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Detection and Segmentation of Colonic
Polyps on Implicit Isosurfaces by
Second Principal Curvature Flow

Cees van Wijk*, Vincent F. van Ravesteijn, Frans M. Vos, and Lucas J. van Vliet, Member, IEEE

Abstract—Today’s computer aided detection systems for com-
puted tomography colonography (CTC) enable automated detec-
tion and segmentation of colorectal polyps. We present a paradigm
shift by proposing a method that measures the amount of protrud-
edness of a candidate object in a scale adaptive fashion. One of the
main results is that the performance of the candidate detection de-
pends only on one parameter, the amount of protrusion. Addition-
ally the method yields correct polyp segmentation without the need
of an additional segmentation step. The supervised pattern recog-
nition involves a clear distinction between size related features and
features related to shape or intensity. A Mahalanobis transforma-
tion of the latter facilitates ranking of the objects using a logistic
classifier. We evaluate two implementations of the method on 84
patients with a total of 57 polyps larger than or equal to 6 mm. We
obtained a performance of 95% sensitivity at four false positives
per scan for polyps larger than or equal to 6 mm.

Index Terms—Biomedical image processing, image analysis, par-
tial differential equation (PDE), polyp detection, surface evolution.

I. INTRODUCTION

P ROTRUSIONS of a surface embedded in a 3-D image
are difficult to detect. The challenge increases even fur-

ther if the surface itself is highly structured and interacts with
the protruding elements. Such a problem is the detection of
polyps in computed tomography (CT) colonography (CTC), a
minimal invasive technique for examining the colon surface (cf.
Fig. 1). There is an increasing interest in computer aided de-
tection (CAD) systems for polyp detection in CTC data to assist
the radiologist [1]–[7]. Such a CAD system typically consists of
three consecutive steps: colon segmentation; detection of polyp
candidates; and supervised classification of candidates as polyps
or nonpolyps [8], [9].

Adenomatous polyps are important precursors to colon
cancer and develop due to genetic mutations in the mucosa
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Fig. 1. Isosurface renderings (at���� ��) of the colon surface showing typ-
ical polyps in their structured surroundings.

cells [10]. This process of oncogenesis leads to enhanced cell
proliferation causing the polyp to grow and to evolve from a
small adenoma into a large adenoma into a carcinoma. This
induces a morphological change to the colon surface,1 that
manifests itself as tissue protruding into the lumen. The defor-
mation is an important property which is used in the detection
by radiologists as well as gastroenterologists.

Practically all CAD systems for polyp detection analyze the
local curvature of the colon surface, which is subsequently used
to compute shape descriptors such as shape index or curvedness
[13], [14]. Computation of the curvature values is typically done
in “one shot” on a single predetermined scale, which is defined
as the effective size of the area over which the image features
are calculated. We will maintain this definition throughout the
paper.

We propose a new paradigm for the detection and segmenta-
tion of polyps that effectively copes with the highly structured
environment. The novelty of the approach is in computing an in-
tensity change field, which removes protruding elements from
the underlying data, while leaving the highly structured folds
intact. The deformation algorithm is described by a partial dif-
ferential equation (PDE) that is steered by the second principal
curvature.

In order to demonstrate the method’s efficiency, we make use
of a pattern recognition system introduced by us in [15]. The
paper involved polyp detection based on the explicit representa-
tion of the colon surface. The method proved to generalize well
and lead to satisfying results. It encouraged us to further inves-
tigate the candidate detection system. Presently, we propose a

1Not all colonic lesions grow into protruding polyps. It is estimated that ap-
proximately 10% of the lesions are so-called flat adenomas [11], [12].

0278-0062/$26.00 © 2010 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on July 30,2010 at 08:47:45 UTC from IEEE Xplore.  Restrictions apply. 



VAN WIJK et al.: DETECTION AND SEGMENTATION OF COLONIC POLYPS 689

technique based on an implicit representation of the colon sur-
face, which enables a number of improvements over the explicit
model. A concise description of the classifier is contained, since
it is only indirectly related to the paper’s main objective. This
allows us to fully go into all facets associated with second prin-
cipal curvature flow.

A. Previous Work

For the detection of candidate regions, Summers et al. [13]
proposed to use the mean and Gaussian curvature. They were
computed by methods from differential geometry, by fitting a
fourth-order B-spline to local 5-mm-radius neighborhoods of a
triangulated isosurface [16]. Candidates were generated by se-
lecting a range of mean and Gaussian curvature values. Addi-
tionally, a large number of other shape criteria were used [17,
Table 2], to limit the number of false positive detections. Simi-
larly, Yoshida et al. [14] used the shape index and curvedness to
find candidate objects on the colon surface. The shape index
and curvedness are functions of the principal curvatures of
the surface

(1)

with and the maximum and minimum principal curvature
respectively. A Gaussian-shaped window (aperture) of fixed
size was used to compute the curvatures from the 3-D CT data.

Alternatively, Kiss et al. [3] proposed to use a sphere fitting
method to generate candidates. The colon surface was classi-
fied as convex depending on the side on which the center of the
fitted sphere was found (in tissue or in air). This method clas-
sifies roughly 90% of the colon surface as concave, that is as
“normal.” To the remaining part of the colon surface a general-
ized Hough transformation was applied using a spherical model.
Candidate objects were generated by finding local maxima in
the parameter space created by the Hough transformation.

Konukoglu et al. [1], [18] proposed a method that is in some
sense the inverse of the approach that is proposed in the current
paper. Effectively, a wall evolution algorithm is described based
on a level-set formulation that regularizes and enhances polyps
as a preprocessing step to CTC CAD algorithms. The underlying
idea is to evolve the polyps towards spherical protrusions on
the colon wall while keeping other structures, such as haustral
folds, relatively unchanged. Thereby, the performance of CTC
CAD algorithms is potentially improved, especially for smaller
polyps.

Conventionally, the shape-based candidate detection methods
[1], [2], [13], [14], [19], [20] apply several conservative thresh-
olds to the mean curvature, principal curvatures, sphericity ratio
and/or shape index to generate candidate regions.

B. Problem Definition

We identify a number of challenges that are associated with
the detection of polyp candidates. First, optimization of the pa-
rameters is always complicated by the limited availability of
training examples. This may lead to overtraining for a specific
patient population, patient preparation, scanning hardware or

scanning protocol. Thus, it is preferred to keep the number of
restrictive criteria to a minimum.

Second, to achieve good discrimination power and accurate
measurement [21] of lesion size, precise “delineation” (or
segmentation) of the candidate is needed. Although a number
of methods are available for segmentation purposes [17], [22],
[23], adding such a separate step would introduce more pa-
rameters to the CAD pipeline and should be avoided. Fuzzy
segmentation methods using sophisticated pattern recognition
techniques might preclude this problem.

A third challenge is associated with the computation of the
first and second order derivatives, which are needed to com-
pute the principal curvatures and to characterize local shape.
The derivative operators must act on a range of sizes and should
not have optimal performance for a specific size only. Ideally,
the scale should adapt to the underlying image structure. To our
knowledge no research has been performed to either analyze the
effect of scale or to determine the optimal scale for polyp detec-
tion. It is partly addressed in [24] by performing the curvature
computation on a high resolution triangulated isosurface mesh
thereby limiting the low pass filtering across the isosurface. Fur-
thermore, some research on scale selection for CTC in general
has been performed in [25] and [26].

Last, detecting large polyps is (clinically) more important
than detecting smaller ones. One would like to have this built
into the CAD system. In other words, the detection method must
perform optimal for large polyps.

A steadily growing number of papers [7], [14], [27]–[31] re-
port on the performance of specific polyp detection algorithms.
Unfortunately, a proper comparison of algorithms is complex
due to differences in prevalence, patient preparation, scanning
protocol, and determination of the ground truth.

We aim to convey some general requirements for polyp de-
tection systems.

1) It should not involve many parameters which need to be
tuned in the presence of a limited number of polyps.

2) A separate segmentation step should be avoided as it might
add more parameters.

3) It must be able to cope with the whole polyp size range
encountered in practice. and

4) It should take into account the increased clinical relevance
of larger polyps.

C. Objective

We aim to introduce a new paradigm for the detection of pro-
truding regions on highly structured surfaces embedded in a 3-D
image. Polyps are assumed to have introduced a deformation to
the original (healthy) colon surface. We will describe a novel
method to reconstruct the data without these protrusions. Effec-
tively, the technique aims to “undo” the deformation by modi-
fying the underlying intensities so that the protruding shape is
no longer there.

The proposed method does not require any assumptions on
the lesion shape such as axial-symmetry, sphericity or lesion
size, other than that it protrudes. It works well for highly irreg-
ular protruding objects. Lesion candidates are generated using
only a single threshold. Small variations of the threshold affect
the detection sensitivity of the smaller polyps first. Additionally,
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the resulting segmentations include the complete object (both
head and neck).

In earlier work [32], we proposed a scheme that operated on
an explicit representation of the colon surface, which was ob-
tained by a triangulation of the isosurface at . Only
information of this particular isophote was used to estimate the
structured surface without the protrusions. Any (beneficial) in-
formation from isophotes with higher or lower intensities was
ignored. The scheme proposed in this paper differs fundamen-
tally by acting on an implicit representation of the colon surface.
That is, it uses information from other isophotes as well. Con-
sequently, there is no need for tuning (optimizing) the intensity
level of the isosurface. Another advantage of this method is that
topological complexities and complex mesh processing tasks,
such as mesh generation and mesh smoothing, are avoided. We
will compare both methods and demonstrate that the two tech-
niques are to some extent complementary. Moreover, exploiting
the complementary aspects will be shown to lead to improved
sensitivity.

II. METHODOLOGY

A. Materials

A total of 84 patients with an increased risk for colorectal
cancer were consecutively included in a previous study [33].
All data were acquired using a multislice CT scanner
(Philips Healthcare, Best, The Netherlands) using the same
scanning protocol for all scans (120 kV, 100 mAs,
collimation, pitch 1.25, standard reconstruction filter). Slice
thickness was 3.2 mm. All patients adhered to an extensive
laxative regime without taking a tagging agent with their diet.
All patients underwent CT colonography before colonoscopy.
The patients were scanned in both prone and supine position;
thus, a total of 168 scans were used in our study. The findings
of colonoscopy served as the golden standard. Polyp size was
also measured during colonoscopy by comparison with an open
biopsy forceps of known size. A research fellow annotated the
location of polyps in all CT scans. For the 84 patients, 108
polyps were annotated. The number of polyps with a size larger
than or equal to 6 mm was 57 and the number of polyps larger
than or equal to 10 mm was 32. Fig. 2 shows a histogram of
the optical colonoscopy size-measurements. Conventionally,
polyps which are smaller than 6 mm are considered clinically
unimportant. Therefore, they were not used in the performance
analysis. The peak at 10 mm polyp size is caused by the fact
that in clinical practice only a few bins are used: smaller than
6 mm, between 6 and 10 mm and larger than or equal to 10 mm.

Experts labelled the polyps in CT data based on the optical
colonoscopy findings without using CAD. A candidate gener-
ated by the CAD system was labelled as a true positive if an
annotation was within 5 mm from any of the voxels in the can-
didate and was not closer to any other candidate. A margin
of 5 mm was used to accommodate inaccurate localization by
the expert. Especially for the explicit method, such a margin
is needed to accommodate annotation inside the polyp. To be
able to make a proper comparison between the two methods,
the same margin is used for both techniques.

Fig. 2. Distribution of sizes obtained during colonoscopy of 57 polyps larger
than or equal to 6 mm in 84 patients from a previous study [33]. One polyp of
45 mm is not visible in the histogram.

B. Method

A typical polypoid shape is shown in Fig. 3(a). Suppose that
the points on the convex region of the polyp (the polyp head) are
iteratively moved inwards. In effect this process will “flatten”
the object [Fig. 3(c)]. Note that the convex region expands
during the process and will ultimately include the polyp neck
as well. After a certain amount of deformation, the surface
flattening is such that the protrusion is completely removed.
That is, the surface looks like as if the object was never there.
This is the key concept on which the method is based.

Before formalizing on the operator we first have a closer look
at the second order differential properties of the implicit surface
embedded in a 3-D voxel space. The colon can be considered
as a long elongated structured tube. For a perfect cylinder shape
the principal curvatures are smaller than or equal to zero every-
where. However, the colon contains many folds, i.e., structures
which are bended only in one direction: the first principal curva-
ture is larger than zero, whereas, the second principal curvature
is close to zero. Protruding objects, such as polyps, have positive
values for the first and second principal curvature. Therefore,
an operator is designed to affect only on points with a positive
second principal curvature and in such a way that the second
principal curvature decreases. Repeated application of the oper-
ator will eventually yield an image where the second principal
curvature is smaller than or equal to zero everywhere.

Consider once more the schematic representation of a polyp
in Fig. 3(a). The distinction between the head
and neck regions of the object is made by the
sign of the second principal curvature. On the line connecting
the inflection points A and B in the figure (separating the re-
gions “head” and “neck”) the Gaussian curvature is zero. The
proposed method initially adapts the head region only. It will
now be demonstrated that such adaptation leads to an expan-
sion of this region.

To that end, Fig. 3(b) shows a planar cross section through
A, spanned by the local gradient vector and the direction of the
second principal curvature. Let us merely consider the curve
emanating from this cross section. The steepness of this curve
corresponds to its first derivative; the curvature corresponds to
its second derivative and is given by

(2)
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Fig. 3. Schematic illustration of the deformation process. (a) Three regions (head, neck and periphery) are distinguished. (b) Second principal curvature � is
zero at the border between the head and neck region. (c) Head region expands during the deformation process.

in which represents the second derivative of the curve. By
convention has a sign opposite to that of the second derivative.
Observe that this curvature is positive on the “head” side from
A and negative on the “neck” side from A; the curvature equals
zero in A. At the position of A the second derivative is

(3)

A reduction of the protrusion in the head region implies that
the value of in (3) is lowered. Consequently, the
second derivative in A becomes negative, and the curva-
ture positive. Thus, the zero crossing of the second deriva-
tive will shift outwards in Fig. 3(b) and the head region will
expand into the neck region.

The effect of repeatedly reducing the protrusion is illustrated
in Fig. 3(c). The points with zero second principal curvature
shift from to and to . Eventually, the protrusion is
flattened over the complete shape, i.e., both the head and neck
regions. Although the initial delineation of the head region of
the structure (in which the deformation is started) may be af-
fected by noise, the area of operation eventually spreads to the
entire polyp area. It is this property that makes the procedure
robust. The results section contains some examples to illustrate
the method’s efficacy.

C. Second Principal Curvature Flow

A scheme to remove protruding elements from a curve in 2-D
is the Euclidean shortening flow [34]. A similar approach can be
taken in 3-D, for which the flow is governed by

(4)

with and the first and second principal curvatures,
the gradient magnitude of the input image , and a curva-
ture dependent function characterizing the flow. The principal
curvatures can be derived from the trace of the Hessian matrix

(5)

with , and the image coordinates and the second deriva-
tive . In gauge coordinates the Hessian is a diag-
onal matrix with terms [35]: , , and . The first term is
the second derivative in gradient direction; the second and third
terms are the second derivatives in the directions of the principal

curvatures of the isosurface perpendicular to the gradient vector.
The latter two relate to the principal curvatures of the isosurface

(6)

With the definition of inward normals, the second principal cur-
vature in the colon is everywhere smaller than or equal to zero,
except on protruding regions. Here, both the first and second
principal curvatures are positive and the corresponding second
derivatives are negative.

may be defined in various ways [36], e.g., by the
mean curvature [37], [38] or the Gaussian curvature. We require
that is continuous, especially at locations where the
sign of changes, to avoid a discontinuous deformation. More-
over, it must be small on folds with a small positive value of
so that the deformation on such locations is small. Reversely, the
response to polyps with two large principal curvatures should be
large. Accordingly, we solve the following nonlinear PDE:

(7)

Thus, only at protruding regions the image intensity is reduced
by an amount proportional to the local second derivative in the
direction of .

D. Implementation

The proposed method is applied to voxels on and around the
colon surface. This region of interest (ROI) is defined by a mask.
First, a binary image is obtained by thresholding the CT image at

. Subsequently, the mask is generated by applying the
exclusive or (XOR) operation to an eroded and a dilated version
of the binary image. The number of iterations for the dilation
and erosion should be such that the full air-colon transition is
included in the resulting mask image. We used a conservative
value of 10 mm for the radius of the erosion and dilation kernels.

The partial differential (7) is solved for the voxels in the ROI
defined previously. The intensities of voxels outside the ROI are
not altered and serve as Dirichlet boundary conditions. The left-
hand side of (7) is discretized by a forward difference scheme

(8)

The right-hand side of (7) requires computation of first and
second order derivatives. The first order derivative is determined
by the local orientation of the normal field. An accurate estimate
is required to prevent diffusion of information across isophotes,
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leading to blurry effects. Unfortunately, simple central differ-
ence derivative operators are known to have rather poor rotation
invariance [39]. Therefore, the first and second order deriva-
tives are computed after a (second-order) Taylor expansion in
a neighborhood [40]. They are used to compute .

The image values are modified in a semi-implicit manner
comparable to a Gauss-Seidel scheme, meaning that some of
the underlying intensity values are at time , while others
are at time

(9)

in which indicates that it is computed with informa-
tion from time steps and . For Laplace’s equation, nu-
merical stability is guaranteed if the term is smaller
than [41]. Therefore, the maximum time step for which sta-
bility is attained depends on the direction in which the voxel
size is smallest (typically in-plane): .
Note that this is a conservative value since we only use the
principal second derivative, , instead of the full Laplacian:

. The aspects of stability, convergence and cor-
rectness for similar problems have been elaborately discussed
in [34]. For a more formal discussion, see [42] and also [41]. In
practice, we have never encountered a problem concerning the
stability and convergence of the solution.

Summarizing, the algorithm acts only on the head regions in
which . A new intensity is assigned by (9) to each voxel
within such a region. Subsequently, the principal curvatures are
recomputed. Some of the voxels which initially had zero or neg-
ative second principal curvature will now be in the head region
and will be added to the area of operation. In this way, during
iteration, the area of operation will expand from the head into
the neck region.

An obvious stopping criterion would be to track the amount
of intensity change during iterations and stop when the amount
of intensity change at a particular iteration is lower than some
predefined value. Unfortunately, this leads to an underestimate
of the protrusion of large objects, with a low value for the second
derivative even when the protrusion may be quite large. In our
implementation, we have taken a heuristic approach. After each
iteration, the number of voxels that are added to the convex re-
gion is counted. The algorithm stops when this number is zero.

A crucial property of the method is that the effective kernel
scale increases with each iteration. Such adaptation occurs since
the curvature calculation continuously uses the result from the
previous step. In effect, the scale “adapts” to the underlying
image structure, because a small protrusion will require less it-
erations to be flattened into the background than a large one. In
other words, the effective scale varies locally as the number of
iterations needed to reach a “steady state” differs from location
to location. Simultaneously, the area of operation, which is de-
limited by zero second principal curvature, also changes during
iterations. By definition, the head region of a structure is adapted
first, but subsequently the area of operation extends to the neck
region (see Fig. 3). Existing methods typically estimate curva-
ture values in “one shot” by selecting one scale of derivative
operators a priori. A limitation of the current method may be as-

Fig. 4. Demonstration of polyp detection by the curvature flow (first row). The
second and third row show results as obtained by thresholding the shape index,
computed at different scales. See text for details.

sociated with protruding objects with small . Such structures
deform slowly due to small curvature. It will be demonstrated
that the detection of large polyps is not hampered by this limi-
tation (see Section III-B).

Fig. 4 demonstrates that the method works well also for
highly irregular shapes. The first row shows the isosurface
(rendered at ) at different stadia of the deformation
process. During the first iterations only the two protruding
regions on the left and right side of the polyp are affected. In
later stages these two regions merge and also the middle part is
deformed. The steady state solution and the resulting segmen-
tation by thresholding is shown in the last two pictures of the
first row. The second row shows the shape index com-
puted from Gaussian derivatives obtained using different scales

, red corresponds to , magenta to
(e.g., on folds). The third row shows the regions

with larger than 0.8. The example demonstrates that scale
has a profound effect on the resulting values. All polyps in
our dataset that are larger than 10 mm have multiple separated
head regions when “observed” at a small scale (see Fig. 11(b)
for the performance of our algorithm on large objects).

E. Candidate Segmentation

The steady state yields new intensities for voxels, particularly
in protruding regions. We will now demonstrate that the inten-
sity change is a measure for the amount of displacement of the
isosurface.

Let represent a position in which the intensity is
halfway the intensities of the colon lumen and the tissue. Fur-
thermore, the algorithm is asserted to displace the isosurface
through by a small amount [smaller than the width of the
point spread function (PSF)] after some iterations at .
Then, the intensity can be computed via a first-order
Taylor series expansion

(10)

Notice that refers to a hypothetical step size corresponding to a
small displacement of the isosurface. Reversely, a small change
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Fig. 5. Sketch of the relation between colon surface displacement and the ob-
served intensity change for positions halfway the step edge. The relation de-
pends on the apparent local scale of the PSF, i.e., the scale in the direction of the
surface normal. Often, the scanner resolution is not isotropic: the in-plane reso-
lution is larger than the out-of-plane resolution. As a consequence, the relation
depends also on the direction of surface displacement.

Fig. 6. Feature space of the maximum and minimum intensities for each can-
didate region. Annotated polyps are depicted by black dots and have maximum
intensities around 0 HU (tissue) and minimum intensities around ���� ��.
Only one in every 20 false positives is shown as a grey dot.

in intensity relates linearly to the amount of displacement. How-
ever, large displacements of the isosurface cannot be described
as such. The intensity change levels off for displacements larger
than the PSF width

(11)

in which denotes the total contrast over the transition from
lumen to tissue (typically around 1000 HU).

The sketch in Fig. 5 illustrates the relation between the inten-
sity change (before and after deformation) and the colon surface
displacement, halfway the air–tissue transition. Clearly, the in-
tensity change is monotonically increasing with increasing dis-
placement of the isosurface. This would permit a segmentation
by a simple threshold on the intensity change if the data were
isotropic, but unfortunately CT data often are not. The in-plane
resolution is frequently higher than the resolution in scanning
direction . In other words, the apparent scale of the PSF

depends on the direction of the colon surface normal.
Consequently, the relation between intensity change and colon
surface displacement (cf. Fig. 5) depends on the orientation
of the protruding structure. To solve this problem, the deriva-
tive kernels are made anisotropic such that the apparent scale
will be isotropic and equal to a certain target scale . The
kernel scale , in the direction , is computed by

, in which is the ap-
parent (anisotropic) scale of the PSF. Polyp candidate regions
are segmented by thresholding the intensity change field, fol-
lowed by a labelling operation. The threshold value is 100 HU
corresponding to the threshold of 0.4 mm surface displacement
as used in [32] for data with an assumed Gaussian PSF [43] with

.2

F. Features for Classification

For each candidate object, five features are computed. These
features relate to the two properties that are primarily used by
a radiologist: shape of a candidate and intensity distribution in-
side a candidate. We explicitly make this distinction since only
size descriptors permit a ranking of the candidate objects in a
way that relates to clinical relevancy. Accordingly, size related
features will be treated differently than the other features in the
pattern recognition step. Conventionally, polyp size is defined
as the single largest diameter, excluding the stalk. We com-
pute it automatically using the method described in [23], which
not only returns the largest diameter (LongAxis), but also the
shortest diameter (ShortAxis). These are the first two size re-
lated features that are used in the classification. Notice that their
ratio incorporates shape information. The third feature is the
maximum intensity change (MaxIntChange) within each seg-
mented region (candidate). It directly relates to the isosurface
displacement (cf. Fig. 5). For larger polyps the values of this
feature will be large and vice versa. The fourth and fifth fea-
tures used for classification are the 5 and 95 percentile intensi-
ties inside the candidate. We employ these percentile values and
not the minimum and maximum intensities to increase the ro-
bustness against noise. For simplicity, we will refer to these two
features as the minimum (MinHU) and maximum (MaxHU) in-
tensity values inside the objects. Notice that all features depend
on the intensity change field since all are computed over the seg-
mented volume of a candidate. Only the MaxIntChange feature
is directly derived from the intensity change field in the seg-
mented volume, the others are computed from the original CT
data.

G. Classifier Training

It was mentioned previously that the intensity features do not
(directly) allow for an ordering of the candidates. As an ex-
ample, consider the feature space of MinHU and MaxHU shown
in Fig. 6. The black dots denote true positive candidates and the
grey dots denote false positive candidates.

The distribution of polyps is somewhat Gaussian, and there
is a large overlap with the nonpolyps. The latter do not show a
simple distribution in this space. For these reasons, these two
features are not used directly for classifier training. Instead, we
compute the Mahalanobis distance to the polyp class center.
Such a mapping orders the candidates by the distance to the
center of the Gaussian, i.e., the center of the polyp class yield
zero Mahalanobis distance. Notice that the center and width of
the Gaussian are to be determined on independent training data.
This strategy mimics the use of a Gaussian one-class classifier

2Halfway the air-tissue transition:�� � ���
�
�� �

��������
�
�� � ��� ���		, thus ��� �� ��
 		, i.e., equal to the

threshold used in [32].
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Fig. 7. Polyp (10 mm) at different stages of the intensity deformation [after 0, 10, 40, 80, and 160 iterations of (9)]. First row: original data; second row: overlay
showing the intensity changes larger than 100 HU (the color scale was truncated at 650 HU; third row: isosurface renderings (at ���� ��).

[44]. Complementary, the remaining features (MaxIntChange,
LongAxis, ShortAxis) relate to size and are directly used to
order the candidates. The ranking of the candidates imposes that
changes in the decision boundary affects the classification in an
ordered fashion.

It may be expected that far more small candidates are detected
than large ones due to noise and the small “effective” scale on
small objects. Consider a connected number of pixels affected
by positively signed noise. Such coherent regions may mimic
small objects with positive principal curvature. The derivatives
computed from the Taylor’s expansion experience a
small amount of regularization. Consequently, the little blurring
may leave small noise protrusions on an otherwise smooth sur-
face. This is confirmed by the distribution of the false positive
candidates with respect to the MaxIntChange feature, which re-
sembles an exponential distribution. Concurrently, we have ob-
served that the polyps denoted by black dots in 6 are approxi-
mately uniformly distributed. Therefore, the ratio of the poste-
rior probabilities must follow an exponential decay as a function
of MaxIntChange. This is a situation in which a logistic classi-
fier [45] is optimal.

The linear logistic classifier involves estimating the pos-
terior probabilities instead of the class distributions

. These posterior distributions are assumed to be the
sigmoidal functions. This is a valid assumption when the
classes are Gaussian distributed, or, as in our case, one of the
class distributions is exponentially decreasing, while the other
is more or less uniformly distributed. A maximum likelihood
estimation is performed to find the linear direction in the data
that best fits these assumed sigmoidal distribution functions.
Using the posterior probabilities instead of the class-dependent

distribution functions makes this classifier less sensitive to the
large class imbalance.

As such, the problem is treated as a regression problem rather
than a traditional two-class pattern recognition task. In other
words, one searches for a linear direction in which the sigmoidal
pdfs best describe the data. The performance of the classifier
will be assessed by a five-fold, 10 times repeated cross valida-
tion (see below).

III. EXPERIMENTS AND RESULTS

The proposed method is applied to the detection of colonic
polyps in CT colonography data of 84 patients (see above). We
will first show qualitative results. The sensitivity and specificity
of the candidate detection step of the CAD system will be given
for varying thresholds on the MaxIntChange feature. The re-
sults of the complete CAD system after classifier training will
be given at the end of this section. We will include the results
obtained by the method that involves an explicit (mesh) repre-
sentation of the colon surface [32] for comparison. The FROC
curves were calculated from a leave-one-patient out cross-vali-
dation. A polyp was counted as a true positive CAD detection if
it was found in at least one of the two scanned positions (prone
or supine).

The mean computation time per patient on a PC with a Pen-
tium 4 processor (3.0 GHz) and 2 GB memory was 4 min.

A. Qualitative Analysis

Fig. 7 illustrates how the intensities are modified during the
deformation process and how this affects the position of the iso-
surface. The first row of grey valued images show cross sections
through the polyp after 0, 10, 40, 80, and 160 iterations of (9).
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Fig. 8. Typical results for four polyps. Each column shows the results for a
different polyp. The first two rows show grey value cross sections before and
after intensity deformation. The third row shows the segmentation masks which
are obtained by thresholding the intensity change at a level of 100 HU. The last
two rows show isosurface renderings (at ���� ��) of the polyps before and
after intensity deformation.

The second row shows images with an overlay of a color map of
the intensity change for voxels with a change of more than 100
HU. The color bar gives an indication of the amount of change in
the polyp compared to its surroundings ( ; the scale of
the color bar was truncated at 650 HU). To appreciate the three
dimensional structure, the last row shows isosurface renderings
(at .) that clearly show the gradual deformation of the
polyp, while its surroundings stay almost unaltered.

Fig. 8 shows the final outcome for a number of other polyps.
The first two rows show grey-valued cross sections, respectively,
before and after the intensity deformation. The third row shows
an overlay of the segmentation as obtained by thresholding the
intensity change between the images in the first two rows at a
level of 100 HU. The bottom two rows show isosurface ren-
derings (at ) of the polyps before and after the de-
formation. The images demonstrate that the intensity deforma-
tion method yields probable estimates of the colon surface. This
even applies to objects situated in highly structured surround-
ings, such as the polyp in the first column. The second column
shows the result for a 6 mm polyp. It is situated on an almost
flat background. The isosurface rendering containing the colon
surface after deformation shows hardly any residual protrusion.
The third column displays an elongated polyp on a strongly

Fig. 9. Each row shows a false positive. First row: Example of stool. Air inside
object is clearly visible on first image. Second row: Stool on a fold. The orig-
inal data is shown in the first and third column. The data after deformation by
curvature flow is shown in columns two and four.

Fig. 10. FROC curves showing the candidate detection sensitivity versus the
number of false positives for (a) mesh based and (b) currently proposed tech-
nique. The numbers in (a) denote the threshold on the deformation field in mm
and in (b) the threshold on the intensity change field in HU.

folded part of the colon. After deformation some residual protru-
sion can still be observed, albeit small compared to the original
protrusion. The same holds for the polyp in the fourth column.
This is a classical pedunculated polyp on a narrow stem. The
head region is removed, while the stem remains.

Approximately 60% of the false positives are stool and 30%
of the false positives are on folds. Among the remaining false
positives are detections on the illeocecal valve. All these objects
had a shape and structure that closely resemble a polyp (two
examples are contained in Fig. 9).

B. Performance of the Candidate Detection

Fig. 10 serves to show that our choice of thresholds is not af-
fecting the detection sensitivity. Both figures (a and b) contain
a free-response receiver operating characteristic (FROC) curve
for the candidate detection step. Fig. 10(a) was obtained using
the method that involves an explicit (mesh) representation of
the colon surface [32] and Fig. 10(b) was based on the method
presented in the current paper. The independent variable along
the curves is the threshold on the displacement of the mesh, re-
spectively the intensity change. In either case a lower threshold
returns more candidate objects. Reversely, as the threshold is in-
creased, fewer candidates are found, but also some polyps may
be missed. For the full CAD system (see below) we have chosen
a threshold for which at least 100% sensitivity is achieved on
an independent training set. For the mesh based method this
resulted in a threshold of 0.4 mm displacement. For the in-
tensity deformation method we use a threshold of 100 HU on
the intensity change. The smaller number of false positives of
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Fig. 11. FROC curves depicting the performance of classification for the mesh
based (explicit) and the currently proposed (implicit) technique. The FROC
curves were computed by a five times repeated ten-fold cross-validation (a)
polyps � � �� and (b) polyps � �� ��.

the mesh representation is due its description by fewer points
(about 500 000) than the implicit representation (about 10 mil-
lion points). Notice that the large number of false positives at
this stage is irrelevant: the system’s performance is really deter-
mined after classifying the candidates (see below).

C. Results After Classification

Fig. 11 shows the overall performance of both the proposed
and the mesh based method [32]. The figure shows the perfor-
mance for the detection of polyps for two size ranges: larger
than or equal to 6 mm (including those larger than 10 mm), and
larger than or equal to 10 mm. Apparently, the performance of
the two methods is comparable. Both techniques perform better
on the larger polyps. A sensitivity of 95% for polyps
is achieved at an average false positive rate of 4–6 per scan. For
polyps , a sensitivity of 95% is obtained at about four
false positives per scan.

For our data, approximately 50% of the false positives are
stool and 40% are on folds. Among the remaining false positives
are detections on the illeocecal valve. All these objects have a
shape and internal structure that closely resemble a polyp (two
examples are contained in Fig. 11.

D. Combined Approach

In practice we found that particularly the false detections of
both methods were to some extent uncorrelated. For instance,
the mesh based method typically had false detections emanating
from the partial volume effect (PVE) as it operates on a single
isophote, whereas the current method was more robust because
it took the full transition (air-tissue) into account. Reversely,
the current method is inherently sensitive to intensity variations
within tissue, especially in thin folds, whereas such problems
are excluded in the mesh based method in which feature mea-
surement is confined to the isosurface.

The two methods were combined as follows. The location of
the candidates of both methods were compared. A consensus
voting was used to accept candidates only if an overlapping
candidate was found by the other method, in which case they
were linked. Candidates with a vote from only one method were
discarded. Fig. 12 confirms that there is complementary infor-
mation in the two methods. It contains a scatter plot of the
MaxIntChange feature versus the maximum displacement of the
mesh as obtained by the mesh based method. It can be seen
that these correlate well for polyps (black dots). Two regions

Fig. 12. Feature space of the maximum displacement (explicit method) versus
the maximum intensity change (implicit method). The black dots correspond
to polyps and the grey dots to false detections. Two regions (encircled by
dash–dotted lines top-left and bottom-right) with false detections (grey dots)
can be observed in which the depicted features are uncorrelated and comple-
mentary.

with false detections (grey dots) can also be observed in which
the depicted features are uncorrelated (top-left and bottom-right
in both graphs). One region has rather low MaxIntChange, but
concurrently quite large maximum displacement of the mesh;
another region is characterized by a large MaxIntChange, but a
low maximum mesh displacement.

Fig. 11 also contains an FROC curve of the combined ap-
proach. It demonstrates improved performance by exploiting the
complementary aspects of the two approaches particularly on
polyps .

IV. DISCUSSION/CONCLUSION

A novel method was presented which detects polyps based on
their protruding character irrespective of the actual shape. The
method modifies image intensities at locations of protruding ob-
jects. This is achieved by finding a steady state solution of a
nonlinear PDE with the recorded image as input. We showed
that the intensity change relates to the displacement of iso-con-
tours. We also demonstrated how this relation is made invariant
to the anisotropic resolution and sampling of the scanner. This
allows for a simple segmentation of polyp candidates by ap-
plying a single threshold on the intensity change field. We pro-
posed a measure for the detection of polyp candidates, which
directly relates to polyp size, and not to polyp shape. This mea-
sure orders detected structures according to size which, in effect,
keeps increasingly larger objects further away from the decision
boundary. In other words, this limits the risk of missing large
polyps. Also, our method does not make a specific choice for the
scale for the computation of the first- and second-order deriva-
tive operators. The iterative character of the method changes the
intrinsic scale of the image (local and anisotropic): the aperture
of observation (window size of the operation times the number
of iterations) inherently increases.

We have chosen to adapt the convergence criteria of the posed
PDE to the local data. Effectively, the deformation of a region
stops when it does not expand anymore. This yields a stopping
criterion which is data dependent and does not need user in-
teraction. However, the criterion is rather strict as can be seen
from Fig. 8 (third column), in which case the protrusion was
not completely removed. A high noise level might prevent the
algorithm from segmenting the entire polyp area. The (second-
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order) Taylor expansion in a neighborhood will effec-
tively deal with the noise practically encountered in low-dose
(20 mAs) scans.

The method’s performance on so-called flat polyps requires
further research.
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