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Abstract — Lane change decision-making is an important challenge for automated
vehicles, urging the need for high performance algorithms that are able to handle
complex traffic situations. Deep reinforcement learning (DRL), a machine learning
method based on artificial neural networks, has recently become a popular choice for
modelling the lane change decision-making process, outperforming various traditional
rule-based models. So far, performance has often been expressed in terms of achieved
average speed, absence of collisions or merging success rate. However, no studies have
investigated how humans will react to the resulting behavior as potential occupants.
This study addresses this research gap by validating a self-developed DRL-based
lane changing model (trained using proximal policy optimization) from a technology
acceptance perspective through an online crowdsourcing experiment. Participants (N =
1085) viewed a random subset of 32 out of 120 videos of an automated vehicle driving
on a three-lane highway with varying traffic densities featuring our proposed model or
a baseline policy (i.e. a state-of-the-art rule-based model, MOBIL). They were tasked to
press a response key if the decision-making was deemed undesirable and subsequently
rated the vehicle’s behavior along four acceptance constructs (performance expectancy,
safety, human-likeness and reliability) on a scale of 1 to 5. Results showed that
the proposed model caused a significantly lower amount of disagreements and was
rated significantly higher on all four acceptance constructs compared to the baseline
policy. Moreover, considerable differences between individual disagreement rates were
observed for both models. Our findings offer prospects for the practical application of
DRL-based lane change models in a use-case scenario, depending on the user. Further
research is necessary to examine whether these observations hold in other (more
complex) traffic situations. Additionally, we recommend combining DRL with other
modelling techniques that allow for personalization of behavioral parameters, such as
imitation learning.

Keywords — automated lane changing, automated vehicles, deep reinforcement learn-
ing, artificial neural networks, proximal policy optimization (PPO), technology accep-
tance, crowdsourcing, MOBIL
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1 I N T R O D U C T I O N

1.1 background and motivation

With the rapid development of automated vehicle (AV) technology, the automotive
transportation sector is expected to undergo a fundamental transformation in the next
decades. Vehicle automation holds a significant potential in the improvement of mobility,
as it is expected to make driving more comfortable and sustainable while improving
traffic safety and efficiency [1, 2]. We can already see the implementation of semi-
automated features in consumer cars, with some self-driving systems being able to
drive under limited conditions with human supervision (SAE level 2). To fulfill higher
levels of autonomy (SAE level 3+), intelligent vehicles need to learn how to make correct
decisions in a safe and timely manner in order to reach human-like reliability [3].

Automated lane change decision-making on highways is one relevant area that has
become one of the most thoroughly studied topics of automated driving. Improper lane
changes and merges account for about 5% of crashes and 0.5% of road fatalities, making
it a highly safety relevant topic [4].

A large number of studies have been conducted on automated lane changing with
different approaches towards modelling the decision-making process. Traditional rule-
based models, such as the lane change model by Gipps [5], the MOBIL model by Kesting
et al. [6] and the potential field-based model by Ji et al. [7] follow a set of predefined
rules which are applied to specific traffic situations or states. As this fundamentally
requires that the correct outcome to each situation has to be explicitly defined, it means
that rule-based models lack the capacity to deal with undefined situations. In a complex
and interactive situation such as a traffic environment - where humans may behave
unpredictably or even irrationally - more robust, efficient, and adaptive algorithms are
essential.

An alternative approach is the use of machine learning (ML) methods. Deep reinforce-
ment learning (DRL), is a branch of ML that utilizes deep neural networks to learn
behavior through trial-and-error and interaction with the environment, without the
need for human driving data. Recently, the use of DRL has led to breakthroughs in
different fields of AI, solving complex decision-making problems such as surpassing the
performance of human professional players in Atari [8], beating a world champion in Go
[9], performing movement tasks in robotics [10, 11] or achieving human-like locomotion
in 3D simulation [12]. Research has shown that DRL can be used effectively in the
domain of automated lane changing as well, with promising results.
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2 introduction

1.2 related work

In general, there are two main approaches towards implementing a DRL-based lane
change modelling framework: end-to-end learning or split hierarchical control.

In end-to-end learning the model is responsible for all aspects of the lane change
maneuver, including environment perception, planning, decision making and executing
the movement [13–15]. Hence, this increases the task complexity as the model is also
responsible for the operational control of the vehicle (i.e. steering and velocity control).
Even though end-to-end learning is praised for its holistic concept, it has various
shortcomings [16]. Firstly, it requires a relatively large amount of training data due to
the task complexity, meaning it is computationally heavy and takes a long time to train.
This is especially cumbersome if the model has to be modified and the training process
has to be redone. Secondly, the necessary neural network size, black box nature of the
system and resulting amount of inputs-output pairs make adaptions and validation
difficult. More specifically, generalizing an end-to-end model to the real world would
result in limited performance if the fundamental data distribution and physics are not
sufficiently captured in the simulated environment. Lastly, the task complexity may
simply be too high for the neural network to capture.

An alternative approach that is widely applied is splitting the framework into several sub-
sequent control-layers. Such a hierarchical structure consists of a high-level DRL-based
decision-making module that delegates the operational execution to one or multiple
lower-level control layer(s). In that case, the policy only has to learn high-level interactive
lane change behavior, simplifying the problem. This makes modification considerably
more accessible, and by extension, allows for integration of control systems that have
already been proven to work in the real world. Lee and Choi [17] proposed a system
where rule-based models were responsible for car-following, lane change trajectory
generation and steering. In a more elaborate approach by Duan et al. [18] and Shi et al.
[19], the low-level control layers were also based on neural networks, which were trained
using separate reward functions and test episodes. A split approach also provides design
freedom. For example, in a study by Jiang et al. [20], a separate recurrent neural network
was used to infer the probability of surrounding vehicles being cooperative, which was
then used an input in the DRL-based decision-making model.

1.2.1 Modelling variations to accelerate training

A considerable body of literature contributed by combining DRL with other modelling
techniques with the intention to accelerate the training process. Li et al. [21] combined
DRL with an evolutionary learning algorithm. Zhang et al. [22] guided exploration
during training by deriving a surprise-based intrinsic reward relative to the expected
model behavior. Liu et al. [23] applied the technique of ’behavioral cloning’ by adding
several episodes of human demonstration to assist the training process.

Yet one of the most popular and effective measures is the incorporation of so-called safety
verification: explicitly defined restrictions that disallow the model from performing
actions that are irrelevant or unsafe. One of the challenges that specifically arise in DRL
is the trade-off between exploration and exploitation [24]. Especially in the beginning
of the training phase, the agent is still learning the consequences of all its choices and
considerable time may be wasted trying to unnecessarily explore irrelevant actions (e.g.



1.3 research gap 3

driving off the road or performing a lane change when a neighbouring vehicle is too
close). Several works used safety verification in their methods [21–23, 25–28], where it is
also called safety checking or safe exploration.

1.2.2 Evaluation of DRL-based lane change models

Various performance metrics have been used to evaluate DRL-based lane change models.
Most commonly, studies reported average velocities, percentage or number of collisions,
number of lane changes or reward signal plots [17–23, 26, 28–30]. Other studies reported
success rates for specific traffic scenarios such as mandatory merging [27, 31] or the
macroscopic effect on traffic flow [32].

Some studies directly compared DRL to rule-based methods. In an exploratory study,
Alizadeh et al. [33] compared the MOBIL model against a trained DRL agent in lane
change scenarios where Gaussian noise (0%, 5% and 15%) was applied on the observed
input states and found DRL to have a higher average reward score with fewer collisions.
In a study by Hoel et al. [34], it was found that a DRL based agent maintained a
higher average speed compared to a rule-based reference model (MOBIL and IDM) in
an overtaking task. Wang et al. [25] proposed a DRL-based decision-making module
with rule-based trajectory constraints and found higher average speed and safety rate
(proportion of episodes without collision) values compared to a rule-based policy.

1.3 research gap

Collectively, the cited literature so far suggests that DRL is a promising technique for
modelling lane change decision-making in AVs. Above all, numerous contributions
have been made regarding the improvement of the training process. Nevertheless, no
studies so far have investigated whether human occupants would react positively to the
resulting lane change behavior.

As a matter of fact, researchers have long regarded the concept of user acceptance as an
important factor in the development process of AVs. Using theoretical models such as
Technology Acceptance Model (TAM) [35] or Unified Theory of Acceptance and Use of
Technology (UTAUT) [36] as a baseline, researchers have developed conceptual models
in the context of AV acceptance [37–40] or conducted field- and survey-based studies
[41–46] to explain people’s intention to use various types of AVs. According to Osswald
et al. [37], ”being able to predict user acceptance would be helpful in the development
process to build appropriate systems and avoid issues that affect the acceptance of a
system.”

Considering the fact that its fundamental working principles are based on the mathemat-
ical optimization of a numerical reward that indirectly reflects drivers’ goals as opposed
to other methods which directly utilize human driving data (e.g. rule-based methods,
supervised learning, imitation learning, etc.), the resulting policy may potentially be
to the dislike of users or other traffic participants. For this reason, we argue it is espe-
cially interesting to evaluate DRL-based lane changing models from a user acceptance
perspective.
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1.4 aim of this research

The aim of this research is two-fold. The first aim is to design, develop and successfully
train a lane changing model using DRL. A three-lane highway environment is built using
Unity, a 3D engine, where the spatiotemporal traffic distribution is randomly generated
every episode based on real traffic flow data of the A4 highway in the Netherlands. The
lane change model follows a hierarchical approach, where the high-level decision-making
policy is based on a neural network along with a low-level vehicle control module. A
safety verification module is also added using a discrete action mask. The network
policy is trained using Proximal Policy Optimization (PPO) [47].

The second aim, which is our novel contribution, is to investigate whether people
agree with the decision-making and how they rate the proposed model based on four
acceptance constructs from literature. Our proposed model is statistically compared to
the rule-based model MOBIL [6], which is regarded as a baseline. Through an online
crowdsourcing experiment, we let respondents view a random series of 32 one-minute
long video demonstrations of both models from a first-person perspective in two different
weather conditions. In spite of the difference between models being the main point of
examination, we included the two different weather conditions (clear sunny weather and
misty weather with bad visibility) to investigate the robustness of acceptance ratings
in a wider range of possible weather conditions. During each video, the respondents
were tasked to press a response key whenever they did not agree with the vehicle’s
decision-making, followed by a questionnaire in which they rated the vehicle behavior’s
effectiveness, safety, human-likeness and reliability on a five-point Likert scale. It is
assumed that the amount of disagreements and four acceptance ratings as measured in
this study provide a reliable estimation regarding the respondents’ general acceptance
of each model.

1.5 overview

The remainder of this work is organized as follows. In Chapter 2, several theoretical
foundations and empirical evidence with respect to the proposed model and acceptance
assessment will be provided. This includes a driver behavior modelling framework, an in-
depth description of MOBIL, a detailed description of (deep) reinforcement learning, the
working principles of PPO and an empirical review of the four acceptance constructs used
in this study. Chapter 3 showcases the process behind the design of the simulator in Unity
(i.e. the environment in which the lane changing agent is trained), specifically focusing
on traffic generation and highway design. Chapter 4 describes the working elements of
the lane changing agent, including the overall algorithm structure, observation space,
action space, reward function and separate vehicle control module (which is part of
every vehicle). Chapter 5 and Chapter 6 describe the experiment method and results,
respectively. Finally, the results are discussed and future research recommendations are
provided in Chapter 7.



2 T H E O R E T I C A L F O U N DAT I O N

2.1 driver behavior modeling framework

Driver behavior modelling is a complex task that has primarily emerged to ”predict
driving maneuvers, driver intent, vehicle and driver state, and environmental factors, to
improve transportation safety and the driving experience as a whole” [48]. One such
model that is used as a reference framework in this study is that of Michon [49], which
classifies driving behavior on time-scale levels. He argues that there are three levels of
skill and control while driving a vehicle:

1. The strategical (planning) level defines the general planning of a trip including
destination planning, route planning, modal choice, time management and eval-
uation of costs and risks. Being the top level of control, it has the highest time
constant varying from minutes to hours.

2. The tactical (maneuvering) level consists of maneuvers such as obstacle avoidance,
turning, overtaking or lane changing. Time constants in this level are typically in
seconds.

3. The operational (control) level which consists of near instantaneous actions such
as pushing the gas pedal, steering or shifting gears and are executed in sequences.
This level has the shortest time constant, typically measured in milliseconds.

A comprehensive understanding of Michon’s model takes into account the various
levels of control, the flow of information between those levels and the influence of
the outside environment. As Figure 2.1 shows, there is a top-down flow of decision
making, meaning that the performed maneuvers at the tactical level serve to complete
the driving task(s) set at the upper strategical level. Likewise, maneuvers at the tactical
level are composed of action sequences at the operational level. There are also feedback
loops: based on the outcome of certain events or decisions, the driver may decide to
redefine decisions at either the same, or upper levels. Lastly, there is the surrounding
environment, constraining decision-making across all levels.

What this model implies is that all levels should be reflected in the lane change model.
To elaborate, lane changes should be safe and comfortable, but also improve efficiency
and traffic flow. These goals are discussed in-depth later, in Section 4.4.

2.1.1 A rule-based lane changing model: MOBIL

Even though traditional rule-based methods have their limitations, they are based on the
decision-making process of human drivers and therefore they provide valuable insights
when it comes to designing another model. One such model that is well-documented is
MOBIL [6]. Consider the situation in Figure 2.2, where vc and ac represent the velocity

5
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Figure 2.1: The hierarchical information flow structure according to Michon [49].

and acceleration of the ego-vehicle c that is planning a lane change to the left, respectively.
The neighbouring are denoted o and n, representing the ’old’ successive vehicle in the
original lane and the ’new’ successive vehicle in the target lane, respectively. The tilde
represents any variable in case a lane change occurs. The model’s working principles
are based on two distinct and independent criteria (i.e. rules): a safety criterion and
incentive criterion. If both criteria are satisfied, a lane change is initiated.

safety criterion The safety criterion checks whether a lane change is feasible in
terms of safety by considering the effect on the longitudinal acceleration of the successive
vehicle in the target lane:

ãn ≥ −bsafe (2.1)

where bsafe is the safety limit. This ensures that the deceleration of successive vehicle in
the target lane will not exceed a given threshold as a result of a lane change.

incentive criterion The incentive criterion determines whether a lane change
results in the improvement of the ego-vehicle’s traffic situation:

ãc − ac + p (ãn − an + ão − ao) > ∆ath (2.2)

where p ∈ [0, 1] is the politeness factor and ∆ath is the switching threshold. The first part
calculates the advantage from an egocentric point of view (i.e. the gain in ego-vehicle
acceleration) whereas the second part determines the gain (or loss) of the two vehicles
that are directly affected, weighted by a factor p. In essence, a lane change is only
viable if the egocentric acceleration gain minus the weighted sum of the losses of the old
(i.e. original lane) and new (i.e. target lane) successive vehicles is larger than a given
threshold value, provided a lane change were to occur. Note that this rule is valid for
symmetric passing rules (e.g. roads in the United States). The asymmetric variant, where
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acco

ac
~

n

Figure 2.2: MOBIL traffic situation [6]. The ego-vehicle is denoted by c, whereas o and n denote
the successive vehicles in the ’old’ and ’new’ lane, respectively.

a ’keep right’ policy is prevalent and overtakes in the right-hand lane(s) are forbidden
(e.g. roads in most of Europe), works as follows:

left→ right : ãs
c − ac + p (ão − ao) > ∆ath − ∆abias (2.3)

right→ left : ãc − as
c + p (ãn − an) > ∆ath + ∆abias (2.4)

where as
c =

{
min (ac, ãc) if vc > ṽlead > vcrit

ac otherwise
(2.5)

where ∆abias is a set parameter which should be larger than ∆ath [6] and as
c is determined

using the passing rule. The passing rule influences the acceleration in the right-hand
lane only if there is no uncongested traffic (ṽlead > vcrit) and the ego-vehicle is faster
than the leading vehicle in the left-hand lane (vc > ṽlead). A suitable value for vcrit is 60

km/h [6].

It should be noted that all values are calculated using a car-following model, whereas
MOBIL is only responsible for taking lane change decisions.

2.2 reinforcement learning

Reinforcement learning (RL) is a method in which software agents learn by means of
finding an optimal behavioral policy that maximizes the expected value of a cumulative
reward [24, 50]. In essence, the learner is not explicitly told what to do, but instead
must discover policy online through interacting with the environment and find out what
actions yield the highest reward. In an iterative fashion, the agent takes an action based
on the current state, which affects not only the immediate reward, but also the next state
and, through that, all subsequent rewards.

In any RL problem, the learner and decision-maker is referred to as the agent. All things
the agent interacts with is the environment, which happens in a sequence of discrete
time-steps t = 0, 1, 2, 3... At each time step t, the agent goes through a cycle called
an experience: it first perceives the environment’s state St ∈ S , then performs an action
At ∈ A(St) which subsequently results in a reward Rt+1 ∈ R ⊂ R1 and the new state

1 One can use Rt or Rt+1 to denote the next reward due to At. Unfortunately, both conventions are widely
used in literature. In this work, Rt+1 is used to emphasize that the next reward and state are jointly
determined from At.
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St+1. Here S is the set of possible states (i.e. state space), A(St) the set of actions available
(i.e. action space) in state St and R ⊂ R the set of all possible rewards. See Figure 2.3.
This cycle gives rise to a sequence called a trajectory:

τ = S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (2.6)

At some point, the trajectory ends at a final time step T, where it is in the terminal state.
Trajectories that start at the initial state and end in the terminal state (i.e. t = 0, ..., T)
are called episodes. Naturally, most agent-environment interactions can be broken down
in episodes. In these so-called episodic tasks, there can always be different outcomes -
where T is a random variable that varies from episode to episode - but all episodes end
in the terminal state and begin independently of how the previous episode ended. In the
special case of T = ∞, the agent-environment interaction can not naturally be broken
down in identifiable episodes, at which point they are called continuing tasks.

ENVIRONMENT

AGENT

REWARD RtSTATE St ACTION At

Rt+1

St+1

Figure 2.3: The agent-environment feedback framework in reinforcement learning [24].

2.2.1 Markov decision process

Typically, an RL problem is formally defined as a Markov decision process (MDP). If
the state and action spaces are finite, which is often the case for RL problems, then it
is called a finite Markov decision process. An MDP follows the assumption that the
next state only depends on the current state and action representation, i.e. it satisfies
the ’Markov property’ [24, 50]. Therefore, given any state s ∈ S and action a ∈ A, the
probability of transitioning into a next state s′ ∈ S with reward r ∈ R ⊂ R is denoted
as2

p(s′, r | s, a) = Pr
{

St+1 = s′, Rt+1 = r | St = s, At = a
}

(2.7)

For a finite state set S , the transition function can be described by a matrix P. If the
reward function R is described as

Rt = R(St, At−1) (2.8)

then a finite MDP is a 4-tuple 〈S ,A, P, R〉.

2 The notations s, a and r are general representations of state, action and reward regardless of time step t.
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The policy π maps the probabilities of the agent selecting each possible action a based
on its observation of the environment state s. More specifically, π(a|s) describes the
probability distribution of selecting action At = a for state St = s, i.e. it effectively
defines the behavior of the agent at t. The distribution is defined as

π(a | s) = Pr {At = a | St = s} −→ [0, 1] (2.9)

2.2.2 Optimization objective

As is stated in the introduction of this section, the objective of RL is to find an optimal
policy π∗ that maximizes the expected cumulative reward, which is mathematically
formalized in this subsection. In general, the goal is to maximize the return Gt:

Gt = Rt+1 + Rt+2 + Rt+3 + ... + RT (2.10)

However, this definition is problematic in the case of continuing tasks where T = ∞. For
this, the concept of discounting is introduced. The discounted return is defined as the
sum of future discounted rewards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
T

∑
k=0

γkRt+k+1 (2.11)

where γ ∈ [0, 1] is a set parameter, called the discount rate. Sometimes, a state may yield a
low immediate award, but is followed by other states that subsequently yield a long-term
high award. The discount rate determines the present value of future rewards: as γ

approaches 0, the agent will tend to consider immediate rewards like Rt+1. Conversely,
if the value is closer to 1, the agent will consider future rewards more strongly; it will
become more farsighted. Notice that as long as γ 6= 1, Gt will always have a finite value
in case T = ∞.

The expected return J(π) is defined as

J(π) =

∫
τ

p(τ | π)Gt = Eτ∼π [Gt] = Eτ∼π

[ T

∑
k=0

γkRt+k+1

]
(2.12)

where Eτ∼π[·] denotes the expected value of a variable given that the trajectories τ are
sampled while following policy π. This finally leads to the mathematical definition of
the RL optimization problem which is to be solved:

π∗ = arg max J(π) (2.13)

where π∗ is the optimal policy that is aimed to be obtained by altering the policy such
that the expected return is maximized. Note that the terms expected cumulative reward
and expected return are often used interchangeably.
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2.2.3 Value functions

The value function Vπ determines the value of a state s under policy π, which is informally
defined as the expected return when starting in state s and successfully following policy
π thereafter. Formally, it is defined as

Vπ(s) = Eτ∼π [Gt | St = s] = Eτ∼π

[ T

∑
k=0

γkRt+k+1

∣∣∣∣ St = s

]
(2.14)

The reward function can be regarded as the primary basis for altering the policy; without
rewards, there can be no value and value is estimated using rewards. However, the value
function is arguably as important. The agent performs actions based on the amount of
value, not the immediate reward, because these actions obtain the highest reward in the
long term [24].

Similarly, there is the action-value function Qπ, which depends on both the state and the
action. It returns the expected return starting from s, taking the action a and thereafter
following policy π:

Qπ(s, a) = Eτ∼π [Gt | St = s, At = a] = Eτ∼π

[ T

∑
k=0

γkRt+k+1

∣∣∣∣ St = s, At = a

]
(2.15)

Another way of interpreting Qπ is that is determines the ’quality’ of an action while in a
particular state.

2.2.4 Optimization methods

So far, it is assumed that the value functions can be estimated by computing expectations
over the whole state-space and storing them in state-action pair tables. The policy
can then be updated accordingly. However, this ’brute force’ method is expensive and
generally impractical unless the MDP is finite and small [24]. For this reason, most RL
methods involve function approximation in order to optimize the policy.

In general, there are two main categories for policy optimization: 1) value-based optimiza-
tion and, 2) policy-based optimization [50].

Value-based optimization: Q-learning

Value-based optimization algorithms are focused on optimizing the value functions,
usually Q(s, a). One of the most important and significant algorithms in this category is
Q-learning, which is often also the term used when talking about this category [24, 51].
Through the definition in Equation 2.13, we can define the optimal action-value function
Q∗(s, a) as

Q∗(s, a) = max
π

Eτ∼π [Gt | St = s, At = a]

= max
π

Eτ∼π

[ T

∑
k=0

γkRt+k+1

∣∣∣∣ St = s, At = a

]
(2.16)
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which returns the expected return starting in state s, taking action a and thereafter
following the optimal policy π∗. Put simply, the optimal action a∗ at state s is the action
a that returns the highest Q-value:

a∗ = arg max
a

Q∗(s, a) (2.17)

In Q-learning, the Q-value function is updated every transition from a non-terminal
state s:

Q(s, a)← Q(s, a) + α

[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
(2.18)

where α is a set parameter, the learning-rate, determining the relative weight of the new
update. It is important to note that the experience generated is ’off’ (not following) the
target policy, which is why these methods are often referred to as off-policy methods
[24, 51]. Off-policy methods allow reusing past experiences during learning which is
often done by storing experiences in a replay buffer D.

Policy-based optimization: Policy gradient

Policy-based methods focus on optimizing the policy directly without approximating or
learning an action-value function (e.g. Q) [52]. This is why these methods are labelled
as on-policy algorithms. Given the definition in Equation 2.12, the general goal is to
optimize π in order to maximize J(πθ) for some policy with parameters θ, which is often
done using gradient-based (a.k.a. policy gradient) methods.

Policy gradient methods attempt to estimate the gradient ∇θ J(πθ) using a variant of an
estimator with the general form

ĝ = Ê
[
∇θ log πθ(a | s)Ψt

]
(2.19)

which is obtained by differentiating the loss function

LPG(θ) = Ê
[

log πθ(a | s)Ψt

]
(2.20)

Here θ indicates the policy parameters and Ψt is a function dependent on the specific
method. Examples vary from the cumulative reward of the trajectory, a state-action value
function Qπ or an advantage function Aπ. The optimization problem can be solved
using gradient ascent, i.e. adjusting θ in the direction of ∇θ J(πθ). The policy is updated
according to the following step:

θ ← θ + α∇θ J(πθ) (2.21)

where α is the previously introduced learning rate, indicating the strength of the gradient
ascent update. Unlike off-policy methods, on-policy do not store past experiences in a
replay buffer and discards a batch of experiences once it has been used in a gradient
update.
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Figure 2.4: A single-output neural network.
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Figure 2.5: A multiple-output neural network.

2.3 deep reinforcement learning

One way of approximating value functions or policies is through the use of deep
neural networks, which is called deep reinforcement learning (DRL) and this enables
optimization through gradient-based methods. Usually, the neural network parameters
of a policy are denoted by θ whereas those of a value function by φ.

2.3.1 Artificial neural networks

An artificial neural network (ANN), as the names suggests, consists of a network of
neurons (sometimes called nodes), as an abstract representation of a real brain. A neuron
is formalized with numerical input(s) and output(s).

Working principles of a single neuron

Consider one neuron with n inputs x1, x2, ..., xn (see Figure 2.4). The signals being passed
through the inputs are aggregated as in

z = w1x1 + w2x2 + ... + wnxn + b =
n

∑
i=1

wixi + b (2.22)

where wi represent the weights which determine the importance of a specific input
signal and b is the bias which shifts the output of the neuron. Each neuron contains an
activation function f (z), which determines the output value: if the aggregated signal
that is passed through the activation function is strong enough, then the neuron will
output a high output value. Otherwise, the output will be a low value.

(Multiple) neuron layers

A fully connected layer with n inputs and m outputs is called a dense layer and commonly
represented by a matrix multiplication: z1

...
zm

 =

w11 . . . w1n
...

. . .
...

wm1 . . . wmn


x1

...
xn

+

b1
...

bm

 (2.23)
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or

y = Wx + b (2.24)

where W ∈ Rm×n is a matrix representing the weights and z ∈ Rm, x ∈ Rn, b ∈ Rm are
vectors representing the output, input and bias respectively.

Multilayer perceptron

In addition to multiple inputs and outputs, one can add layers of neurons between the
input and output layers called hidden layers. Models with such added hidden layers,
called multilayer perceptrons, are able to fit more complex data compared to a single dense
layer and therefore have a stronger learning capability [53]. For DRL, the input layer
represents the perceived state variables whereas the output layer represents the agent’s
action probabilities (discrete action space), action magnitude (continuous action space)
or the Q-values per action, depending on the method (see Section 2.2.4). The amount of
hidden layers and their corresponding sizes are set parameters. The neural network’s
parameters θ or φ determine all layer’s weights and biases and are suspect to change
during training.

z2z
2

zhz
2

z1z
2

z2z
1

zhz
1

x1

x2

xn

zm

z1

...

...

z1z
1

... ...

INPUT LAYER HIDDEN LAYERS OUTPUT LAYER

Figure 2.6: A multilayer perceptron with two hidden layers.

2.3.2 Proximal Policy Optimization (PPO)

PPO [47] is a state-of-the-art policy gradient ascent method for DRL. It was developed
as an algorithm seeking to attain the data efficiency and reliability of another algorithm
called trust region policy optimization (TPRO) [54], while retaining simplicity and ease
of use.

PPO and TPRO are based on the following gradient estimator:

ĝ = Êt

[
∇θ log πθ(At | St)Ât

]
(2.25)

where Ât represents an estimator of the advantage function at time step t. For TPRO and
PPO, the advantage is estimated using the truncated generalized advantage estimator
(GAE) [55]:

Ât = δt + (γλ)δt+1 + ... + (γλ)T−t+1δT−1 (2.26)

where δt = Rt + (γλ)Vπθ
φ (St+1)−V(St) (2.27)
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where Vπθ
φ (s) is a value-function estimator with parameters φ which is constantly

updated during training, λ ∈ [0, 1] is a smoothing parameter and T is the time-horizon
parameter which is much smaller than the episode length. Note that both time-horizon
and the time step of a terminal state are conventionally denoted by T. The index t in
this case represents the time index in [0, T], within a given length-T trajectory segment.
The incorporation of T ensures that GAE is a finite-horizon estimator that does not look
beyond T time steps back. Similarly to γ, λ contributes to a bias-variance tradeoff and
indicates how much the estimator should rely on estimated versus actual values (see
Equation 2.26) [55].

In basic words, Ât calculates how much better or worse a chosen action is compared to
what was expected at time step t. However, as this advantage function is often a noisy
estimate, there is a high probability of destroying the policy if one keeps performing
gradient ascent on a batch of experiences with a large α, while a small α on the other
hand, may be too conservative and prevent learning [54].

As opposed to the log πθ(At | St) function, TPRO uses the following (surrogate) loss
function:

LCPI(θ) = Êt

[
πθ(At | St)

πθold(At | St)
Ât

]
= Êt

[
lt(θ)Ât

]
(2.28)

However, without a constraint, LCLI would lead to an excessively large policy update if
an action is much more probable under πθ compared to the old policy πθold , resulting in
the proposed clipped surrogate loss function in PPO [47]:

LCLIP(θ) = Êt

[
min

(
lt(θ)Ât, clip

(
lt(θ), 1− ε, 1 + ε

)
Ât

)]
(2.29)

where ε is a parameter. The first term retains the surrogate loss function from TPRO
as described in Equation 2.28 whereas second term prevents potentially large policy
updates (which could ruin the policy) by clipping the probability ratio lt(θ) between the
bounds [1− ε, 1 + ε]. Finally, a minimum of the clipped and unclipped loss functions is
taken, resulting in a final lower bound on the unclipped objective.

The PPO algorithm is summarized in Algorithm 2.1.

2.4 relevant factors affecting user acceptance

This section provides some background information regarding the acceptance assessment
experiment, supported by a brief analysis of existing research. As stated before, AV
acceptance has been studied extensively in the past, with results ranging from the
development of theoretical models specifically focusing on AVs [37–40], to several field-
and survey-based studies [41–46].

The model that is used as the underlying foundation for our analysis is the multi-level
model of automated vehicle acceptance (MAVA) by Nordhoff et al. [39], which in turn
is based on two other proven models: UTAUT [36] and Car Technology Acceptance
Model (CTAM) [37]. MAVA is empirically supported by 124 studies and specifically
designed for highly automated vehicles (SAE levels 4 and 5). It presents a process-
oriented view on AV acceptance, where it is modelled as a sequential decision-making
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Algorithm 2.1: PPO
Hyperparameters : epsilon ε, minibatch size M, time-horizon T, epochs K
Input: initial policy parameters θ0, initial value function parameters φ0

1 for k = 0, 1, 2, ... do
2 Collect set of trajectories Dk = {τi} by running policy πk = π(θk) on the

environment for T time steps.
3 Compute discounted rewards R̂1, ..., R̂T.
4 Compute advantage estimates Â1, ..., ÂT based on Vπθ

φ .
5 Update policy by maximizing the surrogate loss function LCLIP(θ):

θk+1 = arg max
θ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

min
(

lt(θ)Ât, clip
(
lt(θ), 1− ε, 1 + ε

)
Ât

)
typically via K of steps minibatch M stochastic gradient descent with Adam
[56].

6 Fit value function by regression mean-squared error:

φk+1 = arg min
φ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

(
Vπθ

φ (St)− R̂t

)2

typically via K steps of stochastic descent.

process. Given the nature of this study (i.e. the assessment of a DRL-based AV highway
system), we will focus on the second stage, namely the ”favourable or unfavourable
attitude towards AVs on the basis of the evaluation of the instrumental domain-specific,
symbolic-affective and moral-normative characteristics of AVs” [39].

As becomes apparent from reading literature, there are numerous documented (and
possibly undocumented) acceptance constructs in this stage. As this research is focused
on evaluating the behavioral functionality of a DRL lane changing model and not on AV
acceptance in general, only some relevant factors are explored in this work. That is, only
constructs that are directly influenced by the model’s functional behavior are discussed
and later assessed in the experiment, although the authors acknowledge the importance
of all remaining factors.

performance expectancy Performance expectancy, otherwise often referred to as
perceived usefulness, is defined as the degree to which a person believes that using the
system will provide benefits in task performance [36, 39]. According to Venkatesh et al.
[36], this construct is the strongest predictor of intention to use a product. Both Nordhoff
et al. [41] and Choi and Ji [46] found a significant correlation between performance
expectancy and the participants’ intention to use an AV. Jing et al. [40] state that ”AV
acceptance is intensely predicted by perceived usefulness”, as reflected in all literature
that was collected in their analysis. In this work, the ’task’ is assumed to be reaching a
destination as fast and safely as possible, i.e. performance expectancy will be measured
by how efficient the agent is at performing its task.
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perceived safety Perceived safety, like performance expectancy, is also a domain-
specific characteristic of AVs and another key determinant of AV acceptance [39]. While
it is assumed to be unlikely that developers will be able to establish AVs to be fully
safe before their public release [57], several field studies suggest that safety is of high
importance for drivers. Castritius et al. [45] evaluated an automated truck platooning
system and report that safety concerns predominated in pre-test drive interviews whereas
safety was highlighted as the main advantage of the system in post-test drive interviews.
Both Xu et al. [43] and Cho et al. [58] report significant correlations between perceived
safety and intention to use an AV. One should note that this factor is of subjective nature
as opposed to objective safety.

trust Trust, indicated by how trust-able, reliable and dependable a system is, was
not valued in early acceptance models. Yet, it is a fundamental factor affecting human-
machine interaction [59, 60]. It is important to note that trust not only directly predicts
acceptance, but also indirectly affects it through the other constructs perceived usefulness,
perceived ease of use or perceived safety [40, 43, 46].

human-likeness Human-likeness in AVs has often been linked with increased user
trust and acceptance [61–64]. Research conducted by Griesche et al. [65] showed that
drivers prefer an automated vehicle driving style that is similar to their own. In
fact, human-likeness is a subject of a larger debate that questions how automated
vehicles should behave, as AVs that are too ’perfectly’ designed may not align with
the expectations of (other) road users [66]. Oliveira et al. [67] investigated the effect
of human-like driving behavior on user trust and acceptance but found no significant
differences between a human-like and machine-like driving style. They recommend a
balanced approach and argue that automated vehicles should be designed with both
human- and machine-like behavioral features in order to harness the advantages of
automation while still retaining a degree of user comfort due to familiarity. Since
DRL utilizes no (naturalistic) driving data for optimization, it is arguably important to
investigate the degree of human-likeness in the agent’s final behavior.
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This chapter provides an overview of the simulator environment in which the agent
operates and further highlights the process behind constructing the environment, specif-
ically focusing on how the surrounding traffic state is measured and generated. Several
metrics and notations are introduced to describe the individual state of vehicles and the
average state of traffic as a whole in Section 3.1. Through the use of real measurement
traffic data (see Section 3.2) in combination with pseudo-random number generators, a
function to randomly generate the spatiotemporal distribution of the traffic per (training)
episode is discussed in Section 3.3. Finally, Section 3.4 explains the concept of simulation
episodes, the fundamental structure behind the environment simulator.

A three lane, 5 km long straight highway is designed in Unity using free assets. Each
lane is 3.5 m wide and clearly marked. The road boundaries have 2 m wide shoulders
for clearance in addition to either a metal guardrail or concrete wall. Other arbitrary
surrounding elements such as trees, buildings or other roads are purely for aesthetic
purposes and have no effect on the agent or other traffic. Figure 3.1 shows an impression
of the environment.

Unity’s standard coordinate system is a left-handed Cartesian coordinate system mea-
sured in meters where the x-axis corresponds to the lateral direction, the z-axis to the
longitudinal direction and the y-axis to the vertical direction. To preserve consistency,
this coordinate system will also be used in the remainder of this study. Lanes will be
denoted by index k. Furthermore, the index α will be used to denote a vehicle, where
α− 1 denotes a leading/preceding vehicle and α + 1 a successive/lagging vehicle.

Figure 3.1: An impression of the 3D simulator environment. The agent is shown performing a
lane change towards the middle lane.
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3.1 traffic flow modelling

The behavior of all surrounding traffic has a direct impact on the agent environment.
This section considers all the variables with respect to the flow of traffic in the simulator
that are used to build a realistic traffic situation. Both microscopic- and macroscopic
parameters will be introduced in this section.

3.1.1 Microscopic parameters

Microscopic parameters describe the behavior of individual vehicles and how they inter-
act with surrounding traffic. Realize that these variables are also especially important
for the vehicle control module that is discussed later in this work in Section 4.5.

Following the vehicle index notation described above, xα and zα are used to denote a
vehicle’s position whereas vα and aα are used to denote the longitudinal velocity and
acceleration of vehicle α, respectively. Note that position is globally defined in the world
frame, while velocity and acceleration are in the longitudinal direction of the local vehicle
frame.

For vehicle α, the time headway (or just headway) ∆tα is defined as the time difference
between the front bumpers of vehicles a and a − 1. From that, we can define the
microscopic spatial quantities distance headway

dα = vα∆tα (3.1)

and distance gap (or just gap)

sα = dα − lα−1 (3.2)

where lα−1 denotes the length of vehicle α− 1. See Figure 3.2. Likewise, the time-gap is
the time difference between the front bumper of vehicle α and rear bumper of vehicle
α− 1.

vehicle α

(zα, vα)

sα

vehicle α-1

(zα-1, vα-1)

dα

x

z

Figure 3.2: Environment coordinate system, index notation and microscopic traffic quantities.

3.1.2 Macroscopic parameters

Whereas microscopic parameters describe the states of individual vehicles, macroscopic
parameters describe average state of traffic. There are three macroscopic metrics of
importance in this work: mean speed V, traffic flow Q and density ρ.
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The traffic flow (or intensity) is defined as the number of vehicles ∆N passing through a
point within a time interval ∆t:

Q(z, t) =
∆N
∆t

(3.3)

Usually, it is given in units of vehicles per hour (veh/h). It should be noted that the
inverse of traffic flow is the time mean of the headways ∆t̄α, the average time headway
between ∆N vehicles:

∆t̄α =
1

Q(z, t)
(3.4)

The mean speed is the average speed of the number of vehicles ∆N that passes through
the point during a time interval ∆t:

V(z, t) = v̄α =
1

∆N ∑
k

α0+∆N−1

∑
α=α0

vα (3.5)

Here V(z, t) is used to denote macroscopic speed in order to distinguish it from the
microscopic speed vα of single vehicles. The traffic density expresses the amount of
vehicles per unit length and can simply be estimated from the previous two metrics:

ρ(z, t) =
Q(z, t)
V(z, t)

(3.6)

3.2 highway data

As a means of constructing a realistic traffic template, actual highway traffic data is
used as a reference. The Dutch National Traffic Database NDW [68] collects nationwide
traffic data across the Dutch road system including the highway section used in this
study, which is made available as open data. The data of four separate sensors along a
three-lane highway are chosen to be included in this study. Over the span of 2019, the
hourly mean speed V and traffic flow Q are obtained, which are plotted in Figure 3.3.
The raw data and the exact locations of the sensors (A4 highway, Netherlands) can be
found in Appendix A. It should be noted that the legal speed limit was 120 km/h during
the time in which the measurements were taken as opposed to the limit of 100 km/h at
the time of writing this thesis.

Based on the traffic data, three templates of varying traffic flow are defined and used
in this study (see Table 3.1). Note that the traffic data gives no insight into traffic flow
of each individual lane. In order to simulate fewer and faster vehicles on left lanes
and vice-versa, we have taken the liberty to define V and ρ per lane separately. The
parameters of the total highway sample are still in reference with the traffic flow data.
The mean speed distributions have a standard deviation of 2.5 in lane 1 and 5 in lanes 2

and 3. Furthermore, lane 1 contains 20% of all highway traffic, lane 2 contains 35% and
lane 3 45%.
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Figure 3.3: Hourly mean speed and traffic intensity across 4 measurement points on the A4

highway. The transparent boundaries represent the standard deviations.

Table 3.1: Traffic templates

Template 1 Template 2 Template 3
(Q = 1500) (Q = 2500) (Q = 3500)

V(SD) ρ V(SD) ρ V(SD) ρ

Lane 1 120 (2.5) 3 120 (2.5) 5 120 (2.5) 6

Lane 2 114 (5) 5 110 (5) 8 100 (5) 12

Lane 3 110 (5) 7 105 (5) 11 90 (5) 18

Total 114 (-) 15 110 (-) 24 100 (-) 36

3.3 initial traffic state generation

Using the traffic flow templates and pseudo-random number generators, we can generate
each vehicle’s initial longitudinal position and their initial and desired speeds at the
start of a simulation episode. The stochastic element of each initial state helps the agent
explore a wide range of states, contributing to a higher degree of generalization. It
should be noted that traffic flow is assumed to be uncongested in this study, as congested
traffic behaves significantly different in term of traffic flow and speed [69, 70].

speed distribution The speed distribution determines the initial and desired speed
of each vehicle. A common assumption in traffic flow theory is that speed distribution
on a highway can be modelled according to a normal distribution, as long as the traffic
flow is uncongested [71, 72]. Moreover, Helbing et al. [73] and Treiber and Kesting [70]
provide empirical evidence that the speed distribution in each lane has a distinct normal
distribution with possible differences in mean speed between lanes.
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As such, the speed distribution in this work is modelled as a 3-dimensional multivariate
normal distribution. The distributions are assumed to be uncorrelated, i.e. the speeds in
an arbitrary lane do not influence the speeds in other lanes.

headway distribution For random, uncongested traffic flow, it turns out that time
headways can be represented by an exponential distribution [69, 74]. By taking the
product of time headway ∆tα and speed vα of a vehicle, the distance headway dα can
be calculated and through that, a spatial distribution of all cars on the highway is
determined.

traffic generation function The eventual function for generating the spatiotem-
poral traffic distribution is highlighted in Algorithm 3.1. All the input metrics are either
a set constant or defined in the traffic templates as defined in Table 3.1. For each lane,
the mean time headway ∆t̄α and lane density ρk are first determined from the lane traffic
flow Qk. Using Gaussian and exponential random number generators, each vehicle’s
velocity and time headway is then generated, from which the initial position is then also
calculated in a cumulative fashion, as shown in line 9. Note that the exponential random
number generator has a minimum output ∆tmin, which is set to 2 s in this work, based
on the well-known recommendation of ’holding a 2-second gap to the leading vehicle’.
As shown in line 3, a random distance between 0 and 20 m (uniformly distributed) is
added to the first vehicle’s initial position in order to prevent all first vehicles from
starting next to each other.

It should be noted that the used probability distributions are statistical approximations
of traffic situations that were specifically measured in the cited studies and are by no
means an accurate representation of the many possible traffic situations that occur on
real life highways. Yet, we do argue that this method is sufficient enough for generating
a varied traffic environment in the scope of this study.

Algorithm 3.1: GenerateTraffic
Input: per lane mean speed Vk, standard deviation σk, lane traffic density ρk,

lane traffic flow Qk, minimum time headway ∆tmin

Output: initial position vector zin and speed vector vin

1 for k = 0 to 3 do
2 ∆t̄α = 3600 1

Qk

3 z ∼ random.Uniform(0, 20)

4 v ∼ random.Gaussian(Vk, σk)

5 ∆t ∼ random.Exponential(∆t̄α, ∆tmin)

6 for α = 0 to ρk do
// Add initial position and velocity to the respective vectors

7 zin[α] = z
8 vin[α] = v

// Determine new values

9 z = z + v
3.6 ∆t

10 v ∼ random.Gaussian(Vk, σk)

11 ∆t ∼ random.Exponential(∆t̄α, ∆tmin)

12 return zin, vin
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3.4 simulation episodes

As explained in Section 2.2, RL agents accumulate experiences in so-called trajectories or
episodes: simulation loops that start from initial states and end at the time step T of a
terminal state. All highway environment traffic simulations follow this episode-based
structure.

At the start of each episode, an array containing the initial traffic states are generated
according to the function described before in Algorithm 3.1. The agent is then ’spawned’
in the middle lane as either the second, third or fourth car on the highway at the
specified initial speed. All other surrounding traffic is then spawned in a similar fashion.
These passive vehicles feature a static policy that prevents the execution of lane changes.
Simply put, a policy that continuously outputs a lane keeping action, regardless of state.
Furthermore, they attempt to reach a desired speed vdes that is identical to the initial
speed. After the episode is initialized, it is simulated until a terminal state occurs, which
happens when one of the following criteria is satisfied:

• The agent reaches the end of the highway, i.e. z = 5000. For agent training
episodes, a different 8 km long highway environment was used (explanations for
this follow later in Section 5.2).

• The agent collides with other vehicles or road boundaries, i.e. the metal guardrails
or concrete walls.

• The episode time limit is reached, provided it is set. Normally, this limit only exists
in training episodes where it has a specific purpose. Details and explanations for
this follow later in Section 5.2.

Due to the highway environment having a finite length, all passive vehicles that manage
to reach the physical end of the highway before the episode is terminated will be
instantaneously moved to the starting position of the highway (i.e. z = 0) where it will
have the same velocity. If one or more passive vehicle collide, the vehicles in question
will simply be removed for the remainder of the episode, although this did not occur
unless the lane change agent was involved.
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This chapter discusses the relevant design elements within the context of a DRL mod-
elling framework. The overall framework is described in Section 4.1. Whereas, as stated
before, the 3D environment is developed in Unity, the DRL agent is implemented using
Unity’s machine learning toolkit, ML-agents1 [75]. All the following RL elements are
discussed in-depth: environment state observation (Section 4.2), the policy action space
(Section 4.3) and the reward function (Section 4.4). In addition, Section 4.5 describes the
operational vehicle control module that is responsible for steering, velocity control and
lane change trajectory generation. As stated before, this is part of every vehicle in the
simulator, but it is included in this chapter for better readability.

4.1 overall agent modelling framework

As stated before, a hierarchical approach is adopted where the neural network policy is
solely responsible for environment perception and high-level decision-making whereas
a so-called vehicle control module is delegated responsibility for operational control (i.e.
steering, throttle control and trajectory generation). The overall framework structure
is described in Figure 4.1. Note that the figure is similar to Figure 2.3, but that the
vehicle control module is displayed as a separate block in order to emphasize that the
policy is only responsible for the decision-making and that it can not (directly) alter the
environment. Instead, the vehicle control module is directed by the chosen action At

and subsequently creates the next state St+1. Furthermore, the agent can force a new
episode which resets the environment (as previously described in Section 3.4). This cycle
is evaluated every time step ∆t.

4.1.1 Updating frequency

Unity computes (physics) calculations in the FixedUpdate() function, which by default, is
called at 50 Hz, i.e. every 0.02 seconds. However, using the function provided by Unity
ML-agents, RequestDecision(), the DRL agent experience cycle (as depicted in Figure 2.3)
can be evaluated at a different rate. In this work, an experience (i.e. a sequence of
[St, At, St+1, Rt+1]) is evaluated every time step ∆t = 0.1 s if the agent is lane keeping.
The reasoning behind this is as follows:

• Choosing a lower frequency reduces the amount of experience arrays to be pro-
cessed per unit of physical time, thereby reducing the computational cost to process
a training episode at the expense of a lower resolution. This is especially advanta-
geous with complex algorithms such as PPO, which performs expensive gradient
ascent/descent two times per update (Algorithm 2.1).

1 https://github.com/Unity-Technologies/ml-agents
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• Not evaluating an experience cycle during a lane change prevents the agent from
choosing another action, thereby preventing the agent from aborting a lane change
once it is initiated, which is by design.

• There is evidence of DRL algorithms collapsing in environments where ∆t is close
to zero [76].

• It would be difficult to capture the long-term consequences of strategic lane change
decisions if trajectories are computed within a time horizon that provides little to
no new information. In slower paced control tasks, such as strategy games, it was
found a larger time step resulted in higher performance, presumably due to agents
then ”having a greater capacity to learn associations between more temporally
distant states and action” [77]. In this work, it is assumed that the environment
state will not drastically change (i.e. provide no new information) at a rate of 50

Hz and that a lower value is needed to capture the strategic value of efficient lane
change decision-making.

• A policy solution may be found that relies on a system being able to control at
such a high frequency. Realistically, it may simply be unnecessary to evaluate a
lane change decision at such a fast rate.

AGENT

ENVIRONMENT

VEHICLECONTROL

RtSt

Rt+1St+1

EpisodeReset()

At

St+1

Figure 4.1: The overall structure of the DRL lane change modelling framework.

4.2 observed state

As is the case with many automated vehicle technologies, the state of the environment
that the agent can observe is dependent on the integrated sensors. That is, only mea-
surements within the agent’s range dmeas are observed, making the state in this problem
partially observable. The observed state St = [s1...s17] ∈ S consists of both ego-vehicle
as well as surrounding vehicle information. The full input observation state vector
including descriptions is summarized in Table 4.1.
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agent speed The agent’s speed s1, is normalized between the minimum and maxi-
mum speeds vmax and vmin km/h respectively. In this work, we set vmin = 80 km/h and
vmax = 120 km/h.

current lane States s2...4 describe the agent’s current lane and are elements in an
enumeration encoded in the one-hot style. If the agent is in a lane, a value of 1 (which
can be interpreted as True) is used to represent the state corresponding to that lane.
Otherwise, it is simply 0 (or False). Note that since the environment consists of three
lanes, this enumeration is also three elements long.

observation grid States s5...16 describe the surrounding vehicles’ relative positions
and velocities, mapped in a grid-like formation. The grid is comprised of the leading
vehicle in the left-hand lane, followed by the successive vehicle in the left-hand lane,
the leading and successive vehicles in the current lane and the leading and successive
vehicles in the right-hand lane respectively. In order to mimic the typical scanning range
of a LIDAR sensor, all vehicles within a range of dmeas = 200 meters will be included
[78]. Relative distances are normalized between 0 and this 200 meter limit whereas the
relative velocities are normalized between the minimum and maximum speeds vmin and
vmax respectively. If a vehicle is outside of the measuring range, it will be classified as
a vehicle driving at this range with no speed difference, i.e. the values 1 and 0 will be
assigned to relative position and velocity respectively.

warning to go right State s17 indicates whether the agent has space to return to
a slower right-hand lane if it is driving in the left-most overtake lane. The value is a
boolean that is True if there is both space in front and behind in the right-hand lane,
otherwise it is False. Having space in front is defined as the time gap to the preceding
vehicle being at least 3 seconds and the time-to-collision (TTC) being more than 20

seconds (provided it is positive). Conversely, having space behind is defined as the space
gap to the successive vehicle being more than 60% of that vehicle’s spacing policy, i.e.
sα+1 > 0.6sdes. Note that these parameters are arbitrarily chosen through trial-and-error
and can easily be changed for more aggressive or conservative behavior.

As can be seen, all states are either normalized floats or booleans, as is recommended
for faster convergence during training. If any state exceeds its boundaries, it is clamped
to either [0, 1] or [−1, 1], depending on the state.

Table 4.1: Input observation state vector St of the neural network

State Description

s1 normalized speed vi − vmin

vmax − vmin
s2...4 current lane True/False

s5

relative longitudinal
position of vehicle α− 1

in lane k− 1

∆zα

dmeas

...

s16
relative velocity of

vehicle α + 1 in lane k + 1
∆vα

vmax − vmin
s17 move to right True/False
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4.3 action space

Since the neural network is used for lane change decision-making, a discrete action space
is used in this work. Hence, each action refers to a different set of lateral and longitudinal
control references that is then executed through the vehicle control module. Some works
such as that by Liu et al. [23] use two separate action space branches where the lateral-
and longitudinal dimensions are regulated independently. In this work however, only
one branch is used that controls both dimensions simultaneously. The three possible
actions are described in Table 4.2 and correspond to left lane change, keep lane and right
lane change respectively where the leading vehicle in the target lane is designated as the
following target. The agent is designed to always pursuit a desired speed of 120 km/h,
i.e. vdes = vmax.

4.3.1 Discrete action masking

When using a discrete action space, it is possible to prevent certain actions from being
chosen for the next decision. In Unity ML-agents, this mechanism is called action masking.
As previously discussed in Chapter 1, several works successfully used comparable
techniques in their methods to prevent unsafe or irrelevant actions in order to accelerate
training, where it is commonly called safety verification/checking or safe exploration [21–
23, 25–28].

Action masking not only benefits the agent during training. Additionally, due to the
nature of DRL, there is always a possibility where a fully trained agent still chooses to
engage in dangerous behavior. This is especially possible when the inference environ-
ment is different compared to the training environment. This risk can additionally be
mitigated through the use of action masking even after the model has been trained.

Two action masks are implemented in this work:

1. If the agent is in the left-most lane, then a1 is unavailable. Similarly, if the agent is
in the right-most lane, then a3 is unavailable. This prevents the agent from driving
off the highway.

2. If either the TTC falls below 1 second or the space gap with any car in an adjacent
lane falls below 2 meters, then a lane change towards that lane is unavailable.
Note that these values are arbitrarily chosen (with trial-and-error) in order to
accelerate learning and are by no means considered hard-constraints on what is
widely considered safe or unsafe. Colliding and/or dangerous behaviour is still
possible.

Table 4.2: Output action space for the neural network

action longitudinal lateral

a1
follow vehicle α− 1

in lane k− 1
left lane change to

k− 1

a2
follow vehicle α− 1

in lane k
keep current lane k

a3
follow vehicle α− 1

in lane k + 1
right lane change to

k + 1
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4.4 reward function

Since the goal of RL is to generate the policy that maximizes the reward, the reward
function has a significant effect on the resulting behavior. For this reason, it is supposed
to reflect the following driver goals:

1. Drive safely.

2. Drive as fast as possible.

3. Drive efficiently.

4. Drive socially.

The reward function is defined as follows:

Rt =

{
−1 if collided

0.01rvel + 0.05ro − 0.01rld − 0.01rlc − 0.05rdanger otherwise
(4.1)

where

rvel =
v− vmin

vmax − vmin
∈ [0, 1] (4.2a)

ro =

{
1 if overtaking from the left

−1 if overtaking from the right
(4.2b)

rld =

{
1 if unnecessarily driving on overtake lane

0 otherwise
(4.2c)

rlc =

{
1 if lane changing

0 otherwise
(4.2d)

rdanger =

{
1 if tailgating or cutting off

0 otherwise
(4.2e)

Even though it is previously stated that the agent manages a different update frequency
compared to the Unity simulator, the reward is evaluated every Unity update loop
(i.e. every 0.002 s). This is done to capture important events during lane changes
such as tailgating. The numerical reward values are then simply summarized until
they are added to the next experience. In summary, the agent can collect the optimal
reward through driving as fast and right-sided as possible with minimum lane changing,
dangerous driving and colliding with other cars or the environment. The reward function
was designed according to the following reasoning:

• By normalizing the velocity reward, zero positive rewards are collected when the
agent drives at the minimum velocity and consequently the maximum value when
driving at the desired (i.e. maximum) velocity.

• The negative reward for lane changing is to discourage unnecessary lane changing,
forcing the agent to only perform lane changes when it estimates it could lead to a
potential future reward (i.e. an overtake leading to an increase in speed).

• Similarly, a negative reward is assigned for dangerous behavior. In this work,
tailgating is defined as the space gap sα to the preceding vehicle being lower than
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60% of the desired spacing sdes (see Equation 4.5). Furthermore, if a following
vehicle has to emergency brake (defined as a braking torque of 500 N/m or higher)
or the gap is lower than 60% of the spacing as a result of an agent lane change,
then the behavior is classified as cutting off.

• Social driving is accomplished by an overtaking reward and left driving penalty.
Overtaking is positively rewarded if it is done on a left lane, whereas overtaking
from the right results in an equal negative reward. Driving on the left is only
classified as unnecessarily if s17 = True (see Section 4.2). This approach is slightly
similar to that of [29, 30], except that this study utilizes TTC instead of time-gap in
order to account for both relative distance and velocity.

The choice of all reward weights were determined using mostly trial-and-error, as there
is no standardized method for designing the reward function apart from some best
practice rules.

4.5 vehicle control module

By default, vehicles in Unity are controlled through three inputs: motor torque, braking
torque and steering angle. The so-called vehicle control module is responsible for
regulating inputs and consists of three distinct features: longitudinal velocity control
using ACC, trajectory generation and trajectory tracking control. As previously stated,
all vehicles in the simulator possess this module, including the agent.

4.5.1 Velocity control

Similar to a real traffic scenario on a highway, each vehicle is supposed to adjust its
velocity to the surrounding traffic. This (longitudinal) velocity control can be achieved
using an Adaptive Cruise Control (ACC) system or a car-following model, enabling the
(automated) maintenance of a desired velocity vdes as well as a desired following gap
sdes of vehicle α with respect to a preceding vehicle α− 1.

Since acceleration is proportional to motor torque in the wheels [79], a torque based
model that is similar to the acceleration based model of van Arem et al. [80] can be used
in this work. Imagine the situation in Figure 3.2. In every update loop, two different
torque signals are computed: a reference torque signal Tref and a gap-control torque
signal Tgc. The reference torque is designed to reach a defined desired velocity vdes as in

Tref = kr (vdes − vα) (4.3)

where kr is a constant speed error factor. The gap-control torque is designed to preserve
a defined inter-vehicle distance (or gap) sdes between the ego-vehicle and preceding
vehicle and is based on the preceding vehicle’s torque, relative velocity and inter-vehicle
gap error. It is defined as

Tgc = kTTα−1 + kv (vα−1 − vα) + kd (sα − sdes) if zα−1 − zα ≤ dmeas (4.4)

where kT, kv and kd are constants. If a preceding vehicle is not within a pre-defined
measuring distance dmeas, then Tgc will have no value as a means of limiting the compu-
tational cost.
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The desired gap sdes is determined through the spacing policy. Zhou and Peng [81]
formulated a velocity-based spacing policy based on human driving data which will be
used in this work. It is defined as

sdes = 3 + 0.0019vα + 0.0448v2
α (4.5)

The torque is then determined by selecting the most restrictive torque signal:

Tα = min
(
Tref, Tgc

)
(4.6)

The input motor- and braking torques are then determined from Tα and simultaneously
clipped using the set parameters Tmax,motor and Tmax,brake as in:

Tmotor = clip (Tα, 0, Tmax,motor) (4.7)

Tbrake = clip (Tα, Tmax,brake, 0) (4.8)

preventing the system from exhibiting unstable and/or unrealistic behavior. Note that
when Tα is negative the vehicle brakes whereas a positive value leads to acceleration;
simultaneous braking and acceleration is impossible.

4.5.2 Lane change trajectory

Typically, lane change trajectories can be modelled with mathematical equations, i.e.
’ideal trajectories’ [82]. Examples vary from sinusoidal [83] or (quintic) polynomial [84]
functions to more advanced dynamic mathematical systems like the approach used by
Xu et al. [85]. Some works also opted to fit a curve to a large set of collected human
driving data [86–88].

For the sake of preserving simplicity, a quintic polynomial function is used to model
the (spatial) lane change trajectory. Since a quintic polynomial is twice continuously
differentiable, it holds the advantage of having a continuous curvature profile, resulting
in smooth steering without the need for sudden adjustments [84, 89]. Consider a road
vehicle on a lane of width w where z represents the longitudinal direction and x(z) is
the lateral position expressed as a function of z, as in

x(z) = a0 + a1z + a2z2 + a3z3 + a4z4 + a5z5 (4.9)

If a lane change maneuver has a length zlc and width xlc (i.e. the lane width w), the
unknown constants in Equation 4.9 can be solved by introducing the following boundary
conditions:

x = 0,
dx
dz

= 0,
d2x
dz2 = 0 at z = 0

x = xlc,
dx
dz

= 0,
d2x
dz2 = 0 at z = zlc

(4.10)

Solving this boundary condition problem results in the trajectory

x(z) = xlc

[
10
(

z
zlc

)3

− 15
(

z
zlc

)4

+ 6
(

z
zlc

)5
]

(4.11)
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Figure 4.2: The lateral position and curvature during a 100 m long lane change maneuver on 3.5
m wide lane(s). Here, x = 0 corresponds to the center of the original lane.

Furthermore, the curvature κ(z) [90] is defined as

κ(z) =

∣∣∣ (d2x/dz2) ∣∣∣(
1 + (dx/dz)2

)3/2 (4.12)

To illustrate, both the resulting lateral trajectory and curvature of a 100 m long, 3.5 m
wide lane change are plotted against longitudinal position in Figure 4.2. Given that the
constraints are met, the trajectory can be applied to any lane change segment with an
arbitrary starting location and orientation in the simulator by transforming from the
coordinate frame shown in Figure 4.2. Naturally, a trajectory towards the right lane can
simply be obtained by multiplying Equation 4.11 with −1.

To prevent a constant lane change length zlc for all situations, the lane change length will
be defined as a function of lane change duration tlc which is a constant and the velocity
at the time of initiating the lane change maneuver vlc:

zlc = tlcvlc (4.13)

4.5.3 Trajectory tracking module

With the trajectories for lane changing and lane keeping (i.e. a straight line in the middle
of the lane) defined, the car follows these reference trajectories using the Stanley method
[91]. Referring to the situation in Figure 4.3, the Stanley method is a nonlinear steering
control method that considers the the cross track error ect measured laterally from the
center of the front axle of the vehicle to the trajectory point (xp, zp) and the heading
error θe of the vehicle with respect to the path. The control law is given as

δ = θe + arctan
(

kect

vα

)
(4.14)



4.5 vehicle control module 31

δ

θp

(xp,zp)

ect

θe

θc

(xc,zc)

Figure 4.3: The Stanley method steering geometry [92].

where k is the manually tuned gain parameter and vα the longitudinal velocity of the
vehicle. The heading error can be determined as

θe = θc − θp (4.15)

where θp is the heading of the trajectory and θc the heading of the vehicle. The Stanley
method control law is proven to exponentially converge to zero cross track error and, if
sufficiently tuned, performs well at high speeds compared to other popular methods
such as the Pure Pursuit method [92].

4.5.4 Parameter tuning and resulting behavior

This section highlights all the chosen vehicle control parameters along with a short
motivation. The parameter values can be found in Table 4.3.

velocity control The velocity control aspect features the most parameters that need
to be tuned. Although literature provides reference values for the error factors [80],
different values are adopted in this study since Unity utilizes torque signals instead of
accelerations. Therefore, these parameters were manually tuned until reasonable car
following behavior and velocity control was achieved without unrealistic accelerations
and overshooting. Like stated before, acceleration is a linear function of torque [79]. To
verify this and allow for comparison with other literature, a linear regression analysis is
conducted on approximately 2000 driving data samples representing several scenarios
such as regular driving, heavy and medium braking and overtaking using the parameters
described in this section. As expected, a significant regression equation was found
F(1, 1925) = 1.1059× 104, p < 0.001, with an R2 of 0.846. Torque can be expressed in
acceleration through:

aα = −0.2212 + 0.0047Tα (4.16)
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The maximum motor- and braking torques used for clamping ensure a maximum
acceleration and deceleration of approximately 4.5 m/s2 and -5 m/s2, respectively. Note
that the regression analysis was performed with these clamping parameters already
implemented.

lane change trajectory Tuning the lane change parameters is relatively straight-
forward. The width is simply equal to the lane width of the highway environment.
When it comes to lane change duration, researchers have reported varying mean values,
such as 3.91 s [93] or 4.60 s [94]. At first glance, the lane change duration in this work
appears to be relatively short compared to the cited empirical evidence, although it is
certainly not uncommon considering that the data in these studies follows a log-normal
distribution with standard deviations of 2.34 s and 2.30 s, respectively.

trajectory tracking The trajectory tracking module only featured a single parame-
ter: the gain parameter k. Since no reference values can be obtained from literature, this
parameter was manually tuned until satisfactory steering behavior was achieved that
converged fast enough without overshoot or oscillation.

Table 4.3: Vehicle control parameters

Parameter Symbol Value

Speed error factor kr 250 Ns/m2

Torque error factor kT 1

Speed error factor kv 60 Ns/m2

Gap error factor kd 30 N/m2

Measuring range dmeas 200 m
Max motor torque Tmax,motor 1000 N

Max braking torque Tmax,brake -1000 N
Lane change time tlc 2.5 s

Lane change width xlc 3.5 m
Gain parameter k 0.4 rad/s



5 M E T H O D

As mentioned, the experimental part of this study consists of two main parts: the
development of the DRL highway agent and the subsequent acceptance assessment. In
both parts, the DRL-trained model, from now on referred to as the neural network (NN)
model, is compared against a baseline model. Firstly, the baseline rule-based model will
be introduced in Section 5.1. The agent training and inference method can be found in
Section 5.2. The acceptance assessment method, which is the main contribution of this
study, can be found in Section 5.3.

5.1 implementation of baseline model

The baseline model used in this work is MOBIL, as described in Section 2.1.1. Simi-
larly to the DRL-based model, MOBIL outputs a decision every ∆t = 0.1 s while lane
keeping and follows vdes = 120 km/h. As mentioned before, Unity uses torque as
opposed to acceleration as input, meaning that similarly to the velocity control module
(see Section 4.5.1), model parameters had to be adapted to fit the simulators working
principles. This was achieved by replacing all acceleration terms with their respective
torque equivalents in Equation 2.1 and Equation 2.3.

The values of the MOBIL parameters can be found in Table 5.1. The three torque values
are different compared to the values used by both Kesting et al. [6] and Alizadeh et al.
[33], which were approximately bsafe = −800 Nm, ∆Tth = 70 Nm and ∆Tbias = 110
Nm. It should be mentioned that the authors initially used these values as well, but
that the resulting MOBIL behavior exhibited an abnormally high lane change rate (e.g.
regularly exceeding 22 lane changes per 200 s episodes) and caused several collisions.
In order to facilitate a fair comparison, the chosen maximum safe braking torque was
made identical to the threshold at which the DRL agent was penalized during training
and the threshold and bias torques were adapted to result in behavior that was less
oscillatory.

Table 5.1: MOBIL parameters

Parameter Symbol Value

Politeness factor p 0.5 (balanced)
Changing threshold ∆Tth 200 Nm
Bias for right lane ∆Tbias 300 Nm

Maximum safe braking torque bsafe -500 Nm

33
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5.2 agent training and inference

Given the agent and the environment described in the previous chapters, the model was
trained using Tensorboard on a Windows 10 system with a Ryzen 3600 CPU clocked at
4.2Ghz, 16GB RAM and a Nvidia RTX 2060 Super GPU. A special 8 km long highway
environment without any aesthetic elements was created specifically for training (a lower
computational load enables faster training). The longer highway length was chosen in
order to ensure that all long-term effects of lane changes were captured.

Each training episode lasted 10000 Unity update steps (corresponding to 200s of time)
unless the episode was terminated early due to a collision. This time-based termination
was favoured over a spatial termination policy (e.g. terminate the episode after x km) in
order to prevent the agent from ’misusing’ the system by driving in slow lanes; episodes
would then take longer to complete, thereby accumulating more points as opposed to
driving as fast as possible and finishing the episode earlier. Training was terminated
after 5-million time steps, a value which was arbitrarily chosen, albeit large enough in
order to ensure that the agent has enough time to explore and converge to a solution. To
further accelerate the training process, all simulations were run at 100 times the original
time rate.

In addition to the training session, inference trials of 1-million time steps (i.e. 100,000

seconds) were run for all three traffic templates (see Table 3.1) per model.

5.2.1 Proximial Policy Optimization (PPO)

In this work, PPO was used as the reinforcement learning algorithm. More detailed
information regarding the working principles can be found in Section 2.3.2. It should
be noted that Unity’s implementation of PPO uses a so-called ’experience buffer’ for
storing the discounted returns and estimated advantages, which is first filled prior to
updating the policy through gradient descent as opposed to the vanilla implementation
which performs updates every T time steps. The used hyperparameters can be found
in Table 5.2. Due to the computational complexity, long training times and large set of
possible hyperparameter combinations, all values were determined through trial-and-
error and informal searches as opposed to a grid search.

Table 5.2: Training hyperparameters

Hyperparameter Symbol Value

Minibatch size M 64

Buffer size - 4096

Learning rate α 1e-5
Beta β 0.05

Epsilon ε 0.2
Time horizon T 256

Number of epochs K 10

Discount factor γ 0.99

GAE parameter λ 0.95
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5.2.2 Evaluation metrics

For training, the following metrics were collected: cumulative reward, mean normalized
velocity, number of lane changes per episode and cumulative number of collisions. In the
inference trials, mean normalized velocity and number of lane changes were measured.
We report descriptive statistics (mean, standard deviation, minimum, maximum) for all
metrics per traffic condition across both trials.

5.3 acceptance assessment

User acceptance of the system was quantitatively measured in a crowdsourcing ex-
periment where participants had to perform a key-pressing task complemented by a
questionnaire while watching demonstration videos of both the NN model and MOBIL.
The questionnaire is based on the constructs of theoretical models from existing technol-
ogy acceptance literature (as described in Section 2.4) and the items are adapted to fit
the system’s context.

5.3.1 Questionnaire design

Table 5.3 highlights all the items per construct. All construct questionnaire items were
measured on a 5-point Likert scale (1 = disagree strongly, 2 = disagree a little, 3 = neither
agree nor disagree, 4 = agree a little and 5 = agree strongly).

5.3.2 Videos

Four simulations were run as a 2 × 2 combination of model (NN and MOBIL) and
weather condition (clear sunset and mist1, creating a total of 4 experimental conditions.
Each simulation was run in 2-minute long episodes and recorded for 30 minutes, resulting
in exactly 1 hour of video per lane change model. These recordings were subsequently
cut into equal 1-minute long segments (i.e. half an episode). All video were 1280 pixels
wide and 720 pixels high (720p) and filmed from the first person view of a passenger in
the driver seat with working mirrors and speedometer (see Figure 5.1).

(a) In the sunset condition (b) In the mist condition

Figure 5.1: Snapshots of videos used in the experiment.

1 The misty weather was achieved using the Unity ’Fog’ setting in post-processing, with a value of 0.03,
obstructing the visual range beyond 40 m.

https://docs.unity3d.com/Manual/PostProcessingOverview.html
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5.3.3 Procedure

Participants were recruited online and performed the experiment remotely via the
crowdsourcing service Appen (https://appen.com/), where they would login and then
see our study listed among other experiments. They would then self-enroll for the study.
Participants from all countries were allowed to participate. Each participant was only
allowed to complete the experiment once. A payment of USD 0.25 was offered for the
completion of the experiment.

At the beginning of the study, the contact information of the researchers was provided,
followed by a short description of the purpose of the study which was described
as ”to evaluate the overall acceptance of an automated vehicle system changing lanes on a
highway”. Participants were then informed that they were free to contact the investigator
for questions, that they had to be at least 18 years old and that the study would
take approximately 30 minutes. A short informative section about anonymity and
voluntary participation then followed. Participants provided informed consent via a
dedicated questionnaire item. The research was approved by the Human Research Ethics
Committee of the Delft University of Technology.

Next, the participants were asked to answer questions regarding their sociodemographic
information (gender, age, nationality), primary mode of transportation, driving frequency
and mileage in the last 12 months and involve in accidents. The full Appen questionnaire
can be found in Appendix C.

The participants were then redirected to another website with the video experiment via
a clickable link. The following instructions were provided:

You will watch 32 1-minute long videos of an automated vehicle driving on
a highway in various weather conditions. The vehicle is always in automated
mode and will either change lanes (left/right) or stay in the lane. The speed
limit is 120 km/h. The left lane should only be used for overtaking. Please
try to imagine as if you are an occupant during a normal ride in the vehicle.
During each video press the key ’F’ whenever you feel the car changes lanes
when it should not change lanes, or when it does not change lanes when
it should change lanes. You can press the key as many times as you want
per video. The window of your browser should be at least 1300px wide and
800px tall. Press ’C’ to proceed to the first video.

Each participant was randomly assigned a subset of 32 out of 120 videos which were
a 2× 2 combination of model (NN vs MOBIL) and weather condition (clear sunset vs
mist), i.e. each participant watches an equal amount of videos per model and weather
condition. This means that there was a approximate 26.7% chance that a participant
was assigned a specific video. The subset of 32 videos was presented in random order
in four batches of 8. After each batch, the participants were prompted with a message
indicating their progress, such as: ”You have now completed 16 videos out of 32. When
ready press ’C’ to continue to the next batch.” Each video is followed by the acceptance
questionnaire with the four items presented in random order. After completing the
experiment, a unique code string was presented to the participants which they were
required to enter into the Appen questionnaire as proof for participating in order to
receive their compensation.
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Table 5.3: Acceptance constructs, their items and sources

Construct Items

Performance
expectancy

PE The vehicle’s driving behavior is efficient.a

Safety S The vehicle’s driving behavior is safe.b

Human-likeness HL The vehicle’s driving behavior is human-like.c

Reliability R The vehicle’s driving behavior is reliable.d

Note: all items are rated on a five-point Likert scale, i.e. 1 = disagree strongly, 2 = disagree a little, 3 = neither
agree nor disagree, 4 = agree a little and 5 = agree strongly.
a Modified from Venkatesh et al. [36]
b Modified from Osswald et al. [37]
c Custom item
d Modified from Choi and Ji [46]

5.3.4 Data-analysis

Descriptive statistics (mean, standard deviation) of the number of key responses and
questionnaire scores were calculated per model and weather condition, aggregated over
all videos. Statistical differences between lane change models (NN and MOBIL) and
weather condition (sunset and mist) were assessed using two-way repeated-measures
ANOVA. Additionally, relationships between participant age and gender and number of
disagreements (all videos aggregated) were investigated using a Spearman correlation
analysis whereas correlations between all five acceptance metrics were assessed using a
Pearson correlation analysis.

Descriptive statistics (mean, standard deviation) of the same metrics were calculated
on the video-level (aggregated over all participants) to investigate differences between
individual videos, separated by model. Correlations between number of disagreements
and questionnaire scores on the video-level were investigated using a Pearson correlation
analysis.

For each video, the average number of cumulative key presses were calculated as a
function of time, aggregated over all participants. Time segments with particularly sharp
increases in presses were visually analyzed.

The safety of all lane changes was evaluated and categorized in terms of ’urgency’,
’severity’ and minimum TTC according to the method by Lee et al. [95]. Correlations
between these metrics and percentage of participants that pressed the button at least once
during that lane change were investigated using a Spearman correlation analysis.

All data analysis was performed in Python using the packages pandas and scipy.stats.





6 R E S U LT S

Similarly to Chapter 5, this chapter also consists of two distinct parts in order to preserve
consistency. The agent training and inference results can be found in Section 6.1. The
acceptance assessment results, which is the main contribution of this study, can be found
in Section 6.2.

Note
The Unity simulator source files, including all the written code and the trained
neural network can be found at https://github.com/danielvdhaak/DRL-highway.

6.1 agent training and inference

In this section we first showcase the training process of the highway agent. As stated
in the previous chapter, the model was trained over 5-million steps whereas several
inference trials of 1-million steps each were performed afterwards.

6.1.1 Training results

Figure 6.1 plots the cumulative reward, mean normalized velocity, number of lane
changes per episode and total number of collisions against time during training. The
lines in the first three plots (cumulative reward, normalized velocity and lane changes
per episode) are smoothed for a clearer overview using a moving average filter of 10

data points wide through the function pandas.DataFrame.rolling(). The agent starts with
a random policy and zero learning, explaining the low cumulative rewards, abnormally
large amount of lane changes and presence of collisions at the start. Several observations
can then be made about the training process.

Firstly, as is reflected by Figure 6.1a, the cumulative reward rapidly increases between the
50K-250K period, generally indicating that the agent is learning. This is complemented
by a sharp decline in the number of lane changes and the absence of any collisions after
this period. Note that the presence of the discrete action mask (i.e. safe learning) does
not prevent the possibility of colliding with other vehicles as demonstrated by the 6

collisions in this time period.

What follows is a period (250K-1M) where the resulting policy mainly focuses on car-
following with a low lane changing rate (see Figure 6.1c). The absence of collisions
demonstrates that the agent has learned to avoid colliding with other vehicles. As the
environment randomly selects a traffic template, there is a subsequent random chance
that the agent will be impeded by a preceding car. This explains the high variance of the
cumulative reward and the normalized velocity during this period.

39
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After 1M steps, the amount of lane changes increases slightly. Furthermore, the cumula-
tive reward slowly variance decreases. These facts indicate that the agent has learned to
consistently and successfully overtake without relying on the environment’s random
traffic seed for a high reward.

6.1.2 Inference results

Table 6.1 shows the descriptive statistics (mean, standard deviation, min and max
values) of the normalized velocity per episode and lane changes per episode of the
inference trials across all three traffic templates per model. Neither model caused any
collisions.

In general, both models were able to maintain a velocity close to the desired value, with
mean values ranging between 0.98 and 0.80. However, the results indicate that the NN
model was able to maintain a higher velocity on average at the expense of fewer average
lane changes compared to the MOBIL model. The NN model data also exhibits a lower
variance and spread, indicating more consistent behavior.

Logically, mean normalized velocity decreases as traffic becomes denser while the
number of lane changes increases, presumably due to a larger amount of vehicles
potentially slowing down the agent. Furthermore, the variance of both metrics increases
with increasing traffic flow.

Table 6.1: Inference trial descriptive statistics

Model Traffic flow Normalized velocity Lane changes
Q M SD min max M SD min max

NN 1500 0.98 0.02 0.72 0.99 2.79 1.45 0 9

2500 0.93 0.08 0.57 0.90 4.31 1.36 1 9

3500 0.89 0.13 0.25 0.98 5.23 1.45 1 10

MOBIL 1500 0.95 0.05 0.73 0.98 4.89 1.98 1 9

2500 0.90 0.09 0.59 0.98 7.82 2.64 1 14

3500 0.80 0.15 0.19 0.98 12.7 3.36 1 21

Note: data was gathered over 1 million time steps (i.e. 100,000 seconds) of driving per condition.

6.2 acceptance assessment

6.2.1 Participants

A total of 1373 people participated in this study between 12 November and 21 December
2020. The survey received a satisfaction rating of 3.9 (n = 118) on a scale from 1 (’very
dissatisfied’) to 5 (’very satisfied’). Prior to the data analysis, a strict screening procedure
was adopted in order to filter out participants that did not complete the experiment
properly. Participants who indicated they did not read the instructions, indicated they
were under 18 years of age or who did not fully complete the task were removed. If
a person completed the survey more than once from the same IP address, only the
first response was kept. If a person cheated the system by filling in the Appen survey
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Figure 6.1: Agent evaluation metrics during training. The transparent plots represent the raw
data whereas the solid plots are smoothed.
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multiple times by reusing the code that was received after completing the task, only the
first response was kept. If a person was suspected to suffer from delayed video playback,
carried out a different key-pressing task1 or pressed the response key an anomalous
number of times (more than 100 times per video), their key-pressing data for the video
in question was discarded, but the questionnaire responses were kept.

In total, 288 (21%) participants were removed due to filtering, leaving N = 1085 partici-
pants from 69 different countries. On average, there were 31.7 (SD = 0.5) as opposed
to 32 responses available per participant, presumably as a result of data loss due to
server issues. This means that were was a 26.4% chance that a participant responded
to a specific video. Of the total of 34,432 responses across 120 videos, the mean (SD)
amount of responses per video was 287 (37.5). A total of 795 entries were removed from
the key-pressing data due to delayed video feedback, wrong task execution or excessive
pressing. A total of 1122 entries were removed from the key-pressing data as a result too
many presses.

The participants had a mean age of 37.3 years (SD = 11.4 years). A total of 666 participants
were male, 416 were female and 3 preferred not to respond. On average, the age of
obtaining a driver’s license was 21.5 years (SD = 4.8 years); 260 respondents provided an
invalid or no answer to this question, presumably due to not having a driver’s license.
The vast majority of respondents used a private vehicle for primary transport (n = 644),
followed by public transportation (n = 244), walking or cycling (n = 105), motorcycle
(n = 74), other (n = 8) and 10 provided no response. The average time to complete the
study was 61.9 minutes (SD = 17.5 minutes).

The three most represented countries were Venezuela (n = 478), United States (n = 53)
and Russia (n = 50). As stated, Venezuela is represented considerably more often than
any other country.

6.2.2 Analyses at the individual level

Table 6.2 shows the descriptive statistics (mean and standard deviation) of the number
of key responses and four questionnaire scores (performance expectancy, safety, human-
likeness and reliability) per participant, separated by model and/or weather condition
and aggregated over all videos per condition.

The mean (SD) number of button presses were 3.72 (7.61), 5.09 (9.04), 4.15 (7.90) and 4.69

(8.74) for the NN model, MOBIL model, sunset weather condition and misty weather
condition, respectively. Figure 6.2 shows the variation in mean button presses per
individual, separated by model. It can be observed that there is a greater variability for
MOBIL mean button presses as well as higher outlier values. Furthermore, a small group
of participants (indicated by the outliers) pressed the button a high amount of times on
average across both models. Follow-up analysis (n = 1063) reveals a weak Spearman
correlation between age and average amount of button-presses (rs = 0.16, p < 0.001),
i.e. older participants pressed a higher amount of times on average. There was no
significant correlation (p > 0.01) found between gender and number of button presses
or the questionnaire items.

The mean (SD) performance expectancy, safety, human-likeness and reliability ratings
were 3.87 (0.80), 3.84 (0.80), 3.93 (0.79), 3.87 (0.79) and 4.12 (0.72), 4.05 (0.75), 4.12

1 The data of 22 participants was obtained during a pilot study where the button-pressing task was different.
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Figure 6.2: Average number of button presses distribution per model. Results are aggregated
over all videos per participant (n = 1063).

Table 6.2: Acceptance construct ratings and button presses descriptive statistics (n = 1085)

Model Weather
condition

PE
Mean (SD)

S
Mean (SD)

HL
Mean (SD)

R
Mean (SD)

nr. presses
Mean (SD)

MOBIL sunset 3.90 (0.82) 3.90 (0.82) 3.96 (0.81) 3.92 (0.80) 5.00 (9.22)
mist 3.84 (0.86) 3.78 (0.88) 3.90 (0.83) 3.82 (0.85) 5.23 (10.29)
total 3.87 (0.80) 3.84 (0.80) 3.93 (0.79) 3.87 (0.79) 5.09 (9.04)

NN sunset 4.20 (0.71) 4.18 (0.74) 4.19 (0.72) 4.19 (0.71) 3.20 (7.25)
mist 4.03 (0.80) 3.92 (0.87) 4.04 (0.80) 3.98 (0.83) 4.28 (9.55)
total 4.12 (0.72) 4.05 (0.75) 4.12 (0.72) 4.09 (0.73) 3.72 (7.61)

total sunset 4.05 (0.71) 4.04 (0.72) 4.07 (0.71) 4.05 (0.70) 4.15 (7.90)
mist 3.93 (0.77) 3.85 (0.82) 3.97 (0.77) 3.90 (0.79) 4.69 (8.74)
total 3.99 (0.71) 3.95 (0.74) 4.02 (0.72) 3.98 (0.72) 4.41 (7.89)

Note: scores per condition are aggregated over all videos per participant. PE = performance expectancy,
S = safety, HL = human-likeness and R = reliability. PE, S, HL and R response options were 1 = disagree
strongly, 2 = disagree a little, 3 = neither agree nor disagree, 4 = agree a little and 5 = agree strongly.

(0.72), 4.09 (0.73) for the MOBIL and NN model, respectively. If separated by weather
condition, mean ratings were higher in the sunny weather condition compared to the
misty condition, i.e. the mean (SD) scores were 4.05 (0.71), 4.04 (0.72), 4.07 (0.71),
4.05 (0.70) and 3.93 (0.77), 3.85 (0.82), 3.97 (0.77), 3.90 (0.79) for the sunny and misty
conditions, respectively. Figure 6.3 shows the total counts and relative proportions of the
five Likert scales across all four acceptance constructs, separated by model. Whereas
the proportions of the Likert scales ”neither agree nor disagree” and ”agree” are fairly
similar across both models, there is a noticeable difference when it comes to the other
scales. NN model videos received a relatively larger proportion of ”strongly agree” votes
whereas MOBIL model videos received a larger proportion of ”strongly disagree” and
”disagree” votes, although the differences are not dramatic.

Differences between models and weather conditions

A two-way repeated-measures ANOVA was conducted to examine the effect of lane
change model and weather condition on the occurrence of disagreements and the four
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Figure 6.3: Distribution of acceptance construct scores across all responses separated per model
(n = 34432).

questionnaire scores (see Table 6.3). Results show that the utilized lane change model
had a significant (p < 0.001) effect on all five metrics (i.e. number of key presses and
the four questionnaire scores). We also found a significant effect for weather condition
on number of presses (p = 0.001) and all four questionnaire scores (p < 0.001). There
were significant model×weather interaction effects for the four acceptance constructs
performance expectancy, safety, human-likeness and reliability ratings (p < 0.001) but
not for the number of key presses (p = 0.02). Note that the model had the strongest
effect on all five variables, followed by weather conditions and then the interaction effect.
The effects are also noticeably weaker for the number of key presses compared to the
four questionnaire scores. Furthermore, the effects of weather are strongest on safety and
reliability ratings, but weaker on performance expectancy and human-likeness.

Post-hoc pairwise comparisons were conducted using paired t-tests with Bonferroni
correction. All comparisons can be found in Table 6.4. Results showed that the NN model
in the sunset caused significantly fewer disagreements among participants t(1084) =

−8.81,−8.53,−5.30, p < 0.001 and that it was rated significantly higher (p < 0.001)
in terms of performance expectancy t(1084) = 16.63, 18.15, 11.68; safety t(1084) =

15.37, 19.13, 14.60; human-likeness t(1084) = 13.69, 15.99, 10.81; and reliability t(1084) =

15.85, 18.46, 13.35 compared to MOBIL in sunset, MOBIL in mist and NN in mist,
respectively. The NN mist condition was rated significantly higher compared to MOBIL
in sunset and mist for the majority of metrics as well; only the difference in safety
rating (t(1084) = 0.89, p = 0.37) and number of key presses (t(1084) = −2.95, p = 0.003)
with MOBIL in sunset was non-significant. Finally, it was found that the MOBIL model
in sunset significantly outperformed (p < 0.001) the MOBIL model in mist across all
the four acceptance constructs but not in terms of key presses (t(1084) = −1.14, p =

0.25).
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Table 6.3: Two-way repeated-measured ANOVA results between conditions (n = 1085)

Variable Effect d f F p-value

PE model (1,1084) 245.69 < 0.001

weather (1,1084) 99.45 < 0.001

model:weather (1,1084) 32.26 < 0.001

S model (1,1084) 192.73 < 0.001

weather (1,1084) 189.72 < 0.001

model:weather (1,1084) 41.14 < 0.001

HL model (1,1084) 165.03 < 0.001

weather (1,1084) 93.85 < 0.001

model:weather (1,1084) 27.50 < 0.001

R model (1,1084) 211.50 < 0.001

weather (1,1084) 148.91 < 0.001

model:weather (1,1084) 37.70 < 0.001

nr. model (1,1084) 54.54 < 0.001

presses weather (1,1084) 10.78 0.001

model:weather (1,1084) 4.84 0.02

Note: scores per condition are aggregated over all videos per participant. PE = performance expectancy,
S = safety, HL = human-likeness and R = reliability.

Table 6.4: Pairwise comparison t-test results between conditions (n = 1085)

Pair PE S HL R presses
t t t t t

MOBIL sunset MOBIL mist 4.28
∗

7.58
∗

4.23
∗

6.30
∗ -1.14

NN sunset -16.63
∗ -15.37

∗ -13.69
∗ -15.85

∗
8.81

∗

NN mist -6.44
∗ -0.89 -4.54

∗ -3.32
∗

2.95

MOBIL mist MOBIL sunset -4.28
∗ -7.58

∗ -4.23
∗ -6.30

∗
1.14

NN sunset -18.15
∗ -19.13

∗ -15.99
∗ -18.46

∗
8.53

∗

NN mist -10.37
∗ -7.87

∗ -8.30
∗ -9.01

∗
3.78

∗

NN sunset MOBIL sunset 16.63
∗

15.37
∗

13.69
∗

15.85
∗ -8.81

∗

MOBIL mist 18.15
∗

19.13
∗

15.99
∗

18.46
∗ -8.53

∗

NN mist 11.68
∗

14.60
∗

10.81
∗

13.35
∗ -5.30

∗

NN mist MOBIL sunset 6.44
∗

0.89 4.54
∗

3.32
∗ -2.95

MOBIL mist 10.37
∗

7.87
∗

8.30
∗

9.01
∗ -3.78

∗

NN sunset -11.68
∗ -14.60

∗ -10.81
∗ -13.35

∗
5.30

∗

Note: scores per condition are aggregated over all videos per participant. PE = performance expectancy,
S = safety, HL = human-likeness and R = reliability.
∗ = significant at p < 0.00125. All significance levels are adjusted using a Bonferroni correction.
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Correlations among experiment metrics

A Pearson correlation analysis was conducted to investigate possible relationships be-
tween questionnaire construct scores and disagreement at the participant level (all
120 videos aggregated). A visualization of the correlation matrix can be seen in Fig-
ure 6.4.

It was found that number of key presses was significantly (albeit weakly) correlated with
all four acceptance constructs at the level of participants (n = 1063)2, i.e. rp = −0.11, p <

0.001 for performance expectancy, rp = −0.11, p < 0.001 for safety, rp = −0.10, p = 0.001
for human-likeness and rp = −0.11, p < 0.001 for reliability.

Substantial correlations were found between questionnaire constructs. Performance
expectancy scores correlated significantly with safety rp = 0.95, p < 0.001, human-
likeness rp = 0.88, p < 0.001 and reliability rp = 0.97, p < 0.001. Safety scores correlated
significantly with human-likeness rp = 0.84, p < 0.001 and reliability rp = 0.97, p <

0.001. Finally, we found a significant correlation between human-likeness and reliability
rp = 0.87, p < 0.001.
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Figure 6.4: Pearson correlations between questionnaire items and number of button-presses on
the individual level (n = 1063). ∗ significant at p < 0.01, ∗∗ significant at p < 0.005,
∗∗∗ significant at p < 0.001.

6.2.3 Analysis at the video level

Mean questionnaire item scores and number of key presses were calculated on the
video level, i.e. by aggregating over all participants per video. In terms of mean (SD)
key presses, NN videos received 3.18 (1.06) whereas MOBIL got 4.36 (1.62). Figure 6.5
highlights the average number of key presses, separated by model. The overall smaller
spread suggests that the NN model performed more consistently across its video subset

2 As described in Section 6.2.1, some participants’ key-pressing data was filtered due to internet connection
issues, originating from a pilot study or excessive pressing.



6.2 acceptance assessment 47

1 2 3 4 5 6 7 8
Average number of presses

MOBIL

NN

Figure 6.5: Average number of button presses distribution per video, separated by model (n =
120). Results are aggregated over all participants per video. The grey dots indicate
the raw data points.

compared to the MOBIL model. The NN model received mean (SD) questionnaire
scores of 4.14 (0.25) on performance expectancy, 4.07 (0.28) on safety, 4.14 (0.22) on
human-likeness and 4.11 (0.26) on reliability whereas MOBIL received 3.91 (0.31), 3.89

(0.37), 3.97 (0.25) and 3.91 (0.35), respectively.

The results of the Pearson correlation analysis on the video level (n = 120) can be
found in Figure 6.6. Similarly to the correlation on the participant-level, there were
substantial positive correlations between the four questionnaire items (rp > 0.97, p <

0.001). Moreover, considerable correlations existed between number of presses and
performance expectancy (rp = −0.85, p < 0.001), safety (rp = −0.82, p < 0.001), human-
likeness (rp = −0.83, p < 0.001) and reliability (rp = −0.83, p < 0.001).
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Figure 6.6: Pearson correlations between questionnaire items and number of button-presses on
the video level (n = 120). ∗ significant at p < 0.01, ∗∗ significant at p < 0.005, ∗∗∗

significant at p < 0.001.
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6.2.4 In-depth analysis of button-pressing behavior

The mean number of cumulative button presses were calculated for all 120 videos. We
repeat that all participants viewed a random subset of 32 videos, so each video was
viewed by a unique sample of participants. The mean cumulative button-presses as a
function of time for the 9 most-pressed and 9-least pressed videos for both models (each
represented by 60 videos) can be seen in Figures 6.7-6.8. The same plots for all videos in
descending order can be found in Appendix B. Judging from the sorted ranking, it can be
observed that the videos with high amounts of button presses generally featured MOBIL.
The translucent error bands and grey areas represent the 95% confidence intervals and
parts where the agent performed a lane change, respectively. The lane change of each
direction is represented by the letters ’L’ or ’R’ at the bottom. The confidence intervals
were calculated using percentile bootstrap resampling.

It can be seen that for both the most-pressed and least-pressed videos, lane changing
decisions generally had a substantial effect on the participants’ propensity to press the
button. To illustrate, the plots show larger increases in mean cumulative button presses
during lane changes or in time segments immediately followed by lane changes (which
can presumably be explained by delayed reaction) for both models as compared to most
other parts where the agent is lane keeping. Furthermore, the lane keeping segments are
characterized by either steady (albeit less considerable) button-pressing (e.g. videos 42

or 107) or almost no button pressing (e.g. videos 11 or 91). Some videos exhibit a larger
degree of within-subjects variation than other as indicated by the varying confidence
intervals.

With Appendix B as a reference, video segments with relative sharp increases in cumula-
tive presses were visually analyzed with the intention to investigate why participants
pressed the response key. To be brief, the explanations per model are summarized
below.

MOBIL

• There were multiple cases where the vehicle engages in multiple lane changes
within a short time span, only to return to that same lane some seconds later. To
illustrate, in the corresponding time plots of videos 21, 22, 30, 54, 60 and 91 in
Appendix B, we can observe this phenomenon as indicated by the lane change
segments in opposite directions with relatively steep increases in cumulative
presses.

• There was a considerable amount of cases where a slow vehicle was driving in
front of the vehicle followed by a lane change to the right as opposed to overtaking
from the left. From there, the vehicle would either (1) end up ’stuck’ behind slower
traffic, sometimes without being able to go left; or (2) overtake the slower vehicle
from the right-hand side. Notable examples of where this occurred are videos
11, 13, 27, 30, 41, 47, 48 and 60. For reference, see the corresponding plots in
Appendix B, where sharp increases in average presses can be observed during and
following the period after the right lane change.

• Lane changes in the right direction sometimes cut off approaching vehicles. A
more in-depth analysis regarding this problem follows later in this section.

• In some cases the agent was hesitant and waited before committing to an overtake.
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Neural network (NN)

• Similarly to MOBIL, there were also some cases where the NN agent executed a
lane change only to go back shortly after. It should be noted that this happened
to a considerably smaller extent, namely in videos 85 and 98. Judging from the
sorted plots in Appendix B, these videos featured the highest press rates of all NN
videos.

• Some participants did not agree with the vehicle changing back to the right-hand
lane(s), despite having enough space. Notable examples are videos 84 and 108.

Possible in-depth reasons for these phenomena are explored in Chapter 7.

Figure 6.9: Video snapshots of a case where the MOBIL agent lane changed to the right and
ended up following slow traffic in lane 3.

Figure 6.10: Video snapshots of a case where the MOBIL agent engaged in right-sided overtaking.

6.2.5 Analysis of lane changes

All lane changes were categorized in terms of ’urgency’ and ’severity’ according to the
method used by Lee et al. [95]. They used TTC to classify the urgency of lane-changes
on a 4-point scale, indicating how soon the lane change was needed, i.e. 1 = non-urgent
(TTC > 5.5 s), 2 = urgent (5.5 s ≥ TTC > 3 s), 3 = forced (TTC ≤ 3 s), and 4 = critical
(physical contact occurred in the same lane or emergency maneuvers were required).
Severity was classified based on the presence of vehicles in the so-called proximity zone
(time-gap ≤ 0.3 s behind and space-gap 1.2 m in-front of the agent) and the time to
reach the rear-end of the proximity zone Tr if a vehicle is in the fast approach zone (0.3 s
< time-gap ≤ 1.6 s), rated on a 7-point scale, i.e. 1 (vehicle is in FAZ where Tr > 5.0 s or
no vehicle present), 2 (3.0 s < Tr ≤ 5.0 s), 3 (1.0 s < Tr ≤ 3.0 s), 4 (Tr ≤ 1.0 s), 5 (vehicle
is in PZ), 6 (emergency maneuvers occurred) and 7 (physical contact occurred). Note
that both these zones refer to areas in the target lane, where points 1-5 are measured
at the moment the lane change maneuver is initiated. Whereas urgency describes the
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traffic situation in the agent’s current lane, severity was used indicate whether a vehicle
in the target lane was cut off or tailgated. In addition to the TTC value that was used for
determining urgency, which is calculated during lane change initiation, the minimum
TTC throughout the entire maneuver (for both front and rear vehicles) was calculated in
order to determine the level of danger. This ’danger’ value was calculated by taking into
account the relative space-gaps and velocities in the longitudinal direction only. These
values classified using the same 4-point scale as with the urgency rating.

Of the total 234 lane changes made in all 120 videos, 132 (56%) were made by MOBIL
and 102 (44%) by the NN model. Table 6.5 presents the frequency distributions for
urgency, severity and minimum TTC respectively, for both lane change models. Lane
changes performed by both the MOBIL- and NN agent were most commonly rated
non-urgent (98% and 100%, respectively), level 1 severe (70% and 95%, respectively)
and level 1 dangerous (77% and 95%, respectively). There were no lane changes rated 3

(forced) or higher and 6 severe or higher. On average, MOBIL performed lane changes
that were rated higher on urgency (1.022 vs 1.000) , severity (2.21 vs 1.12) and danger
(1.23 vs 1.05) compared to the NN agent. There was a notably high amount of lane
changes rated level 5 severe performed by MOBIL, indicating cases of possible tailgating
or cut-offs.

In an attempt to relate button pressing behavior during lane changes with traffic data, the
percentage of participants who pressed the button at least during a lane change once were
calculated for all lane changes. Even though it is realistically possible that participants
pressed the button after the lane change segment, the time window is still restricted to
the lane change segment itself due to the occurrence of some successive lane changes in
short time windows. As shown in Figure 6.11, there are some data points which were
classified with high levels of danger or severity that had a high percentage of presses.
A Spearman correlation analysis was performed on the lane change data per model. It
was found that for MOBIL (n = 132), relative button-pressing percentages significantly
correlated with severity rs = 0.38, p < 0.001 whereas no significant correlations were
found with level of urgency rs = 0.04, p = 0.67 or level of danger rs = −0.12, p = 0.18.
For the NN model (n = 102), no significant correlations were found between button-
pressing percentages and severity rs = 0.01, p = 0.92 or danger rs = 0.06, p = 0.53 (no
Spearman correlations were computed with urgency as all values were constant).
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Table 6.5: Lane change urgency, severity and minimum TTC frequency distributions.

MOBIL NN
Frequency Percentage Frequency Percentage

Urgency
1 (non-urgent) 129 98% 102 100%
2 (urgent) 3 2% 0 0%
3 (forced) 0 0% 0 0%
4 (critical) 0 0% 0 0%
Severity
1 92 70% 97 95%
2 0 0% 2 2%
3 0 0% 0 0%
4 0 0% 2 2%
5 40 30% 1 1%
6 0 0% 0 0%
7 0 0% 0 0%
Danger (minimum TTC)
1 (non-urgent) 102 77% 97 95%
2 (urgent) 30 23% 5 5%
3 (forced) 0 0% 0 0%
4 (critical) 0 0% 0 0%





7 D I S C U S S I O N

7.1 main findings

This study used deep reinforcement learning (DRL) to develop a automated lane chang-
ing model in Unity and measured the participants’ acceptance through a crowdsourcing
experiment. In our method, participants were required to watch a sequence of videos
from a first person perspective and press a response key whenever a moment of dis-
agreement occurred, after which they rated the video in question using a four item-long
questionnaire, allowing us to examine the technology acceptance of various lane chang-
ing models in varying weather conditions. Overall, agent training was successful and
the model’s behavior was rated relatively high in terms of efficiency (M = 4.12), safety
(M = 4.05), human-likeness (M = 4.12) and reliability (M = 4.09) on a scale from 1 to 5

while simultaneously causing varying levels of disagreements (M = 3.72, SD = 7.61)
among participants. Furthermore, it was rated higher on average across all four accep-
tance constructs while simultaneously causing fewer disagreements compared to the
baseline MOBIL model in both weather conditions, although the effects were moder-
ate.

7.2 agent training and inference

Training and inference results show that Proximal Policy Optimization (PPO) can effec-
tively be used to yield lane changing behavior on a 3-lane highway that is reasonable,
safe and consistent without any collisions with surrounding traffic. The discrete action
space of the agent allowed for a hierarchical approach in which the trained neural net-
work was only responsible for high-level decision-making whereas low-level car-control
and maneuver execution was executed by other, proven control methods. This allows
for flexible behavioral parameter tuning, such as changing to a different car-following
model or trajectory generation model for example. In addition, we used a discrete action
mask to guide exploration and accelerate the training process.

The inference results showed that the NN model was able to maintain a higher speed
on average with fewer lane changes compared to MOBIL in all three traffic densities.
Moreover, the variance of both metrics was lower, indicating a more consistent perfor-
mance. This is in accordance with the notion that DRL outperforms MOBIL, which has
been documented in other works before [33, 34]. Performance seemed to decrease as
the traffic density increased for both models. This was also to be expected, as more
surrounding traffic increases the probabilities that a slower car impedes the agent while
also obstructing possible overtakes, which would subsequently result in a lower average
velocity and the need for more lane changes.

55



56 discussion

7.3 button-pressing

According to the repeated-measures ANOVA and paired t-tests, there were significantly
fewer disagreements with the driving behavior of the proposed NN model compared
to the MOBIL model. Descriptive statistics showed a higher variation in individual
pressing behavior regarding MOBIL with respect to the NN. Furthermore, a small group
of participants exhibited a high amount of disagreements with regards to both models.
On the video-level, we can observe fewer presses on average with a smaller spread
as well, suggesting that NN model was more consistent in behavior across its video
subset.

7.3.1 Individual differences

We assume that the individual differences in disagreement can be explained by at least
three human factors: differences in driving style, attitude and experience with AVs.

According to Taubman-Ben-Ari et al. [96], there is exist multiple driving styles that
are classified through multiple facets or scales, such as reckless driving, patient and
careful driving or angry and hostile driving. Considering the fact that drivers prefer
an automated driving style that reflects their own [65], button-pressing could in part
be influenced by the participants trying to impose their own behavioral intent. Indeed,
Zhang et al. [97] found substantial differences in velocity, trajectory and initiation timing
between the lane changes of an aggressive driver versus a conservative driver. Inter-
driver differences when car-following have also been empirically documented using
naturalistic driving data [98, 99].

Attitude is another pre-defining factor, defined as the psychological tendency that de-
scribes the degree to which an individual likes and dislikes a particular entity [100]. It
has often raised particular attention from researchers and has been certified to have a
strong effect on AV acceptance [101–104]. Kyriakidis et al. [104] conducted an interna-
tional study among 5000 respondents and found a high spread in responses to fully
automated AVs, stating that ”some people were clearly against automated driving while
others would enjoy it.” Given the documented prevalence of large variety in attitudes
towards AVs, the possibility that attitude influenced individual rating behavior should
be considered.

The influence of AV experience on acceptance has been investigated by various authors.
Castritius et al. [45] conducted interviews and questionnaires before and after experienc-
ing a drive in a highly automated vehicle, stating that before the experience ”concerns
predominated among drivers”, subsequently finding ”a clear increase in acceptance after
experience with the system in real traffic” and that the concerns did not materialize.
Eden et al. [105] found a similar effect regarding safety concerns in a study concerning
an automated shuttle. Dikmen and Burns [106] also found a strong connection between
experience and attitude towards AVs. They investigated the experiences of 162 Tesla
Model S drivers who possessed significant experience in using the highly automated
features Autopilot and Summon (both highly automated systems), stating that these
technologies ”were not considered to be particularly risky” in spite of the high fre-
quencies of automation failures. It should be noted that their sample consisted of early
adopters of technology and were by no means representing the general population. As
AV technology is still relatively new in the automotive industry and our daily lives, we
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cannot rule out that individual differences in rating behavior are affected by varying
degrees of AV experience within the participant sample.

7.3.2 Button-pressing behavior

Multiple observations can be made regarding button-pressing behavior in the time
dimension. First and foremost, the occurrence of lane changes generally had a strong
effect on cumulative button presses as the time plots indicated relatively sharp increases
in average responses during and around lane change events for both models. Lane
keeping segments were characterized by either steady increases in average presses (albeit
to a lesser degree compared to lane change events) or little to no key responses. Moreover,
videos with high lane change frequencies also featured higher traffic densities, which
is consistent with the agent inference trial results. Videos that contained the highest
amount of button presses generally featured more lane changes compared to videos
with fewer button presses.

In-depth (visual) analysis revealed several behavioral characteristics that can ultimately
be attributed to the fundamental principles of each model. In case of MOBIL, the model
exhibited various cases of frequent (inefficient) lane changing in short time-spans and
lane changes that resulted in right-handed overtakes or the agent ending up behind
another slow vehicle. We believe this behavior highlights the inherent weakness of a
rule-based approach like MOBIL. To illustrate, MOBIL enforces a keep-right policy by
changing right as soon as safety- and incentive criteria are met regardless of the presence
of other traffic in the vicinity. Unless the criteria to change left (which would lead to
the correct choice) were met earlier, this keep-right policy led to unfavourable choices
where the agent ended up behind other slow traffic and having to change back again or
committing a right-sided overtake in case there was enough space on the right. Note
that there exists no build-in feature that prevents such short-seeing behavior, despite
Kesting et al. [6] arguing that the model ”reflects realistically far-seeing and anticipative
driving behavior.” In other cases, the agent cut-off upcoming traffic, exclusively when
performing right-hand lane changes. This can be attributed to the fact that MOBIL
considers the expected braking acceleration of the follower in the same lane instead of
the right lane. One can make the case that parameter values were not restrictive enough.
For example, increasing the safety criterion threshold could technically prevent cut-offs.
However, the used values in this work are already considerably stricter compared to
the default values in Kesting et al. [6]. Besides, more restrictive parameters would also
result in less decisive behavior in other situations.

In contrast, the NN model demonstrated adaptive behavior, only changing lanes if it
was strategically profitable in the long-term. Although inefficient lane changing also
occurred for the DRL agent, it happened to a considerably lesser extent. To summarize,
MOBIL inherently lacks the strategic capabilities and dynamic parameter tuning that fits
the situation, whereas DRL learned optimal behavior for each state through extensive
trial-and-error.

7.3.3 Button-pressing during lane changes

Analysis of the urgency, severity and minimum TTC of all lane changes showed that
the majority was classified as non-urgent and non-severe. There was a relatively large
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proportion of level 5 severe lane changes (30%) performed by MOBIL. However, as
could be seen in Figure 6.11, even though the level 5 severe rated lane changes generally
led to a moderate proportion (20% or more) of participants pressing the button at least
once, almost all lane changes were classified as non dangerous with a minimum TTC
of 5.5 seconds or higher. Furthermore, it was found that all of these lane changes were
from left to right and almost all occurred while driving 120 km/h, which is consistent
with the findings from the visual analysis. Note that even though high levels of severity,
danger or urgency could justify high levels of disagreement (as demonstrated by high
proportions of presses for some data points), it did not guarantee that a large proportion
of participants would press the button nor was it the only reason as there were multiple
cases with low severity or levels of danger that resulted in high pressing rates. We did
find significant correlations between severity and pressing percentages for MOBIL.

7.4 acceptance construct ratings

We found that respondents considered the resulting driving behavior of both the NN
and MOBIL model efficient, safe, human-like and reliable in both weather conditions.
Out of the four questionnaire item scores, the NN model was rated highest on efficiency
and human-likeness, followed by reliability and safety whereas the MOBIL model was
rated highest on human-likeness, followed by reliability, efficiency and then safety. Even
though the differences between the mean questionnaire scores were marginal, safety
ratings were the lowest for both models. Indeed, safety has been a major point of concern
in other AV acceptance studies as well [43, 45].

Repeated-measures ANOVA and paired t-tests yielded statistical evidence that the
decision-making behavior of our proposed model was rated significantly higher com-
pared to MOBIL in both weather conditions. Despite the novelty of our testing method,
we argue that these findings support the general hypothesis that ML methods such as
DRL are more suitable for controlling driving tasks than more traditional, rule-based
methods like MOBIL, which could explain the increasing popularity of ML methods
among researchers in general. Studies by Alizadeh et al. [33] and Hoel et al. [34] already
conducted the same comparison and in both cases found the DRL model to be superior to
MOBIL. Even though their simulator environments, agent designs and testing methods
are different to what is used in this study, their results support the above-mentioned
hypothesis.

Differences in construct ratings between weather conditions were also found to be
significant, albeit with a considerably smaller effect compared to the difference in models.
Weather condition effects were strongest on safety and reliability ratings, but weaker on
performance expectancy and human-likeness. This is expected, as bad visibility could
pose issues from a safety or trust standpoint while leaving performance unaffected.
Moreover, one should not underestimate the effects of poor visibility and the effect it has
on driver behavior. Studies reported that weather condition affects driver speed choice,
headway and overtaking frequency [107] and that reduced visibility (due to fog) leads
to a decrease in self-reported comfort when the headway remained unchanged [108].
As both models do not take into account external conditions such as weather and/or
visibility in their behavior, one can argue that adaptions are needed on the behavioral
end in order for these models to be robust in different weather conditions.
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7.5 correlation analysis

It was found that the four questionnaire items scores (performance expectancy, safety,
human-likeness and reliability) correlated strongly (rp > 0.8) with each other. Reliability,
a sub-item of trust, was found to correlate strongly with performance expectancy in other
studies [43, 59]. Xu et al. [43] also found strong correlations between safety and perfor-
mance expectancy and between safety and trust. Note that positive correlations between
construct ratings could likely also be explained by a common cause (i.e. participants
giving similar ratings due to general acceptance towards the model or AVs in general),
or methodological factors (i.e. items with identical response options that cluster on the
same component). After all, survey items are known to be statistically unreliable [109].
Another possibility is the effect of national differences which has been documented
on other works [104], although this effect was not examined since the cross-national
differences fall outside of the research scope.

There was a weak (positive) correlation between the propensity to disagree and age,
but not between disagreement and gender. Some literature exists that empirically
documented the difference in preferred automated driving style between age groups
and gender [110], but this effect was not captured in this study. Furthermore, the
correlation coefficients could have been attenuated due to the sample consisting mainly
of young people (median age = 36). It is also possible that disagreement increased
with age because older participants took the task more seriously. In a crowdsourcing
study featuring a similar button-pressing task, [111] could not rule out the possibility
that certain skewed demographic factors (nationality, age and gender) influenced the
differences in button-pressing rates between participant groups.

Moreover, the (negative) correlations between number of presses and the acceptance
constructs were significant but weak (< 0.3) on the individual-level, possibly suggest-
ing that disagreement wouldn’t necessarily lead to non-acceptance for all individuals.
However, substantial (negative) correlations (> 0.8) were found between number of
presses and the acceptance constructs on the video-level, which suggests that number
of presses could provide an indication for (general) acceptance. This is not unfeasible,
since humans prefer AVs that drive similarly to their own driving style [65].

7.6 study strengths and limitations

A limitation of our simulator environment (and therefore our study) are several simplifi-
cations with respect to traffic realism. Firstly, the surrounding traffic in our simulator
did not engage in lane changing behavior and therefore could be considered unrealistic.
Secondly, a static trajectory generation module was used, with fixed start and end points
as soon as the lane change is initiated, not allowing adaptions in case a dangerous
situation arises during a lane change maneuver, prompting the need for dynamic mod-
ules [85, 112]. Lastly, the highway environment did not feature curved roads like real
highways.

In the context of crowdsourcing research and its apparent advantage of enabling the
recruitment of a diverse sample on an international scale, the participants’ demographic
data suggested that the respondents were mainly young people with a relatively large
group originating from Venezuela. It is possible that the overall findings may be
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influenced by these sociodemographic factors. To elaborate, vehicle owners with the
highest interest in AVs are between the ages of 18 and 37 [104]. Still, a large sample
was obtained, contributing to the validity of our findings. It is important to note that
these results should be interpreted carefully, as the experiment was conducted online
with no supervision from the researchers, i.e. some unfiltered data could have come
from participants that did not take the task seriously. In summary, what crowdsourcing
experiments lack in environmental control it makes up for in participant recruitment,
sample diversity and data gathering efficiency and one can argue it is a powerful tool to
explore certain hypotheses [113, 114].

The nature of the survey task presents several methodological issues as well. It is
unknown whether key presses occurred due to actual disagreement with the model’s
behavior or methodological factors such as task engagement. Expectancy is another
factor: people may feel pressed to find conflicts and be extra critical. Moreover, the
threshold for pressing may differ between participants, where some may press only
in case of considerable conflicts whereas others press at the slightest difference in
preference. One can not rule out language barriers either, further jeopardizing the
validity of our results. Another shortcoming is the arbitrary nature of our exclusion
criteria for situations of abuse. Even though others advocate not to exclude participants
[114], some extreme cases with abnormally high amounts of button presses could not be
ignored.

Lastly, more clarifications are needed regarding the causal determinants for button-
pressing behavior (both in general in specifically during lane changes) and the observed
individual differences. Although some hypotheses are provided regarding the causes of
button presses (unnecessary lane changing, safety issues), we believe that disagreement
or feelings of conflict in this experiment could be the result of a combination of different
factors and that this reflects the multidimensional highly complex nature of AV accep-
tance. Regarding the observed difference between individual responses, even though
ample evidence is provided that could theoretically explain the reported individual
differences, it is speculative in nature and further research is required to understand the
factors underlying this divergence in responses.

7.7 future research recommendations

Judging from our findings, it can be argued that DRL proves to be a sufficient method for
developing a lane change model for use in AVs in the context of the four used acceptance
constructs. Even though, as stated before, some observations were made regarding the
causes of disagreements with the decision-making, further research should be conducted
in this area. Furthermore, the relationship between decision-making disagreements and
the acceptance constructs and to which extent disagreements pose an issue towards
acceptance should be further explored. After all, one can argue that the behavior does
not have to be completely identical to that of humans [65].

Considering the individual differences, one of the most important areas of improve-
ment would be parameter individualization, i.e. personalization of the models behavior
according to the user’s preference. Further (qualitative) research would be needed
to clarify the needs of different human drivers and passengers in the context of auto-
mated lane changing on highways, similar to the mixed-methods approach that was
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conducted in [45]. Reinforcement learning can be combined with imitation learning
or supervised learning in order to harness the robustness of reinforcement learning
while enabling personalization. In this case, the agent would train in a parallel fashion
through self-exploration while at the same time attempting to copy the behavior of a
human demonstrator. This combined approach would result in a model that exhibits
both machine- and human-like behavior which is recommended in other literature [67].
Reinforcement learning has already been combined with imitation learning in other
studies [115]. Note that the hierarchical approach in our method allows for personal-
ization in other control levels as well (e.g. more comfortable driving or personalized
driving trajectories on the operational level).

7.8 conclusion

This study successfully trained an agent to perform automated lane changes using
deep reinforcement learning (PPO), replicating the results that were found in preceding
literature. We showed that our proposed model was able to maintain a higher velocity
on average at the cost of fewer lane changes. In addition, we found new contributing
evidence that an automated lane change model based on NN was rated higher than the
rule-based MOBIL model in a user-acceptance context. To illustrate, our proposed NN
model received higher ratings for performance expectancy, safety, human-likeness and
reliability while simultaneously provoking fewer instances of disagreement. Weather
condition (i.e. visibility) had a weaker effect which mainly influenced safety and
reliability ratings. Moreover, there were substantial individual differences in rating
behavior.

We believe these findings have important implications for researchers and car manufac-
turers that wish to design highly automated lane change decision-making models that
replace the human driver. Firstly, it suggests that DRL is a feasible method for develop-
ing a lane change model in the context of acceptance. However, even though the system
may be to the liking of human occupants, there are still bound to be varying degrees of
disagreement and that more research is needed to uncover the reasoning behind this
mechanism. Moreover, the observed individual differences serve as a reminder that a
’one size fits all’ approach may not work in the context of AV algorithms, urging the
need for personalized behavioral driving models. Finally, more adaptive capabilities are
needed in order to make these models robust in varying weather conditions, especially
in terms of perceived safety.
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A A 4 H I G H W AY T R A F F I C DATA

This appendix contains the raw traffic data (hourly intensity q(t) and hourly mean
velocity V(t)) averaged across four data points [68] on the A4 highway in the Netherlands.
All data has been averaged over the year 2019 with Saturdays, Sundays and holidays
excluded. See Table A.1 and Table A.2.

The sensors are located close to interchange Burgerveen. See Figure A.1 for a detailed
view on the sensor locations. Only the traffic headed north has been included in the
data. This part of the highway has three lanes.

Figure A.1: Locations of the traffic sensors
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76 a4 highway traffic data

Table A.1: Hourly intensity q(t) across 4 measurement points in veh/h

0041hr l0205ra 0041hr l0209ra 0041hr l0214ra 0041hr l0218ra

00:00 516.3 513.6 475.2 513.6
01:00 286.1 284.8 254.2 285.4
02:00 227 226.2 199.8 226.5
03:00 323.3 322.9 297 325.4
04:00 680.5 680.9 623.1 688.1
05:00 2663.8 2671.9 2535.5 2717.9
06:00 5677.6 5669.2 5484.3 5723.8
07:00 5551.8 5545.9 5385.3 5599.9
08:00 5410.7 5393.8 5253.2 5432.6
09:00 4943.7 4924.3 4727.3 4943

10:00 4092.1 4073.1 3849.2 4091.7
11:00 3675.6 3663.2 3443.8 3688.1
12:00 3986.3 3974.3 3754 3999

13:00 3965.7 3950.9 3720.4 3974.1
14:00 3976.9 3962 3735.5 3991.8
15:00 4467.6 4457.1 4243.1 4493.5
16:00 4837.2 4821.7 4669 4862.2
17:00 4755.5 4746.9 4636.1 4779.5
18:00 4056.1 4040.6 3932 4056.1
19:00 2676 2662.6 2555 2662.8
20:00 1871 1862.8 1779.2 1871.8
21:00 1670.4 1663.8 1597.6 1670.6
22:00 1441.4 1433.2 1373.9 1439.7
23:00 1076.9 1070.5 1017.2 1072.5
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Table A.2: Hourly mean velocity V(t) across 4 measurement points in km/h

0041hr l0205ra 0041hr l0209ra 0041hr l0214ra 0041hr l0218ra

00:00 113 111 112 112

01:00 108 106 108 107

02:00 106 104 107 105

03:00 109 108 110 109

04:00 113 112 114 113

05:00 111 109 112 110

06:00 90 88 91 87

07:00 77 74 76 73

08:00 73 72 73 71

09:00 84 82 83 82

10:00 99 97 100 97

11:00 101 99 102 99

12:00 101 99 101 99

13:00 99 96 98 96

14:00 101 98 100 97

15:00 100 97 100 97

16:00 100 98 100 98

17:00 99 96 98 96

18:00 103 101 103 101

19:00 113 111 113 112

20:00 114 112 114 113

21:00 115 113 115 114

22:00 116 114 115 114

23:00 115 114 115 113
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Figure B.1: Average cumulative button presses over time ranked 1 to 15
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Figure B.2: Average cumulative button presses over time ranked 16 to 30
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Figure B.3: Average cumulative button presses over time ranked 31 to 45
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Figure B.4: Average cumulative button presses over time ranked 46 to 60
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Figure B.5: Average cumulative button presses over time ranked 61 to 75
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Figure B.6: Average cumulative button presses over time ranked 76 to 90
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Figure B.7: Average cumulative button presses over time ranked 91 to 105
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Figure B.8: Average cumulative button presses over time ranked 106 to 120
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Automated Lane Changes

General questions

Instructions 

You are invited to participate in a research study entitled "Automated lane changes". The study is
being conducted by Daniel van der Haak, master student Mechanical Engineering at the Delft
University of Technology, The Netherlands. He is supervised by Dr.ir. Joost de Winter and Dr. Pavlo
Bazilinskyy of the Department of Cognitive Robotics, Delft University of Technology, The
Netherlands. Contact: d.j.vandenhaak@student.tudelft.nl (mailto:d.j.vandenhaak@student.tudelft.nl).

The purpose of this research is to evaluate the overall acceptance of an automated vehicle system
changing lanes on a highway. Your participation in this study may contribute to a better
understanding of the acceptance of automated vehicles, and the creation of lane changing models.

You are free to contact the investigator at the above email address to ask questions about the study.
You must be at least 18 years old to participate. The survey will take approximately 30 minutes of
your time. In case you participated in a previous survey of one of the researchers of this study, your
responses may be combined with the previous survey. The information collected in the survey is
anonymous. Participants will not be personally identi�able in any research papers arising from this
study. If you agree to participate and understand that your participation is voluntary, then continue. If
you would not like to participate, then please close this page. Before the study starts, the images will
be preloaded. This may take a few minutes depending on your Internet connection.

Have you read and understood the above instructions? (required)
 Yes

 No

What is your gender? (required)
 Male

 Female

 I prefer not to respond

What is your age? (required)

In which type of place are you located now? (required)
 Indoor, dark

 Indoor, dim light

 Indoor, bright light

 Outdoor, dark
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 Outdoor, dim light

 Outdoor, bright light

 Other

 I prefer not to respond

If you answered 'Other' in the previous question, please decribe the place where you
located now below.

Which input device are you using now? (required)
 Laptop keyboard

 Desktop keyboard

 Tablet on-screen keyboard

 Mobile phone on-screen keyboard

 Other

 I prefer not to respond

If you answered 'Other' in the previous question, please decribe your input device
below.

At which age did you obtain your �rst license for driving a car or motorcycle?

What is your primary mode of transportation (required)
 Private vehicle

 Public transportation

 Motorcycle

 Walking/Cycling

 Other

 I prefer not to respond

On average, how often did you drive a vehicle in the last 12 months? (required)
 Every day

 4 to 6 days a week

 1 to 3 days a week

 Once a month to once a week

 Less than once a month

 Never

 I prefer not to respond

About how many kilometers (miles) did you drive in the last 12 months? (required)
 0 km / mi



/

 1 - 1,000 km (1 - 621 mi)

 1,001 - 5,000 km (622 - 3,107 mi)

 5,001 - 15,000 km (3,108 - 9,321 mi)

 15,001 - 20,000 km (9,322 - 12,427 mi)

 20,001 - 25,000 km (12,428 - 15,534 mi)

 25,001 - 35,000 km (15,535 - 21,748 mi)

 35,001 - 50,000 km (21,749 - 31,069 mi)

 50,001 - 100,000 km (31,070 - 62,137 mi)

 More than 100,000 km (more than 62,137 mi)

 I prefer not to respond

How many accidents were you involved in when driving a car in the last 3 years?
(please include all accidents, regardless of how they were caused, how slight they
were, or where they happened) (required)

 0

 1

 2

 3

 4

 5

 More than 5

 I prefer not to respond

How often do you do the following?: Becoming angered by a particular type of driver,
and indicate your hostility by whatever means you can. (required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Disregarding the speed limit on a motorway.
(required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Disregarding the speed limit on a residential
road. (required)

 0 times per month

 1 to 3 times per month
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Experiment 
You will be asked to leave Appen to participate in the rating task. You will need to open the link below.
Do not close this tab. In the end of the experiment you will be given a code to input in the next

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Driving so close to the car in front that it would
be dif�cult to stop in an emergency. (required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Racing away from traf�c lights with the
intention of beating the driver next to you. (required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Sounding your horn to indicate your annoyance
with another road user. (required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond

How often do you do the following?: Using a mobile phone without a hands free kit.
(required)

 0 times per month

 1 to 3 times per month

 4 to 6 times per month

 7 to 9 times per month

 10 or more times per month

 I prefer not to respond
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question on this tab. Please take a note of the code. Without the code, you will not be able to receive
money for your participation. All videos will be downloaded before the start of the experiment. It may
take a few minutes. Please do not close your browser during that time. 

Open this link (https://lane-change-crowdsourcing.herokuapp.com/) to start experiment.

Miscellaneous questions

Test Validators

Type the code that you received at the end of the experiment. (required)

In which year do you think that most cars will be able to drive fully automatically in
your country of residence? (required)

Please provide any suggestions that could help engineers to build safe and enjoyable
automated cars.
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