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1. Introduction. In an earlier paper the author has treated the problem
of the velocity distribution of turbulent flow behind a system of rods spaced
at equal distances from each other [1]. For the shear stress of turbulent
flow the expression in terms of the mixing length due to L. PRANDTL was

assumed, where the mixing length at a certain distance from the fods may
be put equal to a constant [ [2]. The velocity distribution was given by a

non-linear differential equation of the second order, the solution of which.

can be expressed by quadrature. The purpose of this note is to show, how
a solution of the differential equation can also be expressed in terms of
the elliptic functions of WEIERsTRASS [3].-

2. The differential equation. We consider a system of cylindrical
equidistant rods of infinite length in a plane perpendicular to the direction
of flow in a stream of originally constant velocity. The problem is to calcu-
late the distribution of velocity in the region behind the rods by means of the
expression of L. PranpoTL for the shear stress in turbiilent flow. The
mixing length will also be constant in a plane parallel to the plane of
the rods because of their uniform spacing.

' } ! The coordinate system may be chosen
Rood

—— e —— S, as follows: The y-axis parallel to the plane
. f i i A i ; of the rods and perpendicular to their axes,
T L 1 the x-axis through the axis of one of the

Y ‘ rods and parallel to the direction of the

{4 . — undisturbed flow (Fig. 1). The components
T i — of the velocity may be noted by u and v,

the velocity of the undisturbed flow by U.
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Behind the rod system at a sufficiently large distance the components of
velocity are

(1) . u=U-—u,, r=r,

where u, and v, are assumed to be small compared with U. In establishing
the equations of motion all terms of higher order of magnitude are dropped;
furthermore the pressure term is neglected. This assumption can be justi-
fied by means of the solution obtained.

The equation of motion in the x-direction is

. du du_ 101

(2) . . us— + v Oy Y
introducingu=U—u, ,v=vr,, where u, U, v, KU, we obtain as a first
approximation the equation
. _pdu_18r
(2a) 7 . U 3z 0oy
Because of the periodicity of the rod system, it seems convetﬁen’t to assume
the following expression for u, '

(3) ’ - -—Af(x) cos ey,

where o has to be chosen in such a manner that the period of u, agrees
with the distanse 1 of the rods, i.e. a= 2a/1. '

The expression for shear stress according to the theory of mixing
length is

/’

(4) L L

dujdu
oy

oy

The differential equation (2a) will then be transformed into

01_1,___ ;o_zﬂ o2,
dx - "oy oy?

(2b)

where k =2I2/U is a constant parameter.

3." The solution of the differential equation. If we make the substitu-
tion .
(5) u, =A.x" 'F, (y)
- with the condition F (0) =1, A0 may be interpreted as the amplitude of
the velocity distribution, and we get the following differential equation
(2¢) ' ' F, (1) =AkF, (§) F", (1)

Assume now y=cn, where c is' a constant of the dimension length, we
obtain the following equation, -
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, s Aok, P :
(2d) Fylen=-; Fx_(C-rz)ll (Cri)q.w .

where on the right side the differentiations are made with respect to the
variable 5. As c is arbitrary, we choose it so that '
Agkict=1
and obtain the differential equation
(2e) F1=F1"F1”
which, multiplied by F ’, results in

(2f) F F=F 1"
and once integrated

PR Fope 1.0 N
(2¢) - Fi=gF7+C

where C is a constant of integration, which can be determined by the condi-
tion that for y=0(y=0)F, =1, and F'=00r C=1/2.
With this value of C we get

' a3 :
(2h) , F/=— 5 (= F))

From the substitution

(6) Fl=d42341,

(6a) dF, =6z2dz/lFF, =6z2d=/ (1. + 4z73)\2
the independent variable y is given by

0
zdz

Jviser

which is an elliptic integral of Weierstrass type. To get a more convenient
expression for y and F , we introduce the parameter w by means of the ellip-
tic integral

O I v = (67

: X dz
8 = S ,
) _ ‘ ' / (42" — g,z — g )'F*
where the inverse function
(9) o z=p(w)
is the elliptic p-function of Weierstrass: By comparison of the integrals
(7) and (8), we see that in our case g,=0,g,=—1. From (8) and (9)

one obtains

q
e

(7a) n= (8 | p () dw= (67" [¢(w) — o (wy)]
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where w, co'rrésponds to z= 0, w to an arbitrary value of z and gl(iw) to the
elliptic p-function of Weierstrass defined by the integral

¢(w)=— {‘V(lv)dw. . . "

The function F, (%) of velocity distribution is given by Egs. (6) and (9)

(6a) L Fi(w)={4p*(w) 1}

On the other hand the derivative of the Weierstrass p-function is given by

(10) p (w)={4p* (1w) — g.p (w) = g; } '
so that the velocity distribution is given by
(6b) - F. (w)=p' (w)

Thus we have a representation of the variables F, and 4 by means of the

~common variable w. The result of the numerical calculation is shown in |

Fig. 2 and is obtained by using the tables of the Jacobian elliptic functiors
10
28y
06

£ler)
2

02}

G704 " 06 05 10 Kxé 6 15 20 22
-a7L Ve L a .

t

72

by L. M. MILNE-THOMSON [4]. The p-functionh of Weierstrass can be expl‘_és'-
sed by the Jacobian elliptic function in the following manner
14+ ¢n (_’3117,H»"_“")_

(11 : . w ze,,'-{- H -~ .
(1) p{w) o 1— ca (QwH?)-

25 (2wHY?) do 2uwh'?)
{1—en (zwt'?)

(11a) o (w) = —4H3

H
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where sn, ¢n and dn are the Jacobian elliptic functions,
. N e o) o U
H? = (e, "‘.‘x)(“_' —33)—-262 +381

and e, e,, e, are the roots of the equation
4% — gt — g =70,

‘ e, belng the real root, whereas e, and e, are complex. In our case e, ==
— (4)7Y" = —10.6300. -
. The independent variable 7 is expressed by the integral of the p-func-
tion, i.e.

oy

- ' ’ 1+ cn (2wH'?)
b = 23 / [ e, + H——— dw
(7h) T, * l——-cn(le”z)J

w
The result is in close agreement with the results obtained by 51mple quadra-
ture of an equatlon corrésponding to (7).
The velocity distribution in the direction parallel to the plane of the
rods; but perpendicular to their axes is given by the equation of continuity

du, 20,

(12) 5 T oy =0,
where aceording to Eq. (5)

(5a) %}:—‘zf\uxr—’l-‘, (y)
and therefore

(12a) P / F, (cn) dn

We now use the expressions of F, (cy) from Eq. (6b), dp from Eq (7
and z= p(w) from Eq. (9), obtalnmg L

v =62-3Ac1‘"2"j p (w) p' (w)dw
9\ 18 . ., ; .
=(g) " AP () = p* (w0)]

Expressing the p-furiction by the Jacobian elliptic functions we get a velo-
city distribution in close agreement with that found by simple quadrature
(Fig. 3). ‘ :

4. Summary The velocity distribution behind a system of cylindrical
equidistant rods is found by usmg the expresswn of L. PranpTL for the
shear stress in turbulent’ motlon (mlxmg length theory). The solution of
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the differential equation is given in terms of the elliptic functions of Weier-
strass, which for thé numerical calculaton are transformed to the elliptic
functions of Jacobi. The results are in close agreement with those’obtained
earlier by simple quadrature. '
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