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We study the performance (rate and fidelity) of distributing multipartite entangled states in a quantum network
through the use of a central node. Specifically, we consider the scenario where the multipartite entangled state
is first prepared locally at a central node and then transmitted to the end nodes of the network through quantum
teleportation. As our first result, we present leading-order analytical expressions and lower bounds for both the
rate and fidelity at which a specific class of multipartite entangled states, namely, Greenberger-Horne-Zeilinger
(GHZ) states, are distributed. Our analytical expressions for the fidelity accurately account for time-dependent
depolarizing noise encountered by individual quantum bits while stored in quantum memory, as verified using
Monte Carlo simulations. As our second result, we compare the performance to the case where the central node
is an entanglement switch and the GHZ state is created by the end nodes in a distributed fashion. Apart from
these two results, we outline how the teleportation-based scheme could be physically implemented using trapped
ions or nitrogen-vacancy centers in diamond.

DOI: 10.1103/PhysRevA.107.012609

I. INTRODUCTION

A quantum network is capable of distributing entangled
quantum states between end nodes that are possibly separated
by large distances [1–4]. The development of quantum net-
works is an active field of research, with recent milestones
including the distribution of entanglement over 1203 kilome-
ters using a satellite [5], quantum teleportation without using
a preshared entangled state [6], the generation of light-matter
entanglement over 50 kilometers of optical fiber through the
use of quantum frequency conversion [7], and the creation of
the first three-node quantum network [8].

Much research focuses on the distribution of bipartite en-
tangled states, or Bell states, which are shared only between
two nodes. Bell states allow for many interesting applications,
such as quantum key distribution [9–12] and blind quantum
computation [13–15]. Some quantum-network applications,
however, require the distribution of multipartite entangled
states. One class of multipartite entangled states is formed by
graph states. Graph states are states that can be represented
using mathematical graphs, with each node corresponding to a
qubit, and each edge corresponding to an entangling operation
[16]. An example of a state that is equivalent to a graph
state up to single-qubit operations is the Greenberger-Horne-
Zeilinger (GHZ) state [17], which is equivalent to graph
states both corresponding to the complete graph and the star
graph. Distributed GHZ states can be used for, among oth-
ers, conference-key agreement [18–21], distributed quantum
computing [22,23], secret sharing [24], clock synchronization

*guusavis@hotmail.com
†s.d.c.wehner@tudelft.nl

[25], and two-dimensional quantum-repeater schemes [26].
A multipartite state that is not equivalent to a graph state is
the W state [27], which can be used for, e.g., anonymous
transmission [28].

Various investigations have been performed into how spe-
cific multipartite entangled states can best be distributed in a
quantum network [26,29–49]. A recurring theme that can be
discerned in prior work is the use of a central node that es-
tablishes bipartite entanglement with a number of end nodes,
and then executes local operations to transform the bipartite
states into a single multipartite entangled state between those
end nodes [30,35,39,42,43,47–49]. Notably, such a scheme
is a key ingredient for different efficient protocols and net-
work architectures for distributing multipartite entanglement
[30,43,47–49].

In this paper, we consider the case where a multipartite
entangled state is distributed in a quantum network by first
creating the target state locally at the central node, and then
transmitting the qubits of the state to the end nodes through
quantum teleportation using preshared Bell states [50]. Tele-
portation is realized by executing a Bell-state measurement
(BSM) on the to-be teleported qubit and a qubit in a Bell state.
Here, we refer to a node capable of creating and teleporting
multipartite entangled states as a factory node. The function
of a factory node is illustrated in Fig. 1.

Understanding the performance of factory nodes in the
presence of hardware imperfections allows for the assessment
of the different proposed protocols and network architectures
that incorporate such central nodes. Metrics that quantify the
performance of multipartite entanglement distribution are the
rate at which states can be distributed, and the fidelity of
distributed states to the target state. Developing a good under-
standing of the rate and fidelity is of special relevance to the
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FIG. 1. A factory node can be used to distribute some multipar-
tite entangled target state (for example, a graph state) between a set
of end nodes. This is done by preparing the target state locally at the
factory node and teleporting it. Quantum teleportation of the target
state is realized using Bell states shared between the factory node and
the end nodes and Bell-state measurements (BSMs).

work done in Ref. [48]. Here, the authors present a protocol to
decide which node in a larger network to select as the central
node for the distribution of GHZ states. This protocol relies
on an analytical model of the rate and fidelity with which the
states can be distributed for different possible placements of
the central node. We contribute to understanding the rate and
fidelity in Sec. III. Furthermore, we remark that it is not only
of interest to quantify the performance of factory nodes in
an absolute sense. It is also of interest to understand how the
performance of factory nodes compares to other schemes that
also allow for distributing multipartite entangled states, such
that statements about their relative performance can be made.
We contribute to this by considering different types of central
nodes in Secs. I C and IV.

In this work, we specifically study the use of factory nodes
to distribute GHZ states in a symmetric star-shaped network.
In such a network, depicted in Fig. 2, a central node is con-
nected to N end nodes through, in total, N identical quantum
connections. These quantum connections can be used to dis-
tribute Bell states. We will model the distribution of Bell states
using quantum connections as a series of attempts of constant
duration and success probability. When such an attempt is
successful, the series terminates and a Bell state is created.
When a quantum connection creates a Bell state, it is shared
between the central node and the corresponding end node
and can be stored in quantum memory. These Bell states can
be used as a resource to create multipartite entangled states
shared by the end nodes.

FIG. 2. Symmetric star-shaped network studied in this paper. N
identical end nodes are each connected to a central node through
one of, in total, N identical quantum connections. These quantum
connections can be used to distribute Bell states, which can be stored
in quantum memory and provide a resource to create a multipartite
entangled states shared by the end nodes. An example of a possible
central node is a factory node.

A. Summary of results

In this paper, we present two main results. As our first
result, in Sec. III, we provide analytical leading-order ex-
pressions and lower bounds for both the rate and fidelity of
GHZ-state distribution in a symmetric star-shaped network
using a factory node, and additionally an exact expression for
the rate. The leading-order expressions become exact in the
limit when the success probability of a single attempt at Bell-
state distribution using a quantum connection is small, and
the probability of losing a qubit due to memory decoherence
during the time span of a single such attempt is small. As our
second result, in Sec. IV, we provide a comparison between
the performance of GHZ-state distribution on a symmetric
star-shaped network when the central node is a factory node,
and when the central node is instead a “2-switch” capable of
performing BSMs to create Bell states shared between end
nodes [41]. A key advantage to the use of factory nodes is an
increased resilience to noise in Bell-state distribution. How-
ever, a disadvantage is reduced resilience to noise in BSMs.
Additionally, the factory node is typically outperformed by
the 2-switch in terms of rate.

B. Comparison of analytical results to prior work

Here, we compare the analytical results for the rate and
fidelity that we present in Sec. III to existing results. First,
we note that we are aware of only one prior analytical result
for the fidelity of distributed GHZ states in a similar scheme,
which is found in Ref. [48]. However, the authors make the
simplifying assumption that Bell states cannot be stored in
quantum memory between attempts at Bell-state distribution.
Therefore all connections need to be successful simultane-
ously. When the success probability for distributing Bell states
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is small, this is a very inefficient scheme. In contrast, we as-
sume entangled qubits are stored within the factory node until
all Bell states are in place and the GHZ state can be teleported.
Here, we are able to accurately account for the time-dependent
noise due to qubits being stored in noisy quantum memory
for random periods of time. Additionally, it is assumed in
Ref. [48] that local operations are always noiseless, which is
not an assumption made in this paper.

Second, we compare our results with the study of the
“entanglement switch.” An entanglement switch, first defined
in [41], is a quantum-network node capable of generating and
storing Bell states with k end nodes, and executing GHZ-state
measurements on n local qubits, thereby creating GHZ states
shared by n out of k end nodes. From this perspective, a
factory node that distributes GHZ states, as studied in this
paper, can be described as an n = k entanglement switch.
An entanglement switch for which n = 2 is referred to as
“2-switch” throughout this paper.

In Refs. [39–42,51], the entanglement switch is studied
analytically using Markov-chain techniques. In Ref. [42], it
is discussed that a minimum fidelity can be guaranteed by
incorporating a cutoff time after which qubits are discarded
from memory in the protocol, and the effects of the cutoff
time on the rate are studied for n = 2. However, there are
no expressions for the actual fidelity (with or without cutoff
time), and in case there is no cutoff time there is also no
lower bound. Additionally, none but Ref. [39] consider the
case n > 3, where the only result that is presented for n = k is
that no steady-state solution exists in case the switch is able to
store an infinite number of entangled qubits. This is in contrast
to the present paper, where we present analytical results for
the fidelity in the absence of a cutoff time, the parameter n
can take any value, and we assume there is only one qubit of
buffer memory available per end node. Our results are limited
to n = k, but we discuss in Sec. VI how the results can be
extended to n < k.

A paper that does derive results for an entanglement switch
of general n = k with only a single qubit of buffer memory is
[37]. The authors provide analytical tools for understanding
and bounding the rate, but do not consider the fidelity. Finally,
numerical results for the fidelity obtained from Monte Carlo
simulations can be found in Ref. [38]. While Monte Carlo
simulations can be used to study a larger range of setups than
our analytical results (e.g., they can be used to study asymmet-
ric star-shaped networks), they may need to be evaluated many
times in order to obtain results with small error bars. Doing so
can be computationally expensive. This is especially the case
when there is a large number of end nodes, as quantum states
in the system will be large and therefore hard to simulate.
On the other hand, our analytical results are computationally
cheap to evaluate and have no error bars. Furthermore, analyt-
ical results are often more suited to understand how a quantity
scales and gain intuition.

C. Different central nodes

In order to understand how well factory nodes perform
relative to other schemes that allow for the distribution of mul-
tipartite entangled states, a comparison needs to be performed.
This allows us to put the rate and fidelity that factory nodes

FIG. 3. Some multipartite entangled states, such as GHZ states
and W states, can be distributed between end nodes through the
interference and measurement of entangled photons. Each of the end
nodes needs to emit a photon that is entangled to a qubit held in local
quantum memory, and transmit it to a central node. At this node, the
photons originating from all the different nodes are interfered.

can achieve into context, and can help determine under what
circumstances it is best to use a factory node, and under what
circumstances it may be better to consider a different scheme.
Here, we provide a nonexhaustive comparison by discussing
two alternative strategies for distributing multipartite entan-
gled states on the symmetric star-shaped network depicted
in Fig. 2. The first of these utilizes a central node without
quantum memory, while the second uses a 2-switch as central
node.

The first alternative method to factory nodes for the distri-
bution of multipartite entanglement in a star-shaped network
is to utilize a central node that does not have any quan-
tum memory. This memoryless scheme requires connections
through which photons can be directly transmitted, e.g., they
can be optical fibers. To distribute a multipartite entangled
state, the end nodes emit entangled photons that are sent
through the connections to the central node. Here, the photons
are interfered and measured, resulting in the creation of the
target state on the end nodes. Such schemes exist for the
distribution of GHZ states [31,52] and W states [53,54], and
they are illustrated in Fig. 3.

An advantage of these schemes is that the central node can
be very simple, requiring only linear-optics components and
single-photon detectors. A downside however, when distribut-
ing GHZ states, is that all photons need to arrive at the central
station simultaneously, making it very sensitive to photon
losses; if each of the N connections transmits photons success-
fully with probability η (the transmittance of the connection),
the distribution rate will scale as ηN . On the other hand, a
factory node could be used to distribute states with a rate that
falls only logarithmically with N , and linearly with the success
probability of Bell-state distribution (see Sec. III A). How this
success probability scales with η depends on the nature of
the connection and the specific method used to distribute Bell
states. When using direct transmission of entangled photons,
the scaling will be linear in η, but schemes with better scal-
ing exist. For example, single-click heralded entanglement
generation [55] can be used for

√
η scaling, and the scaling

could be further improved using quantum repeaters, with the
exact scaling depending on how they are implemented [56].
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No further comparison between memoryless schemes and the
use of a factory node is performed in this paper.

The second alternative method to using factory nodes for
the distribution of multipartite entanglement in a star-shaped
network, is to use a 2-switch as a central node. The 2-switch
functions as an intermediary, allowing the end nodes to share
Bell states with one another even though they are not directly
connected. By executing the appropriate local operations at
the end nodes, these Bell states can be transformed into the tar-
get multipartite entangled state. One downside to this option is
that it imposes the requirement that end nodes must be able to
store multiple qubits within their quantum memory, and that
they must be able to execute multipartite entangling opera-
tions. An additional downside is that, even if each end node is
able to store and exert full control over two qubits, there still
exist multipartite entangled states that the nodes would be able
to store but cannot create in their limited quantum memory
using only bipartite entangled states shared between them
[46]. On the other hand, when utilizing a factory node, any
multipartite entangled state that the end nodes have enough
quantum memory to store can be distributed among them.
Generally, when using a factory node, advanced quantum
capabilities are required only of the dedicated network device,
not of the end nodes.

In Sec. IV, we present our second main result. This result is
a comparison, based on Monte Carlo simulations, of the rate
and fidelity of GHZ-state distribution on the symmetric star-
shaped network using a factory node and using a 2-switch.
Here, we assume the 2-switch follows a specific protocol
under which BSMs are not executed whenever possible, but
only when they result in a Bell state that directly contributes
to the creation of a GHZ state.

D. Outline

The remainder of this paper is set up as follows. First,
in Sec. II, we introduce the exact factory-node setup and
noise model we study. Next, in Sec. III, we provide analyt-
ical results for the rate and fidelity with which GHZ states
can be distributed on this setup. In Sec. IV, we use Monte
Carlo simulations to compare the performance of GHZ-state
distribution using a factory node and using a 2-switch. We
provide examples of how a factory node could be physically
implemented using trapped ions or nitrogen-vacancy centers
in diamond in Sec. V. Finally, we conclude in Sec. VI, where
we discuss how the results presented in this paper could be
generalized and used for further study.

II. SETUP, PROTOCOL, AND MODEL

In this section, we discuss in detail the factory-node setup
that we study in this paper. Additionally, we introduce the
exact protocol used to distribute GHZ states on this setup, and
the model that we use to account for noise and losses.

We consider a symmetric star-shaped quantum network.
Such a network, depicted in Fig. 2, consists of N end nodes,
and one central node that shares a single quantum connection
with each of the end nodes. For the factory-node setup dis-
cussed in this section, this central node is a factory node. The
quantum connections can be used to distribute Bell states of

the form

|φ00〉 = 1√
2

(|00〉 + |11〉). (1)

Each end node contains a single qubit. On the other hand, the
factory node contains 2N qubits. N of these can be used to
store the local halves of Bell states that are distributed using
the quantum connections. The other N can be used to prepare
and store a target quantum state to be distributed among the
end nodes. Furthermore, for each of the first N qubits, the node
is able to execute a BSM with exactly one of the second N
qubits. In our modeling, we allow for probabilistic BSMs. A
BSM is probabilistic, e.g., when it is implemented using linear
optics [57,58]. When a BSM has success probability qBSM, we
model this as raising a “fail” flag with probability 1 − qBSM,
and executing a perfect BSM otherwise. On this setup, any
N-partite target state can be distributed between the end nodes
by creating the target state locally, and then teleporting it to
the end nodes using Bell states. Specifically, we consider the
distribution of an N-partite GHZ state using Protocol 1, which
is illustrated in Fig. 4. Such a state is defined by

|GHZ〉 = 1√
2

(|0〉⊗N + |1〉⊗N ). (2)

Protocol 1: GHZ-state distribution using factory node
(1) Repeatedly attempt Bell-state distribution over each of

the N quantum connections shared between the factory node
and the N different end nodes, until the factory node shares a
Bell state with each end node.

(2) Create an N-partite GHZ state on the N remaining free
memory qubits in the factory node.

(3) Perform N BSMs at the factory node, each between
one qubit that holds part of the GHZ state, and one qubit that
holds part of a Bell state.

(4) Send a classical message from the factory node to each
of the end nodes containing the results of the BSMs.

(5) If any of the BSMs was unsuccessful, all end nodes
reset their memory qubits. Return to Step 1. Otherwise, the
end nodes perform Pauli corrections based on the outcomes
of the BSMs, such that, in the absence of noise, the end nodes
now share a GHZ state.

Each step in the protocol is performed after the previous
step has been concluded. In case the BSMs are all successful,
the last three steps of Protocol 1 implement quantum telepor-
tation of the N qubits sharing a GHZ state from the factory
node to the end nodes. Therefore, in the absence of noise, this
results in the N end nodes sharing an N-partite GHZ state.

In this study, we assume the time it takes to distribute a
Bell state over a quantum connection follows a geometric dis-
tribution. That is, Bell-state distribution is a series of attempts,
where each attempt is of constant duration �t , and where the
probability that an attempt is successful is described by the
constant qlink. To be more precise, �t is the time it takes after
starting an attempt until both the end node and factory node
know whether it was successful or not. Only after they have
obtained this knowledge, they can decide whether they want to
reset their local qubits and start again, or whether they should
instead keep the created quantum state stored in memory. We
use this time, i.e., �t after the start of the attempt, as the
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FIG. 4. Illustration of GHZ-state distribution through a factory node, using Protocol 1. (a) There is one factory node, and there are N = 3
end nodes. (b) Bell states are distributed between the factory node and each of the end nodes (Step 1 of Protocol 1). (c) After all Bell states are
in place, a GHZ state is created locally (Step 2 of Protocol 1). (d) BSMs are executed between qubits in Bell states and qubits in the GHZ state
(Step 3 of Protocol 1). (e) If all BSMs were successful and the corresponding Pauli corrections have been applied, the end nodes share a GHZ
state (Steps 4 and 5 of Protocol 1).

start of the storage time of the Bell state that is generated if
the attempt is successful. Describing Bell-state distribution
as a sequence of independent attempts is accurate when the
quantum connection consists of, for example, heralded entan-
glement generation through either direct transmission [6,59]
or photon interference [8,55,60–69], or a quantum-repeater
chain with fixed-time quantum memory [70,71].

Another assumption made here is that all quantum connec-
tions are identical, i.e., �t and qlink are the same for each of the
N connections between the factory node and the end nodes.
Therefore �t is used as the standard time unit throughout the
rest of this paper, and one time step of duration �t during
which attempts at Bell-state distribution take place is some-
times referred to as a “round.”

The time that it takes to send a classical message between
the factory node and any of the end nodes is denoted tcl. Since
Step 4 of Protocol 1 consists of sending classical messages, it
will take tcl to finish that step. How large tcl is compared to �t
depends on how the quantum connections are implemented.
For example, in the case of heralded entanglement generation
through photon interference, �t includes the time required to
send photons to a midpoint station, and the time required to
send back the measurement outcome to the nodes. Assuming
classical signals travel at the same speed of light (in fiber) as
the photons used to generate entanglement, this time is exactly
equal to tcl. �t may be further limited by, among others,
the rate at which entangled photons can be emitted and by
classical overhead due to, e.g., synchronizing emission times
[8,72,73]. In that case, tcl < �t . In this paper, we focus on the
case qlink � 1. In that regime, the number of attempts required
to successfully distribute a Bell state is typically very large.
Then, as long as tcl is not much larger than �t , classical com-
munication will only take up a negligibly small part of both
the time required to distribute one GHZ state and qubit storage
times. Therefore we use tcl = 0 throughout the rest of this

paper. Additionally, we assume that all local operations exe-
cuted at the factory node and the end nodes are instantaneous.
These operations do not suffer from any speed-of-light delay,
and their execution time will always become comparatively
small for small enough qlink. Because both classical commu-
nication and local operations are modeled as instantaneous,
Step 1 is the only step of Protocol 1 with nonzero duration.

All noise in the network is modeled by depolarizing chan-
nels, described by the action [74]

DHA,p(ρ) = pρ + (1 − p)TrHA (ρ) ⊗ 1HA

Tr1HA

. (3)

Here, ρ is a density matrix in the Hilbert space H = HA ⊗
HB, HA is the subspace of H that describes the system that
the depolarizing channel acts on, 1HA is the identity operator
of HA, TrHA is the partial trace over HA, and p is the so-called
depolarizing parameter. It can be interpreted as losing all
information about the system described by HA with proba-
bility 1 − p. Specifically, we consider the following sources
of noise.

(1) Noisy connections. Whenever a Bell state is created,
a depolarizing channel with parameter plink acts on the two
qubits that hold the Bell state (i.e., HA has dimension 4). We
note that, because of the symmetry of the Bell state, this is
equivalent to a single-qubit depolarizing channel acting with
parameter plink on either of the individual qubits.

(2) Noisy memory. For every time unit �t that a quantum
state is stored in a memory qubit, a depolarizing channel with
parameter pmem acts on that qubit (i.e., HA has dimension 2).

(3) Noisy BSMs. Whenever a BSM is executed, it is pre-
ceded by two depolarizing channels with parameter pBSM, one
on each of the participating qubits (i.e., HA has dimension 2).
This measurement itself, following the depolarizing channels,
is then modeled as being noiseless.
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(4) Noisy GHZ states. Whenever a GHZ state is created,
a depolarizing channel with parameter pGHZ acts on the N
qubits that hold the GHZ state (i.e., HA has dimension 2N .)

Local Pauli corrections are modeled as noiseless.

III. ANALYTICAL RESULTS

Here, we present analytical results for the rate and fi-
delity of GHZ-state distribution using Protocol 1. For the
rate, we provide three analytical results: an exact expression,
a lower bound, and a leading-order expression. For the fi-
delity, we present two analytical results: a lower bound and
a leading-order expression. The accuracy of the leading-order
expression for the rate, and of both the leading-order expres-
sion and the lower bound for the fidelity, is verified against a
numerical model built using the quantum-network simulator
NETSQUID [38] in Appendix A.

A. Rate

We denote the time required to distribute a single GHZ
state using Protocol 1 by T , which is a random variable. The
(average) rate at which GHZ states are distributed is then
defined by

R = 1/〈T 〉. (4)

Thus, to calculate the rate, we need to know the expected
value of the distribution time. To this end, we decompose the
distribution time as

T = nteleportTteleport. (5)

Here, nteleport is the number of attempts at teleporting a GHZ
state until such an attempt is successful. That is, it is the
number of times Steps 1 through 4 of Protocol 1 need to
be executed for the protocol to finish. Such an attempt at
teleportation may fail in case the BSMs are probabilistic, i.e.,
qBSM < 1. On the other hand, Tteleport is the time required to
perform Steps 1 through 4 once. Both these quantities are ran-
dom variables. Because under the present assumptions only
Step 1 of Protocol 1 has a nonzero duration, Tteleport can be
further dissected into

Tteleport = nall�t, (6)

where nall is again a random variable, corresponding to the
number of rounds of Bell-state distribution required to share
Bell states between the factory node and all of the end nodes.
That is, it is the number of rounds required to finish Step 1 of
Protocol 1. Combining the two expressions yields

T = nteleportnall�t . (7)

Because the expected value of a product of two independent
random variables is the product of their expected values, we
find

〈T 〉 = 〈nteleport〉〈nall〉�t . (8)

Since each teleportation attempt succeeds with a fixed success
probability of qN

BSM (teleportation succeeds if and only if all
N BSMs are successful), nteleport is geometrically distributed

with 〈nteleport〉 = 1/qN
BSM. Thus

R = qN
BSM

〈nall〉�t
. (9)

The probability distribution of nall is more complicated: the
number of rounds required to distribute Bell states with all N
end nodes is the number of rounds required to distribute the
Bell state that takes the longest. Writing ni for the number of
attempts required to distribute a Bell state with end node i, we
have

nall = max{n1, n2, . . . , nN }. (10)

Each of the ni is geometrically distributed with 〈ni〉 = 1/qlink.
It can be evaluated exactly using [75]

〈nall〉 =
N∑

j=1

(−1) j+1

(
N

j

)
1

1 − (1 − qlink) j
. (11)

This can be substituted into Eq. (9) to obtain an exact ex-
pression for the rate. However, we also report here a known
leading-order expression [37,76,77],

〈nall〉 ≈ HN

qlink
, (12)

where HN is the N th harmonic number,

HN ≡
N∑

i=1

1

i
= γ + ln N + O

(
1

N

)
. (13)

Here, γ ≈ 0.5772 is the Euler-Mascheroni constant. Substi-
tuting this into Eq. (9) yields

R ≈ qN
BSMqlink

HN�t
, (14)

which is valid up to leading order in qlink.
There are two reasons why we report the leading-order ap-

proximation (14) even though an exact expression is available.
First, in the regime qlink � 1, Eq. (14) is accurate and easier
to evaluate. Second, Eq. (14) more clearly shows how the rate
scales with qlink, N and qBSM, thereby providing more intu-
ition. We additionally note that there exists an upper bound
[37,78],

〈nall〉 < 1 + HN

− ln(1 − qlink)
. (15)

Therefore Eq. (14) is a lower bound on the actual rate if

HN

qlink
> 1 + HN

− ln(1 − qlink)
. (16)

This is the case for any N > 3. Additionally, it is true for
N = 3 if qlink � 0.42. Therefore using the simpler leading-
order expression usually does not lead to overestimating the
performance of Protocol 1. In Appendix A, for N = 5, we find
that Eq. (14) is indeed a tight lower bound for small values of
qlink, while underestimating the rate up to a factor of two for
qlink ∼ 1.

B. Fidelity

In this section, we calculate the fidelity of the state shared
by the end nodes after a successful execution of Protocol 1.
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This fidelity is defined with respect to the perfect GHZ state.
The first step is to determine the density matrix of that state,
which we denote ρ. In the absence of noise, ρ would simply
be a perfect GHZ state. However, due to the depolarizing noise
in the creation of the local GHZ state within the factory node,
the performance of BSMs, the distribution of Bell states and
the storage of qubits, ρ is generally not a GHZ state and
is a function of the noise parameters pGHZ, pBSM, plink, and
pmem. Additionally, we note that each individual execution of
the protocol is characterized by the values that the random
variables n1, n2, . . . , nN take. Just like above, the random vari-
able ni represents the number of rounds it takes to distribute
a Bell state between the factory node and end node i. How
much decoherence due to the storage of qubits in quantum
memories is suffered, will depend on the value that each ni

takes. Therefore ρ is additionally a function of the random
variables n1, n2, . . . , nN .

We derive ρ as a function of the noise parameters and
random variables in Appendix B. Here, we briefly summarize
how this derivation is performed. First, we note that there are
single-qubit depolarizing channels acting on three groups of
qubits. First, there are the qubits that are part of the locally
created GHZ state in the factory node. Second, there are the
qubits stored at the GHZ factory that are entangled to those
at the end nodes and partake in BSMs together with the
GHZ-state qubits. Finally, there are the qubits stored at the
end nodes. Because of the symmetry of Bell states, and by
extension of BSMs, it is possible to “move” all these single-
qubit depolarizing channels to only the qubits stored at the end
nodes. That is, the state ρ can be derived correctly by pretend-
ing that as the protocol is executed, there is no single-qubit
depolarizing noise within the factory node, but instead there
are only single-qubit depolarizing channels acting at the end
nodes. Because the composition of depolarizing channels is
itself a depolarizing channel, each end node i only undergoes
a single depolarizing channel with parameter

pi = plink p2
BSM p2�ni

mem, (17)

where

�ni ≡ nall − ni (18)

is the number of rounds the Bell state shared with end node i
is stored until it partakes in a BSM. Describing the protocol
in this way is very convenient, because it then amounts to
performing perfect quantum teleportation of a noisy GHZ
state to the end nodes, followed by depolarizing channels on
each of the N individual qubits of the state. Resolving all these
depolarizing channels gives the result

ρ = 1 − pGHZ

2N
1N

+ pGHZ

[∏
i∈N

pi(|GHZ〉〈GHZ|)N +
∏
i∈N

1 − pi

2
1N

+ 1

2

∑
U⊂N

1<|U |<N

⎛
⎝∏

i∈U

1 − pi

2

∏
j∈N \U

pj

⎞
⎠1U ⊗ PN \U

]
.

(19)

Here, we have defined N = {1, 2, . . . , N}, and P is the clas-
sically correlated, unnormalized state

P1,2,...,k ≡ (|0〉〈0|)⊗k + (|1〉〈1|)⊗k . (20)

The different terms in the density matrix correspond to all
different combinations of some of the qubits being lost due
to single-qubit depolarizing noise, and some being unscathed.

Using Eq. (19), the fidelity can be efficiently written as

Frand ≡ 〈GHZ|ρ|GHZ〉

= 1 − pGHZ

2N
+ pGHZ

∑
U⊆N

2δ|U |,0+δ|U |,N −1

×
∏
i∈U

(
1 − pi

2

) ∏
j∈N \U

pj, (21)

where |U | is the cardinality of set U and δi, j denotes the
Kronecker delta function. As the fidelity is a function of the
random variables �ni, it is itself a random variable: it depends
on how quickly one after another the different Bell states
are distributed. This is the reason why the fidelity above is
denoted with the subscript “rand.” The delta functions are
there to account for the fact that there is “one less” factor
of 1/2 in the fidelity when no qubits are lost, and when all
qubits are lost. The reason for this is that losing a single qubit
(i.e., tracing that qubit out and then replacing it by a maxi-
mally mixed state) in a GHZ state does not only destroy the
information held by that qubit, but also reduces the correlation
between the remaining qubits to classical correlation instead
of quantum correlation. Therefore the first qubit that is lost
accounts for a larger drop in fidelity than subsequent qubits.
Additionally, the last qubit that is lost does not account for
any drop in fidelity, as losing N − 1 qubits of the GHZ state
will already result in an N-qubit maximally mixed state, the
fidelity of which cannot be further decreased by depolarizing
noise.

Here, we are assuming no post-selection on distributed
GHZ states takes place. Therefore we can describe the state
produced by execution of Protocol 1 as a mixture between
all ρ’s corresponding to different values of �ni. This state is
then independent of the random variables, and the same for
each execution of the protocol. The mixed state is the expected
value of the density matrix ρ, and its fidelity is the expected
value of Frand, which can be written as

F = 〈Frand〉

= 1 − pGHZ

2N
+ pGHZ

∑
U⊆N

2δ|U |,0+δ|U |,N −1

×
〈∏

i∈U

1 − pi

2

∏
j∈N \U

pj

〉
. (22)

In Appendix C, we work out the combinatorics to rewrite the
fidelity as

F = 1 − pGHZ

2N
+ pGHZ

∑
U⊆N

A|U |

〈∏
i∈U

(
p2

mem

)�ni

〉
, (23)
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where

A|U | =
{(

plink p2
BSM

)|U |( 1
2N + 1

2δ|U |,N
)

if |U | is even,
1
2

(
plink p2

BSM

)|U |
δ|U |,N if |U | is odd.

(24)

Now, we note that after Bell states have been distributed
between the factory node and all end nodes, it is possible to
order the end nodes based on the order in which they were
connected to the factory node. That is, to each end node
i ∈ N we assign di ∈ N such that if di > d j , then end node
i shared a Bell state with the factory node at the same time as
or later than end node j. For example, if end node 4 shared
a Bell state first, we assign d4 = 1. If such an ordering is
given, it is possible to use the results from Appendix D to
evaluate expressions like Eq. (23). However, in general, such
an ordering cannot be imposed a priori; it is only well-defined
after executing the protocol. Because the order in which Bell
states are shared is random, each di is a random variable.
Therefore, to apply the results from the Appendix, an average
should be taken over all possible orders in which Bell states
can be distributed. Because of the symmetry of the setup under
consideration, however, we need not worry about that. The
success probability is qlink for all quantum connections, so all
orderings are equally likely. Furthermore, since the effective
depolarizing probability per round is p2

mem for all end nodes,
the fidelity is invariant under changes in the ordering (it does
not matter if end node 4 shares a Bell state first and end node
6 last, or the other way around). Therefore we can safely
pretend the order in which Bell states are distributed is fixed.
Furthermore, we set our labeling to coincide with this order.
That is, we set it such that di = i.

It follows from Eq. (D59) in Appendix D that, to leading
order in qlink and (1 − p2

mem),〈∏
i∈U

(
p2

mem

)�ni

〉
≈

N∏
k=1

(N + 1 − k)qlink

|Uk|
(
1 − p2

mem

)+ (N + 1 − k)qlink
,

(25)
where

Uk ≡ {u ∈ U |u < k}. (26)

For example, if U = {1, 3}, then U1 = ∅, U2 = U3 = {1} and
U4 = U . Since the expression is to leading order in 1 − p2

mem
and 1 − p2

mem � 1 − pmem, we consider the approximation to
be valid up to leading order in 1 − pmem. A leading-order ex-
pression for the fidelity is then obtained by combining Eq. (23)
with Eq. (25).

The main reason why working to leading order in qlink

and 1 − p2
mem allows us to derive Eq. (25), is that in this

approximation we can neglect the possibility of multiple Bell
states being generated at the same time. For qlink � 1, the
probability of more than one Bell state being generated during
a single round is very small; most likely, there are many
rounds between one success and the next. Additionally, when
1 − p2

mem � 1, the drop in fidelity per extra round that qubits
have to wait in memory is small. If that were not the case, the
fidelity can be still high in case all Bell states succeed in quick
succession, including some at the same time, while the fidelity
would already be small in case there is some waiting time
between different successes. Therefore the contribution to
the average fidelity of cases with multiple simultaneous suc-
cesses would be relatively large despite them occurring with

FIG. 5. Comparison between simulation result and analytical ex-
pressions for the fidelity of Protocol 1. The parameters are N = 5,
qBSM = 0.95, pBSM = plink = 1 − 10−2 and pmem = 1 − 10−4. GHZ
states are locally prepared with a fidelity of 0.9, which corresponds
to pGHZ ≈ 0.872. The lower bound is tight for small values of qlink,
but not for larger values. The leading-order expression on the other
hand stays accurate also for larger values of qlink. Each data point
represents the average over 10 000 simulated executions of Protocol
1. Error bars represent the standard deviation of the mean and are
smaller than the markers. Note that the lines showing the leading-
order result and the simulation result can be hard to distinguish
because of their overlap.

small probability, and neglecting their contribution would be
inaccurate.

We see in Appendix A that the real fidelity of Protocol 1
is typically larger than the leading-order expression given by
Eq. (25). This is explained by the fact that we ignore cases
where multiple Bell states are generated simultaneously: we
are effectively calculating the average of Frand over a sub-
normalized probability distribution. However, this does not
prove Eq. (25) is a lower bound on the fidelity. The reason
for this is that, in Appendix D, in order to work consis-
tently at leading order in qlink and 1 − pmem, we have also
neglected terms that would lower the calculated fidelity if
they were included, and we do not know if these neglected
terms generally outweigh the terms corresponding to multiple
simultaneously distributed Bell states. When not throwing
these higher-order terms out, a strict lower bound is obtained.
However, it typically approximates the real fidelity (far) worse
than the leading-order expression, as discussed below. The
bound is calculated in Appendix D [Eq. (D66)] and yields〈∏

i∈U

(
p2

mem

)�ni

〉

�
N∏

k=1

(N + 1 − k)qlink(1 − qlink)N−k
(
1 − p2

mem

)|Uk |

1 − (1 − qlink)N+1−k
(
1 − p2

mem

)|Uk | .

(27)

The lower bound on the fidelity is obtained by using Eq. (27)
to evaluate Eq. (23).

In Appendix A, we compare the analytical results to a
Monte Carlo simulation of Protocol 1. One such comparison
figure is also included here, see Fig. 5. In Appendix A, we
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FIG. 6. Illustration of GHZ-state distribution through a 2-switch, using Protocol 2. (a) There is one 2-switch, and there are N = 3 end
nodes. (b) Bell states are distributed between the 2-switch and end nodes (Step 1 of Protocol 2). (c) When there are two Bell states, a BSM
is executed (Step 2 of Protocol 2). (d) If the BSM was successful and the corresponding Pauli corrections have been applied, the two end
nodes now share a Bell state (Steps 3 and 4 of Protocol 2). (e) Bell states are distributed until the 2-switch is entangled to two end nodes that
are not themselves already entangled. A BSM is executed on the corresponding entangled qubits (Steps 1–3 of Protocol 2). (f) If the BSM
was successful and the corresponding Pauli corrections have been applied, one end node is now entangled to the two other end nodes, but
those other end nodes are not themselves entangled to each other (Step 4 of Protocol 2). (g) A fusion operation (which involves a CNOT gate
and Z-basis measurement) is executed in the end node holding two qubits (Steps 5 and 6 of Protocol 2). (h) As a consequence of the fusion
operation, the three end nodes now share a GHZ state together.

find that both the leading-order expression and lower bound
closely approximate simulation results for small values of
qlink and 1 − pmem. Remarkably, the leading-order expression
remains reasonably accurate all the way up to qlink ∼ 1, where
deviations are on the percent level. This can be explained by
the fact that as qlink grows, the effect of memory decoherence
slowly becomes negligible in case 1 − pmem � 1, and the
leading-order expression happens to be accurate up to the
point where the fidelity becomes approximately constant. The
lower bound however becomes very loose for larger values
of qlink. When instead 1 − pmem is increased, we find that the
leading-order expression stays accurate and the lower bound
remains tight until the fidelity becomes close to that of a
maximally mixed state.

To calculate both the approximate and bounded values
of F , we use a PYTHON script that evaluates Eq. (23) using
either Eq. (25) (for an approximation) or Eq. (27) (for a lower
bound). This script has been made public and can be found in
our repository [79].

IV. COMPARISON

In this section, we compare the performance of GHZ-state
distribution on a symmetric star-shaped network (depicted
in Fig. 2) in case the central node is a factory node to the
performance in case the central node is not a factory node.

Specifically, we will compare the performance of Protocol
1 as described in Sec. II to the performance of Protocol 2,
which requires the central node to be a 2-switch. The 2-switch
serves as an intermediary in the creation of Bell states between
end nodes by performing BSMs on pairs of entangled qubits.
Protocol 2 is illustrated in Fig. 6.

There are two differences between the factory-node setup
discussed in Sec. II and the 2-switch setup considered here.
The first difference is in the central node. The central node is
the 2-switch, and it is able to store a maximum of N qubits in
quantum memory (one per end node). The only way this node
can manipulate qubits, is through the execution of BSMs on
any pair of the qubits in its memory. When the node executes
a BSM between a qubit that is entangled to one end node and
a qubit that is entangled to another end node, this results in
a Bell state shared between the two end nodes. The second
difference is in the end nodes. As discussed in Sec. I, end
nodes that only have access to bipartite entangled resource
states among themselves cannot create multipartite entangled
states if they can only store a single qubit. Therefore, in order
to enable the distribution of GHZ states through the use of
a 2-switch, end nodes in the 2-switch setup have a quantum
memory of two qubits each. Additionally, they are able to
execute CNOT gates and Z-basis measurements.

We model the 2-switch setup largely the same as the
factory-node setup. Each attempt at Bell-state distribution
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takes a time �t . Exchanging a classical message between the
central node and an end node takes time tcl, which we assume
to be zero. An attempt at Bell-state distribution succeeds
with probability qlink, a BSM succeeds with probability qBSM.
Whenever a Bell state is distributed by a quantum connection,
the qubits are depolarized with parameter plink. Qubits stored
in memory undergo depolarization with parameter pmem once
during each time unit �t . Finally, whenever a BSM is exe-
cuted, both qubits first undergo depolarization with parameter
pBSM. We model CNOT gates and Z-basis measurements as
noiseless.

Protocol 2: Bipartite GHZ-state distribution.
(1) Repeatedly attempt Bell-state distribution over all

quantum connections for which there is a free qubit at the
2-switch until the first success occurs.

(2) At the 2-switch, execute BSMs randomly between
pairs of entangled qubits, on the condition that the end nodes
that are entangled to those qubits are not yet part of the same
(noisy) GHZ state. If no BSMs are executed, go back to
Step 1.

(3) Send a classical message from the 2-switch to each of
the end nodes, informing them about which BSMs have been
executed, and what the results of the measurements are.

(4) Each end node that was entangled to a qubit that has
partaken in a BSM, checks the result of that BSM. If the BSM
failed, the qubit is reset. If it succeeded, a Pauli correction
(chosen based on the outcome of the BSM) is applied to the
qubit to ensure this qubit and the qubit it is entangled with are
in the |φ00〉 Bell state (in the absence of noise).

(5) Each end node that now holds two qubits in its quan-
tum memory executes a CNOT gate between those qubits
followed by a Z-basis measurement on the target qubit.

(6) Each end node that has executed a Z-basis measure-
ment sends a classical message with the result to all other
end nodes. These end nodes then perform single-qubit Pauli
corrections, chosen based on the measurement outcomes, to
transform each entangled state that is shared between end
nodes into a GHZ state (in the absence of noise).

(7) If there is a GHZ state shared between all end nodes,
the protocol has finished. Otherwise, go back to Step 1.

We now make some remarks about Protocol 2.
(1) In Step 1 of Protocol 1, Bell-state distribution is at-

tempted until there has been one success for each of the N
quantum connections. In contrast, in Step 1 of Protocol 2,
Bell-state distribution is only attempted until there is a round
during which as least one success occurs.

(2) Steps 5 and 6 together implement a fusion operation
[36]. Such an operation combines two GHZ states into one,
at the cost of measuring out a single qubit. Here, the |φ00〉
Bell state is considered a two-qubit GHZ state. Each time a
fusion operation is executed, a larger GHZ state is created,
until eventually all N end nodes share in the GHZ state.

(3) For each time Step 1 is executed, classical commu-
nication takes up a time 3tcl (one tcl to send BSM results
from the 2-switch to the end nodes, one tcl to send Z-basis-
measurement results from the end nodes to the 2-switch,
and one tcl to forward those measurement results from the
2-switch to the end nodes). When qlink � 1, Step 1 re-
quires many rounds and therefore both the completion time
and the qubit storage times are dominated by entanglement

distribution, assuming tcl is not much larger than �t . The
classical communication time can then be safely neglected,
just as for Protocol 1. This motivates the choice to consistently
set tcl = 0 throughout the paper.

(4) Protocol 2 is inefficient in terms of the amount of
classical communication it requires. Specifically, the proto-
col could be altered such that all Pauli corrections are only
performed after creating a GHZ-like state shared between all
end nodes. Additionally, in the case of deterministic BSMs,
the 2-switch does not need to inform the end nodes about
the success of the measurements. In this paper, however, we
make the assumption that the exchange of classical messages
is instantaneous (tcl = 0). Therefore any inefficiency with re-
spect to classical communication does not affect the results
presented here.

We have studied the performance of Protocol 2 numerically
using quantum-network simulator NETSQUID [38]. NETSQUID

is able to track time-dependent noise accurately by jumping
through a timeline consisting of discrete events, at which
quantum states are acted upon to account for errors. On top of
NETSQUID, our simulations utilize user-contributed NETSQUID

snippets [80,81]. Apart from using NETSQUID to study Proto-
col 2, we also set up a NETSQUID simulation to study Protocol
1. This simulation model serves two purposes. First, it is used
to verify the accuracy of the analytical results presented in
Sec. III. This verification is described in Appendix A. Second,
simulations of Protocol 1 are used in this section to compare
the performance of Protocols 1 and 2. Note that it would also
have been possible to compare simulations of Protocol 2 to
our leading-order expressions for Protocol 1. Instead, we are
comparing simulations to simulations. This makes the results
of this section independent of the importance of subleading
terms that are not included in the leading-order expressions.

Every numerical value that is reported in this paper, either
for Protocol 1 or for Protocol 2, is based on the simulation of
10 000 protocol executions. Error bars on the rate and fidelity
represent the standard deviation of the mean, and are some-
times smaller than the marker size. Additionally, we remark
that when simulating Protocol 2, the network state is not reset
between executions of the protocol. It can happen that there
are Bell states in the network, generated during Step 1, that
never feed into a BSM during Step 2 and are thus not used to
create a GHZ state. Then, there are already Bell states present
in the network at the start of the next protocol execution. This
entanglement is used as a resource to create the next GHZ
state.

While comparing Protocols 1 and 2, we observe the relative
sensitivity of their performance to the various parameters de-
scribing their setups. This comparison can help us understand
in what parameter regimes the use of a factory node can
be beneficial. Throughout the comparison, we use �t = 1
to make the results independent of specific timescales. As a
result, the rate is a dimensionless quantity, and can be in-
terpreted as “average number of GHZ states distributed per
round.” Our comparison will focus on the regime qlink � 1.
Only at the end of this section will we briefly study what
happens for qlink ∼ 1.

First, we compare the rates of the two protocols. Since
noise parameters of the setups cannot affect the rate at which
GHZ states are distributed (only the fidelity), we limit our
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FIG. 7. Sensitivity of the rate of Protocols 1 (“Factory”) and 2
(“2-switch”) to the success probability of Bell-state distribution qlink,
the number of end nodes N , and the BSM success probability qBSM.
When the parameters are not varied over, their values are qlink =
0.01, N = 5 and qBSM = 1. We see that for small values of qlink, the
rates are of similar magnitude for qBSM = 1 and N = 5, with Protocol
2 slightly outperforming Protocol 1. If either qBSM is decreased or N
is increased, this difference becomes more pronounced. Note that
the lines in the top figure can be hard to distinguish because of their
overlap. The rate is dimensionless as the round time �t has been set
to 1.

attention to the effects of the success probability of Bell-state
distribution qlink, the BSM success probability qBSM, and the
number of end nodes N . Their effects are shown in Fig. 7.
From this figure, we must conclude that for small qlink Proto-
col 2 typically has a higher rate than Protocol 1. It is notable
that the difference in rate becomes large especially for prob-
abilistic BSMs, as the rate of Protocol 1 drops exponentially
as qBSM is decreased. However, also for deterministic BSMs
Protocol 1 tends to be slower than Protocol 2, especially for
larger values of N . This can be surprising, considering that
Protocol 2 requires a larger total number of Bell states to be
distributed than Protocol 1 (2(N − 1), as opposed to N for
Protocol 1). The reason for this is that, as discussed above,

FIG. 8. Sensitivity of the fidelity of Protocols 1 (“Factory”) and
2 (“2-switch”) to the noise in Bell states shared between the cen-
tral node and the end nodes (plink) and the noise in BSMs (pBSM).
Apart from the parameter varied over, there are no sources of noise
(plink = pBSM = pmem = pGHZ = 1). The other parameters have the
values qlink = 0.01, N = 5, and qBSM = 1. While Protocol 1 is more
resilient against noise in Bell states, Protocol 2 is more resilient
against noise in BSMs.

Bell states that are generated but not used during one execu-
tion of Protocol 2 can still be used during the next execution.
In Protocol 2, BSMs are executed continuously at the central
node, thereby freeing up qubits. This allows quantum connec-
tions to generate multiple Bell states during a single execution
of Protocol 2, which is not the case for Protocol 1. Combining
this with the possibility to distribute Bell states ahead of time
for the next GHZ state allows Protocol 2 to use its quantum
connections more efficiently than Protocol 1, to such a degree
that the larger number of Bell states can be distributed in a
smaller amount of time.

Now, we compare the fidelities of the two protocols. From
Fig. 8, we see that Protocol 2 is more sensitive to the noise
parameter plink. This is explained by the fact that it requires
more Bell states between the central node and end nodes to
distribute a single GHZ state (2(N − 1) instead of N). Addi-
tionally, we see that Protocol 1 is more sensitive to pBSM. The
reason for this, is that the protocol executes more successful
BSMs per GHZ state than Protocol 2 (N versus N − 1). We
note though that Protocol 2 also requires the execution of
fusion operations at the end nodes, consisting of a CNOT gate
and one Z-basis measurement. As a deterministic BSM can
be implemented using a CNOT gate, a Hadamard gate, and two
Z-basis measurements, it could very well be the case that the
noise in the fusion operations is of similar magnitude as the
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noise in the BSMs. If we would have modeled the fusion op-
eration as also inflicting depolarizing channels with parameter
pBSM on the involved qubits, we would likely instead have
found that Protocol 2 is more sensitive to pBSM, as it requires
N − 1 successful BSMs and N − 2 fusions, giving a total of
2N − 3 instances at which the noise is suffered.

The final source of noise that the two setups have in
common is the memory decoherence, pmem. How much deco-
herence enters into the final GHZ state depends on the amount
of time qubits are stored while executing the protocol. There-
fore it is reasonable to expect that the amount of memory
decoherence behaves similar to the rate. Comparing Figs. 7
and 9 reveals that indeed for both the rate and the memory
decoherence, both setups perform comparably well for small
qlink, N = 5 and qBSM = 1 (and small 1 − pmem). For the rate,
increasing N is in favor of Protocol 2. Similarly, the amount
of memory decoherence seems to scale more favorably with
N for Protocol 2 than for Protocol 1, although the difference is
not as pronounced as for the rate. The effect of qBSM, however,
is reversed between the rate and memory decoherence. While
the amount of memory decoherence suffered in Protocol 1 is
unaffected by decreasing qBSM, it does affect the performance
of Protocol 2. The reason for this, is that while Protocol 1 is
reset upon a failed BSM, the same is not true for Protocol 2.
This makes Protocol 2 more resilient to failing BSMs in terms
of rate, but less so in terms of fidelity.

Finally, we observe what happens to both the rate and the
memory decoherence if qlink is increased beyond the qlink � 1
regime we have studied so far. It is seen in Fig. 10 that the
similarity in performance for N = 5 and qBSM = 1 observed
for small values of qlink disappears for larger values; here, Pro-
tocol 1 outperforms Protocol 2 with respect to both metrics.
We note that for qlink = 1, the rate of Protocol 1 becomes
one, as it takes exactly one round to distribute all N Bell
states. On the other hand, the rate of Protocol 2 becomes
approximately one half, as it takes one round to distribute N
Bell states, and then another round to distribute the remaining
N − 2 Bell states. This also explains the difference in fidelity
for large values of qlink. Note that Protocol 2 had the advantage
of using quantum connections more efficiently for small qlink

because an excess number of Bell states can be distributed
during one protocol execution to be used during the next.
However, this advantage largely disappears for large values
of qlink. When all Bell states required to create a GHZ state
are generated in quick succession, there is not much “spare
time” during which these excess Bell states can be generated.
We remark that for qlink ∼ 1, the classical-communication
time tcl could have a large effect on both the rate and the
amount of memory decoherence. We have assumed it to be
zero because for qlink � 1, the classical communication time
becomes negligible compared to the time required to distribute
a Bell state successfully. This might or might not be true for
larger values of qlink. Therefore we cannot draw definitive
conclusions about the relative performance between the two
protocols for large values of qlink from Fig. 10.

V. PHYSICAL IMPLEMENTATION

In this section, we discuss different ways factory
nodes capable of creating GHZ states could be physically

FIG. 9. Sensitivity of the fidelity of Protocols 1 (“Factory”) and 2
(“2-switch”) to the memory depolarizing parameter pmem, the num-
ber of end nodes N , and the BSM success probability qBSM, when
the only source of noise is memory decoherence (plink = pBSM =
pGHZ = 1). When the parameters are not varied over, their values are
pmem = 1 − 10−4, qlink = 0.01, N = 5, and qBSM = 1. We see that
when both qlink and 1 − pmem are small, the fidelities are approxi-
mately equal for qBSM = 1 and N = 5. When qBSM is decreased, this
is in favor of Protocol 1. However, if N is increased, this is slightly
in favor of Protocol 2. Note that the lines in the top (and to lesser
degree, the bottom) figure can be hard to distinguish because of their
overlap.

realized. First, we discuss how they could be implemented us-
ing trapped ions in Sec. V A, and then we discuss in Sec. V B
how they could be implemented using nitrogen-vacancy cen-
ters in diamond.

A. Trapped ions

The first physical implementation we discuss is based on
trapped ions [82]. In an ion trap, charged atoms are suspended
in an electromagnetic field. The energy levels of the ions can
be used to define qubits, and these qubits can be manipulated

012609-12



ANALYSIS OF MULTIPARTITE ENTANGLEMENT … PHYSICAL REVIEW A 107, 012609 (2023)

FIG. 10. Sensitivity of both the rate and fidelity of Protocols 1
(“Factory”) and 2 (“2-switch”) to the success probability of Bell-
state distribution qlink, when the only source of noise is memory
decoherence (plink = pBSM = pGHZ = 1). The other parameters are
set to pmem = 1 − 10−2, N = 5 and qBSM = 1. We see that while
both protocols have similar performance for qlink � 1, Protocol 1
wins out both in terms of rate and fidelity for qlink ∼ 1. The rate is
dimensionless as the round time �t has been set to 1.

by driving them with laser pulses. Trapped ions have prop-
erties that would make them suitable to implement a factory
node, such as long coherence times [83–85], high-fidelity state
preparation and readout [86–88], and a good optical interface
[7,89–94] that has allowed for the generation of entanglement
with remote nodes [64,65,95].

One quantum gate that can be executed on trapped ions
is the Mølmer-Sørensen (MS) gate [96,97]. This gate affects
all qubits in the trap, and can be used to map maximally
entangled GHZ-like states to computational-basis states. In
combination with single-qubit Z-basis measurements, the MS
gate can therefore be used to execute a GHZ-basis measure-
ment on all qubits. We note that throughout this paper we
have assumed the factory node creates a GHZ state locally,
and then executes BSMs between qubits of the GHZ state and
qubits that are entangled to qubits at the end nodes. However,
the same result is acquired (i.e., the creation of a GHZ state
shared between the end nodes) when executing a GHZ-basis
measurement on the qubits that are entangled to the end nodes,
given that appropriate Pauli corrections are performed at the
end nodes based on the outcome of the measurement.

We note that an additional challenge when using trapped
ions to realize a factory node is that N different ionic qubits
in the same device need to participate in simultaneous Bell-
state distribution with end nodes. One potential method to

allow for a good photonic interface with individual ions is
to use shuttling techniques [98–104]. This way, ions could
be physically moved to separate cavities, where they can be
made to emit entangled photons suitable for Bell-state dis-
tribution. After ions have been successfully entangled, they
can be shuttled to an interaction region where the GHZ-basis
measurement is executed. This setup is illustrated in Fig. 11.
Potentially, different ion species could be used for generating
and storing entanglement, such that for each task the species
can be selected with the most favorable properties [105,106].

B. Nitrogen-vacancy centers

The second physical implementation of factory nodes we
discuss is based on nitrogen-vacancy (NV) centers in diamond
[8,61–63,107–109]. An NV center provides an electronic
communication qubit that can be used as optical interface,
and is surrounded by carbon-13 nuclear spins that can be
used as memory qubits. NV centers were used to perform the
first loophole-free Bell test [108], have been used to demon-
strate entanglement distillation between remote nodes [63],
and have recently been used to construct the first three-node
quantum network [8].

A downside to NV centers is that they only provide a single
communication qubit. Although entanglement can in principle
be stored in N memory qubits, N Bell states cannot be dis-
tributed simultaneously, which is a prerequisite for Protocol
1. If the time required to perform a single attempt at Bell-state
distribution with a remote node, �t , is much larger than the
time it takes to emit an entangled photon and transfer a state
to a carbon atom, temporal multiplexing could potentially be
used to perform N entangling attempts during a single round
[110]. After Bell states have been established with all N end
nodes, a GHZ-basis measurement can be executed within the
NV center [111].

If temporal multiplexing is not feasible, however, a factory
node could be realized from N separate NV centers. Each NV
center can then be dedicated to creating and storing Bell states
with a single end node. When all Bell states are in place, a
GHZ state needs to be distributed between the N NV centers,
after which deterministic BSMs can be executed. We here
discern two methods of generating this GHZ state. The first is
to interfere and measure entangled photons emitted by all N
NV centers [31,52]. This is illustrated in Fig. 12(a). However,
the success probability of such schemes drops exponentially
with N , and thus many attempts may be needed to generate
a single GHZ state. Apart from having a negative influence
on the rate of GHZ-state distribution for large N , this can
also be expected to severely degrade the fidelity of the final
GHZ state, as the memory qubits undergo decoherence each
time the communication qubit is interfaced with [112]. An
alternative method that circumvents this exponential scaling,
is to add one more NV center to the factory node. After all Bell
states are in place, each of the N outward facing NV centers
can generate a Bell state with the extra NV center. Then, the
extra NV center can execute a GHZ-basis measurement on
the entangled qubits it has stored, thereby creating a GHZ
state between the N outward-facing NV centers. Because Bell
states can be generated with each outward-facing NV cen-
ter sequentially, the number of required attempts will scale
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FIG. 11. Implementation example of a factory node capable of
distributing GHZ states based on trapped ions. (a) Single ions in
cavities provide optical interfaces, allowing for Bell-state distribution
with all N = 3 end nodes. After all ions are entangled, they are
shuttled to an interaction region. (b) At the interaction region, a
GHZ measurement is executed using an MS gate and single-qubit
measurements, which has the effect of creating a GHZ state shared
by the end nodes.

FIG. 12. Implementation examples of factory nodes capable of
distributing GHZ states based on NV centers in diamond. Within the
factory node, N = 3 NV centers distribute and store entanglement
with the end nodes. When all these NV centers are entangled, a GHZ
state is distributed between them, after which each executes a BSM
to teleport the GHZ state to the end nodes. (a) The GHZ state can be
distributed between the NV centers by emitting entangled photons,
interfering these photons, and measuring them. (b) The GHZ state
can be distributed between the NV centers by first creating Bell states
between all N NV centers and one additional NV center. Then, a
GHZ measurement is executed at this NV center.

linearly with N . This can be thought of as a “factory within
a factory” approach, and is illustrated in Fig. 12(b). Using a
single NV center as a factory within a factory could be feasible
even when using a single NV center as the entire factory
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node is not. The reason for this is that Bell-state distribution
between NV centers located within the same node can happen
at smaller timescales than with remote end nodes.

VI. CONCLUSION

In this paper, we have studied the distribution of multipar-
tite entangled states in networks through local preparation of
the target state at a factory node, and subsequent quantum
teleportation of the state to a set of end nodes. We have
presented two main results. First, we have derived analytical
results for the rate and fidelity of GHZ-state distribution on
a symmetrical star-shaped network, with a factory node at the
center. Second, we have compared the rate and fidelity to what
is achievable on the same setup without a factory node, using
a 2-switch that is only capable of executing BSMs instead.

From the comparison, we found that the use of a factory
node provides more resilience to noise in Bell states that are
distributed between the central node and end nodes. Further-
more, when BSMs at the central node are not deterministic,
using a factory node provides better protection against mem-
ory decoherence. We note that two additional advantages of
using a factory node are that it only requires the end nodes
to store a single qubit, while using a 2-switch requires more
quantum capabilities of the end nodes, and that it can be
used to distribute any multipartite target state using the same
method, while the 2-switch protocol is specific to GHZ states.
However, the results are not all in favor of the factory node.
The 2-switch attains exponentially higher rates when BSMs
are probabilistic, is less sensitive to noise in BSMs, and both
the rate and (to lesser extent) the sensitivity to memory deco-
herence scale more favorably with the number of end nodes.
We note that no thorough search for an optimal protocol utiliz-
ing a 2-switch has been performed, and doing so could boost
performance even further. For example, it might be possible
to increase performance by incorporating cutoff times in the
protocol, that is, by discarding Bell states when they have
undergone too much memory decoherence [113–116]. Cutoff
times are expected to increase the fidelity, but at the cost of
having a smaller rate. However, it must be noted that we have
also not optimized the factory-node protocol. Also for this
protocol, e.g., cutoff times could be introduced. As discussed
in Sec. I, various protocols and network architectures that have
been proposed in earlier work make use of factory nodes.
We conclude that when hardware limitations are present, de-
pending on the nature and severity of those limitations, it
could be worthwhile to consider other types of central nodes
instead.

One of our motivations for studying the factory node is to
allow for assessment of proposed schemes involving factory
nodes in the presence of hardware limitations. We consider the
analytical results presented in this paper a first step towards
better assessment. However, we have made various assump-
tions that limit the scope of applicability. Here, we discuss
how some of these assumptions could be removed. First, all
the results in this paper assume the star-shaped network is
symmetric, meaning that noise parameters are the same for
each end node (same coherence time, same Bell-state fidelity,
and same quality of BSMs), and that attempts at Bell-state
distribution take the same amount of time and have the same

success probability for each end node. With respect to the
calculation of fidelity, the assumption of same noise parame-
ters can straightforwardly be removed within the framework
of the analysis presented in this paper. In Sec. III B, when
evaluating Eq. (23), an average should be taken over all possi-
ble orderings in which end nodes generate a Bell state with
the factory node. Because of the assumption of symmetry,
we were able to avoid performing such an average explicitly,
but in principle there is nothing preventing us from doing
so. Then, each of the terms in this average can be evaluated
using the Eqs. (D59) and (D66) [or Eqs. (25) and (27) in
case pmem is the same for each qubit in the network]. On
the other hand, it is a key assumption in the results of Ap-
pendix D that the success probability of Bell-state distribution
is the same for each connection. Removing this assumption,
therefore, would be less straightforward and could provide an
interesting subject for future research. The same holds for the
assumption that the attempt durations are the same for each
connection.

Second, all the results in this paper are specific to the
distribution of GHZ states. However, Protocol 1 could also be
used to distribute other states, as long as they can be prepared
locally and consist of exactly one qubit per end node. The
analytical results for the rate that are presented in Sec. III A
are applicable for the distribution of any such state, as the
time that each step takes in Protocol 1 does not depend on the
specific quantum state, nor does the success probability of the
teleportation procedure. For the analytical fidelity results that
are presented in Sec. III B, we note that the final distributed
state will be equal to the target state but with the individual
qubits depolarized with the parameters pi given by Eq. (17),
and the full state depolarized with a parameter that was called
pGHZ in the GHZ case [analogously to Eq. (19)]. The fidelity
of this state as a random variable is a weighted sum over
products of depolarizing parameters [analogously to Eqs. (22)
and (24)]. Here, the weights depend on the fidelity of the
state after specific sets of qubits undergo depolarizing errors.
The expected values of these products of depolarizing param-
eters can be evaluated using Eqs. (25) and (27). Therefore
the only ingredient missing to determine the lower bound or
leading-order expression for the fidelity in case of a different
target state, are the weights that appear in the fidelity. We
note that in case the target state is not invariant under qubit
permutations, the symmetry of the setup is broken. In that
case, an explicit average should be taken over the different
orders in which Bell states can be distributed, as discussed
above.

The leading-order expressions and lower bounds presented
in this paper are accurate when the success probability per
attempt at Bell-state distribution (qlink) is small, and when the
probability of losing a qubit to the environment when storing it
in memory during a single attempt (1 − pmem) is small. When
the first assumption holds, the second typically also holds;
otherwise, qubits need to be stored in memory during many
attempts as new states are generated, and if the probability
of losing the qubit is large already for a single attempt, then
the final distributed state will not be entangled. The parameter
regime of small qlink but large 1 − pmem is therefore not very
interesting to study. For example, for heralded entanglement
generation, the success probability per attempt is expected
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to be small because of photon (attenuation) losses. However,
there are also physical setups for which the assumption does
not hold, such as quantum-repeater chains making use of error
correction [56,117–123] or massive multiplexing [70,71,124],
for which the success probability is close to one. For such
setups, the approximations presented in this paper are not
applicable, although we have found that our leading-order
expression for the fidelity is remarkably accurate for large
values of qlink. Additionally, we note that setups for which the
quantum connections are near deterministic can be approxi-
mated by assuming they are fully deterministic. In this case,
the protocol becomes easy to analyze, as no probabilities need
to be accounted for.

Now, we discuss how the techniques presented in this
paper can be used to study the performance of quantum-
network protocols different from the one we have studied. An
entanglement switch is a central node that is able to gener-
ate Bell states shared with k end nodes, and executes local
GHZ-state measurements on groups of n entangled qubits.
As remarked in Sec. I, the factory-node setup studied in this
paper is equivalent to an entanglement switch with n = k.
A possible extension of the calculations in this paper is to
apply them also to entanglement switches for which n < k.
In Appendix E, we present a leading-order expression for the
maximum switching rate for any value of n when there is
a single qubit of buffer memory per end node. However, it
would be especially interesting to study the fidelity of states
produced by the entanglement switch, as there are almost no
known results about this. Such an extension of the fidelity
calculation, assuming a symmetric star-shaped network and
one qubit of buffer memory per end node, could be realized
by repeating the calculation in Sec. III B and replacing the
parameter N (the number of end nodes, equal to k) by n < N
in Eq. (23), but not replacing it in Eq. (25) [which is needed
to evaluate Eq. (23)]. Evaluating this expression and verifying
it (against a Monte Carlo simulation) is beyond the scope of
this paper.

Another possible extension of the work done in this paper,
is the approximation of the rate and fidelity of Bell states dis-
tributed by specific types of quantum-repeater chains. In the
factory-node setup, there are N Bell states that are distributed
according to geometric distributions. Entangled states that are
established need to be stored in memory until all states are
distributed, after which they are transformed into some target
state through BSMs. If any of the BSMs fails, the protocol
is restarted. The target state is a GHZ state. Now consider
a quantum-repeater chain consisting of N elementary links,
where entanglement swapping (i.e., BSMs) is only executed
after entangled states have been distributed on all links. If any
of the BSMs fail, all entanglement is discarded and Bell-state
distribution starts anew. This is then exactly the same scenario
as for the factory node, only the target state is not a GHZ
state but a bipartite state. For the rate of such a repeater chain,
analytical results similar to ours already exist [37,76,77].

The fidelity of Bell states distributed by such a repeater
protocol can however also be analyzed using the techniques
presented in this paper. The expression for the state’s fidelity
in terms of different depolarizing parameters [Eq. (23) for the
factory node] will look different (simpler, as all depolarizing
noise can be “moved” to a single qubit), but the same type

of expected values will need to be evaluated, allowing for the
direct use of Eqs. (25) and (27) to obtain a leading-order ex-
pression and a lower bound respectively. Examples of repeater
protocols where swapping is only performed after all links are
present are schemes that use error correction to protect against
operational errors in the repeater nodes [125], such as the
ones studied for NV centers in Ref. [126]. In Ref. [126], it is
remarked that accounting for depolarizing noise in individual
memories is no easy task, and the authors instead assume each
qubit decoheres an amount of time equal to the average wait-
ing time. In contrast, our techniques, although approximate,
do account for the depolarizing noise in each individual qubit.
A similar approach to Ref. [126] is taken in Ref. [77], where
the case of all swaps occurring only in the end is considered to
calculate analytical bounds on the decoherence suffered when
swaps are performed earlier. This approximation provides a
lower bound on the fidelity by Jensen’s inequality. An inter-
esting direction for further study is to compare the tightness
of Jensen’s inequality to the lower bound presented in this
paper.

The data presented in this paper has been made available in
Ref. [127]. Scripts that generate all the plots presented in this
paper can also be found here.

All the code used to evaluate the analytical results pre-
sented in this paper, and to perform NETSQUID simulations of
Protocols 1 and 2, has been made available in Ref. [79].
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APPENDIX A: VERIFICATION OF ANALYTICAL
EXPRESSIONS FOR RATE AND FIDELITY

In this Appendix, we verify the analytical results for the
rate and fidelity of Protocol 1, as presented in Sec. III, against
Monte Carlo simulations of the protocol. These simulations
have been performed using the quantum-network simula-
tor NETSQUID [38] and user-contributed NETSQUID snippets
[80,81]. The simulation code can be found in the public repos-
itory [79]. Just like in Sec. IV, we use �t = 1 to make the
results independent of specific timescales, each data point is
the result of 10 000 simulated executions of the protocol, and
error bars represent the standard deviation of the mean. Often,
the error bars are smaller than the marker size, making them
hard to see.

There are three parameters that can influence the rate of
GHZ-state distribution. These are the success probability of
Bell-state distribution qlink, the number of end nodes N and
the BSM success probability qBSM. First, we examine the in-
fluence of qlink on the accuracy of the leading-order expression
for the rate [Eq. (14)]. On the left in Fig. 13, we verify that
the difference between the leading-order expression and its
simulated value becomes negligible for qlink � 1. For larger
values of qlink it is much larger, with a maximum deviation
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FIG. 13. Comparison between simulation results and analytical expressions for the performance of Protocol 1 for different values of qlink.
On the left, the simulated rate is compared to the leading-order expression in Eq. (14). On the right, the simulated fidelity is compared
to the leading-order expression and lower bound from Sec. III B. The parameters are N = 5, qBSM = 0.95, pBSM = plink = 1 − 10−2 and
pmem = 1 − 10−4. GHZ states are locally prepared with a fidelity of 0.9, which corresponds to pGHZ ≈ 0.872. We see that there is close
agreement between analytical results for small values of qlink. As qlink is increased up to a value of one, deviations in the rate grow up to a
factor of ∼2 while the leading-order estimate for the fidelity remains accurate. The lower bound for the fidelity is tight for approximately
qlink � 0.05 (which is hard to see in this figure) but not for larger values, eventually even dropping below the fidelity of the maximally mixed
state. The rate is dimensionless as the round time �t has been set to 1. Note that the lines showing analytical results and simulation results can
sometimes be hard to distinguish because of their overlap.

of a factor ∼2 for qlink = 1. While not shown here, we have
checked that the leading-order expression is accurate for small
values of qlink for the number of end nodes 3 � N � 8 (larger
values become computationally demanding to simulate). The
corresponding data can be found in our data repository [127].
Finally, we note that our treatment of the effect of qBSM on
the rate in Sec. III is exact. Therefore we do not explicitly
investigate the influence of this parameter on the accuracy of
the leading-order result here. However, we do note that the
leading-order result is accurate for at least one nontrivial value
of qBSM, as the parameter was set to 0.95 for Fig. 13.

On the right in Fig. 13, we do the same but for the fi-
delity, but apart from the leading-order expression [obtained
from combining Eq. (23) with Eq. (25)], we also include
the lower bound [obtained from combining Eq. (23) with
Eq. (27)]. Again we see close agreement for the leading-order
expression for small values of qlink. Remarkably, it remains
highly accurate even for qlink ∼ 1. The lower bound does not
attain the same level of agreement. While it is tight for very
small values of qlink, the lower bound on the fidelity starts
decreasing at qlink ≈ 0.015, even though the fidelity itself is a
monotonically increasing function. Consequently, the bound
is very loose already for qlink � 0.015.

On the left in Fig. 14, the fidelity is considered as a function
of pmem, for a small value of qlink (0.01). Both the leading-
order expression and lower bound remain remarkably close as
1 − pmem grows, up to the point where the fidelity becomes
close to that of a maximally-mixed state. This seems to sug-
gest that as long as qlink is small, the analytical expressions are
accurate for all values of pmem that allow for the generation of
useful entanglement. We note that the other noise parameters,
pGHZ, pBSM, and plink, have a much simpler effect on the
fidelity as their effect does not depend on the times at which

entanglement is distributed between the factory node and the
different end nodes. This has allowed our treatment of these
parameters to be exact and therefore verification plots where
these parameters are varied are not required. We note though
that in Fig. 13 the accuracy of the analytical expressions is
verified for nontrivial values of these parameters.

Finally, on the right in Fig. 14, we consider the fidelity as
a function of the number of end nodes N . We observe that the
leading-order expression is accurate in the range 3 � N � 8,
while the lower bound deviates already for small values of N .
The lower bound becomes increasingly loose as N increases.
As it is computationally demanding to simulate large quantum
states, we have not investigated the accuracy of the leading-
order expression or lower bound beyond N = 8.

APPENDIX B: DERIVING THE DENSITY MATRIX
CREATED BY Protocol 1

In this Appendix, we formally derive the density matrix
ρ that is shared after executing Protocol 1. To this end, we
first define three relevant Hilbert spaces. Let HA be the space
spanned by the N qubits used by the factory node to create
GHZ states locally. Let HB be the space spanned by the N
qubits used by the factory node to store Bell states shared
with end nodes. Finally, let HC be the space spanned by the
N qubits at the N different end nodes. Then, Protocol 1 does
the following. First, a state σA ⊗ τBC is prepared, where σ is
a noisy N-qubit GHZ state, and where τ is a noisy entangled
state between 2N qubits. Specifically, it contains depolariz-
ing noise due to noise in the distribution of Bell states and
storage of those Bell states in noisy memory. Secondly, noisy
BSMs are executed between the qubits of HA and HB. The
measurement outcomes are sent to the end nodes, where Pauli
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FIG. 14. Comparison between simulation result and the analytical leading-order expression and lower bound from Sec. III B for the fidelity
of Protocol 1. The parameters, when they are not varied over, are qlink = 0.01, N = 5, qBSM = 1, pmem = 1 − 10−4, and pBSM = plink = pGHZ =
1. On the left, we see that when qlink is sufficiently small, the lower bound is tight and the leading-order expression remains accurate as 1 − pmem

becomes large, even as the fidelity becomes close to that of a maximally mixed state. On the right, we see that while the lower bound is never
very tight, the leading-order expression remains accurate up to at least N = 8. Note that the lines showing the leading-order result, lower bound
and the simulation result can be hard to distinguish because of their overlap.

corrections are performed in accordance with the measure-
ment outcomes. The final state on HC shared between the end
nodes is ρC .

The four Bell states are defined by

|φi j〉 = (1 ⊗ X iZ j )|φ00〉 = ±(X iZ j ⊗ 1)|φ00〉. (B1)

for i, j = 0, 1. As is apparent from this equation, the Bell
states have the special property that it does not matter (up
to a global sign) on which of the two qubits the Pauli op-
erator X iZ j acts. This means that Pauli operators in the
system can be “moved” through Bell states: (P ⊗ 1)|φi j〉 =
±(1 ⊗ P)|φi j〉 for any Pauli operator P. We combine this with
the fact that the single-qubit depolarizing channel is a Pauli
channel. That is, its Kraus operators are Pauli operators. The
consequence is that also single-qubit depolarizing noise can
be moved through Bell states. We can make use of this in the
following way.

(1) When a BSM is executed between a pair of qubits (one
in HA, one in HB), we use the measurement operators (which
are projectors onto the Bell states) to move all the single-qubit
depolarizing noise from HA to HB.

(2) Now, because before the measurement every qubit in
HB is (up to single-qubit depolarizing noise) in the state |φ00〉
with a qubit in HC , we move all single-qubit depolarizing
noise and the operator X iZ j in the definition of each measure-
ment operator from HB to HC .

At HC the operators X iZ j from the measurement operators
cancel exactly against the Pauli corrections that are applied
at Step 5 of Protocol 1, which are chosen to match the
measurement outcome. Therefore all measurement operators
effectively become the same projector on |φ00〉, and each BSM
can therefore be modelled as a projection of two qubits on the
state |φ00〉. Additionally, as the probability of a measurement
outcome occuring is determined by the corresponding mea-
surement operator and all outcomes effectively have the same
measurement opertor, each of the four outcomes must occur

with equal probability 1/4. This means that the normalization
factor in the post-measurement state is given by 4. We define
the maximally entangled state |ω〉 as the tensor product of N
copies of |φ00〉, i.e.,

|ω〉 ≡ |φ00〉⊗N = 1

2N/2

∑
i∈{0,1}⊗2N

|i〉 ⊗ |i〉. (B2)

Then, we can write the post-measurement state on HC (and
thus the final state produced by the protocol) as

ρC = 22N 〈ω|ABσA ⊗ τBC |ω〉AB. (B3)

Furthermore, the effect of moving all the single-qubit
depolarizing channels to the system HC results in the pre-
measurement states σ and τ to effectively become

σ = pGHZ|GHZ〉〈GHZ| + 1

2N
(1 − pGHZ)1, (B4)

τBC = EC (|ω〉〈ω|BC ), (B5)

where E is a quantum channel applying single-qubit depo-
larizing noise to N different qubits. This quantum channel
accounts for the noisy BSMs, the noisy distributed Bell states,
and noise due to the storage of Bell states in memory. As can
be seen, the noise in the GHZ state prepared within the factory
is the only source of noise that is not contained in the channel
E . Instead, this source of noise is contained by the expression
for σ .

Now, we notice that the state τ is exactly the Choi state
[128,129] of the quantum channel E . Additionally, Eq. (B3) is
exactly the expression for the effect of a quantum channel in
terms of its Choi state [130]. Therefore we can immediately
conclude that

ρ = E (σ ). (B6)
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Using the fact that the maximally-mixed component of σ will
remain maximally mixed by the effect of E , we can write

ρ = pGHZE (|GHZ〉〈GHZ|) + 1 − pGHZ

2N
1. (B7)

The final remaining step towards determining ρ is thus evalu-
ating the quantum channel E .

Because depolarizing channels have the property

DHA,p1 ◦ DHA,p2 = DHA,p1 p2 , (B8)

all the depolarizing noise that has been moved to the qubits
of HC can be combined into a single depolarizing channel per
qubit, giving

E (|GHZ〉〈GHZ|)
= DH1,p1 ◦ DH2,p2 ◦ · · · ◦ DHN ,pN (|GHZ〉〈GHZ|). (B9)

Here, ◦ indicates the composition (i.e., subsequent applica-
tion) of the channels and Hi denotes the Hilbert space of
the qubit at the ith end node. The combined depolarizing
parameter pi accounts for noise due to one BSM, one noisy
distributed Bell state and memory decoherence at both the
factory node and the end node itself, and is given by Eq. (17).
Each depolarizing channel DHi,pi gives one term proportional
to pi where nothing happens to the Hi subspace, and one term
proportional to 1 − pi where Hi is traced out of the GHZ state
and then put into the state 1i/2. Thus evaluating Eq. (B9)
comes down to accounting for all different combinations of
terms. Tracing out one qubit from a GHZ state results in

Tri(|GHZ〉〈GHZ|)1,2,...,k = 1
2P1,2,...,i−1,i+1,...,k, (B10)

where P is the classically correlated, unnormalized state de-
fined in Eq. (20). Tracing out a qubit from P yields

TriP1,2,...,k = P1,2,...,i−1,i+1,...,k, (B11)

unless k = 1, in which case

Tr1P1 = Tr111 = 2. (B12)

Now, we define the set N = {1, 2, . . . , N} as the set of all
qubit indices. Working out the combinatorics, we find

ρ = 1 − pGHZ

2N
1N

+ pGHZ

[∏
i∈N

pi(|GHZ〉〈GHZ|)N +
∏
i∈N

1 − pi

2
1N

+ 1

2

∑
U⊂N

1<|U |<N

⎛
⎝∏

i∈U

1 − pi

2

∏
j∈N \U

pj

⎞
⎠1U ⊗ PN \U

]
.

(B13)

Note that due to the factors appearing when taking traces in
Eqs. (B10), (B11), and (B12), the terms where more than 0
but less than N of the qubits are traced out effectively have an
“extra” factor of 1/2.

APPENDIX C: COEFFICIENTS OF FIDELITY FUNCTION

In this Appendix, we derive the coefficients in the expres-
sion for the fidelity of GHZ states distributed by Protocol 1.

That is, we show that Eq. (22) can be rewritten into the form
of Eq. (23), with the coefficients A|U | given by Eq. (24).

First, we collect products of pi’s such that we may write

∑
U⊆N

2δ|U |,0+δ|U |,N −1

〈∏
i∈U

1 − pi

2

∏
j∈N \U

pj

〉
=
∑

U⊆N
BU

〈∏
i∈U

pi

〉

(C1)
for some constants BU . To find these constants, we start by
expanding

∏
i∈W

1 − pi

2
=
(

1

2

)|W | ∑
V ⊆W

(−1)|V |∏
i∈V

pi, (C2)

giving

∑
W ⊆N

2δ|W |,0+δ|W |,N −1

〈∏
i∈W

1 − pi

2

∏
j∈N \W

pj

〉

=
∑

W ⊆N
2δ|W |,0+δ|W |,N −1−|W | ∑

V ⊆W

(−1)|V |
〈 ∏

i∈V ∪(N \W )

pi

〉
.

(C3)

We now equate Eqs. (C1) and (C3). Each is the expected value
of a polynomial in the independent random variables pi. They
are equal if the coefficients of all terms in the polynomial are
equal. Therefore we determine BU by collecting all parts of
the sum in Eq. (C3) that are proportional to 〈∏i∈U pi〉 and
thus contribute to the same term. Writing as a shorthand W =
N \ W , this gives

BU =
∑

W ⊆N
2δ|W |,0+δ|W |,N −1−|W | ∑

V ⊆W

(−1)|V |δV ∪W ,U , (C4)

where we are slightly abusing notation by using the Kronecker
delta for two sets. It is defined by

δU,V =
{

1 for U = V,

0 otherwise,
(C5)

where U and V are sets. The delta function ensures that we
are adding together exactly those coefficients of (C4) that
contribute to the right term of the polynomial.

We note that the equation V ∪ W = U implies that W ⊆ U .
Therefore the Kronecker delta will always be zero when this
condition does not hold, allowing us to refine the summation
limit and write

BU =
∑
W

W ⊆U

2δ|W |,0+δ|W |,N −1−|W | ∑
V ⊆W

(−1)|V |δV ∪W ,U . (C6)

The Kronecker delta now limits the sum to values of V and W
where V ∪ W = U holds. Because V ⊆ W for all terms in the
sum, it always holds that V ∩ W = ∅, i.e., there is no overlap
between the two sets. Therefore the equation V ∪ W = U
implies that V = U \ W . Additionally, because W ⊆ U for
all terms in the sum, the equation V = U \ W implies that
V ∪ W = U . It follows that the two equations are equivalent
given the conditions imposed on V and W by the summation
limits, and we can safely rewrite the Kronecker delta function
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to obtain

BU =
∑
W

W ⊆U

2δ|W |,0+δ|W |,N −1−|W | ∑
V ⊆W

(−1)|V |δV,U\W . (C7)

Since U \ W contains only elements not in W , and since W
contains all elements in N that are not in W , it follows that
U \ W ⊆ W . If this were not always the case, it could be the
case for some W that the sum over V ⊆ W contains no terms
for which the delta function is nonzero. But since it is the case,
for every W there is exactly one value of V , namely V = U \
W , for which the delta function has a nonzero value. For this
value, |V | = |U | − |W |, and therefore the equation becomes

BU =
∑
W

W ⊆U

2δ|W |,0+δ|W |,N −1−|W |(−1)|U |−|W |. (C8)

To further resolve the equation, we note that when the
cardinality of W is equal to |W | = i, there are exactly |U |
choose i different ways W can be chosen from U . Since only
the cardinalities of W and W (with |W | = N − i) appear in the
sums, this allows us to write

BU =
|U |∑
i=0

(|U |
i

)
2δN−i,0+δN−i,N −1−N+i(−1)|U |−i

=
|U |∑
i=0

(|U |
i

)
2δi,N +δi,0−1−N+i(−1)|U |−i. (C9)

Now, we make a change of variable, i → |U | − i. Con-
veniently, the binomial coefficient is invariant under this
transformation, giving

BU =
|U |∑
i=0

(|U |
i

)
2δ|U |−i,N +δ|U |−i,0−1−N+|U |−i(−1)i

=
(

1

2

)N+1−|U | |U |∑
i=0

(|U |
i

)
2δ|U |,N δi,0+δi,|U |

(−1

2

)i

. (C10)

By the binomial theorem,

|U |∑
i=0

(|U |
i

)(−1

2

)i

=
(

1 − 1

2

)|U |
=
(

1

2

)|U |
. (C11)

By adding the contributions from when the delta functions are
nonzero separately on top of that, we find

BU =
(

1

2

)N+1−|U |{(1

2

)|U |
+ δ|U |,N +

(−1

2

)|U |}
, (C12)

which can be rewritten as (using the fact that N − |U | = 0
whenever the remaining delta function is nonzero)

BU = ( 1
2

)N+1
(1 + (−1)|U |) + 1

2δ|U |,N . (C13)

Noticing furthermore that the value of BU only depends on the
cardinality of the set U , we write

B|U | =
{

1
2N + 1

2δ|U |,N if |U | is even,
1
2δ|U |,N if |U | is odd.

(C14)

Now, we can derive the coefficients A|U | in Eq. (23). To this
end, we substitute Eq. (17) into Eq. (C1) to find

∑
U⊆N

2δ|U |,0+δ|U |,N −1

〈∏
i∈U

1 − pi

2

∏
j∈N \U

pj

〉

=
∑

U⊆N
B|U |
(
plink p2

BSM

)|U |
〈∏

i∈U

(
p2

mem

)�ni

〉

=
∑

U⊆N
A|U |

〈∏
i∈U

(
p2

mem

)�ni

〉
, (C15)

where A|U | is exactly as defined in Eq. (24). Therefore Eq. (23)
indeed follows from Eq. (22).

APPENDIX D: EXPECTED VALUES FOR
MEMORY DECOHERENCE

In this Appendix, we derive both a leading-order expres-
sion and a lower bound for the effect of memory decoherence
on the fidelity of GHZ states produced using Protocol 1. These
results allow us to write down a leading-order expression for
the fidelity of states produced using this protocol [Eq. (25)]
and a lower bound [(27)]. To this end, we first derive more
general results for the case where the decoherence rate is
different for each quantum memory.

1. Indices

Trying to establish a Bell state happens according to dis-
crete rounds, with the probability of succeeding during each
round being qlink for all end nodes. When all Bell states are
in place, a GHZ state is generated locally and then teleported
by the factory node towards the end nodes after which, in case
all BSMs are successful, the protocol terminates. While the
BSM success probability influences the rate with which GHZ
states can be distributed (see Sec. III A), it will not influence
the fidelity, since all states are discarded whenever a BSM
fails and the protocols starts again from the beginning. There-
fore, without loss of generality, we will henceforth assume
BSMs are deterministic. In that case, each execution of the
protocol is uniquely defined by which end node established
a Bell state during which attempt. This can be described by
assigning indices i ∈ N to the different end nodes (where
N = {1, . . . , N} as before), and denoting the round during
which end node i established a Bell state by ni.

For any given realization of the protocol, an ordering can
be imposed on the indices in correspondence with the order
in which the different Bell states were distributed. We denote
the ordered index corresponding to end node i by di, and they
have the property

ni � n j if di > d j . (D1)

for i, j = 1, 2, . . . , N . That means that if d5 = 1, end node
with label 5 was the first end node to share a Bell state with
the factory node, while if d1 = N , end node with label 1 was
the last to do so.

What we want to calculate, are expected values including
only the waiting times of a specific subset of the end nodes.
We denote this subset V ⊆ N , with |V | ≡ M, and define the
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indices v1, v2, . . . , vM as the ordered elements of the subset
V . That is, V = {v1, v2, . . . , vM} and

dvi+1 > dvi (D2)

for i = 1, 2, . . . , M − 1. To simplify our notation, we now
introduce the symbols

ci ≡ dvi , mi ≡ nvi . (D3)

We note that Eqs. (D1) and (D2) together imply that

mi+1 � mi (D4)

for i = 1, 2, . . . , M − 1.
An example of the values these different indices can take,

let us consider the case N = 4. For a specific realization of

the protocol, it might be that the end node with index 2 shared
a Bell state with the factory node first during n2 = 3, then 3
during n3 = 5, then 1 at n1 = 10 and finally 4 at n4 = 17. In
that case, d2 = 1, d3 = 2, d1 = 3, and d4 = 4. Now, if we take
V = {1, 3}, then v1 = 3 and v2 = 1. This gives, c1 = d3 = 2
and c2 = d1 = 3, which correctly satisfies c2 > c1. Further-
more, m1 = n3 = 5 and m2 = n1 = 10.

2. Probability building blocks

At the start of Protocol 1, there are N quantum connections
simultaneously distributing Bell states between the factory
node and end nodes 1, 2, . . . , N . Each of these will follow a
geometric distribution. That is,

Pr
(

Bell state i is successfully distributed during round n
)

= qlink(1 − qlink)n−1, (D5)

for i = 1, 2, . . . , N , and n = 1, 2, 3, . . .

Now, we introduce some probabilities based on this that will be useful later on:

Pi/N (n) ≡ Pr(during round n, the ith Bell state is distributed, given that there were zero before round 1,

and distribution takes place on N quantum connections), (D6)

P′
i/N (n) ≡ Pr(after round n, exactly i Bell states are distributed, given that there were zero before round 1,

and distribution takes place on N quantum connections;

the ith Bell state was established during round n). (D7)

Note that the difference between Pi/N (n) and P′
i/N (n) is that the first also includes the probability for the case that, during round

n, more Bell states are simultaneously established than was required to reach i. The first of these two is a properly normalized
probability distribution, and has the random variable ni/N associated to it, representing the number of rounds needed to distribute
i Bell states using N quantum connections. A special case is the variable n1/N , as it is a geometrically distributed random variable.
The reason for this is that the probability that the first Bell state is distributed during round n, is equal to the probability that all
quantum connections failed up until round n, and that not all quantum connections fail during round n. That is,

P1/N (n) = [1 − (1 − qlink)N ](1 − qlink)N (n−1), (D8)

which is geometric with 1/〈n1/N 〉 = 1 − (1 − qlink)N .
Furthermore, we define

P j
i/N (n) ≡ Pr(after round n, exactly i Bell states are distributed, given that there were zero before round 1,

and distribution takes place on N quantum connections;

j of those i Bell states were distributed during round n). (D9)

Here, j � i � N , and j � 1. This allows us to be more specific about the number of success events during the last round. Since
for P′

i/N (n) the number of success events at round n can be any number larger than zero (and, of course, smaller or equal to i),
we can write down the relation

P′
i/N (n) =

i∑
l=1

Pl
i/N (n). (D10)

Similar, since Pi/N (n) is the same as P′
i/N (n) but also includes to possibility that “too many” successes occurred during round n,

bringing the number of entangled states above i, we can write

Pi/N (n) =
N−i∑
k=0

i∑
l=1

Pk+l
(i+k)/N (n) = P′

i/N (n) +
N−i∑
k=1

i∑
l=1

Pk+l
(i+k)/N (n). (D11)

Note however that both equations only hold for i > 0.
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It is possible to derive a recursive relation for P j
i/N (n). We can express the probability as

P j
i/N (n) =

(
N − (i − j)

j

)
Pr(during round n, out of N − (i − j) quantum connections

trying to establish a Bell state, exactly j succeed)

× Pr(after round n − 1, there were i − j Bell states). (D12)

The first probability is simply q j
link(1 − qlink)N−i. The second probability depends on what i − j is. If it is zero, it is simply the

probability that there have been no success events up to and including round n − 1, i.e., (1 − qlink)N (n−1). If i − j �= 0, we must
distinguish between the different cases in which the final Bell state is established during different rounds. This gives

Pr(after round n − 1, there were i − j Bell states)

=
n−1∑
n′=1

P′
(i− j)/N (n′)

× Pr(none out of N − (i − j) active quantum connections distribute a Bell state after round n′ up to round n − 1)

=
n−1∑
n′=1

P′
(i− j)/N (n′)(1 − qlink)[N−(i− j)][(n−1)−n′]. (D13)

Now, we note that the definition of P′
i/N (n) is somewhat ambiguous for i = 0 and n = 0. Therefore we here define it explicitly

for these values, in such a way that we can extend the above relation to the cases j = i and n = 1. The definition is as follows:

P′
0/N (n) ≡ δn,0. (D14)

This allows us to extend the above sum to include n′ = 0, which gives exactly what we need for j = i and vanishes anyway for
j < i, i.e.,

P j
i/N (n) =

(
N − i + j

j

) n−1∑
n′=0

q j
link(1 − qlink)(n−n′ )(N−i+ j)− jP′

(i− j)/N (n′). (D15)

We can rewrite this equation into a form that makes it easier to deal with later on. Using Eq. (D8), we can write

P j
i/N (n) =

(
N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j

n−1∑
n′=0

P1/(N−i+ j)(n − n′)P′
(i− j)/N (n′). (D16)

Furthermore, to turn this into a true recursion relation, we also fill in Eq. (D10) to find

P j
i/N (n) =

(
N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j

n−1∑
n′=0

P1/(N−i+ j)(n − n′)
i∑

l=1

Pl
i/N (n). (D17)

However, we must be aware of the fact that this equation only
covers the i > 0 cases. If i = j = 0, there are no Bell states
distributed at all, and thus we can also not split up the success
events as we did in our arguing above. Analogues to P′

0/N (n) =
δn,0, we define P0

0/N (n) = δn,0. Furthermore, while P j
i/N (n) is

technically undefined for j = 0 and i > 0, we define it to be
zero for later convenience. Note that therefore P0

i/N (n) for i >

0 is not equal to the probability that there are i Bell states after
round n, of which there where 0 distributed during round n,
since this would be a nonzero quantity.

Finally, we will abuse notation to write

∞∑
n=0

nP j
i/N (n) = 〈n j

i/N 〉, (D18)

even though P j
i/N (n) is not a normalized probability distribu-

tion and thus n j
i/N is not a well-defined random variable.

3. Probability distribution of links

Now, we introduce the probability distribution

P(m1 = m′
1, m2 = m′

2, · · · , mM = m′
M ), (D19)

which is the probability that, if Protocol 1 is executed once,
and labels are defined and ordered as described above, that mi

has the value m′
i for each i = 1, 2, . . . , M. Below, we will use

this probability distribution to write down expected values of
the type we need to account for memory decoherence. First,
we will investigate what the probability distribution looks like.

Then, what is the probability that Bell state ci is distributed
at round mi? Consider the fact that Bell state ci−1 was dis-
tributed at round mi−1. During this round, many Bell states
could have been distributed simultaneously, as multiple quan-
tum connections are attempting to distribute them in parallel.
However, assume for the moment that only Bell state ci−1 was
distributed at round mi−1. In that case, the probability that ci

succeeds during round mi is equal to the probability that ci −
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ci−1 Bell states are distributed using N − ci−1 parallel quan-
tum connections in mi − mi−1 rounds, which is the probability
P(ci−ci−1 )/(N−ci−1 )(mi − mi−1) defined above. Now assume that
there were in fact multiple successes during round mi−1.
Specifically, let it be such that there were so many successes
that after round mi−1, the number of distributed Bell states is
ci−1 + ki−1. That is, ki−1 is the “overshoot” during round mi−1.
Then, we can distinguish two different cases. In the first case,
ki−1 < ci − ci−1, and Bell state number ci is not yet distributed
after round mi−1. We can then repeat the logic above: the
probability of distributing Bell state ci during round mi is
P(ci−ci−1−ki−1 )/(N−ci−1−ki−1 )(mi − mi−1). However, in the second
case, ki−1 � ci − ci−1; the overshoot is so large that Bell state
ci was already distributed during round mi−1, and the proba-
bility can be written as the Kronecker delta function δmi,mi−1 .

Using this logic, the probability distribution can be com-
pletely characterized using P j

i/N (n)-type probabilities that
were defined above. For each ci, we can put a Heaviside step
function θ (ci − ci−1 − ki−1 − 1) to account for the case where
the overshoot was small enough to ensure mi �= mi−1, and
θ (ci−1 + ki − 1 − ci ) when they are the same. The Heaviside
step function is defined as

θ (x) =
{

0 if x < 0,

1 if x � 0.
(D20)

There are just two additional aspects we need to consider.
First of all, the number of successes during round mi−1 is not
necessarily equal to ki−1; ki−1 is just the overshoot. It could,
e.g., be the case that ci−1 = 6 and ki−1 = 3. That means that
after mi−1, the number of distributed Bell states is 9. However,
it says nothing about the number of Bell states before that
round. It could, e.g., be 4, in which case there were 5 successes
during round mi−1. We denote the number of “additional”
successes that did not go into the overshoot by li−1. Thus the
number of successes during round mi−1 is li−1 + ki−1. In the
example, li−1 = 2. Secondly, we need to consider the fact that
if ki−1 is large enough that mi = mi−1, then the overshoot ki

must be equal to ki−1 − (ci − ci−1), which can be accounted
for using a Kronecker delta. Combining all this into a single
equation, we find

Pr(m1 = m′
1, m2 = m′

2, · · · , mM = m′
M )

=
M∏

i=1

N−ci∑
ki=0

⎡
⎣θ (ci − ci−1 − ki−1 − 1)

×
ci−ci−1−ki−1∑

li=1

Pki+li
(ci+ki−ci−1−ki−1 )/(N−ci−1−ki−1 )(m

′
i − m′

i−1)

+ θ (ci−1 + ki−1 − ci )δki,ci−1+ki−1−ciδm′
i,m

′
i−1

⎤
⎦

=
M∏

i=1

⎡
⎣N−ci∑

ki=0

ci−ci−1−ki−1∑
li=−ki

(θ (li − 1) + δki,ci−1+ki−1−ci )

× Pki+li
(ci+ki−ci−1−ki−1 )/(N−ci−1−ki−1 )(m

′
i − m′

i−1)

⎤
⎦, (D21)

where we set m′
0 ≡ c0 ≡ k0 ≡ 0 by definition to allow for the

more compact form of the equation.

4. Expected value

In order to calculate the expected values for the amount
of decoherence in quantum memory, what we need is a prob-
ability distribution not for at what time each Bell state was
distributed, but for how long each Bell state had to sit in
memory before Protocol 1 terminated. Luckily, the second can
be easily obtained from the first. First, we define n f to be the
round during which the final Bell state is distributed. Then,
we define �mi = n f − mi as the number of rounds Bell state
vi waits in memory until all Bell states are distributed. The
probability distribution we are then interested in is

Pr(�m1 = �m′
1,�m2 = �m′

2, . . . ,�mM = �m′
M ), (D22)

which can be written as

Pr(�m1 = �m′
1,�m2 = �m′

2, . . . ,�mM = �m′
M )

=
∞∑

n′
f =1

M∏
i=1

⎛
⎝ ∞∑

m′
i=1

δn′
f −m′

i,�m′
i

⎞
⎠

× Pr(m1 = m′
1, m2 = m′

2, . . . , mM = m′
M, n f = n′

f ).
(D23)

The latter probability distribution is the one from
Eq. (D21), except for the additional condition n f = n′

f . How-
ever, this condition can be easily incorporated by extending
the set V of end nodes under consideration slightly, such that
we include vM+1 which corresponds to the last Bell state that
is distributed. That is,

cM+1 = N, (D24)

and mN+1 = n f . In that case, we can directly use Eq. (D21) to
write down

Pr(�m1 = �m′
1,�m2 = �m′

2, . . . ,�mM = �m′
M )

=
∞∑

m′
M+1=1

M∏
i=1

⎛
⎝ ∞∑

m′
i=1

δn′
f −m′

i,�m′
i

⎞
⎠Pr(m1 = m′

1, m2 = m′
2, . . . , mM = m′

M, mM+1 = m′
M+1)

=
∞∑

m′
M+1=1

M∏
i=1

⎛
⎝ ∞∑

m′
i=1

δm′
M+1−m′

i,�m′
i

⎞
⎠M+1∏

i=1

⎡
⎣N−ci∑

ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ (li − 1) + δki,ci−1+ki−1−ci

)
Pki+li

(ci+ki−ci−1−ki−1 )/(N−ci−1−ki−1 )(m
′
i − m′

i−1)

⎤
⎦.

(D25)
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First, we resolve the Kronecker delta functions. If �m′
i = m′

M+1 − m′
i, then m′

i − m′
i−1 = �mi−1 − �mi. Therefore, if we define

�m′
M+1 ≡ 0 and write �m′

0 = m′
M+1, we find

Pr(�m1 = �m′
1,�m2 = �m′

2, . . . ,�mM = �m′
M )

=
∞∑

�m′
0=0

M+1∏
i=1

⎡
⎣N−ci∑

ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ (li − 1) + δki,ci−1+ki−1−ci

)
Pki+li

(ci+ki−ci−1−ki−1 )/(N−ci−1−ki−1 )(�m′
i−1 − �m′

i )

⎤
⎦. (D26)

Now, we will use these results to calculate the expected value

G(r1, r2, . . . , rM ) ≡
〈

M∏
i=1

(1 − ri )
�mi

〉
=

M∏
i=1

⎡
⎣ ∞∑

�m′
i=0

(1 − ri )
�m′

i

⎤
⎦Pr(�m1 = �m′

1,�m2 = �m′
2, . . . ,�mM = �m′

M ). (D27)

Here, the ri are some numbers between zero and one. The fidelity of GHZ states created by Protocol 1 is expressed as a sum over
such expected values in Eq. (23). Therefore, if we are able to evaluate Eq. (D27), we are able to evaluate the fidelity using the
substitution ri = 1 − p2

mem for all i (i.e., ri becomes the probability that a quantum state is lost in memory per round of Bell-state
distribution). We make two remarks about the expected value G. First, an evaluation of G is a more general result than what we
need to calculate the fidelity, as here we allow each ri to take a different value. As discussed in Sec. VI, this makes such a result
suitable to study asymmetric quantum networks. Second, in the definition of G, a product over quantities of the form 1 − ri

appears. We could just as well make the redefinition ri → 1 − ri. This would make the definition of G more compact, and would
lead to the perhaps more natural mapping ri = p2

mem in order to calculate the fidelity. However, we are ultimately interested in
the regime 1 − p2

mem � 1, where the probability of losing a quantum state when storing it in memory for a single round is small.
This translates here to ri � 1. Therefore, if we want to calculate the fidelity to leading order in 1 − p2

mem, we need to evaluate G
to leading order in the variables ri. This is easier to do than working to leading order in 1 − ri.

First of all, we substitute Eq. (D26) into Eq. (D27). By defining r0 ≡ 0, we can conveniently write the result as

G(r1, r2, . . . , rM ) =
∞∑

�m′
0,�m′

1,...,�m′
M=0

M+1∏
i=1

[
N−mi∑
ki=0

mi−mi−1−ki−1∑
li=−ki

(θ (li − 1) + δki,mi−1+ki−1−mi )(1 − ri−1)�ni−1

× Pki+li
(mi+ki−mi−1−ki−1 )/(N−mi−1−ki−1 )(�m′

i−1 − �m′
i )

]
. (D28)

To evaluate it, we can make use of the fact that probability P j
i/N (n) is only nonzero for n � 0, and that the sum only contains

terms for which �m′
i � 0. Thus, for some number 0 < a < 1,

∞∑
�m′

i−1=0

a�m′
i−1 P j

i/N (�m′
i−1 − �m′

i ) =
∞∑

�m′
i−1=�m′

i

a�m′
i−1 P j

i/N (�m′
i−1 − �m′

i ) =
∞∑

n=0

an+�m′
i P j

i/N (n) = 〈an j
i/N 〉a�m′

i . (D29)

This shows that the summation over �m′
i cannot be resolved independently from the summation over �m′

i−1. However, the
summation over �m′

i−1 can be safely performed before the summation over �m′
i, as shown above. Thus our strategy is to sum

over the �m′
i’s in the order of their index (i.e., �m′

0 first, �m′
M last). For �m′

0, we get

〈
(1 − r0)n

k1+l1
m1+k1−m0−k0/(N−m0−k0 )

〉
(1 − r0)�m′

1 . (D30)

Before performing the sum over �m′
1, we must remember to also include the (1 − r0)�m′

1 that came out of the sum over �m′
0

and thus we get

〈
[(1 − r0)(1 − r1)]n

k2+l2
m2+k2−m1−k1/(N−m1−k1 )

〉
[(1 − r0)(1 − r1)]�m′

2 . (D31)

Then, for the sum over �m′
3, we should not forget to add the [(1 − r0)(1 − r1)]�m′

2 to the (1 − r2)�m′
2 already present. And so

on. The result is

G(r1, r2, . . . , rM ) =
M+1∏
i=1

[
N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ (li − 1) + δki,ci−1+ki−1−ci

)〈( i−1∏
j=0

(1 − r j )

)n
ki+li
(ci+ki−ci−1−ki−1 )/(N−ci−1−ki−1 )

〉]

=
M+1∏
i=1

[
N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ (li − 1) + δki,ci−1+ki−1−ci

)〈(
1 − r̄i−1

)nki+li
(ci+ki−ci−1−ki−1 )/(N−ci−1−ki−1 )

〉]
, (D32)
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where we defined

r̄i = 1 −
i∏

j=0

(1 − r j ). (D33)

The next step is to calculate the expected values of the form encountered in the above equation. That is, we need to calculate

〈
(1 − r)n j

i/N
〉 = ∞∑

n=0

P j
i/N (n)(1 − r)n. (D34)

We can use equation (D17) to write down the recursive relation

〈
(1 − r)n j

i/N
〉 = (N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j

∞∑
n=0

n−1∑
n′=0

(1 − r)nP1/(N−i+ j)(n − n′)
i− j∑
l=0

Pl
(i− j)/N (n′)

=
(

N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j

i− j∑
l=0

∞∑
�n=1

∞∑
n′=0

(1 − r)n′+�nP1/(N−i+ j)(�n)Pl
(i− j)/N (n′)

=
(

N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j
〈(1 − r)n1/(N−i+ j)〉

i− j∑
l=0

〈
(1 − r)nl

(i− j)/N
〉
. (D35)

Since n1/N is geometric with 1/〈n1/N 〉 = 1 − (1 − qlink)N , and since

〈ax〉 = aq/(1 − a[1 − q]) (D36)

for any geometric variable x with 1/〈x〉 = q and 0 < a < 1, we can write

〈
(1 − r)n j

i/N
〉 = (N − i + j

j

)
q j

link(1 − qlink)N−i(1 − r)

1 − (1 − r)(1 − qlink)N−i+ j

i− j∑
l=0

〈
(1 − r)nl

(i− j)/N
〉
. (D37)

for i > 0.

5. Recursive relation

We will now proceed in the limit qlink, r � 1, since this is the regime that we are mostly interested in, and since this allows
for some convenient approximations. Throwing out higher-order terms in both r and qlink, we get

〈
(1 − r)n j

i/N
〉 ≈ (N − i + j

j

)
q j

link

r + (N − i + j)qlink

i− j∑
l=0

〈
(1 − r)nl

(i− j)/N
〉
. (D38)

Now, we will argue that to leading order in qlink and r, we only need to consider the term for which l = 1, making it much easier
to resolve the recurrence relation.

Let us for the moment represent 〈(1 − r)nb
a/N 〉 schematically by the tuple (a, b). Then, any (i, j) is expressed as a sum over

(i − j, l1)’s, for l1 = 0, 1, . . . , i − j. In turn each (i − j, l1) will be a sum over (i − j − l1, l2)’s for l2 = 0, 1, . . . , i − j − l1.
Therefore each term in the sum can be represented by a sequence

term in sum = ((a0, b0), (a1, b1), (a2, b2), · · · ) (D39)

following the rule ai+1 = ai − bi and the boundary condition a0 = i, b0 = j. Now, since

〈
(1 − r)n0

i /N
〉 = ∞∑

n=0

P0
i/N (n)(1 − r)n =

∞∑
n=0

δi,0δn,0(1 − r)n = δi,0, (D40)

tuples of the form (a, 0) can only occur in the sequence if a = 0. That means bi > 0 for each tuple where ai �= 0. As a result,
ai+1 � ai − 1 unless ai = 0. Furthermore, the (0, 0) term itself does not contain a reference other (a, b); it simply has the value
one. Thus the recurrence relation terminates when ai = 0 is reached.

As a consequence, we can rewrite the sequence above as

term in sum =
(

(i, j), (i − j, l1), (i − j − l1, l2), . . . , (i − j −
K−1∑
i=1

li, lK ), (0, 0)

)
, (D41)

for some li > 0 for i = 1, 2, . . . , K and for some value K . This sequence can be thought of as a “path” from (i, j) to (0, 0). Each
path is uniquely defined by a sequence (l1, l2, . . . , lK ), and each such sequence uniquely defines a path as long as it satisfies the
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AVIS, ROZPĘDEK, AND WEHNER PHYSICAL REVIEW A 107, 012609 (2023)

condition

K∑
i=1

li = i − j. (D42)

Note that as li � 1, this automatically imposes K � i − j. We denote the set of all sequences (l1, l2, . . . , lK ) that define a path
from (i, j) to (0, 0) by Li, j , which allows us to expand the recurrence relation as

〈
(1 − r)n j

i/N
〉 ≈ ∑

(l1,...,lK )∈Li, j

(
N − i + j

j

)
q j

link

r + (N − i + j)qlink

〈
(1 − r)n0

0/N
〉

×
K∏

k=1

(
N − (i − j −∑k−1

a=1 la) + lk
lk

)
qlk

link

r + (N − (i − j −∑k−1
a=1 la) + lk )qlink

=
∑

(l1,...,lK )∈Li, j

q j+∑K
k=1 lk

link

r + (N − i + j)qlink

K∏
k=1

1

r + (N − (i − j −∑k−1
a=1 la) + lk )qlink

×
(

N − i + j

j

) K∏
k=1

[(N − (i − j −∑k−1
a=1 la) + lk

lk

)

=
∑

(l1,...,lK )∈Li, j

qi
link

O((r + qlink)K )
× O
(
r0q0

link

)
. (D43)

For r, qlink � 1, this sum will be dominated by paths that have the largest K . As explained above, the maximum value that K
can take is i − j. Furthermore, there is exactly one path that realizes this value, which is defined by la = 1 for a = 1, 2, . . . , i − j.
When we keep only this path in the above equation, we find

〈
(1 − r)n j

i/N
〉 ≈ (N − i + j

j

)
qi

link

r + (N − i + j)qlink

×
i− j∏
k=1

(
N − (i − j − (k − 1)) + 1

1

)
1

r + (N − (i − j − (k − 1)) + 1)qlink

=
(

N − i + j

j

)
q j−1

link

N − i + j

N∏
k=N−i+ j

kqlink

r + kqlink
. (D44)

We must note that all of the above is only valid for i > 0, since the recursive relation (D37) is not applicable for i = 0. In order
to also incorporate equation (D40), we write

〈
(1 − r)n j

i/N
〉 ≈ (θ ( j − 1) + (r + Nqlink)δi,0)

(
N − i + j

j

)
q j−1

link

N − i + j

N∏
k=N−i+ j

kqlink

r + kqlink
. (D45)

How can we interpret the dominance of terms corresponding to the “longest path”? What it means is that realizations of
Protocol 1 for which multiple successes occur during the same round occur with suppressed probability, as shown by the fact
that we only include P j

i/N ’s for which j = 1. This can also be intuitively expected: if for each quantum connection the probability
of distributing a Bell state per round is very small (qlink � 1), there will be a large spread in the rounds during which the different
Bell states are distributed. It will then be very unlikely that two Bell states are distributed during the exact same round. However,
when r is large (close to 1), the quantity (1 − n)n will decrease very quickly with n. The average will then have much larger
weight for small n than for large n. However, these terms with small n are exactly those that are excluded by the large spread
implied by qlink � 1. In fact, if r = 1 − ε with ε � 1, the only linear term in the average is the one corresponding to n = 1,
which implies all Bell states being distributed collectively during the first round(P j

i/N with j = i). This explains why neglecting
simultaneous successes requires both qlink and r to be small.

Finally, before we move on, we are interested to know whether equation (D45) also holds for r = 0. This does not follow
from the above, because the use of equation (D36) required 0 < r < 1. For r = 0, Eq. (D34) yields

〈
(1 − r)n j

i/N
∣∣
r=0

〉 = ∞∑
n=0

P j
i/N (n). (D46)
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Using again equation (D17), we find

〈
(1 − r)n j

i/N
∣∣
r=0

〉 = (N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j

∞∑
n=0

n−1∑
n′=0

P1/(N−i+ j)(n − n′)P′
(i− j)/N (n′)

=
(

N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j

∞∑
�n=0

P1/(N−i+ j)(�n)
i− j∑
l=0

∞∑
n′=0

Pl
(i− j)/N (n′)

=
(

N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j

i− j∑
l=0

〈(1 − r)nl
(i− j)/N |r=0〉, (D47)

which is exactly recursive relation (D37) but with r = 0. Because〈
(1 − r)n0

i /N |r=0
〉 = δi,0, (D48)

the recursive relation expresses any (i, j) in terms of (0,0)’s, and these are expressed the same for both r = 0 and 0 < r < 1.
Because both the recursive relation and the final term (0, 0) can be written the same, we conclude that it does not matter whether
r is set to zero before or after resolving the recursion relation. Therefore

〈
(1 − r)n j

i /N
∣∣
r=0

〉 = 〈(1 − r)n j
i /N
∣∣
0<r<1

〉∣∣
r=0. (D49)

Thus Eq. (D45) is valid for 0 � r � 1. This means that we do not need to treat the r0 that we defined to be zero before any
differently from the other ri’s when calculating G((r1, r2, . . . , rM ), and our results are still valid if ri = 0 for some 0 < i < M.

6. Counting orders

Now, we can in principle substitute Eq. (D45) into Eq. (D32). However, if we limit ourselves to leading order in qlink and
the various ri variables [which we denote as all being of order O(r)], this allows us to disregard part of the summation. In this
section, we count orders to find that only li = 1 and ki = 0 terms contribute to G at leading order. This allows us to more easily
calculate G to leading order in the next section.

First of all, note that

r̄i ≡ 1 −
i∏

j=0

(1 − r j ) =
i∑

j=0

r j + O(r2). (D50)

Therefore each r̄i is of order O(r). Furthermore, from Eq. (D45), we see that

〈
(1 − r)n j

i/N
〉 = (θ ( j − 1) + δi,0O(r + qlink))O

(
qi

link

(r + qlink)i− j+1

)
. (D51)

Substituting this into Eq. (D32) yields

G(r1, r2, . . . , rM ) =
M+1∏
i=1

[
N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ (li − 1) + δki,ci−1+ki−1−ci

)

× (θ (ki + li − 1) + δci+ki−ci−1−ki−1,0O(r + qlink)
)
O
(

qci+ki−ci−1−ki−1

link

(r + qlink)ci−ci−1−ki−1−li+1

)]

=
M+1∏
i=1

[
N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ (li − 1) + δki,ci−1+ki−1−ciO(r + qlink)

)
O
(

qci+ki−ci−1−ki−1

link

(r + qlink)ci−ci−1−ki−1−li+1

)]
. (D52)

Here, we have used the fact that for every term in the sum, ki � 0, and thus θ (li − 1)θ (ki + li − 1) = θ (li − 1). Furthermore,
the delta functions are the same, and squaring it gives the same delta function again. Cross terms θ × δ vanish, because the only
term for which the delta function does not vanish has li = −ki � 0, making the step function vanish. Now, we make use of the
identity

N∏
i

⎛
⎝∑

xi

f (xi )

⎞
⎠ =

∑
x1

∑
x2

· · ·
∑
xN

f (x1) f (x2) · · · f (xN ) =
∏

i

⎛
⎝∑

xi

⎞
⎠∏

i

( f (xi)) (D53)
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to split the product in “three parts” and hence collect part of the order counting in a way that is very convenient, giving

G(r1, r2, . . . , rM ) =
M+1∏
i=1

[
N−ci∑
ki=0

]
M+1∏
i=1

[
O
((

qlink

r + qlink

)ci+ki−ci−1−ki−1
)]

×
M+1∏
i=1

⎡
⎣ci−ci−1−ki−1∑

li=−ki

(
θ (li − 1) + δki,ci−1+ki−1−ciO(r + qlink)

)
O
(
(r + qlink)li+ki−1)

⎤
⎦

=
M+1∏
i=1

⎡
⎣N−ci∑

ki=0

⎤
⎦O(( qlink

r + qlink

)∑M+1
i=1 (ci+ki−ci−1−ki−1 )))

×
M+1∏
i=1

ci−ci−1−ki−1∑
li=−ki

(
θ (li − 1) + δki,ci−1+ki−1−ciO(r + qlink)

)
O
(
(r + qlink)li+ki−1

)
. (D54)

This then allows us to make use of
M+1∑
i=1

(ci + ki − ci−1 − ki−1) = cM+1 + kM+1 − c0 − k0 = N, (D55)

since we manually defined m0 = k0 = 0 and mM+1 = N , and since the sum over kM+1 only runs over kM+1 = 0 (the last success
cannot “overshoot” as all Bell states are already in place). Thus this quantity is the same for every term and can safely be taken
out of the sum.

Now, working out the θ and δ parts separately, we get

G(r1, r2, . . . , rM ) = O
((

qlink

r + qlink

)N)M+1∏
i=1

⎡
⎣N−ci∑

ki=0

⎤
⎦M+1∏

i=1

⎡
⎣ci−ci−1−ki−1∑

li=1

O
(
(r + qlink)li+ki−1

)+ δki,ci−1+ki−1−ci

⎤
⎦. (D56)

The part where we sum over li now is clearly dominated by the term for which li is lowest, since a larger li means a larger order
in r + qlink. Since this is li = 1, we find

G(r1, r2, . . . , rM ) = O
((

qlink

r + qlink

)N)M+1∏
i=1

⎡
⎣N−ci∑

ki=0

⎤
⎦M+1∏

i=1

[
θ (ci − ci−1 − ki−1 − 1)O((r + qlink)ki ) + δki,ci−1+ki−1−ci

]
,

(D57)

where the step function is due to the summation over li being empty and hence zero for ci − ci−1 − ki−1 < 1. This quantity
will be dominated by terms which are products of δ’s, and of θ ’s with ki = 0, since these terms do not carry an additional
O(r + qlink). Now note that the Kronecker δ function δki,ci−1+ki−1−ci enforces ki−1 � ci − ci−1 > 0. This implies two things.
Firstly, it implies that any term that contains a θ (ci − ci−1 − ki−1 − 1) for i = j but a δki,ci−1+ki−1−ci for i = j + 1 will be of
higher order in r + qlink. Secondly, because k0 = 0 by definition, it implies that all nonzero terms of the sum must “start” with a
θ , i.e., include a θ (ci − ci−1 − ki−1 − 1) for i = 1. Together, these two implications mean any leading terms cannot contain a δ;
they only contain θ ’s. The only leading term with only θ ’s is the one for which all ki’s are 0. Combining this with what we found
for the li’s, we can conclude that the leading contribution to G has li = 1 and ki = 0 for i = 0, 1, 2, . . . , M + 1. This can again
be interpreted as neglecting the possibility that multiple Bell states are distributed simultaneously.

7. Calculating G

Now, we are ready to calculate G to leading order. Only keeping li = 1, ki = 0 in Eq. (D32) and then filling in Eq. (D45), we
find

G(r1, r2, . . . , rM ) ≈
M+1∏
i=1

〈
(1 − r̄i−1)n1

(ci−ci−1 )/(N−ci−1 )
〉

≈
M+1∏
i=1

[(
θ (1 − 1) + (r̄i−1 + Nqlink)δci−ci−1,0

)(N − ci + 1

1

)
1

N − ci + 1

N−ci−1∏
k=N−ci+1

kqlink

r̄i−1 + kqlink

]

=
M∏

i=1

ci+1∏
k=ci+1

(N + 1 − k)qlink

r̄i + (N + 1 − k)qlink
≈

M∏
i=1

ci+1∏
k=ci+1

(N + 1 − k)qlink∑i
j=1 r j + (N + 1 − k)qlink

. (D58)
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Here, we have used the fact that r0 ≡ 0 (and thus r̄1 = 0) to drop the lowest term in the product. This can also be rewritten as

G(r1, r2, . . . , rM ) ≈
N∏

k=1

(N + 1 − k)qlink∑
ci<k ri + (N + 1 − k)qlink

. (D59)

8. Lower bound

Apart from the leading-order approximation of the function G derived above, we can also derive a lower bound. At the core of
the approximation lies the fact that, to leading order in qlink and r, we are able to ignore all events for which multiple Bell states
are distributed during the same round. That function G obtained by ignoring these events is an average over a sub-normalized
probability distribution, and thus provides a lower bound on the real function. In turn, using a lower bound of the function G to
evaluate the fidelity [Eq. (23)] gives a lower bound on the real fidelity. Even so, the result Eq. (D59) is not necessarily a lower
bound on the function G. The reason for this is that, in order to work consistently at leading order, we have thrown out some
additional terms that are not linked to ignoring multiple simultaneous successes. Some of these terms would lower the function
G if they were kept, and thus Eq. (D59) is only a lower bound if the effect of throwing out these terms is smaller than the effect
of throwing out events corresponding to multiple simultaneous successes. We do not know if this is generally the case.

In this section, we derive a lower bound by repeating the above calculation without throwing out these additional terms. That
means that we are not working at leading order, but just deriving a lower bound by throwing out all contributions to G due to

multiple distributed Bell states during the same round. We start by lower-bounding the expected value 〈(1 − r)n j
i/N 〉. To this end,

we use the recursive relation Eq. (D37). Because the factor in front of the summation is a positive quantity, and because each
term of the sum is ultimately expressed in terms of 〈(1 − r)n0

0/N 〉 = 1 [see Eq. (D40)], we can conclude that〈
(1 − r)n j

i/N
〉
� 0. (D60)

Because of this, Eq. (D37) tells us

〈
(1 − r)n j

i/N
〉
�
(

N − i + j

j

)
q j

link(1 − qlink)N−i(1 − r)

1 − (1 − r)(1 − qlink)N−i+ j
〈(1 − r)n1

(i− j)/N 〉. (D61)

This inequality can be applied recursively until reaching

〈
(1 − r)n1

1/N
〉 = 1

N

qlink(1 − qlink)N−1(1 − r)

1 − (1 − r)(1 − qlink)N
. (D62)

This is exactly the “leading order path” discussed in Sec. D 5 and yields, in analog to Eq. (D44),

〈
(1 − r)n j

i/N
〉
�
(

N − i + j

j

)
q j

link(1 − qlink)N−i(1 − r)

1 − (1 − r)(1 − qlink)N−i+ j

×
i− j∏
k=1

(
N − i + j + k

1

)
qlink(1 − qlink)N−i+ j+k−1(1 − r)

1 − (1 − r)(1 − qlink)N−i+ j+k
. (D63)

We will now focus on the case j = 1, since this will ultimately be the only type of term occurring in the lower bound for G (after
all, j > 1 would correspond to distributing multiple Bell states during the same round). We then find

〈
(1 − r)n1

i/N
〉
�

i− j∏
k=0

(N − i + k + 1)
qlink(1 − qlink)N−i+k (1 − r)

1 − (1 − r)(1 − qlink)N−i+k+1
=

N∏
k=N−i+1

kqlink(1 − qlink)k−1(1 − r)

1 − (1 − r)(1 − qlink)k
. (D64)

Now, we can use Eq. (D64) in combination with Eq. (D32) to bound G. Because all terms in the sum of Eq. (D32) are positive,
we can write [analogously to Eq. (D58)]

G(r1, r2, . . . , rM ) �
M+1∏
i=1

〈
(1 − r̄i−1)n1

(ci−ci−1 )/(N−ci−1 )
〉
�

M+1∏
i=1

N−ci−1∏
k=N−ci+1

kqlink(1 − qlink)k−1(1 − r̄i−1)

1 − (1 − r̄i−1)(1 − qlink)k

=
M∏

i=0

ci+1∏
k=ci+1

(N + 1 − k)qlink(1 − qlink)N−k (1 − r̄i )

1 − (1 − r̄i)(1 − qlink)N+1−k
. (D65)

This can be rewritten as

G(r1, r2, . . . , rM ) �
M∏

k=1

(N + 1 − k)qlink(1 − qlink)N−k
∏

ci<k (1 − ri )

1 − (1 − qlink)N+1−k
∏

ci<k (1 − ri )
. (D66)
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APPENDIX E: EXPECTED VALUE OF DISTRIBUTION TIME

In this Appendix, we use the tools developed in Appendix D to prove the equation

〈ni/N 〉 ≈ 1

qlink

N∑
k=N+1−i

1

k
(E1)

is true up to leading order in qlink. Here, ni/N is the number of rounds required to distribute i Bell states over N quantum
connections. That is, it is the ith largest value out of {n1, n2, . . . , nN }, where we remind the reader that each n j is a geometrically
distributed random variable with mean 1

qlink
. Additionally, we provide the upper bound

〈ni/N 〉 �
N∑

k=N+1−i

1

1 − (1 − qlink)k
. (E2)

We note that it directly follows from Eq. (E1) that

〈nN/N 〉 ≡ 〈nall〉 ≡ 〈max{n1, n2, . . . , nN }〉 ≈ HN

qlink
, (E3)

where HN is the N th harmonic number, is valid up to leading order in qlink. This is a well-known result [37,76,77]. Additionally,
Eq. (E2) can be used to upper bound 〈nN/N 〉. However, the bound is less tight than the existing bound given in Eq. (15).

We now explain the intuition behind Eq. (E1). If k > 1 connections try to establish entanglement, the first success will occur
sooner than when only one connection is trying. For one connection, the time it takes is on average 1

qlink
(this is the expected

value of the geometric distribution). But when there are k connections trying, there is a “boost factor”; entanglement is generated
exactly k times faster, and therefore the time required is on average only 1

kqlink
. In the limit qlink → 0, it is very unlikely that

multiple Bell states are distributed during the same round, and therefore one can repeatedly use this argument to go from success
to success. The rest of this Appendix is dedicated to proving Eq. (E1), thereby making the intuitive argument exact.

1. Exact recursion relation

The random variable ni/N follows the probability distribution Pi/N defined in Eq. (D6). Key to deriving Eq. (E1), is to determine
the difference between 〈n(i+1)/N 〉 and 〈ni/N 〉, as it allows us to write a recursion relation. To this end, we first take the difference
between their probability distributions. Using Eq. (D11) yields

P(i+1)/N − Pi/N =
N−i−1∑

k=0

i+1∑
l=1

Pk+l
(k+i+1)/N −

N−i∑
k=0

i∑
l=1

Pk+l
(k+i)/N =

N−i∑
k=1

Pk
(k+i)/N −

i∑
l=1

Pl
i/N =

N−i∑
k=1

Pk
(k+i)/N − P′

i/N . (E4)

From linearity of the average, it then follows directly that

〈n(i+1)/N 〉 − 〈ni/N 〉 =
N−i∑
k=1

〈
nk

(k+1)/N

〉− 〈n′
i/N

〉
. (E5)

To evaluate Eq. (E5), we first give an expression for 〈nk
(k+1)/N 〉. We use Eq. (D17) to write

〈
n j

i/N

〉 = (N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j

∞∑
n=1

n−1∑
n′=0

nP1/(N−i+ j)(n − n′)P′
(i− j)/N (n′). (E6)

This can be calculated by making the change of variables n = n′ + �n and using the fact that P1/(N−i+ j)(n) is a normalized
probability distribution, giving

〈
n j

i/N

〉 = (N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j

∞∑
n′=0

∞∑
�n=1

(n′ + �n)P1/(N−i+ j)(�n)P′
(i− j)/N (n′)

=
(

N − i + j

j

)
q j

link(1 − qlink)N−i

1 − (1 − qlink)N−i+ j
(〈n1/(N−i+ j)〉T(i− j)/N + 〈n′

(i− j)/N 〉). (E7)

Here, we have defined

Ti/N ≡
∞∑

n=0

P′
i/N (n), (E8)
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which is the total probability mass of the subnormalized probability distribution P′
i/N (and therefore always smaller than one).

Then, resolving the summation in Eq. (E5) yields

N−i∑
k=1

〈
nk

(k+1)/N

〉 = (〈n1/(N−i)〉Ti/N + 〈n′
i/N 〉)

N−i∑
k=1

(
N − i

k

)
qk

link(1 − qlink)N−i−k

1 − (1 − qlink)N−i
. (E9)

To deal with the final summation, we use the binomial theorem to write

N−i∑
k=0

(
N − i

k

)
qk

link(1 − qlink)N−i−k = (qlink + (1 − qlink))N−i = 1. (E10)

Therefore

N−i∑
k=1

(
N − i

k

)
qk

link(1 − qlink)N−i−k = 1 − q0
link(1 − qlink)N−i−0 = 1 − (1 − qlink)N−i (E11)

(note that the lower limit of the summation is one here as opposed to zero). From this, we conclude conveniently that

N−i∑
k=1

(
N − i

k

)
qk

link(1 − qlink)N−i−k

1 − (1 − qlink)N−i
= 1. (E12)

This brings Eq. (E5) into the form

〈n(i+1)/N 〉 − 〈ni/N 〉 = 〈n1/(N−i)〉Ti/N . (E13)

This recursive relation can be written down in a closed form, as long as we leave the Ti/N explicit. We then find

〈ni/N 〉 = 〈n1/N 〉 +
i−1∑
k=1

Tk/N 〈n1/N−k〉. (E14)

It was remarked in Appendix D 2 that 〈n1/N 〉 is geometrically distributed with 1/〈n1/N 〉 = 1 − (1 − qlink)N . Therefore we can
also write this result at

〈ni/N 〉 = 1

1 − (1 − qlink)N
+

i−1∑
k=1

Tk/N

1 − (1 − qlink)N−k
. (E15)

2. Upper bound

Now, we use Eq. (E15) to derive an upper bound on 〈ni/N 〉. Because Ti/N is the total probability mass of a sub-normalized
probability function, we have Ti/N � 1. From this, it follows directly that Eq. (E2) is true.

3. Leading order

Finally, we use Eq. (E15) to show that Eq. (E1) is valid up to leading order in qlink. Because, to leading order,

1

1 − (1 − qlink)N
≈ 1

Nqlink
, (E16)

to leading order we can write Eq. (E15) as

〈ni/N 〉 ≈ 1

qlink

(
1

N
+

i−1∑
k=1

Tk/N

N − k

)
. (E17)

This exactly reduces to Eq. (E1) if we can show that Tk/N ≈ 1 to leading order in qlink.
To calculate Ti/N , we use yet another recursion relation. First, using Eq. (D10), we can write (for i � 1)

Ti/N =
i∑

l=1

∞∑
n=1

Pl
i/N (n). (E18)
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Then, using Eq. (D17), making once more the change in variables n → n′ + �n, and making use of the normalization of P1/N (n),

Ti/N =
i∑

l=1

(
N − i + l

l

)
ql

link(1 − qlink)N−i

1 − (1 − qlink)N−i+l

∞∑
n=1

∞∑
n′=0

P1/(N−i+l )(n − n′)P′
(i−l )/N (n′)

=
i∑

l=1

(
N − i + l

l

)
ql

link(1 − qlink)N−i

1 − (1 − qlink)N−i+l

∞∑
�n=1

P1/(N−i+l )(�n)
∞∑

n′=0

P′
(i−l )/N (n′)

=
i∑

l=1

(
N − i + l

l

)
ql

link(1 − qlink)N−i

1 − (1 − qlink)N−i+l
T(i−l )/N . (E19)

This recursion relation can be completely resolved if T0/N is known. From the definition of P′
0/N [Eq. (D14)], we have

T0/N =
∞∑

n=0

δn,0 = 1. (E20)

Now we will resolve the recursion relation to leading order in qlink. We note that

(1 − qlink)N−i

1 − (1 − qlink)N−i+l
= 1

(N − i + l )qlink
+ O
(
q0

link

)
, (E21)

and therefore

Ti/N = (1 + O(qlink))T(i−1)/N +
i∑

l=2

O(qlink)T(i−l )/N . (E22)

Thus

Ti/N ≈ T(i−1)/N (E23)

to leading order. This holds for every i � 1 until we hit T0/N = 1. Therefore

Ti/N ≈ 1 (E24)

up to leading order in qlink. This is exactly what we needed to show, and therefore we can conclude that Eq. (E1) is indeed valid
up to leading order in qlink.
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