matlab [43].

The output from the Algorithm Exploration Toolbox is processed by a series
of other toolboxes integrated in a coherent workspace (the hArtes framework).
The toolchain workflow will guide the application developer to realize an effi-
cient implementation of the application mapped onto the identified hardware,
while giving him/her at each step full control over the process.

The available tools in the hArtes Framework perform the following tasks:

• The automated partitioning of the high-level algorithm descriptions rep-
resented as C code. By using a set of predetermined design criteria and
information about available resources, the high level algorithms are di-
vided into tasks.

• The transformation of the high-level algorithm tasks. This includes, for
example, transformations to make tasks compatible with special pro-
cessing elements, like an FPGA. These transformations are done to pro-
vide the design space exploration with more options.
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• The design space exploration. The exploration of the mapping possi-
bilities between the tasks available and the processing elements of the
reconfigurable heterogeneous system. This is done by using either esti-
mated or measured costs for each task.

• The mapping and generation of the code for the targeted GPPs and DSPs.

• The code manipulation of Molen primitives. This includes, for example,
scheduling of lengthy operations such as reconfiguration. This manipu-
lation has to be done after the mapping is fixed.

• The VHSIC Hardware Description Language (VHDL) code generation
for the target FPGA. For this purpose we use Delft Workbench Au-
tomated Reconfigurable VHDL Generator (DWARV) tool developed at
TU Delft.

• The synthesis of the VHDL code obtained, by using vendor specific
tools.

• The compilation of the C code for the GPP processors present in the
system.

• The integration of all binary code generated and running on the platform.

Each activity performed on the code is performed by a separate tool. This
distribution of activities improves the modularity and the manageability of the
complete solution.

3.4.1 Using GPP Compiler to Generate Molen Primitives

As explained in Section 3.3.1, a transformation from source annotations to
Molen primitives is performed automatically by the toolchain. This is im-
plemented in the GPP compiler used by the platform, in our case the GCC
compiler for ARM.

We implemented three new compiler passes, namely:

• pass fpga replace calls tree that replaces calls annotated with a pragma
to Molen primitives.

• pass diopsis replace calls tree that has similar functionality with the
previous pass, but generates the Molen primitive implementation for
DSP (described in Section 3.3.2).
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Figure 3.7: The hArtes toolchain overall architecture.

• pass fpga parallel optimisation that schedules Molen primitives when
OpenMP pragmas are present. This transformation was described in
Section 3.3.3.

These passes were added before after the frontend processing, allowing GCC
to perform all it’s suite of optimization on the code.

One of the objectives of the hArtes project was to facilitate an automated map-
ping to different processing elements, by using a shared memory paradigm.
In the hArtes implementation, the GPP has access to all the memory of each
processing element, but the processing elements will have access only to their



3.4. HARTES TOOLCHAIN 51

local memory. In case the local memory of each processing element is not suf-
ficient for all the data that will be processed during the application’s execution,
transfers have to be performed to and from the local memory.

There are multiple possible solutions for the making processing elements use
application data but, as the platform is fixed, we will discuss only the software
solutions:

• The memory is directly allocated in the local memory processing ele-
ment memory. A discussion on this topic is presented in Chapter 5.

• The runtime library manages the transfer automatically, when certain
blocks are needed to be processed by a specific processing element.

In the following we describe the extensions implemented for the second case.
Even if it is a straightforward and unoptimized approach that does not perform
any significant analysis or optimization, it is a good starting point to enable an
application to run on our platform. Additionally, based on this implementation
various optimizations can be performed in later stages.

As described in Section 3.3. two additional primitives are introduced to differ-
entiate the MOVET or MOVEF primitives for the special case of a pointer:

• MOVET ADDR - used for each pointer parameter sent to a processing
element.

• MOVEF ADDR - used for each pointer parameter sent to a processing
element, after the kernel completed the execution.

These two primitives work together with the support of the runtime system. All
the dynamic memory allocation will be made by special ’wrapper’ functions
that keep track of allocations (for example hmalloc instead of malloc). The
replacement of the ’malloc’ functions (and similar functions, i.e. realloc and
calloc) is made by the source-to-source transformation tool. Then, at a later
point in the execution of the program, for each address sent as a parameter
to the computation, the runtime system can determine the size of the block to
which that address belong.

Naturally this approach has several limitations:

• Except in parameters, addresses should not be present in the memory
blocks used by the kernels. This means, for example, that structures
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like linked list will not be supported. Although this can be seens as a
limitation, all of the kernels analyzed did not use such complex data
structures.

• Without further analysis or information from the developer the trans-
fer can be very inefficient. For example, some memory blocks are only
written by the kernel while other are only read. The C language pro-
vides some information about this (for example the const keyword), but
it is incomplete as, for example there is no way to specify write only
locations.

3.4.2 Development and Toolchain Debugging

During the development of the toolchain, due to the complexity of the work
involved we identified several problems that need to be addressed, in order to
deliver a successful product. In the following, we describe two of the main
problems analyzed and solved during the framework development: the en-
forcement of the checks on the versions of the various components and the
simulation support.

Enforce Checking of Interface Between Tools

This problem can be summarized as follows: the development of a hardware
system involves changing a lot of parameters. Sometimes it can happen that
you use two components, one adapted for a value of a parameter of the platform
and another adapted for another value. This results in incompatibilities and,
more specifically, in a system failure at runtime. This means that a function
will give incorrect results without any warning or error during the compilation
process.

As an example, the frequency is one of the configurable parameters, for a re-
configurable hardware platform. The number of cycles needed for various
operations changes based on the frequency. Floating point multiplication is an
example of such an operation. In case of a low frequency, for example below
50 MHz, the hardware unit will take advantage of the long time between cycles
and use combinational logic to perform operations between two clock cycles.
A floating point multiplication at 50 MHz needs, to obtain the result, 4 cycles.
On the other hand, if the frequency increases, less combinational logic will
be used than in the previous case, and the hardware unit will have to include
clocked registers and perform the computation in multiple cycles. Generating
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a floating point multiplication at 200 MHz results in a total number of cycles
of 6. Of course, if used in a pipeline, the higher frequency hardware unit will
always have a higher throughput but, in the automatically generated hardware
kernels, the operations are not always used in such a way. Another possibil-
ity would be to always use the higher frequency hardware unit but, obviously
this will degrade the performance of a low frequency design. By having dif-
ferent latencies for different frequencies, the scheduling and the area used by
the kernel are affected and, therefore, these latencies have to be an input to the
automated C-to-VHDL compiler.

As the development went along, it was obvious that a mechanism had to be
provided to make sure the computation - which, when generated for FPGA
we call CCU - was generated for the system in which it was integrated. This
involved the following parameters (all except endianess are related to frequen-
cies but manifest themselves in different parts of the system):

• Endianess.

• The number of cycles needed to read/write the memory and the
Exchange Registers (XREG) memory area.

• The number of pipeline stages of each floating point component.

• The frequency at which a specific computation could run.

The solution depends on the moment at which the check can be performed. For
the first three problems, the check can and will be performed at compile-time.
The obvious choice was to add dummy signals to the CCU, the interface with
the memory and the XREG memory area, and the floating point components.
In case the CCU was generated with a different configuration, the VHDL com-
piler would not have been able to match the signals and would report an error.

Examples of such dummy signals are given in Listing 3.5. Each name refers to
the parameter that it ’checks’. For example, the presented CCU uses a floating
point (fp) single precision (sp) multiplication unit (mult) that has a pipeline of
6 cycles. The number of cycles needed to access memory is 5 (mem cycles).
The number of cycles needed to access the XREG is 3 (xreg cycles), and so
on.

Listing 3.5: Dummy signals used to check the version of CCUs.
c h e c k f p d p m u l t t o p 1 0 : i n s t d l o g i c ;
c h e c k f p s p m u l t t o p 6 : i n s t d l o g i c ;
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c h e c k f p d p l a r g e 3 : i n s t d l o g i c ;
c h e c k f p d p l e s s e q u a l 3 : i n s t d l o g i c ;
c h e c k f p d p l a r g e e q u a l 3 : i n s t d l o g i c ;

c h e c k e n d i a n e s s l i t t l e : i n s t d l o g i c ;
c h ec k m em c yc l e s 5 : i n s t d l o g i c ;
c h e c k x r e g c y c l e s 3 : i n s t d l o g i c

For the last problem, a dynamic solution was chosen. As an FPGA has a com-
plex Digital Clock Module (DCM), which can generate different frequencies,
before running the CCU special code inserted by the compiler will set a con-
figuration register with the correct value.

Compilation Times and Maximum Frequencies

The compilation time is not the most important aspect when targeting embed-
ded systems. Nevertheless it can still become a bottleneck in the development
process. Within the compilation process, the most time consuming part is the
FPGA related processing. We measure time for two stages in this compila-
tion process: the VHDL generation and the VHDL synthesis, as they are very
different in nature and developed by independent entities.

The general compilation flow, for Xilinx tools, is as follows:

• Generation, which can be either manual or, as in our case, automatic.

• Synthesis, which translates the VHDL to a netlist, which is a low level
representation of hardware blocks and connections.

• Translation, which translates all the netlists and constraints file into an
internal representation.

• Mapping, which maps the logic defined in the previous step to FPGA
elements.

• Placing and routing, which assign physical elements to the elements
identified in the previous stage.

The synthesis step can be performed by multiple tools, such as Synopsis Syn-
plify Pro or Xilinx XST. In order to avoid possible incompatibilities between
tools from different vendors, we choose to use a Xilinx only flow.

One notable aspect is that the targeted frequency for the design is set in the
translate step. The subsequent steps will try to reach the requested frequency,
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but they offer no such gurantee. The determination of the highest possible
frequency is a trial and error process.

The timing results are presented in Table 3.4. As we can see in the table, the
initial VHDL generation takes a very short time compared to the rest of the
process.

We provide a brief explanation on why we obtained these frequencies.

• Floating point operations frequencies - for each floating point compo-
nent, a number of pipeline stages has to be specified as a configuration
parameter. The higher the number, the higher the frequencies the com-
ponent can achieve. Nevertheless this also means a larger area and an
inefficient execution for lower frequencies. A solution is to increase the
number of pipeline stages.

• Addition - performing a 32 by 32 addition can take a long time and can
not be done in one cycle at very high frequencies. A solutions is to
deduce the needed bit width reducing, for example, a 32 by 32 addition
to a 16 by 16 addition, if possible, without changing the behavior of the
application. Another solution is the introduction of additional pipeline
stages.

3.4.3 Toolchain Retargetability

It is important to note that the proposed toolchain can be employed for different
platforms. The development of such a toolchain is a very time and resource
consuming, the design of the framework must be done with care to allow easy
integration with 3rd party toolchains.

There are several directions that have to be taken into account:

• The use of an open and generic standard for communication between
tools is the foundation for making a toolchain flexible. This was done
from the beginning, when it was decided that C and XML annotations
would be used as an interface between tools.

• The use of annotations (either in C or in XML) independent from the
platform. A good example for such design is the OpenMP standard,
which abstracts most of the details (such as the number of threads) from
the users. All these functionalities should be based on functions in li-
braries, as changing the library is much easier than rewriting a code
generator.
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Kernel DWARV Xilinx Frequency Result Reason
time (s) time(s)

sad <1 678 125
sad 678 142
sad 678 166
sad 678 200
sad 825 250 Fail addition
satd 2 871 125
satd 874 142
satd 876 166
satd 1114 200 Fail addition
satd unrolled 3 1521 125
satd unrolled 1521 142
satd unrolled 1529 166
satd unrolled 2474 200 Fail addition
ffd 10 7038 125
ffd 6471 142 Fail routing
FracShift 10 900 125 -
FracShift 889 142 fp add-

Table 3.4: Compilation times using FPGA flow at different frequency constraints.
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• The construction of an open build system. As specific compilers have
to be used to build the final system, each with its own specificities, the
development of an open build system will ease the control of the whole
process for the developer.

The hArtes toolchain adheres to these principles, in general. In addition, we
propose several improvements based on our experience:

• By excessively centralizing the data into one repository (XML) negative
effects on the manageability of the data produced and consumed by dif-
ferent tools may occur. Lack of standardization of interfaces makes tool
changes prohibitively expensive in effort.

• The responsibility of the different tools is not always clearly defined
causing unwanted interference. For instance, register allocation should
be the responsibility only of the low level compiler, otherwise errors
might appear.

• By building a system that only relies on time stamps, severe penalties
can happen in case files are regenerated. The build system should be
able, at least for some type of files and very slow tools, to identify if the
contents changed from the last code generation, for example by using
hashing functions. This is especially relevant for FPGA synthesis tools,
but there were cases in which the DSP compiler took more than 20 min
in compilation time.

3.5 hArtes Applications

In this section, we give an overview of the applications that were used to vali-
date the toolchain in the hArtes project. A performance analysis is performed
and an initial mapping onto the platform is done, based on the results of the
analysis. The profiling is done using the gprof tool [35].

3.5.1 Video application - The H.264 codec

The H.264 family represents a standard for video compression and decompres-
sion, developed jointly by the ITU-T and the ISO/IEC (with the name MPEG-4
AVC). The initial target of this standard was to halve the required bandwidth
necessary for a given quality [88]. The first release of the standard was in 2003.
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File type Number Total number Average lines
of files of lines per file

C source 51 33602 658.8627
Header 53 4565 86.1320
Assembly 21 11586 551.7142

Table 3.5: x264 application metrics.

From 2003, 10 revisions of the standard have been developed, which make this
standard well known and studied [45].

The industrial partners in the project decided to use a free software library
implementation, namely the x264 [84]. This library is actively developed and
optimized for a broad range of microprocessors such as, the x86, the PowerPC
(using AltiVec [21]), and the ARMv7 (using NEON ).

Initial Analysis

The initial analysis was performed on the code obtained from the project
source repository in the initial stages of the hArtes project. At the beginning,
the hArtes hardware platform was not available. As a result, the initial tests
where performed on a desktop machine, and, more specifically, an Intel(R)
Core(TM)2 Duo CPU (E8500@3.16GHz) with 4 GB of RAM. The assump-
tion was that the profile information would not substantially differ from that of
the platform. More specifically, it would differ in absolute values, but not in
relative values. This assumption holds for applications for which the general-
purpose processors have similar capabilities. More specifically, it works for
applications that do not use floating point operations as, for these operations,
the embedded hardware floating point coprocessor available in the Intel Core
will skew the results.

In Table 3.5, we present 3 of the main metrics that give an idea of the overall
complexity of the application. We can see that a lot of code is written directly
in assembly for different architectures. As we will see, this also affects the
application structure and, as a result, an automated toolchain has to do more
work to reveal the real structure.

Without any modifications, the profile results are summarized in Figure
3.8. Still, this profile information would not be very useful to either a hu-
man or automatic tool as, by checking the application source code we can
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Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
12.16 39.58 39.58 360123870 0.00 0.00 get_ref
10.14 72.56 32.98 49361070 0.00 0.00 x264_pixel_satd_16x16
9.92 104.84 32.28 183708960 0.00 0.00 x264_pixel_satd_8x8
7.93 130.64 25.80 290354340 0.00 0.00 motion_compensation_chroma
4.85 146.41 15.77 406080 0.04 0.04 x264_frame_filter
3.72 158.50 12.09 13311540 0.00 0.00 x264_pixel_sad_x4_16x16
3.41 169.58 11.08 230324820 0.00 0.00 x264_pixel_satd_4x4
3.41 180.66 11.08 33480810 0.00 0.00 x264_pixel_satd_16x8
3.40 191.71 11.05 34505700 0.00 0.00 x264_pixel_satd_8x16
3.18 202.07 10.36 48297960 0.00 0.00 x264_pixel_sad_x4_8x8

Figure 3.8: The initial profile results on Intel x86 architecture for the x264 applica-
tion.

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
33.82 110.84 110.84 619761780 0.00 0.00 pixel_satd_wxh
11.66 149.05 38.21 360123870 0.00 0.00 get_ref
7.77 174.52 25.47 290354340 0.00 0.00 motion_compensation_chroma
6.63 196.26 21.74 363844770 0.00 0.00 x264_pixel_sad_8x8
6.59 217.85 21.59 112416120 0.00 0.00 x264_pixel_sad_16x16
5.15 234.74 16.89 406080 0.04 0.04 x264_frame_filter
3.59 246.52 11.78 108754950 0.00 0.00 x264_pixel_sad_8x16
3.20 257.01 10.49 108532500 0.00 0.00 x264_pixel_sad_16x8
1.89 263.19 6.18 37245600 0.00 0.00 refine_subpel
1.87 269.33 6.14 119345190 0.00 0.00 quant_4x4

Figure 3.9: The initial profile results on Intel x86 architecture, without inlineing, for
the x264 application.

see that, in fact, functions x264 pixel satd 16x16, x264 pixel satd 8x8 and
x264 pixel satd 4x4 contain just another function call, which is inlined, thus
hiding the real kernel. To avoid this, we performed the profile with inline dis-
abled. This is done by using the GCC’s option “-fno-inline-functions”.

Additionally, the application is not compiled using the assembly code written
for x86, to get an idea of the effort done on a general purpose processor without
any specific extension (such as SSE or MMX extensions).

Without using inlineing, the results are show in Figure 3.9. We can see now
that one functions already stands out, namely pixel satd wxh.

The next step was to analyze the functions that had a big impact on the total ap-
plication execution time. From these functions, we note a peculiarity with the
functions x264 pixel sad 16x16, x264 pixel sad 8x8 and x264 pixel sad 4x4.
These functions are not standalone functions, but functions created by macro
expansion, like in Listing 3.6. We can consider the macro transformation as a
hand optimization performed with a GPP architecture in mind. This might not
fit as good a different architecture and prevents a tool to perform the necessary
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optimizations based on profile information. So, we modified by hand the ap-
plication to make a new function pixel sad wxh, with the definition shown in
Listing 3.7.

Listing 3.6: Initial definition for x264 pixel satd functions.
# d e f i n e PIXEL SAD C ( name , lx , l y ) \

i n t name ( u i n t 8 t ∗ pix1 , i n t i s t r i d e p i x 1 , \
u i n t 8 t ∗ pix2 , i n t i s t r i d e p i x 2 ) \

{ \
i n t i sum = 0 ; \
i n t x , y ; \
f o r ( y = 0 ; y < l y ; y++ ) \
{ \

f o r ( x = 0 ; x < l x ; x++ ) \
{ \

i sum += abs ( p ix1 [ x ] − p ix2 [ x ] ) ; \
} \
p ix1 += i s t r i d e p i x 1 ; \
p ix2 += i s t r i d e p i x 2 ; \

} \
re turn i sum ; \

}

PIXEL SAD C ( x 2 6 4 p i x e l s a d 1 6 x 1 6 , 16 , 16 )
PIXEL SAD C ( x 2 6 4 p i x e l s a d 1 6 x 8 , 16 , 8 )
PIXEL SAD C ( x 2 6 4 p i x e l s a d 8 x 1 6 , 8 , 16 )
PIXEL SAD C ( x 2 6 4 p i x e l s a d 8 x 8 , 8 , 8 )
PIXEL SAD C ( x 2 6 4 p i x e l s a d 8 x 4 , 8 , 4 )
PIXEL SAD C ( x 2 6 4 p i x e l s a d 4 x 8 , 4 , 8 )
PIXEL SAD C ( x 2 6 4 p i x e l s a d 4 x 4 , 4 , 4 )

Listing 3.7: Rewritten function pixel sad wxh.
i n t p i x e l s a d w x h ( u i n t 8 t ∗ pix1 , i n t i s t r i d e p i x 1 ,

u i n t 8 t ∗ pix2 , i n t i s t r i d e p i x 2 ,
i n t lx , i n t l y )

{
i n t i sum = 0 ;
i n t x , y ;
f o r ( y = 0 ; y < l y ; y++ )
{

f o r ( x = 0 ; x < l x ; x++ )
{

i sum += abs ( p ix1 [ x ] − p ix2 [ x ] ) ;
}
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Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
30.38 110.16 110.16 619761780 0.00 0.00 pixel_satd_wxh
26.65 206.78 96.62 693548340 0.00 0.00 pixel_sad_wxh
10.69 245.55 38.77 360123870 0.00 0.00 get_ref
7.19 271.63 26.08 290354340 0.00 0.00 motion_compensation_chroma
4.55 288.11 16.48 406080 0.04 0.04 x264_frame_filter
1.66 294.13 6.02 119345190 0.00 0.00 quant_4x4
1.64 300.07 5.94 37245600 0.00 0.00 refine_subpel
1.32 304.85 4.78 29886060 0.00 0.01 x264_me_search_ref
1.23 309.32 4.47 121346040 0.00 0.00 sub4x4_dct
0.95 312.75 3.43 34650000 0.00 0.00 ssim_4x4x2_core

Figure 3.10: Profile on Intel x86 processor.

p ix1 += i s t r i d e p i x 1 ;
p ix2 += i s t r i d e p i x 2 ;

} .
re turn i sum ;

}

The final profile information obtained after the above modifications is show in
Figure 3.10.

At the moment the hArtes hardware platform became available, we performed
also tests in that environment. The results obtained are presented in Figure
3.11.
Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
9.23 56.30 56.30 2018801 0.03 0.03 x264_pixel_satd_16x16
8.35 107.20 50.90 29341194 0.00 0.00 x264_pixel_satd_4x4
7.58 153.41 46.21 9513701 0.00 0.00 get_ref
7.14 196.94 43.53 5916503 0.01 0.01 x264_pixel_satd_8x8
6.75 238.13 41.19 26991 1.53 1.53 x264_frame_filter
4.43 265.15 27.02 63421925 0.00 0.00 x264_cabac_encode_decision
3.96 289.32 24.17 6960002 0.00 0.00 motion_compensation_chroma
3.19 308.77 19.45 3774643 0.01 0.01 block_residual_write_cabac
2.44 323.65 14.88 9962094 0.00 0.00 quant_4x4
2.27 337.51 13.86 1247495 0.01 0.01 sub8x8_dct
2.13 350.50 12.99 254811 0.05 0.48 x264_mb_analyse_intra

Figure 3.11: Profile on the ARM processor for the x264 application.

By comparing the two results we can see that although the same functions
appear as the most computing intensive, the ratio between their execution times
differs quite a bit. The difference, for the common function, is show in Table
3.6.
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Function Percent Percent Difference
Function on Intel on ARM Difference
get ref 12.18 7.58 62.23%
x264 pixel satd 16x16 10.13 9.23 91.12%
x264 pixel satd 8x8 9.87 7.14 72.34%
motion compensation chroma 8.01 3.96 49.44%
x264 frame filter 5.05 6.75 133.66%

Table 3.6: Comparison of profile information between Intel x86 and ARM for x264
application.

Mapping

By using the information obtained from the previous step, it was decided to
map the most time consuming two functions onto the FPGA. The first step
was to assess the speedup obtained for each kernel. Not all kernels give a
speedup when moved to another processing elements so even if they are high
ranked in the profile list, it does not mean that they should be mapped on to the
FPGA.

The normal approach to performing unit tests is to obtain the data used by
one execution of the kernel and use it with the kernel run on the processing
element. In our case, the kernel uses various data sizes as inputs, depending
on the video that it encodes, so we could not use only one data set. The steps
performed are the following:

• The automatic creation, using DWARV tool, of an FPGA implementa-
tion for both pixel sad wxh and pixel satd wxh.

• The instrumentation of the application (by hand first, later this was pos-
sible using the hArtes toolchain) to obtain all the possible data sizes used
by the kernel.

• The execution of the kernels using the collected data.

By centralizing the data on several tests video [90], we obtained the results out-
lined in Table 3.7 and in Table 3.8. From the tables, we can observe that, for the
sad kernel, two combinations of parameters represent 71% of the invocations.
For the satd kernel the situation is more balanced, where four combinations of
parameters represent 60% of the invocations.
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akiyo 0 1 0 0 8 39 36 8 1 0 0 0
carphone 1 3 2 1 12 43 13 12 4 1 1 1
claire 0 2 1 0 8 39 32 8 2 0 0 0
coastguard 1 3 1 1 12 46 12 12 5 1 1 1
container 0 1 0 0 6 57 24 6 1 0 0 0
foreman 1 3 2 1 12 43 12 12 5 1 1 1
hall 0 1 0 0 5 57 26 5 0 0 0 0
m-america 0 2 1 0 7 46 24 7 3 0 0 1
mobile 1 3 1 1 13 43 11 13 6 2 2 1
news 0 2 1 0 9 46 25 9 1 0 0 0
salesman 0 1 0 0 7 56 21 7 1 0 0 0
silent 1 2 1 1 9 52 17 10 1 0 0 0
suzie 1 3 2 1 11 43 15 11 4 1 1 1
Total 6 27 12 6 119 610 268 120 34 6 6 6
Average 0 2 0 0 9 50 21 9 2 0 0 0from total (%)

Table 3.7: Number of calls for each combination of parameters and percent from the
total number of invocations for sad, when running on a set of sample videos.
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akiyo 2 5 3 13 12 18 19 2 4 4 1 4 3 3
carphone 2 4 3 12 4 22 8 3 6 6 1 4 1 17
claire 2 4 2 11 9 21 18 2 5 5 0 3 2 8
coastguard 2 4 3 13 4 16 5 3 4 4 1 4 1 26
container 3 6 1 14 8 18 10 1 2 2 0 4 1 23
foreman 2 4 4 13 4 22 7 4 7 7 1 4 1 14
hall 3 6 1 15 9 22 12 1 2 2 0 4 1 15
m-america 2 4 2 10 6 25 16 2 5 5 0 3 1 13
mobile 3 6 5 17 4 23 5 5 7 6 1 6 1 2
news 2 5 3 13 7 20 10 3 5 5 1 4 1 13
salesman 3 7 2 18 9 24 10 2 4 4 0 5 1 3
silent 2 5 3 14 5 24 8 3 6 6 0 4 1 12
suzie 2 4 3 10 4 21 9 3 6 6 0 3 1 20
Total 30 64 35 173 85 276 137 34 63 62 6 52 16 169
Average 2 5 2 14 7 22 11 2 5 5 0 4 1 13from
total (%)

Table 3.8: Number of calls for each combination of parameters and percent from the
total number of invocations for satd, when running a set of sample videos.

For a general purpose architecture, it is worth to make one instance for each
combination of parameters. In this case, the parameters will be constant, ex-
cept the pointers to the data to process. This would allow the compiler to per-
form more optimizations than in the case in which the parameter is variable.
An example of such an optimization is full unroll.

For a reconfigurable architecture, where area might be a concern, we choose
to optimize just the original kernel and not specific instances. By having all
instances configured, the available area would be exhausted.

The satd kernel

By synthesizing the sadt kernel, we obtained the results presented in Table
3.9. Running this kernel for the identified cases in the application gives the
results presented in Table 3.10. From these results, we can see that the FPGA
is usually faster (up to 2.85x in one case) although there are cases in which it is
slower (0.81x). This is directly related to the number of iterations performed:
the worst performance is obtained for the smallest number of iterations (lx = ly
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Measure Synthesis results Percent of available
Slices 1,717 4%
DSP48s 0 0%
Frequency 141.46 -

Table 3.9: The synthesis statistics for the satd kernel on the Virtex4-ML410 board.

Case Times µs Speedup
FPGA FPGA ARM FPGA FPGA w/t

with transfer vs ARM vs ARM
s1=32, s2=16 lx=16, ly=16 46 194 108 2.37 0.56
s1=32, s2=16 lx= 8, ly= 8 16 152 28 1.68 0.18
s1=16, s2=16 lx= 8, ly=16 26 167 56 2.11 0.33
s1=16, s2=16 lx= 8, ly= 8 16 148 28 1.68 0.19
s1=16, s2=16 lx=16, ly=16 46 186 108 2.36 0.58
s1=16, s2= 8 lx= 4, ly= 4 9 135 7 0.81 0.05
s1=16, s2= 8 lx= 8, ly= 8 16 149 28 1.68 0.19
s1=16, s2=16 lx=16, ly= 8 26 159 54 2.09 0.34
s1=16, s2= 8 lx= 8, ly= 4 11 138 14 1.22 0.10
s1=16, s2= 8 lx= 4, ly= 8 11 143 14 1.24 0.10
s1=16, s2=240 lx=16, ly= 8 26 212 60 2.31 0.28
s1=16, s2=240 lx= 8, ly= 8 16 204 31 1.86 0.15
s1=16, s2=240 lx=16, ly=16 46 303 130 2.85 0.43
s1=32, s2=16 lx= 4, ly= 4 9 140 7 0.81 0.05
s1=16, s2=240 lx= 8, ly=16 26 284 66 2.50 0.23

Table 3.10: Processing times and speedups for kernel satd in various scenarios.

= 4), while the best is obtained for a large number of iterations. Additionally,
when taking into account the transfer of memory performed automatically be-
tween the ARM processor and the FPGA, the overall execution time is larger
on the FPGA, as it can be seen in column 3. This is due to a very inefficient
transfer speed between the main memory and the local FPGA memory.

By inspecting the code, we noticed that several internal loops had fixed size
and used just local variables. Although memory transfer is the bottleneck
in this case, we choose to optimize the FPGA version to get an idea of the
possible performance improvements obtained by simple code modifications.
These results are presented in Table 3.11. As we can see from the table, the
performance consistently improves for some cases, with speedup up to 7.58x
compared to the ARM processor.
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Case Times µs Speedup
FPGA FPGA ARM FPGA FPGA w/t

with transfer vs ARM vs ARM
s1=32, s2=16 lx=16, ly=16 17 165 109 6.32 0.66
s1=32, s2=16 lx= 8, ly= 8 9 144 28 2.94 0.19
s1=16, s2=16 lx= 8, ly=16 14 152 55 3.94 0.36
s1=16, s2=16 lx= 8, ly= 8 9 141 28 2.92 0.20
s1=16, s2=16 lx=16, ly=16 19 156 108 5.56 0.69
s1=16, s2= 8 lx= 4, ly= 4 9 134 7 0.79 0.05
s1=16, s2= 8 lx= 8, ly= 8 11 140 28 2.43 0.20
s1=16, s2=16 lx=16, ly= 8 12 143 54 4.64 0.38
s1=16, s2= 8 lx= 8, ly= 4 8 135 14 1.68 0.10
s1=16, s2= 8 lx= 4, ly= 8 8 139 14 1.73 0.10
s1=16, s2=240 lx=16, ly= 8 12 197 60 5.12 0.31
s1=16, s2=240 lx= 8, ly= 8 9 196 31 3.22 0.16
s1=16, s2=240 lx=16, ly=16 17 272 130 7.58 0.48
s1=32, s2=16 lx= 4, ly= 4 8 137 7 0.90 0.05
s1=16, s2=240 lx= 8, ly=16 12 270 66 5.53 0.24

Table 3.11: Processing times and speedups in various scenarios for satd unrolled.

Measure Synthesis results Percent of available
Slices 724 1%
DSP48s 0 0%
Frequency 181.71 -

Table 3.12: The synthesis statistics for the sad kernel on the Virtex4-ML410 board.

The sad kernel

By synthesizing the sat kernel, we obtained the results presented in Table 3.12.
By checking the results, we can see this is a very simple kernel that takes very
little resources on the FPGA and it can run at high frequencies. Still, due to the
fact that it less computation intensive than satd, the total execution time, when
considering memory transfers, is even lower when compared to the ARM than
the ones obtained for satd.

Conclusions

From the analysis performed on the application, we can see that it is not suf-
ficient to only consider the profiling information. Code transformation might
give a skewed view over which functions take most of the application execu-
tion time. Additionally, bulk profiling information is not sufficient in all cases.
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Rather, a way of detecting the correlation between parameters should be avail-
able in an instrumentation tool to help the designer making the best decision
when optimizing. Such a method is described in Chapter 4.

As expected, unroll provides a significant improvement as it exposes paral-
lelism for FPGA. Nevertheless, this comes at the cost of increasing the used
size (by almost 4 times) and reducing the maximum execution frequencies.

3.5.2 Immersive audio - Beamforming and Wavefield Synthesis

In this section, we describe the work performed on the implementation of a
multi-beam, broadband, beamforming and Wave-Field Synthesis (WFS) ap-
plication. These audio algorithms can be used in audio-visual transmission
scenario, like a telepresence application. On the acquisition side, a camera
tracks the recording directions (for example, by tracking human faces in the
recorded scene). By using the beamformer algorithm [81], the sound waves
are filtered based on direction and sent through a transmission medium to the
rendering side. There, the spatio-temporal properties of the recording space
are reproduced using a WFS algorithm [15]. Such an utilization scenario is
presented in Figure 3.12. Compared to other stereophonic approaches, the
properties that are reproduced are not limited to a sweet spot, but to a much
wider area, depending on the number of speakers array.

Initial Analysis

The initial analysis was performed on the code obtained from the project
source repository of the hArtes project, as the code for this beamformer,
developed by Fraunhofer IGD, is not open source. The host machine
on which the tests were performed was an Intel(R) Core(TM)2 Duo CPU
(E8500@3.16GHz), with 4 GB of RAM.

As before, in Table 3.13, some metrics are presented which give an idea of
the complexity of the application. This application is simpler than the x264
application and does not contain assembly code. By being more high level,
we can expect to map more easily onto a heterogeneous architecture using
design space exploration tools. Most of the computation performed is per-
formed in floating point, which is a major drawback for the simple ARM pro-
cessor embedded in the hArtes platform, which does not have a Floating Point
Unit (FPU) attached.

The beamforming and the wavefield synthesis parts of the application share the
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Figure 3.12: Immersive Audio Architecture.

same computational structure when dealing with the array of microphones/s-
peakers. Additionally to this processing, the beamforming application contains
a module to determine the position of the sound source. This is executed in
parallel with the audio processing, and it is triggered by an external event. Al-
though computing intensive, this module contains very simple code that relies
on floating point operations, so an in-depth analysis is not required.

The application was run with the default parameters. Among them: the sam-
pling frequency (48 khz), the number of sources (2) and the room size (15m).
The results of the profile on the host are presented in Figure 3.13. We can see

File type Number Total number Average lines
of files of lines per file

C source 14 2350 167.8571
Header 16 510 31.8750
Assembly 0 0

Table 3.13: The WFS application metrics.
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that only one function takes almost 90% of the execution time.

% cumulative self self total
time seconds seconds calls s/call s/call name
89.75 5.08 5.08 20000 0.00 0.00 fFD_RealFIR_Pair_fpga
3.18 5.26 0.18 1 0.18 0.18 wav_store
2.12 5.38 0.12 20000 0.00 0.00 fillAudioPairBuffer
1.77 5.48 0.10 80000 0.00 0.00 sumAndWeightChannels
1.41 5.56 0.08 20000 0.00 0.00 interleave

Figure 3.13: Profile information on the Intel x86 architecture for the WFS application.

Running the application on the board gives the results outlined in Figure 3.14.
This profile includes the application functions and the floating point emulation
functions. The floating point emulation functions are automatically inserted
by GCC when the processor does not have native instructions to deal with
the floating point operations. In the figure, there are several floating point
emulation function, from which two take more that 55% of the total application
execution time. These are the emulation functions for addition ( eabi fadd)
and multiplication ( eabi fmul). As gprof does not provide information about
which functions call these floating point emulation functions, we investigated
this by using a binary instrumentation tool.

The binary instrumentation tool we used is the pintool which provides a
rich API for instrumenting binary files under Linux. Our goal was to count
how many floating point additions and multiplications were performed in
each function of the application. The results, obtained after the instrumen-
tation and execution of the application, are presented in Table 3.14. We can
see that more than 90% of the floating point operations are performed in
fFD RealFIR Pair fpga. This means that, in addition to the 33.33% reported
in Table 3.14, another 50% (which represent 90% of the floating point opera-
tions time in the WFS application running on ARM processor) is spent in the
same function. In total, the function fFD RealFIR Pair fpga represents more
than 83% of the total execution time, a result that confirms the profile from
Intel.

Mapping

fFD kernel

Using DWARV tool, and the fFD C code as input, the VHDL was automati-
cally generated. Then, we first tested the fFD kernel separately from the appli-
cation to asses the benefits it could bring. The synthesis results are presented in
Table 3.15. We note that, the area occupied by the kernel is rather large, partly
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Procedure Percent of floating point
additions and multiplications used

fFD RealFIR Pair fpga 93.40 %
sumAndWeightChannels 6.44 %
calculateGains pQ 0.11 %
calculateDelays pQ 0.02 %

Table 3.14: Percent of floating point operations, from the total number of operations
used, for the WFS application.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
43.75 0.42 0.42 __aeabi_fadd
33.33 0.74 0.32 30 10.67 10.67 fFD_RealFIR_Pair_fpga
12.50 0.86 0.12 __aeabi_fmul
2.08 0.88 0.02 __floatsisf
2.08 0.90 0.02 __subsf3
1.04 0.91 0.01 63 0.16 0.16 zeroBuffer
1.04 0.92 0.01 30 0.33 0.33 fillAudioPairBuffer
1.04 0.93 0.01 __adddf3
1.04 0.94 0.01 __aeabi_f2d
1.04 0.95 0.01 __aeabi_l2f

Figure 3.14: Profile information on ARM processor for WFS application.

due to the extensive use of floating point units (8 units, including addition,
multiplication and division).

Even if the parameters used by this kernel affect its total execution time, by
instrumenting the application, we observed that for a specific configuration of
the application, the parameters are constant. We used this set of parameters to
assess the performance gain that could be obtained for our configuration and
the corresponding results are presented in Table 3.16.

Measure Synthesis results Percent of available
Slices 10.781 25%
DSP48s 12 7%
Frequency 122.98 -

Table 3.15: The synthesis statistics for the fFD kernel on the Virtex4-ML410 board.
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Input Times µs Speedup
size FPGA FPGA ARM FPGA FPGA w/t

with transfer vs ARM vs ARM
256 2047 3898 13169 6.43 3.38
512 4410 6965 26435 5.99 3.80
1024 9370 13671 58407 6.23 4.27

Table 3.16: Execution of units tests for fFD kernel on Virtex4-ML410.

Conclusions

Floating point operations are by themselves one of the most computational
intensive parts of an application. Additionally, the floating point hardware
units take a lot of area on the reconfigurable unit. As a result, a careful trade-
off has to be made in case of parallelism between area occupancy and multiple
floating point units.

3.5.3 In Car Audio - Enhanced Listening Experience

The focus of this application is to enhance the listening experience for trav-
elers in a car. This is a hard subject due to the inherently dynamic nature of
the environment, which makes it a less than ideal environment for listening.
The noise, spatial and spectral properties of the reproduced field, change the
rendering of the sound from the loudspeakers. The system used here as an
example is a real time application with two objectives:

• The development of a complete set of audio algorithms for improving
the audio quality, by taking into account some features of the cabin.

• The development of a modular system that can be either adapted to other
environments or that can use other algorithms.

In the current state, the application is composed of [17]:

• A crossover network that splits the audio signal into different frequency
bands.

• An equalizer that compensates the distortion caused by the resonances
in the car environment.
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• A phase distortion correcter, needed as each filter in the equalizer can
introduce a phase distortion.

Initial Analysis

This application was developed for the Diopsis platform, so it contained library
calls for that platform. The metrics that give an idea of the complexity of
the application are given in Table 3.17. The complexity is similar with the
complexity of the WFS application.

File type Number Total number Average lines
of files of lines per file

C source 17 2353 138.4117
Header 21 814 38.7619
Assembly 0 0

Table 3.17: In car Audio Enhanced Listening application metrics.

Compared to the other applications, this application is composed of several
simple kernels with some code that transfers the data to the appropriate loca-
tion. By using the developer knowledge of the application, the most promising
kernel for acceleration was identified to be FracShift.

Mapping

FracShift kernel

The kernel is represented by a delay line, followed by a floating point addition
and accumulation. By using DWARV to automatically generate the VHDL,
and without any modifications on the code, we obtained the results in Table
3.18. Even if there is only a modest speedup, we notice that the memory
transfers are not an essential part of the total execution time. This means that, if
we can optimize the computational part of this kernel, the speedup can increase
dramatically.

To better understand the differences between a GPP and a FPGA, we show the
code in Listing 3.8.

Listing 3.8: The FracShift kernel.
f o r ( n =0; n<256; n ++)
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Size Times µs Speedup
FPGA FPGA ARM FPGA FPGA w/t

with transfer vs ARM vs ARM
256 11017 11263 19013 1.73 1.69

Table 3.18: Execution of units tests for the FracShift kernel on Virtex4-ML410.

{
f o r ( i =100; i >=0; i−−)

Z [ i +1]=Z [ i ] ;
Z [ 0 ] = i n [ n ] ;

f o r ( i =0 ; i <101; i ++)
t mp d b l [ i ]= h [ i ]∗Z [ i ] ;

o u t [ n ] = 0 ;
f o r ( i =0 ; i <101; i ++)

o u t [ n ]= o u t [ n ]+ t m p d b l [ i ] ;
}

At first we can observe that there are no dependencies between the iterations
of the second loop. Still, as it uses a floating point operation, it is not possible
to fully unroll it, as one floating point operation takes a lot of resources, so it
will not be possible to put 100 units using current FPGA technology. In the
future, this might become a viable option.

Noteworthy are the first and the last loops. Both can take advantage of the
huge parallelism that can be available on an FPGA. Nevertheless, to achieve
this with the current infrastructure some modifications have to be done.

The first loop has an anti-dependence (iteration i reads a value written in oper-
ation i+1), which would prevent it from being parallelized. The solution to this
is to use scalar expansion and to introduce for each Z [i ] an internal register. As
the hardware compiler chooses the allocation type for a variable depending on
its type: for pointers used in parameters, it will use, the memory, so the scalar
replacement will no take place. By copying at the beginning of the function
the Z array to a local defined Z array, scalar replacement becomes possible and
the first loop will execute in 1 cycle (of course, the area used will increase).

The modified code is presented in Listing 3.9 and the corresponding results are
presented in Table 3.19. We note that the optimized version provides a huge
performance gain when compared to the non optimized version.
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Listing 3.9: Optimized code for FracShift kernel.
#pragma map g e n e r a t e h w 1
void F r a c S h i f t p r o c e s s ( f l o a t ∗ in , f l o a t ∗ out ,

f l o a t ∗Z out , f l o a t ∗ t t , f l o a t ∗ h o u t )
{

f l o a t Z [ 1 0 1 ] ;
f l o a t h [ 1 0 1 ] ;

f l o a t t m p d b l a [ 2 6 ] ;
f l o a t tmp db lb [ 2 6 ] ;

i n t n , i ;

f o r ( i = 0 ; i < 101 ; i ++) {
Z [ i ] = Z ou t [ i ] ;
h [ i ] = h o u t [ i ] ;

}

f o r ( n = 0 ; n < 256 ; n ++) {
Z [ 1 0 0 ] = Z [ 9 9 ] ;
Z [ 9 9 ] = Z [ 9 8 ] ;
/ / . . . c u t f o r b r e v i t y . . .
Z [ 2 ] = Z [ 1 ] ;
Z [ 1 ] = Z [ 0 ] ;
Z [ 0 ] = i n [ n ] ;

o u t [ n ] = 0 ;

f o r ( i = 0 ; i < 100 ; i += 4) {
t m p d b l a [ i / 4 ] = h [ i + 0 ] ∗ Z [ i + 0]

+ h [ i + 1 ] ∗ Z [ i + 1 ] ;
tmp db lb [ i / 4 ] = h [ i + 2 ] ∗ Z [ i + 2]

+ h [ i + 3 ] ∗ Z [ i + 3 ] ;
}
t m p d b l a [ 2 5 ] = h [ 1 0 0 ] ∗ Z [ 1 0 0 ] ;
tmp db lb [ 2 5 ] = 0 ;

f o r ( i = 0 ; i < 2 6 ; i += 1) {
o u t [ n ] = o u t [ n ] + t m p d b l a [ i ] ;
o u t [ n ] = o u t [ n ] + tmp db lb [ i ] ;

}
}

f o r ( i = 0 ; i < 101 ; i ++) {
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Size Times µs Speedup
FPGA FPGA ARM FPGA FPGA

with transfer vs ARM w/t vs ARM
256 2389 2646 19176 8.03 7.25

Table 3.19: Execution of units tests for the FracShift kernel with the unroll optimiza-
tion on Virtex4-ML410.

Z ou t [ i ] = Z [ i ] ;
}

}

3.6 Identified Problems

In the following, we summarize the problems identified and comment on the
solutions.

(A) Variable speedup based on parameter values. This was seen in Section
3.5.1 for both kernels. One solution is to adapt at runtime based on the
value of the parameters and the speedup. Such a solution is presented in
Chapter 4.

(B) Automatic memory transfers to/from scratch pad memory. One of the
issues with a new platform is that the developer has to do a lot of manual
operations, even if sometimes an automatic way would be good enough
from a performance point of view. Automatic memory transfer is one of
those cases, in which the toolchain automatically manages the transfers
based on the heap management at runtime or based on the compiler anal-
ysis at compile-time.

(C) Memory allocation in scratch pad memories based on function
speedup. For all the application analyzed, the identification of the places
where the memory is allocated and decide on an optimal allocation at
compile-time is not feasible. By taking into account that the available
memory can change from execution to execution it is obvious that a run-
time solution is better. We analyze such a solution in Chapter 5.

(D) The identification of the optimal balance between several parallel ker-
nels on a reconfigurable device. For the WFS application, making a



76 CHAPTER 3. RESEARCH CONTEXT

balance between the number of kernel instances that compute the out-
put waves and the number of kernels that compute the coefficients when
needed, does not have an obvious solution. An ILP approach and a run-
time algorithm that solve this problem are presented in Chapter 6.

(E) The determination of the best parameters for specific optimizations,
to take fully advantage of the reconfigurable device. The two cases
for this are the loop unroll number and the number of variables that are
made local. Most of the applications are affected by this issue (like the
applications presented in Section 3.5.1 and Section 3.5.3). Although a
known optimization, in the context of the reconfigurable device, this has
different implications, such as reducing the frequency by making routing
harder.

(F) Profile has to be done on the target platform mostly for floating point
applications. As typically running on the hardware platform is more com-
plex than running on a desktop computer, after the performed analysis, we
can conclude that for integer only applications, this is good enough for an
initial performance assessment. Nevertheless this will not hold for float-
ing point applications so, for those, profiling has to be done on the real
hardware platform.

We will study the above problems on the WFS and H.264 applications as they
fit into the focus of our thesis. The in car audio application described in Section
3.5.3 is also affected by the allocation problem, but, in that case, the solution
would involve major modifications in the C-to-VHDL compiler. Such exten-
sion is outside the scope of the thesis.

3.7 Contributions

The work presented in this chapter was implemented collaboratively by a large
team composed of multiple universities and companies. To clarify what is our
contribution we will list here the major contributions:

• Support University of Ferrara in designing the hHP to conform to the
Molen machine organization.

• Implement the Molen Abstraction Layer (sections 3.3.2). Involving the
following: implement a runtime support library for the Molen primitives
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and modify the GCC compiler to schedule Molen primitives calls when
OpenMP pragmas are used.

• Modified the GCC code generation to replace annotated calls with calls
to the Molen primitives. Described in Section 3.4.1.

• Develop the infrastructure needed for the generation and integration of
the result of the backend compilers (GPP, DSP and VHDL) into one
executable, shown as last block in Figure 3.7. This work is described in
Section 3.4.

• Implemented improvements to the tool flow to allow better debug and
error reporting capabilities (described in Section 3.4.2).

3.8 Summary

In this chapter, we presented the work done in the context of hArtes project. We
analyzed the applications and we highlighted the main problems that have to be
solved before obtaining an efficient implementation on a Molen architecture. A
description of the development flow has been proposed to provide insights on
the complexity of a toolchain for heterogeneous platforms. Problems identified
in the flow were summarized and will be addressed in the following chapters.

Note. The content of this chapter is based on the the following paper:

K.L.M. Bertels, V.M. Sima, Y. D. Yankova, G. Kuzmanov, W. Luk, G. Coutinho,
F. Ferrandi, C. Pilato, M. Lattuada, D. Sciuto, A. Michelotti, HArtes:
Hardware-Software Codesign for Heterogeneous Multicore Platforms,
IEEE Micro, October 2010, Special Issue on European Multicore Processing
Projects.





4
Runtime Hardware/Software mapping

IN this chapter, we propose a solution for Problem A 1 given in Section 3.6.
The problem we address is the following: the execution time of some ker-
nels varies based on their input data and on the processing elements on

which they are executed. For each instance of input data a choice of processing
element must be made, so that the total execution time is minimized. Consider-
ing our platform, the mapping problem is reduced to the problem of choosing
between the General Purpose Processor (GPP) and the Field Programmable
Gate Array (FPGA). Our proposed algorithm relies on runtime information
and will improve the execution time of the application by making the best pos-
sible mapping at runtime. It will use compile-time information to guide the
profiling process.

4.1 Introduction

Compared to compile-time optimizations, runtime optimizations can access
also information about the running state of the application. Using this runtime
information, adjustments can be made to the application mapping to take ad-
vantage of any speedup opportunity. The Molen programming paradigm gives
us a clear environment in which we can develop such an algorithm. More
specifically, for functions that have an execution time dependent on param-
eters, we propose an on-line adaptive decision algorithm to determine if the
benefit of running that function in hardware outweighs the overhead of trans-
ferring the parameters, managing the start and stop of the execution and ob-
taining the result. In this way, the compiled application can adjust on the fly to
new platforms where one or more characteristics of the platforms are different

1the speedup of a function depends on the values of its parameters.

79



80 CHAPTER 4. RUNTIME HARDWARE/SOFTWARE MAPPING

from the platform for which the application was originally compiled.

The algorithm is applied on the x264 implementation of the H.264 state of the
art video codec. The improvement for dynamically mapping the satd kernel
is up to 24%. We also determine the overhead and execution time ranges in
which this optimization is useful and what other factors can affect it.

In this chapter, we present a decision algorithm called Adaptive Mapping
Algorithm (AMAP). Its key feature is that it takes into account particulari-
ties of a function such as the types of the parameters and the history of the
execution and decides which implementation to use for the execution of that
instance. One main novelty of the algorithm is that it takes this decision as late
as possible, before each run, so it can make better decisions than a compile-
time algorithm. After a call, the profile information obtained will be stored and
will be used when taking the decision for the next executions of that function.

We describe the algorithm in the following sections, as following. We start by
presenting the previous work. Then we give a detailed motivational example,
based on one the application presented in Chapter 3 and specify the exact prob-
lem. Next, we continue with a detailed description of the runtime algorithm in
Section 4.4. The results of the algorithm are shown in Section 4.5 and we end
with conclusions in Section 4.6.

4.2 Background and Related Research

One of the main research directions for hardware/software mapping is map-
ping and partitioning at compile time using static analysis [4] [12] [59] [68]
[61] [46]). The main drawback of compile time analysis is that a lot of relevant
information is missing, leading to inefficient mapping decisions. In compari-
son our approach will not suffer from this limitation as the decision is delayed
until runtime when all the information is available.

Runtime based approaches have been proposed, that, decide on a hardware/-
software partitioning, but do it based on compile time information [72] [42]
[30]. However, for these algorithms, the execution information about the ap-
plication remains fixed and pre-computed at the moment of the compilation.
Our approach will adapt to the changing conditions by taking the mapping
decision at runtime based on the information collected during the actual exe-
cution.

Another possible issue with existing approaches is that they rely on an ap-
plication model which is not directly available in existing applications, such
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as Kahn Process Networks (KPN) networks ( [77]) or direct acyclic graph
( [12], [59]). From this point of view we rely on plain C, which is a language
widely used for embedded development [83].

4.3 Problem Definition

When optimizing an application for a reconfigurable platform, two of the most
important steps are the hardware/software partitioning and mapping. The role
of these phases is to determine which functions/tasks will be implemented in
hardware and which in software. In previous work, the decision was taken
at compile-time based on various attributes depending on the partitioning and
mapping algorithms. Examples of such attributes and how they are obtained
are the estimated execution time obtained for example from statistical models
based on source code metrics, profile information obtained from running with
one or multiple given inputs, hardware area available and data dependencies
between tasks. The attributes are considered independent on the input data re-
ceived by each kernel. The disadvantage of this approach is that, if the attribute
depends on the input data an approximation has to be made. The most com-
mon approach is to use an average over the possible attribute values. For the
same tasks, some of the attributes (such as execution time) can have different
values based on the input data. Using only one value in the decision process of
the mapping algorithm implies that some optimizations possibilities are lost.

Consider that the hardware software mapper decided that computation f should
be implemented in hardware. The total execution time in hardware is repre-
sented by the following equation:

thw exec = tsetup + texec + treturn (4.1)

The value tsetup represents the time needed for parameter transfer, memory
setup and to start the hardware. This should include any overhead introduced,
for example, by the operating system or the hardware control unit. The value
treturn includes the time needed to retrieve the result, copy the data if necessary
and stop the hardware. The value texec is the time in which the hardware unit
processes the data and provides the results.

Each computation can have several parameters that allow the execution to be
adapted to the current needs. For example, specifying the length of the ma-
trices that have to be multiplied is such a parameter. If the times in Equation
(4.1) are independent of the parameters, the total execution time thw exec can
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be computed at compile-time. The choice of using the hardware or the soft-
ware implementation can then be taken at compile-time without loosing any
possibility of optimization. On the other hand, if any of the aforementioned
times depend on parameter values, the decision that is taken at compile-time
could be suboptimal for some cases.

As a first example of such a case, we present a function that has a variable ex-
ecution time based on parameters. The code of the function is given in Listing
4.1. This code is derived from the x264 application, presented in Section 3.5.1,
but it is simplified for presentation purposes. It is clear that the execution time
depends on the parameters lx and ly as these two parameters control the num-
ber of iterations. We can see that, for this function, multiple execution times
are possible depending on the parameters. Even more the ’speedup’ (ratio be-
tween the software and hardware execution time plus overhead) is not constant.
A static, compile-time, hardware software partitioner could use just the aver-
age of the execution times or the average speedup when deciding on which
processing element to map a kernel. If, for example, in half of the executions
the kernel will have a 2/3 speedup and in half of the cases the same kernel
will have a 2 speedup, on average, the speedup will be 1, and the mapper will
decide not to map it to the processing element. This misses optimizations, as
in half of the cases, mapping it to the processing element would be beneficial.

Listing 4.1: Motivational example from x264 application.
i n t p i x e l s a d w x h ( u i n t 8 t ∗ pix1 , i n t i s t r i d e p i x 1 ,

u i n t 8 t ∗ pix2 , i n t i s t r i d e p i x 2 , i n t lx , i n t l y ) {
f o r ( y = 0 ; y < l y ; y++ ) {

f o r ( x = 0 ; x < l x ; x++ ) {

. . . c o m p u t a t i o n s . . .

}

p ix1 += i s t r i d e p i x 1 ;
p ix2 += i s t r i d e p i x 2 ;

}
}

A second example, when parameters could determine the speedup, is related
to the initialization overhead (tsetup). In order to work correctly, the kernel
needs data in the local FPGA memory. This data has to be transferred from
main memory. The kernel might read the data using a stride, or with another
predetermined access pattern. Using this knowledge, the transfer size could
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be reduced, but deducing all the information necessary, such as, the stride and
the total size of the memory accesses, from the source code is a complex task
which is not supported by the current compilers. Without any further analysis,
the simplest way is to transfer the entire block used. Accessing the data directly
from main memory would introduce extremely high latencies, while providing
a local cache would increase the hardware usage.

Problem statement: When both a software and a hardware implementation
for a function are available, taking into account the overheads and the current
input data, determine which of the two implementations lead to the shortest
execution times.

The overheads are also affected by the particularities of the architecture such
as the time needed to transfer the parameters, the time needed to start/stop the
execution of the hardware function (tsetup) and the time needed to retrieve the
result (treturn). Our algorithm takes this decision at runtime.

The main advantage of this approach is that the decision is taken based on
the current state of the system. One example of an unpredictable event that
changes the state of the system is the start of a different application. In this
way, our algorithm solves Problem A 2 from Section 3.6.

4.4 Conditional Hardware Execution for Molen

As instrumentation and profiling in a real environment are difficult and error
prone, we propose a solution that will react dynamically, when the application
runs, to the changing conditions. We assume that the designer of the applica-
tion, or the toolchain, have already identified a set of candidate computations
for hardware execution. For this set of candidates, detailed profiling informa-
tion would be needed in order to be able to take a decision at compile-time.
This is not always possible because of two reasons: the behavior of the can-
didate functions can change depending on the parameters, and the running
conditions might change because of events external to the application, such as
multiple application running or power constraints that affect the system. The
main idea is to save the values of the parameters for each function call to-
gether with the execution time. The next time a function is called with the
same parameters an estimate can be done on whether it is more efficient to run
the hardware version or the software version. The algorithm will execute both
versions, until it has sufficient data to compare the implementations.

2the speedup of a function depends on the values of its parameters.
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Figure 4.1: The overall structure of the AMAP algorithm.

The overall structure of the algorithm, named AMAP is depicted in Figure 4.1.

The algorithm is able to respond to changing conditions that can appear in a
reconfigurable system. Also, it can immediately take into account the recon-
figuration overhead as it measures the needed time for executing a hardware
function. In this way, even if it is not aware of a configuration caching mecha-
nism it will detect at runtime that one of the configurations is cached (so it can
be configured much faster) and use it.

4.4.1 Selecting The Functions And The Relevant Input Data

The algorithm can be applied only to functions with a specific property. The
control flow of the function should depend only on the value of the parameters,
except the parameters that are pointers to memory. This means that it should
not depend on values from the blocks of memory the pointers are pointing to.
The reason is that the algorithm has to store the values of the parameters and
compare them with the values in previous calls. If the control flow depends on
the input data, storing all the input data it is not a feasible solution.

Assuming a function has the above property, the next step is to select the pa-
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rameters that are included in the analysis of the algorithm. Using all parameters
might make the data structure occupy too much memory and make manage-
ment an overhead that would render invalid the gains obtained. Selecting too
few arguments makes the algorithm inefficient. The compiler uses only the
parameters that affect the control flow. These are any parameter involved in
any of the while, for, if and switch instructions affect the control flow.

Listing 4.2: Rejected function example.
i n t f u n c t i o n A ( i n t ∗a , i n t ∗b , i n t c , i n t d ) {

i n t i , j ;
f o r ( i =0 ; i<c ; i ++) {

a [ i ] = a [ i ] ∗ d ;
i f (∗ b==a [ i ] )

f o r ( j =0 ; j<a [ i ] ; j ++) {
a [ j ] + + ;

}
}

}
}

As an example, functionA in Listing 4.2 will not be used by this algorithm,
as variable a is used in the if control structure at line 4. As it conforms with
the algorithm requirements, functionB in Listing 4.3 will be accepted. We
comment on each parameter of functionB:

• Parameter a is not used in any control structure and it is a memory block
so it will not be included in the analysis.

• Parameter b is included as it is used in the if at line 4.

• Parameter c is included as it is used in the for at line 2, 5 and 11.

• Parameter d is included as it is used in the if at line 4 and 10.

• Parameter e is not included as it is not used in any control structure.

Listing 4.3: Parameter usage example.
i n t f u n c t i o n B ( i n t ∗a , i n t ∗b , i n t c , i n t d , i n t e ) {

i n t i , j ;
f o r ( i =0 ; i<c ; i ++) {

a [ i ] = a [ i ] ∗ e ;
i f (∗ b==d )

f o r ( j =0 ; j<c ; j ++) {
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a [ j ] + + ;
}

}
}
i f ( d>10) {

f o r ( j =0 ; j<c ; j ++) {
a [ j ] / = 2 ;

}

}
}

4.4.2 Runtime Profile Data Module

The main purpose of the runtime profile data module is to provide information
about past invocations of a function. The information is represented as met-
rics of previous calls. Our algorithm needs all the values of the parameters,
so a data structure with fast insert and lookup operations is needed. Once a
combination of parameters is added it can remain in memory for the complete
execution of the program. Therefore the delete operation is not of importance
for our purpose. Also, as all processing is done at runtime, we need a sim-
ple data structure that limits the overhead of storing and accessing the data.
Taking this into account, we consider a red-black tree as the supporting data
structure. The complexities of the search and insert operations are logarithmic,
so a red-black tree is a structure that fits our needs.

Table 4.1: Parameter values for satd call.

Parameters Steps in figure
height width

8 16 1,2
16 16 3,4
16 8 5,6
4 8 7,8
4 4 9,10

For a one-parameter function, the tree is straightforward as each node will
contain the values of that parameter and the associated metrics. If the function
has more parameters the red-black tree becomes a composition of red-black
trees, where just the nodes corresponding to the last parameter have associated
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Figure 4.2: Search tree for 2 parameter functionC.

metrics. Let’s assume we have a two-parameter function depicted in Listing
4.4. Given the parameters in Table 4.1 the resulting tree is depicted in Figure.
4.2. When the function is called, we do the steps shown in Listing 4.5 to
identify the node containing information about past invocations.

Listing 4.4: Example function.
void f u n c t i o n C ( i n t paramA , i n t paramB ) {

. . .
}

Listing 4.5: Node identification in the tree.
t = t r e e r o o t
p = f i r s t p a r a m e t e r
do {

n = f i n d v a l u e o f p i n t
i f ( n i s n o t found ) {

n = add p t o t
}
t = n e x t p a r a m e t e r t r e e from t
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p = n e x t p a r a m e t e r
} whi le ( p <= l a s t p a r a m e t e r )

Each of the nodes corresponding to the second parameter, have a metrics struc-
ture associated. This structure is ommited from the figure.

The metrics we will use are:

• Hardware execution time and the number of executions.

• Software execution time and the number of executions.

These metrics were chosen because the focus of the algorithm is to improve
the total execution time. Different metrics could be used in case another design
goal would have been chosen. Examples are effective area occupied in case
the goal would be to increase the overall utilization rate of the FPGA, power
consumption if the goal is minimizing power.

The decision function uses the metrics to decide if, for these parameters, it is
better to use the software or the hardware implementation.

One important issue with the profile data module is that it could take too much
space of the processor cache, and that would degrade performance. The solu-
tion is to allocate the data in a contiguous block that is a multiple of the size
of the cache line, and limit the increase to a certain value. When the limit is
reached, the cache module will not be able to accommodate new nodes. One
solution to this case is to find the closest match for the new node, in terms of
parameter values, and update that node’s metric. We will analyze in the results
section the effect of this limitation over the algorithm efficiency.

4.4.3 Decision Module

The runtime part of the algorithm is presented in Listing 4.6. For each function
call, that is managed by the algorithm, this code will replace the original call
and a cache will be created. The call hw function must include everything
needed by the hardware call, such as hardware setup and memory transfers.
The functions set sw time and set hw time are the functions that update the
profile data module metrics after the call. The function get profile is used to
retrieve the metrics structure from the profile data module, while the function
decision represents the logic in the decision module.

Listing 4.6: The AMAP decision module.
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1 m = g e t p r o f i l e ( s e l e c t e d p a r a m e t e r s ) ;
2 i f ( d e c i s i o n (m) i s sw ) {
3 t = t ime ( c a l l s w f ( ) ) ;
4 s e t s w t i m e (m, t ) ;
5 } e l s e {
6 t = t ime ( c a l l h w f ( ) ) ;
7 s e t h w t i m e (m, t ) ;
8 }

The decision function, depicted in Listing 4.6, does a comparison of the times
needed in hardware and in software and returns which implementation is more
efficient for the current set of parameters. After the selected implementation
is executed the cache is updated. At program start there will be no profile
information available. The decision module can work only if both software and
hardware execution times are available. If this is not the case, it will execute,
at least once, the variant for which the profile information is missing. This is
done in the decision function (line 2).

4.5 Results

In this section, we present the estimated results of applying the algorithm on
the x264 video codec.

The x264 video codec is the state of the art in video compression algorithm and
it requires a lot of computing power. One of the most time consuming kernels
of the application (around 30% of the total execution time) is a function that
computes the sum of the absolute differences.

As explained in Section 3.2.2, the hArtes application platform is suitable for
a certain class of audio applications due the way the bus operates - half of
the time is allocated to transfers from and to audio input/output buffers and
memory. Instead of the hArtes platform we used a platform based on the same

Table 4.2: Parameters and execution time on Virtex ML510 board for satd call.

Parameter values
Execution times µ s

Speedup
Overhead tsw thw

s1=32, s2=16, lx=16, ly=16 5 31 12.9 1.73
s1=32, s2=16, lx= 4, y= 4 4.6 2.55 1.9 0.39
s1=32, s2=16, lx= 8, y= 8 4.65 7.86 4.2 0.88
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architectural concept, that was developed in parallel with the hArtes platform,
but was based on off-the-shelf components, namely a Xilinx Virtex-4 ML410
development board. This board contains a Xilinx XC4VFX60 FPGA. The
Molen programming paradigm is implemented using the APU unit of the Pow-
erPC and an on chip memory, which is accessed through the DCR bus. The
design contains also a Flash memory reader used as external memory and an
internal 256 MB DDR2 memory. For the x264 application, we implemented
and tested the satd wxh kernel using the Delft Workbench Automated Recon-
figurable VHDL Generator (DWARV) hardware compiler [91]. The system
GPP runs at 200 MHz. The custom hardware designs are clocked at 100 MHz.

We could not efficiently execute the entire application on the board, as the Pow-
erPC was not able to access the internal FPGA memory through its data cache
in the current operating system configuration and there is no DMA present ei-
ther. As modifying the operating system configuration or adding a DMA was
out of the scope of this work, we chose to estimate the memory transfer times,
as if the system has a functional DMA. All the data was collected from actual
runs of applications with real input. As the memory transfers can not be per-
formed by a DMA, we measured the operating system overhead, the amount of
memory transferred and the hardware and software execution time. Using the
memory size and known DMA transfer speed, we could estimate the memory
transfer time. Then adding all the times, we obtain an estimated total execution
time.

Table 4.2 lists example values of parameters for the satd wxh function, together
with the times needed for the execution, for each parameter set.

By applying the algorithm, we can determine the best case for any parameter
set. The application compiled to include our algorithm was used on different
reference videos. We did this as the trace of the execution changes based on
the data, so our decision and cache module will receive different parameters
for different videos. The results are listed in Table 4.3. The HW column
represents the total execution time of the kernel in case all the calls would be
executed on the reconfigurable fabric, relative to the software execution time.
By applying our algorithm only some of the calls will be selected to run on the
reconfigurable hardware while others will be run in software. The results of
this decision are presented in the column AMAP. The last column represents
the overhead introduced by the algorithm, respectively the percent of the total
execution time spent in the decision and cache module.

Always using the hardware can degrade performance when compared to soft-
ware execution. This can happen if the overhead, represented by the system
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Table 4.3: Kernel execution times in different scenarios. Reference is executing all
calls in software.

Video All in HW AMAP AMAP execution
akiyo 82.01% 76.08% 4.05%

carphone 106.45% 87.22% 6.50%
claire 134.97% 91.87% 7.25%

coastguard 91.25% 86.71% 4.98%
container 90.18% 79.96% 4.86%
foreman 98.69% 85.36% 5.68%

hall 113.64% 88.60% 7.14%
miss-america 121.65% 91.47% 8.10%

mobile 88.95% 82.25% 4.71%
news 88.85% 80.29% 4.77%

salesman 93.54% 80.75% 4.74%
silent 93.50% 84.37% 5.16%
suzie 104.42% 86.67% 6.37%

Average 100.62% 84.74% 5.72%

call and starting/stopping the hardware unit, is comparable (or greater) to the
total time spent executing the kernel. This happens for example for claire video
for which the execution time when using only the hardware is 134.97% of the
software only execution time. When applying our algorithm, not all calls are
executed in hardware. This results in improvements from 43% for claire video
to 5% for mobile video with an average of 15%.

As mentioned in Section 4.4.2 one notable aspect is the memory footprint of
the data stored about parameters and execution times. With less memory, the
algorithm will not be able to make an accurate prediction. This will affect the
total execution time, as sometimes a function which takes less time in software
will be executed in hardware. To test how the algorithm behaves in such cases,
we tested the behavior of algorithm for different number of nodes available.
As the function tested use 4 parameters, it means the algorithm needs at least
4 nodes to store profile information. We started our exploration from 5 nodes,
as this is the smallest number when our algorithm can perform a runtime es-
timation. With 5 nodes, the tree constructed will contain 2 combinations of
parameters. Then we increase the number of available nodes until the behavior
does not change.

The results are presented in Figure 4.3. For our case, for a size of 10 stored
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nodes there is a cut off point - after which point the improvement is marginal.
The big differences in execution time per frame between the data sets can
be explained by the fact that the algorithm results depend on the amount of
’motion’ in the video.

As expected, the algorithm behaves badly in case there are no nodes available,
but improves quite fast as the number of nodes increases.
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Figure 4.3: Algorithm performance for different cache sizes (each line represents a
different video).

To investigate the behavior of our algorithm in extreme circumstances, we con-
sidered increasingly high overheads of executing a kernel in hardware (multi-
plying by 2, 3, etc. the measured overhead). The results can be seen in Figure
4.4. We compare with the execution ‘completely in software’. The thick line
represents the average for the percentages of the ‘completely in software ex-
ecution’ for all the videos used in the test (same as in previous tests). As
expected, as the overhead increases, the algorithm will use more and more the
software version. After some point, the overhead makes running the hardware
totally ineffective (in our graph, around 5x overhead), and the algorithm will
use the software. The decrease in performance (after 5x, everything that is
the above 100% line is a reduction in performance) is because the algorithm
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has to profile at least some hardware executions in order to determine that the
overhead is significant and it would be inefficient to execute the function in
hardware. Still, it will gracefully adapt to the new conditions and limit the per-
formance decrease to less than 3% compared to pure software execution, even
for an overhead increase of 8x.
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Figure 4.4: Algorithm performance for different overheads. The reference of 100%
represents software execution. Each line represents a different video, the thick line
represents average.

4.6 Conclusions

In this chapter, we proposed a runtime algorithm which, using profiling and
compile-time information, selects between executing the software or the hard-
ware implementation of a function at runtime. It does this based on the pa-
rameter values and the profile data gathered at runtime. Our experiments show
that it can provide a significant improvement in a dynamic system, where, at
compile-time, it is almost impossible to foresee all the parameters of the sys-
tem. The algorithms can be seen as an extension to traditional compile-time
hardware software mapping. We also studied the effect of the size of the pro-
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file data stored in the tree and examined the effect of different overheads on
the performance.

Note.

The content of this chapter is based on the following paper:

V.M. Sima, K.L.M. Bertels, Run-time decision of hardware or software exe-
cution on a heterogeneous reconfigurable platform, Proceedings of Interna-
tional conference on 16th IEEE Reconfigurable Architectures Workshop, pp.
6, Rome, Italy, May 2009.



5
Runtime Memory Allocation

IN this chapter, we propose a solution for problem C given in Section 3.6
when the overhead introduced by memory hierarchies can cancel the ad-
vantage given by running the computation on different processing ele-

ments. This overhead appears because the data needs to be transferred between
the different memories. One solution to reduce the memory transfers is to allo-
cate the memory in the local memory of the processing element that uses that
data the most. As discussed in Chapter 3, the analysis needed to take a decision
on how to perform the memory allocation, can not be performed at compile-
time. In order to solve this limitation, we propose a runtime algorithm that
solves this problem. Using code instrumentation, we determine what memory
areas are used by functions executed on different processing elements. If not
satisfied with the mapping provided by the toolchain, the developer has the
option to manually specify which functions have to run on which processing
element. An algorithm decides the best memory allocation, taking into ac-
count the gain obtained by running a computation on a processing element and
the available scratch pad memories of the heterogeneous platform. We obtain
application performance improvements of 14% on a video encoder application
compared software only execution. For synthetic applications, the algorithm
is within 5% of the optimum.

This chapter is organized as follows: we start by discussing the related research
and giving a detailed motivational example and the problem definition. Our
proposed solutions to the problems exposed is presented in Section 5.3.3. The
results of the algorithms are shown in Section 5.4. In Section 5.5, we present
conclusions and outline new research directions.

95
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5.1 Background and Related Research

An efficient management of Scratch Pad Memory (SPM) can substantially
improve the overall performance of embedded systems, when compared to
caches [2] [9].

Again we distinguish between runtime and compile time approaches. Vari-
ous approaches focus on compile time memory allocation [48] [13] [92] [6]
[40] [14] [79]. In contrast to our approach, these algorithms rely on detailed
compile time information.

Other approaches perform the allocation at runtime using different decision
criteria. In [62] a load time optimization is performed, based on the SPM
available when the application is run. [49] proposes an allocator that has as
objective reducing the power consumption. [22] supports allocation of global,
stack and help memory blocks and decides the best allocation taking into ac-
count this memory hierarchy. All these approaches consider a homogeneous
core architecture, which is not the case of our algorithm.

5.2 Problem Definition

Let us consider the architecture described in Chapter 3. This architecture con-
tains an FPGA and a DSP, each with its own local memory. In Figure 5.1, we
give a synthetic application example. This application contains three kernels
that use four memory blocks. There are two problems:

• How do we identify which kernel uses which memory block, and how
many times? Static analysis can provide this information for some cases,
but it will not be able to infer the complete information as the number of
uses can be heavily depending on input data.

• How do we perform the mapping and allocate to the corresponding
memory?

We will discuss each of these problems independently in the following sec-
tions.
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Allocation Tracking

Given the application source code, and the functions annotated to be executed
in hardware, a list will be maintained with all the memory blocks that are
used in those functions. The function can be annotated either by the developer
or automatically by the toolchain. One function can use for one call multi-
ple memory blocks simultaneously. For each combination of memory blocks
used in a kernel, we have an associated gain which represents how much time
would be saved if that kernel would be accelerated in hardware. This gain can
be obtained either at compile-time, by profiling the software and the hardware
implementation using a specific data set, or can be computed at runtime by pro-
filing the actual execution. We assume in the rest of the paper that we have this
information provided at compile-time. The gain is computed by multiplying
the execution count with the time saved by using the accelerated implementa-
tion.

Memory Mapping

The second part of the problem is to find which set of memory allocations has
to be placed in the Scratch Pad Memory (SPM) instead of DDR to obtain the
best performance. We assume that all the kernels execute sequentially. If par-
allel execution would be considered, the idea of the algorithm holds, but some
of the equations have to be modified. Graphically, the problem is depicted in
Figure 5.1 where the circles represent one kernel call, the rectangles represent
the memory blocks and the squares represent the memory. The gain associ-
ated with a kernel invocation can be obtained just if all the memory blocks are
allocated to the SPM. In our example, just K1 and K2 will run in hardware,
while K3 will run on the GPP, because block D is allocated in DDR. With this
mapping, the total gain would be of 400ms.

5.3 Memory allocation infrastructure

To solve the problems described, we present an infrastructure, composed of
three modules: the allocation module, the execution module and the mapping
module. A graphical representation of the infrastructure is presented in Figure
5.2. Each module has a runtime part that has to be embedded in the applica-
tion. This is performed by special optimization passes that extend the compiler
infrastructure.
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Figure 5.1: Motivational example for AMMA algorithm.

The allocation module tracks at runtime all the blocks allocated by one applica-
tion by managing a list with the start and end address of the currently allocated
blocks (stack, global and heap). It also decides using an algorithm where each
memory block should be allocated, in scratch pad or in main memory.

The execution module, determines at runtime, for each of the functions that can
be executed in hardware, if the data is allocated in SPM, and in that case uses
the accelerated implementation. It also updates the gains associated with each
combination of memory allocations, based on the known speedup of the cur-
rent function invocation. We call the lists of memory allocations together with
the associated gains, the memory allocation lists (MEMAL)s. The MEMALs
are continously updated while an application runs. The lists are saved and re-
stored across execution to provide the allocation algorithms with as much as
possible information.

The algorithm that computes the best allocation, is embedded in the applica-
tion, and it is executed just at specific points of the program execution. The
algorithm must be called in two cases. The first case is when, at application
start, the size of scratch pad memory available for the application is different
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Figure 5.2: AMMA infrastructure organization.

from the previous executions. The second case is when an allocation is no
longer optimal because of a change in the input data. We did not implement
this case.

It is important to mention that the influence the algorithm has on the alloca-
tions depends on the moment in time these allocations are performed by the
application. The mapping algorithm influences only allocations that are made
after an analysis of MEMALs. As an example, if the mapping algorithm de-
termines that global variables should be allocated to scratch pad memory, this
decision will be applied only at next application start (when the allocation is
made).

Using this approach, the only application modification needed, is the anno-
tation of the functions that have hardware implementations. Our approach is
semi automatic and does not involve a manual analysis to determine exactly
what allocations are needed by which kernels (and thus solves Problem A 1

from Section 3.6). We assume that the functions with hardware implemen-
1the speedup of a function depends on the values of its parameters.
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tations are provided by the designer. The size of the available memory will
be determined just at runtime, giving more flexibility to the system (and thus
solves Problem B 2 from Section 3.6). If multiple applications are present, the
allocation can be done in such a way that the overall system performance is
improved (solves Problem C 3 from Section 3.6).

5.3.1 Allocation Tracking Module

The allocation module has two tasks:

• To manage the allocated memory blocks.

• For new allocations, place them either in SPM or DDR. This decision
is take previously based on what it is estimated to be best for overall
performance of the application.

Depending on the type of the memory object, different allocation mechanisms
are used. These are presented in the next sections.

Global Variables

For the GPP architecture analyzed, the global variable addresses are embed-
ded in the binary. Also, on some architectures accessing a global variable is
done through a register which stores the base address of the data segment. This
mechanism prevents the changing the address of a global variable at runtime to
a total different memory address. To solve this problem, all the global arrays
used in functions with hardware implementations are transformed to point-
ers and are initialized in a special initialization function cm global init. This
mechanism is a well known mechanism used by the compiler when generating
position-independent code. In function cm global init, there are two steps: the
ranges of the arrays are added to the MEMAL for further checking and based
on the allocation decided by the algorithm, each of the arrays is allocated either
in main memory or in the scratch pad memory.

2memory needs to be transferred to the SPM in order to execute functions accelerated.
3based on what memory is allocated directly to the SPM functions will have a different

speedup as some we will not have the transfer overhead.
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function:
sp = cm_stack_allocate(id,size);
cm_stack_add(id,sp,sp+size);
...
sp = cm_stack_deallocate(id);
return;

Figure 5.3: Code added to functions for stack instrumentation (architecture depen-
dent).

Stack Variables

As the stack management is architecture dependent, so is the part of the allo-
cation module that deals with stack variables.

Tracking memories allocations introduces overhead. Tracking the stack for all
functions would introduce unnecessary overhead as not all the stack variables
can be used in an accelerated function. Instead, we perform an optimization by
instrumenting just those functions which are found on a path from the root of
the call graph (main function) to one of the accelerated functions. If function
pointers are used, we will always consider that such a pointer can point to an
accelerated function and instrument the function using the function pointers.
Another optimization is to detect if any of the local variables in a function are
used as parameters for other calls. If this is not the case, it means the local
variables will never be used by accelerated functions, so the instrumentation
for that function it is not necessary.

For each instrumented function, a special header is added to the assembly code.
First cm stack allocate returns the address for the stack of the function, based
on the decision that was taken by the algorithm. Then cm stack add is called
which, based on an identifier, will add the start and end address to a list in the
MEMAL. Before returning, cm stack deallocate will be called to restore the
registers. A pseudo-code of the wrapper is given in Figure 5.3, where sp is the
stack pointer for local variables.

Heap Memory Allocations

To track the dynamic memory allocations, a wrapper around standard alloca-
tion functions is provided. The wrapper has two functions: add the allocations
to the MEMAL and allocate the memory according to the decision of the al-
location algorithm. Each allocation has to be uniquely identified in order to
be added to MEMAL. The easiest form of identification is to use the address
from which malloc was called. This is a simple and fast solution that works
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in the majority of cases. The solution that would work in all cases is to use
as identifier not only the address from which malloc was called, but also the
addresses of all calling functions from main to the current malloc call. This
would work with applications that wrap malloc themselves, but the overhead
of saving and searching for the identifiers increases significantly.

5.3.2 Execution Module

The execution module is used only for the accelerated functions. Its role is
to update internal data structures that track what memory areas are used by
accelerated functions. Then, if all the data are placed in the scratch pad mem-
ory, it will invoke the accelerated implementation. Otherwise, the software
implementation will be called.

5.3.3 Mapping Algorithms

We will present three mapping algorithms. The first algorithm, Adaptive Mem-
ory Mapping Algorithm (AMMA) has the advantage that it has the shortest ex-
ecution time from all the algorithms. The extension of this algorithm, Adaptive
Memory Mapping Algorithm Extended (AMMAe),is slower but provides bet-
ter results for some cases than AMMA. The final algorithm presented is an
Integer Linear Programming (ILP) based algorithm. It is used to assess the
performance of the other two algorithms.

AMMA algorithm

The data available to the algorithm can be formally represented by:

• The set of memory blocks allocated, A = {aj , j = 1..b}, where b is the
number of blocks tracked, and aj is one allocated block.

• The combinations in which the allocations are used by each kernel.
There can be multiple combinations used by each kernel, and one allo-
cation can be in multiple combinations. Let the set of all combinations
be S = {Ci , i = 1..n/Ci = ({aj}, kigain)}. We denote by Ci a combi-
nation of memory allocations used in at least one kernel invocation and
by aj a specific memory allocation. The time gained by allocating all
the memory in set Ci to scratch pad memory and running the associated
kernel accelerated is denoted by kigain .
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• The size of the available scratch pad memories, sizei .

The idea of the algorithm is to order the memory allocations based on the
memory score then allocate them to scratch pad memory, until the memory is
full. The score is computed as the sum of the gains of the kernels that use that
specific allocation. This is represented for memory location aj as ajscore and
we compute it using Equation 5.1. This is a very low overhead algorithm, as
it needs just one sort operation on the memory objects and one pass to fill the
memory. The pseudo-code is given in Listing 5.1.

ajscore =
∑

aj∈Ci ,mi∈Ci
kigain (5.1)

The main drawback of AMMA is that it does not take into account the fact that
in order to obtain the gain, a complete group of memory allocations must be
in SPM. For example, if we consider Figure 5.1, K2 can not execute in HW
unless both memory block A and B are allocated to SPM.

Listing 5.1: AMMA algorithm.
s t r u c t a l l o c a t i o n {

i n t s i z e ;
i n t a l l o c a t e d ;

}

s t r u c t c o m b i n a t i o n {
i n t ∗ a l l o c ;
i n t g a i n ;

}

i n o u t : s t r u c t a l l o c a t i o n a [ b ] ;
i n : s t r u c t c o m b i n a t i o n m[ n ] ;

c o m p u t e s c o r e s ( a ) ;
s o r t ( a , d e s c e n d i n g ) ;

a l l o c = 0 ;
f o r i = 0 t o b {

i f ( a l l o c + a [ i ] . s i z e < memory s ize ) {
a [ i ] . a l l o c a t e d = t r u e ;
a l l o c + = a [ i ] . s i z e ;

}
}
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allocate_to_DDR(A,B,C,D) allocate_to_SPM(A,B,C)
allocate_to_DDR(D)

........................ ........................
call K1(A,B) call accelerated K1(A,B)
call K2(B,C) call accelerated K2(B,C)
call K3(C,D) call K3(C,D)

Gain : 400 ms

Figure 5.4: Application execution trace before and after AMMA algorithm.

Even if multiple blocks are allocated in the scratch pad memory, it might be
the case that no kernel can be accelerated. For example, in Figure 5.1, if blocks
A and C are allocated to the scratch pad memory, still, no kernel can be accel-
erated.

The complexity of the algorithm is O(b ∗ (n + log(b) + 1)). Computing the
scores for each allocation depends linearly on the number of blocks, b, and the
number of combinations of allocations, n. Hence, the computation of scores
takes b∗n. Sorting the list of b scores can be performed in b∗ log(b). Iterating
once more over the list of allocations give the third term b.

Example of Applying AMMA

Assuming we have the kernels and memory allocations in Figure 5.1 and an
available memory of 5 kB, the steps of AMMA are shown in Table 5.1.

Table 5.1: AMMA algorithm example.

Iteration
Memory allocations scores Allocated Free

A B C D to SPM SPM
1 200 400 510 310 5
2 200 400 - 310 C 4
3 200 - - 310 C, B 3
4 - - - 310 C, B, A 1

Kernels executed accelerated: K1,K2 - gain 400ms

The memory allocation’s scores are computed only using Equation 5.1 at the
beginning of the execution of the application.

The gain for memory block A is the one generated by kernel K1, while the gain
for memory block D is the one generated by kernel K3. For memory blocks
B and C , 2 kernels contribute to their gains. In each step, the memory block
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with the highest score is chosen to be allocated to the SPM. The functions that
would be executed with and without AMMA applied are shown in Figure 5.4.
We can see memory blocks A, B , C are allocated to SPM and K1 and K2 are
accelerated.

AMMA Extension

To alleviate the limitation described in the previous section, we present an
extended version of the same algorithm, which we call AMMAe, which is
more complex but provides better solutions than AMMA.

We now discuss an extension to the proposed AMMA algorithm where 2 new
elements are introduced. The supporting equations are:

si =
∑

aj∈Ci ,aj is not allocated

ajsize (5.2)

aj ,iscore =

{
0 , if si < f or aj /∈ Ci

kigain ·
ajsize
si

, otherwise
(5.3)

ajscore =
n∑
i

aj ,iscore (5.4)

where, si represents, at the current iteration, the memory that kernel i needs in
order to be possible to run in hardware.

The first element is that, the gain of a kernel is only added to the score of a
memory allocation when it can fit the available remaining SPM memory. This
is represented by the if statement in Equation 5.3. In the example in Figure 5.1,
and considering an SPM of size 3k, the gain of kernel K3 will not be added
to the score of either memory block B or C , because the memory required for
K3 is, in total 4k, which is more than the available memory.

The second change to the AMMA algorithm is represented by the term kigain ·
ajsize
si

in Equation 5.3. This equation multiplies the kernel gain by the proportion
the current block represents of the total memory needed for kernel ki . This
way we take into account how much the current memory block consumes of
the total required memory the kernel needs. This is represented by the

ajsize
si

.
The larger this factor is, the more the kernel gain contributes to the final score.

Assuming f is the free memory at the current step, the new gain formula is
given by Equation 5.4. The outline of the algorithm is given in Listing 5.2.
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Listing 5.2: AMMAe algorithm.
i n o u t : a [ b ] a r r a y o f memory a l l o c a t i o n s
i n : m[ n ] a r r a y o f c o m b i n a t i o n s o f a l l o c a t i o n s

a l l o c = 0
do

changed = f a l s e
c o m p u t e s c o r e s e x t e n d e d ( a , b )
s o r t ( a , d e s c e n d i n g )
f o r i = 0 t o n

i f ( a l l o c + a [ i ] . s i z e < memory s i z e )
mark a [ i ] t o be p l a c e d i n SPM
a l l o c + = a [ i ] . s i z e
remove a [ i ] from a
changed = t r u e
break

whi l e ( n o t changed )

The complexity of the algorithm isO(b∗(n∗b+b∗log(b)+n)). The do/while
loop can execute at most b times. The first term represents the computations of
the scores and it is done in n ∗ b, as the sum in Equation 5.2 can be performed
on at most b elements. The sort of the scores is done in b ∗ log(b). The third
term captures the selection of the next memory block that has to go to the SPM.
As it performs on iteration over the list of blocks this add n to the expression.

Example of AMMAe

Assuming we have the kernels and memory allocations in Figure 5.1 and an
available memory of 5 kB, the steps of AMMAe are shown in Table 5.2.

Table 5.2: AMMAe algorithm example.

Iteration
Memory allocations scores gains Allocated Free

A B C D to SPM SPM
1 133 166 177 232 5
2 133 166 410 - D 2
3 0 200 - - D, C 1
4 0 - - - D, C, B 1

Kernels hardware accelerated: K2,K3 - gain 510ms

AMMAe uses Equation 5.4 to compute the gain for each memory allocation.
We give examples for sK1 and aBscore as the rest are computed similarly. The
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allocate_to_DDR(A,B,C,D) allocate_to_SPM(B,C,D)
allocate_to_DDR(A)

........................ ........................
call K1(A,B) call K1(A,B)
call K2(B,C) call accelerated K2(B,C)
call K3(C,D) call accelerated K3(C,D)

Gain : 510ms

Figure 5.5: Application execution trace before and after AMMAe algorithm.

memory needed to run K2 accelerated is:

sK1 = aAsize
+ aBsize

= 3

We compute now the score associated with block B . B is used by two kernels,
K1 (K1gain = 200) and K2 (K2gain = 200). But kernel K1 needs both blocks
A (aAsize

= 2k) and B (aAsize
= 1k) to run, so, we add to the score of B just

a part of gain of kernel K1 proportional to block size of B from the total size
needed (sK1 = 3). The same applies for K2. The entire equation is:

aBscore = kK1gain ·
aBsize

sK1
+ kK2gain ·

aBsize

sK2
= 166

After each allocation iteration, all the scores have to be recomputed as the
total sizes needed by one kernel will change (we consider just the additional
size needed, without taking into account the already allocated blocks). After
the first iteration, the total size needed by kernel K3 will be just the size of
C , as block D is already allocated. Hence the score for C will change. The
algorithm is applied until no further allocation is possible.

The instructions that would be executed without and with AMMAe applied are
shown in Figure 5.5. We can see B , C , D are allocated to SPM and K2 and
K3 are executed accelerated, resulting in a 25% increase in gain over AMMA.

ILP Formulation

The purpose of the ILP forumlation is to give the optimum solution and provide
a comparison basis for the other two algorithms.

For each of the memory allocation we associate a 0 - 1 variable (xj ) which
will be 1 in case that the memory allocation will be made in SPM. For each
combination of memory allocations, that is, for each kernel invocation, we
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associate a 0 - 1 variable (yi ) which will be 1 in case all the memory allocations
used by that invocation are allocated in SPM. Let n be the number of memory
allocations combinations. Using this notation our objective function is:

max(
n∑

i=1

yi · kigain) (5.5)

We need a constraint linking the combinations of memory allocations with
each allocation. Let ci be the number of allocations in Ci . The idea is that yi is
1 just if all the corresponding xj are also 1. We can express this for each i , as:

yi ≤
∑

aj∈Ci
xj

ci
(5.6)

Let m be the total number of memory allocations. Ensuring that all the allo-
cation fit in SPM will be imposed by the following constraint (where MEM is
the total size of SPM):

m∑
j

xj · ajsize < MEM (5.7)

5.4 Empirical Validation

As explained also in Section 4.5, although the analysis was done for the hArtes
platform, we did the empirical validation of our approach on a different but
similar platform. We did this because hArtes platform is better suited for au-
dio applications, due to the way the bus operates - half of the time is allocated
to transfers from and to audio input/output buffers and memory. For our plat-
form, the same architectural concept was implemented, but instead of a cus-
tom board design, an off-the-shelf board was used, namely a Xilinx Virtex-4
ML410 which is based on the Xilinx XC4VFX60 FPGA. The ML410 platform
is similar to the hArtes platform, as they are both based on the same family of
FPGA, the main difference is that the GPP and memory controller are located
on the FPGA. This makes our platform better suited for this application. The
memories used in our design are: a Flash memory used as external memory,
an internal 256 MB DDR2 memory as main memory and a 128 kB SPM used
as scratch pad memory. The kernels were implemented using the Delft Work-
bench Automated Reconfigurable VHDL Generator (DWARV) tool [91]. The
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General Purpose Processor (GPP) runs at 200 MHz and the hardware designs
are clocked at 100 MHz. The compiler used to instrument the application was
a modified GCC 4.3 Power-PC compiler.

As this is a runtime algorithm, overheads are important in measuring its per-
formance. We present separately the overheads, measured as a percentage of
the total application execution time, involved in constructing the MEMAL in
Table 5.3. The videos used are the ones available at [90]. From Table 5.3 we
can conclude that compared to the speedups that can be obtained by applying
AMMA, the overhead incurred by it is negligible.

Table 5.3: Execution time overhead of constructing memory allocation table for stack
and dynamically allocated variables.

Instrumen
1 2 3 4 5 6

-tation
Dynamic 0.38% 0.37% <0.1% <0.1% <0.1% 0.24%
Stack 0.36% 0.58% 0.33% 1.07% <0.1% 0.52%

Another, similar, but less important issue is the execution time of the AMMA
and AMMAe algorithms. Even if the mapping algorithm will execute rarely,
we present in Table 5.4 the times spent by each mapping algorithm, obtained
when testing with the synthetic applications. For the ILP algorithm, we ran just
one subset of problems, because of the long execution times. The three cases
are increasingly complex synthetic applications. Their generation is explained
in Section 5.4.2. It is obvious that the ILP solution is not a feasible candidate
for runtime execution, as it can take more than 30s.

5.4.1 H.264 video Encoder

We used the instrumentation and algorithm presented to compile and run the
H.264 video codec. The execution pattern in the encoder is dependent on the

Table 5.4: Average mapping module execution times tested on the hardware platform
(outside of the context of an application).

Algorithm
Average execution times (ms)
Case 1 Case 2 Case 3

ILP 9980 30990 37780
AMMA 21 97 239
AMMAe 52 234 522
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input data. Our infrastructure will adapt to that by calling the mapping algo-
rithm during program execution. More than 35% of the execution time is spent
in two kernels: satd wxh and sad. The kernel hardware implementations offer
an average speedup of 2 and respectively 1.8. The total memory used by both
functions is 603 kB. The smallest block is 256 bytes, while the largest is 49 kB.
The total available scratch pad memory is 128 kB. With this setup, by applying
the AMMA algorithm we obtained an application performance improvement
of 14% compared to the GPP only execution. For this application and size of
SPM both AMMA and AMMAe gave the optimal solution. Assuming an in-
finite amount of SPM the speedup that could be obtained is of 18% compared
to software only execution. The application contained 17 memory allocations
that were used by the two kernels, and 29 memory allocation combinations.

5.4.2 Synthetic Applications

Besides the evaluation on the H.264 application, we used benchmarks on syn-
thetic applications, to evaluate how far is our algorithm from the optimal solu-
tion. We considered in the synthetic applications that each memory allocation
has a size between 128 bytes and 256 kB. We use as reference the DWARV [91]
hardware compiler which automatically generates the hardware kernels. The
speedup obtained for various tests is up to 10x. We chose between 5 and 10
memory blocks and a large number of kernel (between 10 and 30) to test the
algorithms in more complex situations than the one found in the motivational
example. The results can be seen in Figure 5.6, Figure 5.7 and Figure 5.8.

The number of synthetic applications generated was 300. We compare against
the ILP solution, which is optimal. The speedup obtained for each application
depends on the amount of memory available and is in our tests between 2 and
6.

From the graph, we can see that in case there is little memory available, both
algorithms perform as well as ILP. As the available memory increases, we can
see that AMMAe is better than AMMA, within 4% of the ILP solution. Both
algorithms converge to ILP when the available SPM-s are large enough to fit
all the memory objects and all the kernels will be executed in hardware. These
trends were also seen when varying the number of kernels and memory blocks
(graphs omitted here for brevity), with AMMA being always within 14% of
the ILP, and AMMAe being within 5% of the ILP solution.
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Figure 5.6: Algorithms performance for different memory sizes, number of kernels
between 5 and 10.
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Figure 5.7: Algorithms performance for different memory sizes, number of kernels
between 10 and 30.
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Figure 5.8: Algorithms performance for different memory sizes, number of kernels
between 20 and 60.

5.5 Summary

In this chapter, we presented the compiler infrastructure, including two map-
ping algorithms AMMA and AMMAe, that decide, at runtime, which is the
best allocation for memory. The allocation takes into account the kernels that
use the memory as well as the gain that could be obtained by running those
kernels on dedicated hardware components. We showed how such an infras-
tructure can simplify the development of applications while allowing a high
flexibility by adapting to changing conditions. Our algorithm stays within 5%
of the optimal solution given by an ILP formulation.

Note.

The content of this chapter is based on the following paper:

V.M. Sima, K.L.M. Bertels, Run-time memory allocation in a heterogeneous
reconfigurable platform,IEEE International Conference on ReConFigurable
Computing and FPGA, Cancun, Mexico, December 2009.



6
Scenario Based Runtime Mapping

IN this chapter, we present the compiler extensions, based on OpenMP li-
braries, needed for supporting parallel execution on the reconfigurable
Molen platform. More specifically, we start by proposing a compile-time,

Integer Linear Programming (ILP) algorithm that maps parallel applications
to the target platform. We assume that, for a part of the application, the de-
signer can select from a set of hardware implementations with different area
and speedup. Based on profile information, the algorithm aims to minimize
the total execution time of the running threads, taking into account the limited
reconfigurable area. We show that for a real application and the real hardware
implementation of the kernels our ILP model is up to 1.9x better than other
existing mapping approaches. We also investigate the impact of several pa-
rameters such as the size of the reconfigurable area and the number of threads
on our proposed ILP model. For these factors, we determine in which range
the ILP model is best applicable.

In the second part of the chapter, we extend the initial idea by developing a
runtime algorithm. This algorithm, based on profile info decides at runtime
which scenario to use. As this is a runtime algorithm, we consider the area
will change over time.

6.1 Background and Related Research

When dealing with reconfigurable hardware and parallelism, a lot of research
focused on reducing the reconfiguration overhead [37] [66] [67], the recon-
figuration area management and scheduling of operations [78] [27] [63]. All
these approaches address tasks organized in simplified task graphs or multiple
independent applications. They do not address the efficient use of available
reconfigurable area in case of multiple threads of one or more applications,

113
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when taking into account the execution time.

For single parallel applications the problem of splitting data across threads is
discussed in [85]. For the same class of problems the bandwidth allocation is
discussed in [11], where the application is considered to be composed of a task
chain. Neither of these approaches consider multiple parallel threads and/or
applications in the system, except the optimized application.

Higher level methodologies were proposed [32] [58], that identify at compile-
time the full set of possible scenarios that arise during the application execu-
tion. These methodologies work in case the system is completely known at
design time, compared to our proposed approach, that can adapt to a certain
extent to changes in the system and applications.

6.2 Static algorithm

In this section, we present the static algorithm that selects from a set of im-
plementations a combination that minimizes execution time. The constraint
is that enough area has to be available for the implementations selected. We
consider that we have all the information about speedup and area requirement
as this operation is performed at compile-time.

6.2.1 Problem Definition

Our starting point for the algorithm in this chapter is the beamforming and
wavefield synthesis applications presented in Section 3.5.2. In order to be ap-
plicable, our algorithm needs that the application is composed with several
threads and for each thread different implementations are available. A thread
can be implemented in software, in hardware or a combination of software and
hardware. As the hardware parts can be implemented differently based on how
much area is available, there will be multiple hardware implementations avail-
able. With each implementation we have associated a software execution time,
a hardware execution time and an area requirement. For the real application
evaluated this is given in Table 6.1.

Problem statement: We call a scenario an implementation for kernels ex-
ecuted inside an application thread. Each implementation can be more ap-
propriate in a different context, for example when there is no reconfigurable
area available, or when the fastest speed is needed. In our context, kernels
have a one-to-one relationship with functions, for which the execution time
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Thread Scenario SW Time HW Time Area
(ms) (ms) (%)

1 s1,1 1635000 0 0
s1,2 87310 179170 20
s1,3 87315 89585 40
s1,4 87320 84228 61
s1,5 87325 44792 81
s1,6 87330 43179 101
s1,7 87335 42114 122
s1,8 87340 41339 142

2 s2,1 1570000 0 0
s2,2 5 71075 14
s2,3 10 35537 28
s2,4 15 26653 42
s2,5 20 17768 56
s2,6 25 13326 84

Table 6.1: Implementation scenarios for beamforming application. The various sce-
narios are obtained by increasing the level of parallelism used in the hardware for each
task in each thread. The area is considered for platform Virtex II Pro.
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is a significant percent of the total execution time of the thread. The sce-
nario - sj - will be characterized by software execution time tsw , hardware
execution time thw and area occupied a based on a specific kernel implemen-
tation. The scenarios are generated based on the available hardware imple-
mentations and profiling information. A scenario group represents a set of all
available scenarios for a kernel Ki . Assuming we have m scenarios for kernel
Ki : SGKi

= {si ,j , j = 1..m/si ,j = (tsw , thw , a)}.
Our problem can be formulated as follows: having a set of scenario groups
SGS = {SGK1 ,SGK2 , ...SGKn} that are in conflict at runtime, and a total area
S , determine the particular scenarios selection that will be used SS = {si/si ∈
SGi} that minimizes the total execution time of the running threads taking into
account the parallel hardware execution on the reconfigurable hardware and
the limited size of the reconfigurable area.

We do not have additional information except the execution times and the area
occupied. We assume the software prepares the hardware executions, so the
software part is executed before the hardware part. We do not assume any
particular order of execution of the threads. We give an example in Figure 6.1.
Software only scenarios are omitted as they would not bring any insight into
our assumptions. As we do not assume any order of execution of the threads
multiple schedules are possible for a chosen set of scenarios. We exemplify
in Figure 6.1, the lower bound (ideal case), upper bound (worst case) and one
case in between those two. Our problem is to minimize all of these possible
schedules given a certain area constraint.

6.2.2 Allocation Algorithm

In the rest of this section, we present a compile-time allocation algorithm for
threads that compete for the reconfigurable hardware. We assume that the pro-
filer provides the set of kernels that simultaneously require the reconfigurable
hardware and we aim to select the optimal scenario for each kernel such that
the total execution time of the threads is minimized. However, taking into
account the actual total execution time for the threads is dependent on the se-
quence in which the threads require the reconfigurable hardware and we do not
have such information at compile-time. We want to minimize the upper bound
of the total execution time. We assume the threads are independent and that
the software processor will be fully utilized. Then for a set of scenarios with n
elements, the execution time is U =

∑n
k=1(tswk

) + maxk(thwk
).

For the problem defined in Section 6.2.1, we transform it in an ILP problem as



6.2. STATIC ALGORITHM 117

C

A
B

B

A

A

SW HW

A

A

B

B

A

B

B

SW HW

SW HW SW HW

Possible Schedule (C, A, B)
 – upper bound
Total time: 18

Scenario B
SW time: 2
HW time: 8

Scenario A
SW time: 2
HW time: 5

Possible Schedule(B,C,A)
 – lower bound
Total time: 15

C

C

SW HW

Scenario C
SW time: 6
HW time: 6

C

C

C

C

A
B

B

A

SW HW

Possible Schedule (A, B, C)
Total time: 12

C

Figure 6.1: Example of scenarios (software only scenarios ommited for brevity) and
schedules. As this is not fixed at compile-time, each schedule can arise during normal
program execution. We give here the upper and lower bound, and also one more of
the possible schedules.

follows.

0-1 selection In our case, only one scenario from a scenario group must be
selected for execution. We adopt the following notations:

• n the total number of scenario groups.

• mi be the number of scenarios in scenario group i .

• Si ,j the j-th scenario from scenario group i .

• xi ,j a boolean variable such that xi ,j

{
0,Si ,j /∈ SS
1,Si ,j ∈ SS

.

• A the total area available.
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Finding the result set of scenarios is reduced to finding the values for all xi ,j .

The objective function is min(
∑n

i=1(
∑mi

j=1(tswi ,j∗xi ,j))+maxni=1(
∑mi

j=1(thwi ,j
∗

xi ,j))) which can be simply expressed as:

min(
n∑

i=1

mi∑
j=1

(tswi ,j ∗ xi ,j) + y) (6.1)

for each i from 1 to n:
mj∑
j=1

(thwi ,j
∗ xi ,j) ≤ y (6.2)

The constraints can be represented as a system of linear pseudo-boolean in-
equalities. The one scenario per scenario group constraint will be expressed
for each i = 1..n as:

∑mj

j=1 xi ,j = 1.

The selected scenarios must fit together on the available reconfigurable hard-
ware, thus we have the area constraint:

∑n
i=1

∑mi
j=1(ai ,j ∗ xi ,j) ≤ A.

6.3 Results

In this section, we present the results of the algorithm for the two case studies
namely the beamforming application and synthetic applications. The other
applications analyzed in our work would not benefit from this algorithm as
most of their computations are done in a sequence.

The beamforming application idea is to enhance the capabilities of sensors -
in our case microphones - by jointly taking the individual signals of multiple
sensors into one computation and thereby modify their spatial directivity. The
application is composed of two threads: one that computes the signals for each
source and one that adjusts the parameters of the computation based on the
movement of the sources in space. For the computation thread, the kernel is
the FIR filter, executed in parallel for all sources. The thread that performs the
adjustments has a kernel represented by a matrix multiplication.

The synthetic applications are generated for different numbers of conflicting
scenario groups. We analyzed when the number of threads ranges from 2 to
6. The upper bound for the number of threads is based on the fact that in
order for the algorithm to be applied, at least one hardware implementation
for each thread has to be available. As the area on the FPGA is limited, we
used as an indication of kernel size the smaller kernel in our real evaluation
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application, which occupies 14% of the area of the FPGA as it can be seen in
the second row of the second thread in Table 6.1. The number of scenarios per
scenario group was chosen between 2 to 8 because of the same reason, that the
hardware implementations have to fit the total FPGA area. For the speedup
we use as reference the Delft Workbench Automated Reconfigurable VHDL
Generator (DWARV) [91] hardware compiler which automatically generates
the hardware kernels from C code. The speedup obtained for various tests is
up to 10x. We assumed a speedup between 2x and 10x. The area used for the
hardware scenarios was from 10% to 50%, and the total area was proportional
to the number of scenario groups. The previous parameters were chosen after
analyzing the beamforming applications and various hardware kernels.

As we perform a statistical analysis an important question is how big is the
sample of the problems. We target a relative standard deviation of 5% for
our generated sample of problems. The relative standard error represents the
ratio between the standard deviation and the estimate, which in our case is the
speedup obtained by an algorithm when compared to software only execution.
By iteratively generating different sample sizes we observed that for a a sample
size bigger than 360 problems, the relative standard deviation is below 5% for
all problem instances.

At the time of the development of this work, neither the hArtes platform, nor
our own ML410 based platform were yet available. Considering the same
architectural concept, we tested independently the part of the applications on
the available system. For the beamforming application, we have implemented
and tested each kernel individually using the DWARV tool. We used Xilinx
Virtex II Pro running at 300 MHz and the hardware designs clocked at 100
MHz. The results for the entire execution were estimated from the profiling
information available.

We compare our algorithm, which is denoted in the rest of the section as ILP,
to:

• A straightforward allocation solution when the total available area is
equally divided between running threads - referred to as the Equal case.

• An adapted version of one of the algorithms proposed in [68] referred
to as FixRwSW. The FixRwSw algorithm relies just on choosing from a
hardware or a software version of the kernel.

As we do not consider the threads have dependencies, we can not have a pre-
determined execution order. For our example, sometimes thread 1 will start
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Figure 6.2: Beamforming application speedup compared to software execution. The
percentage represents the percentage obtained from the lower bound case (the closest
is the percentage to 100%,the better).The application contains two threads and each
thread contain 8 and respectively 6 scenarios.

first and other times, thread 2 will start first. Still we need to compare different
allocations from the point of view of the execution time. To do this, for all
the algorithms we consider the average execution time of all possible sched-
ules. Given the example in Figure 6.1 there are 6 schedules possible of the 3
scenarios. We also compute the absolute lower bound of the execution time -
marked Lower bound in the graphs. This lower bound is reached for the best
possible scheduling of all the threads. In the example, the lower bound is 15.
The lower bound is used for comparison purposes as we can not guarantee it
will be reached in all the situations.

The results for the beamforming application are summarized in Figure 6.2.
We ran all the algorithms for different available areas on the reconfigurable
fabric. In a real system the area available will depend on the amount of features
that have to be included in the system. More feature will require multiple IP
blocks and will reduce the available area. The speedup is compared to software
only execution. Our algorithm performs better than both Equal and FixRwSW.
The lower bound represents though only the best possible schedule that may
appear during application execution. As we assume this is not controllable,
it has to be regarded as an ideal case. In some cases the schedule does not
influences the total execution time. In those cases the ILP algorithm can obtain
the best possible result. For our example, such a case is the case when we use
60% of the area available.
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Figure 6.3: Execution time for synthetic applications for different number of threads.

For synthetic applications, the behavior of the algorithms when the number of
threads is increased is presented in Figure 6.3. For all cases, the ILP algorithm
obtains a bigger speedup than the other algorithms. Given the fact that the area
is constant, adding multiple threads will decrease the overall spedup obtained.

We also investigate the impact on performance of the size of the reconfigurable
hardware. For a set of 6 tasks, the results are presented in Figure 6.4. We
notice that our ILP algorithm is again better than both Equal and FixRwSW.
This difference increases as more area becomes available, as the ILP takes into
account more possibilities than the other algorithms.
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Figure 6.4: Synthetic application execution time versus area.
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From the above results, we can conclude that our algorithm can be applied
effectively when the unoccupied area is comparable to the area used by a sce-
nario group in case all the iterations are implemented in parallel. However, our
algorithm is not suitable for small kernels which can be dynamically config-
ured at runtime.

6.4 Runtime Algorithm

In this section, we will present a runtime algorithm that fulfills the same role
as the ILP but at runtime. There are several problems with the ILP algorithm.
The first one is that it needs to have complete information about all the scenar-
ios when it is executed. While this can be possible for small systems, in large,
dynamic system, not all information will be available at compile-time. The
second issue with the algorithm is that ILP is extremely computing intensive,
and it is not well suited for runtime execution. To compensate both these prob-
lems we propose a runtime algorithm and show its performance is comparable
to the ILP.

This algorithm will not consider partial reconfiguration is a viable option dur-
ing application execution. A complete configuration will be performed, but
only before the application starts and only if the system changed in a signif-
icant way. This can happen if the available area changes or more threads are
needed.

Algorithm

The algorithm has the same input as described in Section 6.2.1. With the same
notations, the algorithm is given in Listing 6.1. We name it Runtime Scenario
Selection Algorithm (RSSA).

The algorithm is an iterative greedy algorithm. The idea is that at each step, for
each scenario, we compute the efficiency of using a larger hardware scenario.
This efficiency is computed as the time improvement over the additional area
occupied by the new scenario. The algorithm is run until no modification is
possible.

Listing 6.1: Runtime scenario selection algorithm.
a reaUsed = 0
m o d i f i c a t i o n = t r u e
f o r i = 1 t o l e n g t h ( sg ) {
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s o l u t i o n [ i ] = 0 ;
}

whi le ( m o d i f i c a t i o n ) {
s c e n E f f = i n f ;
f o r i = 1 t o l e n g t h ( sg ) {

s c e n a r i o o l d = sg . s c e n a r i o s [ s o l u t i o n [ i ] ] ;
f o r j = 1 t o l e n g t h ( sg . s c e n a r i o s ) {

s c e n a r i o new = sg . s c e n a r i o s [ j ] ;
newEff = ( o l d . timeSW + o l d . timeHW −

( new . timeSW + new . timeHW ) ) /
( o l d . a r e a − new . a r e a ) < s c e n E f f ;

i f a reaUsed − o l d . a r e a + new . a r e a < t o t a l A r e a
and newEff < s c e n E f f {
s c e n E f f = newEff ;
m o d i f i c a t i o n = t r u e ;
modify = i , j ;

}
}

}

i f ( m o d i f i c a t i o n ) {
a p p l y m o d i f i c a t i o n

}
}

Using the notations in Section 6.2.2, the complexity can be expressed asO(n2∗
max(mi )).

Results

The results of RSSA are within 7% of the result obtained by the ILP algo-
rithm. This can be seen in Figure 6.5, where we represent the time for both
algorithms, when area varies.

6.5 Conclusions

In this chapter, we proposed two allocation algorithms that select between mul-
tiple implementations of the kernels taking into account the hardware parallel
execution and the size of the available reconfigurable area. We compared the
ILP algorithm to a straightforward allocation algorithm which equally divides
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Figure 6.5: Synthetic applications speedup for different areas used of the FPGA.

the available area to the number of threads and estimated that for a real ap-
plication and hardware implementation our algorithm has a double speedup.
Our algorithm is close (up to 33%) to the lower bound. Finally, we determine
that our algorithm performs well for those cases where the size of the recon-
figurable area is not large enough to fit all the largest scenarios inside. When
validating these algorithms using the beamforming application, we demon-
strated that the estimated speedup obtained when applying the ILP algorithm,
is close to the lower bound. Then, we proposed a runtime algorithm that has
similar performances to the ILP solution but can be executed at runtime.

Note.

The content of this chapter is based on the following paper:

V.M. Sima, E. Moscu Panainte, K.L.M. Bertels, Resource Allocation Algo-
rithm And OpenMP Extensions For Parallel Execution On A Heteroge-
neous Reconfigurable Platform, Proceedings of 2008 International Confer-
ence on Field Programmable Logic and Applications (FPL), Heidelberg, Ger-
many, September 2008.



7
Conclusions

IN this thesis, we addressed the problem of runtime adaptation of the appli-
cation to its executing environment by combining compile time analysis
and runtime optimizations that target heterogeneous multicore platforms.

Performing an analysis only at compile or only at runtime can mean that, in
many cases, optimization possibilities are lost. Some of the main problems that
are involved in the development of an application, namely partitioning, map-
ping and parallelism were addressed, and solutions proposed. In this chapter,
we discuss also how these optimizations can be combined, to improve even
further the overall system performance. For each of the issues, we detail the
future research directions.

7.1 Outlook

In Chapter 2, we presented the key concepts used in this thesis: platforms,
toolchains and applications. For each choice, we discussed the requirements
and the chosen solution.The Molen machine organization and Molen program-
ming paradigm were introduced, and the main components of the toolchain
were presented. Next we presented the related work that addresses the map-
ping, memory allocation and thread allocation problems.

In Chapter 3, we presented the work done in the context of the hArtes project.
The main purpose of this project was to develop a holistic approach for devel-
oping multicore heterogeneous platforms. The hardware platform, the hArtes
Hardware Platform (hHP), developed in the project, was described in detail.
We discussed the design decisions and highlighted its issues. We continued by
presenting the toolchain used to build an application for the platforms. Then,
the applications provided by the project were analyzed in order to obtain the
problems that needed to be solved.

125
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The subsequent chapters each addresses one or more of the issues identified in
Chapter 3.

In Chapter 4, we presented a dynamic mapping algorithm that allows to iden-
tify, at runtime, the best mapping based on parameter values. Our solution re-
lied on a software cache for parameter values and execution times. The cache
was created at runtime using compiler instrumented functions.

In Chapter 5, we tackled the problem of memory allocation, in the case of a
platform with memory distributed across multiple processing elements with
different computing capabilities. The hHP platform had many different types
of memories, with different access speeds from different processing elements.
This made efficient mapping of an application a challenge as it implied that
specific memory transfers to the different local memories are needed. In order
to reduce such a communication overhead - and thus improve performance -
we presented an algorithm that tracks memory utilization from different com-
putations at runtime. Then, at next allocation of a specific memory block, a
decision regarding its destination can be made, based on the execution history.

In Chapter 6, we presented the issues that arise when the number of threads
that can be executed is not fixed. In most multicore systems, the processing
elements are identical and can perform computations with the same efficiency.
This is not true in a heterogeneous reconfigurable system. We presented an al-
gorithm that decides at compile-time, which is the best division of the available
area, taking into account the speedup obtained for the computations mapped.

7.2 Dissertation Contributions

The contributions of this thesis are:

1. A novel mapping algorithm that decides on which processing element a
particular computation can be executed in the shortest amount of time.
Compared to other mapping algorithms, the decision is delayed until
runtime, when using information gathered at compile-time, the best de-
cision can be made. We show that this organization, allows the algo-
rithm to take advantage of some optimization possibilities lost in case
the analysis is performed only at compile-time (Chapter 4).

2. A novel memory allocation algorithm targeted to heterogeneous plat-
forms. This algorithm uses the application execution history and the
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characteristics of computations, to decide, at runtime, the best alloca-
tion of memory in the current memory hierarchy (Chapter 5).

3. A new allocation algorithm for multiple concurrent threads that need to
be mapped onto a reconfigurable fabric (Chapter 6).

4. An analysis of the issues that emerge during the development of a
toolchain for a heterogeneous multicore platform. Solutions for these
issues are proposed, and their implementation is presented (Chapter 3).

7.3 Future directions

In this section, we discuss possible interactions between the algorithms pre-
sented. We also highlight the future work for each part of the work, ie. map-
ping, memory allocation and parallel execution.

Applying multiple algorithms

The algorithms presented in this thesis are assumed to be orthogonal to each
other. We applied each of them only for one example but there is no funda-
mental issue in applying all of them for the same application.

Each of the algorithms addresses another aspect of executing on a hetero-
geneous platform. The aspect of memory management is addressed by
the Adaptive Memory Mapping Algorithm (AMMA) algorithm presented in
Chapter 5. The algorithm decides which blocks should be allocated directly
in the scratch pad memory. Then, another algorithm - Adaptive Mapping
Algorithm (AMAP) - presented in Chapter 4 decides besides on the param-
eter values if a call of a function should be executed accelerated or not.

As both algorithms try to adapt to the execution environment, they will inter-
fere with each other. Any change performed by the algorithms in the alloca-
tion or the mapping can be perceived by the other algorithm as an environment
change. It is an open question how fast the system will converge to a stable
state where no change will be performed.

The scenario-based approach can be applied independently of the previous two
algorithms as it works on a different, higher, level. In the context of multiple
threads AMAP algorithm should be extended to provide a management of the
available memory for each thread.
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Runtime hardware/software mapping

The work presented in Chapter 4 presents the general idea and shows how it
can be applied successfully to improve the execution time of an application. A
software cache is used to store information about the behavior of the computa-
tions. As with any cache, a thorough analysis of the purging policies could be
made. An even more powerful possibility is to combine this caching technique
with other techniques such as program phase analysis.

Given the available area, the algorithm could be implemented as a hardware
module. This would decrease the overhead of its execution and allow it to be
used for a wider range of computations. If implemented in software, some
functions with short execution time might not be managed by the algorithm as
the overhead of calling the algorithm surpasses their execution time.

Combining the scenario based work with the runtime mapping is also a possi-
bility as the latter does not analyze the global state but the state for each single
kernel execution, while the former takes parallelism into account so, a combi-
nation of those algorithms can provide significant gains in regard to application
execution time.

Runtime memory allocation

The application and test platform had such an architecture that even if the
execution was in parallel (General Purpose Processor (GPP) and Field Pro-
grammable Gate Array (FPGA)), the memory was accessed primarily from
the local cache for GPP or scratch pad memory for FPGA. Still, future archi-
tectures might have more complex memory organizations, so the impact of
parallel execution on the allocation strategies should be further analyzed. Two
examples of such architectures are reconfigurable partitioned caches [73] or
reconfiguration cache hierarchy [8].

Exact memory utilization

Knowing the exact amount of memory used by a kernel function when exe-
cuted on the FPGA could bring significant advantages. This would improve
the computation of the cost of runtime mapping and improving the speedup
obtained.

For now, runtime mapping uses a profiling mechanism to determine the
speedup obtained when executing a function in hardware instead of software.
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This speedup is affected by the amount of memory that has to be transferred
from the main memory to the local FPGA memory. Introducing a cache could
help in some of the cases, but, in case the size is known, making a transfer is
always at least as good as the cache.

Until now, if the memory is not allocated in the Scratch Pad Memory (SPM),
the size transferred is based on the size of the allocated block. But for some
application where the kernel accesses a small part of the memory block this
can be a bottleneck for small iteration count kernels.





Bibliography

[1] Ieee standard for reduced-pin and enhanced-functionality test access port
and boundary-scan architecture. IEEE Std 1149.7-2009, pages c1 –985,
10 2010. 31

[2] Javed Absar and Francky Catthoor. Analysis of scratch-pad and data-
cache performance using statistical methods. In ASP-DAC ’06: Proceed-
ings of the 2006 Asia and South Pacific Design Automation Conference,
pages 820–825, Piscataway, NJ, USA, 2006. IEEE Press. 18, 96

[3] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie, J. Or-
tiz, Ed Komp, and P. Ashenden. Programming models for hybrid fpga-
cpu computational components: a missing link. Micro, IEEE, 24(4):42 –
53, july-aug. 2004. 16
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Samenvatting

In deze dissertatie bestuderen we het probleem om een toepassing, tijdens de
uitvoering, af te stemmen aan zijn werkomgeving. Een kenmerkend voorbeeld
is het verplaatsen van een berekening van de ene naar de andere verwerk-
ingseenheid, rekening houdend met de beschikbare verwerkingseenheden in
het systeem. Dit vind plaats op basis van de informatie en instrumentatie
waarin de de compiler voorziet en op basis van de status van de werkomgeving.
Dit werk concentreert zich op heterogene multicore embedded architecturen.
De volgende drie aspecten van applicatie-optimalisaties worden in deze disser-
tatie besproken: hardware/software mapping, geheugentoewijzing en parallele
executie. Voor elk aspect werd een algoritme ontwikkeld en, gebruikmakend
van een geschikte toepassing, getest op een experimenteel hardwareplatform.
De basis van dit werk is de Molen architectuur en bijhorend programmeer-
model dat werd aangepast in functie van het specifieke hardware platform en
de werkomgeving.

Het doel van het hardware-software toewijzingsalgoritme is om, tijdens de uiv-
oering, de verwerkingseenheid te kiezen waar een taak het meest efficint kan
worden uitgevoerd. Aangaande de geheugentoewijzing stellen wij een algo-
ritme voor, dat tijdens de uitvoering beslist wat de beste geheugentoewijz-
ing is op basis van informatie vergaard tijdens de compilatie en de huidige
werkomgeving. Teneinde parallelle applicaties te ondersteunen, hebben we
een algoritme ontwikkeld dat de beste overweging maakt tussen het benodigde
chipoppervlak en de snelheidswinst door te bepalen hoeveel taken parallel gen-
stantieerd dienen te worden.

De experimenten werden uitgevoerd op een heterogeen multicore embedded
platform, om precies te zijn het hHP. Het platform bestaat uit een General
Purpose Processor - ARM, een Digital Signal Processor (DSP) - Atmel Magic
en een Field Programmable Gate Array (FPGA) - Xilinx Virtex4. De validatie
gebeurde aan de hand van een aantal industrile multimedia-applicaties: een
video encoder/decoder en een golfveldsynthese applicatie. Het toewijzingsal-
goritme behaalt verbeteringen tussen de 5% en 43%. We toonde bovendien
aan dat het een flexibel algoritme is, dat de uitvoering aanpast in het geval dat
de uitvoeringsoverhead toeneemt. Het geheugenallocatie-algoritme behaalde
een snelheidswinst van 18% voor de geselecteerde applicatie. Voor dit algo-
ritme tonen we dat de voorgestelde allocatie zich binnen 14% van de optimale
allocatie op basis van Integer Linear Programming (ILP) bevindt. De selectie
van parallele berekeningen gebaseerd op scenarios, is tussen de 21% en 92%.
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