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“A Strain Energy Limiter Approach for Atherosclerotic Plaque 

Rupture Modelling” 

Abstract- Atherosclerosis is a prevalent cardiovascular disease and defined as plaque formation inside the arterial 

intima layer. The atherosclerotic plaque is characterized as anisotropic, soft tissue and a potential plaque rupture 

could result in life-threatening clinical events, such as ischemic attack or stroke. The plaque rupture mechanism 

is still poorly understood due to the lack of real-time, in-vivo observations. Aiming to predict and describe the 

plaque damage behavior, numerical damage models have been implemented. This study focused on developing a 

theoretical and computational framework of Strain Energy Density Function (SEDF) with energy limiter damage 

model with atherosclerotic plaque-mimicking tissue-engineered applications. The generated damage model was 

implemented in Neo-Hookean and Holzapfel-Gasser-Ogden (HGO) SEDF via material user subroutines (UMAT 

codes) in finite element software. The computational models simulated 8 different experimental ruptured cases 

based on idealized and realistic geometrical models. In the material characterization process an iterative 

optimization algorithm was developed. The findings demonstrated that the case-specific computational models 

with SEDF with energy limiter damage model reproduced the plaque-mimicking rupture as they fitted the 

experimental crack initiation and propagation patterns. The results revealed that the anisotropic HGO material 

model generated the highest amount of Cauchy stresses and strain energy density. In addition, the geometrical 

configuration sensitivity of the damage model was emphasized as all cracks initiated from the inclusion and the 

results between idealized and realistic geometrical models deviated. A parametric study was conducted to 

investigate the influence of various energy limiters in matrix and fibers components via the SEDF and resulted in 

a matrix-dominated damage model. The SEDF with energy limiter model could be further optimized by 

developing a fully automated damage model and validated with clinical applications. 

Keywords: Atherosclerosis – Plaque – Computational – Numerical – Strain Energy Density Function – Energy 

Limiter – Damage – UMAT. 

 

1. Introduction 

Atherosclerosis is one of the most widespread diseases in human cardiovascular system and a primary 

cause of death as it can lead to myocardial attack or stroke. It is usually a progressive disease and takes 

decades for full-symptom development. But the blockage of the arterial lumen can be instantaneous 

with hazardous outcome if an atherosclerotic lesion site in an artery, namely atherosclerotic plaque, 

ruptures. In the US approximately 610,000 people annually succumb to heart disease and that equals to 

1 out of every 4 deaths. Specifically, 75% of heart attacks occur from plaque rupture every year 

(Virmani et al., 2008; Pahwa et al., 2020). 

Atherosclerotic plaque rupture triggers a thrombotic cascade, where eventually a blood clot is formed, 

completely or partially occluding a vessel leading to life-threatening events. The plaque rupture 

behavior could be mechanically characterized as material fracture based on the accumulation of 

imperfections like voids and cracks at micro-level followed by irreversible and heterogeneous effects 

that form cracks at macro-level. Material fracture could be divided into two parts: the crack initiation 

and the crack propagation but the mechanism(s) in either phenomena is scientifically not well studied 

for atherosclerotic plaque rupture yet. The greatest challenge involved arises as in-vivo, real-time 

observations and measurements of plaque tissue rupture are hard to make. Alternative is utilizing 

numerical damage models in order to describe and predict the fracture mechanism of atherosclerotic 

plaque tissue (Holzapfel et al., 2014; Gultekin et al., 2016). 

Although limited in number, some computational models have been developed to study the 

atherosclerotic plaque and arterial damage. In the studies of Gasser et al., Badel et al. and Leng et al. a 

cohesive zone modelling (CZM) method was used, as a numerical atherosclerotic plaque damage 
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model, in order to depict the local delamination process between the plaque and the arterial wall during 

stent deployment illustrating a “smooth” and continuous damage evolution from the stiffening into the 

softening effect during failure process. The atherosclerotic plaque rupture was also simulated via CZM 

technique by Ferrara et al., with gradual surface separation within the defined crack tip, based on 

traction-separation law and material degradation (Gasser et al., 2007; Ferrara et al., 2008; Badel et al., 

2014; Leng et al., 2015). However, the application of CZM method introduced some limitations as the 

cohesive zone elements are usually isotropic with linear, elastic mechanical response precluding the 

anisotropic failure mechanism. The studies of Versluis et al., Pei et al. and Huang et al. considered the 

damage in plaque as a consequence of a fatigue mechanism owing to the fact that inside the arteries the 

blood pressure follows a cyclic loading pattern which can potentially lead to deterioration of plaque 

tissue (Versluis et al., 2006; Pei et al., 2013; Huang et al., 2013). Fatigue damage models regarding 

engineering materials are based on the fact that the geometrical or structural configuration of the model 

is preserved during the fatigue process but for biological tissues, like atherosclerotic plaque, the 

applicability of this approach is questionable as the tissues may remodel and change their structure over 

time. 

In the framework of continuum mechanics, soft biological tissues like atherosclerotic plaque 

demonstrate anisotropic mechanical responses under large deformations they physiologically undergo 

due to their structural composition (matrix and fibers components). Their constitutive behavior is 

commonly prescribed with a Strain Energy Density Function (SEDF) from which stress–strain relations 

and elasticity tensors can be obtained (Simo, 1987; Calvo et al., 2006; Rodriguez et al., 2008; Pena et 

al., 2011; Saez et al., 2012). Damage can be implemented in SEDF by energy limiter approach including 

information regarding the high complexity between the fibers and matrix components and describe the 

procedures occurring within the tissue during the failure process. The main benefit of SEDF with energy 

limiter compared to other discontinuous fracture mechanisms is the representation of the anisotropic, 

inelastic and non-linear fracture behavior of a soft tissue and its great adaptability regarding multiple 

hyper-elastic material models and damage mechanisms allows modeling the “global” tissue failure 

Applications of the SEDF with energy limiter, as a damage model in healthy arterial tissues, are 

presented in the studies of Volokh et al., Famaey et al., Ferreira et al., Mousavi et al., and Pena et al. 

combined with experimental validations (Volokh et al., 2011; Famaey et al., 2013; Ferreira et al., 2013; 

Mousavi et al., 2018; Pena et al., 2019). 

 

The current study aims developing a theoretical and computational framework of a Strain Energy 

Density Function (SEDF) with energy limiter damage model to describe an atherosclerotic plaque 

damage mechanism. To the author’s knowledge, the current study presents for the first time the SEDF 

with energy limiter as an atherosclerotic plaque damage model. First, a SEDF with energy limiter was 

proposed, and numerically implemented in a commercial finite element software framework. Then, the 

developed model was used in case-specific computational simulations of rupture experiments of 

atherosclerotic plaque-mimicking engineered tissue samples.  

 

2. Materials and Methods 

The atherosclerotic plaque is usually modeled as a hyper-elastic, nearly incompressible composite 

material due to its non-linear mechanical stress-strain response under large deformation and the 

structural composition (Holzapfel et al., 2014). In the current study, the computational models of 

atherosclerotic plaque focused on two SEDF, the Neo-Hookean and the Holzapfel-Gasser-Ogden 

(HGO) hyper-elastic models, commonly used for atherosclerotic plaques (Akyildiz et al., 2017). The 

plaque rupture mechanism was simulated with the commercial finite element software 

ABAQUS/Standard (Dassault Systems) via the approach of a Strain Energy Density Function (SEDF) 
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with energy limiter. First, an SEDF with energy limiter was developed, verified and implemented for 

both material models using material user subroutines (UMAT) written in Fortran. Due to the lack of 

atherosclerotic plaque rupture test data, the developed damage model was applied in eight recently 

obtained plaque-mimicking tissue-engineered samples (Master Thesis Serra, S., 2020) ending up with 

48 3D computational models. An additional parametric study was conducted regarding the variation of 

crack initiation thresholds between matrix and fibres components in order to gain better insight into the 

damage model of SEDF with multiple energy limiters.  

2.1 Constitutive Models of Plaque Tissue 

A Strain Energy Density Function (SEDF) defines the stored energy in a material due to the deformation 

it has undergone by using a hyper-elastic material model. The mechanical response of the material can 

be then derived from the defined SEDF. The SEDF, Ψ can be split into the volume-preserving, 

deviatoric part, Ψdev and the volumetric (or volume-changing) part, Ψvol, expressed as (Rodriguez et al., 

2008; Volokh, 2011): 

Ψ = Ψdev  + Ψvol .                                                                                                                                                          (1) 

With respect to the applications to fibrous soft tissues, that consist of a non-collagenous ground matrix 

with embedded collagen fibers, the deviatoric part Ψdev can be further decoupled into an isotropic 

component Ψiso and an anisotropic component Ψaniso, reflecting the isotropic influence of the matrix 

material and the anisotropic contribution of fibres, respectively. Then the corresponding SEDF can be 

defined as  

 

Ψ(C̃) = Ψiso ( C ̅) + Ψani ( C ̅)+ Ψvol (J)                                                                                                                         (2) 

 

where C̃ is the right Cauchy–Green strain tensor defined as C̃= FTF, F is the deformation gradient tensor, 

C ̅ is the deviatoric part of the right Cauchy–Green strain tensor, given as C ̅ =FT̅̅ ̅ F̅, F̅= J-1/3 F and 

Jacobian J= det(F) (Pena et al.,2007).   

 

Neo-Hookean Material Model 

The Neo-Hookean model is commonly implemented in arterial wall and atherosclerotic plaque 

computational models depicting their non-linear mechanical response (Akyildiz et al., 2015; Akyildiz 

et al., 2017).  The Neo-Hookean SEDF, ΨNH is a hyper-elastic material model that provides an isotropic, 

non-linear behaviour and is given by 

Ψ𝑁𝐻 =  C10(I1̅ − 3)⏟      
Ψiso ( C  ̅̅ ̅) 

   +   
1

D1
(J − 1)2

⏟      
Ψvol( J )

  .                                                                                                  (3)  

 

In the above expression C10 is a material constant, I1̅ = tr( C ̅) is the first invariant of the deviatoric part 

of the Cauchy-Green deformation tensor and D1 is the material’s incompressibility parameter (deBotton 

et al., 2005). 

Holzapfel-Gasser-Ogden (HGO) Material Model 
 

The HGO material model was originally developed for modeling the fibre-families and the non-

collagenous matrix components within the arterial layers (adventitia and intima layer) including the 

mechanical contribution of both components (isotropy and anisotropy) in the same equation forming a 
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generic material model. In the HGO model, ΨHGO more than one fibre-family can be incorporated within 

the structure and its SEDF is expressed as 

 

Ψ𝐻𝐺𝑂 = C10(I1̅ − 3)⏟      
 Ψiso ( C  ̅̅ ̅)

+
1

D1
[
( J )2−1

2
− lnJeℓ]

⏟            
Ψvol( J )

 +

k1

2k2
 ∑ [exp (k2 ⟨κ(I1̅ − 3) + (1 − 3κ)(I4(i)̅̅ ̅̅ ̅ − 1)⟩

2
) − 1]𝑛

𝑖⏟                                    
Ψani ( C  ̅̅ ̅)

                                                               (4) 

where k1 describes the relative stiffness of the fibre families in small strain range, k2 presents a 

dimensionless stiffness parameter regarding large strain range, n describes the total number of fiber 

families, κ (0≤κ≤1/3) controls the dispersion rate within the fibre families directions (if κ=0 the fibers 

are perfectly aligned in one direction and if κ=1/3 the fibres are randomly distributed leading to 

isotropic material behavior), I4(i)̅̅ ̅̅ ̅= αi· C ̅αi is the pseudo-invariant of the right Cauchy-Green 

deformation tensor and αi is the mean direction of the fiber family i and ⟨⋅⟩ is the “Macauley bracket” 

operator defined as: ⟨x⟩=1/2(|x|+x) (Gasser et al., 2006; Gasser et al., 2007; Holzapfel et al., 2014)  

 

2.2 Tissue Damage Modeling via Energy Limiter Approach 

 

The damage evolution is introduced in this study via an energy limiter in the SEDF that enables the 

atherosclerotic plaque rupture modelling. The energy limiter could be characterized as a saturation 

factor for the SEDF defining the threshold of the maximum amount of energy that could be stored in 

the material without fracture, named fracture energy and it is usually implemented through the material 

constitutive equations. Since it is commonly assumed that the material degradation is only related to 

the maximum distortional energy (deviatoric part) and is independent of the volumetric part, the energy 

limiter affects only the deviatoric part of the SEDF and is implemented as (Pena et al.,2007; Rodriguez 

et al., 2008; Volokh, 2011). 

 
Ψ = (1 − D) ·Ψdev  + Ψvol                                                                                                                                       (5)  

 

where D∈ [0, 1]  is a monotonically increasing internal damage parameter reflecting the percentage of 

the damaged material (D =0 describes a healthy tissue without damage initiation and D=1 represents a 

fully separated and totally damaged tissue) and (1– D) is the reduction factor (Pena et al.,2011). The 

development of the damage parameter D is defined by an equation of irreversible damage evolution 

given by 

 

D = {

0 ,                 if   Ξ < Ξmin
ξ2[1 − βk(ξ

2 − 1)] , if   Ξmin < Ξ < Ξmax 

1 ,                 if   Ξ > Ξmax

      and     ξ = 
Ξ − Ξmin

Ξmax − Ξmin
                                                          (6)       

                                                                                                                                                                                            

where βk∈ [-1, 1]  is a material parameter affecting the curvature of the damage function when Ξmin <

Ξ < Ξmax , as shown in Fig. 1 and Ξmin,  Ξmax ∈ [-1, 1] are variables related to the strain energies at 

initial and fully damage state, respectively. The Ξ∈ [-1, 1] variable is expressed by 

 

Ξ = max√2 · Ψ(C̃)                                                                                                                                                    (7) 

 

and the following damage criterion φ during the loading conditions is fulfilled (Simo, 1987) 
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φ = √2 · Ψ(C̃)  - Ξ ≤ 0 .                                                                                                                                          (8) 

 
Fig. 1. The effect of βk∈ [-1, 1] parameter of the SEDF with energy limiter damage model on the damage evolution of the 

factor D when Ξmin < Ξ < Ξmax . The “βk=0” curve represents a more linear damage evolution from Ξmin to Ξmax (Oliviera 

et al., 2016, p.2). 

 

The reduction factor (1- D) influences the mechanical response as it affects the deviatoric part of the 

Cauchy stress tensor σdev and the elasticity tensor hdev, defined as: 

σdev = (1- D) · σdev
0                                                                                                                                                        (9) 

hdev = (1- D) · hdev
0 – D’(σdev

0 ⊗σdev
0)  and  D’= 2ξ(1+βk) - 4βk ξ

3   if   Ξmin < Ξ < Ξmax  .                                    (10) 

Considering that the deviatoric part of the SEDF is further decoupled into the isotropic (matrix 

component) and the anisotropic part (fiber network), the normalized, scalar, damage variable D could 

be also separated into the matrix damage parameter (Dm ∈ [0, 1]) and the fibres damage factor (Df ∈ [0, 

1]), given by (Simo, 1987) 

Ψ(C̃) = (1 – Dm)· Ψiso (C ̅) + (1 – Df) · Ψani(C ̅) + Ψvol(J) .                                                                                     (11) 

 

The damage evolution of the reduction factors (1– Dm) and (1– Df) are determined by (Calvo et al., 

2006) 

 

Ξm=√2 · Ψiso( C ̅)  and  Ξf = √2 ·  Ψani( C ̅)   .                                                                                                  (12) 

 

 

 



17 
 

2.3 Finite Element Implementation  

 
The damage development of the reduction factor (1- D) was computationally implemented in the 

commercial finite element software ABAQUS for the Neo- Hookean and HGO constitutive in order to 

model the material degradation process. Since the energy limiter approach is not available as a damage 

model in ABAQUS, the SEDF with energy limiter was developed and implemented through material 

user subroutines written in Fortran, named UMAT. The numerical development of UMAT codes can 

be found in Appendix A.1. The verification process of the constitutive models included single-element 

(C3D8H) models under 12 different loading conditions and a multiple-elements example problem with 

the model provided by ABAQUS manual (“adventitia_axial.inp”) under tensile testing as described in 

Appendix A.2. The implementation of the damage loop and the calculation of the “damaged” SEDF and 

the reduction factor (1- D) in the Neo-Hookean and HGO UMAT codes are provided in Appendix A.3. 

 

2.4 Application to Predict Damage in Plaque-Mimicking Tissue-Engineered Samples 

 

2.4.1 Experimental Rupture Data 

Due to the lack of the available rupture data from real atherosclerotic plaque tissue, the developed SEDF 

with energy limiter was applied for the rupture data set of atherosclerotic plaque-mimicking tissue-

engineered samples. The available experimental data was obtained recently in our research group 

(Master Thesis Serra, S., 2020). Briefly, the tissue-engineered plaque constructs were generated by 

culturing isolated human myoblast cells derived from the vena sephena magna with incorporated 

collagen fiber families. The tissue-engineered scaffolds had a dog-bone or rectangular shape with a soft 

gel inclusion in the center representing the lipid pool of an atherosclerotic plaque tissue (diameter of 2 

mm), as shown in Fig.2.  

 
Fig.2. Experimental data from atherosclerotic plaque-mimicking tissue-engineered samples with dog-bone or rectangular 

shape. Collagen fibers were incorporated within the tissue and the lipid pool was depicted by a soft inclusion in the 

middle. The plaque samples were attached in Velcro constructs for uniaxial stretching. 

 

Once the samples were cultured and created, they were mechanically tested under uniaxial stretch 

loading condition until rupture. Eventually, eight tissue samples, out of 42 experimental cases, had a 

rupture in the central region, next to the soft inclusion. In the present study the rupture tests of these 

samples were simulated. The geometrical dimensions, such as length, width in the central part of dog-

bone or rectangular shape and average thickness of the test samples are presented in Table 1 (Master 

Thesis Serra, S., 2020). 
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Table 1. The geometrical dimensions of length, width in the middle section of four dog-bone and four rectangular shapes, 

average thickness and the applied displacement regarding the eight tissue ruptured cases. 

Sample Length (mm) Width (mm) Average Thickness (mm) Applied Displacement (mm) 

1 4.403 12 0.60  3.667  

2 4.828 12 0.65  4.407  

3 6.727 5 0.60  4.826 

4 8.839 4.5 0.50  2.931 

5 9.035 5  0.40  3.969  

6 6.541 8.5 0.50 3.355  

7 5.557 8  0.55  3.417  

8 7.323 5.8  0.35  5.010  

 

2.4.2 Computational Models 

The sample-specific computational models of the eight plaque-mimicking engineered-tissue samples 

were created to simulate the tissue rupture that occurred in the uniaxial tensile testing. In the models, 

the sample-specific geometry, mechanical behavior and test-specific boundary conditions were 

incorporated. With respect to the experimental dimension measurements of every ruptured case, first a 

3D “Ideal” computational model was created based on the length, width and average thickness 

measurements but via idealized and symmetrical dog-bone or rectangular shapes including elliptical 

inclusions in the centre of the tissue.  

To investigate any effect of irregular shapes of the experimental tissue samples, a second geometrical 

model was created for each sample, the “Image-based” models. The 3D “Image-based” geometries 

followed the exact length and width of the samples as every cross-sectional image was imported as a 

sketch in ABAQUS 2016 with averaged thickness applied. A representative example (Sample #2) is 

illustrated in Fig.3. The soft inclusion in the center of the tissue was modeled as a void due to its minimal 

mechanical contribution. 

Experimental Image “Ideal” Model  “Image-based” Model 

   

Fig.3. The real test sample (left) and the corresponding ABAQUS computational models: “Ideal” (mid) and “Image-based” 

(right) 

The sample-specific finite element simulations involved uniaxial stretching of the samples along the 

length direction by test specific displacement boundary condition. Eight-node linear, hybrid elements 

with reduced integration and enhanced hourglass control with one Gauss point (C3D8RH) were used in 

the models. During the mesh convergence analysis, Mesh 1 consisted of approximately 8100 elements 

and 11000 nodes, as a coarse mesh, Mesh 2 was refined as each element edge length was half, in all 

directions compared to Mesh 1, ending up in about 64000 elements and 76000 nodes and finally Mesh 

3 as a stricter mesh refinement analysis with further division of the element dimensions resulted in 

roughly 235000 elements and 353000 nodes. According to the load-displacement curves of all 3 Mesh 

categories, as shown in Fig 4, Mesh 2 and Mesh 3 presented similar outcome with average relative error 
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of all data points 6.6%. Mesh 2 provided well-converged solutions and all computational model results 

generated from Mesh 2. 

 

Fig. 4. The load- displacement curves of Mesh 1, Mesh 2 and Mesh 3 cases during the mesh convergence analysis. The 

curve of Mesh 1 (coarse mesh) presented the highest deviation from Mesh 2 and Mesh 3 results. 

 

In the HGO material models, due to the lack of the structural information of the samples, one fibre 

family was assumed with the predominant fiber orientation along the length direction and the κ value 

was set zero (fibres were fully aligned and activated in loading direction) in a set of models and 0.333 

(randomly distributed fibres) in another one in order to investigate the influence of the fibre distribution. 

Consequently, six computational models per sample (“ideal” – “image-based” geometrical and Neo-

Hookean –  HGO with κ=0 and κ= 0.333 material categories) and 48 models in total were simulated.  

As the material properties of the plaque-mimicking tissue-engineered samples were not available, a 

material characterization procedure had to be performed. The material properties of the samples were 

estimated from the tensile test data of a sample, not included in the sample group analyzed for rupture, 

without the soft inclusion. It was assumed that all 8 tissue samples have the same properties as they 

were created following the same culturing protocol.  

The Neo-Hookean material properties C10 = 3.0126 kPa and D1 = 1·e-6 were obtained by the fully 

automated inverse identification procedure of ABAQUS 2016 from the engineering (nominal) stress 

and strain experimental data with average relative error 13%. Since the material evaluation process in 

ABAQUS is only available for isotropic material models, regarding the HGO model an iterative 

optimization algorithm was developed through MATLAB R2019a (MathWorks) and Wolfram 

Mathematica Notebook 12.0.0.0. The details of the procedure can be found in Appendix B. Briefly, the 

unknown parameter values of the HGO material model, namely C10, k1, k2 and κ were obtained by using 

20 experimentally measured pairs of Cauchy stress and displacement data. The tissue was assumed 

nearly incompressible, hence D1 value was set 1·e-6. An overdetermined system of 20 equations was 

solved for the material evaluation where the deformation gradient, the left Cauchy deformation tensor, 

the first and forth invariants were calculated. During the material evaluation a non-linear, curve-fitting, 

optimization method was implemented, by utilizing the “Trust-Region-Reflective” as least-squares 

method in MATLAB R2019a (MathWorks) (Badel et al., 2011; Hajhashemkhani et al., 2015). The 

estimated HGO material parameters in the case of HGOiso (κ= 0.3333) were C10 = 2.9 kPa, k1= 0.0032 

kPa, k2= 0.004 (average relative error 20%) and in the case of HGOaniso (κ= 0) the values were C10 = 2.6 

kPa, k1= 0.0028 kPa, k2= 0.004 (average relative error 29%).  
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In the computational analysis of the 48 finite element models, the SEDF was calculated for every 

element, increment and timeframe based on the implemented UMAT codes. The region from zero (A) 

to maximum (B) experimental force was assumed without damage as during this time the matrix and 

fibers were fully activated and could bear the uniaxial loading conditions. However, the region from 

maximum (B) to zero (C) experimental force was assumed to be the “damage” part of the curve where 

the energy limiter was implemented. To separate the “no-damage” (A – B) and “damage” (B – C) 

region, the crack initiation threshold was set at the maximum experimental force (B) and the 

corresponding displacement, as illustrated in Fig. 5.  

 
Fig. 5. The experimental force-displacement curve of a test sample (Sample #6). The crack initiation was assumed to be at 

the maximum force (point B). The region A – B was identified as “no-damage” and the region B – C as “damaged”. 

 

 

2.5 Parametric Study of SEDF with different and varying Energy Limiters for the matrix and 

the fibrous components 

In previous sections, it was assumed that the matrix and the fibrous components of the HGO models 

had the same energy limiter threshold. Since it was not clear from the experimental data, if the matrix 

and the fibrous components had the same or different crack initiation thresholds, a parametric study was 

conducted in order to investigate the influence of multiple energy limiter thresholds in SEDF of the 

HGO models. 

During the parametric analysis, an “Ideal” dog-bone model was simulated (Sample #2), where the 

material properties, boundary and mesh conditions followed the protocol described in previous sections. 

In addition, the damage model in HGO UMAT was revised in order to separate the matrix and the 

fibrous component SEDFs with energy limiter calculations and their reduction factors (Appendix C). 

The implemented energy thresholds were calculated according to Eq. 12 and the initial (point A in Fig. 

5) and fully damaged (point C in Fig. 5) thresholds were constant for all case scenarios with values of 

0 and 0.065 MPa, respectively. The only parameter that was varied was the crack initiation threshold 

(point B in Fig. 5), which was calculated and set at 20%, 40%, 60% and 80% of the total analysis time 

for the matrix and fibres components separately as depicted in Table 2.  
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Table 2. The crack initiation thresholds in the HGO model set at 20%, 40%, 60% and 80% of the total analysis time 

regarding the matrix and fibres components. The energy thresholds were calculated according to the UMAT code presented 

in Appendix C. 

Matrix Crack Initiation Threshold (MPa) Fibres Crack Initiation Threshold (MPa) 

20%:  16.32 x 10-3   20%:  61.43 x 10-6 

40%:  31.25 x 10-3 40%:  12.94 x 10-5 

  60%:  45.93 x 10-3 60%:  20.82 x 10-5 

80%:  56.86 x 10-3 80%:  27.52 x 10-5 

 

3. Results 

The results of the “ideal” (n=24) and “image-based” (n=24) computational models were qualitatively 

compared with the experimental data regarding the localization of damage (crack initiation point and 

propagation pattern). A quantitative comparison between Neo-Hookean and HGO material models 

regarding the maximum principal Cauchy stress and the strain energy density distribution is presented. 

The effect of multiple energy limiters in matrix and fibrous components on damage initiation and 

evolution is provided in the results of the parametric study highlighting the influence of a matrix-

dominated damage model. 

3.1 Qualitative comparison 

The qualitative comparison of the computational results to the experimental observations revealed that 

the crack initiation locations and the crack propagation patterns in simulations matched the experiments 

reasonably well. The experimental force-displacement measurements of a representative dog-bone 

shaped sample (Sample #6) is given in Fig. 5 where the crack initiated at 2.115 mm displacement and 

was fully propagated at 2.671 mm. During the experimental tissue rupture process, the crack initiated 

at the border of the soft inclusion, as shown in Fig. 6, left panel. 

According to the computational results depicted in Fig.6, the higher amount of strain energy density 

was located around the soft inclusion at the sides in both Neo-Hookean and HGO material models 

combined with lower SED at the north and south parts of the inclusion, reflecting the crack initiation 

point. Despite the uniform high strain energy distribution spanning a large region in the central part in 

the Neo-Hookean model, the HGOaniso model presented a smaller high SED region, localised at the 

edges of the inclusion. In Fig.6 the computational results of Neo-Hookean and HGOaniso models are 

illustrated due to the crack initiation similarity between HGOiso and HGOaniso models. 

Comparing the “ideal” and “image-based” simulations, both Neo-Hookean models converged with 

similar outcome. As far as the crack propagation pattern is concerned, all models followed the 

experimental crack path but the “image-based” models presented a more similar crack propagation 

pattern with the experimental data as the soft inclusion ended up deformed and with thinner tissue in 

the middle section. The Neo-Hookean models resulted in uniform strain energy distribution affecting 

the entire tissue and not only the middle region while the opposite distribution was observed in HGO 

models.  
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Crack Initiation: “Ideal Models” 

Experimental Data Neo-Hookean HGOaniso 

 

  

“Image-based Models” 

  
Crack Propagation: “Ideal Models” 

Experimental Data Neo-Hookean HGOaniso 

 

  
“Image-based Models” 

  
Fig.6. A representative example case of qualitative crack initiation and propagation comparison between experimental data 

and HGO with zero κ value computational simulations following the SEDF with energy limiter damage model. The 

variables SDV7, 8 illustrated the SEDF in MPa. 

Overall, 62% of the computational models (26 cases out of 42: all “ideal” and “real” Neo-Hookean 

models, 16 HGO “ideal” and 16 HGO “real” models) resulted in the same crack initiation point with 

the tissue-engineered samples (Appendix D). The remaining 16 cases (all HGO material models) 

showed no crack initiation under the prescribed boundary conditions and strain energy limiter 

thresholds. In addition, 20 out of 24 “ideal” models resulted in more than one crack initiation points 

around the inclusion, compared with the “image-based” models. With respect to the SED distribution 

map, the isotropic models, namely the Neo-Hookean and HGOiso, showed a more uniform energy 

distribution with higher values in the middle section of the sample and especially around the inclusion. 
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However, in the HGOaniso, the higher amount of energy was located only at the edges of the inclusion 

or the outer edges of the tissue and not in the whole middle section of the model, as shown in Fig. 6 of 

the representative example.  

Due to the lack of crack initiation points in 16 cases, 26 computational models were compared with the 

experimental data regarding the crack propagation pattern. About 77% of these models (20 cases out of 

26) successfully simulated the crack path with multiple cracks at the inclusion and tissue outer border 

(Appendix D). The crack propagation patterns presented in the “image-based” models resembled the 

corresponding experimental data better than the “ideal” models. Regarding the SED distribution, a 

uniform energy distribution around the soft inclusion is presented. The damage mechanism in Neo-

Hookean models influenced the whole tissue sample resulted in a more uniform strain energy 

distribution while the HGO models presented the highest amount of energy in the thinnest parts of the 

models and specifically in the HGOaniso the higher SED was spread across the fiber direction. 

3.2 Quantitative assessment 

The quantitative analysis of both material models (Neo-Hookean and HGO) focused on the first 

damaged element (the first element that reached the energy limiter) within the middle section of the 

computational models. Regarding the representative example (Sample #6), the HGOaniso presented 

greater maximum principal Cauchy stress, while the Neo-Hookean and the HGOiso resulted in similar 

mechanical behavior, as shown in Fig. 7. With reference to the geometrical categories: “ideal” and 

“image-based” models, in the HGO simulations the “ideal” case presented higher Cauchy stresses in 

contrast with the Neo-Hookean models. In addition, the experimental mechanical behavior is illustrated 

emphasizing on the sudden and sharp drop of the experimental curve compared to the computational 

results. 

  
Fig. 7. Experimental and computational results of the tissue sample #6 regarding the Maximum Principal Cauchy Stress vs 

Logarithmic strain data. 

 

According to Fig.8 presenting the SEDF with energy limiter of the first damaged element of the 

representative example (Sample #6), the HGOaniso provided the highest maximum of strain energy, 

approximately 65% higher than the Neo-Hookean models. Even though, in the HGO material models 

the “ideal” cases introduced about 50% higher amount of strain energy compared with “imaged-based” 
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models, in the Neo-Hookean model the “image-based” simulations resulted in slightly higher amount 

of strain energy delaying 10% of total time the fully-damaged condition. 

 

 
Fig. 8. Experimental and computational results of the tissue sample #6 regarding the SEDF with energy limiter vs simulation 

Time data. 

In overall, with reference to the Cauchy stress-logarithmic strain graphs of the first damaged element 

within the middle section of all computational models (Appendix E), the higher maximum principal 

Cauchy stresses were generated with the HGOaniso while the HGOiso and the Neo-Hookean models 

resulted in similar stress distribution. Regarding the HGOaniso, half of the “ideal” models presented 

significantly lower stresses compared to the “image-based” models illustrating the influence of the 

accurate geometric representation.  

The experimental Cauchy stress-logarithmic strain results showed a sharp decrease in stress in the 

“damaged region” compared with a “smoother” and slower damage model of the computational models. 

The total separation of the experimental tissue occurred roughly at half of the logarithmic strain value 

of the first damaged element in computational models (both Neo-Hookean and HGO). 

A quantitative comparison between the Neo-Hookean and HGO material models demonstrated that in 

all 8 cases the HGOaniso model had a higher amount of SED reflecting the importance of the anisotropy 

due to the fiber alignment (Appendix E). The geometrical irregularities in the samples slightly affected 

the amount of energy in each model as 80% (19 out of 24 cases) of “ideal” and “image-based” models 

converged with equivalent results. 

Comparing the Neo-Hookean and HGO models it was clear that the Neo-Hookean model presented a 

more “linear” and rapid damage, which reached the completely developed damage at approximately 

70% of total analysis time. Although the HGOiso model and the Neo-Hookean model presented an 

isotropic behavior, the former resulted in higher amount of energy because the HGOiso model focuses 

on the isotropic contribution as the fibers are still incorporated inside the tissue but randomly 

distributed. 
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3.3 Parametric Study Results 

The results of the parametric analysis of multiple energy limiters in matrix and fibres components are 

summarised in Fig. 9 with 8 different curves. All 8 curves were smooth with gradual material 

degradation. It was clear from the analysis that the higher the matrix crack initiation threshold, the 

higher the amount of energy that could be stored in the tissue. The amount of energy stored by fibres 

component was significantly reduced and the fibres part was not able to carry extra loads or store 

additional energy and consequently the main component that affected the model’s damage behaviour 

was the matrix part. 

The models with lowest amount of strain energy that reached the fully damaged state at 0.5 total time 

and the models with maximum amount of stored energy in the tissue were the simulations with matrix 

crack initiation threshold set at 20% (minimum) and 80% (maximum), respectively, regardless of the 

fibrous part crack thresholds. As a result, the damage model could be characterised as matrix-dominated 

due to the diminished influence of fibrous part in the SEDF with energy limiter damage model.  

Specifically, in 2 cases where the matrix crack initiation started at 0.4 and 0.6 total time and the fibrous 

part initially cracked at 0.6 and 0.8 total time, the final fully damaged state delayed approximately 10% 

of total time. In the computational models with matrix crack initiation threshold set at 60% and 80% of 

total time combined with fibrous part crack initiation at 20% of the total time, the amount of stored 

energy in the tissue was reduced about 3-4%.  

 

Fig. 9. 8 curves of tissue SEDF with energy limiter vs simulation time regarding all crack initiation threshold combinations 

between matrix and fibrous components at 20%, 40%, 60% and 80% of total time. 
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4. Discussion 

In the present study the SEDF with energy limiter damage model was developed. This damage modeling 

approach has already been used for various applications, including soft biological tissue damage 

modelling (Simo, 1985; Calvo et al., 2006; Rodriguez et al., 2008; Volokh, 2011) but to the best of the 

authors’ knowledge, this is the first time that this approach is used for plaque rupture analysis. The 

damage model was first implemented in two hyper-elastic material models (Neo-Hookean and HGO) 

via material user subroutines (UMAT codes) in ABAQUS and then the models were used to capture 

the damage in uniaxial tensile plaque-mimicking tissue-engineered experiments. The generated 

computational models with idealized and realistic geometrical configurations focused on studying the 

crack initiation and propagation patterns identifying the peak and the distribution of SED.  

During the identification and evaluation of the material parameters for both Neo-Hookean and HGO 

material models a least-square optimization algorithm was implemented based on the first 20 nominal 

stress-strain values of the initial experimental tissue sample. The results suggested that the Neo-

Hookean model fitted reasonably well the experimental data, which, compared to HGO models, 

demonstrated higher Strain Energy Density values. The results were in accordance with the literature, 

as in the article of Merei et al., regarding the atherosclerotic plaque delamination process, the Neo-

Hookean material parameters were identified with an inverse method. In addition, the Neo-Hookean 

model was compared with the HGO model from the Leng et al. study and the Neo-Hookean model 

matched adequately the experimental data with less fitting issues due to the reasonably reduced values 

of elastic strains at the beginning of the delamination process (Leng et al., 2015; Merei et al., 2017). 

The damage initiation location was found to be sensitive to the geometrical configuration as the “ideal” 

computational models resulted in more than one crack initiation points compared to the “image-based” 

models due to the idealized and symmetrical configuration. In addition, high deviation (maximum of 

65%) between “ideal” and “real” models regarding the Cauchy stress and strain energy density values 

was observed. Another geometrical formation that controlled the crack initiation mechanism was the 

central soft inclusion. Irrespective of the configuration, the damage initiated from the inclusion and 

propagated horizontally towards the outer edges in the middle region. In the study of Saez et al. a 

damage model for soft fibrous tissues was described regarding the SEDF in the hyper-elastic framework 

and a microsphere approach. The damage initiation in the microsphere-based simulations was around 

the tissue-sphere interface due to the high level of stress and energy concentration (Saez et al., 2012).  

According to the results of the quantitative analysis, the HGOaniso presented the highest amount of 

maximum principal Cauchy stresses and strain energy in all simulations due to the incorporated fiber- 

family of the HGO models. Especially when the fibers were fully aligned in the loading direction 

(HGOaniso) as they could bear greater load and store greater energy within the tissue. Comparing the 

results of HGOiso and the Neo-Hookean models, both resulted in similar Cauchy stress distribution 

reflecting their isotropic contribution but the HGOiso model could store higher amount of strain energy 

as the fiber- family was still integrated but randomly distributed (Holzapfel et al., 2014).  

It is remarkable that 16 HGO computational models demonstrated no crack initiation points. Factors 

that may contribute to that divergent results include the simplifications, approximations and 

uncertainties in the models that influenced the local mechanical response, such as the complex 

geometry, the evaluation of the material properties and the heterogeneity of a soft biological tissue. In 

the study of Pena et al., the constitutive parameters of phenomenological and microstructural damage 

models, within continuum damage mechanics framework, were calculated highlighting the effect of the 

heterogeneity in arteries with layer-specific damage models and the implementation of different damage 

parameters in axial and circumferential directions (Weisbecker et al., 2012; Pena et al., 2019). 
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In the parametric study of SEDF with various energy limiters the matrix and fibers components were 

decoupled and the crack initiation thresholds were calculated as a percentage of total analysis time. 

With reference to the results, the matrix contribution significantly influenced the damage model as it 

presented higher amount of energy stored and the fibers part delayed the fully damaged state 10% of 

time in only 2 cases. The results are in accordance with the data reported by Oliviera et al. where the 

SEDF with energy limiter damage model was implemented for pelvic muscle applications separating 

the damage parameters between extracellular matrix and muscle fibers resulting in matrix-controlled 

damage model. Specifically, during the damage evolution, the matrix part damage growth was higher 

than the fibers damage contribution ending up with 60% variation in their damage values (Oliviera et 

al., 2016). However, in muscle injuries the fiber families were fully damaged and the matrix component 

remained intact until the next trauma (Baratz et al. 1999). 

Although the computational damage models provided reasonable results compared with experimental 

data, several simplifications and approximations during the material evaluation process were 

implemented. In the HGO material model one fiber family was assumed and the fibers were either fully 

aligned in the loading direction or randomly distributed due to the lack of experimental structural data. 

Even in the least-square optimization algorithm, few restrictions were implemented such as the 

tolerance and the number of iterations with non-negative results in order to minimize the solution field. 

Consequently, a unique solution could not be guaranteed. Furthermore, the material evaluation and 

mesh convergence analysis were conducted in the initial experimental case but implemented in all 

computational models assuming that the same experimental protocol was followed in all experimental 

cases. 

A future improvement of this study would include the implementation of the SEDF with energy limiter 

damage model in the elasticity tensor of the HGO material model in order to provide rapid and accurate 

results through finite element software via a fully automated process. The damage model could be also 

further validated using more realistic experimental and in-silico models in an attempt to understand 

better the plaque rupture mechanism. As a long-term goal, clinical applications of the damage model 

could also be a future investigation regarding patient-specific atherosclerotic plaque ruptured samples 

implementing the mechanical properties of human plaque tissue presented in the article of Akyildiz et 

al. in order to predict the atherosclerotic plaque rupture risk in patients (Akyildiz et al., 2014). 

 

5. Conclusion 

A comprehensive approach of Strain Energy Density Function with energy limiter damage model is 

described in the present study for studying atherosclerotic plaque rupture. The damage model was 

numerically developed and implemented in a commercial finite element software and its use was 

demonstrated for atherosclerotic plaque-mimicking tissue-engineered samples. The energy thresholds 

were implemented in the SEDF of Neo-Hookean and Holzapfel-Gasser-Ogden models due to the hyper-

elasticity of soft biological tissues, like atherosclerotic plaque, via material user subroutines. In the 

material evaluation process an iterative optimization algorithm was generated. Overall, the damage 

predictions regarding the crack initiation and propagation patterns in computational models fitted 

reasonably well the experimental results reflecting a geometrical configuration sensitivity. The 

anisotropic HGO model presented the highest amount of stored energy and in case of multiple energy 

limiters applied the damage model could be characterized as matrix dominated. Refining the numerical 

damage model will enable possibly an optimum agreement with experimental data leading to a better 

understanding of plaque rupture mechanism.  
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Appendix A.1 

The implementation of the SEDF with energy limiter damage model in finite element software 

comprised the development of the Neo-Hookean and HGO material models via material user 

subroutines written in Fortran. The numerical development of material user subroutine (UMAT code) 

in ABAQUS 2016 of both hyper-elastic material models (Neo-Hookean and HGO) included the 

constitutive equations of Cauchy Stress and Elasticity Tensor, as presented in Table 3.  

Table 3. The numerical calculations of Cauchy stress and Elasticity tensor of Neo Hooken and HGO material models 

(Fehervary et al., 2020; Nolan et al., 2020). 

Neo-Hookean 

Material 

Model 

Cauchy Stress (σ): σ = 
𝟐

𝐉
 C10 (B − 

𝟏

𝟑
 trace(B) ·I) + 

𝟐

𝐃𝟏
 (J−1) · I 

Elasticity Tensor (h): hijkl = 
2

𝐽
 C10 (

1

2
 δijB𝑘𝑙 − 

2

3
δ𝑘𝑙B𝑖𝑗) + 

2

𝐷1
 (2J− 1) · δijδ𝑘𝑙 

where δ𝑖𝑗 = Fik·Fkj
-1 is the Kronecker delta. 

HGO 

Material 

Model 

Cauchy Stress (σ): σ = 
2

𝐽
 C10 (B−

1

3
 δij ·I1) + 

2𝑘1

𝐽
 exp(k2E2) · E[k· (B−

1

3
 δij ·I1) + (1− 3k) · (mi·mj 

− 
1

3
 δij ·I4) + 

1

𝐷1
( J− 

1

𝐽
) · δij, 

E= κ(I1−3) + (1−3κ) · (I4(αα)−1) 

Elasticity Tensor (h): hijkl=  
2

𝐽
 C10· [−

2

3
δ𝑘𝑙B𝑖𝑗 +

2

9
δ𝑖𝑗δ𝑘𝑙𝐼1 +

1

2
(δilB𝑘𝑙 + δ𝑗𝑙B𝑖𝑘 + δikB𝑙𝑗 +

δ𝑗𝑘B𝑖𝑙) −
1

3
(δ𝑖𝑗B𝑙𝑘 + δ𝑖𝑗B𝑘𝑙)]+ 

2𝑘1

𝐽
 exp(k2E2) · [E·k· (δ𝑘𝑙B𝑖𝑗 - 

1

3
 δijδ𝑘𝑙𝐼1) + 

E· (1- 3k) · (mi·mj δ𝑘𝑙  - 
1

3
 δijδ𝑘𝑙𝐼4) + [-

5

3
 E·k· δ𝑘𝑙 + (2k2·E2 +1) ·k2 · (B𝑘𝑙 +

 B𝑙𝑘 - 
2

3
 δ𝑘𝑙𝐼1)] · (B𝑖𝑗 - 

1

3
 δ𝑖𝑗𝐼1) + E·k· [

1

2
· (δ𝑖𝑘B𝑙𝑗 + δ𝑗𝑘B𝑖𝑙 + δ𝑖𝑙B𝑘𝑗 + δ𝑗𝑙B𝑖𝑘) 

- 
1

3
(B𝑘𝑙δ𝑖𝑗 + B𝑙𝑘δ𝑖𝑗) + [ - 

5

3
 E· (1-3k) δ𝑘𝑙 + (2k2·E2+1) · (1-3k)2 · (2 mk ·ml - 

2

3
δ𝑘𝑙𝐼4)] · (mi·mj   - 

1

3
 δij𝐼4) + E· (1- 3k) · [

1

2
· (ml·mj δ𝑖𝑘 +mi · ml δ𝑗𝑘 +mk ·

mj δ𝑖𝑙 +mi · mk δ𝑗𝑙) - 
2

3
 ml · mk δ𝑖𝑗] +  

2

𝐷1𝐽
δijδ𝑘𝑙 

 

The tangent matrix of HGO material model, presented in Table 3, could be also estimated using a 

“numerical approximation” method with small perturbations (1·e-8) in all directions of the deformation 

gradient. The method is based on the estimated Kirchhoff stresses and not on any material model as the 

exact tangent moduli are not necessary to achieve precise solutions (Sun et al., 2008; Fehervary et al., 

2020; Nolan et al., 2020).  
 

 

The Holzapfel- Gasser- Ogden UMAT 

 
      DIMENSION SKIRCH(3,3), STRS(3,3), MAT(3,2), I4(2), R(3,3), 

     1                                       U(3,3), RT(3,3), XAM(3,1), XAM1(3,1)            

C ---------------------------------------------------------------- 

      NANISO = 1         

C ----------------------------------------------------------------              

      PI = 3.14159265359 

      THETAT1 = THETA1*PI/180.0 

      THETAT2 = THETA2*PI/180.0 

C  

      MAT(1,1)=COS(THETAT1); MAT(2,1)= SIN(THETAT1); MAT(3,1)=0. 

      MAT(1,2)=COS(THETAT2); MAT(2,2)= SIN(THETAT2); MAT(3,2)=0. 

C---------------------------------------------------------------------------             

      CALL kpolarDecomp(DFGRD1, U, R)      

      RT = transpose(R) 

C-----------------------------------------------------------------                     

      DO IAN = 1,NANISO          

          XAM(:,1) = MAT(:,IAN) 

C          

          XAM1 = MATMUL(RT,XAM) 

C           

          MAT(:,IAN) = XAM1(:,1)          
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      END DO     

C-----------------------------------------------------------------     

      CALL KirStress(DFGRD1, C10, D1, kap, k1, k2, SKIRCH, J,  

     1            MAT, I1, I2, I4, NPT, NANISO, iter, WE) 

C-----------------------------------------------------------------    

      STRS = SKIRCH / J            

C       

      CALL kmatrix2vector(STRSS, STRESS, nshr)          

C-----------------------------------------------------------------     

      CALL kCTM(SKIRCH,DFGRD1,NTENS,PROPS,MAT,NPT,ITER, 

     +                       NANISO, DDSDDE, NPROPS, J, NSHR)       

C 

      RETURN 

C    

      END SUBROUTINE UMAT 

C----------------------------------------------------------------------------- 

C           SUBROUTINES 

C-----------------------------------------------------------------------------          

      SUBROUTINE KirStress (DGRAD, C10, D1, kap, k1, k2, SKIRCH,  

     1                                             J, MAT, I1, I2, I4, NPT, NANISO, iter, WE) 

C      

      INCLUDE 'ABA_PARAM.INC' 

C       

      INTENT(IN) :: DGRAD, C10, D1, kap, k1, k2, MAT, NANISO, iter 

      INTENT(OUT):: SKIRCH, J, I1, I2, I4, WE     

C       

      DIMENSION DGRAD(3,3), BMAT(3,3), SKIRCH(3,3), MAT(3,2), 

     1                        XA(3), FIBER(3), MAFIBER(3,3), ANISOK(3,3), 

     2                        ANISOTOT(3,3), I4(2) 

C         

       J = DGRAD(1, 1)*DGRAD(2, 2)*DGRAD(3, 3) 

     1     -DGRAD(1, 2)*DGRAD(2, 1)*DGRAD(3, 3) 

     2     +DGRAD(1, 2)*DGRAD(2, 3)*DGRAD(3, 1) 

     3     +DGRAD(1, 3)*DGRAD(3, 2)*DGRAD(2, 1) 

     4     -DGRAD(1, 3)*DGRAD(3, 1)*DGRAD(2, 2) 

     5     -DGRAD(2, 3)*DGRAD(3, 2)*DGRAD(1, 1) 

C      

      BMAT = MATMUL(DGRAD,TRANSPOSE(DGRAD))       

C-----------------------------------------------------------------------     

      I1 = BMAT(1,1) + BMAT(2,2) + BMAT(3,3)      

C--------------------------------------------------------------------         

      DO IANISO = 1,NANISO                                             

          XA = MAT(1:3,IANISO); 

          FIBER = MATMUL(DGRAD,XA) 

C    

          DO i=1,3 

              DO j=1,3 

                MAFIBER (i,j) = FIBER (i) * FIBER (j) 

              ENDDO 

          ENDDO             

C             

          I4(IANISO) = MAFIBER (1,1) + MAFIBER (2,2) + MAFIBER (3,3) 

          EA = kap*(I1 - 3.D0) + (1.D0 - 3.D0*kap)*(I4(IANISO)-1.D0) 

          EAA = k2*(EA)**2 

C    

         WE = C10*(I1 - 3.D0)  

     1         + (1.D0/D1)*((J**TWO - 1.D0)/2.D0 - LOG(J)) 

     2         + (k1/2.D0*k2)*((exp(EAA)) - 1.D0) 

C 

             PART1 = TWO*(C10 + exp(EAA)*kap*EA*k1)/(J**(TWO/THREE)) 

            TRBMAT= PART1*(BMAT(1,1)+BMAT(2,2)+BMAT(3,3))/THREE 

             SKIRCH = PART1 * BMAT 

C     

               DO I = 1,3 

                 SKIRCH(I,I) = SKIRCH(I,I) - TRBMAT 

               END DO 

C       

             PART2 = 2*(J-ONE)*J/D1 

C       

                DO I = 1,3 
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                   SKIRCH(I,I) = SKIRCH(I,I) + PART2 

                END DO   

C    

              term1 = 2.0*k1;                       

              term2 = EA*(1.D0 - 3.D0*kap)                   

              term4 = exp(EAA)              

              ANISOK = term1*term2*term4*MAFIBER                             

              ANISOTOT = ANISOTOT + ANISOK      

C         

      END DO 

C        

      SKIRCH = SKIRCH + ANISOTOT 

C         

      RETURN 

      END SUBROUTINE KirStress 

C              

      SUBROUTINE kCTM(SKIRCH1,DFGRD1,NTENS,PROPS,MAT,NPT,ITER, 

     +                                     NANISO, DDSDDE, NPROPS, J1, NSHR) 

C       

      DIMENSION SKIRCH1(3,3), DFP(3,3), DFGRD_PERT(3,3),SKIRCH_PERT(3,3) 

     1 ,                     CMJ(3,3), CMJVEC(NTENS), ilist(6), jlist(6), MAT(3,2), I4(2) 

     2 ,                      DFGRD1(3,3), DDSDDE(NTENS,NTENS), PROPS(NPROPS) 

C   

C     Perturbation parameter 

      eps = 1.0e-08      

C                    

      ilist(1) = 1; jlist(1) = 1; 

      ilist(2) = 2; jlist(2) = 2; 

      ilist(3) = 3; jlist(3) = 3; 

      ilist(4) = 1; jlist(4) = 2; 

      ilist(5) = 1; jlist(5) = 3; 

      ilist(6) = 2; jlist(6) = 3;         

C          

      Perturbation: DO iter = 1,NTENS              

C-----------------------------------------------------------------        

          ii = ilist(iter) 

          jj = jlist(iter)       

          CALL kdelF(ii, jj, DFGRD1, eps, DFP)        

          DFGRD_PERT = DFGRD1 + DFP 

C----------------------------------------------------------------- 

          CALL KirStress (DFGRD_PERT, C10, D1, kap, k1, k2,  

     1    SKIRCH_PERT, JP, MAT, I1, I2, I4, NPT, NANISO, 

     2    iter, WE)                     

C----------------------------------------------------------------- 

          CMJ = SKIRCH_PERT - KIRCH1                  

          CMJ = CMJ/J1/eps        

          CALL kmatrix2vector(CMJ, CMJVEC, NSHR) 

          DO insert = 1,NTENS 

              DDSDDE(insert,iter) = CMJVEC(insert)      

          END DO 

       END DO Perturbation 

       END SUBROUTINE kCTM 

C-------------------------------------------------------      

      SUBROUTINE kmatrix2vector(XMAT, VEC, NSHR) 

      INCLUDE 'ABA_PARAM.INC' 

      intent(in) :: XMAT, NSHR 

      intent(out):: VEC 

      dimension xmat(3,3), vec(6) 

        DO i=1,3 

            vec(i) = xmat(i,i); 

        END DO 

        vec(4) = xmat(1,2); 

        IF (NSHR==3) then 

            vec(5) = xmat(1,3); 

            vec(6) = xmat(2,3); 

        END IF 

      END SUBROUTINE kmatrix2vector       

      END SUBROUTINE KMTMS       

C-------------------------------------------------------            

      SUBROUTINE kdelF(m, n, DGRAD, eps, DF) 
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      INCLUDE 'ABA_PARAM.INC' 

      intent (in) :: DGRAD, eps, m, n 

      intent (out):: DF       

C        increment (eps) 

      dimension dyad1(3,3), dyad2(3,3), DGRAD(3,3), DF(3,3), DFp1(3,3) 

C 

      DO i = 1,3 

        DO j = 1,3 

            dyad1(i,j) = zero 

            dyad2(i,j) = zero 

        END DO 

      END DO 

      dyad1(m,n) = 1.0; 

      dyad2(n,m) = 1.0;     

C 

      CALL KMTMS(3, 3, 3, dyad1, 3, DGRAD, 3, DFp1, 3) 

      DF = DFp1 

      CALL KMTMS(3, 3, 3, dyad2, 3, DGRAD, 3, DFp1, 3) 

      DF = DF + DFp1      

      DF = 0.5*DF*eps             

      END SUBROUTINE kdelF   

 

 

Appendix A.2 

 

The Neo-Hookean UMAT code is provided by the ABAQUS Documentation 6.6 with the code 

verification files. During the verification process of HGO UMAT a solid incompressible, full 

integration, hybrid, hexahedral element was simulated (C3D8H) in the shape of cube with edges 50mm 

mimicking the verification process presented in the article of Fehervary et al. Furthermore, 12 loading 

cases were simulated in all directions X, Y, Z (3 stretch, 6 shear and 3 compression) with applied 

displacement of 10mm as presented in the Table 4.  
 

  Table 4. The verification procedure of HGO UMAT code regarding 12 different loading conditions in all directions. 

State Sketch Boundary Conditions 

Stretch Y 

 

   The cube was fixed in y-direction in 

the XZ surface, fixed in z-direction in 

the XY surface and fixed in x-direction 

in the YZ surface. The displacement 

(10mm) was applied in y-direction. 

Stretch Z 

 

 The cube was fixed in y-direction in the 

XZ surface, fixed in z-direction in the XY 

surface and fixed in x-direction in the YZ 

surface. The displacement (10mm) was 

applied in z-direction 

Stretch X 

 

    The cube was fixed in y-direction in the 

XZ surface, fixed in z-direction in the XY 

surface and fixed in x-direction in the YZ 

surface. The displacement (10mm) was 

applied in x-direction 
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Shear XY 

 

 The cube was fixed in y-direction in the 

upper XZ surface, fixed in z-direction in 

the XY surface and fixed in x- and y-

direction in the lower XZ surface. The 

displacement (10mm) was applied in 

xy-direction 

Shear YX 

 

The cube was fixed in x-direction in the 

upper YZ surface, fixed in z-direction in 

the XY surface and fixed in x- and y-

direction in the lower YZ surface. The 

displacement (10mm) was applied in 

yx-direction 

Shear YZ 

 

The cube was fixed in x-direction in the 

upper YZ surface, fixed in y-direction in 

the XZ surface and fixed in z- and y-

direction in the lower XZ surface. The 

displacement (10mm) was applied in yz-

direction 

Shear ZY 

 

The cube was fixed in z-direction in the 

upper YX surface, fixed in x-direction in 

the YZ surface and fixed in z- and y-

direction in the lower XY surface. The 

displacement (10mm) was applied in zy-

direction 

Shear XZ 

 

The cube was fixed in x-direction in the 

upper YZ surface, fixed in y-direction in 

the XZ surface and fixed in z- and x-

direction in the lower ZY surface. The 

displacement (10mm) was applied in xz-

direction 

Shear ZX 

 

The cube was fixed in z-direction in 

the upper YX surface, fixed in y-

direction in the XZ surface and fixed 

in z- and x-direction in the lower XY 

surface. The displacement (10mm) 

was applied in zx-direction 

Compression 

Y 

 

The cube was fixed in y-direction in the 

XZ surface, fixed in z-direction in the 

XY surface and fixed in x-direction in 

the YZ surface. The force (0.04 N/mm) 

was applied in y-direction 
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Compression 

Z 

 

 The cube was fixed in y-direction in 

the XZ surface, fixed in z-direction 

in the XY surface and fixed in x-

direction in the YZ surface. The 

force (0.04 N/mm) was applied in z-

direction 

Compression 

X 

 

   The cube was fixed in y-direction in 

the XZ surface, fixed in z-direction in 

the XY surface and fixed in x-

direction in the YZ surface. The force 

(0.04 N/mm) was applied in x-

direction 

 

According to the results of the verification process between already-implemented and UMAT HGO 

models, the Cauchy Stresses (S11, S22, S33, S12, S13, S23), the Reaction Forces (RF1, RF2, RF3) and 

the Displacements (U1, U2, U3) were the same in all stretch and compression models. Regarding the 

shear simulations, all models converged with no deviation results apart from two cases (Shear XZ and 

YZ) where the Cauchy Stresses and the Reaction Forces resulted in maximum relative error of 0.18% 

and 0.066% respectively. Besides the verification of single-element models, the multiple-elements 

model “adventitia_axial.inp” under tensile testing was verified provided by the ABAQUS 2016 HTML 

Documentation (“Benchmarks Guide”, “Material Tests”, “Elasticity”, “Anisotropic hyper-elastic 

modelling of arterial layers”) as the maximum relative error of Cauchy stresses, Reaction Forces and 

Displacements was 2.6 %. 

 

Appendix A.3 

 

Subsequent to the development and verification of UMAT codes, the Strain Energy Density Function 

with energy limiter was implemented in the Fortran codes of Neo-Hookean and HGO material models. 

First, the Strain Energy Density Function (WE) was calculated and then, based on the damage loop, the 

“damaged” Strain Energy (WK) was formed and calculated for every element, increment or step of the 

analysis, as presented in the following Table 5. 

 
Table 5. Implementation of energy limiter in UMAT written in Fortran for Neo-Hookean and HGO material models. 

Neo- Hookean Model %% Calculate the Strain Energy Density Function without damage (WE) and the 𝜩 

value (TK) 

 
       WE = C10 * ((XB(1) + XB(2) + XB(3)) - THREE) + (ONE / XD1) * (XD - ONE)**2 

C 

       TK = SQRT(TWO * WE) 

 

%% Implement the damage loop – energy limiter (with 𝜷𝒌 = 𝟎) within crack 

initiation threshold (T1) and totally damaged threshold (T2) 

 
   IF (TK .LT. T1) THEN 

          DAM = ZERO 

    ELSE IF (TK .GE. T1 .OR. TK .LE. T2) THEN 

          DAM = ((TK - T1) / (T2 - T1))**TWO  

    ELSE 

                                             DAM = ONE 

   END IF 

 

%% Calculate the Strain Energy Density Function with Energy Limiter (WK) and the 

reduction factor (1 – D) 
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           WK = (ONE - DAM) * (C10 * ((XB(1) + XB(2) + XB(3))  

                  - THREE) + (ONE /XD1) * (XD - ONE)**2) 

C 

            RFACTOR = ONE – DAM  
HGO Model %% Calculate the Strain Energy Density Function without damage (WE) and the 𝛯 

value (TK) 

 
        WE = C10*(I1 - 3.D0)  

                  + (k1/2.D0*k2)*((exp(EAA)) - 1.D0) 

                  + (1.D0/D1)*((J**TWO - 1.D0)/2.D0 - LOG(J)) 

C 

          TK = SQRT(TWO * WE) 

 
%% Implement the damage loop - energy limiter (with 𝜷𝒌 = 𝟎) within crack initiation 

threshold (T1) and totally damaged threshold (T2) 

 
                 IF (TK .LT. T1) THEN 

             DAM = ZERO 

         ELSE IF (TK .GE. T1 .OR. TK .LE. T2) THEN 

                   DAM = ((TK - T1) / (T2 - T1))**TWO  

                      ELSE 

                                                            DAM = ONE 

    END IF 

 
%% Calculate the Strain Energy Function with Energy Limiter (WK) and the 

reduction factor (1 – D) 

 
                    WK = (1.D0 - DAM)*(C10*(I1 - 3.D0)  

                             + (k1/2.D0*k2)*((exp(EAA)) - 1.D0))  

                             + (1.D0/D1)*((J**TWO - 1.D0)/2.D0 - LOG(J))      

C  

                     RFACTOR = ONE – DAM 

 

 

 
  Appendix B 

 
In the material evaluation process of the HGO material model, an iterative optimization algorithm was 

generated via the MATLAB R2019a (MathWorks) and Wolfram Mathematica Notebook 12.0.0.0. All 

necessary steps are described through a schematic illustration in Fig.10. regarding 20 different 

displacement conditions.  
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Fig.10. Flowchart of all required steps during the HGO material parameters estimation via a developed iterative optimization 

algorithm. 

 
 

The hybrid formulation of the HGO model resulted in an additional calculation of the volumetric part 

in each of the 20 different displacement conditions of the initial experimental case without the central 

soft inclusion. The volumetric part or the hydrostatic stress consists of the Lagrange Multiplier -p*I, 

where p describes the equilibrium – boundary conditions (hydrostatic pressure) and I is the identity 

matrix. The p value varied for every time point of the simulation (20 different time points) but was the 

same in all directions (xx’, yy’, zz’) in every time point. As a result, the Lagrange Multiplier was the 

fifth unknown vector. In order to estimate the Lagrange Multiplier, Cauchy stress equations in “no-

loading” directions (xx’, zz’) were used, expressed by 

σxx = 0  σiso,x + σaniso,x - pI =0 σiso,x + σaniso,x = pI                                                                         (13) 

σzz = 0  σiso,z + σaniso,z - pI =0 σiso,z + σaniso,z = pI                                                                          (14) 

 

σiso =  
2

𝐽
 · [C10 + ek2∗(κ

(I1−3)+ (1−3κ)· (I4(αα)−1))
2

· κ · (κ (I1−3) + (1−3κ) · (I4(αα)−1)) · k1] · J 2/3 · (B − 
𝐼1

3
)`           (15) 

σaniso  =  
2

𝐽
 · [ek2∗(κ

(I1−3)+ (1−3κ)· (I4(αα)−1))
2

· (1−3κ) · (κ (I1−3) + (1−3κ) · (I4(αα)−1)) · k1] · (mi·mj − 
I4(αα)

3
) .     (16) 

 

In the x- and z-direction the fibre part contribution was eliminated (σaniso = 0) as the fibres were aligned 

in y-direction. A reference example of calculating the Lagrange Multiplier for the first of the 20 different 

displacement cases via the Wolfram Mathematica Notebook 12.0.0.0 by setting x1= C10, x2=k1, x3=k2, 

x4= κ (4 unknows in the HGO material model) is presented as: 

 

p1 = -2*(x1 + E(x3∗((0.3∗x4 − 0.0913)^2)) *x4*(0.3*x4 - 0.0913)*x2)*(1.21−
3.027

3
)                                    (17) pI = σiso,x    

During the final step of the optimization procedure, 20 different functions were created based on σ
i  

= 

σ
iso 

+ σ
ani 

+ σ
vol formulation and after mathematical calculations the two algorithms of the 

overdetermined systems with 4 and 3 unknowns with κ = 0.3333 and κ = 0, respectively,  are presented 

in the following MATLAB codes. 

 

Create a model with the 
same length and cross-

sectional area (without the 
central inclusion) with the 

experimental data.

Apply the displacement 
conditions derived from the 

experimental data.

Caclulate the Deformation 
Gradient matrix, eg. 

dgi=
0.9533 0 0
0 1.1 0
0 0 0.9533

Calculate the Left Cauchy 
Tensor, eg.                     

Bi = dgi*transopose_dgi.

Assume 1 fiber family aligned 
in the loading direction with 

zero angle.

Calculate the 1st invariant 
and the 4th pseudo-

invariant.

Estimate the Langrange 
Multiplier and form the 
volumetric contribution.

Form the equation: 

σi  = σiso + σani + σvol 

and implement it in the 

Optimization Algorithm.
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function F = material3(x) 

F(1) = 0.004*(x(1) + exp(x(3)*((0.300*x(4) - 0.0913)^2))*x(4)*(0.300*x(4) + 

0.0913)*x(2))+ 1.817/100*(exp(x(3)*((3/10*x(4)-9.13/100)^2))*(1 - 

3*x(4))*(0.300*x(4) + 0.0913)*x(2)) + 0.002*(x(1) + exp(x(3)*((0.300*x(4) - 

0.0913)^2))*x(4)*(0.300*x(4) + 0.0913)*x(2)) 

F(2) = 0.0081*(x(1) + exp(x(3)*((0.303*x(4) - 0.0915)^2))*x(4)*(0.303*x(4) + 

0.0915)*x(2)) + 0.03634*(exp(x(3)*((0.303*x(4) - 0.0915)^2))*(1 - 

3*x(4))*(0.303*x(4) + 0.0915)*x(2)) + 0.00404*(x(1) + exp(x(3)*((0.303*x(4) - 

0.0915)^2))*x(4)*(0.303*x(4) + 0.0915)*x(2)) 

F(3) = 0.01215*(x(1) + exp(x(3)*((3.303/10*x(4) - 9.18/100)^2))*x(4)*(0.303*x(4) + 

0.0918)*x(2)) + 0.05448*(exp(x(3)*((0.303*x(4) - 0.0918)^2))*(1 - 

3*x(4))*(0.303*x(4) + 0.0918)*x(2)) + 0.00606*(x(1) + exp(x(3)*((0.303*x(4) - 

0.0918)^2))*x(4)*(0.303*x(4) + 0.0918)*x(2)) 

F(4) = 0.0162*(x(1) + exp(x(3)*((3.04/10*x(4) -9.2/10)^2))*x(4)*(0.304*x(4) + 

0.0920)*x(2))+7.264/100*(exp(x(3)*((3.04/10*x(4) -9.20/100)^2))*(1 - 

3*x(4))*(0.304*x(4) + 0.0920)*x(2)) + 0.00808*(x(1) + exp(x(3)*((0.304*x(4) - 

0.0920)^2))*x(4)*(0.304*x(4) + 0.0920)*x(2)) 

F(5) = 0.02045*(x(1) + exp(x(3)*((3.06/10*x(4) -9.24/100)^2))*x(4)*(0.306*x(4) + 

0.0924)*x(2)) + 0.09075*(exp(x(3)*((0.306*x(4) - 0.0924)^2))*(1 - 

3*x(4))*(0.306*x(4) + 0.0924)*x(2)) + 0.0102*(x(1) + exp(x(3)*((0.306*x(4) - 

0.0924)^2))*x(4)*(0.306*x(4) + 0.0924)*x(2)) 

F(6) = 0.02454*(x(1) + exp(x(3)*((3.06/10*x(4) -9.24/100)^2))*x(4)*(0.306*x(4) + 

0.0924)*x(2)) + 0.1089*(exp(x(3)*((0.306*x(4) - 0.0924)^2))*(1 - 

3*x(4))*(0.306*x(4) + 0.0924)*x(2)) + 0.01224*(x(1) + exp(x(3)*((0.306*x(4) - 

0.0924)^2))*x(4)*(0.306*x(4) + 0.0924)*x(2)) 

F(7) = 0.02863*(x(1) + exp(x(3)*((3.07/10*x(4) -9.26/100)^2))*x(4)*(0.307*x(4) + 

0.0926)*x(2)) +12.698/100*(exp(x(3)*((3.07/10*x(4) - 9.26/100)^2))*(1 - 

3*x(4))*(0.307*x(4) + 0.0926)*x(2)) + 0.01428*(x(1) + exp(x(3)*((0.307*x(4) - 

0.0926)^2))*x(4)*(0.307*x(4) + 0.0926)*x(2)) 

F(8) = 0.03272*(x(1) + exp(x(3)*((3.07/10*x(4) -9.28/100)^2))*x(4)*(0.307*x(4) + 

0.0928)*x(2)) + 0.14512*(exp(x(3)*((0.307*x(4) - 0.0928)^2))*(1 - 

3*x(4))*(0.307*x(4) + 0.0928)*x(2)) + 0.01632*(x(1) + exp(x(3)*((0.307*x(4) - 

0.0928)^2))*x(4)*(0.307*x(4) + 0.0928)*x(2)) 

F(9) = 0.03681*(x(1) + exp(x(3)*((3.07/10*x(4) -9.28/100)^2))*x(4)*(0.307*x(4) + 

0.0928)*x(2)) + 0.16317*(exp(x(3)*((0.307*x(4) - 0.028)^2))*(1 - 

3*x(4))*(0.307*x(4) + 0.0928)*x(2)) + 0.01836*(x(1) + exp(x(3)*((0.307*x(4) - 

0.0928)^2))*x(4)*(0.307*x(4) + 0.0928)*x(2)) 

F(10) = 0.04132*(x(1) + exp(x(3)*((3.09/10*x(4) -9.32/100)^2))*x(4)*(0.309*x(4) + 

0.0932)*x(2)) +18.13/100*(exp(x(3)*((3.09/10*x(4) -9.32/100)^2))*(1 - 

3*x(4))*(0.309*x(4) + 0.0932)*x(2)) + 0.0206*(x(1) + exp(x(3)*((0.309*x(4) - 

0.0932)^2))*x(4)*(0.309*x(4) + 0.0932)*x(2)) 

F(11) = 0.045452*(x(1) + exp(x(3)*((3.09/10*x(4) -9.32/100)^2))*x(4)*(0.309*x(4) + 

0.0932)*x(2)) + 0.19943*(exp(x(3)*((0.309*x(4) - 0.0932)^2))*(1 - 

3*x(4))*(0.309*x(4) + 0.0932)*x(2)) + 0.02266*(x(1) + exp(x(3)*((0.309*x(4) - 

0.0932)^2))*x(4)*(0.309*x(4) + 0.0932)*x(2))  

F(12) = 0.049584*(x(1) + exp(x(3)*((3.09/10*x(4) -9.36/100)^2))*x(4)*(0.309*x(4) + 

0.0934)*x(2)) + 0.21756*(exp(x(3)*((0.309*x(4) - 0.0936)^2))*(1 - 

3*x(4))*(0.309*x(4) + 0.0934)*x(2)) + 0.02472*(x(1) + exp(x(3)*((0.309*x(4) - 

0.0934)^2))*x(4)*(0.309*x(4) + 0.0934)*x(2)) 

F(13) = 0.053716*(x(1) + exp(x(3)*((3.10/10*x(4) -9.36/100)^2))*x(4)*(0.310*x(4) + 

0.0936)*x(2)) + 23.569/100*(exp(x(3)*((3.10/10*x(4) -9.36/100)^2))*(1 - 

3*x(4))*(0.310*x(4) + 0.0936)*x(2)) + 0.02678*(x(1) + exp(x(3)*((0.310*x(4) - 

0.0936)^2))*x(4)*(0.310*x(4) + 0.0936)*x(2)) 

F(14) = 0.057848*(x(1) + exp(x(3)*((3.10/10*x(4) -9.36/100)^2))*x(4)*(0.310*x(4) + 

0.0936)*x(2)) + 0.25368*(exp(x(3)*((0.310*x(4) - 0.0936)^2))*(1 - 

3*x(4))*(0.310*x(4) + 0.0936)*x(2)) + 0.02884*(x(1) + exp(x(3)*((0.310*x(4) - 

0.0936)^2))*x(4)*(0.310*x(4) + 0.0936)*x(2))  

F(15) = 0.06198*(x(1) + exp(x(3)*((3.1/10*x(4) -9.36/100)^2))*x(4)*(0.310*x(4) + 

0.0936)*x(2)) + 0.2718*(exp(x(3)*((0.310*x(4) - 0.0936)^2))*(1 - 

3*x(4))*(0.310*x(4) + 0.0936)*x(2)) + 0.0309*(x(1) + exp(x(3)*((0.310*x(4) - 

0.0936)^2))*x(4)*(0.310*x(4) + 0.0936)*x(2))  

F(16) = 0.066112*(x(1) + exp(x(3)*((3.1/10*x(4) -9.37/100)^2))*x(4)*(0.310*x(4) + 

0.0937)*x(2)) + 28.992/100*(exp(x(3)*((3.1/10*x(4) -9.37/100)^2))*(1 - 

3*x(4))*(0.310*x(4) + 0.0937)*x(2)) + 0.03296*(x(1) + exp(x(3)*((0.310*x(4) - 

0.0937)^2))*x(4)*(0.310*x(4) + 0.0937)*x(2)) 

F(17) = 0.07089*(x(1) + exp(x(3)*((3.10/10*x(4) -9.37/100)^2))*x(4)*(0.310*x(4) + 

0.0937)*x(2)) + 0.30804*(exp(x(3)*((0.310*x(4) - 0.0937)^2))*(1 - 
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3*x(4))*(0.310*x(4) + 0.0937)*x(2)) + 0.03536*(x(1) + exp(x(3)*((0.310*x(4) - 

0.0937)^2))*x(4)*(0.310*x(4) + 0.0937)*x(2)) 

F(18) = 0.07506*(x(1) + exp(x(3)*((3.12/10*x(4) -9.39/100)^2))*x(4)*(0.312*x(4) + 

0.0939)*x(2)) + 0.32616*(exp(x(3)*((0.312*x(4) - 0.0939)^2))*(1 - 

3*x(4))*(0.312*x(4) + 0.0939)*x(2)) + 0.03744*(x(1) + exp(x(3)*((0.312*x(4) - 

0.0939)^2))*x(4)*(0.312*x(4) + 0.0939)*x(2)) 

F(19) = 0.07923*(x(1) + exp(x(3)*((3.12/10*x(4) -9.39/100)^2))*x(4)*(0.312*x(4) + 

0.0939)*x(2)) + 34.428/100*(exp(x(3)*((3.12/10*x(4) -9.39/100)^2))*(1 - 

3*x(4))*(0.312*x(4) + 0.0939)*x(2)) + 0.03952*(x(1) + exp(x(3)*((0.312*x(4) - 

0.0939)^2))*x(4)*(0.312*x(4) + 0.0939)*x(2)) 

F(20) = 0.0834*(x(1) + exp(x(3)*((3.12/10*x(4) -9.41/100)^2))*x(4)*(0.312*x(4) + 

0.0941)*x(2)) + 0.3622*(exp(x(3)*((0.312*x(4) - 0.0941)^2))*(1 - 

3*x(4))*(0.312*x(4) + 0.0941)*x(2)) + 0.0416*(x(1) + exp(x(3)*((0.312*x(4) - 

0.0941)^2))*x(4)*(0.312*x(4) + 0.0941)*x(2)) 

  

%% Optimization Process 

lb = [0,0,0,0]; 

ub = [inf,inf,inf,0.333]; 

rng default; 

options.Algorithm = 'trust-region-reflective'; 

options.Display = 'final-detailed'; 

options.TolFun = 0.000001; 

options.TolX = 0.000001; 

options.MaxFunEvals = 1000; 

options.MaxIter = 400; 

options.FunValCheck = 'on'; 

options.PlotFcns = 'optimplotfval'; 

x0 = randi([0,100],4,1); 

[x,resnorm,residual,exitflag,output] = lsqnonlin(@material3,x0,lb,ub,options) 

 

  

function F = material33(x) 

F(1) = 0.004*x(1)+0.01817*(exp(x(3)*((0.0913)^2))*(+0.0913)*x(2))+ 0.002*x(1) 

F(2) = 0.0081*x(1)+0.03634*(exp(x(3)*((0.0915)^2))*(+0.0915)*x(2))+ 0.00404*x(1) 

F(3) = 0.01215*x(1)+0.05448*(exp(x(3)*((0.0918)^2))*(+0.0918)*x(2))+ 0.00606*x(1) 

F(4) = 0.0162*x(1)+0.07264*(exp(x(3)*((0.0920)^2))*(+0.0920)*x(2))+ 0.00808*x(1) 

F(5) = 0.02045*x(1)+0.09075*(exp(x(3)*((0.0924)^2))*(+0.0924)*x(2))+ 0.0102*x(1) 

F(6) = 0.02454*x(1)+0.1089*(exp(x(3)*((0.0924)^2))*(+0.0924)*x(2))+ 0.01224*x(1) 

F(7) = 0.02863*x(1)+0.12698*(exp(x(3)*((0.0926)^2))*(+0.0926)*x(2))+ 0.01428*x(1) 

F(8) = 0.03272*x(1)+0.14512*(exp(x(3)*((0.0928)^2))*(+0.0928)*x(2))+ 0.01632*x(1) 

F(9) = 0.03681*x(1)+0.16317*(exp(x(3)*((0.0928)^2))*(+0.0928)*x(2))+ 0.01836*x(1) 

F(10) = 0.04132*x(1)+0.1813*(exp(x(3)*((0.0932)^2))*(+0.0932)*x(2))+ 0.0206*x(1) 

F(11) = 0.045452*x(1)+0.19943*(exp(x(3)*((0.0932)^2))*(+0.0932)*x(2)+ 0.02266*x(1) 

F(12) = 0.049584*x(1)+0.21756*(exp(x(3)*((0.0936)^2))*(+0.0934)*x(2))+ 0.02472*x(1) 

F(13) = 0.053716*x(1)+0.23569*(exp(x(3)*((0.0936)^2))*(+0.0936)*x(2))+ 0.02678*x(1) 

F(14) = 0.057848*x(1)+0.25368*(exp(x(3)*((0.0936)^2))*(+0.0936)*x(2))+ 0.02884*x(1) 

F(15) = 0.06198*x(1)+0.2718*(exp(x(3)*((0.0936)^2))*(+0.0936)*x(2))+ 0.0309*x(1) 

F(16) = 0.066112*x(1)+0.28992*(exp(x(3)*((0.0937)^2))*(+0.0937)*x(2))+ 0.03296*x(1) 

F(17) = 0.07089*x(1)+0.30804*(exp(x(3)*((0.0937)^2))*(+0.0937)*x(2))+ 0.03536*x(1) 

F(18) = 0.07506*x(1)+0.32616*(exp(x(3)*((0.0939)^2))*(+0.0939)*x(2))+ 0.03744*x(1) 

F(19) = 0.07923*x(1)+0.34428*(exp(x(3)*((0.0939)^2))*(+0.0939)*x(2))+ 0.03952*x(1) 

F(20) = 0.0834*x(1)+0.3622*(exp(x(3)*((0.0941)^2))*(+0.0941)*x(2))+ 0.0416*x(1) 

  

%% Optimization Process 

lb = [0,0,0]; 

ub = [inf,inf,inf]; 

rng default; 

options.Algorithm = 'trust-region-reflective'; 

options.Display = 'final-detailed'; 

options.TolFun = 0.000001; 

options.TolX = 0.000001; 

options.MaxFunEvals = 1000; 

options.MaxIter = 400; 

options.FunValCheck = 'on'; 

options.PlotFcns = 'optimplotfval'; 

x0 = randi([0,100],3,1); 

[x,resnorm,residual,exitflag,output] = lsqnonlin(@material33,x0,lb,ub,options) 
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According to the results of the iterative optimization algorithm, both HGO material models fitted well 

the experimental data, as presented in Fig.11. During the calculation of the relative errors the HGO 

models with κ= 0.333 and κ= 0 resulted in 20% and 29% average relative errors, respectively.  

 

 
  Fig. 11. The Cauchy stress values of all 20 displacement cases regarding the experimental data and the HGO material 

model with κ = 0 and 0.333 after the iterative optimization procedure. 
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Appendix C 

Table 6. The separate matrix and fibers SEDF with energy limiter calculations and reduction factors via HGO UMAT code. 

HGO Material 

Model 

%% Calculate the Matrix Strain Energy Function (XWE1) and the 𝜩𝒎 value (TK1) 
 

             XWE1 = C10*(XI1 - 3.D0)      

             TK1 = SQRT(TWO * XWE1) 

 

%% The Matrix damage loop – Implement the energy limiter (with 𝜷𝒌 = 𝟎) within 

crack initiation threshold (T2M) and totally damaged threshold (T3) and the 

reduction factor (1 – D) 
 

            IF (TK1 .LT. T2M) THEN 

        DAM1 = ZERO 

   ELSE IF (TK1 .GE. T2M .OR. TK1 .LE. T3) THEN 

              DAM1 = ((TK1 – T2M) / (T3 – T2M))**TWO  

          ELSE 

                                              DAM1 = ONE 

             END IF 

C 

              RF1 = ONE - DAM1 

 

 %% Calculate the Fibres Strain Energy Function (XWE2) and the 𝜩𝒇 value (TK2) 

 

              XWE2 = (xk1/2.D0*xk2)*((exp(EAA)) - 1.D0)     

              TK2 = SQRT(TWO * XWE2) 

 

%% The Fibres damage loop – Implement the energy limiter (with 𝜷𝒌 = 𝟎) within 

crack initiation threshold (T2) and totally damaged threshold (T3) and the 

reduction factor (1 – D) 
 

              IF (TK2 .LT. T2F) THEN 

          DAM2 = ZERO 

     ELSE IF (TK2 .GE. T2F .OR. TK2 .LE. T3) THEN 

               DAM2 = ((TK2 - T2F) / (T3 - T2F))**TWO  

            ELSE 

                                               DAM2 = ONE 

             END IF 

C 

              RF2 = ONE - DAM2   
 

Appendix D 

The crack initiation and propagation were simulated by element deletion option, via post-processing 

analysis (“Visualization”, “Status Variable”) in ABAQUS 2016 (Dassault Systems), depicted in Tables 

7, 8, 9, 10. When the SEDF of the elements reached the implemented energy limiter, the elements were 

automatically deleted. The reason why Gradient Damage, Phase-Field approach or X-FEM were not 

implemented as damage models, in order to illustrate the element separation, was the lack of pre-defined 

crack path, the applied elements were not linear elastic and the implemented crack thresholds were 

energy-based and not stress-based.  
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Table 7. Crack initiation comparison between experimental data and Ideal computational models, where variable SDV7,8 is 

the Strain Energy Density Function with energy limiter distribution. 

  Ideal Models  

 Neo-Hookean HGOaniso HGOiso 

1 

    
2 

    

3 

    
4 

  
  

5 

    

6 

    

7 

    
8
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Table 8. Crack initiation comparison between experimental data and Image-based computational models, where variable 

SDV7,8 is the Strain Energy Density Function with energy limiter distribution. 

  Image- based Models  

 Neo-Hookean HGOaniso HGOiso 

1 

    

2 

    

3 

    

4 

    

5 

    

6 

    

7 

    

8
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Table 9. Crack propagation comparison between experimental data and Ideal computational models, where variable SDV7,8 

is the Strain Energy Density Function with energy limiter distribution. 

  Ideal Models  

 Neo-Hookean HGOaniso HGOiso 

1 

    
2 

    
3 

    

4 

 
 

 

 
NO CRACK 

INITIATION 

 

 
NO CRACK 

INITIATION 

5 

  

 

 

NO CRACK 

INITIATION 

 

 

NO CRACK 

INITIATION 

6 

    
7 

  

 

 

NO CRACK 

INITIATION 

 

 

NO CRACK 

INITIATION 

8 

  

 

 

NO CRACK 

INITIATION 

 

 

NO CRACK 

INITIATION 
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Table 10. Crack propagation comparison between experimental data and Image- based computational models, where 

variable SDV7,8 is the Strain Energy Density Function with energy limiter distribution. 

  Image- based Models  

 Neo-Hookean HGOaniso HGOiso 

1 

    

2 

    

3 

    

4 

  

 

 

NO CRACK 

INITIATION 

 

 

NO CRACK 

INITIATION 

5 

  

 

 

NO CRACK 

INITIATION 

 

 

NO CRACK 

INITIATION 

6 

    

7 

  

 

 

NO CRACK 

INITIATION 

 

 

NO CRACK 

INITIATION 

8 

  

 

 

NO CRACK 

INITIATION 

 

 

NO CRACK 

INITIATION 
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Appendix E 

In the quantitative results, shown in Fig. 12, the experimental force data converted into Cauchy stresses 

as they were divided by the middle cross- sectional area (without the inclusion). Furthermore, the 

experimental displacement data transformed into logarithmic strain divided by the total tissue length in 

y- direction and followed the equation: 

logarithmic Strain= ln(1 + engineering Strain)                                                                                                                             (18) 

The Cauchy stresses and the logarithmic strain in the middle cross-sectional area of the computational 

simulations were calculated by finite element software ABAQUS 2016 (Dassault Systems). However, 

due to the fact that the damage loop of the energy limiter affected only the calculated Strain Energy 

function, the “damaged” Cauchy stresses were estimated according to the following equation: 

σdam = (1- D)*σini
0                                                                                                                                      (19) 

where σdam is the Cauchy stress including the implemented energy limiter, (1- D) is the reduction factor 

calculated for every element, time increment or frame and σini
0 is the initial Cauchy stress without the 

applied damage model.   
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Fig. 12. Quantitative comparison of Maximum Principal Cauchy Stress vs Logarithmic Strain of the first damaged element 

between experimental data and computational models following the SEDF with energy limiter damage model. 
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Fig. 13. Quantitative comparison of Strain Energy Density Function with energy limiter vs Time of the first damaged 

element between computational models of Neo-Hookean and HGO. 


