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Inferring the Security Performance of Providers
from Noisy and Heterogenous Abuse Datasets

Arman Noroozian�, Michael Ciere, Maciej Korczyński, Samaneh
Tajalizadehkhoob, and Michel van Eeten

Delft University of Technology

Abstract

Abuse data offers one of the very few empirical measurements of the security
performance of defenders. As such, it can play an important role in strengthen-
ing and aligning the security incentives in a variety of markets. Using abuse data
to measure security performance suffers from a number of problems, however.
Abuse data is notoriously noisy, highly heterogeneous, often incomplete, biased,
and driven by a multitude of causal factors that are hard to disentangle. We present
the first comprehensive approach to measure defender security performance from
a combination of heterogeneous abuse datasets, taking all of these issues into ac-
count. We present a causal model of incidents, test for biases across seven abuse
datasets and then propose a new modeling approach. Using Item Response The-
ory, we estimate the security performance of providers as a latent, unobservable
trait. The approach also allows us to quantify the uncertainty of the performance
estimates. Despite the uncertainties, we demonstrate the effectiveness of the ap-
proach by using the security performance estimates to predict a large portion of the
variance in the abuse counts observed in independent datasets, after controlling for
various exposure effects such as the size and business type of the providers.

1 Introduction
Empirical observations of the computing resources that are being abused by criminals,
also known as abuse data, are an important foundation for the research on cybercrime.
Abuse datasets typically focus on a specific type of criminal resource – e.g., phishing
sites, compromised domains, command-and-control servers, or infected end user ma-
chines – depending on the automated tools via which the data is collected, such as spam
traps, honeypot networks, botnet sinkholes, webcrawlers, sandboxes, and the like.

Studies based on abuse data have often looked at concentrations of incidents in
certain networks [1], Internet Service Providers (ISPs) [2, 3], countries [4, 5], organi-
zations [6], payment providers [7], registrars [8], registries [9], and other agents. The
idea is that such concentrations are amenable to intervention. They are interpreted to
reveal attacker economics, such as scale advantages, or defender economics, such as

1

mailto:a_DOT_noroozian_AT_tudelft_DOT_nl


lack of security investment by some agents because the cost of incidents is externalized
to others [10, 11].

Abuse data offers one of the very few empirical measurements of the security
performance of defenders. As such, it can play an important role in strengthening
and aligning the security incentives in a variety of markets. It has been used to re-
duce information asymmetry and leverage reputation effects [12, 13], to identify bad
providers [14, 15], and to study the effectiveness of countermeasures [16].

Using abuse data to measure defender security performance suffers from a number
of problems, however. First of all, abuse data is notoriously noisy. It contains all kinds
of issues around false positives and negatives, incorrect attribution to the responsible
agent, inconsistent measurement over time, dynamic attacker behavior, and more.

Second, abuse datasets are highly heterogeneous. They are very different in size.
Some sets observe one or two order of magnitude more events than others. They also
have only very little overlap among them [17]. Even datasets of the same type of
abuse, say phishing, rarely independently observe the same incident. The correlation of
different datasets can be quite low, when counting the number of incidents per defender
(e.g., provider). Some providers might be more susceptible to certain types of abuse,
but less to others.

A third problem is the lack of completeness. Not all abuse events are observed.
Those that are observed might contain biases. Related to this is the fact that not all
providers are observed in abuse data. All studies that start with the abuse data itself
to evaluate providers will, therefore, suffer from selection bias, as providers where no
incidents were observed are excluded, even though they might be performing better
than those that are included.

Fourth, and final, is the problem of multicausality. Abuse data is driven by a variety
of factors and it is difficult to isolate the defender’s performance from them. It is
clear, for example, that defenders with more infrastructure and customers will incur
more incidents [11, 14]. Unless the other factors are explicitly modeled, any analysis
is at risk of incorrectly assuming that differences in abuse rates reflect differences in
defender efforts.

The first two problems imply that using a single abuse data source to measure
defender efforts is highly unreliable, as the outcomes will differ greatly per data source.
Different sources will have to be combined to derive a more trustworthy signal. The
third problem, lack of completeness, means that sources of bias in the data have to
be investigated and mitigated. One key requirement is that any analysis will have to
identify the relevant market players independently from the abuse data, in order to
avoid selection bias. The fourth issue, multicausality, has to be tackled by embedding
any analysis into an explicit causal framework that captures, at least analytically, all
the relevant forces that influence the abuse rates.

Recent work in this area has addressed one, sometimes two or three, of these prob-
lems, but no study has addressed all four. We will discuss this in more detail in the
section on related work. We present the first comprehensive approach to measure de-
fender security performance from a combination of heterogeneous abuse datasets. We
apply the approach to the hosting sector, which is associated with a large portion of
all observed abuse events. We first present a causal model to explain abuse rates in
provider networks. We then map the providers in the hosting market. Second, we
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study potential biases in the distribution of abuse data over providers. Next, we collect
relevant exposure variables for the providers. We can then specify a model, based on
Item Response Theory (IRT), to estimate the security performance of providers as a
latent variable from a collection of abuse datasets, while controlling for exposure ef-
fects, such as the size of the network of the provider. Last, we test the reliability of the
performance metric.

Our contributions are as follows:

• We formalize a causal model in order to systematically disentangle the different
factors at work in abuse data. It provides a basis for modeling security economics
questions based on incident data.

• We show that a combination of 7 abuse datasets covers observations in just 34%
of all providers in the hosting market. While most providers have no observed
incidents, there is no evidence of bias. Via a simulation, we demonstrate that all
providers, small and large, have equal probability of showing up in abuse data,
once we control for their exposure.

• We present a novel statistical approach – based on Item Response Theory – to
estimate the security performance of providers as a latent factor from a range of
heterogeneous abuse data sources, while controlling for exposure effects.

• Finally, we demonstrate the reliability of the new performance metric. Notwith-
standing the noisy nature of abuse data, using the latent variable we are able to
explain between 75-99% of the variance in any independent abuse dataset, after
controlling for exposure effects.

The overall goal of our study is to enable better measurement of security perfor-
mance from abuse data, while controlling for differences in firms and their exposure to
attacks. The result is a security benchmark that helps to reduce information asymmetry
in these markets, thus improving the security incentives of providers. Reliable per-
formance metrics are also critical to study impact of interventions and recommended
security practices. The success of a wide range of industry and government-backed
initiatives to combat cybercrime critically depend on benchmarks to provide empirical
evidence through which the success and progress of the initiatives can be tracked.

In what follows we will first discuss the causal abuse framework which forms the
background of our work in Section 2. We then provide an overview of our data in Sec-
tion 3. To explore the bias in our abuse data, we map the hosting provider market using
several other data sources in Section 4 and find no evidence of observation bias using
simple simulations of attacks across the hosting market in Section 5. We then move
on the construct our IRT model and motivate our approach in Section 6, then provide
the specification of the model in Section 7 and estimate the security performance of
the hosting providers in Section 8. The robustness and predictive power of our security
performance estimates are explored in Section 9. Finally we provide an overview of the
related work, and studies on which our work builds in Section 10 and finally discuss
the implication of our work and conclude in Section 11.
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2 Causal Model
A lot of empirical research is based on the distribution of abuse across networks or
other units of analysis. Any interpretation of those distributions makes assumptions,
often implicitly, of the underlying factors at work. This is even more clear for causal
inferences. Several studies looked at the relationship between characteristics of or-
ganizations, networks or providers and their abuse rates, e.g., indicators of network
mismanagement [18], provider properties and business models [11], or the effect of
interventions [4, 16].

Previous work shows that the variance in abuse incidence across networks (or an-
other unit of analysis) can be the result of measurement errors or causal factors such
as structural and security effort related properties of providers [11]. In this paper, we
focus on the causal factors. Figure 1 describes the different factors that influence abuse
rates.1 The primary cause of incidents is, of course, attacks. That relationship is mod-
erated by two other factors: security and exposure. Neither of these factors directly
cause incidents; they only influence the extent to which attacks result in incidents.

There are many definitions of security, but it generally refers to the degree in which
the computing resource or service is protected against the attack. It is the opposite of
vulnerability, which is one way in which it can be empirically approximated. Security,
or vulnerability, can be influenced by the efforts of the defender, such as the adoption
of certain controls or maturity models. It is important to separate controls and efforts
from actual security. The former captures actions of the defender, the latter is the result
of these actions, which may or may not be the intended or expected outcome. In many
scenarios, the impact of a control on the actual security level of an organization is
unknown.

The other mediating factor is the degree to which a provider, or another class of
defenders being studied, is exposed to a certain threat. This is often referred to as the
“exposure”. Size is one example. Larger hosting providers have more customers and
hence a higher probability of one of those customers being compromised. The business
model can also increase exposure. Customers of cheap hosting services running popu-
lar content management systems are more likely to be compromised than professional
hosting customers with their own security staff.

The yellow ovals in Figure 1 contain examples of indicators of security and expo-
sure. Some of them have already been found in prior work to correlate with incident
rates. For security, prior studies have found that bad network hygiene and out-dated
software is correlated with higher levels of abuse [11, 19]. Such indicators might not
clearly distinguish between controls and actual security, which is why we connect them
to both, through the label of “security practices”. A well-known indicator of exposure
is size of the network. Some security metrics try to take this into account by simply
dividing the number of incidents in a network by the number of IP addresses advertised
by the network [13, 14, 18]. Price is another example. Cheap or free services are more
prone to be abused by miscreants, leaving their providers more exposed [11].

With this causal model in hand, we can more precisely articulate the core idea of

1The authors gratefully acknowledge the contributions of Rainer Böhme, who had the original idea for
the model, and of the participants of the Dagstuhl Seminar 16461 “Assessing ICT Security Risks in Socio-
Technical Systems” who helped to further articulate it.
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Figure 1: Causal Model Incidents

this paper. We want to infer security performance of a provider from the abuse rate.
Ideally, one would measure security independently, but often this can only be done
by collecting partial indicators at best – e.g., hygiene indicators or patch levels for
webstack software – or it is not possible at all. We would like to test to what extent
performance can be estimated reliably as a latent factor that is driving the abuse count.

The model illustrates that our approach assumes we can control for exposure and
attacks. The former we will include in our models via a number of indicators, which we
will collect for the whole population of hosting providers. The latter we cannot observe
directly and we will include it as a random variable. In other words: we assume that
attacks are randomly distributed across the attack surface. In section 4, we will test this
assumption via a simple simulation. To the extent that this assumption does not hold,
it will increase the size of the error term of our model, i.e., leave more variance in the
abuse data unexplained.

3 Data

3.1 Abuse Data
Since we are interested in hosting providers, we use seven data feeds that include in-
cidents typical for hosting services: phishing and malware-related abuse. The mal-
ware data provided to us by Stopbadware Data Sharing Program, contains feeds from
a number of volunteer companies and research institutions for the entire duration of
2015 [20]. The dataset contains URLs and IP addresses associated with malware.
These companies use different methodologies for collection and criteria for inclusion,
and furthermore the data shared by these organizations does not necessarily reflect their
complete view of malware URLs. The phishing data is extracted from two sources:
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Table 1: Data Feeds.

Period Organizations Incidents Abuse Type Provider

APWG 2015 5,496 376,796 Phishing APWG.org
Phish 2015 4,287 139,130 Phishing Phishtank

SBW1 2015 Malware Stopbadware DSP
SBW2 2015 Malware Stopbadware DSP
SBW3 2015 1,580 - 7,208 ** 11,976 - 376,561 ** Malware Stopbadware DSP
SBW4 2015 (ranging between) (ranging between) Malware Stopbadware DSP
SBW5 2015 Malware Stopbadware DSP

** Due to the terms of the data sharing agreement, we only report aggregated ranges for SBW data

Anti-Phishing Working Group (APWG) [21] and Phishtank [22]. Both datasets con-
tain IP addresses, fully qualified domain names and URLs associated with phishing.
Table 1 provides a summary of our abuse feeds, the abused organizations and the num-
ber of incidents they had according to each feed in 2015.

For each dataset, we count the number of observed events per provider. Construct-
ing such an incidence metric involves several design choices regarding the unit of anal-
ysis, attribution of incidents to the responsible units and counting the number of in-
cidents per unit. The metric we define as event per provider is the number of unique
(2nd-level-domain, IP-Address) pairs recorded per provider in every abuse feed.

Most concentration metrics choose Autonomous Systems (ASes) as the unit of
analysis [13, 14, 23] and associate events with AS owners based on the BGP prefix
announcements for each AS. The AS owner, however, often merely routes the traffic
for the IP address and has no administrative responsibility for it. In earlier work [24],
we developed an approach based on WHOIS data, as it tells us to what organization
an IP address is assigned. It provides a better approximation of who is responsible for
abuse associated with that address than routing data can provide. The difference in us-
ing organizations rather than ASes as the unit of analysis has substantial repercussions.
Some organizations operate several ASes, while in other cases several organizations
may share a single AS. We found that, on average, one AS harbors seven organiza-
tions. From the total set of organizations, we select the hosting providers through a
series of steps which we explain below in Section 4.

Figure 2a provides a correlation matrix of the abuse counts across the seven feeds.
The numbers underline an earlier point: abuse datasets are heterogeneous and noisy.
Even sets that observe the same type of abuse, may be weakly correlated with each
other. The correlation between the abuse count in Anti-Phishing Working Group (APWG)
and the one in Phishtank, for example, is just 0.44. Among the malware feeds, SBW1’s
count also has a 0.44 correlation with the counts from SBW2 and SBW4. Figure 2b
on the other hand illustrates the overlap between our abuse feeds in terms of what
percentage of 2nd-level-domains reported as abusive is shared among the feeds. The
right most column in this figure illustrates the overlap of each feed with all other feeds
combined.

6



1

0.44

0.53

0.66

0.44

0.56

0.78

1

0.45

0.71

0.68

0.74

0.73

1

0.44

0.38

0.44

0.53

1

0.79

0.96

0.95

1

0.86

0.8

1

0.91 1

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

A
P

W
G

P
hi

sh
ta

nk

S
B

W
1

S
B

W
2

S
B

W
3

S
B

W
4

S
B

W
5

APWG

Phishtank

SBW1

SBW2

SBW3

SBW4

SBW5

(a)

  

13%

2%

14%

26%

24%

2%

1%

  

0%

1%

3%

1%

0%

1%

4%

  

2%

3%

1%

50%

11%

18%

4%

  

52%

18%

5%

12%

21%

3%

31%

  

21%

4%

43%

29%

4%

39%

79%

  

5%

0%

2%

28%

2%

2%

1%

  

50%

49%

32%

55%

99%

48%

53%

SBW4 SBW1 APWG SBW2 SBW5 SBW3Phishtank TOT

SBW4

SBW1

APWG

SBW2

SBW5

SBW3

Phishtank

(b)

Figure 2: Correlations between incident counts and overlap of reported 2nd-level-
domains in feeds. Darker shades represent more overlap. Final column indicates per-
centage of feed information already contained in all other feeds combined.

3.2 Hosting Data
To construct a mapping of the hosting provider market, we use several data sources and
build on techniques used in previous work [14, 24]. Our mapping approach to iden-
tify hosting provider organizations is based on (i) IP ownership data from Maxmind’s
WHOIS API [25] and (ii) passive DNS data from DNSDB [26] generously provided to
us by Farsight Security. The passive DNS data contains fully-qualified domain names
and IP addresses that have been queried on the web and detected by Farsight’s sensors
in 2015.

Using the aforementioned datasets, we are able to capture several properties of or-
ganizations that we can use as proxies for their exposure (see Figure 1): (i) the total
number of IP addresses allocated to an organization, (ii) the number of IP addresses al-
located to the organization that are associated with domain names (i.e., those observed
in passive DNS data), (iii) the total number of 2nd-level domains (2LDs) hosted by the
organization, (iv) the number of IP addresses that are associated with at least 10 2LDs
(proxy for shared hosting), and (v) the number of 2LDs on shared IPs hosted by an
organization.

4 Hosting Provider Market
Our starting point for constructing a mapping of the hosting provider market is to map
the entire IPv4 space to corresponding organizations based on the Maxmind WHOIS
data. This gives us the total population of organizations to which IP addresses are
allocated, as well as the number of IPs allocated to each organization. We then use
passive DNS data to construct the remaining structural properties (see Section 3.2)
based on what has been passively observed in DNS traffic over the duration of 2015.
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We define hosting providers as the subset of organizations for which we have ob-
served at least 30 2LDs, a low threshold to minimize false negatives. All others are
considered non-hosting organizations. Figure 3 illustrates the distributions of the allo-
cated IP space to all organizations, the subset which have been observed in DNSDB
and the subsets of hosting and non-hosting providers respectively.

A comparison of the distributions of ‘all’ organizations and those ‘observed in
DNSDB’ (purple vs green) demonstrates that DNSDB provides a reasonably unbi-
ased view of organizations, and thus providers, as the shapes of the two distributions
closely follow the same pattern, especially for organizations that own more than 10 IP
addresses. This is consistent with previous research, which found that DNSDB offers
a reasonably unbiased view into the entire domain name space [9].

We see discrepancies between the two distributions for organizations with less than
10 IP addresses. DNSDB has less visibility into this subset of small to very small
networks. Given our threshold of only 30 2LDs, the probability is very low that these
organizations with very few allocated IP addresses represent a significant segment of
the hosting provider market. Note from the distribution of hosting providers in Figure 3
(blue) that the bulk of these providers have been allocated between 300 to 10,000 IP
addresses.
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Figure 3: Distributions of Allocated IP Space

Given our definition of the
hosting providers and the pas-
sive DNS data, we can empiri-
cally construct a picture of the
aforementioned ‘exposure prop-
erties’ of each hosting provider.
Figure 4 plots the distributions
of these properties for all host-
ing providers.

In terms of exposure, note
that these properties not only
capture size, but also include
information about the business
model of the provider. Three
types of hosting services are re-
lated to the properties: dedi-
cated hosting (one domain per
server), shared hosting (multi-

ple domains per server), and services without domains (e.g., data centers or perhaps
no hosting services at all). Together, the properties capture the mix of these three ser-
vices for each provider. Figure 5 illustrates the ratio of hosted domains that share the
same IP address with at least 10 other domains to the total number of domains hosted
by a provider as a histogram – i.e., shared hosting. The peak on the left of the figure
is the population of providers with no shared hosting at all. Going from left to right,
an increasing portion of the domains of a provider residing on shared hosting. In other
words, the provider is increasingly dependent on shared hosting as its main business
model in webhosting.

For brevity, we will not go into more detail about the provider mapping and instead
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refer the reader to [24] for a more in depth analysis of the market.

5 Exploring Observation Bias in Abuse Data
We now explore how our abuse data relates to the overall population of providers. The
first thing that jumps out is that just 34% of all providers has at least one abuse incident
in one of the seven abuse feeds contains incidents. So even the combined dataset lacks
observations on the majority of the market. This would be even more skewed when
using only a single dataset: they cover between 5-22% of all providers.

To explore what subset of providers have abuse events, Figure 6 shows histograms
for each of the exposure properties. Each histogram shows the distribution of providers
with abuse events (yellow) as an overlay on the distribution of all providers (blue). On
each indicator, we see the same pattern: virtually all large hosting providers are present
in the abuse data, while this ratio drops rapidly for medium-sized and small providers,
where just a fraction is associated with an incident. More precisely, abuse incidents
have been observed for almost 99% of the large providers (i.e., providers with 10,000
or more domain names).

One reason for this pattern is exposure: large providers have such a high exposure to
these attacks that the probability of incurring a single abuse becomes 1. That being said,
there could also be observation bias at work. Perhaps the methods that generate the
abuse data, whether based on automated tools or volunteer contributions, are less apt
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at observing incidents in smaller and medium-size networks. We test this explanation
via a simple simulation.
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Figure 6: Distributions of hosting providers with (yellow) and without (blue) observed
abuse events, over different exposure properties

Understanding the potential observation biases in the abuse data is a key consider-
ation in constructing abuse concentration metrics as previous research points out [10,
14]. One way to identify bias is to compare the datasets against other sources of abuse
data. Kührer et al. [27] compared abuse blacklists against each other and against data
they collected themselves. In a way, we have done something similar by using seven
datasets. They all display the same pattern.

While such comparisons are helpful, the other datasets are not ground truth. They
are typically collected with similar collection methodologies. There is no ground truth
for abuse data, of course. Observations are actively avoided by adversaries, and the
best observation methods can at best hope to achieve a useful partial view. We therefore
complement our analysis via a simulation that tests to what extent the observed pattern
is consistent with a pure exposure effect. In other words, can observed patterns be
explained from the attack surface of providers?

We assume that attackers attack domains at random with a fixed probability. Note
that our datasets (see Table 1) mainly capture cybercrime that involves domain names.
Therefore, the number of domains of a provider is a useful proxy for the attack surface.
If each domain has a fixed probability p of being abused, then the probability of a
provider not being abused is (1− p)n, where n is the total number of domains that
it hosts. Conversely, the probability of a provider being abused is equal to 1− (1−
p)n. We obtain n from the exposure properties of the provider in our hosting provider
mapping. Using a maximum likelihood estimator, we estimate p from our observed
abuse data which results in a value of p = 0.0025. Given this estimated probability,
Figure 7 illustrates a ‘separation plot’ [28] of the predicted and observed abuse status
of all hosting providers.
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Figure 7: Separation plot of predicted versus observed abuse of hosting providers

The plot demonstrates the degree to which the calculated probability of abuse per
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domain agrees with the actual observed abuse data. Here, the horizontal axis, and the
trend line respectively illustrate all hosting providers and the probability with which
we predict they will be abused, sorted in an increasing order. A green tinted thin line
represents a provider for which an abuse event has been observed in our abuse feeds.
Darker green areas indicate high density of providers with abuse, light green or white
areas indicate few or no such providers. The concentration of abused providers towards
the right side of the plot illustrates the large degree to which our estimation results and
the observed abuse data in Figure 6 are consistent. Figure 7 demonstrates that our
assumption regarding the abuse generation process is reasonable.

Next, we run two sets of simulations. First, we randomly select domains from the
total population of domains and generated abuse incidents for the providers of those do-
mains, until we reach the same volume of incidents as our combined empirical datasets.
Next, we follow the same process, but generate 10 times more abuse incidents than the
observed volume.
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Figure 8: Non-biased distribution of abuse over population of hosting providers

We compare the distributions of providers over the different exposure properties
in Figure 8. The first simulation, generating the same number of events as in our
empirical data, produces a distribution that is highly similar with that empirical data.
The second simulation shows that as the volume of abuse increases, the distribution of
abused providers approaches that of the total population of hosting providers. Another
way to put this finding is this: if we assume that all providers incur at least one abuse
incident per year, which anecdotal evidence from hosting providers would suggest is
not unreasonable, then the total number of incidents would be at least one order of
magnitude larger than those observed by the seven abuse feeds combined. They see
less than 10% of all incidents at best.

These results suggest that patterns observed in Figure 6 are not the result of ob-
servation bias, but rather of attacker dynamics and the random nature of the attack
generation process. The simulation also provides support for a modeling decision that
we will revisit in the subsequent section, namely to model the attacks as a random
variable.

Having established that there is no clear evidence for bias regarding certain providers,
we can move on to the question of how to estimate security performance as a latent
variable from the array of abuse datasets.
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6 Modeling Security Performance
We are now in a position to test whether we can infer the security performance of a
provider from the abuse data. Going back to our causal model (Figure 1), the main
idea can be summarized as follows: if we are able to adequately control for exposure
and we correctly assume that we can model attacks with a random variable, then the
main driving factor in the abuse data is the security performance. We can then try to
infer it as a latent variable from the abuse datasets.

The simple simulation in the previous section provides support for the choice to
model attacks as a random variable. The simulation was able to reproduce the the
empirical distribution of abuse events over the hosting market by modeling it as ran-
dom process over the attack surface, as measured by the exposure indicators. This
also suggests that our exposure indicators capture an important portion of the exposure
factor. A more precise test was conducted by Tajalizadehkhoob et al.[11]. Using the
same indicators, they were able to explain more than 80% of the variance in two phish-
ing datasets as a function of exposure. This suggests that these indicators allow us to
adequately control for exposure.

Of course, the proof of the pudding is in the eating. We will test whether our
assumptions indeed hold by testing the predictive power of the estimated security per-
formance: what portion of the remaining variance can it explain by providers’ security
performance, after having controlled for exposure effects. Before we get to that step,
though, we first discuss the statistical approach we propose: estimating a latent variable
for each provider through a model based on Item Response Theory. What makes this
approach suitable?

The answer lies in understanding the key requirement for this task: to estimate
performance from a wide array of abuse data sources. Given the noisy and heteroge-
neous nature of abuse data, making reliable inferences about the security performance
of providers requires us to model performance over a range of abuse data sources. Ear-
lier work has not provided an elegant way to aggregate information from an array of
different abuse datasets. There have been two basic approaches: estimate performance
separately per abuse dataset or merge all abuse data into a single set.

This first approach, estimating separate models, produces different results for dif-
ferent abuse types – e.g., [11, 29]. At the level of individual providers, this can gener-
ate wildly different outcomes expectedly, which is clearly undesirable for a benchmark.
One solution is to average, or otherwise aggregate, benchmarks that are calculated from
each individual abuse feed – e.g., [14] uses a Borda count method. This is slightly bet-
ter, but the method of aggregation introduces all kinds of artifacts into the benchmark
which, again, can significantly impact the ranking of individual providers.

The second approach has been to simply merge the different datasets into a single
abuse metric (e.g., [1, 18]). This means a lot of information is lost. The largest sets will
drown out the signal of smaller sets, while smaller sets are not necessarily less valuable.
They might capture abuse events that are harder to observe, such as the location of
command-and-control servers, but very relevant to the overall abuse landscape. The
merging might also average out differences in the susceptibility of providers for certain
types of abuse, but not for others. Any performance benchmark would benefit from
taking that into account.
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Table 2: Exposure properties of abused organizations in relation to various abuse types
for the 10th, 10-90 and 90th percentile of the providers (respectively indicated by light
blue, gray and orange colors).
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Note: Reported numbers in plots represent correlation strength

Table 2 highlights some of the complex, yet meaningful, relationships among abuse
data sets. It compares abuse data from three of our abuse feeds in relation to some
of the exposure properties of the providers. We compare data sources capturing the
same type of abuse and two data sources capturing different types of abuse. The first
comparison, using phishing data from Phishtank and APWG, contains signals about
measurement errors. Some providers have a high incident count in one feed, but a low
count in the other feed. As both feeds capture the same type of abuse, we suspect this
difference is mostly due to measurement error. This demonstrates how (in)consistently
the abuse data captures this particular type of abuse. The second comparison, between
Phishtank and the SBW4data, also shows inconsistencies for providers. In addition to
measurement errors, this also signals differences in the susceptibility of the provider’s
infrastructure to different types of abuse. Clearly the consistency of the strength and
reliability of signals varies depending on which part of the hosting provider population
we inspect as indicated by how strongly the different data points correlate.

To meaningfully capture the different signals within the abuse data and to overcome
the aforementioned issues, we apply techniques from Item Response theory [30, 31] to
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our abuse data. In the subsequent sections, we explain the general approach, specify the
model, estimate the latent variable of security performance and then test its predictive
power against independent abuse data.

7 IRT Model Specification
To better capture the information in each of our abuse feeds we specify an analytical
model which draws from Item Response Theory (IRT). Applications of IRT models
have previously been explored in risk assessment [32]. However, IRT models are most
commonly used to measure the effects of an unobservable latent capability of a student
– let’s say math skills – from how well she performs in a range of tests. The student
examination metaphor can provide a good intuition of how our approach works. We
approach incident numbers in each of our abuse feeds as an indicator of how good
or bad each student performed in an exam which consists of several questions, which
correspond to our abuse feeds. Needless to say, hosting providers are the equivalent of
students in this metaphor. Just as exam questions vary in terms of subject and difficulty,
we assume that our various abuse feeds reflect similar properties. Some abuse events
are more difficult to detect than others, which is reflected by the number of incidents
observed per provider in different abuse feeds. Also note that exam questions often
have overlap in terms of their subject matter, and we consider our 2 phishing and 5
malware feeds to reflect a similar property as our analogy.

Figure 9: IRT model - Jointly explaining variation in incident count for all abuse feeds

The model is graphically illustrated in Figure 9. For every abuse feed j = 1, ...,k
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and for every provider n = 1, ...,N, the abuse count Yn j follows a Poisson distribution

Yn j ∼ Poisson(λn j)

with
ln(λn j) = ln(E(Yn j|θn,xn)) = γ j +xT

n β−α jθn. (1)

This model consists of k Poisson regression models, one for each abuse feed j = 1, ...,k,
where γ j is a feed-level intercept, xn is a vector of exposure-related covariates for
provider n with coefficient vector β (shared across feeds), and θn is a continuous latent
variable that captures structural variation in abuse counts across providers. This latent
variable has an additive effect on every abuse count, but the sensitivity of each abuse
count to the latent variable, α j, is different for every abuse feed. We constrain α j > 0,
j = 1, ...,k, so that a higher value for the latent variable θn leads to lower expected
abuse counts for every feed. As such, a higher positive value for the latent variable
θn represents more effective security performance, and a negative value represents less
effective security performance. Hence, the latent variables θn quantify the level of
effectiveness of the security practices of each provider. The feed-level sensitivity pa-
rameters α j represents the difficulty of mitigating the abuse measured by each feed
j = 1, ...,k. We further specify θn as draws from a standard normal distribution

θn ∼ N(0,1).

The variance of the latent variable distribution is constrained to 1 for identifiability,
since all the sensitivity parameters α j are freely estimated.

Intuitively, this model disentangles the portion of the variation in incident counts
that is due to varying levels of exposure, and attributes the remaining variation to vary-
ing levels of security performance of the providers, after considering what part of the
variation is random noise.

8 Estimation Results
To infer the security performance of providers from abuse data, we input the incident
numbers from all abuse feeds into our model and estimate the parameters of our model
(see Equation 1) using MCMC simulation. The model uses the exposure related vari-
ables (hosted domains, shared hosting domains, allocated IPs, hosting IPs and shared
hosting IPs) to control for exposure related effects. Note that some of our exposure
related variables capture the attack surface while others the business type of providers.
The model uses a logarithmic transformation of the independent (exposure) variables
as input. Part of the variation in incident numbers that cannot be attributed to exposure
make up the values for our latent security performance variable.

We performed full Bayesian inference of the model parameters and the latent vari-
ables by means of Markov Chain Monte Carlo (MCMC) sampling [33]. We used
weakly-informative prior distributions

γ j ∼ N(0,10), ln(α j)∼ N(.5,1), β ∼ N(0,3)
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reflecting our relative ignorance of their true values. MCMC sampling was carried out
using Stan [34] with the rstan R interface. We ran 4 chains for 1500 iterations each,
with 750 warmup samples. This resulted in a total of 3000 MCMC samples.

Table 3: IRT model parameter values for all abuse feeds

Parameter for Mean SE-Mean SD 2.5% 97.5%

γ [1] APWG -7.13 0.01 0.03 -7.20 -7.06
γ [2] Phishtank -6.09 0.00 0.03 -6.15 -6.04
γ [3] SBW1 -9.06 0.00 0.04 -9.13 -8.98
γ [4] SBW3 -5.10 0.00 0.03 -5.15 -5.04
γ [5] SBW4 -5.09 0.00 0.03 -5.14 -5.04
γ [6] SBW2 -5.72 0.00 0.03 -5.77 -5.66
γ [7] SBW5 -6.27 0.00 0.03 -6.33 -6.22

β[1] Owned IPs -0.75 0.00 0.01 -0.76 -0.73
β[2] Hosting IPs -0.36 0.00 0.01 -0.39 -0.34
β[3] Hosted Domains 3.82 0.00 0.03 3.76 3.88
β[4] Shared IPs 1.25 0.00 0.01 1.22 1.27
β[5] Shared Domains -1.96 0.00 0.03 -2.02 -1.91

α[1] APWG 3.19 0.01 0.03 3.14 3.25
α[2] Phishtank 1.83 0.00 0.02 1.80 1.87
α[3] SBW1 2.50 0.01 0.03 2.45 2.55
α[4] SBW3 2.14 0.00 0.02 2.10 2.17
α[5] SBW4 1.80 0.00 0.02 1.77 1.83
α[6] SBW2 2.13 0.00 0.02 2.09 2.17
α[7] SBW5 2.31 0.00 0.02 2.27 2.35

The MCMC algorithm converges towards the parameter values summarized in
Table 3 with R̂ values close to 1 which indicate convergence of the sampling algo-
rithm [35]. The table reports the estimated posterior mean value of each parameter
along with the 95% credible interval in which we estimate the value to be.

The first set of parameters, γ, are intercept values that set the baseline of abuse levels
in each abuse feed. The second set of parameters, β, capture the effect of each exposure
variable on the incident numbers in all abuse feeds. The third set of parameters, α,
capture how much the security performance of providers affect abuse levels in each
of the feeds. Intuitively this is similar to the difficulty of exam questions from our
analogy of the IRT approach. For example α[5] which has the lowest value among the
α parameters, tells us that the security performance of providers has the least effect on
lowering incident numbers within that feed. By analogy, it is a hard question to get
right on a student exam.

The final model parameter, our latent variable θ, represents the security perfor-
mance of providers, which is what we are interested in. Based on our modeling results,
Figure 10 illustrates the distributions of the posterior mean of the latent variable and the
posterior standard deviations for all providers respectively. As stated earlier, security
performance is measured on a continuous scale where larger positive number represent
more effective security performance and negative numbers represents less effective per-
formance. Notably, Figure 10b demonstrates that the posterior standard deviation of a
considerable portion of the measured performance levels is large. The large posterior
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standard deviation simply quantifies our own lack of certainty about the true value of
the latent variable. For that subset of measurements our confidence in values is low.
We explain why this large standard deviation occurs shortly here after. Figure 11 il-
lustrates the security performances of all organizations as the posterior mean of the
latent variable represented by black dots along side the 95% credible interval of the
latent variable values. An orange color indicates providers for which abuse has been
observed while gray colors indicate providers for which no abuse has been observed
according to our abuse feeds.
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Figure 11: Security performance with 95% credible interval band

Roughly stated, the posterior standard deviations for two thirds of the providers is
larger than 0.5. The remaining security performance values have a standard deviation
smaller than 0.5 and capture the level of security performance with more certainty.

The larger credible intervals are the result of a large range of potential θ values be-
ing plausible, given the observed abuse data and our model. Improving on this requires
larger samples and more abuse data with a stronger signal to noise ratio. This is a limi-

17



tation of our model and of the data. A second factor that leads to large credible intervals
for a subset of the providers is that these coincide with providers for which zero abuse
incidents have been observed, which also happen to be small hosting providers. For
such providers it is difficult to disentangle whether their lack of abuse is due to their
small exposure or due to their security performance. Therefore our model is not able
to accurately capture how well they perform in terms of their security.

Another reason for larger credible intervals is when incident counts in different
abuse feeds are wildly different, combining high and low abuse rates. As Table 2
illustrates, for a certain selection of providers, abuse feeds show very different incident
counts. These cases, however, all have a standard deviation smaller than 0.5.

Despite the uncertainty about the exact values of the latent variables, in the next
section we will see that taking the posterior means as a simple point estimate of the
security performance proves to be quite robust and can be used to generate good out-
of-sample predictions.

9 Robustness and Predictive Power
Given our measured security performance levels, we can examine how much of the
variation in incident counts can be explained by the mean point estimate of the latent
variable. To do so, we construct a GLM model of the incident counts which includes
the latent variable as an explanatory factor, in addition to the exposure related fac-
tors. As we did in our IRT model calculations, the incident counts are assumed to
follow a Poisson distribution of the same form as described in Equation 1. To test the
predictive power of our approach, we measure the security performance value repeat-
edly, each time leaving out one of the abuse feeds. We then use the measured security
performance to explain the variance in incident counts in the independent abuse feed.
This way, we cross-validate our results and can examine the predictive power of the
calculated security performance values. Table 4 shows how different models for the
SBW1 dataset explain the variation, where security performance was measured from
the other abuse datasets.

Model (1) is a baseline model which only includes a constant value as an explana-
tory factor. Model (2) adds the number of hosted domains as an explanatory factor, and
model (3) includes all exposure-related indicators. Model (4) is the final model and
adds security performance as an explanatory factor.

As indicated by the log-likelihood, AIC and dispersion of the models, model 4 is
a considerable improvement over the models with only exposure effects. In addition,
the pseudo-R2 values presented in the table indicate that exposure alone explains 78%
of the variation in abuse counts, while latent security practices add an additional 20%
to the explained variance – or 91% of the variance that remained after controlling for
exposure.

The coefficients for the explanatory variables in the model can be interpreted as
follows. We use model (4) as an example, the other models can be interpreted in
a similar fashion. Lets take the coefficient value of 1.70 for the number of hosted
domains as our primary example. This value indicates that, while holding all other
independent variables constant around their mean, increasing the number of hosted
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domains by 1 unit (the equivalent of multiplying the number by 10 due to the log10
scale of the variable) results in the expected number of incidents of the provider being
multiplied by e1.70 = 5.47.

The interpretation is slightly different for the coefficient of the security performance
variable: −1.84. Here, the GLM model suggests that increasing the variable by 1
unit, while holding all other variables constant, reduces the number of incidents of
the provider by a factor of e−1.84 = 0.158 – in other words, by 84%. Increasing the
latent variable by 1 basically means increasing security performance by one standard
deviation. The range from -2 to 2 includes 95% of all providers.

The inverted coefficient signs of the number of hosted domains and shared hosting
domains between model (2), model (3) and model (4) are due to the interactions be-
tween exposure variables, as some of them are derivative of others. For instance, ’large
hosted domain size’ results in ’large hosted shared domain size’ as well. Modeling
each of the exposure variables separately shows a positive significant effect for each
one, which is in line with what we observe in model (4).

Table 4: Poisson GLM regression with Log link function

Dependent variable:
SBW1 Incident Counts

(1) (2) (3) (4)

Hosted Domains (Log10) 1.96∗∗∗ −1.58∗∗∗ 1.70∗∗∗
(0.01) (0.11) (0.09)

Hosted Shared Domains (Log10) 1.98∗∗∗ −0.53∗∗∗
(0.10) (0.08)

Allocated IPs (Log10) 0.43∗∗∗ 0.05∗∗∗
(0.02) (0.02)

Hosting IPs (Log10) 0.26∗∗∗ 0.09∗∗∗
(0.03) (0.03)

Shared Hosting IPs (Log10) 1.42∗∗∗ 1.22∗∗∗
(0.03) (0.03)

Security Performance −1.84∗∗∗
(latent variable) (0.01)

Constant −1.01∗∗∗ −7.95∗∗∗ −7.24∗∗∗ −9.15∗∗∗
(0.01) (0.04) (0.06) (0.07)

Observations 32,822 32,822 32,822 32,822
Log Likelihood −63,479.84 −21,701.49 −15,556.22 −3,142.87
Akaike Inf. Crit. 126,961.70 43,406.97 31,124.44 6,299.74
Dispersion 422.43 9.71 12.39 0.12
Pseudo-R2 0.00 0.68 0.78 0.98

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We have repeated the same procedure for all abuse feeds. That is, we measured
security performance based on all feeds except one and then explained the variance
of incidents counts in the feed that was left out. The main results are summarized in
Table 5. The total explained variance in the incident numbers, using both exposure and
security performance, ranges from 75% to 99% of the total variation. The key finding
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here is that the security performance variable reliably adds to the explained variation
of each individual feed that has been left out of the calculations. This suggests that the
variable is able to capture the latent factor of security performance reliably enough to
have considerable predictive power. The coefficient value for the latent variable in these
models ranges between -2.13 to -1.54 and consistently shows a significant relation with
the incident counts in the dependent variable.

Table 5

Incident Counts According to Abuse Feed

SBW1 SBW2 SBW3 SBW4 SBW5 APWG Phishtank
Variance Explained by

Relative to intercept only baseline model

Exposure 0.78 0.86 0.83 0.89 0.85 0.70 0.83
Exposure + Security Performance ** 0.98 0.95 0.99 0.96 0.96 0.75 0.89

Relative to exposure only model

Security Performance ** 0.93 0.64 0.98 0.65 0.79 0.19 0.40

Note: ∗∗ Calculated from all feeds excluding feed indicated by column heading

The additional explained variance for all results, indicated in the bottom row of
Table 5, is remarkably high for such noisy data on such a multicausal phenomenon.

Two feeds stand out. The predictions for the APWG feed and the Phishtank feed
are less strong than those for the malware-related feeds. We speculate that this might
be due to an imbalance in the number of feeds that have been used as input to the
IRT model for calculating the security performance variable. In both instances, the
modeling procedure involves the use of five malware-related abuse feeds, leaving only
one additional phishing feed that has been used to measure the security performance.
Therefore the security performance variable calculations are slightly skewed towards
values dictated by the malware related feeds. In future work, this seeming lack of uni-
dimensionality can be further explored by estimating a two-dimensional item-response
model, in which the security performance of providers is allowed to vary along two di-
mensions. Presumably, one of these dimensions will be more strongly correlated with
phishing abuse, and the other with malware abuse. Such an analysis may reveal to what
extent these different types of abuse feeds can be seen as measurements of the same
latent trait, and as a consequence, how sensitive our security performance estimates are
to the selection of abuse feeds used to estimate them. In addition, finding a diverse
set of abuse feeds with minimal redundancy will likely improve the robustness of the
estimated security performance.

10 Related Work
Many studies use abuse feeds as their primary source of data on security incidents, with
different objectives.

A few studies have looked at abuse patterns across single or multiple threats, with
the intent to explore or explain what factors correlate with abuse levels. The main
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implication of these studies is that concentrations of abuse are the result of poor secu-
rity practices. Zhang et al. found that network hygiene – measured by the normalized
number of misconfigured systems – is correlated with a range of abuse incidents as
observed by various blacklists [18]. The underlying logic is that security hygiene prac-
tices of providers drive abuse rates across different threats. Or reverse: that one could
infer effective security practices from combining different abuse data sources. Note
that this study merged all of their abuse data into one combined data set, which might
mean that the largest set overwhelms all others and thus the study finds a relation with
that specific set of observations of abuse. A similar approach, but then at the organiza-
tion level, was conducted by Edwards et al. They assessed the security performance of
organizations from externally collected indicators of their security posture, and find it
correlates to abuse data [36]. Shue et al. also utilize abuse information from multiple
abuse sources and combined them into a single set to examine the connectivity charac-
teristics of networks with unusually high concentration of blacklisted IP addresses [37].
Vasek et al. combine abuse data sources to identify risk factors for webserver compro-
mise [19]. Our work is similar to this body of work by following the logic that is behind
correlating indicators with abuse. However, our work mainly differs in its unit of anal-
ysis, namely hosting provider organizations, and how we utilize our abuse datasets
towards our goal of inferring security performance.

A separate body of work has looked at concentration of abuse events in certain
networks [1], Internet Service Providers (ISPs) [2, 3], Autonomous Systems [14, 23,
38], countries [4, 5, 29], organizations [6], payment providers [7], registrars [8], reg-
istries [9], and other agents. The idea is that such concentrations are amenable to
intervention. They are interpreted to reveal attacker economics – such as scale advan-
tages – or defender economics – such as a lack of security investment by some agents
because the cost of incidents is externalized to others [10, 11]. Our work contributes
to this body work by offering a systematic explanation for abuse concentrations, re-
placing speculative interpretations of what they imply about security efforts or attacker
preferences. Our work is most closely related to [11] in which Tajalizadehkhoob et
al. propose analytical models to explain abuse concentrations based on exposure. We
build upon this work with a different modeling approach, based on IRT. We also build
upon [24] to construct a mapping of the hosting provider market and explore the issue
of bias in our abuse data.

Others studies have experimented with mixing abuse data to infer reputation scores
for individual hosts or IP addresses to help protect services. One such approach is the
idea of threat exchanges. Thomas et al. examined the usefulness and limitations of
mixing multiple sources of abuse information for this purpose [39]. This work helps
illuminate the relationships among abuse data sources, or the lack thereof, but their
analysis has very different purpose and does not provide any insight into the security
efforts of larger aggregates, such as networks or providers.

Orthogonal to the subject matter of our research is the wide range of problems as-
sociated with incident and abuse data, on which a lot of security research is based.
Noroozian et al. systematically walk through some of the difficulties associated with
creating operator benchmarks based on multiple data sources [14]. Clayton et al. high-
light considerations that need to be made before intervening based on abuse concentra-
tion metrics [10] an important part of which is measurement bias and possible artifacts
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that it produces. Kührer et al. attempt to quantify the measurement bias of a combined
set of malware blacklists in comparison to independent data sources [27] and find its
effects to be considerable. These studies combine data sources to reduce the effects
of bias, use independent datasets to examine consistency and use multiple measure-
ments to indicate stability of results over time. The implication being that there is
minimal/negligible effects from bias. Pitsillidis et al. reflect on the various spam abuse
data collection techniques and the variations in abuse data that can produce different
findings [40]. Metcalf and Spring compare the contents of 25 different blacklists and
surprisingly find very little overlap between the contents of the blacklists [17]. Our
work takes such issues into account and carefully explores the bias in our various data
sources to ensure minimal effects on our results.

11 Discussion and Conclusions
The success of many industry and government initiatives to combat cybercrime relies
on the ability to empirically track the efforts and progress of various market players.
Abuse data is a critical resource in that endeavor, but also a rather unruly one. This
study addressed the question of whether one can infer a reliable measurement of secu-
rity performance of hosting providers from an array of different abuse feeds.

Abuse datasets are notoriously noisy, highly heterogeneous, incomplete, biased and
driven by multiple causal factors that are difficult to disentangle. Earlier research has
managed to address some of these issues, but we present a more comprehensive ap-
proach that takes all of them into account. We apply the approach to the hosting sector,
which is associated with a large portion of all observed abuse events.

We have presented a causal model for the generation of abuse data that is implicitly
behind much of the empirical research. We have undertaken an exploration into obser-
vation bias, which showed that its impact is limited in terms of the distribution across
the hosting market. The heart of our approach is a modeling approach based on Item
Response Theory, which estimates security performance of hosting providers as a un-
observable latent variable from an array of abuse datasets. The Bayesian nature of our
approach also means that we can quantify the certainty that we have about the security
performance signal, as the security performance of each provider is expressed as a dis-
tribution. The proof of the pudding is in the eating, of course. We test the robustness
of our approach via out-of-sample predictions. We find that our security performance
measurements can predict a large amount of the variance in abuse incident counts, after
controlling for exposure. In short, our results demonstrate that a careful modeling of
abuse data can generate robust and reliable signals about the security performance of
providers.

There are also limitations to our approach. Due to the noisy nature of the abuse
data and the limitations of our model, the certainty in our security performance factor
for providers can be low, for a significant part of the hosting provider market, most
notably the smaller providers. That being said, the fact that the modeling approach
is able to quantify uncertainty is in itself an improvement over existing approaches.
Notwithstanding the uncertainty, the results turned out to be remarkably robust and
powerful, as shown by the out-of-sample predictions. Prediction power for the two
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phishing datasets was lower. One answer would be to select a more balanced set of
datasets. A less arbitrary approach would be to experiment with two-dimensional latent
trait models. We intend to undertake this in future work.

In sum, we would argue that the current approach can help improve the security
incentives by reducing information asymmetry in markets where abuse incident can be
observed and associated with defenders. It provides a basis to measure the impact of
security controls and practices on performance, thus providing a more empirical basis
for industry practices and government oversight.
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and Michel Van Eeten. Rotten Apples or Bad Harvest? What We Are Measuring
When We Are Measuring Abuse. 2017. URL: http://arxiv.org/abs/1702.
01624.

[12] Shu He, Gene Moo Lee, Sukjin Han, and Andrew B. Whinston. “How would in-
formation disclosure influence organizations’ outbound spam volume? Evidence
from a field experiment”. In: Journal of Cybersecurity 2.1 (2016), pp. 99–118.

[13] HostExploit. URL: http://hostexploit.com/.

[14] Arman Noroozian, Maciej Korczynski, Samaneh Tajalizadehkhoob, and Michel
van Eeten. “Developing Security Reputation Metrics for Hosting Providers”.
In: USENIX Workshop on Cyber Security Experimentation and Test (USENIX
CSET’15) (2015).

[15] Andrew J Kalafut, Craig A Shue, and Minaxi Gupta. “Malicious Hubs: Detect-
ing Abnormally Malicious Autonomous Systems”. In: 2010 Proceedings IEEE
INFOCOM. IEEE, 2010, pp. 1–5.

[16] Benjamin Edwards, Steven Hofmeyr, Stephanie Forrest, and Michel van Eeten.
“Analyzing and Modeling Longitudinal Security Data: Promise and Pitfalls”. In:
Proceedings of the 31st Annual Computer Security Applications Conference on
- ACSAC 2015. ACM Press, 2015, pp. 391–400.

[17] Leigh Metcalf and Jonathan M Spring. Everything You Wanted to Know About
Blacklists But Were Afraid to Ask. Tech. rep. CERT Network Situational Aware-
ness Group, 2013.

[18] J Zhang, Z Durumeric, and M Bailey. “On the Mismanagement and Malicious-
ness of Networks”. In: NDSS. 2014.

[19] Marie Vasek, John Wadleigh, and Tyler Moore. “Hacking Is Not Random: A
Case-Control Study of Webserver-Compromise Risk”. In: IEEE Transactions
on Dependable and Secure Computing 13.2 (2016), pp. 206–219.

[20] StopBadware. URL: https://www.stopbadware.org/data-sharing.

[21] Anti Phishing Working Group - APWG. URL: http://www.antiphishing.
org.

[22] Phishtank. URL: https://www.phishtank.com/index.php.

[23] Maria Konte, Roberto Perdisci, and Nick Feamster. “ASwatch: An AS Rep-
utation System to Expose Bulletproof Hosting ASes”. In: Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication -
SIGCOMM ’15. ACM Press, 2015, pp. 625–638.

24

http://arxiv.org/abs/1702.01624
http://arxiv.org/abs/1702.01624
http://hostexploit.com/
https://www.stopbadware.org/data-sharing
http://www.antiphishing.org
http://www.antiphishing.org
https://www.phishtank.com/index.php


[24] Samaneh Tajalizadehkhoob, Maciej Korczynski, Arman Noroozian, Carlos
Ganan, and Michel van Eeten. “Apples, oranges and hosting providers: Hetero-
geneity and security in the hosting market”. In: NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2016, pp. 289–297.

[25] Maxmind GeoIP2 DB. URL: https://www.maxmind.com/en/geoip2-isp-
database.

[26] Farsight Security. DNSDB. URL: https://www.dnsdb.info.

[27] Marc Kührer, Christian Rossow, and Thorsten Holz. “Paint It Black: Evaluating
the Effectiveness of Malware Blacklists”. In: RAID. Vol. 7462. LNCS. Cham,
2012, pp. 1–21.

[28] Brian Greenhill, Michael D. Ward, and Audrey Sacks. “The Separation Plot:
A New Visual Method for Evaluating the Fit of Binary Models”. In: American
Journal of Political Science 55.4 (2011), pp. 991–1002.

[29] Samaneh Tajalizadehkhoob, Carlos Gañán, Arman Noroozian, and Michel van
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