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Multi-robot Task Assignment for Aerial Tracking
with Viewpoint Constraints

Aaron Ray1, Alyssa Pierson1, Hai Zhu2, Javier Alonso-Mora2, Daniela Rus1

Abstract— We address the problem of assigning a team of
drones to autonomously capture a set desired shots of a dynamic
target in the presence of obstacles. We present a two-stage
planning pipeline that generates offline an assignment of drone
to shots and locally optimizes online the viewpoint. Given
desired shot parameters, the high-level planner uses a visibility
heuristic to predict good times for capturing each shot and uses
an Integer Linear Program to compute drone assignments. An
online Model Predictive Control algorithm uses the assignments
as reference to capture the shots. The algorithm is validated in
hardware with a pair of drones and a remote controlled car.

I. INTRODUCTION

We wish to develop algorithms for coordinating heteroge-
neous systems of aerial and ground agents when the ground
agents are not cooperating with the aerial vehicles. One class
of problems within this broad scope is following a ground-
based moving agent (e.g. robot or human) with an aerial
vehicle, subject to constraints such as “keep a certain feature
of the agent in the field of view while avoiding environmental
obstacles”. This problem is challenging because it requires a
real time adaptive solution for the local control with global
objectives and constraints. Practical and robust solutions
will enable new applications such as autonomous drone
videography that go beyond today’s recording capabilities.
Current drone videography can follow an actor. In this paper
we describe a solution that supports finer-grain specifications,
such as “keep the actor’s face in the field of view”. The
solution has to combine real-time local response with global
planning to accommodate the presence of obstacles (e.g.
avoid bridges).

More specifically, we enable a team of videography drones
to autonomously track and capture a sequence of desired
shots of a moving target such as a ground robot or a
person. Framing a scene for videography is a complicated
process that depends on a range of aesthetic preferences of
the videographer. However, many of the important framing
primitives can be distilled into a small set of parameters that
define the camera’s desired viewpoint, such as size of the
target in the frame, position of the target in the image, and
position of the camera relative to the target. We would like
for a videographer to be able to specify a set of desired
shots based on these parameters, and have the team of drones
determine the best trajectories for capturing the video of the
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Fig. 1. Viewpoint from a videography drone looking at a target (red).
Another drone (yellow) optimizes the capture of a different shot while
avoiding occlusions from obstacles (blue).

subject as it moves through the environment. We assume
access to a good prediction of the subject’s motion, as
otherwise there is little use in pre-planning long sequences
of shots.

We present a two-stage viewpoint optimization pipeline
that enables a team of drones to capture a series of shots
that match desired aesthetic qualities. A high-level planner
uses a visibility heuristic and an Integer Linear Program
(ILP) optimization routine to choose when each drone should
capture which shot. This assignment results in a reference
trajectory that can be tracked by an online Model Predictive
Control (MPC) algorithm with a cost function based on the
specified viewpoint parameters. The controller can locally
optimize the drones’ trajectories to account for stochastic
target motion. We demonstrate a videography scenario with
a pair of drones assigned to capture several shots of a remote
controlled racecar in the presence of ellipsoidal obstacles.

Related work A large body of literature exists related
to defining shot aesthetics for a videography drone [1].
These works explore parameterizing desired shot qualities
and controls [2][3][4][5], feasibility of dynamic shots [6],
and assigning sequences of shots [7][8]. Other work as
focused on algorithmic frameworks for helping directors
achieve desirable aesthetic qualities of their shots[9][10].

Drone videography requires precise motion planning and
control algorithms to achieve the defined aesthetic objec-
tives. One common approach solves a constrained nonlinear
optimization in a receding horizon fashion [11], [12], [13].
Other approaches optimize for trajectory smoothness [14],
focus on a series of static landmarks [15], or use deep
reinforcement learning [16]. More generally, the problem of
tracking multiple subjects is similar to persistent monitoring
[17], [18]; patrolling and surveillance [19], [20], [21], [22];
and pursuer-evader games [23], [24], [25] .

Contributions We build upon the authors’ previous work
in [12] and focus on the problem of optimizing sequences
of shots from multiple cameras and perspectives subject to
constraints. In contrast to [12] and other recent work [16][26]
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that has focused on reactively finding good viewpoints in
unstructured scenes, we assume that the operational environ-
ment is known and the subject’s motion can be estimated
ahead of time. In this context, a director may have a set of
desired shots that should be captured during the scene. It
is nontrivial to decide when each shot should be taken so
that the shots are minimally obstructed and the ordering is
feasible for the drones. A higher-level global planner is used
to augment the online local planner and ensure the desired
viewpoints can all be captured. The main contributions of
the paper are:
• Presenting a novel high-level videography planner based

on a visibility heuristic to globally optimize ordering of
shots of a dynamic target

• Showing that the reference trajectory generated by
this assignment can be followed by a viewpoint-aware
receding horizon controller to locally optimize shot
aesthetics

• Demonstrating these algorithms in hardware experi-
ments with a pair of drones and remote control racecar
videography target

The remainder of this paper is organized as follows: we
briefly summarize shot aesthetic specifications and formalize
the minimization of the viewpoint costs in Section II. Section
III presents the high-level global planner which generates
a sequence of shots and reference trajectory to guide each
drone. In Section IV we explain the videography MPC
formulation used for local viewpoint optimization. Section
V describes our experimental results.

II. PROBLEM DEFINITION

When a predictable subject is operating in a known
environment, we would like to be able to coordinate a
set of desired shots such that each shot is captured with
minimal occlusion. For example, repeated takes on a movie
set or a well-trodden mountain bike path are scenarios
where the subject’s motion is fairly restricted and can be
estimated ahead of time, even if the exact path is not known.
Existing videography approaches focus on reactive planning
to maintain good views of a target. We are more interested
in global planning that ensures a team of videography drones
sequences the set of desired shots to ensure they are all fit
in within the allotted time and with minimal obstruction.

A. Preliminaries

Throughout this paper vectors are denoted in bold lower-
case letters, w, matrices in plain uppercase, M , and sets in
calligraphic, S. ‖w‖ denotes the Euclidean norm of x and
‖w‖2Q = wTQw denotes the weighted squared norm. We
use matrices Q that appear in these weighted norms are
used to represent tuneable parameters in cost functions that
allow the user to express the relative importance of different
desiderata.

We assume that nd videography drones operate in an
environment with known set of obstacles O. While the MPC
formulation we use requires obstacles to be represented as
ellipsoids, our main contribution of the higher-level planner
supports any obstacle set representation that allows for
computing ray intersections efficiently.

Fig. 2. Illustration of the shot schematic. Within each shot, we optimize
based on viewpoint costs. We also optimize the shot assignment for the
sequence of shots between drones.

We also assume access to a probability distribution over
the videography subject’s future trajectory, denoted Y. We
sample from this distribution to predict good times for shots
to be taken.

B. Defining Desired Shots
Much of the defining aesthetic of a camera framing is

determined by:
1) Orientation of the camera relative to the film subject,

denoted by azimuth and elevation, (ψ, θ),
2) Subject’s Distance to the camera, ρ,
3) Subject’s Position in the frame, (Cx, Cy).

as presented in [12]. We also note that it is usually desirable
for the videography subject not to be occluded in the image.

In addition to the spatial viewpoint parameters, we con-
sider a time window within which a shot should be taken,
[t0, tf ], and a desired duration τ i.

Definition 1 (Shot Specification). A shot specification Si =
(θi, ψi, ρi, Cix, C

i
y, t

i
0, t

i
f , τ

i) is set of viewpoint parameters
and timing constraints define each shot. We denote the set
of desired shot specifications S.

Figure 2 illustrates these parameters. The viewpoint prop-
erties depend on the drone state xb, target state xt, and
obstacles in the environment O. We briefly define a cost
function associated with each parameter, and refer to [12]
for derivation. Let rct and rcct denote the vector from the
camera origin to the target expressed in the world and
camera reference frames respectively. Let rcd denote the
desired vector from the camera origin to target as defined
by image position parameters Cx and Cy . Let αd represent
the unit vector corresponding to the desired angles (θ, ψ)
for the drone relative to the target. With these definitions,
we can define cost functions that penalize a drone’s state as
it deviates from the desired viewpoint. Let cimage denote the
cost for the target’s position in the image:

cimage =

∥∥∥∥ rcd
‖rcd‖

− r̂cct

∥∥∥∥
Qi

.

The cost cscale penalizes distance deviation from the target,

cscale = ‖‖rct‖ − ρ‖Qs
,

and cangle is a cost that depends on the deviation of the
drone’s angles relative to the target:

cangle =

∥∥∥∥− rct
‖rct‖

− αd
‖αd‖

∥∥∥∥
Qa

.

Finally, cocclusion penalizes drone positions that have
an obstructed view of the target. This cost is based on
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the position of the target compared to the occlusion cone
associated with the camera and each obstacle. We define a
cost based on dv , the distance by which the target is within
an obstacle’s occlusion cone. Let roco represent the vector
from the camera to an obstacle in the obstacle’s reference
frame. We define cocclusion = max(0, dv)

2 where

dv =
ro

T

co r
o
ct√

‖roco‖
4 − ‖roco‖

2
−

√
‖roct‖

2 − (roTco r
o
ct)

2

‖roct‖
2 ,

if ro
T

ct r
o
co/ ‖roco‖ > ‖roco‖− 1. Otherwise, the target is closer

to the camera than the obstacle is and cocclusion = 0. Each
obstacle contributes a separate occlusion cost. A similar
visibility cone concept can be used to penalize mutual
visibility between drones as in [13], although we do not
employ that cost here.

C. Defining Desired Sequences
These costs c aid in quantifying the quality of a single

shot. Our viewpoint objective is to minimize these costs over
a sequence of shots.

Definition 2 (Shot Sequence). A shot sequence Ai =
(Staj , S

tb
k , . . .) is the set of all shots assigned to drone i.

Each assigned shot Staj corresponds to a shot specification
Sj and a time when the drone should be capturing that shot,
ta. Aji denotes the j-th shot assigned to drone i. The set of
all assigned shots across all drones and times is A = ∪iAi.

For each shot, we define a vector of cost functions Jji that
penalizes drone i’s state from deviating from the parameters
defined by shot Sj . J

j
i contains penalties for deviating from

the desired location of the target in the image plane, its size
in the image plane, and the camera position relative to the
target. Jji also penalizes drone states that have an obstructed
view of the target. Intuitively,

Jji = [ciimage, c
i
scale, c

i
angle, c

i
occlusion]T . (1)

Given the trajectory of the videography target, Jji is a
function of drone i’s state and time. For a given set of shots
S, our goal is to then find the trajectories for all drones such
that J is minimized over all shots.

Problem 1. For a desired set of shots S and a target
trajectory Y , we define the total videography cost L as a
function of the trajectories of the nd drones:

L(x1, . . . ,xnd
) =

|S|∑
j=0

min
tj0≤t≤t

j
f

min
i

∫ t+τj

t

∥∥∥Jji (xi(t), t)∥∥∥
Qx

dt.

(2)

In general, Y is stochastic, and by extension Jji is as well.
We seek a control policy for each drone that will minimize
the expected videography cost L.

We use a two stage approach to find good policies for
minimizing L. First, a high-level planning algorithm uses
a simple heuristic to predict good times for capturing each
shot. A discrete optimization algorithm assigns each drone to
a sequence of shots that minimizes the heuristic cost. Next,
the optimized assignment and expected target trajectory are

used to generate a reference trajectory for a videographic
Model Predictive Control (MPC) algorithm that locally op-
timizes the aesthetic parameters online.

III. SHOT ASSIGNMENT
The high-level shot planning is carried out by a centralized

algorithm that finds a sequence of shots for each drone to
capture, as well as a reference trajectory to follow. The
algorithm requires the desired set of shots S, a distribution
over target trajectories Y, and a set of obstacles in the
environment O. It relies on a heuristic to choose a low-cost
reference trajectory that guarantees visibility of the target.
The heuristic provides an estimate of the best times to start
capturing each shot. We sample the lowest-cost times for
each shot and assign each drone a sequence of shots and
times based on an ILP minimization.

A. Assignment Heuristic
We seek a simple heuristic for each shot i that maps

time to a reference position, while ensuring that the target
is visible. We refer to the position given by this heuristic
as x̂i(t), and Hi(t) as the associated cost. By focusing
on a single cost and position at each time, the problem of
optimizing shot cost over all possible trajectories simplifies
to choosing a sequence of shots and times for each drone.

The target is visible from the drone if and only if a ray
cast from the target to the drone hits no obstacles before
reaching the drone. This observation inspires a heuristic for
the reference shot position — cast a ray from the target’s
position xt in the desired shot direction, stopping at the
desired shot distance or the intersection with an obstacle,
whichever is first. Let x∗(t) = xt(t) + ρiα and x̂(t) =
xt(t) + dα where

α = [cos θ cos(ψ + ψt), cos θ sin(ψ + ψt), sin θ]
T ,

and d is the smaller of ρi and the closest obstacle intersection
along α. Intuitively, x∗ is the drone position that would have
zero viewpoint cost, and x̂ is as close as we can get to that
position along the desired direction from the target, before
hitting an obstacle. We similarly define x̃(t) as a ray cast
from E(x(t)) in the expected direction of α. The path x̃ will
be used as the reference path to transition between shots. As
the reference position is constructed such that it satisfies the
desired relative angles ψ and θ, cscale is the only nonzero
viewpoint cost. The reference trajectory is also guaranteed
to have visibility of the target. For shot i, we consider a
heuristic videography cost Hi

vid that is a function of only
time:

Hi
vid(t) = ‖x∗(t)− x̂(t)‖ .

The position heuristic x̂ does not enforce continuity of the
trajectory, so we add an additional discontinuity cost Hdis

for each shot:

Hi
dis = qdis

∥∥∥∥dx̂dt
∥∥∥∥2 ,

where qdis is a tuning parameter that adjusts the importance
of ensuring the reference trajectory can be perfectly tracked.

Together, Hvid and Hdis sum to the heuristic for instanta-
neous cost, Hfine. Each shot Si lasts for a duration τ i. We
define a shot cost Hi

shot that estimates the cost incurred by
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(a) An example of shots four shots, S1, S2, S3, S4. Three times with low heuristic
cost Hshot have been sampled for each shot, as discussed in Section III-A. In reality,
many more times are sampled. Our experiments use 20 samples per shot.

(b) An example of a solution to the PDAG-Minimum-Paths problem for m = 2,
where the edges not on a solution path have been omitted. Note that each color set
is on exactly one path, and there are two paths. This diagram also exemplifies how a
minimization in the form of (3) maps to an instance of PDAG-Minimum-Paths. The
edge labels E demonstrate the semantics of the construction of Gshot. Note that the
three times chosen for Drone 1’s assignment are in ascending order in (a).

Fig. 3. An illustrative example of how (a) a set of desired shots are
considered at discrete times and (b) turned into a graphical optimization
problem.

capturing shot Si starting at time t by setting Hi
shot(t) to

be the average value of Hfine in the interval [t, t+ τi]. We
take the expectation over the target’s trajectory distribution
and calculate it by sampling.

We can now use this heuristic Hshot to find good times
to capture each shot by finding an assignment of shots to
drones such that the sum of Hshot over all of the chosen
shot times is minimized and each drone can be expected
to feasibly capture all of its assigned shots. The size of
the optimization problem depends on how finely we sample
Hshot. We reduce the number of times considered for starting
each shot by sampling p random time indices tisampled for
each shot, biasing the samples toward lower-cost times. The
sampling process greatly reduces the size of the problem.

B. Choosing the Best Shots

An assignment of drones to shots can now be computed
by finding an assignment that minimizes the total heuristic
cost incurred. Recall from Definition 2 that Staj denotes the
shot j that has been assigned to begin at time ta, Ai denotes
the sequence of shots that have been assigned to drone i, and
A = ∪iAi is the set of all assigned shots and times. We must
search for an assignment A that minimizes the total sum of
shot costs, while ensuring that each drone has enough time
to transition between the shots it has been assigned.

The distance between shots is not deterministic, as it
depends on the target’s stochastic trajectory. Moreover, even
if the drone cannot fully complete the transition between
shots in the allotted time, its actual position at the beginning
of the next shot may be as good as the desired reference
position x̂(t), especially if it can get close to x̂. Instead of
hard transition feasibility constraints, we introduce a cost
function that penalizes transitions that may be dynamically
infeasible. For a pair of shot assignments Staj , S

tb
k , the

transition cost Htrans is defined as

Htrans(S
ta
j ,S

tb
k ) =

E(
∥∥[max(0, dtrans − dmax), dtrans]

T
∥∥
Qt

),

where dmax is the maximum distance the drone can travel
between time ta and tb and dtrans is the distance required to
transition between the end of shot Staj and the beginning of
shot Stbk . The weighting Qt is set such that Htrans incurs a
very large penalty when the transition distance between shots
is expected to be too long (i.e. dtrans > dmax), and a smaller
penalty based on dtrans which encourages assignments that
result in the drones traveling shorter distances.

In addition to this cost term, we require that if one
shot precedes another in the assignment ordering, the first
shot must end before the second begins. We define slightly
different notation for the heuristic cost Hshot to refer to
the cost of an assignment rather than the cost of a shot.
For assignment Aji = Stak , we notate the assignment cost
as H(Aji ) = Hk(ta). We want to solve the following
minimization:

A∗ =

argmin
A

nd∑
i=1

( |Ai|∑
j=1

Hshot(A
j
i ) +

|Ai|∑
j=2

Htrans(A
j−1
i , Aji )

)
(3a)

subject to ∀s ∈ S, s ∈ A, (3b)
|S| = |A|, (3c)

∀Stj ∈ A, t ∈ tjsampled, (3d)

∀(Staj , S
tb
k ) ∈ Ai, tb ≥ ta + τ j . (3e)

Constraints (3b) and (3c) ensure that each shot appears
exactly once in the ordering. Constraints (3d) and (3e) force
the chosen times to be from tsampled and satisfy the temporal
consistency previously discussed.

The cost associated with (3) acts like an upper bound on
(2). For each shot, the assignment associates a time window,
a drone, and a heuristic reference path that minimizes most
of the constituent costs in J (the exception being cscale).
The cost is not truly an upper bound because x̂ may not
result in a feasible trajectory, but it provides intuition for
why we expect minimizing the cost in (3) will provide a good
reference trajectory for minimizing the final videography cost
from (2).

C. Constructing a Graph Formulation

To find a minimizing solution to (3), we draw inspiration
from minimum-cost flow assignment methods [27]. While
this assignment problem cannot actually be solved with
minimum-cost flow solvers, encoding it in a graph yields
a straightforward interpretation as a constrained minimum-
cost path problem in a Partitioned Directed Acyclic Graph
(PDAG), which can be solved with an ILP.

Definition 3 (PDAG). A Partitioned Directed Acyclic Graph
(PDAG) is a Directed Acyclic Graph G, such that each vertex
is assigned one of k labels.
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For this purposes of illustration, we will refer to these
labels of the PDAG by k different colors. We now define
Problem 2 on finding a set of minimum-cost paths through
the PDAG.

Problem 2 (PDAG-Minimum-Paths). Consider a weighted
PDAG, G. Given a maximum number of paths m, PDAG-
Minimum-Paths(m, G) is the problem of finding the lowest-
weight set of paths P such that |P| ≤ m and exactly one
vertex of each color is on some path or determining that
there is no such satisfying P .

Figure 3 demonstrates how a solution to a PDAG-
Minimum-Paths problem with m = 2 encodes the shot
assignment problem. By design, a path must visit each of the
graph partitions, which means that it passes through every
color label of the graph. We now discuss how to construct a
PDAG that encodes the constraints of (3).

Note that (3e) implies that the assignment of shots must
satisfy a strict partial ordering that ensures the sequence is
monotonically increasing in time and has no shot overlaps
assigned to a single drone. We use this partial order to
generate a DAG Gshot, where vertices represent each Sti ,
for t ∈ tisampled. This selection of vertices enforces (3d).
We choose the color label of each vertex Sti ∈ Gshot to be
its shot index i. We also add a vertex in Gshot for each of
nd drones that can be assigned a shot. These drone vertices
are connected to all existing vertices in Gshot and each have
a unique color. The directed edge between Staj and Stbk (if
it exists) is denoted E

Sta
j S

tb
k

with cost given by

H(E
Sta
j S

tb
k

) = Hshot(S
tb
k ) +Htrans(S

ta
j , S

tb
k ). (4)

The cost for edges connected to the drone nodes is denoted

H(E
Di,S

tb
k

) = Hshot(S
tb
k ). (5)

We now present Proposition 1, which connects Gshot to (3).

Proposition 1.
Solutions to PDAG-Minimum-Paths(nd, Gshot) also minimize
(3).

Proof. We will show that the constraints and costs in (3) are
equivalent to the constraints and costs of solutions to PDAG-
Minimum-Paths(nd, Gshot) (PMP). Let each shot s ∈ S cor-
respond to a color in Gshot. If we consider the set of assigned
shots A as corresponding to the set of vertices in Gshot that
are on paths selected by PMP, then enforcing each shot s ∈ S
to appear in the assignment A as in (3b) is equivalent to
enforcing that every color appears on the solution to PMP.
Enforcing |S| = |A| as in (3c) is then equivalent to restricting
each color to appear at most once on the PMP solution.
The vertices of Gshot are chosen by construction to respect
constraint (3d). The connectivity of Gshot was defined by the
partial ordering implied by (3e), so every solution to PMP
respect this ordering constraint. Each path in the solution of
PMP corresponds to the assignment ordering Ai for a drone.
The cost of the path consists of the shot cost connected to
each vertex and the transition cost connected to each edge, as
in (4) and (5), the same expressions used to express the costs
of assignments Ai in (3a). As the constraints and costs are

equivalent, the solution to PDAG-Minimum-Paths(nd, Gshot)
also minimizes (3).

D. Solving PDAG-Minimum-Paths
We now formulate PDAG-Minimum-Paths as an ILP.

Consider a weighted PDAG G = (V, E). To solve PDAG-
Minimum-Paths(nd,G), we first construct a modified graph
G′ = (V ′, E ′) which is the same as G, but it contains an
extra nd vertices. Each of the extra vertices is connected to
all of the original vertices, and they each have a unique color.
These additional vertices are denoted V̂ .1

We construct an ILP that contains a variable xi for each
edge ei ∈ E ′. The cost of each variable Cx is the same as
the cost of its corresponding edge. Let X̂ denote the set of
variables corresponding to edges connected to V̂ . Let X∗,i
denote the set of variables corresponding to edges incident
on Vi. Let Xi,∗ denote the set of variables corresponding
to edges directing away from Vi. Let X k denote the set of
variables corresponding to edges incident on color k. The ILP
solving PDAG-Minimum-Paths(D,G) can be defined as:

X ∗ = argmin
X

∑
x∈X

xCx (6a)

s.t. ∀x ∈ X , x ∈ {0, 1}, (6b)

∀k,
∑|Xk|

i=1

∑
x∈Xk

∗,i
x = 1, (6c)

∀i,
∑

x∈Xi,∗
x ≤

∑
x∈X∗,i

x (6d)

∀i,
∑

x∈X̂i,∗
x ≤ 1. (6e)

The edges corresponding to variables with a value of one
in X ∗ \ X̂ are considered to be the set of edges in the
solution to PDAG-Minimum-Paths. If there is no satisfying
assignment for X ∗, then there is no solution to PDAG-
Minimum-Paths.

Proposition 2. The Integer Linear Program in (6) generates
a solution PDAG-Minimum-Paths, which minimizes (3).

Proof. Constraint (6c) ensures that the total number of edges
incident on a color set is equal to one. This satisfies that
all colors are part of some path. Constraints (6d) and (6e)
restrict the solution set to contain at most D paths, by
limiting the number of selected edges attached to V̂ to D and
requiring that all other edges start at a node with an incident
edge. Thus, every solution of (6) encodes a valid set of
paths in PDAG-Minimum-Paths. By the construction of (6),
every PDAG-Minimum-Paths problem can be represented by
the ILP. Thus, (6) solves PDAG-Minimum-Paths, and by
Proposition 1, it minimizes (3) as well.

The size of the ILP necessary to solve the drone assign-
ment depends on the number of shots |S|, the number of
samples we choose per shot p, and the number of drones,
nd. The ILP has variables corresponding to transitions be-
tween the O(|S|p) sampled times of the set of shots. For
each drone, there is also a variable associated with each
sampled time. This results in a ILP with O((|S|p)2+|S|pnd)

1Note that in the case of the drone assignment problem, the “drone”
vertices that were added can be considered as V̂ .
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variables. There area total of 2|S|p+ |S| constraints. We find
in practice that the number of shots we can define is limited
by the horizon over which we can make predictions of the
target’s motion rather than by computational burden of the
assignment algorithm.

The full high-level shot assignment pipeline is summarized
in Algorithm 1.

Algorithm 1 Videography Assignment

1: procedure ASSIGNSHOTS(S,Y,O)
2: for i = 1 : |S| do
3: Hi

shot ← CalculateShotHeuristic(Y,O, Si)
4: tisampled ← ImportanceSample(Hi

shot)

5: for each (Stai , S
tb
j ) ∈ PotentialShotTransitions do

6: Htrans(S
ta
i , S

tb
j )← E(TransitCost(Stai , S

tb
k ,Y))

7: A∗ ← IntegerProgram(tsample, Hsample, Htrans,S)
8: return A∗

IV. ONLINE VIEWPOINT OPTIMIZATION

The assignment A∗ from (3) is used to guide the online
MPC. For each shot assignment Staj ∈ A∗i , drone i will
attempt to minimize the viewpoint cost for shot j in the range
[ta, ta + τ j ]. In the intermediate time between successive
assignments Staj and Stbk , the MPC follows a reference
path that leads it from the expected end of one shot to
the expected beginning of another, x̃(ta + τ j) to x̃(tb).
We precompute a Probabilistic Roadmap (PRM)[28] of free
space in the environment, and use it to compute the reference
path between x̃(ta+τ j) and x̃(tb). During each shot period,
the MPC locally optimizes the viewpoint costs. The MPC
solves for drone trajectories and gimbal controls in real-time
separately for each drone. The rest of the MPC formulation is
materially the same as the method presented in [12], but we
summarize it here for completeness. For speed considerations
and analysis of the nonlinear videography MPC performance,
we refer to [12].

A. Drone and Camera Model

We assume the drone’s motion model follows some non-
linear differential equation ẋ = f(x,u), with x(0) = x0

and xk ∈ X ⊂ Rnx denotes the state of the drone and
uk ∈ U ⊂ Rnu the control inputs at time step k. X and U
are the admissible state space and control space, respectively.
While x has been used in previous sections to denote only
position, here it represents the full state. x0 is the initial
state of the drone. Our experiments use the Parrot Bebop
2 quadrotor with its integrated front camera and electronic
gimbal. It accepts desired roll and pitch angles, yaw rate,
vertical velocity, and gimbal angles as input.

B. MPC Formulation

For each drone in the team, we formulate a receding
horizon constrained optimization problem with N time steps
and planning horizon N∆t, where ∆t is the sampling time.
The optimization seeks to minimize the weighted squared

norm of a cost vector
∥∥∥Ĵ∥∥∥2

Q
. Recall that Jji denotes the

instantaneous viewpoint cost incurred by drone i capturing
shot j. As desired viewpoint and drone are unambiguous in

the MPC formulation, we drop the sub- and superscripts in
this section. We augment J to include the control inputs,
distance from reference state xref , and collision avoidance
slack variables S:

Ĵk = [JT ,uT , ‖xref − x‖ ,ST ]T |t=k.

A matrix of weightings Q defines the relative importance
of each cost function. When the drone is assigned to take
a shot, the weighting matrix does not penalize reference
position error. When the drone transitions between shots, the
relative viewpoint and distance are not penalized, although
the image position cost cimage is kept. This keeps the drones
pointing toward the target while repositioning for the next
shot.

We use a third order collocation method that implicitly
represents the drone’s trajectory as a third order spline and
the control inputs as piecewise linear functions of time as
described in [29]. The dynamics constraints are applied at
the collocation points tc,n, and the drone state. The full MPC
optimization can be written as:

min
x1:N ,u1:N

N−1∑
k=1

∥∥∥Ĵk∥∥∥2
Q

+
∥∥∥ĴN∥∥∥2

Qf

(7a)

s.t. x1 = x(0), (7b)
ẋ(tc,n) = f(x(tc,n),u(tc,n)), (7c)

xk ∈ X , (7d)
u ∈ U , (7e)
∀k ∈ {1, . . . , N}. (7f)

At each time step, the drone solves the formulated non-
linear constrained optimization problem online to generate a
local trajectory and executes the first time step controls in
a receding horizon fashion. The optimization is performed
using CasADi [30] for automatic differentiation and IPOPT
[31] for optimization. Note that the optimization is not
necessarily solved to completion — the current iterate after
40 ms of computation is used to select the next control
output.

In order to estimate the costs at each timestep in the
horizon, the drone must have an estimate for the future
trajectories of dynamic obstacles and the videography target.
Our prediction model assumes constant linear and angular
velocity in the target’s body frame, based on current esti-
mated velocity. For our experiments the velocity estimate is
provided by a motion capture system.

We implement the MPC for multiple drones in an asyn-
chronous manner: the MPC is solved independently for each
drone, and the expected trajectory each drone generates is
used to compute collision avoidance by future iterations of
the other drones’ MPC as described in detail in [32].

V. EXPERIMENTAL RESULTS
We validated the tracking system with a pair of Bebop

2 drones tracking a human-driven RC racecar2. In order
to generate the predictive target distribution necessary to
calculate expected shot costs, the racecar was driven around
two obstacles in a loosely defined pattern for ten warmup

2https://mit-racecar.github.io/
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laps. Figure 6 shows the paths from these ten runs and their
mean. Note that the car’s speed varies within each run and
comes to a stop at several locations. The warmup runs were
used to model a multivariate Gaussian distribution over the
car’s trajectory. Nine desired shots were specified for the
drone, varying in length from four to six seconds and all
constrained to occur within the ninety second duration of the
car’s lap. The image position parameters Cx and Cy were
set the center the target in the frame in all shots. The settings
for the other parameters are shown in Figure 5. The high-
level shot planner assigned each drone a sequence of shots.
The cost Hshot(t) for heuristic position x̂(t) for each shot is
shown in Figure 4. The planner is able to find an assignment
of shots to the drones such that the expected viewpoint cost
for each shot is quite low. We note that the planner assigns
overlapping shots to the two drones resulting in a sequence
of shots that would have been infeasible with a single drone.

The resulting assignments were tracked over a series
of ten trials in which the racecar was manually driven
along the same route as the warmup laps. Figure 6 shows
the trajectories for the drones during one of the runs, in
addition to the car’s nominal path and two obstacles. The
figure also demonstrates that the planning algorithm’s penalty
for transition distance between shots Htrans leads to the
assigned shots being spatially segmented between the drones,
reducing the total distance each has to travel.

Figure 5 illustrates the relative viewpoint achieved by each
drone relative to the desired parameters during each shot.
During each assigned shot window (denoted in green), the
viewpoint parameters (in blue) are close to their desired
values (in orange). The high-level planning heuristic and
reference trajectory places the drones near the desired view-
points, so in many cases the desired viewpoint is reached
before the shot even starts. The drones are able to achieve
lower-deviation trajectories during some shots compared to
others. The higher-deviation shots occur when the desired
drone position is obstructed (because of a static obstacle
or other drone), or if the trajectory necessary to follow the
desired position is dynamically infeasible (most commonly
when the car is turning quickly). Even in cases where there
is significant deviation from the desired viewpoint, such as
the distance in Drone 1’s third shot (at about T = 25s in
(5(e))), we note that the other two parameters have low
deviation and the drone maintains an unoccluded view of the
target as shown in the accompanying video. Instances where
the observed viewpoint deviations are greater than expected
from the heuristic costs in Figure 4 are mostly due to the
drones acting more conservatively when close to obstacles
than expected by the planner.

The performance bottleneck for the high-level assignment
algorithm is solving the ILP. The size of the ILP depends
on the number of shots and the number of sampled times
per shot. Our scenario contained nine shots, with twenty
times sampled for each shot. The resulting ILP solved in
under thirty seconds on a laptop with a 2.6 GHz Intel Core
i7-9750H 6-Core processor and 16 GB RAM. Different bal-
ances between optimality and solution speed can be achieved
by tuning the number of sampled times. We note that while
the ILP does not run in real time, it would have had time to
run at least once during the scenario to reassign shots based

(a) Expected cost Hshot(t) of path heuristic x̂(t) for each of the five shots ultimately
assigned to Drone 1.

(b) Expected costHshot(t) of path heuristic x̂(t) for each of the four shots ultimately
assigned to Drone 2.

Fig. 4. Cost associated with heuristic path over time for each desired shot.
The solid circles denote the time that the high level planner determined was
the lowest expected cost.

(a) Drone 1 Elevation (b) Drone 2 Elevation

(c) Drone 1 Azimuth (d) Drone 2 Azimuth

(e) Drone 1 Distance (f) Drone 2 Distance

Fig. 5. Performance of the two drones. Active shots are shaded in green,
and orange bars represent the reference. The solid blue line represents the
mean value over the 10 trials, and the transparent blue denotes one standard
deviation of the data from the 10 trials. The drones converge to the reference
values while in a shot.
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Fig. 6. The predicted mean of the racecar trajectory (opaque blue/yellow
curve) and its training runs (transparent blue/yellow curves). Car speed
shown on color axis. The drone trajectories for one run are shown in red and
blue. Circular markers denote times when the drones were taking a shot.

on updated predictions of the target trajectory.
VI. CONCLUSIONS

This paper has demonstrated a practical algorithm for
assigning a team of drones to capture a series of desired
shots and locally optimizing the drone trajectories to ensure
each shot is captured as well as possible. Our experiments
have shown that the planning and control pipeline works on
physical systems in the presence of obstacles and uncertainty
over the videography target’s trajectory. Future work will
explore an increased uncertainty of the target’s trajectory, as
well as multi-target tracking.
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