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Abstract

This thesis investigates the prevalence of Pylint warnings in open-source Python
projects and evaluates the effectiveness of an Al-driven tool for automatically fixing
these warnings. The study also explores how developers perceive automated code
suggestions and seeks to streamline consent mechanisms for research-related code
changes. The primary research questions addressed are: (1) What is the prevalence
of Pylint warnings across open-source Python projects? (2) How effective is the Al
tool developed to fix Pylint warnings? (3) How do developers perceive the automated
suggestions and (4) how can the process of proposing research-related code changes
with developer consent be streamlined?

To address these questions, the research draws on literature related to static code
analysis, fault detection, and the increasing use of artificial intelligence (Al) in auto-
mated code repair. Previous studies highlight the challenges developers face in main-
taining consistent code quality and the role of Al in automating such tasks.

The research follows a mixed-method approach. Quantitatively, a dataset of 205
open-source Python projects was analyzed to identify and address common Pylint
warnings. An Al-driven tool was employed to attempt fixing these warnings, achiev-
ing a success rate of 88%. In 60 projects, pull requests were submitted to open source
maintainers to assess the effectiveness and reception of the tool. Qualitative feedback
from maintainers was collected and analyzed, leading to a shift in the contribution
strategy from pull requests to submitting issues first, as this was perceived as less in-
trusive and more manageable by developers.

The analysis revealed a high prevalence of Pylint warnings, particularly missing-
function-docstring and line-too-long, across projects of all sizes. The Al-driven tool
effectively fixed 88% of the warnings, resulting in 70% of the projects being fully
warning-free. However, developer responses to automated pull requests were mixed,
prompting the adoption of a more collaborative issue-first approach. These results
suggest that Al tools can significantly improve code quality, but challenges remain to
foster developer engagement and integrating such tools into established open source
workflows.



The study has certain limitations, mainly the focus on Python projects, which may
limit the generalizability of the findings to other languages or more complex projects.
Furthermore, developer consent and participation were limited, which affected the full
implementation of automated changes. Future research should focus on improving the
integration of Al tools into developer workflows and expanding the scope of automated
code fixes to more diverse and complex projects.
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Chapter 1

Introduction

This chapter provides an overview of the background, motivation, and objectives of the re-
search presented in this thesis. It begins by outlining the foundational aspects of Python
programming and the significance of coding standards and static analysis tools like Pylint.
The discussion extends to the application of artificial intelligence, particularly large lan-
guage models (LLMs), in automating code generation and repair.

The chapter then transitions to a detailed exploration of the research questions driving
this study. We investigate the prevalence of Pylint warnings in open source Python projects,
assess the effectiveness of an automated tool designed to address these warnings, and exam-
ine developers’ perceptions of such tools. This introduction sets the stage for understanding
the scope of our research and its relevance to the broader field of software development.

A brief reader’s guide is provided to navigate the structure of the thesis and understand
the key areas of focus.

1.1 Background

Python stands out as a highly favored programming language due to its rapid learning curve,
straightforward syntax, and broad applicability across diverse domains, making it an appeal-
ing choice for developers of all skill levels. [31}29]

In line with its widespread adoption, Python has a set of best-practices and coding con-
ventions, epitomized by Python Enhancement Proposal 8 (PEP 8). This comprehensive
style guide encompasses recommendations on formatting, naming conventions, and code
organization, among others. These standards serve as pillars for maintaining code quality
and readability within the Python community. However, adherence to these guidelines can
be challenging to enforce manually. [32]

Adherence to these practices can be facilitated with static analysis tools. One of these
tools is Pylint[27]], a Python-specific static analysis tool designed to detect and report code
inconsistencies, deviations from coding standards, and potential errors. Leveraging a so-
phisticated set of rules and heuristics, Pylint scrutinizes Python codebases, offering devel-
opers actionable insights to enhance code quality and maintainability. [13]
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1. INTRODUCTION

Despite the availability of established coding conventions and tools like Pylint, the open
source landscape of Python projects often showcases variations in adherence to these stan-
dards. Notable open source Python projects, such as Django, TensorFlow, and Flask, illus-
trate the diverse array of applications and utilities developed within the Python ecosystem.
However, it is not certain whether these projects consistently conform to prescribed cod-
ing standards, presenting an opportunity for investigation into the prevalence of code style
discrepancies and their impact on project quality. [25]]

In recent years, artificial intelligence (Al) has transitioned from a niche field of study
to a central force driving innovation across numerous sectors. Al’s capabilities have grown
exponentially, fueled by advancements in machine learning, data processing, and compu-
tational power. [21] Among the most groundbreaking developments in Al is the advent of
large language models (LLMs). These models, which are trained on vast amounts of text
data, have demonstrated remarkable proficiency in understanding and generating human
language. This has positioned LLMs as versatile tools capable of addressing a wide range
of tasks that were previously the domain of specialized algorithms. [[14} 16} 15} 37]

One of the most impactful applications of LLMs is in the realm of code generation and
repair. Modern tools like GitHub Copilot [, 134, 23] and ChatGPT[26, [10] have revolu-
tionized a variety of code-related tasks, including code completion, translation, and error
correction. By interpreting natural language inputs, these tools can generate entire code
snippets, suggest improvements, and even identify and fix bugs. This has not only stream-
lined the development process but also alleviated much of the routine burden on developers,
allowing them to focus on more complex and creative aspects of programming. [17,(33]]

1.2 Problem Statement

Although there are well-established best practices, coding conventions, and awareness of
common bugs in Python development, it remains unclear whether open source developers
consistently adhere to these standards. This gap in knowledge leads to our first research
question:

Q1: What is the prevalence of Pylint warnings in open source projects?

Understanding the prevalence of Pylint warnings is vital for pinpointing common code qual-
ity issues and their distribution across various project sizes and popularities. By identifying
common issues, developers can better prioritize which aspects of their codebase to improve,
ultimately enhancing the overall quality and maintainability of their projects. This analy-
sis could also highlight specific areas where existing tools and practices may need further
development or reinforcement.

To ensure that our findings are representative of the broader open source Python com-
munity, we employ stratified sampling. This approach allows us to capture a diverse set of
projects across different sizes and popularities, ensuring that our conclusions are not biased
toward any particular type of project. Additionally it will give us data on whether the code
quality differs between these selected strata.
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Identifying the frequency of Pylint warnings provides insights into the most common
code quality issues in open source projects. This information guides developers in prioritiz-
ing code quality improvements and ensures efficient allocation of resources. We hypothe-
size that larger and more popular open source projects will exhibit fewer violations per lines
of code due to higher development standards and more rigorous code reviews. Furthermore,
we anticipate that violations of coding conventions will be more common than those related
to potential bugs, as developers may prioritize functionality over strict adherence to style
guidelines.

Although static analysis tools like Pylint are widely used to identify issues in Python
codebases, there is a notable gap in tools that provide automated suggestions and fixes
specifically for Pylint warnings. Existing tools often focus on code linting or providing
generic suggestions, but few offer automated, context-aware fixes tailored to the specific
issues reported by Pylint. This limitation presents a significant opportunity for innovation.

To address this gap, we developed an automated tool designed specifically to target
Pylint warnings. Our tool leverages advanced machine learning techniques and natural
language processing to analyze Pylint reports and generate precise code fixes. By utilizing
a sophisticated large language model, our tool aims to automatically correct identified issues
while adhering to best practices and maintaining code functionality. This development is
intended to streamline the process of code maintenance and enhance overall code quality,
leading us to our second research question:

Q2: How effective is the developed automated tool at fixing Pylint warnings?

Answering this question is crucial for several reasons. First, evaluating the effective-
ness of our tool provides insights into its ability to address Pylint warnings accurately and
efficiently. This assessment will help determine whether the tool can reliably improve code
quality and reduce the manual effort required for code maintenance. Additionally, under-
standing the effectiveness of the tool can guide further refinements and enhancements, mak-
ing it a more valuable asset for developers.

The potential impact of answering this research question is significant. If the tool
demonstrates high effectiveness, it could become a key resource for developers, enhanc-
ing productivity and code quality across Python projects. Conversely, if the tool’s perfor-
mance is suboptimal, it will highlight areas for improvement, contributing to the ongoing
development of more advanced and reliable automated code repair solutions.

We hypothesize that our automated tool will show a decent level of effectiveness in
fixing Pylint warnings, particularly in addressing common issues related to code style and
potential errors. This expectation is based on the advanced capabilities of the underlying
language model and the targeted nature of the tool’s fixes. However, the true measure of
effectiveness will be determined through rigorous testing and analysis of the performance
of the tool in open source projects in the real world.

The introduction of automated tools in software development, especially those utilizing
artificial intelligence, has been met with mixed reactions. Although these tools promise in-
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creased efficiency and reduced manual effort, developers often exhibit skepticism regarding
their suggestions. This skepticism can stem from concerns about the accuracy, relevance,
and overall quality of the fixes provided by Al-driven solutions.

In the realm of Python development, where adherence to coding standards and best
practices is crucial, the perception of automated code fixers is particularly significant. Un-
derstanding how open source developers view the suggestions made by our tool is essential
for evaluating its practical utility and acceptance within the developer community. To ad-
dress this, we formulated our third research question:

Q3: How do open source developers perceive the suggestions made by the developed tool?

Answering this question will shed a light on whether developers find the tool’s sugges-
tions useful and relevant, or if they view them with skepticism or outright rejection. This
understanding will help us gauge the tool’s integration potential and its impact on developer
workflows. It will also provide valuable feedback on how to improve the functionality of
the tool and ensure that it meets the needs and expectations of its users.

The results from this inquiry could lead to more nuanced and developer-friendly ap-
proaches to automated code repair. By identifying the aspects of the tool that resonate with
developers and those that do not, we can refine its suggestions, enhance user trust, and
increase the likelihood of widespread adoption. Moreover, proactively addressing devel-
oper concerns can improve the overall effectiveness and usability of Al-driven tools in the
software development process.

We hypothesize that, while our tool will provide valuable suggestions for fixing Pylint
warnings, it may face some resistance or negative perception from developers. This skep-
ticism could be attributed to a broader trend where developers often harbor reservations
towards automated Al tools, questioning their reliability and relevance. Overcoming these
perceptions will require not only demonstrating the effectiveness of the tool but also engag-
ing with developers to address their concerns and incorporate their feedback into ongoing
improvements.

As we explore the perceptions of open source developers towards the suggestions made
by our automated tool, it’s crucial to recognize that the process of integrating automated
changes involves more than just technical and perceptual considerations. A key aspect of
this process is to ensure that the integration of these changes is done ethically, with the
proper consent of the project maintainers and contributors. This consideration often gets
overshadowed in automated tools and research initiatives, potentially leading to conflicts
and a lack of trust.

To address this concern, we need to understand how to effectively streamline the process
of proposing code changes and obtaining developer consent. Proper consent is not only a
matter of ethical practice but also essential for fostering a collaborative environment where
automated tools are seen as valuable contributors rather than disruptive forces. Ensuring
that maintainers are fully informed and able to give their explicit consent helps maintain the
integrity of the open source community and enhances the likelihood of positive interactions.

This leads us to our next research question:
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Q4: How can we streamline a way of proposing research-related code changes with
developer consent?

The results of this question can highlight the importance of ethical practices in re-
search, particularly when involving automated contributions to open source projects. A
well-structured consent mechanism ensures that changes are proposed transparently and re-
spectfully, preventing any imposition on the project’s established goals and standards. This
approach not only helps in building trust but also facilitates smoother collaboration between
researchers and the open source community.

By developing a streamlined consent process, we aim to enhance the acceptance rate of
automated code changes and create a more positive and collaborative relationship with de-
velopers. We hypothesize that such a process will reduce resistance and improve the overall
effectiveness of integrating automated fixes, setting a precedent for ethical and respectful
research practices in the future.

1.3 Thesis Structure

This thesis is organized into five chapters, each contributing to an exploration of the re-
search questions and findings. Chapter [2] reviews the related work, situating this research
within the broader context of existing studies and providing a foundation for understand-
ing the significance of the contributions. Chapter [3] details the methodology, outlining the
systematic approach employed to address the research questions, including the design of
experiments, data collection, and analysis methods. The results of these experiments are
presented in Chapter [] offering insights into the effectiveness and implications of the ap-
proaches used. Chapter [5|provides a critical discussion of these results, evaluating the ben-
efits and limitations of the methods and drawing conclusions based on the findings. This
chapter also outlines potential directions for future research, emphasizing areas where fur-
ther exploration could enhance understanding and application. Appendix [A] supplements
the findings by providing a comprehensive list of Pylint warnings referenced in the results,
offering additional clarity and context for the data presented.






Chapter 2

Related Work

This chapter reviews existing research relevant to our study, focusing on three main areas:
the prevalence of code style violations, advancements in automated code fixes, and ethical
considerations in automated contributions. We begin by examining the widespread occur-
rence of code style violations and their implications for software quality. Next, we explore
recent advancements in automated code repair, particularly the role of large language mod-
els in fixing code issues. Finally, we address the ethical and practical challenges associated
with integrating automated tools into development workflows. This overview sets the con-
text for our research and highlights the significance of our contributions.

2.1 Prevalence of Code Style Violations

Understanding code style violations is essential for assessing the quality and maintainability
of software across different programming environments. Research in this domain highlights
the widespread occurrence of these violations, their implications for code quality, and the
effectiveness of various tools in enforcing coding standards.

In collaborative online environments such as Stack Overflow (SO), where program-
mers frequently share and exchange code snippets, the adherence to coding standards is
often compromised. Studies reveal that code snippets shared on such platforms are highly
prone to style violations. For instance, an analysis of 407,097 Python code snippets from
Stack Overflow found that a remarkable 93.87% contained style violations, averaging 0.7
violations per statement [2]. Expanding this analysis to multiple programming languages,
another study found that over 90% of Python snippets, along with significant portions of
C/C++ and JavaScript snippets, exhibited similar issues [22]. These findings suggest that
the code shared online often falls short of best practices, potentially spreading suboptimal
coding habits within the programming community.

The impact of these style violations extends beyond online code-sharing platforms to
large-scale software projects. In a comprehensive study of 729 GitHub projects involv-
ing 17 different languages, Ray et al. [28] explored how programming language features
influence software quality. Their findings indicate that language design, such as static ver-
sus dynamic typing and strong versus weak typing, does have a significant effect on soft-
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ware quality. However, these effects are modest when compared to process factors like
project size and team dynamics. This underscores the complexity of maintaining code qual-
ity, where language-specific coding conventions interact with broader project management
practices.

Moreover, the challenge of enforcing coding standards becomes even more pronounced
in multi-language projects. Kochhar et al. [20] analyzed 628 GitHub projects that employed
multiple programming languages and found that the use of diverse languages within a single
project significantly increases defect proneness. Languages like C++, Objective-C, and
Java, when used together, were particularly prone to style violations, reflecting the difficulty
of maintaining consistent coding practices across different languages. This challenge is
further compounded when developers frequently switch between languages, as observed by
Horschig et al. [15]], who found that Java and C++ programmers writing Python code often
violated Python-specific conventions such as indentation and scoping. This highlights the
need for targeted tools and training to help developers maintain coding standards, especially
when they work with multiple languages.

To address these challenges, the integration of static analysis tools in Continuous Inte-
gration (CI) pipelines has become a common practice. Zampetti et al. [36] studied 20 Java
open source projects on GitHub that use Travis CI and found that static analysis tools are
primarily employed to enforce coding standards, with build breakages often related to these
issues. When violations are detected, they are typically resolved quickly and documented
thoroughly, indicating a proactive approach to maintaining code quality through consistent
style enforcement.

These studies collectively underscore the widespread prevalence of code style viola-
tions and the importance of automated tools in addressing them. They highlight that sig-
nificant proportions of code snippets, even in high-visibility platforms like Stack Overflow,
often exhibit style violations, reflecting a broader challenge in maintaining coding standards
across diverse programming environments. Additionally, research into static analysis tools
and their integration into continuous integration pipelines reveals that while these tools are
effective in identifying issues, their resolution remains a manual and often overlooked pro-
cess.

Our research responds to these insights by focusing on the frequency of Pylint warnings
in open source Python projects, demonstrating a clear need for tools that not only detect but
also address these warnings. Given the high incidence of code style violations documented
in prior studies, a tool that automatically fixes Pylint warnings offers a practical solution to
enhance code quality and maintainability. By automating the correction of these prevalent
warnings, our tool aims to significantly reduce the manual effort involved in code repair and
improve the overall adherence to coding standards in open source projects.

2.2 Advancements in Automated Code Fixes

The field of automated code repair has seen remarkable progress, driven by innovations in
machine learning, natural language processing, and static analysis. These advancements
have significantly enhanced the ability to identify and fix various types of code issues, from
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bugs and type errors to code style violations.

A major leap in automated code repair is represented by the development of large lan-
guage models (LLMs) tailored for complex semantic bugs. For instance, Berabi et al. in-
troduced techniques that optimize LLMs for addressing security vulnerabilities by focusing
their attention mechanisms on relevant parts of the code [3]. This approach has not only
improved the efficiency of LLMs in generating accurate fixes but also demonstrated the
potential of applying similar methodologies to a broader range of code issues. Similarly,
RepairCAT has shown the potential of LLMs to automatically fix bugs in Al-generated pro-
grams by understanding and suggesting context-aware repairs[[18]]. Furthermore, advance-
ments in using LLMs integrated with formal verification techniques have enabled tools to
generate more reliable fixes by validating patches for correctness, as demonstrated in recent
research[7]. These approaches illustrate the growing role of LLMs in not only detecting
but also accurately repairing complex code faults, expanding their utility beyond simple
syntactic fixes.

In addition, automated repair tools have improved their ability to handle specific types
of API misuses. Studies show that API-related bugs are successfully repaired through ad-
vanced APR tools, marking a shift in the focus of these tools from syntactic to semantic
repairs. These tools can detect patterns in API misuses and correct them without human
intervention[19]. Such capabilities are key to handling the complex interactions between
code and external libraries, further advancing the scope of automated program repair.

Another key advancement is the structured process used by modern Automated Program
Repair (APR) tools, which includes fault localization, patch generation, and patch valida-
tion. These tools automate the identification of fault locations and generate context-aware
patches that align with the intended functionality of the code. Moreover, the development
of platforms like StandUp4NPR has made it easier to compare different neural program re-
pair systems by standardizing the benchmarking and evaluation process across tools. This
allows for a more consistent and empirical comparison of different repair methods[38|, [16]].

In the realm of Python, specific automated repair tools have emerged to address language-
specific challenges. PyTER, developed by Oh et al., is designed to tackle type errors in
Python code through a combination of dynamic and static analysis [24]]. By identifying and
correcting type mismatches, PyTER exemplifies the potential of automated repair tools in
managing specific error types. Similarly, PyTy, another tool highlighted by Chow et al.,
focuses on fixing statically detectable type errors, reinforcing the trend of leveraging Al to
streamline code maintenance [9].

Furthermore, recent research has delved into lint-based warnings in Python, revealing
their prevalence across open source projects and the general preference among developers
for cleaner code [25]]. This study underscores the importance of addressing lint warnings to
enhance code quality and maintainability. It also demonstrates that even simple refactorings
can effectively resolve many of these warnings, highlighting the value of automated tools
in this context.

Building on these advancements, our research introduces a tool specifically designed to
address Pylint warnings in Python code. While previous works have focused on specific
bugs and type errors, our tool aims to fill a critical gap by providing LLM based automated
fixes for a broad spectrum of Pylint warnings. Given the high frequency of these warnings

9



2. RELATED WORK

and their impact on code quality, our tool represents a significant step forward in automating
the resolution of common code issues. By extending the capabilities of automated repair
tools to include lint-based warnings, our work contributes to the ongoing evolution of code
quality improvement tools and supports the broader goal of maintaining high standards in
open source Python projects.

2.3 Ethical and Practical Considerations in Automated
Contributions

As automated tools become increasingly integrated into software development workflows,
the interaction dynamics between these tools and human maintainers become a critical area
of study. Research has shown that pull requests (PRs) generated by bots often face lower
acceptance rates and longer response times compared to those created by humans [35)]. This
discrepancy can be attributed to the lack of social engagement capabilities in bots, which
are crucial in motivating maintainers to act promptly on PRs.

Our research acknowledges these challenges and seeks to improve the integration of
bot-generated fixes into open source projects. By focusing on Python-specific warnings and
enhancing the interaction process through ethical considerations and consent mechanisms,
we aim to address the limitations observed in previous studies. The inclusion of these ethical
considerations, in accordance with the Human Research Ethics Committee (HREC) guide-
lines of Delft University of Technology, ensures that our approach respects the autonomy
of maintainers and fosters a collaborative environment that is conducive to the acceptance
of automated contributions.

10



Chapter 3

Methodology

This section delineates the methodology employed in our study, which is structured around
four primary phases: dataset creation, automated linting analysis, application of automated
fixes, and evaluation of these fixes through pull requests. The methodology is designed
to provide a systematic, rigorous, and reproducible approach to addressing our research
questions, drawing from established best practices in software engineering research while
incorporating innovative techniques tailored to our study’s objectives.

Our approach integrates robust data collection methods, advanced analysis tools, and
ethical considerations to ensure comprehensive, reliable, and replicable results. By de-
tailing each phase of the methodology, we aim to provide transparency and enable future
researchers to reproduce our findings. The following subsections outline the specific pro-
cesses and techniques used in each phase, highlighting their relevance and application in
the context of our research.

3.1 Dataset Creation

To construct a representative dataset for our study, we developed a custom script to gather
open source Python projects from GitHub. This script employs a methodical approach that
combines random stratified sampling with activity checks to ensure a diverse and relevant
selection of projects.

The stratified sampling method involves dividing the project population into strata based
on key metrics, specifically stars and forks, using a logarithmic distribution. This approach
facilitates the inclusion of a wide range of projects, from small-scale to large-scale reposi-
tories, while mitigating bias toward highly engaged projects.

For each stratum, we maintain a corresponding CSV file containing the list of sampled
projects. CSV files were chosen for their readability, ease of alteration, and compatibility
with Python, allowing for streamlined data processing and future modifications. The use of
CSV ensures that the dataset can be easily reviewed and reproduced.

The table below summarizes the number of projects sampled per stratum:

11
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Stratum Forks Stars
11-100 20 20
101-1000 20 20
1001-10000 20 20
10001-100000 0 20
100001-1000000 0 9

Table 3.1: Number of Projects Sampled in Each Stratum for Forks and Stars

For both forks and stars, we set a maximum of 20 projects per stratum, which was
achieved except for the two cases where fork stratum 4 and 5 yielded no projects, and the
stars stratum 5 yielded only 9 projects. This cap was imposed due to GitHub API limits and
hardware constraints, ensuring a manageable and balanced dataset for the analysis.

To further ensure the relevance of the dataset, our script performs activity checks to
verify that the selected projects are actively maintained. We assess recent activity by con-
firming that projects have had pull requests merged within the past month. Additionally,
we check whether there has been issue activity in the past month. This ensures that the
dataset reflects currently maintained, active projects, which are more likely to respond to
pull requests and engage with issues during the subsequent phases of our research.

This methodology draws on established techniques for data sampling and collection
in software engineering research, with specific adaptations to suit the needs of our study.
The random stratified sampling is based on the method used in the paper Broken Windows:
Exploring the Applicability of a Controversial Theory on Code Quality[30], where they
employ stratified sampling to obtain a random representative sample of open source Java
and C repositories. By combining stratified sampling with activity checks, we aim to create
a balanced and representative dataset that enhances the reliability and applicability of our
subsequent analyses.

3.2 Project Setup

In this section, we outline the methodology for preparing and setting up Python projects
for Pylint analysis, ensuring that our approach is both efficient and systematic. The setup
process is designed to address common issues related to dependency management and en-
vironment isolation, which are crucial for accurate and reliable code analysis.

The first step involves creating a virtual environment for each project. This isolation is
critical as it prevents conflicts between project-specific dependencies and global packages.
By using virtual environments, we ensure that the analysis reflects the project’s true de-
pendencies without interference from other Python projects or system-wide packages. This
practice follows standard guidelines in software development, where isolated environments
are used to maintain consistency and avoid dependency-related issues [[12].

Following the establishment of the virtual environment, we focus on dependency man-
agement. We begin by scanning the project directory for standard dependency files such as
‘pyproject.toml‘ or ‘requirements.txt‘. These files specify the libraries and versions that the
project relies on, and their presence simplifies the setup process. If these files are found,

12
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we use ‘pip‘ to install the listed dependencies, ensuring that the environment mirrors the
project’s requirements accurately.

In cases where dependency files are missing, we utilize ‘pipreqs‘, a tool that generates a
‘requirements.txt’ file by analyzing the import statements in the project code. This approach
is inspired by best practices in dynamic dependency resolution [4]], allowing us to capture
all necessary libraries, including those not explicitly documented. This step ensures that our
analysis environment is comprehensive and accurately reflects the project’s needs.

Additionally, the lines of code (LOC) are calculated to serve as a baseline for subse-
quent metrics such as warning density. Only Python files that are external to the virtual
environment are considered in this calculation.

Each step of the process is documented in a CSV file, with fields capturing critical
project and setup information. The fields include: project (project ID), cloned (status on
whether the project has been cloned), setup (status of virtual environment setup), pylint
(status of Pylint report generation for subsequent analysis), fests (number of tests found and
how many are passed), size (lines of code), and metadata fields description and date.

By adhering to these practices, we mitigate common issues related to environment con-
figuration and dependency management, which can significantly impact the reliability of
code quality analysis.

3.3 Code Quality Analysis

With the project setup completed, we proceed to the code quality analysis phase using
Pylint, a widely adopted static code analysis tool for Python. This phase is essential for
generating insight into the quality of the code across various projects, identifying issues
related to code style, potential bugs, and overall maintainability.

The process begins by running Pylint within the prepared virtual environment. Pylint’s
static analysis capabilities allow us to produce detailed reports that highlight a range of
issues, from stylistic inconsistencies to potential errors. This comprehensive analysis pro-
vides valuable information on the code quality of each project, aligning with the objectives
of our research.

To effectively utilize Pylint’s findings, we converted the generated reports into a format
that aligns with our research requirements. This conversion process is crucial for integrating
the data with our analytical framework, particularly for answering questions related to the
prevalence of code quality issues and the effectiveness of automated fixes. By structuring
the reports to fit our analysis needs, we ensure that the subsequent evaluation steps are
coherent and focused.

This structured approach to code quality analysis not only enhances the reliability of
our findings but also ensures that our research is grounded in a thorough and methodical
examination of code quality. By leveraging Pylint’s capabilities in a systematic manner, we
aim to provide insightful and actionable results that contribute to the broader understanding
of code quality in open source Python projects.
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3.4 Warning Fixes with Anthropic’s Claude Al

Following the Pylint analysis, we address the identified warnings using Anthropic’s Claude
Al specifically the Claude 3 Haiku model. Claude 3 Haiku is a state-of-the-art large lan-
guage model (LLM) designed for advanced natural language processing (NLP) tasks, with
a focus on understanding and generating human-like text, including code snippets and tech-
nical fixes. Developed by Anthropic, a company dedicated to building safe and steerable
Al, Claude excels in tasks requiring deep contextual understanding and reasoning. Its ca-
pabilities make it highly effective for code-related tasks, such as analyzing Pylint warnings
and proposing contextually appropriate fixes [1]].

Claude 3 Haiku represents the cost-effective tier of Anthropic’s Al offerings, optimized
for projects that require intelligent problem-solving without the higher computational ex-
penses of more advanced models. Anthropic also provides more powerful, yet costly models
that offer enhanced reasoning and language comprehension abilities. While these higher-
end models might provide more sophisticated code repair capabilities, the choice of Claude
3 Haiku for this research balances performance with budgetary constraints. Despite being
the less expensive option, Claude 3 Haiku offers reliable accuracy in code analysis and cor-
rection, making it a suitable choice for this project. Its ability to generate precise, minimal
code fixes without introducing unnecessary changes ensures that it adheres to best practices
while maintaining the overall integrity of the code.

Our approach involves guiding Claude 3 Haiku with a structured prompt to ensure pre-
cise and effective modifications. The prompt is meticulously designed to achieve high-
quality code fixes. It reads as follows:

”Your task is to analyze the provided Pylint warning and Python code snippet and pro-
vide a corrected version of the code that resolves the warning. If a function or package is
getting called, assume that it already exists and is imported. You can also assume that the
code is syntactically correct and the only issue is the Pylint warning. The corrected code
should be functional in a bigger context, efficient, and adhere to best practices in Python
programming. Keep in mind that it is a snippet from a bigger script, therefore keep things
such as indentation level and ending commas such that it still works in the broader context
and don’t add imports, packages, new classes or new functions. Only return the corrected
code snippet as markdown python code and no explanation or text. If you are unable to re-
solve the warning, return the original code. Do not remove comments or docstrings, update
them accordingly.”

This structured prompt ensures that Claude 3 Haiku focuses on providing fixes that
are not only correct but also contextually appropriate. The clear instructions regarding
the preservation of code context, indentation, and existing comments are intended to avoid
disruptions in the broader script and ensure that the generated fixes are practical and directly
applicable. This methodology is inspired by similar practices in automated code repair,
where contextual understanding and minimal alterations are emphasized to maintain code
integrity.

Each Pylint warning is processed by providing Claude 3 Haiku with a combined input of
the warning message and the relevant code snippet, formatted as: "{the Pylint warning
name} \n the code". This format allows the model to understand both the specific issue
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reported and the surrounding context, facilitating more accurate and relevant fixes.

After generating the proposed fixes, we take several steps to ensure that the corrected
code meets the required standards. First, we format the code using Black, a widely adopted
code formatter for Python, to ensure consistency and adherence to formatting best practices
[11]. Following the formatting, we rerun Pylint to verify that the specific warning has been
successfully resolved and to check that no new issues have been introduced.

In addition to Pylint verification, we also conduct functional testing by running the
project’s existing test suite. This step is crucial to confirm that the fixes do not inadvertently
introduce new bugs or disrupt any previously functioning code. We specifically check if
any of the tests that passed before the fix now fail, ensuring that the code’s operational
integrity remains intact. This multifaceted verification process, combining code formatting,
static analysis, and functional testing, confirms the effectiveness of the automated fixes and
ensures that the overall quality of the codebase is maintained.

The results of this process are documented in a CSV file with the fields: project, issue,
fixed, fixes, description, and date. Each project and corresponding Pylint warning generates
an entry in this file, detailing the number of warnings that were successfully resolved for
each project. This allows us to systematically track the tool’s effectiveness in addressing
the identified issues across various projects.

Additionally, to capture instances where the tool was unable to provide a fix, a separate
CSYV file is maintained. This file contains the fields: project, issue, file_name, line_nr, stage,
description, and date. This documentation allows for detailed analysis of failures, isolating
the specific warning, its location, and the stage at which the process failed, whether during
API interaction, formatting, Pylint validation, or due to test failures introduced by the fix.
By documenting these failures comprehensively, we aim to refine the tool’s approach and
better understand the limitations of automated fixes.

By leveraging Claude 3 Haiku’s capabilities and following a structured approach to
generating and validating fixes, we aim to enhance the quality of the code in a systematic
and reliable manner.

3.5 Automated Pull Requests and Streamlined Consent
Mechanism

After generating code fixes using Anthropic’s Claude Al, we implement a comprehensive
process for validating and integrating these changes into open source repositories. This ap-
proach is designed to align with both technical best practices and ethical standards, partic-
ularly but not limited to those outlined in the Human Research Ethics Committee (HREC)
guidelines of Delft University of Technology. The methodology we employ ensures that
the proposed changes are not only technically sound but also introduced in a manner that
respects the autonomy and consent of open source project maintainers.
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3.5.1 Manual Validation of AI-Generated Fixes

The first step in our process involves manually validating the Al-generated fixes. Although
the use of advanced Al models like Claude 3 Haiku often results in high-quality code sug-
gestions, it is crucial to manually review these changes to ensure their appropriateness
within the context of the target project. This manual review is essential to avoid intro-
ducing suboptimal or incorrect changes that could frustrate project maintainers or reduce
the likelihood of pull request (PR) acceptance. Without this step, the risk of submitting
poorly considered changes increases, potentially damaging the reputation of the research
project and the relationships with the open source community.

This manual validation process also ensures that the proposed changes adhere to the
specific coding style and standards of each project, which is critical to maintaining con-
sistency and reducing friction during the PR review process. This step is inspired by best
practices in software engineering, where human oversight is often necessary to complement
automated processes and ensure high-quality outcomes.

3.5.2 Issue Creation and Informed Consent

Following manual validation, we create an issue in the target repository for each Pylint
warning that has been addressed. This step serves as the initial point of contact with the
project’s maintainers. Each issue includes a detailed description of the specific Pylint warn-
ing, an explanation of our research project, and contact information for the researchers
involved. A link to the PyWarnFixer project page on GitHub is also provided, where main-
tainers can find comprehensive information about the study’s objectives, methodologies,
and ethical considerations.

The creation of an issue before submitting a PR is inspired by best practices in open
source collaboration, where maintainers often prefer to discuss proposed changes before
they are formally submitted. This approach helps build trust and transparency, ensuring that
maintainers are fully aware of the nature of the proposed changes and the research context
behind them. Skipping this step could result in misunderstandings, leading to PR rejections
or negative reactions from the maintainers, which would undermine the research’s goals and
ethical standard.

3.5.3 Automated Pull Request Submission

If the maintainers express interest in the proposed changes, we proceed with the automated
creation of PRs. For each fix, a new branch is created in a forked version of the reposi-
tory, and a PR is submitted to the original project. Each PR includes a clear and concise
description of the specific contributions made, along with an explicit mention that the PR is
part of the “Automated Detection and Correction of Python Code Style Violations” research
project conducted by TU Dellft.

To further ensure transparency and support the consent process, the PR includes a link to
the research project’s information page on GitHub. This page provides detailed information
on the study, including its objectives, methodologies, and ethical considerations. By includ-
ing this information directly in the PR, we make it easy for maintainers to understand the
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broader context of the proposed changes and to make an informed decision about whether
to accept the PR.

This approach is informed by guidelines from both open source communities and aca-
demic research ethics, emphasizing the importance of clear communication and consent
when interacting with contributors. Without such a mechanism, there is a risk that main-
tainers might feel pressured or misled, which could lead to negative outcomes such as PR
rejections, community backlash, or ethical violations.

3.5.4 Monitoring and Feedback Integration

After the PRs are submitted, we actively monitor them for feedback or comments from
project maintainers and contributors. This monitoring allows us to respond promptly to
any queries or concerns and to make adjustments to the proposed changes if requested.
The acceptance rate of these PRs serves as a key metric for evaluating the developers’
reception of the automated fixes. By calculating the acceptance rate for each project, we
gain insights into how well the proposed changes are received and the overall effectiveness
of the automated fixing process.

The results of the pull requests are stored in a CSV file with the fields: project, warn-
ing_name, created_date, status, pull_request_link, and description. The project field records
the identifier of the repository, while the warning_name specifies the particular Pylint warn-
ing that prompted the fix. The created_date logs when the pull request (PR) was submitted,
ensuring a clear timeline for tracking purposes. The status field indicates whether the PR
is open, closed, or merged, allowing us to monitor the outcome of each submission. The
pull_request_link provides a direct reference to the PR within the repository, and the descrip-
tion field stores relevant notes on the fix or any additional context needed to understand the
changes made. This systematic documentation allows us to evaluate the success of the PRs
and assess maintainer engagement with our automated fixes.

Similarly, the results of the issues raised in open source repositories are stored in a CSV
file with the fields: project, warning_name, created_date, status, issue_link, and description.
Here, the project field again refers to the repository in question, and warning _name details
the specific Pylint warning. The created_date logs when the issue was opened, while the
status tracks whether the issue remains open or has been closed. The issue_link provides a
direct URL to the issue for easy reference, and the description field allows for additional
details about the issue or the interaction with maintainers. By documenting this informa-
tion, we maintain a clear record of engagement with the open source community, ensuring
transparency and accountability throughout the research process.

Regular monitoring and feedback integration are crucial for ensuring the success of the
PRs and for maintaining positive relationships with the open source community. Ignoring
this step could result in unresolved issues or unanswered questions, leading to frustration
among maintainers and potentially lower acceptance rates for the PRs.

Through this streamlined and ethically sound approach, we aim to facilitate a collabo-
rative process for integrating automated fixes into open source projects. This methodology
not only enhances the quality of the codebases but also ensures that maintainers are fully
informed and respected throughout the process.

17



3. METHODOLOGY

3.6 Handling of Personally Identifiable Information

This research carefully adheres to ethical standards regarding the handling and storage of
Personally Identifiable Information (PII). All data collected in the course of this research is
securely stored on an encrypted disk to ensure that sensitive information is protected from
unauthorized access. The primary data being stored consists of the names of the open-source
projects analyzed during the study.

Additionally, when developers have provided explicit consent, their GitHub usernames
and any data they have agreed to share, such as comments and reviews on pull requests and
issues, are also stored. This data is strictly limited to what is relevant to the research, and its
purpose is thoroughly communicated to all participants involved. Before any information is
collected, participants are made aware of the specific data being stored, how it will be used,
and their rights concerning the data.

If any individual wishes to have their data removed from the study, they are provided
with the necessary contact information and clear instructions on how to request data dele-
tion. This process ensures that participants maintain control over their personal information,
in accordance with ethical guidelines and data protection regulations.

By employing these measures, this research ensures transparency and maintains the
privacy of all individuals involved while only storing the minimum amount of PII necessary
for the study’s objectives.
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Chapter 4

Results

This chapter presents the findings from the experiments conducted to address the research
questions posed in this study. The data collected from open source Python projects is an-
alyzed to provide insights into the prevalence of Pylint warnings, the effectiveness of the
developed automated tool in fixing these warnings, and how open source developers per-
ceive the tool’s suggestions. Additionally, the chapter explores how developer consent can
be streamlined when proposing research-related code changes. Each section is structured
around the individual research questions and is supported by graphical and statistical evi-
dence.

4.1 What is the prevalence of Pylint warnings in open source
projects?

This section presents the findings related to the first research question: What is the preva-
lence of Pylint warnings in open source Python projects? The results are analyzed across
different project strata based on the number of stars and forks, providing insights into how
Pylint warnings vary in frequency and consistency across a diverse range of projects.

For each stratum, the top 15 Pylint warnings are identified, and their warning densi-
ties (warnings per 1000 LOC) and presence ratios (how often they appear in projects) are
visualized. These metrics help to understand both the pervasiveness and distribution of
the warnings in open source projects, highlighting common code quality issues across the
dataset. The table contains a list of all pylint warnings mentioned in this section, along
with their warning type and a link to their documentation.

4.1.1 Prevalence of Pylint warnings across star ranges

This section explores the warning densities and presence ratios of Pylint warnings across
different project star ranges, from 11 stars to over 1 million. By aggregating the data, we
can observe trends in how these warnings manifest in projects of varying popularity and
complexity.
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In the lower star ranges (11-100 and 101-1000 stars), common warnings such as line-
too-long, missing-function-docstring, and bad-indentation dominate in terms of both warn-
ing density and presence ratios. For example, in the 11-100 star range, line-too-long ex-
hibited the highest density, closely followed by missing-function-docstring (Figure {.Tal).
These warnings appeared in almost all projects, with presence ratios nearing 100% for
missing-function-docstring and line-too-long, indicating that even smaller projects strug-
gle with basic code style adherence (Figure [4.1b). As the star range increases to 101-1000
stars, the density of line-too-long grows significantly, reaching up to 35 warnings per 1000
lines of code (LOC), while its presence ratio remains high across nearly all projects (Figure
and [.1d). This suggests that larger projects experience more pervasive style issues,
but these issues are consistently present across the majority of repositories.

Moving to the 1001-10,000 star range, a shift is observed. While missing-function-
docstring and line-too-long remain prevalent, the density of bad-indentation exceeds 70
warnings per 1000 LOC, becoming the most frequent issue in this range (Figure §.Te)). In-
terestingly, the presence ratios for bad-indentation, as well as other common warnings like
missing-function-docstring, remain high, hovering around 90% (Figure {.1f)). This pattern
suggests that as projects become larger and more complex, structural issues such as indenta-
tion become more frequent, while the presence of these warnings remains consistently high
across most projects.

In the higher star ranges (10,001-100,000 stars and 100,001-1,000,000 stars), a differ-
ent trend emerges. The density of the top warnings, such as missing-function-docstring and
line-too-long, generally decreases compared to the lower star ranges, indicating that larger
and more popular projects may have addressed these basic issues to some extent (Figure
M.Ti). However, the presence ratios remain consistently high across these projects,
with many warnings appearing in nearly all repositories (Figure d.Th| [4.Tj). For instance, in
the 10,001-100,000 star range, the top warnings are present in 100% of the projects, though
their densities are reduced to around 22 warnings per 1000 LOC. This suggests that while
larger projects may have developed mechanisms to address these frequent warnings, such
issues still persist across most codebases. In the highest star range (100,001-1,000,000
stars), the density of missing-function-docstring increases again to 35 warnings per 1000
LOC, reflecting the increased complexity and scale of these large projects (Figure

4.1]).

Overall, the data reveal that while warning densities tend to decrease in larger, more
popular projects, the presence ratios remain high. This suggests that even as projects scale
and become more mature, they continue to encounter frequent issues with basic code quality
and style adherence across a wide array of warnings.
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Figure 4.1: Warning Densities and Ratios Across All Star Ranges (1/2)
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Figure 4.1: Warning Densities and Ratios Across All Star Ranges (2/2)

4.1.2 Prevalence of Pylint warnings across fork ranges

This section explores the warning densities and presence ratios of Pylint warnings across
different project fork ranges, from 11 to 10,000 forks. By aggregating the data, we can
observe how these warnings manifest in projects of varying complexity and contributions.

In the lower fork range (11-100 forks), the warning missing-function-docstring exhibits
the highest density by a significant margin, reaching over 25 warnings per 1000 lines of
code (LOC), as shown in Figure [#.2a] Other warnings, such as line-too-long and missing-
class-docstring, appear at much lower densities, falling below 10 warnings per 1000 LOC.
The presence ratios show that missing-function-docstring, missing-module-docstring, and
line-too-long are nearly universal, appearing in almost all projects, with ratios approaching
1.0 (Figure [4.2D).

As we move to the 101-1000 forks range, there is a substantial increase in warning
density for line-too-long and bad-indentation, both reaching nearly 60 warnings per 1000
LOC, representing a sharp rise compared to the previous range (Figure d.2c). Other warn-
ings, such as consider-using-f-string and invalid-name, also show higher densities in this
fork range. The presence ratios remain consistent for warnings such as missing-function-
docstring and line-too-long, but the overall ratios are slightly higher than in the lower range,
indicating more frequent occurrences across projects (Figure [d.2d).
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In the highest fork range (1001-10,000 forks), the density of line-too-long and bad-
indentation decreases compared to the previous range, although missing-function-docstring
continues to exhibit the highest density at just under 30 warnings per 1000 LOC (Figure
.2¢). The presence ratios in this range are slightly higher than in the previous ranges, with
warnings such as missing-module-docstring, missing-function-docstring, and invalid-name
continuing to appear in nearly all projects (Figure .2f). However, the ratios for certain
warnings, like foo-many-statements and import-outside-toplevel, decrease, indicating that
these warnings become less consistent in larger projects.

Overall, the data reveal that as the number of forks increases, the density of certain
warnings fluctuates, but the presence ratios for common warnings like missing-function-
docstring and line-too-long remain high across all projects, suggesting that these issues are
widespread regardless of project size or complexity.
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Figure 4.2: Warning Densities and Ratios Across All Fork Ranges

4.1.3 All projects

For all projects, the warnings line-too-long and missing-function-docstring have the highest
densities, with approximately 30 warnings per 1000 LOC, as illustrated in Figure 433
These warnings consistently appear at higher densities than others, such as bad-indentation
and invalid-name, which still exhibit notable densities, but at lower levels.

Figure [4.3b] shows that while line-too-long and missing-function-docstring have the
highest densities, they do not always have the highest presence ratios. Warnings such as
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missing-module-docstring and invalid-name appear in a larger proportion of projects, de-
spite their lower densities. This indicates that these warnings are more consistently present
across the board, whereas higher-density warnings like line-too-long are more concentrated
within specific projects.

Top 15 Warning Tag Densities Top 15 Warning Tag Ratios
35
30 0.8
25
4 0.6
220 g
g 2
& 159 0.4
10 4
0.2+
5
0 0.0
e e & A e & & a6 2 S W o @ L& <« e
S S S LSS S S S S T S S
FEFEFF LS EF TG TS & 7 I I F ST E ST N
F ST L L T E P G E S P IO E TGS
FH ey IS & & PSS TF S SIS TP
o F&EE S & s & W EF S TS
& '\'\9‘ (9& @‘7"\0 © £ @b@ a\z \“Q‘ & @4’\0 < e'@ @bz 3&
& & $ & e
& &
Warning Tags Warning Tags
(a) Number of warnings per 1000 LOC (b) Presence ratio of warnings in projects

Figure 4.3: Warning densities and ratios for all projects

The graph (Figure [f.4) further reinforces this observation. It highlights the disparity
between density and ratio for some warnings. For instance, line-too-long has one of the
highest densities but does not achieve the same level of presence across projects, suggesting
that it may be a more localized issue within certain repositories. Conversely, warnings such
as missing-module-docstring demonstrate a higher ratio but lower density, indicating that
while these warnings are found in more projects, they occur less frequently per 1000 lines
of code.
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Figure 4.4: Warning densities with their ratios for all projects

4.2 How effective is the developed automated tool at fixing
Pylint warnings?

The effectiveness of the automated tool developed to address Pylint warnings was evaluated
across a total of 205 open source Python projects. Among these, the tool successfully
resolved all detected Pylint warnings in 144 projects, producing a complete project fix rate
of 70%.

Among the 205 projects, a total of 5188 Pylint warnings were identified. The automated
tool was able to correct 4549 of these warnings, resulting in an overall fix rate of 88% for
individual warnings.

However, the remaining 12% of warnings could not be resolved due to various technical
challenges encountered during the execution of the tool’s workflow. These challenges were
predominantly observed in the stages that involved the extraction of relevant code snippets,
communication with the Anthropic Claude AI API, and reinsertion of the generated fixes
back into the code. Specifically, in some instances, the Al did not return a recognized or
complete code block, or the tool was unable to locate the full context of the code associated
with the Pylint warning.
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4.3 How do open source developers perceive the suggestions
made by the developed tool?

A total of 60 pull requests were submitted to open source projects as part of the tool’s
automated suggestion mechanism. Of these, 3 pull requests were fully approved and merged
into the respective projects. An additional three pull requests received positive feedback
from the project maintainers, though they were not merged for unspecified reasons.

A total of 7 pull requests were closed by the project maintainers. In 3 of these cases,
the reviewers explicitly indicated that they did not appreciate automated pull requests. The
remaining pull requests did not receive any interaction from the project maintainers or con-
tributors.

The detailed outcomes of these pull requests, including the links to them, can be found
in Appendix

4.4 How can we streamline a way of proposing research-related
code changes with developer consent?

Initially, the approach taken in this project for proposing research-related code changes
involved submitting pull requests directly to the relevant open source repositories. This
method was intended to initiate a dialogue with the maintainers, with the pull requests
serving as the first point of contact. Using this strategy the response rate was relatively
low. A total of four contributors or reviewers from the 60 projects provided their explicit
consent for the proposed changes. By the end of the project, two of these contributors had
withdrawn their consent, leaving two active consents.

After receiving some negative feedback from maintainers, it became evident that this
direct approach could be perceived as intrusive, particularly in cases where maintainers
were not expecting automated contributions or had specific workflows in place for managing
external input.

One of the key concerns raised was that many projects prefer pull requests to address
issues that have already been logged in their issue boards. This allows maintainers to track
and prioritize changes systematically. Directly submitting pull requests without prior dis-
cussion can be seen as bypassing this established process, making it harder for maintainers
to integrate the changes into their workflows. Moreover, pull requests demand immediate
attention and review, potentially adding more work for maintainers who may not be pre-
pared to assess the proposed changes, especially if they are generated by an automated tool.

In response to this feedback, the process was adjusted to be more in line with typical
open source contribution practices. Instead of submitting pull requests as the initial point
of contact, the modified approach involved creating issues on the project’s issue board to
inquire whether the maintainers were interested in having the warnings addressed by the
Al-supported tool. This shift allowed the maintainers to evaluate the proposed changes at a
conceptual level before committing to a full code review, thereby reducing the pressure and
workload associated with immediate pull request reviews.
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The rationale behind this change was twofold. First, submitting issues rather than
pull requests aligned the contribution process with the established norms of many open
source projects, where maintainers often expect changes to follow a defined issue-resolution
pipeline. By logging issues first, maintainers were given the opportunity to provide input
on whether they wanted the proposed fixes and were able to review the context of the warn-
ing without the burden of reviewing code at the outset. Second, issues were seen as less
confronting than pull requests, offering a lower-stakes way to gauge interest in automated
fixes. With issues, maintainers could choose whether and when to engage with the proposed
changes, without feeling obligated to immediately approve or reject a pull request.

By making this adjustment, the project aimed to respect the autonomy of open source
maintainers and streamline the process of obtaining consent for research-related code changes.
This revised process also contributed to better alignment with project workflows, increasing
the likelihood of positive engagement from maintainers.

The evolution of this approach reflects the challenges inherent in balancing the need for
research contributions with the expectations of the open source community. The changes
implemented demonstrate an effort to be more collaborative and less disruptive, with the
hope that future contributions will benefit from this refined process.
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Chapter 5

Conclusions and Future Work

This chapter provides a comprehensive overview of the research findings and their impli-
cations. First, we reflect on the key results in the Discussion section, analyzing each of
the research questions in detail. We then explore possible extensions to the research in the
Future Work section, discussing areas that would benefit from further investigation. Fi-
nally, the Conclusion section summarizes the overall contributions of the project and offers
closing thoughts on the significance of the work.

5.1 Discussion/Reflection

In this section, we examine the outcomes of each research question, reflecting on the re-
sults presented in the previous chapters. Each question is addressed in detail, providing a
comprehensive discussion of the findings and their broader implications for Python code
quality, tool effectiveness, and developer interaction.

5.1.1 What is the prevalence of Pylint warnings in open source projects?

The first research question sought to determine the prevalence of Pylint warnings in open
source Python projects. Our analysis revealed that Pylint warnings are highly prevalent
across a wide range of projects, with certain warnings like /ine-too-long and missing-function-
docstring consistently appearing at the top of the list in both warning density and presence
ratio.

The high frequency of warnings such as missing-function-docstring and missing-module-
docstring suggests that documentation practices are often neglected in open source projects.
This trend implies that many open source developers prioritize code functionality and con-
tributions over thorough documentation. Writing docstrings can be viewed as an additional,
non-essential task, particularly in community-driven projects where contributors may focus
on achieving feature parity or resolving critical bugs rather than adhering strictly to style
and documentation guidelines. This phenomenon may also reflect the transient nature of
open source contributions, where developers who do not expect to engage long-term with a
project might deprioritize writing detailed documentation.
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Similarly, the persistent presence of the line-foo-long warning across all strata could in-
dicate that open source developers do not always consider strict line length limits as essen-
tial to code quality. Given the collaborative and distributed nature of open source projects,
it is possible that line length limitations, while contributing to readability, are not enforced
consistently due to differing coding practices, varied editor configurations, and the fact that
enforcing this warning may not be seen as critical to a project’s success. It also reflects the
tension between personal coding habits and adherence to collective style guidelines in open
source environments, where contributors bring diverse backgrounds and styles.

Warnings related to naming conventions, such as invalid-name, also appeared frequently.
This suggests that developers in open source projects may not always adhere to standard-
ized naming practices, possibly due to the organic and evolving nature of community-driven
codebases. Names may be chosen for expedience rather than clarity or conformity with PEP
8 guidelines, particularly in fast-paced or collaborative coding environments where consis-
tency is harder to maintain.

The prevalence of these warnings varied depending on the size and popularity of the
projects, as categorized by forks and stars. In projects with fewer stars or forks, the warning
densities were generally lower, but warnings like missing-function-docstring were ubiqui-
tous across all strata. This suggests that smaller projects, which may have fewer contrib-
utors or be at an earlier stage of development, may focus less on thorough documentation
and code style enforcement.

In larger projects, especially those with more than 100,000 stars or forks, the warning
densities remained significant but showed more consistency across different warning types.
This consistency indicates that larger projects, which often involve many contributors and
more complex codebases, tend to have recurring code quality issues across a variety of
areas, such as naming conventions, line length, and documentation. This may reflect the
challenges of maintaining consistent coding standards in large, distributed teams where
many contributors bring their own coding practices.

Overall, the findings demonstrate that while certain code style violations are frequent
across all project sizes, larger and more complex projects exhibit a broader distribution of
Pylint warnings. This suggests that code quality challenges are present at all levels of open
source development, though they may manifest differently depending on the project’s size
and maturity. The recurring presence of specific warnings, such as missing docstrings and
long lines, highlights broader trends in how open source developers approach code quality
and the compromises made when balancing code contributions with best practices.

5.1.2 How effective is the developed automated tool at fixing Pylint
warnings?

The second research question focused on the effectiveness of the developed automated tool
in fixing Pylint warnings. The tool demonstrated a strong performance, achieving a com-
plete project fix rate of 70%, and successfully addressing 88% of the identified warnings
across all projects.

The tool was able to fix many Pylint warnings, including line-too-long and missing-
function-docstring, with high accuracy. However, it encountered challenges with more
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complex warnings, particularly those requiring a broader context beyond the immediate
code snippet provided. The remaining 12% of warnings that could not be fixed were pri-
marily due to issues in extracting relevant code snippets, communicating with the Anthropic
Claude API, or reinserting the fixes back into the original code.

These results highlight the effectiveness of Al-driven code repair tools, particularly for
straightforward and frequent warnings. However, the technical limitations encountered in
this study suggest that further refinement is needed to handle more complex warnings and
improve the integration of automated fixes into diverse codebases.

5.1.3 How do open source developers perceive the suggestions made by the
developed tool?

The third research question explored how open source developers perceive the suggestions
made by the automated tool. Out of the 60 pull requests submitted, only 3 were fully ap-
proved and merged, while an additional 3 received positive comments but were not merged
for unknown reasons. Seven pull requests were closed, with reviewers explicitly stating that
they did not appreciate automated submissions.

These mixed reactions indicate that while some developers are open to automated code
fixes, there remains significant resistance within the open source community to bot-generated
pull requests. This resistance may stem from concerns about the accuracy or appropriate-
ness of the fixes, or from a broader reluctance to adopt Al-generated changes in collabora-
tive projects. The low interaction rate with the remaining pull requests suggests that many
developers either overlooked the submissions or did not prioritize them.

This result highlights the need for more user engagement strategies and improved com-
munication when proposing automated fixes in open source environments. Ensuring that
developers feel informed and in control of the process could help alleviate concerns and
increase the acceptance of automated pull requests.

5.1.4 How can we streamline a way of proposing research-related code
changes with developer consent?

The final research question examined how to streamline the process of proposing research-
related code changes with developer consent. Out of the 60 contributors and reviewers
involved in the study, 4 provided explicit consent to the proposed changes. However, by
the end of the project, two contributors had withdrawn their consent, leaving two active
consents.

This result indicates that while some contributors are willing to engage with research-
related changes, maintaining ongoing consent throughout the project can be challenging.
The withdrawal of consent by two contributors highlights the importance of clear commu-
nication and transparency when requesting consent for automated changes. Additionally,
the low overall consent rate suggests that more work is needed to refine the consent mecha-
nism and make it more appealing to developers.
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5.2 Future Work

There are several areas where this research could be expanded or refined to build upon the
findings presented in this thesis.

5.2.1 Scaling the Dataset

One of the key limitations of this study is the relatively small dataset of 205 projects.
Future research could expand the dataset to include a larger number of projects across a
broader range of stars and forks. This would provide more comprehensive insights into
the prevalence of Pylint warnings and the effectiveness of the tool across different types of
open source projects. By increasing the number of projects, researchers could also explore
whether the trends observed in this study hold true at a larger scale.

5.2.2 Improving AI Model Integration

The Claude 3 Haiku model used in this study was selected for its balance of performance
and cost, but more advanced models, such as higher-end versions of Claude or even other
models like GPT-4, could potentially offer improved results. Future work could explore the
use of more sophisticated AI models to handle more complex warnings and improve the
overall accuracy of the tool. Additionally, optimizing the communication between the tool
and the AI model to ensure better context understanding could help address the technical
challenges observed in this study.

5.2.3 Developer Engagement and Consent Mechanisms

Further research could investigate ways to increase developer engagement with automated
pull requests. This could involve developing user interfaces that allow developers to review
and approve automated suggestions more easily or creating mechanisms to better commu-
nicate the value of the proposed changes. Additionally, improving the consent process,
possibly by offering more granular consent options or integrating it more seamlessly into
the workflow, could help address the challenges related to developer withdrawal of consent.

5.2.4 Exploring Bias Against Automated Contributions

A notable finding from this research is the bias against automated pull requests, with sev-
eral developers expressing negative views toward them. Future research could delve deeper
into understanding this bias, exploring why some developers are hesitant to accept auto-
mated contributions and what can be done to improve the perception of such tools in the
open source community. This could involve qualitative studies, surveys, or interviews with
developers to gather more detailed insights.
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5.3 Conclusion

This thesis explored the prevalence of Pylint warnings in open source Python projects, the
effectiveness of an Al-driven tool to address these warnings, developer perceptions of auto-
mated code fixes, and the process of streamlining research-related code changes with devel-
oper consent. The findings demonstrate that Pylint warnings are highly prevalent across
projects of all sizes and levels of popularity. Common warnings such as line-too-long
and missing-function-docstring appear frequently, indicating that code quality challenges
related to style and documentation are widespread in the open source Python ecosystem.
These warnings were observed consistently across both small and large projects, suggest-
ing that even well-established projects with significant contributor bases struggle with code
style enforcement.

The automated tool developed as part of this research proved to be highly effective at ad-
dressing many of these common issues. With a fix rate of 88% for individual warnings and
a 70% project-level fix rate, the tool demonstrated its capability to improve code quality by
resolving frequent Pylint warnings. However, certain technical limitations were observed,
particularly with more complex warnings that require a deeper contextual understanding
of the code. Additionally, challenges related to developer engagement emerged, as some
developers expressed hesitation or resistance toward automated pull requests.

The work presented in this thesis lays a strong foundation for further research into Al-
driven code repair tools and their integration into open source development workflows. By
continuing to refine the tool and addressing both the technical limitations and developer
concerns, there is significant potential for automated tools to play an even larger role in
improving code quality across the Python ecosystem. As Al-driven solutions continue to
evolve, they could become indispensable for maintaining high coding standards in large and
diverse codebases.
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Appendix A

List of pylint warnings

In this appendix, we give a list of all the pylint warnings that were in the lists of top 15
warnings. The warnings include what type of warning they are and a link to their documen-
tation.
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Warning Name Warning Code (Link) Message Type
abstract-method abstract-method Warning
bad-indentation bad-indentation Warning
bare-except bare-except Warning
broad-exception-caught broad-exception-caught Warning
consider-using-f-string consider-using-f-string Warning
consider-using-with consider-using-with Warning
import-error import-error Warning
import-outside-toplevel import-outside-toplevel Warning
inconsistent-return-statements inconsistent-return-statements Warning
invalid-name invalid-name Convention
line-too-long line-too-long Convention
missing-class-docstring missing-class-docstring Convention
missing-function-docstring missing-function-docstring Convention
missing-module-docstring missing-module-docstring Convention
no-else-return no-else-return Refactor
no-member no-member Error
no-name-in-module no-name-in-module Error
possibly-used-before-assignment possibly-used-before-assignment Warning
protected-access protected-access Warning
redefined-builtin redefined-builtin Warning
redefined-outer-name redefined-outer-name Warning
singleton-comparison singleton-comparison Refactor
syntax-error syntax-error Fatal
too-few-public-methods too-few-public-methods Refactor
too-many-arguments too-many-arguments Refactor
too-many-boolean-expressions too-many-boolean-expressions Refactor
too-many-branches too-many-branches Refactor
too-many-instance-attributes too-many-instance-attributes Refactor
too-many-locals too-many-locals Refactor
too-many-statements too-many-statements Refactor
trailing-whitespace trailing-whitespace Convention
undefined-variable undefined-variable Error
ungrouped-imports ungrouped-imports Convention
unnecessary-pass unnecessary-pass Refactor
unspecified-encoding unspecified-encoding Warning
unused-argument unused-argument Warning
unused-import unused-import Warning
unused-variable unused-variable Warning
useless-object-inheritance useless-object-inheritance Refactor
wrong-import-order wrong-import-order Convention
wrong-import-position wrong-import-position Convention

Table A.1: Pylint Warnings with Links and Message Types
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https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/import-error.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/import-outside-toplevel.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/inconsistent-return-statements.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/invalid-name.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/line-too-long.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/missing-class-docstring.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/missing-function-docstring.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/missing-module-docstring.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/no-else-return.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/error/no-member.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/error/no-name-in-module.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/possibly-used-before-assignment.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/protected-access.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/redefined-builtin.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/redefined-outer-name.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/singleton-comparison.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/fatal/syntax-error.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/too-few-public-methods.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/too-many-arguments.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/too-many-boolean-expressions.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/too-many-branches.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/too-many-instance-attributes.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/too-many-locals.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/too-many-statements.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/trailing-whitespace.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/error/undefined-variable.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/ungrouped-imports.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/unnecessary-pass.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/unspecified-encoding.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/unused-argument.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/unused-import.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/warning/unused-variable.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/refactor/useless-object-inheritance.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/wrong-import-order.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/wrong-import-position.html

Appendix B

Pull request data

This appendix provides detailed information about the pull requests submitted as part of the
empirical study on how open source developers perceive automated suggestions. The table
below includes the project name, the specific Python warning that the pull request aimed
to resolve, the status of the pull request (open, closed, or merged), and a direct link to the
submitted pull request for each project.

Project Name: This column lists the names of the open source projects to which the
automated pull requests were submitted. These projects span a wide range of domains
and are hosted on GitHub.

Warning Name: This column indicates the type of Python warning that was ad-
dressed in each pull request. The tool focused on resolving common Pylint warn-
ings such as “unspecified-encoding,” “redefined-outer-name,” and ’no-else-return,”
among others.

Status: This column reflects the current status of each pull request. It indicates
whether the pull request is still open, has been closed without merging, or has been
merged into the project.

Pull Request Link: This column provides a direct URL to the corresponding pull
request on GitHub. Readers can follow the link to review the proposed changes,
conversations with maintainers, and the final outcomes of the pull requests.
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B. PULL REQUEST DATA

project warning_name status pull_request_link

am-silex/anki_cambridge unspecified-encoding open https://github.com/am-silex/anki_cambridge/pull/31
allenai/mmc4 unspecified-encoding open https://github.com/allenai/mmc4/pull/24

lanmaster53/recon-ng unspecified-encoding open https://github.com/lanmaster53/recon-ng/pull/207
3blb/manim unspecified-encoding open https://github.com/3b1b/manim/pull/2141
Significant-Gravitas/AutoGPT unspecified-encoding open https://github.com/Significant-Gravitas/ AutoGPT/pull/7222
subframe7536/maple-font unspecified-encoding merged  https://github.com/subframe7536/maple-font/pull/203
magic-wormhole/magic-wormhole unspecified-encoding open https://github.com/magic-wormhole/magic-wormhole/pull/529
digitaljohn/comfyui-propost redefined-outer-name open https://github.com/digitaljohn/comfyui-propost/pull/25
1lich0821/WeChatRobot redefined-outer-name open https://github.com/lich0821/WeChatRobot/pull/65

PeterL 1n/BackgroundMattingV2 redefined-outer-name open https://github.com/PeterL 1n/BackgroundMattingV2/pull/210
pallets/flask redefined-outer-name closed https://github.com/pallets/flask/pull/5503
AUTOMATIC1111/stable-diffusion-webui redefined-outer-name closed https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16048
bloomberg/memray redefined-outer-name closed https://github.com/bloomberg/memray/pull/632
alexmohr/sonyapilib unspecified-encoding open https://github.com/alexmohr/sonyapilib/pull/74
OpenDevin/OpenDevin unspecified-encoding closed https://github.com/OpenDevin/OpenDevin/pull/2638
jaraco/keyring unspecified-encoding merged  https://github.com/jaraco/keyring/pull/685
hummingbot/hummingbot unspecified-encoding open https://github.com/hummingbot/hummingbot/pull/7093
pep8speaks-org/pep8speaks unspecified-encoding open https://github.com/pep8speaks-org/pep8speaks/pull/232
mysociety/mapit no-else-return open https://github.com/mysociety/mapit/pull/431
automl/ConfigSpace no-else-return open https://github.com/automl/ConfigSpace/pull/365
AcademySoftwareFoundation/OpenTimelinelO  no-else-return open https://github.com/AcademySoftwareFoundation/OpenTimelineIO/pull/1773
ajenti/ajenti no-else-return open https://github.com/ajenti/ajenti/pull/1481
Unstructured-IO/unstructured-api no-else-return open https://github.com/Unstructured-IO/unstructured-api/pull/435
onnx/onnx consider-using-f-string  open https://github.com/onnx/onnx/pull/6199
Lightning-Al/torchmetrics redefined-outer-name open https://github.com/Lightning-Al/torchmetrics/pull/2610
virejdasani/Alexis redefined-outer-name open https://github.com/virejdasani/Alexis/pull/48
yihong0618/bilingual _book_maker redefined-outer-name open https://github.com/yihong0618/bilingual _book_maker/pull/408
motioneye-project/motioneye redefined-outer-name open https://github.com/motioneye-project/motioneye/pull/3019
thatmattlove/hyperglass raise-missing-from closed https://github.com/thatmattlove/hyperglass/pull/266
andrew-cr/jump-diffusion raise-missing-from open https://github.com/andrew-cr/jump-diffusion/pull/4
vmware/vsphere-automation-sdk-python raise-missing-from open https://github.com/vmware/vsphere-automation-sdk-python/pull/422
pydantic/FastUT raise-missing-from open https://github.com/pydantic/FastUI/pull/336
python-visualization/folium no-else-return open https://github.com/python-visualization/folium/pull/1983
getredash/redash no-else-return open https://github.com/getredash/redash/pull/7041
1Panel-dev/MaxKB no-else-return merged  https://github.com/1Panel-dev/MaxKB/pull/678
tatsu-lab/alpaca_farm no-else-return open https://github.com/tatsu-lab/alpaca_farm/pull/92

hgrecco/pint no-else-return open https://github.com/hgrecco/pint/pull/2027
graphistry/pygraphistry no-else-return closed https://github.com/graphistry/pygraphistry/pull/571
delitamakanda/elearning no-else-return open https://github.com/delitamakanda/elearning/pull/96
electronstudio/raylib-python-cffi no-else-return closed https://github.com/electronstudio/raylib-python-cffi/pull/133
carson-katri/dream-textures no-else-return open https://github.com/carson-katri/dream-textures/pull/805
Xrouting/xroute_env no-else-return open https://github.com/xrouting/xroute_env/pull/5
freedomofpress/securedrop raise-missing-from open https://github.com/freedomofpress/securedrop/pull/7198
FlareSolverr/FlareSolverr raise-missing-from open https://github.com/FlareSolverr/FlareSolverr/pull/1243
EleutherAl/gpt-neox raise-missing-from open https://github.com/EleutherAl/gpt-neox/pull/1249
run-llama/llama_index raise-missing-from open https://github.com/run-llama/llama_index/pull/14521
HewlettPackard/ilo-ansible-collection raise-missing-from open https://github.com/HewlettPackard/ilo-ansible-collection/pull/35
bordaigorl/rmview raise-missing-from open https://github.com/bordaigorl/rmview/pull/166
PaddlePaddle/PaddleGAN raise-missing-from open https://github.com/PaddlePaddle/PaddleGAN/pull/854
Blazemeter/taurus raise-missing-from open https://github.com/Blazemeter/taurus/pull/1851

httpie/cli raise-missing-from open https://github.com/httpie/cli/pull/1585
healthchecks/healthchecks raise-missing-from open https://github.com/healthchecks/healthchecks/pull/1022
outlines-dev/outlines raise-missing-from open https://github.com/outlines-dev/outlines/pull/1016
pyg-team/pytorch_geometric raise-missing-from open https://github.com/pyg-team/pytorch_geometric/pull/9486
recommenders-team/recommenders raise-missing-from open https://github.com/recommenders-team/recommenders/pull/2124
streamlit/streamlit raise-missing-from open https://github.com/streamlit/streamlit/pull/9037
Integration-Automation/AutomationIDE raise-missing-from open https://github.com/Integration- Automation/AutomationIDE/pull/75
elapouya/python-docx-template raise-missing-from open https://github.com/elapouya/python-docx-template/pull/550
ivelum/djangoql raise-missing-from open https://github.com/ivelum/djangoql/pull/119

pylint-dev/pylint raise-missing-from open

abelcheung/types-1xml raise-missing-from open

Table B.1: Pull request data
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