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SUMMARY

Antimicrobial resistance (AMR), termed a "silent pandemic" has caused 4.95 million
deaths in 2019, with numbers expected to rise. AMR spans human, animal, and envi-
ronmental sectors, requiring a One Health approach to address this multifaceted global
challenge. This dissertation focuses on the under-represented non-clinical sectors and
employs the use of metagenomic data to advance AMR research.

The primary focus in AMR research has been on clinical settings, overlooking animals
and the environment and leaving data gaps in resource-limited regions. The world of
AMR and metagenomic data is first introduced followed by an in-depth review of AMR
in non-clinical sectors and the information metagenomic data can provide. The empha-
sis is on bioinformatic tools, databases, and workflows to support researchers utilising
metagenomic data for AMR studies in these sectors.

Moving forward, the wastewater treatment process, including the neglected upstream
and downstream freshwater systems, is examined, to assess the microbiome, resistome
and mobilome at each stage. Specific differences within every wastewater treatment
plant process sector and their role in AMR transmission are identified.

Inspired by the natural baseline of antibiotic resistance in soil, a comparative study
of the composition of the microbiome, resistome and mobilome in different soil types,
from natural to rural soils, is then further presented. Given the limited information on
resistance patterns and the effects of geographical and anthropogenic factors, the influ-
ence of antibiotic resistance in different soil types is then further explored.

The swine industry, as the largest consumer of antibiotics, raises concerns about the
effects of antibiotic use on the gut microbiome of animals. Antibiotics can impact ani-
mal health and promote the transmission of AMR to other non-clinical sectors and hu-
mans. How antibiotic use affects the fecal microbiome of pigs raised with and without
antibiotics is examined to understand the dynamics of antibiotic resistance in the swine
industry.

The burden of AMR, particularly in low- and middle-income countries, where resources
for infectious disease surveillance are limited, was the inspiration to propose a method
for generating metagenomic data in-field and in resource-limited settings, offering a
cost-effective solution for outbreak monitoring and pathogen detection.

The main goal of this dissertation is to highlight the under-represented sectors, their
significant role in AMR and to promote global inclusivity.
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SAMENVATTING

Antimicrobiële resistentie (AMR), ook wel een "stille pandemie"genoemd, heeft in 2019
4,95 miljoen doden veroorzaakt, en de verwachting is dat dit aantal nog zal stijgen. AMR
omvat de menselijke, dierlijke en milieusectoren, en vereist een “One Health”-benadering
om deze veelzijdige wereldwijde uitdaging aan te pakken. Dit proefschrift richt zich op
de ondervertegenwoordigde niet-klinische sectoren en maakt gebruik van metagenomi-
sche data om onderzoek naar AMR te bevorderen.

De primaire focus in AMR-onderzoek ligt voornamelijk in de klinische sector, waarbij
dieren en het milieu over het hoofd worden gezien, en er datahiaten ontstaan in regio’s
met beperkte middelen. De wereld van AMR en metagenomische data worden eerst
geïntroduceerd, gevolgd door een diepgaande beoordeling van AMR in niet-klinische
sectoren en de informatie die metagenomische data kunnen bieden. De nadruk ligt op
hulpmiddelen uit de bioinformatica, databases en workflows om onderzoekers te on-
dersteunen bij het gebruik van metagenomische data voor AMR-onderzoek in deze sec-
toren.

Hierna wordt het afvalwaterzuiveringsproces, inclusief de verwaarloosde upstream en
downstream zoetwatersystemen, onderzocht om het microbioom, resistoom en mobi-
loom in elke fase te beoordelen. Specifieke verschillen binnen elke processector van de
afvalwaterzuiveringsinstallatie en hun rol in AMR-transmissie worden hierbij geïdentifi-
ceerd.

Geïnspireerd door de natuurlijke basislijn van antibioticaresistentie in de bodem, wordt
aan de hand van een vergelijkende studie van de samenstelling van het microbioom, re-
sistoom en mobiloom in verschillende bodemtypen, van natuurlijke tot landelijke bo-
dems gepresenteerd. Gezien de beperkte informatie over resistentiepatronen en de ef-
fecten van geografische en antropogene factoren, wordt de invloed van antibioticaresis-
tentie in verschillende bodemtypen vervolgens verder onderzocht.

De varkensindustrie, als grootste consument van antibiotica, maakt zich zorgen over
de effecten van antibioticagebruik op het darmmicrobioom van dieren. Antibiotica kun-
nen de gezondheid van dieren beïnvloeden en de transmissie van AMR naar andere niet-
klinische sectoren en mensen bevorderen. Hoe antibioticagebruik het fecale microbi-
oom van varkens, die met of zonder antibiotica zijn grootgebracht, beïnvloedt wordt on-
derzocht om de dynamiek van antibioticaresistentie in de varkensindustrie te begrijpen.

De last van AMR, met name in landen met lage en middeninkomens, waar de midde-
len voor het toezicht op infectieziekten beperkt zijn, was de inspiratie om een methode
voor te stellen voor het genereren van metagenomische data in het veld en in omge-
vingen met beperkte middelen, om een kosteneffectieve oplossing te bieden voor het
monitoren van uitbraken en het detecteren van pathogenen.

Het hoofddoel van dit proefschrift is om de ondervertegenwoordigde sectoren en hun
belangrijke rol in AMR te bevorderen, en om wereldwijde inclusiviteit te benadrukken.
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2 1. INTRODUCTION

1.1. ANTIMICROBIALS AND ANTIBIOTICS

Antimicrobials have revolutionised modern medicine by reducing infections and
sepsis [1]. These antimicrobial agents kill or inhibit micro-organisms such as bacteria
(antibiotics), viruses (antivirals), fungi (antifungals) and parasites (antiparasitics) and
are used in clinical and non-clinical sectors [1, 2].

Antibiotics, the most well-known class of antimicrobials, was the greatest medical
breakthrough of the 20th century. Since the discovery of penicillin, antibiotics
played a critical role in treating common infections and making modern medical
practices such as open-heart surgery and cancer treatment possible [3]. In the
pre-antibiotic era, more than half of the deaths were associated with infections
however, mortality rates decreased with antibiotics and infection control practices
[4]. Antibiotics not only directly treat infections but also help prevent infections
and their transmission between patients [4]. Due to its effectiveness and low cost,
antibiotics have been used in veterinary medicine to treat and prevent infections and
as a growth-promoting agent in fish farming, the food animal industry, aquaculture
and agriculture [5, 6].

HOW DO ANTIBIOTICS WORK?

Antibiotics work by targeting specific features essential for the survival and
reproduction of bacteria thereby inhibiting their growth or causing death (Figure

DNA

50S

30
S

RIBOSOME

PABA

DHF

THF

mRNA

(i) Inhibition of cell wall 
synthesis

(iv) Inhibition of nucleic 
acid synthesis

(iii) Inhibition of protein 
synthesis

(ii) Disruption of the 
cell membrane

(v) Inhibition of 
metabolic pathways

Figure 1.1: The mechanisms of action of antibiotics within the bacterial cell indicated
in purple. Mechanisms include (i) the inhibition of cell wall synthesis (ii)
disruption of the cell membrane (iii) inhibition of protein synthesis (iv)
inhibition of nucleic acid synthesis and (v) inhibition of the metabolic
pathways. (PABA = p-aminobenzoic acid; DHF = dihydrofolic acid; THF =
tetrahydrofolic acid).
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1.1) [7]. The mechanisms by which antibiotics work can be broadly categorised
into different types: (i) the inhibition of the bacterial cell wall synthesis (beta-
lactams, carbapenems and penicillin), (ii) the disruption of the cell membrane
(lipopeptides), (iii) the inhibition of protein synthesis (macrolides, tetracycline and
chloramphenicol), (iv) the inhibition of nucleic acid synthesis (fluoroquinolones)
and (v) the inhibition of metabolic pathways (sulfonamide and trimethoprim) [7–9].
By targeting specific structures and functions within bacterial cells, antibiotics can
effectively eliminate infections while minimising harm to the host.

1.2. ANTIBIOTIC RESISTANCE
As antibiotics became a mainstay of modern medicine, bacteria causing infections
began to develop resistance, rendering antibiotics ineffective and leading to a
global health crisis. In 2019, it was estimated that bacterial pathogens caused 7.7
million deaths globally with 1.3 million deaths directly associated with antibiotic
resistance [10]. This number is predicted to increase to 10 million by 2050 and
has been regarded as one of the leading causes of death worldwide, ahead of
HIV/AIDS and malaria [10, 11]. This rising threat complicates infectious disease
management, jeopardizes healthcare advancements, and leads to hard-to-treat
infections, prolonged hospital stays, higher medical costs, and increased mortality
rates [5, 12].

The increase in antibiotic resistance is attributed to many factors including the
overuse and misuse of antibiotics in the clinical and non-clinical sectors [13]. In the
clinical sector, the over-prescription of antibiotics, improper patient use, such as not
completing prescribed courses, and the use of antibiotics when unnecessary are all
factors. Additionally, in agriculture and the food animal industry, antibiotics have
been employed as growth promoters, further fuelling this silent pandemic [5, 13].

1.2.1. MECHANISMS OF ANTIBIOTIC RESISTANCE

Antibiotic resistance can occur naturally, as some bacteria have antibiotic resistance
genes (ARGs) embedded within their genomes (intrinsic resistance). Alternatively,
bacteria can acquire ARGs through exposure to antibiotics (acquired resistance) [5,
14]. When expressed, these ARGs enable bacteria to employ various mechanisms to
survive antibiotic treatment. As indicated in Figure 1.2, the most common resistance
mechanisms include (i) the degradation/ modification of the antibiotic, (ii) the
decreased uptake of antibiotics (iii) the use of efflux pumps to expel antibiotics out
of the cell, (iv) the use of enzymes to inactive antibiotics (v) the acquisition of
alternative enzymes to inhibit the effects of the antibiotics and (vi) the alteration of
drug target [15–17].

INTRINSIC RESISTANCE

Natural resistance can be intrinsic, meaning the resistance genes are always
expressed in the bacterial species, or it can be induced, where resistance genes
naturally exist in bacteria but are only expressed following exposure to the antibiotic
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(iv) Inactivation of antibiotics

(v) Alternative enzyme

(vi) Target alterations

DNA
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Figure 1.2: The common antibiotic resistance mechanisms in the bacterial cell
(purple) include (i) the degradation/ modification of the antibiotic, (ii)
the decreased uptake of antibiotics (iii) the use of efflux pumps to expel
antibiotics out of the cell, (iv) the use of enzymes to inactive antibiotics
(v) the acquisition of alternative enzymes to inhibit the effects of the
antibiotics and (vi) the alteration of drug target.
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[7, 9]. Intrinsic resistance is typically due to structural or functional characteristics of
the bacteria that prevent the antibiotic from reaching its target or render the target
inaccessible. This type of resistance is a part of the bacteria’s normal physiology
and is not acquired through genetic mutations or horizontal gene transfer [18]. It
provides a baseline level of resistance that can be further enhanced through acquired
resistance mechanisms [19]. Interestingly, bacteria present in soil are known to
possess intrinsic resistance predating the clinical use of antibiotics [20]. While these
bacteria may not pose an immediate threat to clinical or environmental health, their
resistance genes could potentially be transferred to pathogenic bacteria, heightening
the risk of a major health crisis [21].

ACQUIRED RESISTANCE

Acquired resistance occurs when bacteria develop the ability to withstand the effects
of antibiotics through genetic changes. These changes can result from mutations
in existing genes or the acquisition of new genes through horizontal gene transfer
(HGT) [9, 14, 22]. Key mechanisms of acquired resistance through mutations
include spontaneous mutations in the bacterial genome that alter the antibiotic’s
target site, thereby reducing the drug’s binding affinity and effectiveness [23]. With
HGT, bacteria can gain resistance genes from other bacteria via mobile genetic
elements (MGEs) such as plasmids, transposons, and integrons. This transfer
occurs via (i) conjugation— the transfer of plasmids containing resistance genes
between bacteria through direct cell-to-cell contact; (ii) transformation—where a
bacterium uptakes free DNA fragments from the environment, which may include
resistance genes; and (iii) transduction— the transfer of resistance genes between
bacteria via bacteriophages, which are viruses that infect bacteria (Figure 1.3)
[24]. These processes enable resistance traits to spread swiftly within and across
bacterial populations [17, 25]. They have been instrumental in the evolution of
antibiotic resistant bacteria, significantly contributing to the global health crisis we
are confronting today [7].

1.3. ANTIBIOTIC RESISTANCE AND ONE HEALTH
Antibiotic resistance is a One Health issue that recognises the health of humans,
animals and the wider environment as interconnected and interdependent (Figure
1.4) [26]. In the context of antibiotic usage, one domain can be affected by another
and vice versa indicating the need for integrated efforts across domains to combat
antibiotic resistance. Given this interconnectedness, it is essential to consider how
each domain contributes to and is affected by antibiotic resistance.

The One Health approach provides a comprehensive framework to address these
challenges across human, animal, and environmental health [27]. In the clinical
setting, the One Health approach advocates for the proper use of antibiotics,
improved infection prevention and control measures, and robust surveillance systems
to monitor and respond to antibiotic resistance trends [28–30]. Public health
initiatives should aim to educate healthcare providers and the public about the
responsible use of antibiotics. In the animal and agricultural sector, the One Health
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(i) Conjugation

(ii) Transformation

(iii) Transduction

Figure 1.3: Horizontal gene transfer mechanisms ((i) conjugation: bacteria (purple)
directly transfer genetic material (red) from one cell to another bacterial
cell, (ii) transformation: bacteria (purple) take up DNA (red) from the
environment and is incorporated into the existing genetic material and
(iii) transduction: bacteriophages (brown hexagon with blue DNA inside)
move genes (red and blue DNA strand) from one bacteria to another.
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approach promotes the proper use of antibiotics, emphasising alternatives such
as vaccination for animals, improved hygiene in farms, and bio-security measures
[30]. Reducing the use of antibiotics as growth promoters is also a critical step in
mitigating antibiotic resistance [29]. Overall, the One Health approach calls for better
waste management practices, environmental monitoring, and policies to reduce the
environmental impact of antibiotics [31].

Exposure 
through food/
environment

HTLAEH LATNEMNORIVNE

HTLAEH NAMUH

ANIMAL HEALTH

Infectious disease

esaesid suoitcefnI

Figure 1.4: The One Health approach to antibiotic resistance. Environmental, human
and animal health are interconnected spreading infectious diseases
through exposure.

The interconnectedness of the human, animal, and environmental sectors is
evident in how bacteria can spread across these domains, facilitating the transmission
of antibiotic resistance and infectious diseases [30]. For instance, the use of
antibiotics in livestock can lead to the development of resistant bacteria in
animals, which can then spread to humans through direct contact, consumption of
animal products, or environmental pathways such as water and soil contamination.
Similarly, antibiotic resistant bacteria in the environment, originating from sources
such as wastewater or agricultural run-off, can enter human and animal populations,
complicating efforts to control infectious diseases [32–34]. By adopting a One Health
approach, researchers and policymakers can better understand the pathways through
which antibiotic resistance spreads.
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1.4. ANTIBIOTIC RESISTANCE IN NON-CLINICAL SECTORS
Antibiotic resistance has become a significant concern in non-clinical environments
such as agriculture, the food industry, and the broader environment [35]. These
areas serve as crucial reservoirs for antibiotic resistant bacteria, ARGs and MGEs
which contribute to the global crisis. The widespread use of antibiotics in livestock
farming, aquaculture, and plant agriculture promotes the development and spread of
resistant bacteria, which can enter the human food chain and environment through
various pathways similar to those described above [36].

Non-clinical environments, including water, soil, and animals, are hotspots for
the exchange of resistance genes among bacteria, facilitated by mechanisms like
horizontal gene transfer [37]. This exchange allows resistance to spread across
different bacterial species and even to human pathogens. Addressing antibiotic
resistance requires coordinated efforts across sectors to mitigate its emergence and
spread beyond clinical settings [30]. Details of the usage and effects of antibiotics in
different non-clinical sectors can be found in Chapter 2.

1.5. USING METAGENOMICS TO STUDY ANTIBIOTIC

RESISTANCE IN NON-CLINICAL SECTORS
In recent years, metagenomics has become a popular technique used for studying
antibiotic resistance in different sectors. Briefly defined, it is the study of complex
microbial communities directly from their natural environments, without the need
for culturing individual species [38, 39]. Traditional methods often involves isolating
and culturing bacteria. This process, while efficient and informative, is limited
as a vast majority cannot be cultured under standard laboratory conditions [40].
Metagenomics bypasses the culturing step and directly examines the DNAs present
in a particular sample of interest [39–42]. Metagenomic DNA is typically obtained by
first extracting the DNA from a sample, either water, soil or animal feces, using a
commercially available kit followed by sequencing using next-generation (Illumina)
or third-generation (Oxford Nanopore or Pacbio) sequencing technologies [41]. By
sequencing the DNA from all the bacterial micro-organisms in these environments,
we gain information about the genetic diversity, type and abundance of species, the
metabolic capacity and the functional potential of the micro-organisms [41]. This
approach helps answer key questions such as "Who is there?" and "What are they
doing?"

To interpret this data, bioinformatic tools, databases, and online platforms can be
used to analyse the DNA. A detailed review of the various databases, platforms and
tools as well as workflow can be found in Chapter 2. However, we outline a general
workflow below.

Studying antibiotic resistance in this manner typically involves several key steps:
sampling, DNA extraction, sequencing, and alignment (Figure 1.5) [43, 44]. Firstly,
once DNA is extracted and metagenomic sequences are generated and quality
controlled i.e., the removal of any low-quality reads, taxonomic classification can
begin [45]. Sequences can be aligned to specific reference genomes or taxonomic
databases that contain the genomes of all or most bacterial species. This identifies
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Sampling 

DNA extraction

Sequencing

Alignment

Gene

Microbiome ARG MGE

Figure 1.5: A general workflow to study antimicrobial resistance from non-clinical
sectors. The key steps consist of sample collection, DNA extraction,
sequencing and alignment to identify the microbiome, detect antibiotic
resistance genes (ARGs) and mobile genetic elements (MGEs).
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the microbial species present in a sample and determines their abundances to
identify which bacteria are dominant or which can cause potential outbreaks [44,
46].

Secondly, ARG detection can be done by aligning the metagenomic sequences
generated to the sequences representing different ARGs. These are found in
databases or on online platforms [43, 47, 48]. By doing so, we identify which ARGs
are present within a sample and quantify their numbers and abundances. This
gives us information on the most prevalent ARGs and the potential effects of these
ARGs in a particular environment i.e., are the ARGs identified conferring resistance
to clinically or veterinary-relevant antibiotics? or are more bacteria going to become
resistant to these antibiotics by HGT? [46]

Lastly, MGEs can be identified. Similarly to ARGs, metagenomic sequences that are
generated can be aligned to the sequences representing either plasmids, integrons
or integrative elements. Each of these can be detected with the use of their
own database or online platform [49]. Identification of such MGEs can provide
information on their types and their abundances giving relevant details on which
type of element is prevalent. Additionally, these MGEs identified can be linked to
ARGs to determine their association thereby providing insight into the spread of
AMR between sectors or if bacteria can potentially gain resistance [13, 50].

To go one step further, a functional analysis step can be added to determine
which genes, in our case, ARGs, are present but also how they may be expressed
and impact antimicrobial resistance (AMR) [43, 46, 51]. For instance, if ARGs
conferring resistance to clinically important antibiotics are expressed, we can infer
that bacteria harbouring these genes will be more difficult to treat if they cause
infections. This combination of gene identification, quantification, and functional
analysis provides an understanding of the dynamics of AMR in non-clinical sectors,
informing strategies for monitoring and controlling the spread of resistance.
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1.6. CHALLENGES

Understanding AMR in non-clinical sectors presents challenges that limit our
ability to fully grasp the dynamics of resistance in the environment. In this
section, I highlight three major challenges encountered during this research: the
under-representation of non-clinical sectors in AMR research, the scarcity of data
and metadata across various sub-environments, and the limited availability of such
data from low- and middle-income countries (LMICs). These challenges directly
affect the reliability and comparability of metagenomic studies, which are essential
for tracking AMR across diverse ecosystems. Addressing these gaps is crucial for
promoting global equity in AMR research, however, LMICs are disproportionately
affected by AMR yet often lack the infrastructure needed for large-scale data
initiatives. These challenges also align with the core principles of the One Health
approach, emphasising the need for integrated, cross-sectoral responses to AMR that
are inclusive of environmental and socioeconomic contexts.

1. The overlooked non-clinical sectors in AMR research
Due to the under-representation of the environment and animals, there is a gap in

knowledge regarding why and how to study AMR in non-clinical environments using
metagenomics and bioinformatics. This has resulted in a limited understanding
of the specific microbial communities, resistance mechanisms, and transmission of
AMR within and between environments. Furthermore, applying bioinformatic tools
and databases in non-clinical environments is often unclear or underdeveloped,
making it challenging to design effective studies. Existing bioinformatic tools and
reference databases were originally developed for clinical or model organisms,
leading to poor representation of environmental taxa and ARGs. This makes
it difficult to accurately identify and annotate resistance genes in metagenomic
datasets from non-clinical sources, especially when dealing with unknown or poorly
characterised microorganisms.

2. The lack of data and metadata in non-clinical sub-environments
The lack of sufficient data and metadata in non-clinical sectors further confirms

the initial gap identified [52]. Non-clinical environments, broadly categorised into
soil, water, and animals, play a critical role in AMR transmission. However, many
sub-environments not traditionally considered "hotspots" are under-researched
in their contributions to the spread of AMR. For example, within the water
sector, sub-environments such as storm-water, agricultural run-off, aquaculture,
groundwater, and upstream and downstream freshwater systems have received
limited attention, while wastewater treatment plants (WWTPs) have been more
extensively studied and are considered hotspots [52, 53]. Similarly, the soil is a
known reservoir for AMR, but specific regions such as rural villages, deserts, saline
and alkaline soils, mining regions, and marine and coastal environments remain
under-explored [46, 54]. Consequently, there is insufficient information on how
the different environmental factors, like climate, soil pH and human activity, affect
the soil microbiome and AMR in different types of soil. In the animal sector,
although the food-animal industry is continuously researched, less-studied groups,
such as insects, backyard farming animals, goats, and rabbits, play a significant yet
often overlooked role in AMR transmission [52, 54]. Additionally, while there is a



1

12 1. INTRODUCTION

limited amount of metagenomic data available, there is often inconsistent metadata
reporting, variations in sampling methods, and differences in sequencing protocols.
These inconsistencies make it challenging to integrate and compare datasets from
different environments or geographical locations. Incomplete or poorly documented
data further hinder efforts to build comprehensive global datasets.

3. The lack of data from LMIC settings
An additional challenge arising from the lack of data and metadata in sub-

environments and hotspots is the scarcity of data from LMICs [52, 55]. Although some
metagenomic data is available, it often lacks essential metadata, and in some cases,
complete metagenomic datasets are absent. This issue is particularly pronounced
where limited infrastructure and resources hinder effective AMR monitoring in
non-clinical environments [52]. As some LMICs generate metagenomic data, it
does not represent all regions and countries. Additionally, methods commonly used
in high-income countries (HICs) can be unfeasible due to resource constraints in
LMICs. This lack of infrastructure hampers AMR detection and affects broader public
health initiatives, such as outbreak prevention and surveillance [55, 56].

1.7. THESIS CONTRIBUTIONS

Metagenomic data in combination with various bioinformatic tools and databases
can be used for AMR surveillance in the environment. Chapter 2 expands on
the value of using metagenomic data for AMR surveillance in different non-clinical
environments. This chapter reviews antibiotic use across various environmental and
agricultural settings, showcasing studies using metagenomic data for AMR research,
and provides an overview of relevant bioinformatic tools, databases, and workflows.
This chapter serves as a resource for guiding future AMR research.

As wastewater treatment plants (WWTPs), soil, and food animals are recognised
as AMR hotspots, overlooked sub-environments can offer a more comprehensive
understanding of AMR. In Chapter 3, microbial communities, resistance profiles
and MGEs across different sectors of the WWTP system and overlooked freshwater
environments (upstream, influent, activated sludge, effluent and downstream) are
analysed. By integrating publicly available metagenomic data representing each
sector of the WWTP and using a standardised pipeline, the presence of clinically
relevant pathogens, including Klebsiella pneumoniae, Enterobacter sp. and various
β-lactamase genes was detected throughout the WWTP process. This shows that
WWTPs are not just treatment facilities but are potential sources for the ongoing
circulation of resistance in the environment.

Similarly, in Chapter 4, a standardised pipeline was used to analyse four distinct
soil types (natural, urban, rhizosphere, and rural) from nine geographically diverse
locations to assess how environmental factors such as temperature, vegetation,
and human activity shape microbial communities, ARGs, and MGEs. Bacteria
and ARGs present in soil are highly dependent on human activity, vegetation,
and environmental conditions such as soil pH and temperature. Results showed
that Bradyrhizobium was predominant in more vegetative areas while Pseudomonas
aeruginosa was predominant in rural soils. Additionally, ARGs were detected in
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different abundances based on environmental factors. This chapter provides a deeper
understanding of how different environmental conditions influence AMR dynamics
in soil.

In Chapter 5, the impact of antibiotic use on the microbial populations, ARG
profiles, and MGEs in the feces of pigs raised with and without antibiotics was
studied by integrating publicly available metagenomic data and using a standardised
pipeline. The findings revealed that antibiotic use significantly alters the diversity of
bacterial communities and ARGs within the fecal microbiome, with implications for
animal health. Importantly, this chapter underscores the role of pig fecal waste as a
potential source for the environmental dissemination of AMR.

Chapter 6 presents a proof-of-concept study that tested the (cost)effectiveness of
a portable, in-field lab compared to a traditional laboratory. This study assessed
whether mobile technologies can support rapid environmental and foodborne
pathogen surveillance. Three common sources of microbial exposure was chosen
i.e., lake water, wastewater sludge and retail meat. The performance of the portable
laboratory was then evaluated in DNA extraction, sequencing, microbial detection,
ARG identification, and plasmid analysis. This chapter highlights the potential
for scalable, real-time AMR monitoring, particularly in areas with limited access
to advanced laboratory infrastructure, offering a new approach for global AMR
surveillance.

Lastly, Chapter 7 revisits the central theme of this research: that AMR is not
confined to clinical settings but is intricately linked to human activity across
agricultural and environmental domains. This chapter discusses the potential of
metagenomic data to advance AMR research in non-clinical sectors, highlights the
challenges associated with using public datasets, and addresses the limitations of
cost-effective data generation. Additionally, it offers insights into how using different
omics approaches can further enhance our understanding of AMR.
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The success of antibiotics as a therapeutic agent has led to their ineffectiveness.
The continuous use and misuse in clinical and non- clinical areas have led to the
emergence and spread of antibiotic- resistant bacteria and its genetic determinants.
This is a multi-dimensional problem that has now become a global health crisis.
Antibiotic resistance research has primarily focused on the clinical healthcare sectors
while overlooking the non-clinical sectors. The increasing antibiotic usage in the
environment – including animals, plants, soil, and water – are drivers of antibiotic
resistance and function as a transmission route for antibiotic resistant pathogens
and is a source for resistance genes. These natural compartments are interconnected
with each other and humans, allowing the spread of antibiotic resistance via
horizontal gene transfer between commensal and pathogenic bacteria. Identifying
and understanding genetic exchange within and between natural compartments can
provide insight into the transmission, dissemination, and emergence mechanisms. The
development of high-throughput DNA sequencing technologies has made antibiotic
resistance research more accessible and feasible. In particular, the combination of
metagenomics and powerful bioinformatic tools and platforms have facilitated the
identification of microbial communities and has allowed access to genomic data by
bypassing the need for isolating and culturing microorganisms. This review aimed
to reflect on the different sequencing techniques, metagenomic approaches, and
bioinformatics tools and pipelines with their respective advantages and limitations
for antibiotic resistance research. These approaches can provide insight into resistance
mechanisms, the microbial population, emerging pathogens, resistance genes, and
their dissemination. This information can influence policies, develop preventative
measures and alleviate the burden caused by antibiotic resistance.

2.1. INTRODUCTION

Antibiotic-resistant bacterial infections have contributed to 4.95 million deaths
worldwide, with 1.27 million of those directly resulting from antimicrobial resistance
(AMR) [1, 2]. It is the leading cause of death worldwide and affects high, low, and
middle-income countries [3, 4]. Antibiotic-resistant bacterial infections are rising
exponentially, making them harder to treat [5, 6]. This continuation will lead to an
estimated 10 million deaths annually by 2050 if the burden of AMR is not alleviated
[7].

For most of human history, bacteria have caused infectious diseases and
contributed to high mortality rates [8]. To counteract this, antibiotics were routinely
prescribed to treat and prevent such diseases. This saved millions of lives each
year. Due to its success, antibiotics were used in animal husbandry and agricultural
practices with the added benefits of growth promotion [9]. Unfortunately, this
success was limited to the emergence of antibiotic-resistant bacteria (ARB) and its
effects on human health and longevity [8, 10, 11].

The continuous and unwarranted use of antibiotics in humans, animals, and
agricultural areas exerts selection pressure on the bacteria found in these sectors.
This gives rise to bacteria resistant to multiple antibiotics classes leading to
untreatable infections [12, 13].
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The ability of bacteria to resist antibiotics is embedded in their evolutionary
history, which has led to various phenotypic and genotypic resistance mechanisms
[14, 15]. These include the inactivation, modification, degradation, and expulsion
of the antibiotic or its target site, therefore protecting the bacteria [9, 16–19]. It is
also possible that bacteria gain resistance through mutations, changing the nature
of proteins expressed in the bacterial organism, or by horizontal gene transfer
phenomena, which is the exchange of genetic material by the use of mobile
genetic elements (MGEs) between bacterial strains [8, 14]. This allows bacteria
to collect numerous resistant traits and ultimately become multi-drug resistant
(MDR) [15, 18–20]. The ineffectiveness of antibiotics threatens the ability to treat
common bacterial infections and minor injuries. Since first-line antibiotics are
deemed sub-par, more expensive treatment, alternative therapy and additional care
is necessary. This can result in prolonged infections and an increase in morbidity
and mortality rates. This puts an economic burden on families, society, and modern
medicine [15, 21–23].

For over a decade, antibiotic resistance has been studied using the traditional
culture-dependent approach. This involves the use of artificial conditions to culture
microorganisms. Unfortunately, some microorganisms cannot be cultured by this
approach [24, 25]. Approximately 80% of bacterial species in the human gut and 99%
of environmental bacterial species remain uncultured [25, 26]. Factors such as slow
growth, microbial competition, specific growth requirements, and environmental
stressors can affect the culturing process. This leaves limited information regarding
gene transfer between these bacterial communities [24, 25, 27–29].

Whole metagenome DNA sequencing can describe the genomes of the total
microbial community found in nature. This approach enables the study of culturable
and non-culturable bacteria by bypassing the need for isolation and laboratory
cultivation of microorganisms. DNA directly isolated from the environmental
sample can broaden the understanding of the structure, gene/species richness and
distribution, and the functional and metabolic potential of a microbial community
[28].

Applying this approach to antibiotic resistance in different microbial communities
can identify known and novel resistance genes and mobile genetic elements, i.e.,
plasmids, integrons, transposons, and phage’s [30–33]. This information is the
stepping stone to making new policies for infection and prevention control measures,
thereby reducing the incidence of infection and optimizing the use of antibiotics
by health professionals, in the healthcare, animal, and agricultural industries.
In addition, it will provide improved awareness and understanding of antibiotic
resistance as a whole.

Unfortunately, AMR monitoring systems focus on clinical and the public health
sectors as a representation of AMR as a whole. Organizations such as WHO and
the implementation of the Global Antimicrobial Surveillance System (GLASS) have
relied on the use of traditional culturable methods for clinical AMR research. This
creates a biased outlook on AMR as non-clinical sectors, and non-culturable bacteria
are excluded. This review will focus on AMR in non-clinical sectors and the use of
bioinformatics as an aid in this research.
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2.2. DNA SEQUENCING TECHNOLOGIES USED IN ANTIBIOTIC

RESISTANCE RESEARCH

Microbiomes are complex and require sequencing technologies to be comprehensive
enough to capture the present representative sequences from species. Several
sequencing platforms can be used to study AMR in clinical and non-clinical sectors.
They are useful in detecting antibiotic resistance genes (ARGs), virulence factors,
MGEs, and diversity of the microbial community [34]. The advancements in
metagenomics have been driven by next-generation sequencing technologies (NGS)
i.e., second and third-generation sequencing technologies (Table 2.1).

Second-generation sequencing has been the most widely used sequencing
technology for microbial genomics. Second- generation sequencing technologies, i.e.,
Illumina and Ion Torrent, produce short reads from 100 up to 300 base pairs with
high accuracy (≈0.1% error rate) [35, 36]. These short reads provide information
on species population, evolutionary relationships, allelic variations, SNPs, and the
detection of specific genes, i.e., ARGs [35–37]. Although short reads provide
information on the genomic content of the bacterial isolates in a sample, it does
not provide information on the genomic structure, i.e., which genes are present on
chromosomes and MGEs such as plasmids which are crucial in understanding the
dissemination of ARGs [35, 36, 38, 39].

Third-generation technologies overcome this limitation by providing a better view
of the genetic structure as longer reads (on average 1–100 Kbp) span most of
the repetitive sequences, linking ARGs to MGEs, e.g., plasmids [36, 37]. This
long-read technology is advantageous for studying AMR in bacterial isolates, and
metagenomic samples as the complexity of assembly is reduced [35]. Unfortunately,
the high error rate makes it difficult to identify specific allelic variants or SNPs in
chromosomal genes leading to AMR [36]. On the other hand, Pacbio and ONT
are easily accessible and able to produce raw data in real-time, making them a
good tool for the rapid diagnostics [40]. Long reads are also a practical method
to determine the species/gene richness, distribution, and functional potential of a
microbial community [27, 41].

While third-generation technologies are successful in AMR research, it is limited
by the high error rate and low accuracy [36]. To overcome this, a combination
of short-reads (i.e., Illumina) with long-reads (i.e., ONT) is a promising way to
generate fully resolved and accurate bacterial genome assemblies which characterize
antibiotic resistance genes on plasmids and genomes from environmental samples
[29, 42, 43]. This combination allows for better assembly of complex genomes as
long reads provide information on the structure of the genome, and short reads can
be used to correct errors in long reads [35].

These sequencing technologies directly characterize the microbiomes in humans,
animals, and environmental samples, providing high-throughput sequencing of either
whole genomes, targeted amplicons, or whole metagenomes [44]. Whole-genome
sequencing (WGS) uses DNA sequencing technologies to sequence the entire
genome of isolated pure organisms to characterize genomic variants (Table 2.2) [45].
WGS overcomes the limitations of traditional culture- dependent approaches and
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phenotypic tests, i.e., disk diffusion for AMR [46]. By opting to use WGS, more
information on the bacterial genetic determinants conveying resistance and their
association with mobile genetic elements can be established [46, 47]. This contributes
to outbreak detection, infection control, and epidemiological surveillance, all of
which are an essential part of the AMR surveillance [45].

Amplicon sequencing uses marker genes such as 16S (prokaryotes) or 18S rRNA
(eukaryotes) genes. Both approaches require the DNA extracted directly from the
microbial community and are subjected to either direct sequencing or amplification
via polymerase chain reaction (PCR) (Table 2.2). In both instances, the sequences are
queried against a reference database (Table 2.4). This is a reliable process to identify
the composition of a microbial community down genus-level within a sample [34,
47, 48].

Metagenomic sequencing involves the fragmentation, sequencing, assembly, and
annotation of the total genomic DNA isolated in a given sample [47, 49]. Similar
to WGS, whole metagenome sequencing (WMS) can provide information on the
entire gene content of either prokaryotic and eukaryotic organisms as well as
species or strain-level identification and virulence or resistance potential [48, 50,
51]. In addition, WMS makes it possible to predict the metabolic potential of the
microbial community. This comprehensive view of all gene content allows access to
information on AMR that is essential for setting up control and prevention strategies
in all sectors [49].

Meta-proteomics focuses on functional change in a microbiome. Assisting in
the control strategies and plays a key role in identifying molecular mechanisms
of bacterial pathogenesis and disease outcome determinants. It can aid in
developing pathogen-specific treatment strategies that can lower the spread of AMR.
Meta-proteomics is reliable for reviewing bacteria in soil, sludge, food, and the ocean
[52–55]. Unfortunately, there are inconsistent protocols for sample preparation,
inefficient bioinformatic tools, and challenges in measuring low-abundance proteins
within a complex protein sample [56]. This technique, while reliable, should be
applied with other sequencing technologies to have an in-depth analysis of microbial
communities, antibiotic resistance genes, and host-pathogen interaction [57, 58].
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2.3. BIOINFORMATIC ANALYSIS OF METAGENOMIC

SEQUENCES FOR ANTIBIOTIC RESISTANCE RESEARCH

The constant development of new computational pipelines is advantageous in
providing an accurate depiction of the resistome from metagenomic sequencing
data. These analyses rely on a variety of algorithms: quality control of DNA
sequencing data, genome and metagenome assembly algorithms, read-mapping,
variant detection, phylogenetics, taxonomic databases, and visualization [59]. AMR
databases are discussed in more detail in the next section. The typical process to
identify antibiotic resistance genes from sequenced metagenomes is based on one of
two general techniques: (i) read-mapping and (ii) assembly. Each of these could be
followed by binning or an annotation step (Table 2.3). A bioinformatics pipeline for
analysing metagenomic data for antibiotic resistance research has been presented in
Figure 2.2. Read mapping allows for raw read sequences to be directly aligned to
reference databases (Table 2.3) using pairwise tools such as MiniMap2 [60], Bowtie2
[61], Burrows-wheeler aligner (BWA) [61], or by splitting reads into k-mers and
mapping to a reference database using k-mer alignment (KMA) (Figure 2.2) [62]. This
provides information on the similarity of one sequence to another by counting the
number of alignments to quantify the abundance of similar sequence patterns [62].

In the last decade, read-mapping approaches were deemed superior to assembly
approaches for AMR gene detection, i.e., reads are first assembled and mapped to
a database using BLAST [63–65]. The success of an assembly-based approach is
highly dependent on the quality of the assembly [62, 66]. An approach as such is
problematic as genes of interest, i.e., ARG, s can be split over two or more contigs
and will not be identified if the assembly is poor quality [62, 65].

Read-mapping based methods overcome this by using the tools above, which allow
for fast mapping and alignment of raw reads against large reference genomes and
entire databases [62]. This can identify genes from low abundance organisms in a
complex community with speed and ease of computation. Since epidemiological
databases are constantly being updated with new sequences due to natural evolution,
the read-mapping approach becomes difficult as results constantly change. There is
no guarantee that the read will cover a unique part of the reference sequence and
will result in a tie for the best match due to the random selection [62]. Fortunately,
tools like SRST2 [66] resolve the ties by pre-and post-processing of sequences for
read-mapping, which can predict the presence of ARGs in a sample [65, 67].

Identification and characterization of ARGs can also be achieved using assembly-
based approaches (Table 2.3 and Figure 2.2) [68]. This method allows reads to be
assembled into contigs and then queried against reference databases (Table 2.4). The
assembly of WMS data is complicated as there is an uneven or unknown abundance
of different genomes [69]. Unrelated genomes may also contain nearly identical
DNA repeats, which could represent MGEs [37]. In addition, multiple individual
organisms could be from the same species but may harbour small genetic differences
indicating strain variants [69]. Technical factors, e.g., library preparation, sequencing
depth, and sequencing platforms, affect the accuracy in assembling WMS data into
larger contigs [70]. Metagenomic assemblers such as MEGAHIT [71], MetaSPades
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[72], IDBA-UD [73], and MetaVelvet [74] have been developed to overcome these
challenges by normalizing sequencing depth, correcting read errors, and detecting
and reporting genomic variants and repeats [69, 75]. To date, no single assembler
is the best at accurately reconstructing known genomes and capturing taxonomic
diversity in a metagenomic sample. Multiple assemblers are recommended to be
applied to a subset of samples to determine which has the best fit [37, 69, 70].

Binning classification can predict the taxonomical composition using information
contained in reads (Figure 2.2). Reads are grouped to represent an individual genome
or closely related genomes (Table 2.3). Binning can be done either with reads or
assembled sequences and employs two strategies to obtain taxonomic assignment; (i)
sequence composition classification and (ii) sequence alignment against references.
The first is based on looking at genomic signatures using k-mers to identify
evolutionary conservation among species and uses software such as TETRA [76],
MetaClusterTA [77], and PhylophytiaS [78]. Similarly, software like MaxBin [79] and
Amphora2 [80] use k-mer signatures but also considers gene markers, GC content,
and coverage information for binning on assembled sequences or reads. Another
method based on reference read alignment is the Burrows-Wheeler Transform [81]
which indexes like BWA [82] or Bowtie [61] and is fast and accurate in assessing
species richness and abundance in WMS by aligning them to reference genomes.
Genometa [83] is a software that looks at OTUs in the WMS data and groups
according to genomic islands and operons. Taxonomic classification in long reads
using the potential coding regions to search in annotated protein databases using
BLAST [63] or Megan [84]. Binning achieved after the assembly of contigs can lead to
the generation of partial genomes of unknown or uncultured organisms. This can be
used to perform similarity-based binning of other metagenomic datasets. If binning
is achieved before assembly, it can reduce the complexity of an assembly-based
approach and may reduce the computational demands. However, caution should
be taken to ensure the validity of the genome bins as there is a chance of false
assignments [85, 86]. In this instance, CheckM [87] can be used to evaluate
the quality of bins on metagenomic samples and assess the quality of assembled
metagenomic genomes by estimation of completeness and contamination based on
marker-gene validation [88].

Taxonomic assignments of reads can also be done with genome annotation.
This process identifies the coding regions and their location to determine gene
function. Annotation of metagenomic sequences can be done in two ways, (i)
existing pipelines, e.g., RAST [89] and IMG [90], can be used for assembled genomes,
and (ii) annotation can be performed on an entire community and relies on
unassembled reads and short contigs. WMS data is annotated by identifying genes
(feature prediction) and assigning putative gene functions and taxonomic neighbours
(functional annotation) [85]. Prediction tools such as MetaGeneAnnotator [91] or
MetaGeneMark use internal information to classify sequences as either coding or
non-coding and are done with a low error rate of 2% [85].



2

28 2. METAGENOMIC-BASED SURVEILLANCE SYSTEMS FOR ANTIBIOTIC RESISTANCE

Table 2.3: Various bioinformatics approaches for the prediction of AMR and MGEs.

Read-mapping
approach

Assembly-based
approach

Binning
approach Annotation

Definition

The detection of
genes without
genome
assembly. The
direct alignment
of reads to a
reference
database.

The identification
of genes with de
novo assembly
profiling.

The evaluation of
taxonomic groups
by clustering
assembled
sequences into
individual groups
that represent
microbial species.

The prediction of
genes from either
assembled or
unassembled
reads.

Function

Antibiotic
resistance gene
discovery and
taxonomic
identification.

Antibiotic-
resistant gene
discovery and
taxonomic
identification.

Assessment of
taxonomic
diversity and
gene association
to taxonomic
groups.

Gene function
and taxonomic
identification.

Technique

High-quality
reads are directly
aligned to a
reference
database using
pairwise
alignment tools
or splitting reads
into k-mers and
mapping to
reference
databases.

High-quality
reads are
assembled into
contigs that are
aligned to a
reference
database using
BLAST or
HMMscan.

The process of
clustering contigs
into individual
genome bins by
machine learning
methods or
comparing
metagenomic
sequences against
a reference
database of
genomic
sequences.

Sequences are
classified by
coding and
non-coding
regions to
determine gene
function.

Advantages

+ Fast
+ Less
computationally
demanding
+ Identify genes
from low
abundance
organisms in
complex
communities
+ Resistome
analysis of large
datasets

+ Identification
of protein-coding
regions
+ Identification
of known and
novel resistance
genes
+ Regulatory and
mobile genetic
element
sequences
identified

+ Easy
+ Reliable

+ High accuracy
+ High sensitivity

Limitations

- Lacks
information
required to study
upstream and
downstream
factors of
identified
resistance genes
- Large datasets
may cause
false-positive
predictions

- Loss of
information due
to incomplete
and poor
assembly
-
Computationally
expensive
-
Time-consuming
- Requires a high
genome coverage

- Lack of
whole-genome
sequences within
the available
databases

-
Computationally
demanding
- Limited success
for short reads
- Expensive

Tools

SRST2 [66],
ARIBA [64],
BOWTIE2 [61],
Burrows-Wheeler
aligner (BWA)
[82]

MEGAHIT [71],
MetaSpades [72],
MetaVelvet [74],
Spades [92],
Velvet, Abyss [93]
and SOAPdenovo
[94]

MetaBat2 [95],
Maxbin2 [79],
CONCOCT [96],
GroopM [97],
DASTool [98],
MetaCluster [99],
MEGAN [84],
MGRAST [100]

RAST [89], IMG
[90], MetaGe-
neAnnotator [91],
MetaGeneMark
[78]
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2.4. ANTIBIOTIC RESISTANCE DATABASES
The performance of antibiotic resistance gene prediction and taxonomic identification
depends on the availability of accurate databases. Two types of public databases exist,
generalized AMR databases, which include a wide range of ARGs and mechanistic
information, and specialized databases, which provide extensive information on
specific gene families, e.g., the β-lactamase family [51].

Several bioinformatic tools and databases can be used in AMR research. They focus
on fast and reliable predictions of ARB and their genetic determinants in complex
communities [101]. It is important to note that the quality and type of sequence
play an essential role in AMR research. The bioinformatics tool’s robustness can
differ when analysing sequences of low-quality [51]. Any database’s value depends
on maintenance, curation, and continuous updates with detailed metadata. Correctly
predicting ARGs from large-scale datasets with improved accuracy depends on input
parameters such as e-values, bit scores, identity, and query coverage levels [102].

2.4.1. GENERAL ANTIBIOTIC RESISTANCE DATABASES

General antibiotic resistance databases incorporate a wide variety of ARGs and
mechanistic information. Established tools like ResFinder [103] accept short reads
and contigs to detect the presence of acquired ARGs. This can be done for
complete or partial genome sequences and uses BLAST [63], or KMA [62] approaches
[103] (Table 2.4). The specificity of using BLAST to detect antibiotic resistance
genes depends on the selection criteria for gene length and percentage similarity.
This method requires computational expertise and could be challenging to identify
multiple copies of ARGs in de novo assembled genomes [62, 104]. This can be solved
by using longer reads which increases the cost.

In comparison, the KMA approach was developed to map the raw reads against
redundant AMR databases as the traditional BLAST method remains too slow to
map raw reads directly [51, 65]. This approach provides accurate bacterial genome
analysis and can identify ARGs present in low abundance, which might be excluded
in incomplete assemblies. There is also a chance of false positives due to sequencing
errors which can be overcome by setting the minimum threshold for the number of
reads needed for a positive outcome [51, 104].

The Comprehensive Antibiotic Resistance Database (CARD) [105] for the
identification of resistance genes, their products, and associated phenotypes. This
database allows for the identification of chromosomal mutations that confer
resistance to antibiotics. Similar to ResFinder [103], the percentage coverage and
identity can be adjusted to allow for the selection of new ARGs. The Resistance
Gene Identifier (RGI), a tool for de novo annotation of genes, complete genomes,
or genome assembled sequences for AMR, uses CARD’s curated database to predict
ARGs in either DNA or amino acid format. This is because some sequences
cannot be mapped due to divergence in the nucleotide sequences; however, amino
acid sequences in this instance can be translated to proteins to characterize the
resistome [106, 107]. CARD uses two prediction models: a protein homolog model
based on functional resistance homologs and a protein variant model that detects
mutations conferring resistance [105, 108]. The application of ontologies such
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as CARD’s Antibiotic Resistance Ontology (ARO) has organized AMR information
based on molecular determinants, resistance mechanisms, individual antimicrobials,
antimicrobial targets, and drug classes, therefore, making this database favourable
[59]. Other curated databases include; MEGARes [109], ResFams [110], NDARO [111],
FARME [112], and MUSTARD [113], all of which are curated for the detection of
AMR determinants in large metagenomic datasets [102, 108, 114, 115].

Interestingly, FARME, a functional antibiotic resistance metagenomic element
database, focuses on AMR gene elements from environmental samples (soil,
faecal matter, wastewater treatment plants, oral and aquatic biomes) rather than
individual ARGs obtained from cultured clinical isolates, providing more access and
analysis of non-clinical sectors. This database is compiled from publicly available
DNA sequences from 30 functional metagenomic projects and their corresponding
predicted proteins conferring AMR [112]. FARME contains over seven times the
number of non-redundant protein sequences as compared to CARD [102, 112]. It
provides information on regulatory elements, MGEs, and predicted proteins flanking
ARGs, which are conserved between functional metagenomic AMR sequences from
soil biomes and pathogenic clinical isolates [112, 116]. This allows for better
insight into AMR in unculturable bacteria found in non-clinical settings [86, 108,
112]. ResFams is a curated database of protein families linked to their profile
Hidden Markov Models (HMMs) associated with AMR function are trained using
unique AMR protein sequences obtained from CARD, LaCED, and Lahey databases
[102]. This platform primarily focuses on pathogen-associated ARGs and provides a
comprehensive view of resistomes in the environment and the evolution of resistant
pathogens [102]. ResFams were evaluated with functional metagenomic datasets
and demonstrated improved sensitivity, and identified 64% more ARGs in soil and
human gut microbiomes compared to BLAST-based searches of CARD and ARDB
databases. This increased sensitivity is due to the HMM-based analysis. HMM,
models are specific models constructed based on observed sequence variation
across genes/protein families and capture possible variation for the families [106].
Although this approach is sensitive and can detect distant matches that BLAST-based
approaches cannot, ResFams is computationally expensive and requires the user to
provide local computational resources to run HMM-based searches [106, 107].

2.4.2. SPECIFIC ANTIBIOTIC RESISTANCE DATABASES

Specific databases are created to meet specific needs and provide extensive
information about a specific gene family. So far, only specialized databases are
available for β-lactamase.

The β-lactamase database (BLAD) is a catalogue of resistance patterns from
all classes of β-lactamases collected from NCBI and published data with crystal
structures of proteins from the Protein Data Bank (PDB) [117]. Metagenomic
sequences can be queried against BLAD to obtain basic information about
β-lactamases, search for the gene of interest, identify resistance patterns and search
and analyse the 3D structure of the β-lactamase [118, 119].

The CBMAR β-lactamase database [120] includes detailed biochemical and
molecular information to understand known and unknown β-lactamase genes. This
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provides a cache of information on nucleotides, 3D protein structures, sequence
alignments, and mutation profiles.

Similarly, LacED [121] is a specialized platform that contains mutational and
structural data for TEM and SHV β-lactamases. This is extremely important to
understand the evolution of multidrug-resistant pathogens as β-lactamase evolution,
and the emergence of new enzymes affects the now available treatment for
infections. Furthermore, these resistant genes are present on plasmids which help
their spread to different biomes, challenging the treatment options in both clinical
and non-clinical sectors [122].
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Table 2.4: General and specific databases in AMR research.

General
Databases

Description Update Website Reference

ResFinder
and Res-
FinderFG

A curated database that iden-
tifies acquired genes and/or
finds chromosomal mutations.

Apr-21
https://cge.cbs.
dtu.dk//services/
ResFinder/

[103,
123]

CARD

Manually curated database
and an ontology resource that
provides information on ARGs
and resistance mechanisms.

Jul-21
https://card.
mcmaster.ca/

[105,
124–
126]

SARG (v2)

ARG database derived from
ARDB, CARD, and NCBI-NR
databases for characterization
and quantification of ARGs.

Apr-21
http://smile.hku.
hk/SARGs [127]

FARME

Curated database focused
on environmentally derived
metagenomes conferring re-
sistance.

Mar-
19

http://staff.
washington.edu/
jwallace/farme/

[112]

MEGARES
Database containing sequence
data for approximately 8000
manually curated ARGs.

Oct-19
https://megares.
meglab.org/ [109]

MUSTARD

Database of 6059 AMR de-
terminants from 20 families
in the human gut micro-
biota and curated sets of
genes identified via functional
metagenomics.

Sep-
17

http://mgps.eu/
Mustard/ [113]

RESFAMS

A profile HMM-based curated
database to confirm antibi-
otic resistance function and
organized by ontology.

Jan-15
http://www.
dantaslab.org/
resfams/

[110]

NDARO
Curated and collated data
from multiple databases. Con-
tains 5804 sequences.

https://www.
ncbi.nlm.nih.
gov/bioproject/
PRJNA313047

Specific
Databases

Description Update Website Reference

LacED

Curated database providing
information on mutation, se-
quences, and structures of
TEM and SHVβ-lactamases.

T:2017,
S:2010

http://www.laced.
uni-stuttgart.de/ [121]

CBMAR

Database identifying and
characterizing novel β-
lactamases based on Amber
classification.

Sep-
14

http://
proteininformatics.
org/mkumar/
lactamasedb/

[120]

BLDB
A manually curated database
of AR enzymes classified by
class, family, and subfamily.

Jul-21 http://bldb.eu/ [119]

https://cge.cbs.dtu.dk//services/ResFinder/
https://cge.cbs.dtu.dk//services/ResFinder/
https://cge.cbs.dtu.dk//services/ResFinder/
https://card.mcmaster.ca/
https://card.mcmaster.ca/
http://smile.hku.hk/SARGs
http://smile.hku.hk/SARGs
http://staff.washington.edu/jwallace/farme/
http://staff.washington.edu/jwallace/farme/
http://staff.washington.edu/jwallace/farme/
https://megares.meglab.org/
https://megares.meglab.org/
http://mgps.eu/Mustard/
http://mgps.eu/Mustard/
http://www.dantaslab.org/resfams/
http://www.dantaslab.org/resfams/
http://www.dantaslab.org/resfams/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047
http://www.laced.uni-stuttgart.de/
http://www.laced.uni-stuttgart.de/
http://proteininformatics.org/mkumar/lactamasedb/
http://proteininformatics.org/mkumar/lactamasedb/
http://proteininformatics.org/mkumar/lactamasedb/
http://proteininformatics.org/mkumar/lactamasedb/
http://bldb.eu/
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2.5. ANTIBIOTIC RESISTANCE IN NON-CLINICAL SECTORS
AMR is a natural phenomenon that predates the use of antibiotics. A wide array
of novel and clinically characterized ARGs have been detected in environmental
samples ranging from pristine environments to agricultural soil [128]. The major
driving force of AMR is the mis-use of antibiotics while other factors such as poor
infrastructure, i.e., hygiene and sanitation play a role in maintaining AMR [129,
130]. Approximately more than 60% of total antibiotic use occurs outside the field
of human medicine [11, 131, 132]. The main non-clinical sectors that are involved
in the development of AMR are animal production (food-animals and aquaculture),
agriculture (plants), and the environmental (water and soil) compartment. These
sectors are interconnected and facilitate the spread of pathogenic ARB within and
between them and ultimately to humans. Table 2.5 summarizes the findings done
on AMR in various non-clinical reservoirs through the use of metagenomics.
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Figure 2.1: Pathway map of antibiotic agents and antibiotic resistance dissemination
between livestock, agriculture, aquaculture, and water. The movement
of antibiotic resistance or antibiotic agents is indicated by solid lines.
The potential routes of transmission and exposure between non-clinical
sectors and antibiotic usage is indicated by the abbreviations: Ro:
run-off /leaching, T: treatment, P: prevention, GP: growth promoter,
H: animal house, C: cleaning, N: nutrients, I: irrigation (Created with
BioRender.com). Routes between non-clinical sectors (↔) and antibiotic
usage in non-clinical sectors (→) have been described by the previous
studies mentioned. Water ↔ crop: [133–137], water ↔ soil: [133, 135,
138–140], water ↔ livestock: [7, 141–146], water ↔ aquaculture: [138,
147–153], antibiotic use → aquaculture: [147, 149, 151, 154], antibiotic use
→ livestock: [124, 142, 145, 155–158], antibiotic use → crops: [159–163],
livestock ↔ soil and crops: [123, 164–167].
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2.5.1. FOOD-ANIMALS

Each year, half of the antibiotics produced are used for industrial farm animal
production [24]. The global demand for animal protein has directly driven the use
of antibiotics in livestock. The food-animal industry is a hotspot for antibiotic
usage, estimated to increase by 67% in highly populated countries [7]. Antibiotics
are administered as metaphylactic and prophylactic treatment for the whole flock
or herd to prevent the spread of infectious diseases. Furthermore, it is used as a
growth-promoting agent across the globe [7, 168, 169].

Historically, the negative effects of antibiotic usage in livestock production have
been overlooked because of the drive to keep up with consumer demand [169, 170].
This has led to the prolonged use and dosage, creating an ideal condition for the
emergence of ARB and ARGs [144, 155].

AMR can spread through direct and indirect contact, which was confirmed by
finding the same ARBs in the poultry farm and the caretaker [171]. Antibiotics and
their residues can be found in most connecting areas such as soil and plants, and
animal products which can lead to health risks when consumed due to the direct
toxicity, allergic reactions, carcinogenic effects, and disturbance of the beneficial
microbiota in children, those who are pregnant, the elderly, and people living with
immunocompromised people [172].

Areas such as the EU and United States have made efforts to ban the use of
antibiotics as growth enhancers. However, they are still widely used in South Africa,
Brazil, India, China, and Russia [6, 7]. This strategy is based on the assumption
that susceptible strains can outnumber AMR microorganisms if the advantage of
becoming resistant is decreased [173]. This was supported by a post-ban study
conducted in Denmark and Norway. Interestingly, even though ARB decreased, the
broilers that were studied were still colonized by ARB years after the ban came into
effect. It is such that the ban on antibiotics is still up for debate as decreasing
antibiotic use could increase the frequency of bacterial infections [174, 175].

The World Health Organization has recommended that farmers and the food
industry stop using antibiotics for the growth and prevention of disease in healthy
animals. Farms should consider the employment of proper preventive measures
and farming practices to limit the risk of bacterial infections instead of the routine
antibiotic dosing of animals to prevent disease. If this is done correctly, we could
see the decreased use of antibiotics and the alleviation of antimicrobial resistance
[23, 155, 169, 176].

2.5.2. WATER

Water represents one of the most important bacterial habitats and is a major
pathway and reservoir for disseminating microorganisms and AMR. This is due to
the spread of AMR by humans, and animals, or contamination of the environment
by pathogens [177, 178].
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GREY WATER

Wastewater treatment plants (WWTPs) collect chemical pollutants, including
antibiotics, which are disposed of from households, hospitals, and factories. The
WWTP aims to remove contaminants before disposing water in natural environments,
e.g., streams, rivers, and lakes. While the reuse and reclamation of water through
WWTPs reduce water shortage, they assist in the spread and emergence of AMR
[139]. This impacts the economy and society of countries affected by AMR [136,
179]. It could be possible that proper sanitation and safe drinking water in the
high-, middle-and low-income countries affect the emergence and spread of AMR.
Although the removal of contaminants is successful, some ARB are not removed by
the WWTP and are released with the effluent, which can spread to other natural
environments [135].

Since WWTPs receive a diverse range of ARB and their genes from different
sources. This ARB accumulates in the WWTP, and these high concentrations
provide a selective pressure that facilitates the emergence of new ARB strains [136].
This is seen in wastewater treatment that uses biological treatment processes such
as activated sludge, creating a favourable environment for ARB, ARGs, and their
transmission [180]. Contradictorily, it was hypothesized that the WWTP is efficient
in removing ARBs which was seen in a study of the Dutch [181]. It could be
argued that AMR in WWTP decreased since the Netherlands decreased antibiotic use
as a whole. While this can be observed, antibiotic residues are not fully removed
from the WWTP and persist in lower concentration when released with the effluent
which serves as a selection pressure for ARBs [182]. WWTPs should revise their
treatment options to manage AMR concerns while also providing sanitary water to
communities. Policies about sludge and biosolid disposals are needed along with
better infrastructure which will help decrease the spread of AMR to other sectors
[136, 183].

BLUE/GREEN WATER

Freshwater environments are among the natural environments susceptible to
contamination with antibiotics. These are released through different sources such
as agricultural run-off, sewage discharge, and leaching from farms [177, 184]. The
combination of antibiotics with a high density of bacteria provides a favourable
environment for the development of ARGs [185]. ARB carrying resistance genes can
persist in freshwater and ultimately return to humans and animals by horizontal
gene transfer (HGT) [186, 187]. Freshwater serves as a source of drinking water, for
recreational purposes and for agricultural practices, which use 70% of all freshwater,
e.g., aquifers, streams, and lakes [136]. Continuous use of freshwater encourages the
spread of AMR and the emergence of new pathogens, which leads to an increased
risk of infection and prolonged and untreatable infections in humans, animals, and
the environment [188].

To date (Table 2.5), there is evidence showing that the consumption of
contaminated water poses health risks [189–191] and that the WWTP has the
potential to contribute to the dissemination of AMR in receiving rivers [140,
180]. Unfortunately, information on antibiotics in streams, lakes, beaches, pond
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water, surface and groundwater, and drinking water is scarce as it is presumed
that antibiotic concentrations are naturally low in these areas. However, low
antibiotic concentrations still select for ARB [188]. Studies also focus on ARB
and genes at discharge points, i.e., receiving river or effluent, of the WWTP. At
this point, the concentration of AMR is high but declines further away from the
WWTP, downstream, which could be a result of degradation through biological or
non-biological processes, uptake by aquatic microorganisms through HGT, diluted,
absorption onto particulate matter, or transportation into different water systems
[187, 192]. More focus should be on AMR within each freshwater environment, its
link to different sectors, AMR after the WWTP discharge points and in potable water
to gain a more holistic view [187].

2.5.3. AQUACULTURE

Aquaculture refers to the breeding, rearing, and harvesting of aquatic organisms in
different water environments. This term is commonly used to describe fish farming.
Aquaculture contributes to more than half of the world’s seafood consumption and
production and has increased by 6% a year since 2001 [193]. The aquacultural sector
is a complex interconnected system influenced by the environment, cultural, human,
and economic factors [194, 195].

Like livestock production, antibiotics are used in aquaculture as a therapeutic
agent to prevent and treat bacterial outbreaks. High concentrations are used due to
high stocking densities, and the lack of individual treatment [196].

Antibiotics are mixed with feed before being administered to animals or can be
directly applied to the aquatic environment. This leads to the dispersal and leaching
of antibiotics into the environment [194]. The gut microbiota of fish is also affected
by the continuous use of antibiotics which alter the benefit of host-microbiota
relationships allowing the gut microbiota to become resistant to antibiotics that
are administered [197]. Aquaculture is also affected by toxic materials such as
silver and mercury, which co-resist and co-regulate with antibiotics. These toxic
materials accumulate in fish bodies and the aquatic food web. This toxicity can
be passed to humans and animals through consumption. It can affect the nervous
system leading to death, as discussed by Sonone et al. [153], who reviewed the
various heavy metal sources, i.e., agricultural activities, electronic waste, mining,
industrial effluents, power plants, and biomedical waste and its role in degrading the
aquaculture population, causing physical deformities in organisms and polluting the
aquatic environment.

Several studies (Table 2.5) have shown that the excess use of antibiotics has led
to the emergence of AMR. It cannot be ignored that the aquaculture industry is
integrated with sewage, industrial wastewater, and land agriculture as manure and
other agricultural residues are used in fish food. Areas in Western Europe and
North America have banned antibiotics as a growth promoter, but it is still used
as a therapeutic agent in fish food. Since 70 to 80% of antibiotics given to fish
are excreted into the water, the entire body of water is exposed. This leads to
leaching into different water environments and sediments, which provide long-term
selection pressure in the aquatic environment, favoring horizontal gene transfer and
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the spread of AMR, as discussed by Taylor et al. [198], Watts et al. [199] and Mirza
et al. [187]. Such policies on aquacultural practices should be reviewed to decrease
the incidence of ARB and infections [149, 151, 185, 200].

2.5.4. SOIL

Microbes in soil are of great importance as they break down organic matter, recycle
nutrients, bioremediation, and produce antibiotics [201]. Variation in biotic, e.g.,
plants, animals and other bacteria, and abiotic, e.g., water, soil and atmosphere,
conditions of soil cause the residing microbes to adapt and develop strategies for
survival and successful reproduction. Antibiotic production is the most powerful
adaptation strategy from soil microbes to inhibit the growth of competing microbes
[201]. This strategy has led to the natural development of AMR. Antibiotics
and disinfectants used in medicine, agriculture, and aquaculture have been the
driver of AMR through manure/fertiliser application on soil, irrigation, and run-off.
Consequences of these are the emergence of new ARGs and the spread of pathogenic
ARB to other environments, humans, and animals [165, 201, 202].

Although AMR research has shown that WWTP effluents can still contain a high
level of ARGs and bacteria after disinfection, there is not much research on the
sludge and biosolids applied to soil and how this changes the bacterial community
and resistome [188, 192]. The application of manure/fertiliser/sludge to soil should
also be looked into to determine if there is any difference in soil and crop quality
as they are used in agricultural and remediation practices. Studies have shown the
prevalence of AMR in soil and how bioremediation and pollutants have facilitated its
spread (Table 2.5).

2.5.5. PLANTS

The agricultural industry has been valued at an estimated US$ 3.2 trillion worldwide
and accounts for the largest share of the GDP and employment in developing
countries and underdeveloped nations. Unfortunately, the agriculture industry has
been suffering due to population growth, pest resistance, and the burden of natural
resources [203].

Manure is commonly used as fertilizer on vegetable farmlands to enhance crop
yield. This enhances AMR as 30–90% of antibiotics consumed by animals are
excreted in faeces which is used as manure. Using sewage sludge and water for
irrigation contributes to rising AMR in agriculture [148, 204, 205]. Crops can take up
antibiotics through water transport and passive absorption [133]. Antibiotic-resistant
bacteria found in soil can reach the interior of fruits and vegetables either through
germination seeds in contaminated soil or the direct transmission of bacteria from
the soil to the plant via irrigation. Both these routes can cause the bacteria to
colonize in the roots and the edible parts of the plant [159, 161, 206].

These edible plants are consumed by animals or sold as ready- to-eat products
such as bagged salads or pre-cut vegetables, which may enhance the proliferation
and survival of ARB [207–210]. This is due to many factors such as hygiene
standards, irrigation water, temperature, storage, pH, soil, manure, and antimicrobial
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agents. Since these products rarely go through a heating step before consumption,
it increases the risk of consumers being exposed to high numbers of different
pathogenic ARB [210]. This poses a threat to society as consumers who opt for
ready-to-eat products are faced with the risk of acquiring foodborne illnesses which
could be untreatable with antibiotics. Table 2.5 summarizes studies showing that
manure, fertilizers, compost, and irrigation are all routes for the transmission and
dissemination of AMR to plants.

2.6. ANTIBIOTIC RESISTANCE AND ITS TRANSMISSION
The use and misuse of antibiotics in humans, animals, and the environment have
been linked to the emergence of ARB in each of these sectors. Antibiotic residues,
ARB, and ARGs, are spread to different environments [178]. Most antibiotics are
excreted in animal urine and faeces [211]. This is introduced to the environment
directly by manure amendment, which provides nutrients for crops, or through water
which is the primary link between humans, animals, and nature [178].

Since antibiotics are used in the food animal industry, ARB can spread via run-off,
which can go into lakes, streams, and rivers. Water from these areas is used for
irrigation for agricultural practices. This leads to the spread of ARB from food
animals to water, soil, and crops (Figure 2.1). This interconnectedness facilitates the
exchange of AMR and allows for the emergence of new genetic determinants. This
emergence and spread can occur by HGT [24, 160, 212, 213].
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Table 2.5: Studies focusing on the introduction of antibiotics and AMR in each
non-clinical sector.

Reservoirs Introduction of antibiotics Study References

Soil
Organic Manure/agricul-
tural run-off

Identification of unknown tetracycline and sulphonamide resistance genes
in forest and grassland soil.

[214]

Manure application
Non-manure amended soil displayed a larger proportion of antibiotic
resistance bacteria but carried fewer genes.

[164]

Manure application /or-
ganic compost

Antibiotic resistance genes from manure amended soil accounted for
70% of total resistance genes.

[215]

Antibiotic-producing soil
bacteria

Thirteen antibiotic resistance genes and two bifunctional proteins
conferring resistance to ceftazidime and β-lactamase.

[216]

Antibiotic-producing soil
bacteria

Total of eleven ARGs in soil with little human influence. [217]

Fertilizer/ manure appli-
cation

Tetracycline-resistant bacteria in fertilized soil were three times higher
than manure amended soil.

[9]

A fertilizer with heavy
metals

ARGs could potentially increase by the use of fertilizer containing heavy
metals.

[218]

Manure application
Manure-borne bacteria contribute to the increase of ARGs whereas
indigenous soil bacteria prevent the dissemination of ARGs from manure
to soil.

[219]

Pollution from a petro-
chemical plant

The soil was more abundant in ARGs than less contaminated soil. [125]

Plants Manure application
ARGs on lettuce and endive were grown in manure amended soil. ARGs
were detected in the endophytes and phyllosphere of the plants.

[165]

Conventionally produced
(manure application) /
organic fertilizers

A higher abundance of diverse ARGs and MDR genes were present in
the endophyte and phyllosphere of lettuce grown organically.

[220]

Manure application /fertil-
izer

More than 50 unique ARGs were detected in the phyllosphere of maize
after manure application.

[221]

Compost/ improper sani-
tation/ run-off from farms

2015 to 2020, five outbreaks linked to green leafy vegetables, two linked
to sprouts, and one linked a chopped salad kit in the USA.

[222]

Food-
animals

Animal feed / infection
prevention

Tetracycline resistant E. coli strain present in the gut of chickens
receiving food supplemented with tetracycline.

[155]

Animal feed/growth pro-
moter / indirect and direct
contact

ARBs were found in each processing step of the beef production chain. [223]

Animal feed
A total of 495 bacterial species, 50 ARGs were detected in the organic
animal feed.

[224]

Therapeutic and non-
therapeutic

Antibiotics used in food animals leave antibiotic residues in eggs, milk,
and meat products.

[172]

Animal feed
Faecal samples from large-scale swine farms showed a total of 146
ARGs.

[56]

Animal feed
Taxonomic composition analysis showed a decrease of Proteobacteria and
an increase of Actinobacteria in the gut microbiome of male broilers.

[225]

Water Effluent discharge
The abundance of pathogens and ARGs increased in the effluent after
wastewater treatment.

[140]

Chlorination
ARGs are found in high amounts in drinking water suggesting
chlorination concentrates ARGs.

[190]

Run-off / discharge
Effluent from municipal wastewater treatment plants and pharmaceutical
manufacturing plants releases antibiotics into natural water bodies.

[180]

Reuse of water / potable
water

An increase in ARGs in reclaimed potable water samples and associations
between 193 ARGs and plasmid-associated genes.

[226]

Sewage run-off
The distinct taxonomic composition of bacterial species found in sewage
and the sea suggests sewage is diluted in environmental freshwater.

[227]

Aqua-
culture

Animal feed
Fifty-one different ARGs conferring resistance against 24 different
antibiotic types with MDR genes located on plasmid sequences.

[197]

Animal feed /therapeutic
Tetracycline resistance genes were found in 81% of samples taken from
a Chilean salmon farm.

[147]

Animal feed/ therapeutic
An abundance of tetracycline, sulphonamide, and beta-lactam resistance
genes which strongly correlated to silver and mercury resistance genes
were found indicating co-resistance and co-regulation.

[150]
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2.6.1. HORIZONTAL GENE TRANSFER

ARB exists across animal, human and environmental sectors. The evolution
of AMR and the dynamics of ARGs spread across these sectors are critical for
predicting emerging pathogens and controlling AMR dissemination. HGT is primarily
responsible for rapid AMR spread and dissemination of ARGs between bacteria and
across species [228, 229]. AMR can be established either vertically by point mutations
or horizontally by acquiring MGEs such as plasmids and transposons [229].

HGT is a process that introduces variation in the bacterial genome under natural
selection. It is an essential process that allows bacteria to adapt to environmental
changes such as exposure to antibiotics [230]. HGT predates the production and
use of antibiotics. Unfortunately, the increased usage of antibiotics has put selective
pressure on bacterial strains. This has sped up the process of bacteria becoming
antibiotic-resistant by various genotypic and phenotypic resistance mechanisms.
This diversification can be seen in the resistance to antibiotics of different classes
[15].

Genes that confer resistance can either be intrinsic or extrinsic [231]. Intrinsic
resistance is the bacterium’s innate ability to resist the antimicrobial agent’s activity.
This occurs through structural or functional characteristics. Extrinsic or acquired
resistance occurs when a previously susceptible bacterium obtains the ability to
resist the activity of the antimicrobial agent. This can result from the mutation
of genes involved in normal physiological processes, the acquisition of foreign
resistance genes, or a combination of both [17, 19, 20].

Pathogenic bacteria can acquire resistance via HGT. This has caused AMR to
spread from commensal and environmental bacteria to pathogenic ones. ARGs are
often carried in MGEs, e.g., plasmids, transposons, or integrons which act as vectors
for transferring genetic information between bacterial cells. The three classical
pathways of HGT are conjugation, transformation, and transduction. These HGT
mechanisms lead to increased bacteria fitness, which is essential for survival in the
presence of antibiotics [16, 18–20, 229].

Recent studies have identified other mechanisms by which DNA can transfer
between hosts. Gene transfer agents are DNA-containing particles, similar to phages,
but cannot carry genes for particle production [232]. Genes can also be transferred
between bacteria that form intercellular connections by nanotubes or membrane
fusion [230, 233]. Some bacteria can also release DNA-containing membrane-bound
vesicles that carry genetic information to new hosts. Interestingly, some of these
mechanisms are not under bacterial control but are controlled by semi-autonomous
segments of DNA [233].

Bioinformatic approaches such as MetaCHIP [234] and WAAFLE [235] can be
used to detect HGT events in metagenomic sequences. These processes involve
an all-against-all BLASTN or BLASTX of genes within assembled contigs, and
potential HGT events are determined based on genes with the best hits in other
taxonomic groups [236]. These approaches are limited by sequencing technologies
and assemblers, which often fail to assemble long regions with high sequence
similarity [234]. It can be assumed that inferring HGT events will become easier as
the assembly of metagenomic sequences improves [237].
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Figure 2.2: Workflow for determining antibiotic resistance genes, mobile genetic
elements, horizontal gene transfer events and taxonomic composition
using metagenomic data. The workflow is indicated by solid lines with
example tools and databases annotated in the boxes. The complete lists
are described in Tables 2.3 and 2.4.
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2.7. MOBILE GENETIC ELEMENTS

Specialized MGEs mediate HGT between bacteria. These play an important role
in bacterial ecology and evolution. Several factors impact HGT in bacteria, such
as gene expression, protein connectivity, and biochemical properties; however, the
range of genes carried on MGEs remains unknown [238]. MGEs are segments of
DNA that encode enzymes and other proteins that mediate the movement of DNA
within or between bacterial cells [233, 239]. MGEs carry genes other than those
necessary for transfer and replication [233]. These accessory genes do not play a
role in their vertical or horizontal transmission but affect the success of MGEs. The
range of accessory genes encoded by MGEs and their ability to be phenotypically
expressed in different genetic backgrounds are critical in its evolution [238].

The most important elements that play a role in HGT are the conjugative and
mobilized elements. Mobilized elements contain all genetic information required to
transfer from one bacterium to another, while conjugative elements use conjugation
functions of elements such as plasmids and transposons to transfer from one host
to another. These MGEs can carry multi-drug resistant (MDR) plasmids and give rise
to MDR bacteria via HGT [229]. Bacteriophages also play a role in the spread of
DNA by the transduction process. Some elements can translocate to new sites on a
genome but cannot transfer to a new bacterial host. These include the transposons
and mobile integrons [233, 240].

2.7.1. DETECTING MOBILE GENETIC ELEMENTS

The ability of MGEs containing ARGs to spread is controlled by the genetic elements
and host factors. The genetic elements and host factors control the ability of MGEs
containing ARG, but most important is the selective pressure in the environment.
When antibiotics are present in the environment, there is strong selective pressure
on the spread of resistance. Elements that promote resistance will be selected for,
and those stopping the spread of mobile elements will be selected against [20, 30,
233]. To control the spread of AMR, it is important to understand MGEs and the
ecology of the environments in which they spread easily [240, 241].

Several databases such as ACLAME [242, 243], ISFinder [244], INTEGRALL [245],
and ICEberg [246] and web-based tools such as ISSaga2 [247], MobilomeFinder [248],
oriTfinder [249], TnpPred [250] and MobileElementFinder [251] were developed to
identify MGEs in metagenomic datasets [252]. These web-based tools and databases
range from detecting plasmids, integrons, transposons, prophages, and insertion
sequences.

Overall, there is no single solution for detecting MGEs as these databases, and
web-based tools are incomplete and biased towards pathogens studied extensively.
This makes it difficult and time-consuming as most web-based tools and databases
need to be evaluated first and used in combination to provide an all-inclusive view
on MGEs associated with AMR [253, 254]. This information can be applied to clinical
and non-clinical sectors to potentially influence policies and strategies which can
help control the spread of AMR [228].
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2.8. OUTLOOK
Antibiotic resistance affects animals, plants, the environment and human health
[255]. Monitoring and understanding the prevalence, mechanisms and spread of
AMR is a priority in non-clinical sectors [37]. Since measures against AMR are
focused on the clinical health sector, the environment is under-represented which
allows for significant gaps in data, research and control strategies therefore failing
to link the effects of AMR from one sector to the other [255]. Metagenomic
sequencing allows for the detection of known and novel ARGs, HGT events, and
associated MGEs in complex communities providing in-depth information on their
prevalence, distribution, and transmission in non-clinical sectors such as the animal
industry, agriculture, and the environment [34]. While metagenomics is promising,
its implementation in non-clinical sectors is still in its early stages. Metagenomic
sequencing creates a vast amount of data and requires specialized bioinformatic
expertise, which makes this a costly approach [34, 47]. To date, only a few countries
and laboratories have the resources and expertise to use metagenomic approaches
as a surveillance system for AMR. In addition, bioinformatics methodologies need
to be standardized and constantly updated and curated to allow for an accurate
comparison between various samples, as the selection of bioinformatic tools and
AMR databases does have a significant impact on the results [51, 102]. Nevertheless,
using bioinformatic tools and databases can assist in identifying risky practices,
effects of antibiotic usage, and hotspots of AMR. This can facilitate the design of
new policies to control the spread of AMR between clinical and non-clinical sectors
[123, 256]. Such knowledge and practices are urgent as these sectors, including the
public health sector, are faced with a future of untreatable infections, increasingly
costly medicinal treatment, a higher cost of living, and an increased mortality rate
[256–258].

2.9. CONCLUSION
The application of metagenomic and bioinformatic approaches to AMR research
can provide fast and reliable predictions of AMR and antibiotic use in various
non-clinical sectors. These hold a great promise for understanding AMR molecularly,
predicting outbreaks and transmission, and emerging pathogens. This information
can lead to better policymaking in each sector and decrease the incidence of
infections as conditions for the animal industry, agriculture, and the environmental
sectors are improved.

2.10. DECLARATIONS

2.10.1. FUNDING

This work is based on the research supported wholly/in part by the National
Research Foundation of South Africa (Grant Numbers: 120192).



REFERENCES

2

45

REFERENCES
[1] V. Gigante, H. Sati, and P. Beyer. “Recent advances and challenges in

antibacterial drug development”. In: ADMET and DMPK 10.2 (2022), pp. 147–
151.

[2] N. S. Papavarnavas and M. Mendelson. “Optimising blood cultures: The
interplay between diagnostic and antimicrobial stewardship”. In: South
African Medical Journal 112.6 (2022), pp. 395–396.

[3] S. Pokharel, S. Raut, and B. Adhikari. Tackling antimicrobial resistance in
low-income and middle-income countries. 2019.

[4] A. Gupta and B. Gupta. “Silent slow pandemic of antimicrobial resistance”.
In: ().
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[67] N. Taş, A. E. de Jong, Y. Li, G. Trubl, Y. Xue, and N. C. Dove. “Metagenomic
tools in microbial ecology research”. In: Current Opinion in Biotechnology 67
(2021), pp. 184–191.

[68] F. P. Breitwieser, J. Lu, and S. L. Salzberg. “A review of methods and databases
for metagenomic classification and assembly”. In: Briefings in bioinformatics
20.4 (2019), pp. 1125–1136.

[69] J. S. Ghurye, V. Cepeda-Espinoza, and M. Pop. “Focus: microbiome:
metagenomic assembly: overview, challenges and applications”. In: The Yale
journal of biology and medicine 89.3 (2016), p. 353.

[70] A. Escobar-Zepeda, A. Vera-Ponce de León, and A. Sanchez-Flores. “The road
to metagenomics: from microbiology to DNA sequencing technologies and
bioinformatics”. In: Frontiers in genetics 6 (2015), p. 348.

[71] D. Li, C.-M. Liu, R. Luo, K. Sadakane, and T.-W. Lam. “MEGAHIT: an
ultra-fast single-node solution for large and complex metagenomics assembly
via succinct de Bruijn graph”. In: Bioinformatics 31.10 (2015), pp. 1674–1676.

[72] S. Nurk, D. Meleshko, A. Korobeynikov, and P. A. Pevzner. “metaSPAdes:
a new versatile metagenomic assembler”. In: Genome research 27.5 (2017),
pp. 824–834.

[73] Y. Peng, H. C. Leung, S.-M. Yiu, and F. Y. Chin. “IDBA-UD: a de novo
assembler for single-cell and metagenomic sequencing data with highly
uneven depth”. In: Bioinformatics 28.11 (2012), pp. 1420–1428.

[74] T. Namiki, T. Hachiya, H. Tanaka, and Y. Sakakibara. “MetaVelvet: an
extension of Velvet assembler to de novo metagenome assembly from short
sequence reads”. In: Proceedings of the 2nd ACM conference on bioinformatics,
computational biology and biomedicine. 2011, pp. 116–124.

[75] S. Vosloo, L. Huo, C. L. Anderson, Z. Dai, M. Sevillano, and A. Pinto.
“Evaluating de novo assembly and binning strategies for time series drinking
water metagenomes”. In: Microbiology spectrum 9.3 (2021), e01434–21.

[76] H. Teeling, J. Waldmann, T. Lombardot, M. Bauer, and F. O. Glöckner. “TETRA:
a web-service and a stand-alone program for the analysis and comparison of
tetranucleotide usage patterns in DNA sequences”. In: BMC bioinformatics 5
(2004), pp. 1–7.

[77] Y. Wang, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin. “MetaCluster-TA:
taxonomic annotation for metagenomic data based on assembly-assisted
binning”. In: BMC genomics. Vol. 15. Springer. 2014, pp. 1–9.



REFERENCES

2

51

[78] A. C. McHardy, H. G. Martín, A. Tsirigos, P. Hugenholtz, and I. Rigoutsos.
“Accurate phylogenetic classification of variable-length DNA fragments”. In:
Nature methods 4.1 (2007), pp. 63–72.

[79] Y.-W. Wu, B. A. Simmons, and S. W. Singer. “MaxBin 2.0: an automated
binning algorithm to recover genomes from multiple metagenomic datasets”.
In: Bioinformatics 32.4 (2016), pp. 605–607.

[80] M. Wu and A. J. Scott. “Phylogenomic analysis of bacterial and archaeal
sequences with AMPHORA2”. In: Bioinformatics 28.7 (2012), pp. 1033–1034.

[81] M. Burrows and D. Wheeler. “A block sorting lossless data compression
algorithm. Palo Alto (CA): Digital Equipment Corporation”. In: (1994).

[82] H. Li and R. Durbin. “Fast and accurate short read alignment with
Burrows–Wheeler transform”. In: bioinformatics 25.14 (2009), pp. 1754–1760.

[83] C. F. Davenport and B. Tümmler. “Advances in computational analysis of
metagenome sequences”. In: Environmental microbiology 15.1 (2013), pp. 1–5.

[84] D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster. “MEGAN analysis of
metagenomic data”. In: Genome research 17.3 (2007), pp. 377–386.

[85] T. Thomas, J. Gilbert, and F. Meyer. “Metagenomics-a guide from sampling
to data analysis”. In: Microbial informatics and experimentation 2 (2012),
pp. 1–12.

[86] J. Bengtsson-Palme. “Strategies for taxonomic and functional annotation of
metagenomes”. In: Metagenomics. Elsevier, 2018, pp. 55–79.

[87] D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W.
Tyson. “CheckM: assessing the quality of microbial genomes recovered from
isolates, single cells, and metagenomes”. In: Genome research 25.7 (2015),
pp. 1043–1055.

[88] Y. Du and F. Sun. “HiCBin: binning metagenomic contigs and recovering
metagenome-assembled genomes using Hi-C contact maps”. In: Genome
biology 23.1 (2022), p. 63.

[89] R. K. Aziz, D. Bartels, A. A. Best, M. DeJongh, T. Disz, R. A. Edwards,
K. Formsma, S. Gerdes, E. M. Glass, M. Kubal, et al. “The RAST Server:
rapid annotations using subsystems technology”. In: BMC genomics 9 (2008),
pp. 1–15.

[90] V. M. Markowitz, K. Mavromatis, N. N. Ivanova, I.-M. A. Chen, K. Chu, and
N. C. Kyrpides. “IMG ER: a system for microbial genome annotation expert
review and curation”. In: Bioinformatics 25.17 (2009), pp. 2271–2278.

[91] H. Noguchi, T. Taniguchi, and T. Itoh. “MetaGeneAnnotator: detecting
species-specific patterns of ribosomal binding site for precise gene prediction
in anonymous prokaryotic and phage genomes”. In: DNA research 15.6 (2008),
pp. 387–396.



2

52

[92] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov,
V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, et al. “SPAdes: a new
genome assembly algorithm and its applications to single-cell sequencing”.
In: Journal of computational biology 19.5 (2012), pp. 455–477.

[93] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol.
“ABySS: a parallel assembler for short read sequence data”. In: Genome
research 19.6 (2009), pp. 1117–1123.

[94] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu,
et al. “SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler”. In: Gigascience 1.1 (2012), pp. 2047–217X.

[95] D. D. Kang, F. Li, E. Kirton, A. Thomas, R. Egan, H. An, and Z. Wang.
“MetaBAT 2: an adaptive binning algorithm for robust and efficient genome
reconstruction from metagenome assemblies”. In: PeerJ 7 (2019), e7359.

[96] J. Alneberg, B. S. Bjarnason, I. De Bruijn, M. Schirmer, J. Quick, U. Z. Ijaz,
L. Lahti, N. J. Loman, A. F. Andersson, and C. Quince. “Binning metagenomic
contigs by coverage and composition”. In: Nature methods 11.11 (2014),
pp. 1144–1146.

[97] M. Imelfort, D. Parks, B. J. Woodcroft, P. Dennis, P. Hugenholtz, and G. W.
Tyson. “GroopM: an automated tool for the recovery of population genomes
from related metagenomes”. In: PeerJ 2 (2014), e603.

[98] C. M. Sieber, A. J. Probst, A. Sharrar, B. C. Thomas, M. Hess, S. G.
Tringe, and J. F. Banfield. “Recovery of genomes from metagenomes via a
dereplication, aggregation and scoring strategy”. In: Nature microbiology 3.7
(2018), pp. 836–843.

[99] H. C. Leung, S.-M. Yiu, B. Yang, Y. Peng, Y. Wang, Z. Liu, J. Chen, J. Qin, R. Li,
and F. Y. Chin. “A robust and accurate binning algorithm for metagenomic
sequences with arbitrary species abundance ratio”. In: Bioinformatics 27.11
(2011), pp. 1489–1495.

[100] E. M. Glass, J. Wilkening, A. Wilke, D. Antonopoulos, and F. Meyer. “Using the
metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes”.
In: Cold Spring Harbor Protocols 2010.1 (2010), pdb–prot5368.

[101] P.-J. Van Camp, D. B. Haslam, and A. Porollo. “Bioinformatics approaches to
the understanding of molecular mechanisms in antimicrobial resistance”. In:
International journal of molecular sciences 21.4 (2020), p. 1363.

[102] C. L. Gupta, R. K. Tiwari, and E. Cytryn. “Platforms for elucidating antibiotic
resistance in single genomes and complex metagenomes”. In: Environment
international 138 (2020), p. 105667.

[103] E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund,
F. M. Aarestrup, and M. V. Larsen. “Identification of acquired antimicrobial
resistance genes”. In: Journal of antimicrobial chemotherapy 67.11 (2012),
pp. 2640–2644.



REFERENCES

2

53

[104] S. Hameed and Z. Fatima. Integrated Omics approaches to infectious diseases.
Springer, 2021.

[105] B. Jia, A. R. Raphenya, B. Alcock, N. Waglechner, P. Guo, K. K. Tsang, B. A.
Lago, B. M. Dave, S. Pereira, A. N. Sharma, et al. “CARD 2017: expansion and
model-centric curation of the comprehensive antibiotic resistance database”.
In: Nucleic acids research (2016), gkw1004.

[106] B. B. Xavier, A. J. Das, G. Cochrane, S. De Ganck, S. Kumar-Singh, F. M.
Aarestrup, H. Goossens, and S. Malhotra-Kumar. “Consolidating and exploring
antibiotic resistance gene data resources”. In: Journal of clinical microbiology
54.4 (2016), pp. 851–859.

[107] S. M. Lakin, A. Kuhnle, B. Alipanahi, N. R. Noyes, C. Dean, M. Muggli, R.
Raymond, Z. Abdo, M. Prosperi, K. E. Belk, et al. “Hierarchical Hidden Markov
models enable accurate and diverse detection of antimicrobial resistance
sequences”. In: Communications biology 2.1 (2019), p. 294.

[108] M. Imchen, J. Moopantakath, R. Kumavath, D. Barh, S. Tiwari, P. Ghosh, and
V. Azevedo. “Current trends in experimental and computational approaches
to combat antimicrobial resistance”. In: Frontiers in Genetics 11 (2020),
p. 563975.

[109] S. M. Lakin, C. Dean, N. R. Noyes, A. Dettenwanger, A. S. Ross, E. Doster,
P. Rovira, Z. Abdo, K. L. Jones, J. Ruiz, et al. “MEGARes: an antimicrobial
resistance database for high throughput sequencing”. In: Nucleic acids
research 45.D1 (2017), pp. D574–D580.

[110] M. K. Gibson, K. J. Forsberg, and G. Dantas. “Improved annotation of
antibiotic resistance determinants reveals microbial resistomes cluster by
ecology”. In: The ISME journal 9.1 (2015), pp. 207–216.

[111] E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau,
R. Connor, K. Funk, C. Kelly, S. Kim, et al. “Database resources of the national
center for biotechnology information”. In: Nucleic acids research 50.D1 (2022),
pp. D20–D26.

[112] J. C. Wallace, J. A. Port, M. N. Smith, and E. M. Faustman. “FARME DB: a
functional antibiotic resistance element database”. In: Database 2017 (2017),
baw165.

[113] E. Ruppé, A. Ghozlane, J. Tap, N. Pons, A.-S. Alvarez, N. Maziers, T. Cuesta,
S. Hernando-Amado, I. Clares, J. L. Martínez, et al. “Prediction of the
intestinal resistome by a three-dimensional structure-based method”. In:
Nature microbiology 4.1 (2019), pp. 112–123.

[114] G. A. Arango-Argoty, G. Guron, E. Garner, M. V. Riquelme, L. S. Heath,
A. Pruden, P. J. Vikesland, and L. Zhang. “ARGminer: a web platform
for the crowdsourcing-based curation of antibiotic resistance genes”. In:
Bioinformatics 36.9 (2020), pp. 2966–2973.

[115] G. A. Arango Argoty. “Computational Tools for Annotating Antibiotic
Resistance in Metagenomic Data”. In: (2019).



2

54

[116] K. J. Forsberg, A. Reyes, B. Wang, E. M. Selleck, M. O. Sommer, and G. Dantas.
“The shared antibiotic resistome of soil bacteria and human pathogens”. In:
science 337.6098 (2012), pp. 1107–1111.

[117] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
I. N. Shindyalov, and P. E. Bourne. “The protein data bank”. In: Nucleic acids
research 28.1 (2000), pp. 235–242.

[118] M. Danishuddin, M. Hassan Baig, L. Kaushal, and A. U. Khan. “BLAD:
a comprehensive database of widely circulated beta-lactamases”. In:
Bioinformatics 29.19 (2013), pp. 2515–2516.

[119] T. Naas, S. Oueslati, R. A. Bonnin, M. L. Dabos, A. Zavala, L. Dortet,
P. Retailleau, and B. I. Iorga. “Beta-lactamase database (BLDB)–structure and
function”. In: Journal of enzyme inhibition and medicinal chemistry 32.1
(2017), pp. 917–919.

[120] A. Srivastava, N. Singhal, M. Goel, J. S. Virdi, and M. Kumar. “CBMAR:
a comprehensive β-lactamase molecular annotation resource”. In: Database
2014 (2014), bau111.

[121] Q. K. Thai, F. Bös, and J. Pleiss. “The Lactamase Engineering Database: a
critical survey of TEM sequences in public databases”. In: BMC genomics 10
(2009), pp. 1–9.

[122] I. Dandachi, A. Chaddad, J. Hanna, J. Matta, and Z. Daoud. “Understanding
the epidemiology of multi-drug resistant gram-negative bacilli in the Middle
East using a one health approach”. In: Frontiers in microbiology 10 (2019),
p. 1941.

[123] W.-Y. Xie, Q. Shen, and F. Zhao. “Antibiotics and antibiotic resistance from
animal manures to soil: a review”. In: European journal of soil science 69.1
(2018), pp. 181–195.

[124] A. M. Ahmed, Y. Motoi, M. Sato, A. Maruyama, H. Watanabe, Y. Fukumoto,
and T. Shimamoto. “Zoo animals as reservoirs of gram-negative bacteria
harboring integrons and antimicrobial resistance genes”. In: Applied and
environmental microbiology 73.20 (2007), pp. 6686–6690.

[125] B. Chen, R. He, K. Yuan, E. Chen, L. Lin, X. Chen, S. Sha, J. Zhong, L. Lin,
L. Yang, et al. “Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic
resistance genes (ARGs) in the soils”. In: Environmental pollution 220 (2017),
pp. 1005–1013.

[126] J. Guo, J. Li, H. Chen, P. L. Bond, and Z. Yuan. “Metagenomic analysis reveals
wastewater treatment plants as hotspots of antibiotic resistance genes and
mobile genetic elements”. In: Water research 123 (2017), pp. 468–478.

[127] X. Yin, X.-T. Jiang, B. Chai, L. Li, Y. Yang, J. R. Cole, J. M. Tiedje, and T. Zhang.
“ARGs-OAP v2. 0 with an expanded SARG database and Hidden Markov
Models for enhancement characterization and quantification of antibiotic
resistance genes in environmental metagenomes”. In: Bioinformatics 34.13
(2018), pp. 2263–2270.



REFERENCES

2

55

[128] Y. Yang, A. J. Ashworth, C. Willett, K. Cook, A. Upadhyay, P. R. Owens,
S. C. Ricke, J. M. DeBruyn, and P. A. Moore Jr. “Review of antibiotic resistance,
ecology, dissemination, and mitigation in US broiler poultry systems”. In:
Frontiers in Microbiology 10 (2019), p. 2639.

[129] P. Collignon, J. J. Beggs, T. R. Walsh, S. Gandra, and R. Laxminarayan. “An-
thropological and socioeconomic factors contributing to global antimicrobial
resistance: a univariate and multivariable analysis”. In: The Lancet Planetary
Health 2.9 (2018), e398–e405.

[130] S. Y. Essack and B. Sartorius. “Global antibiotic resistance: of contagion,
confounders, and the COM-B model”. In: The Lancet Planetary Health 2.9
(2018), e376–e377.

[131] F. Prestinaci, P. Pezzotti, and A. Pantosti. “Antimicrobial resistance: a global
multifaceted phenomenon”. In: Pathogens and global health 109.7 (2015),
pp. 309–318.
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Bacterial resistance to antimicrobials is a global health threat. Within the One
Health context, water from regions with high antibiotic usage, such as clinical and
urban areas, collects at wastewater treatment plants (WWTPs). In the WWTP, the
activated sludge becomes a complex environment where various antimicrobials and
microorganisms converge. While significant research has focused on the influent,
activated sludge, and effluent, upstream and downstream sectors around the WWTP
are often neglected. We conducted a systematic analysis using five publicly available
metagenomic datasets (n=164) from different WWTP sectors and adjacent freshwater
systems: upstream (n=14), influent (n=14), activated sludge (n=109), effluent (n=14),
and downstream (n=13) to identify and characterise the microbiome, resistome, and
mobilome. Opportunistic pathogenic bacteria, such as Pseudomonas, Aeromonas,
and Acidovorax, were found in all WWTP sectors, with abundances exceeding 9% in
the influent. ESKAPE pathogens, including Klebsiella pneumoniae and Enterobacter
species, were identified in the effluent with abundances over 1%. We detected 230
antibiotic resistance genes (ARGs) throughout the WWTP. FTU and CKO β-lactamase
gene families dominated the upstream, effluent, and downstream sectors, while the
OXA β-lactamase gene family was highly abundant in the influent and activated
sludge. ARGs, such as the OXA β-lactamase gene family, were linked to plasmids.
Class-1 integrons, associated with the sul1 gene, a marker for anthropogenic pollution,
were prevalent in the effluent and downstream sectors. Integrative elements (ICEclc,
Tn4371, and PGI2), linked to ARGs, were identified in all sectors, increasing AMR
dissemination. These integrative elements conferred resistance to antibiotics, including
sulfonamides, tetracyclines and carbapenems. Our findings highlight the presence of
ARGs and mobile genetic elements in WWTPs and nearby freshwater systems, raising
concerns about AMR transmission to humans, animals, and the environment. This
study emphasises the need for effective AMR monitoring and strategies in wastewater
treatment to protect public and environmental health.

3.1. INTRODUCTION

Antimicrobial resistance (AMR) is responsible for at least 700,000 deaths annually
worldwide. It is anticipated to rise to 10 million deaths per year by 2050, affecting
all income regions [1]. The World Health Organisation has endorsed a global action
plan to control antimicrobial resistance as infectious diseases caused by multidrug
resistant (MDR) bacteria are one of the leading causes of death worldwide [2, 3]. The
proliferation of antibiotic resistant and MDR bacteria is directly correlated to the use
of antibiotics in clinical and non-clinical settings [4]. According to the One Health
concept, wastewater treatment plants (WWTPs) should act as a barrier between
sewage and the receiving environments as sewage contains a full spectrum of
human microbiome-associated bacteria, antibiotic resistant bacteria and associated
antibiotic resistance genes (ARGs) released by anthropogenic factors [4, 5].

WWTPs employ various treatment technologies and management practices. These
practices can be broadly categorised into natural attenuation, advanced treatment
processes and conventional practices which aim to remove solids, organic matter,
nutrients and contaminants [6, 7]. Natural attenuation uses processes such as
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dilution, biodegradation, and sorption, which are cost-effective and simple but
inefficient in fully removing contaminants and microorganisms [7]. Advanced
oxidation processes can break down antibiotics but may generate oxidation products
that could introduce ARGs into microorganisms, particularly pathogenic bacteria
[7–9]. Conventional treatment options, such as membrane treatments, act as robust
yet costly barriers, producing brine water. In contrast, incorporating activated
carbon is cost-effective but leads to sludge generation [5]. One of the most common
biological processes in conventional WWTPs is the activated sludge process. This
method is widely adopted for treating both municipal and industrial wastewater.
However, it is concerning that despite the activated sludge process being effective in
removing some ARGs, contaminants and microorganisms can persist in the treated
water after the process [2, 5].

At present, WWTPs act as primary barriers against the spread of emerging
contaminants such as antibacterial drugs causing antibiotic resistant bacteria [7].
However, these contaminants cannot be removed at low concentrations and removal
efficiency is not satisfactory [7]. This inefficiency can result in the release of
antibiotic resistant bacteria with the effluent into receiving environments e.g. rivers
and lakes [5]. Moreover, WWTPs combined with activated sludge may enhance the
spread of antibiotic resistant bacteria and ARGs into these overlooked environments
[10, 11]. AMR surveillance has mainly focused on the influent, effluent, and activated
sludge sectors, or their combinations. Che et al. [12] identified plasmids carrying
ARGs conferring resistance to clinically relevant antibiotics e.g. tetracycline and
macrolide-lincosamide-streptogramin in the aforementioned sectors increasing the
risk of ARG-carrying bacteria spreading to rivers and lakes. Iwan et al. [13] found
E. coli isolates increasing in resistance to antibiotic agents along the Tama River
in Japan from the effluent of an urban WWTP to the downstream river. Similarly,
sulfonamide levels were similar in upstream and downstream sectors of a feedlot
WWTP however, the sulfonamide-resistant microorganisms and gene abundances
were higher in the downstream river [14]. The presence of antibiotic agents,
antibiotic resistant bacteria and ARGs present in the upstream and downstream
sectors contributes to the rise of AMR and enhances horizontal gene transfer (HGT)
via mobile genetic elements (MGEs) such as plasmids, integrons and transposons
[15–18]. AMR surveillance should consider adjacent areas of the WWTP, such as
the upstream freshwater system and downstream receiving environmental sectors, to
fully address the AMR spread (Figure 3.1).

This study aims to analyse publicly available metagenomic datasets from various
sectors of wastewater treatment plants (WWTP) — including upstream, influent,
activated sludge, effluent, and downstream — across different geographical locations.
Using a standardised pipeline, this study aims to identify bacterial populations,
antibiotic resistance genes, and mobile genetic elements in each sector and examine
their role in the spread of AMR into receiving environments.
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3.2. METHODS AND MATERIALS

3.2.1. DATA SOURCES

164 whole-metagenome sequences representing the wastewater treatment plant
were selected for this study. These included upstream (n=14), influent
(n=14), activated sludge (n=109), effluent (n=14), and downstream (n=13) [19–
24]. All raw reads were publicly available and obtained from NCBI-SRA
(https://www.ncbi.nlm.nih.gov/sra). A combination of the following keywords was
used to find whole metagenome sequences, these included "upstream", "influent",
"activated sludge", "effluent", "downstream", "whole genome", "metagenome",
"wastewater", "wastewater treatment plant". The identified samples were then
filtered based on the sequencing technology used, specifically selecting only those
generated using Illumina technology. Additionally, only samples with accompanying
publications were included. Samples that did not meet these criteria were discarded.

Samples obtained were from different studies conducted in various geographical
locations (Figure 3.1). Influent and effluent samples were obtained from urban
and industrial sources from Portugal, Colombia, China and South Korea, upstream
and downstream samples were obtained from a river source in Spain and South
Korea and lastly, activated sludge samples were obtained from municipal, urban and
industrial sources from China and Colombia. Samples were categorised into five
sectors: upstream, influent, activated sludge, effluent and downstream based on
the sample source descriptions. Upstream samples were obtained from freshwater
systems over 50m away from the WWTP and in the opposite direction of water flow.
Influent samples consisted of raw sewage samples taken before the treatment process
whereas activated sludge samples were collected from reactors during biological
treatment. The effluent samples consisted of treated water flowing out of the WWTP
and the downstream samples were collected from freshwater systems more than 50m
away from the WWTP, following the flow of water (Figure 3.1). Detailed information
about the metagenomes retrieved from the database is included in Supplementary
Table S1.
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Figure 3.1: The process of the wastewater treatment plant. The upstream sector
includes freshwater systems such as streams, lakes and rivers that flow
toward the wastewater treatment plant (dotted arrows). The wastewater
treatment plant begins with the sewage (influent) from urban and
municipal areas which flow to the wastewater treatment plant (black
arrows). Sewage that flows into the wastewater treatment plant can
be treated by the biological treatment process i.e. activated sludge,
to treat the wastewater. Treated water is released as effluent which
flows downstream areas such as rivers and lakes and can be used in
farming. Each flag represents the geographical location from where the
samples were taken, and the sample’s source is indicated above the flags.
Influent and effluent samples were obtained from urban and industrial
sources from Portugal, Colombia, China and South Korea, upstream and
downstream samples were obtained from a river source in Spain and
South Korea and lastly, activated sludge samples were obtained from
municipal, urban and industrial sources from China and Colombia.

3.2.2. BIOINFORMATIC ANALYSIS

The quality of the reads was assessed using FastQC v.0.11.9 with default parameters
[25]. Paired-end reads were trimmed and filtered by Trimmomatic v.0.39 [26]
while specifying the ILLUMINACLIP: adapters.fa:2:30:10 LEADING:3 TRAILING:3
MINLEN:30 SLIDINGWINDOW: 4:20 parameters. The microbiome was profiled by
Kraken2 v.2.1.0 [27] using the minikraken2 microbial database (2019, 8GB). Species
confirmation and the estimation of abundances were done by Bracken v.2.6.2 for
each sample across all studies and sectors [28]. The average relative abundances
of bacterial phyla, families, genera, and species were calculated across all studies
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within each sector to characterise the microbial populations present in each sector
of the wastewater treatment plant (WWTP).

Average relative abundances of the bacterial species detected in each sector were
used to calculate the beta-diversity between sectors of the WWTP using the R
package vegan v.2.6-4. The beta-diversity of the microbiome between the different
sectors of the WWTP was visualised using non-metric multidimensional scaling
(NMDS) analysis with Bray-Curtis dissimilarity. Spearman’s correlation analysis
was used to analyse the correlation between the overall microbial communities
and specifically ESKAPE pathogens found in each sector of the WWTP using the
scipy.stats package in Python.

Filtered paired-end reads were de novo assembled using metaSPAdes v.3.15.2 [29]
on meta mode with default parameters. The assembled metagenomic contigs
were annotated to determine the antibiotic resistance gene families and drug
classes using the Comprehensive Antimicrobial Resistance Database Resistance Gene
Identifier (CARD-RGI) v.3.1.2 with default parameters including loose matches and
the –low_quality –clean options [30]. Furthermore, the average relative abundances
of the annotated antibiotic resistance genes in each sector were assessed. This data
was normalised based on the total number of antibiotic resistance genes detected in
each sector, indicating their respective proportions. Spearman’s correlation analysis
was used to analyse the correlation between antibiotic resistance gene families found
in each sector of the WWTP using the scipy.stats package in Python.

Metagenomic contigs were aligned to detect integrons and integrative elements
using the INTEGRALL database [31] and the ICEberg database [32]. Alignments were
performed by BWA-mem v.0.7.10 with default parameters [33], generating a SAM file.
The output SAM file was converted into a BAM file using SAMtools version v.1.9
[34]. Contigs that aligned to the databases were considered integrons and integrative
elements. SAM output files containing the detected integrative elements were
converted to .txt files and matched to the output .txt files generated with CARD-RGI
from their respective WWTP sector. This process was conducted to determine which
integrative elements carried antibiotic resistance genes. Contigs were classified as
plasmid-originating using Plasclass v.0.1.1 [35]. To confirm that contigs originated
from plasmids, a threshold was set with a minimum contig length of ≥ 1000 and
probability of ≥ 0.75. Detected plasmids were matched to the previously generated
CARD-RGI output .txt files to determine if the detected plasmids were linked to the
antibiotic resistance genes previously found.
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3.3. RESULTS AND DISCUSSION
Publicly available metagenomic data representing different sectors (upstream,
influent, activated sludge, effluent and downstream) of the WWTP were analysed to
determine the differences in the microbial communities, antibiotic resistance genes
and mobile genetic elements that facilitate the spread of AMR.

3.3.1. OPPORTUNISTIC BACTERIAL PATHOGENS ARE PRESENT ACROSS

THE WWTP PROCESS

We analysed the bacterial taxonomic composition in each sector of the WWTP. The
main goal of the WWTP is to reduce pollutants and pathogens through chemical,
biological, or physical processes, releasing treated water as effluent into downstream
systems [36]. Our study classified bacterial taxa at the phyla, family, genus, and
species levels to assess the microbial composition and determine the average relative
abundances of environmental, pathogenic, and emerging pathogenic bacteria in
each sector of the WWTP. Data on the phyla, families, genera and species can be
found in Supplemental Tables S2 - S5.
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Figure 3.2: Heatmap of the relative abundances (over 1%) of all bacterial genera
and species identified in each sector of the wastewater treatment plant.
Bacterial genera are indicated in bold text. Respective species belonging
to its genus that have an abundance of over 1% are listed below the
genus in plain text. Abundances are indicated in greyscale, low = white
and high = black. *Phocaeicola vulgatus has previously been identified as
Bacteroides vulgatus in the Bacteroides genus.
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Figure 3.2 illustrates the presence of opportunistic pathogens throughout the
WWTP process. In our study, the Pseudomonas, Aeromonas and Acidovorax genera
were present in each sector of the WWTP with abundances exceeding 9% in the
influent (Supplementary Table S4 and Figure 3.2). Specifically, we identified the
presence of Aeromonas caviae (A. caviae) (Figure 3.2), a human pathogenic bacteria
causing gastrointestinal infections, in the influent (2%), effluent (1%) and downstream
(1%) sectors (Supplementary Table S5). Other pathogenic bacterial species detected
included Acinetobacter johnsonii (A. johnsonii), Aliarcobacter skirrowii (A. skirrowii)
and Aliarcobacter trophiarum (A. trophiarum) which had an abundance of 2% in
the influent and less than 1% in the effluent and downstream sectors. Despite low
abundances downstream, these bacterial species still pose a zoonotic potential as
studies have linked them to meningitis and gastrointestinal infections in humans [7,
37–40].

In the activated sludge sector, we observed a blend of pathogenic and non-
pathogenic bacteria, including those crucial for biological treatment. In our study,
the Pseudomonas aeruginosa (P. aeruginosa) (1.61%), Thauera sp. MZ1T (T. sp.
MZ1T) (3%) and Acidovorax sp. KKS102 (A. sp. KKS102) (12%) species dominated
the activated sludge sector (Figure 3.2). Phyla such as Proteobacteria, Bacteroides,
Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes are commonly found
in activated sludge further confirming the mixture of bacteria in the activated sludge
with bacteria commonly found in the influent (Supplementary Table S2) [41–44].
Given that bacteria play a vital role in biological treatment, the microbial community
within the activated sludge is a key factor in evaluating WWTP efficiency. This
is particularly significant as the efficiency depends on the microbial community’s
capacity to degrade pollutants and xenobiotic compounds like pesticides [45].
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Figure 3.3: (A) Heatmap of the relative abundances of ESKAPE pathogens identified
in each sector of the wastewater treatment plant. Abundances are
indicated in greyscale, low = white and high = black. (B) The Spearman’s
correlation analysis of the ESKAPE pathogens present between each
sector of the wastewater treatment plant. The correlation rank values are
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3.3. RESULTS AND DISCUSSION

3

77

We identified ESKAPE (Enterococcus faecium (E. faecium), Staphylococcus aureus
(S. aureus), Klebsiella pneumoniae (K. pneumoniae), Acinetobacter baumannii (A.
baumannii), P. aeruginosa , and Enterobacter spp.) pathogens in the different sectors
of the WWTP process in Figure 3.3A. K. pneumonia was found at an abundance of
over 1% in the effluent with P. aeuroginosa exceeding 1% in the activated sludge
sector. Enterobacter spp. showed an abundance exceeding 1% in both the influent
and effluent sectors with a high correlation between both sectors (Figure 3.3B). In
all remaining sectors, these bacteria were present at abundances below 1%. Other
ESKAPE pathogens, including S. aureus, A. baumannii, and E. faecium, were also
present in all WWTP sectors (≤1%).

A high correlation between ESKAPE pathogens was observed across sectors of
WWTP, e.g. influent and effluent (1.00), upstream and influent (0.97), and effluent
and downstream (0.88), indicating that ESKAPE pathogens in the upstream and
influent sectors could predict their presence in effluent and downstream sectors.
Correlations of all sectors with activated sludge were lower with higher variability.
Treatment seems to reduce the abundance of pathogens, but it does not eliminate
them as seen in the correlation between upstream-to-effluent (0.97). Moreover, the
strong effluent-to-downstream correlation highlights the environmental and public
health risks posed by residual ESKAPE pathogens in the treated effluent. Despite the
microbial load reduction achieved by WWTPs, previous studies have highlighted the
release of ESKAPE pathogens in the effluent [46]. These bacterial pathogens can
harbour multiple ARGs, conferring resistance to a broad spectrum of antibiotics,
including last-line drugs such as carbapenems and glycopeptides. The potential for
these pathogens to spread to other environments, animals, and humans poses a
significant threat to public and environmental health [17, 47–49].

Lastly, Escherichia coli (E. coli), a key microbial indicator of water quality, was
detected in both the influent and effluent (≥1%). E. coli may enter freshwater
systems such as upstream sectors through sources such as wildlife or agricultural
runoff indicating low water quality however, its presence in the influent is expected.
Unfortunately, its detection in the effluent (1.42%) and downstream (≤1%) is
concerning [50]. Both E. coli and E. faecium, also detected in this study, are
recognised as indicators of faecal contamination [51]. Previous research suggests
that E. coli levels in the effluent can vary depending on the geographic location of
the samples. WWTPs treating hospital waste may discharge higher levels of E. coli
compared to those handling urban or municipal effluent, as analysed in our study
[52]. In untreated sewage, E. coli and Enterococci signal potential health risks due
to their high concentrations in mammalian faeces [53]. Effective WWTPs should
reduce such contaminants, minimising risks to human health and the environment.
However, operational issues such as poor maintenance, design flaws, environmental
factors, and chemical or biological conditions can enable E. coli to survive in the
effluent [54, 55].

It should be noted that variations in bacterial communities and abundances across
different sectors of the WWTP process can stem from various selection pressures
or the use of public data from various studies. Environmental factors such as
heavy metals, organic compounds, disinfectants, as well as the presence of diverse
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bacterial types: environmental, pathogenic, non-pathogenic, human, and animal
commensal bacteria can play a role in determining the bacterial communities
present at different sectors [56, 57]. Additionally, data sourced from different urban
and municipal WWTPs introduces variability due to factors like geographic location,
climate, industrial practices, local regulations, and the distinct sample collection and
processing methods used in various studies. These influences can impact microbial
communities and may support the emergence of antibiotic resistant bacteria and
genes, as observed with pathogens like P. aeruginosa and K. pneumoniae detected in
our study.

3.3.2. SIMILAR BACTERIAL SPECIES PRESENT IN THE INFLUENT,
ACTIVATED SLUDGE AND EFFLUENT

We assessed differences in microbial communities within each sector by measuring
the Beta-diversity using the Bray-Curtis dissimilarity index. This index quantifies
the "distance" between microbial communities based on the species abundances.
Visualised with non-metric multidimensional scaling (NMDS), a smaller distance
between samples within the same sector indicates greater similarity between
microbial communities and their respective sectors [58]. Furthermore, we used
Spearman’s correlation analysis to validate the similarity in the microbial communities
between each sector of the WWTP and identified the common bacterial species
(Supplementary Table S6).
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Figure 3.4: (A) Nonmetric multi-dimensional scaling ordination (NMDS) of Bray-
Curtis dissimilarities of the microbial community between the different
sectors of the wastewater treatment plant. The samples for each sector of
the wastewater treatment plant are shown in different colours, upstream
= orange, influent = purple, activated sludge = red, effluent = green, and
downstream = blue. (B) Spearman’s correlation analysis of the microbial
communities present between each sector of the wastewater treatment
plant. The correlation rank values are depicted in text and indicated by
the intensity of grey.
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Figure 3.4A, shows the NMDS plot representing the microbial community
similarities within each WWTP sector. Each colour represents the samples from their
respective WWTP sector. Samples from the influent (purple) and effluent (green)
relatively cluster together while samples from the activated sludge (red) form a
cluster close to the effluent.

Similar bacterial species are found in the influent, activated sludge and effluent.
Firstly, the clustering of the activated sludge samples suggests its microbial
community is determined by the biological treatment processes such as operational
parameters of bioreactors, characteristics of the influent and the environment [59].
Additionally, the effluent (green) and influent (purple) cluster closely together with
the activated sludge (red) indicating similarity between groups of bacteria in each
sector. This suggests that urban and municipal areas can share common microbial
communities regardless of the geographical location from which the samples are
obtained. Downstream (blue) and upstream (orange) samples cluster further away
from the influent, activated sludge and effluent clusters, suggesting that these
microbial communities are likely shaped by the freshwater taxa and or the exposure
to human activity [60].

Further analysis into the microbial communities and the WWTP sectors was done
using Spearman’s correlation (Figure 3.4B). A strong correlation was found between
the microbial communities of the influent, activated sludge and effluent (≥0.5)
indicating that these three sectors contain similar bacterial species irrespective of the
geographical location and sampling times (Supplementary Table S1). Additionally,
a strong correlation of 0.65 was observed between the upstream and downstream
sectors which can be attributed to similar bacterial species present between the two
sectors due to inefficient removal as the samples originated from the same studies
(Supplementary Tables S1 and S6). We identified 42 common bacterial species with
an abundance of over 0.01% in the influent, activated sludge and effluent with A. sp.
KKS102 being dominant (≥1% abundance). A list of the common bacterial species
are present in Supplementary Table S6. The similar bacterial species identified in the
influent, activated sludge and effluent are due to the mixture of aerobic, anaerobic,
and facultative bacteria. Even in low abundances, these bacteria can be released
with the effluent, contributing to the potential spread of AMR [61].
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3.3.3. VARIOUS β-LACTAMASE GENE FAMILIES PRESENT IN THE WWTP
We investigated the average relative abundances of AMR gene families and identified
similar AMR gene families throughout the WWTP process. These genes can exist
in low abundances, even in treated water, conferring resistance against single or
multiple antibiotic drug classes. We highlight two major examples observed in our
data i.e., the β-lactam and efflux pump gene families (Figure 3.5 and Supplementary
Table S7).

Figure 3.5: Heatmap of the abundances of antimicrobial resistance (AMR) gene
families over 1% in each sector of the wastewater treatment plant
(upstream, influent, activated sludge, effluent, downstream) and
corresponding drug classes. Abundances are indicated by greyscale, low =
white and high = black.
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Firstly, β-lactam antimicrobial agents are widely used to treat bacterial infections,
but their extensive use has significantly contributed to the global rise of resistance
to these antibiotics in bacteria. β-lactamase gene families, including those encoding
ESBLs (extended-spectrum β lactamases), contribute to this resistance by conferring
single and multidrug resistance to commonly used penicillins, as well as potent
antibiotics such as carbapenems, cephalosporins and penams [62].

Figure 3.5 shows several β-lactamase gene families throughout different sectors
of the WWTP process. Among these, the OXA β-lactamase gene, associated with
the ESBL class D group, was detected across all sectors, constituting 7% of AMR
gene families in the influent and 6% in the activated sludge, but less than 0.05% in
upstream, effluent, and downstream sectors. Its prevalence was notably high in 100%
of upstream samples, over 95% in influent and activated sludge and over 60% in
effluent and downstream samples. This variation can be attributed to several factors
such as the efficiency of the WWTP in reducing the concentration of β-lactamase
gene families therefore lowering its prevalence in the effluent and downstream
samples. Environmental factors, such as pH and temperature, may also affect
the survival and detectability of these genes. Additionally, differences in sampling
methods and detection sensitivity across studies might contribute to the observed
variations in the gene prevalence [54, 63]. The OXA β-lactamase gene family can
be detected in non-pathogenic and environmental bacteria present in aquatic areas
and may behave as a reservoir for emerging antibiotic resistance [64]. The OXA
β-lactamase gene family can inactivate a variety of β-lactam antibiotics including
penicillins, cephalosporins, carbapenems and extended-spectrum penicillins such
as piperacillin [65, 66]. Additionally, the OXA β-lactamase gene family has been
identified in various bacterial species, particularly within the Enterobacteriaceae
family and non-fermenting Gram-negative bacteria such as A. baumannii and P.
aeruginosa [65]. Furthermore, we detected the OXA β-lactamase gene family in the
Pseudomonas, Enterobacter, Klebsiella and Acinetobacter genera in all sectors of the
WWTP (Figure S2).

Conversely, the FTU and CKO β-lactamase gene families, known for conferring
resistance to penam antibiotics, were detected predominantly in the upstream,
effluent, and downstream sectors. The FTU β-lactamase gene family showed an
abundance of over 9% in these sectors, present in more than 14% of upstream and
downstream samples and 35% of effluent samples. Similarly, the CKO β-lactamase
gene family was present in 45% of effluent samples and less than 14% in upstream
and downstream samples. The FTU β-lactamase gene families are categorised as class
A β-lactamase which has been identified in Francisella tularensis subsp. holarctica
LVS (F. tularensis subsp. holarctica LVS) and produces the FTU-1 enzyme that
functions to hydrolyse various β-lactam antibiotics (penicillins and cephalosporins)
[67, 68]. Similarly, the CKO β-lactamase gene family, identified in Citrobacter koseri
(C. koseri), produces the CKO-1 enzyme [69]. The presence of both FTU and CKO
β-lactamase gene families allows for bacteria to survive by breaking down β-lactam
antibiotics rendering them ineffective. Overall, the detection of various β-lactamase
gene families across different sectors is concerning as it facilitates the dissemination
of multidrug resistance, posing a threat to both clinical treatment effectiveness and
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environmental health.
Secondly, efflux pump gene families, including major facilitator superfamily

(MFS) and resistance-nodulation cell division (RND), play crucial roles in multidrug
resistance among pathogens like Pseudomonas and Streptococcus [17, 70–72]. The
presence of these gene families in the effluent can increase the incidence of bacteria
selecting them. Efflux pump gene families can be located on MGEs and can efflux
clinically important antibiotics such as tetracycline out of the bacterial cell wall [17,
73–75].

We identified the MFS and RND efflux pump gene family in every sector of the
WWTP (Figure 3.5 and Supplementary Table S7). In our study, the MFS and RND
efflux pump gene families comprised 10% - 12% of the total AMR gene families
in the influent, 10% - 14% in the activated sludge and less than 0.5% of the total
AMR gene families in the upstream, effluent and downstream sectors. The MFS and
RND gene families were detected in all upstream samples and 90%, 98%, 70% and
60% of the influent, activated sludge, effluent and downstream samples, respectively.
The MFS and RND gene families present in all sectors of the WWTP are common
as these genes exist naturally in the chromosomes of bacteria. The MFS efflux
pump functions to remove substrates such as antibiotics, sugars and ions out of the
bacterial cell leading to cellular homeostasis and antibiotic resistance. Similarly, the
RND efflux pump can expel antibiotics, dyes and detergents from the bacterial cell
and aids in detoxifying the cell from harmful substances [76, 77].
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Figure 3.6: Visualisation of the Spearman’s correlation analysis of the AMR gene
families present between sectors that shared samples of the wastewater
treatment plant. The correlation rank values are depicted in text and
indicated by the intensity of grey.

Similar AMR gene families were present in the upstream, effluent and downstream
sectors and in the influent and activated sludge sectors as illustrated in Figure 3.5
and 3.6. Overall, the AMR gene families identified in these sectors were positively
correlated (Figure 3.6). The similarity between sectors could be due to the inefficient
treatment of wastewater. However, the correlation had to be calculated within
studies potentially confounding regional effects with sectorial effects. Furthermore,
the presence of similar AMR gene families that can be found in environmental
freshwater systems such as the CMY β-lactamase gene family, leading to high
similarity between the AMR gene families found between upstream and effluent
samples (0.72) [78]. A full Spearman correlation of sectors that share studies can be
found in Figure S3.

A list of common AMR gene families can be found in Supplementary Table S9.
Differences in the abundance and presence of AMR gene families in each sector
of the WWTP can be influenced by the sector-specific microbial community and
environmental factors i.e., pollutants and organic matter. Additionally, samples from
various urban and municipal studies, geographical locations, and time points could
have introduced differences in the AMR gene families detected within the WWTP
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process sectors. However, sectors such as the influent and the activated sludge
consist of a mixture of bacteria and pollutants therefore AMR gene families like the
OXA β-lactamase gene family may be present in the bacterial genome. This can
potentially be exchanged within the microbial population contributing to their high
abundance [79]. Bacteria carrying these ARGs have the potential to survive the
WWTP and spread AMR to different bacteria in different sectors [79–81].

A total of 230 AMR gene families were identified in the WWTP process, providing
resistance to 25 single antibiotic drug classes and 32 combination/multiple drug
classes. Additionally, the Pseudomonas genus harboured numerous AMR gene
families including various β-lactamase gene families, yet no single ARG exceeded
a 1% abundance. (Refer to Supplementary Tables S7 - S9 and Figures S1 - S2 for
detailed data).

3.3.4. PLASMIDS WITH ARGS ARE RELEASED INTO THE ENVIRONMENT

We analysed metagenomic assembled contigs from different sectors of the WWTP to
determine the percentage of contigs originating from plasmids and their association
with AMR gene families. Plasmids, crucial for acquiring and accumulating ARGs,
maintain stability, persisting even after wastewater treatment [82].

In each sector of the WWTP, 1% of contigs were classified as plasmid originating.
Further analysis showed that AMR gene families were found in 0.008% - 0.15% of
plasmid-contigs. More specifically, we observed a high average relative abundance
of plasmid-contigs associated with the previously mentioned OXA β-lactamase gene
family conferring multidrug resistance. Four other AMR gene families conferring
resistance to single antibiotic drug classes were detected in a high abundance
(Supplementary Table S10).

Plasmids associated with AMR gene families like the OXA β-lactamase have a
greater chance of spreading AMR from the effluent to freshwater systems and
capturing new ARGs. This is a potential route for transmission of multidrug resistant
plasmids to other environments such as soil and animals, therefore, leading to
resistance to veterinary and clinically significant antibiotics [82–84].

In our study, the OXA β-lactamase gene family represented more than 6% of the
total plasmids associated with AMR gene families in every sector of the WWTP
(Supplementary Table S10). Plasmids associated with the OXA β-lactamase gene
were present in 76%, 71%, 72%, 100%, and 46% of samples from upstream, influent,
activated sludge, effluent and downstream, respectively, suggesting that plasmids
associated with the OXA β-lactamase gene are released in the effluent and can be
detected downstream.

While the presence of plasmids conferring resistance to multiple drug classes is
concerning, plasmids associated with a singular antibiotic drug class can spread
AMR. In this study, plasmids were associated with AMR gene families of a single
antibiotic drug class (tetracycline resistant ribosomal protein (Tet(O)), aminoglycoside
resistance gene (ANT(3”)), trimethoprim resistant dihydrofolate reductase (dfr) and
the sulfonamide resistance gene (sul1) were detected. While the abundances of
plasmids associated with these AMR gene families vary in each sector of the WWTP,
their presence can stimulate HGT (Supplementary Table S10) [41, 85–89].
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Plasmids carrying ARGs can nullify the effectiveness of commonly used antibiotics.
The presence of antibiotic residues in the effluent and downstream freshwater
environments further enhances the mobility and stability of plasmids. This promotes
induced resistance and genetic exchange among bacterial communities through
plasmids and other MGEs as documented in studies by Rahube et al. [90], Wang et
al. [81] and Calderón-Franco et al. [91].

3.3.5. CLASS 1 INTEGRONS REVEAL THAT AMR POLLUTION IS PRESENT

IN EACH SECTOR AROUND THE WWTP
We investigated the presence of integrons and their association with ARGs in each
sector of the WWTP. Integrons are responsible for AMR dissemination via HGT,
which can occur between bacteria in all environments. In this study, we searched for
integrons in contigs from each sector of the WWTP and classified them as classes 1,
2, 3, unknown, and unclassified (Table 3.1).

Table 3.1: The average relative abundance (%) of the different classes of integrons in
each sector of the WWTP. Integrons were classified as class 1, class 2, class
3, unknown and unclassified in the upstream, influent, activated sludge,
effluent and downstream sectors of the WWTP.

Classes of integrons Upstream Influent Activated sludge Effluent Downstream

Class 1 17.37% 16.94% 17.39% 19.18% 15.12%
Class 2 2.08% 2.32% 174% 1.92% 1.74%
Class 3 2.87% 3.57% 2.17% 3.92% 2.59%
Unknown 0.00% 0.06% 0.00% 0.00% 0.05%
Unclassified 77.68% 77.11% 78.71% 74.98% 80.50%

In our study, less than 1% of contigs (upstream: n = 1779, influent: n = 6858,
activated sludge: n = 16137, effluent: n = 4104, downstream: n = 2010) were
integrons. We classified the integrons into class 1, class 2, class 3, unknown and
unclassified. Almost 80% of detected integrons remained unclassified. Class 1 and
3 integrons, commonly found in Proteobacteria across freshwater, soil, and biofilm
environments, hold clinical significance, while class 2 integrons are prevalent in
marine Gamma-Proteobacteria. Table 3.1 shows class 1 integrons were the most
abundant, ranging from 17 - 19% in each sector of the WWTP, while class 2 and 3
integrons accounted for 2 - 4%. All classes were present in over 70% of samples in
all sectors. The presence of class 1 integrons in all sectors of the WWTP is similar to
the findings of Makowska et al. [92].

Class 1 integrons are associated with disinfecting agents and sulfonamide resistance
[93]. We detected class 1 integrons with qacE-related disinfectant resistance genes
throughout the WWTP sectors, whereas those carrying sul1 and sul3 genes for
sulfonamide resistance were more abundant (Supplementary Table S11). Specifically,
31% of class 1 integrons in the upstream sector were linked to the sul3 gene. The
sul1 gene was absent in the upstream sector but made up more than 25% of the
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class 1 integrons present in the influent, activated sludge, effluent, and downstream
sectors. The sul1 and sul3 genes, associated with class 1 integrons, were detected in
over 90% of samples from the influent, activated sludge, and effluent sectors. In the
downstream sector, approximately 60% of samples contained the sul1 gene and 20%
contained the sul3 gene.

Class 1 integrons in combination with qacE and sul1 act as a pollution marker and
are commonly present in sewage areas like the influent [94]. In our study, sulfonamide
resistance associated with class 1 integrons was high in the influent, activated sludge,
effluent and downstream sectors. These sectors are prone to increased antibiotic
resistance due to various factors, such as pollutants, disinfectants, organic matter,
and the bacterial community present. Since sulfonamide antibiotics can persist in
the environment for extended periods, the sul1 gene will be frequently detected in
the effluent, activated sludge, influent, and receiving waters (Supplementary Table
S11). While we observed the presence of class 1 integrons in the downstream sector,
these integrons are naturally prevalent in freshwater systems as well [93, 95, 96].

3.3.6. INTEGRATIVE ELEMENTS ARE LINKED TO ARGS IN EACH SECTOR

OF THE WWTP
We identified integrative elements i.e., integrative and conjugative elements (ICEs),
integrative and mobilisable elements (IMEs) and cis-integrative and mobilisable
elements (CIMEs) in each sector of the WWTP. Since these self-transmissible elements
can carry ARGs, we also determined if the integrative elements detected were linked
to the ARGs previously identified in this study.

Integrative elements, comprising approximately 1% of contigs, were detected
across all sectors of the WWTP, with varying average relative abundances ranging
from 16.87% in activated sludge to 57.89% downstream (Table 3.2). Contrary to
Calderón-Franco et al. [97], in our study, 80% of the integrative elements in activated
sludge were IMEs.

ICE families linked to bacterial adaptation were identified in the WWTP. The ICEclc
and Tn4371 families were prevalent in over 95% of all samples across WWTP sectors,
with similar abundances observed in each sector (Supplementary Table S12). The
ICEclc family facilitates bacterial adaptation by transporting and transferring ARGs
between bacterial species including Aeromonas and Pseudomonas, as detected in
this study. ICEclc utilises compounds like chlorocatechols, present in both polluted
and freshwater environments to enhance bacterial proliferation, thereby promoting
horizontal gene transfer [98]. Similarly, Tn4371 elements were widespread throughout
the WWTP process, constituting approximately 40% of the ICE families in each
sector. Tn4371 is commonly found in aquatic environments and man-made settings
like sewage and industrial waste. Following processing in wastewater treatment
plants, Tn4371 continues to harbour a significant load of ARGs [99, 100]. Both
ICE families, prevalent in clinical and veterinary sectors, maintain the stability of
accessory genes like ARGs within-host bacterial species.

IMEs were detected in every sector of the WWTP, and PGI2 was present in over
90% of samples across all sectors, showing consistent abundances (Supplementary
Table S14). Like other MGEs found previously, IMEs can carry ARGs post-WWTP
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processing, contributing to bacterial multidrug resistance. PGI2, a genomic island
characterised in a previous study, can harbour 14 different resistance genes,
highlighting its role in promoting bacterial evolution towards multidrug resistance
[101].

Table 3.2: The total number of each integrative element detected in each sector of
the wastewater treatment plant including the total number and percentage
(%) of each integrative element carrying antibiotic resistance genes
(ARGs). Integrative elements include integrative and conjugative elements
(ICE), integrative and mobilizable elements (IME) and cis-integrative and
mobilizable elements (CIME).

Integrative elements Upstream Influent Activated sludge Effluent Downstream

Total ICE 4830 27796 7585 14129 6129
ICE with ARG 544 (11% ) 723 (3%) 924 (12%) 597 (4%) 165 (3%)
Total IME 4101 31190 35919 15930 4313
IME with ARG 312 (8%) 871 (3%) 1645 (5%) 390 (2%) 217 (5%)
Total CIME 487 3400 1458 264 146
CIME with ARG 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Lastly, we assessed if the integrative elements are associated with previously
detected ARGs. In the upstream and activated sludge sectors, ICEs were found
to carry ARGs in 11% and 12% of detected ICEs respectively. Additionally, Table
3.2 shows that 8% of detected IMEs are linked to ARGs. Bacteria carrying both
integrative elements and ARGs have a greater potential to spread infection and can
survive high concentrations of antibiotics. This leads to the spread of AMR to other
environments from the downstream sector, potentially causing untreatable infections
when reaching animal and human communities [12, 17, 96]. Details on the specific
ICE families and IMEs carrying ARGs can be found in Tables S13 and S15.

3.4. CONCLUSION
We conducted a comprehensive analysis of publicly available metagenomes
representing the different sectors of the WWTP (upstream, influent, activated sludge,
effluent and downstream) to identify the microbial composition, antibiotic resistance
genes and mobile genetic elements. Data from different geographical locations
(Portugal, China, Spain, South Korea and Colombia) were integrated to provide a
more holistic view of AMR in the urban/municipal WWTP.

Our study revealed the persistent presence of environmental bacterial genera
across the WWTP, identifying Pseudomonas, Aeromonas, and Acidovorax. These
genera include (opportunistic) pathogens that pose health risks to humans and
animals. Additionally, we detected the presence of all six ESKAPE pathogens across
the sectors. Specifically K. pneumoniae and Enterobacter sp. was detected with a
higher abundance in the effluent sector. E. coli, a faecal contaminant indicator, had
a higher abundance in the effluent compared to other sectors.
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Analysis of ARGs revealed various β-lactamase gene families throughout the sectors
of the WWTP however, the OXA β-lactamase gene family is particularly prominent in
the influent and activated sludge sectors while lower in the effluent and downstream
suggesting that the reduction of ARGs is possible. The OXA β-lactamase gene family
was also linked to more than 5% of the ARG-carrying plasmids detected indicating
that ARGs can be selected for and transferred to other bacterial species. Integrons
and integrative elements were identified in every sector of the WWTP process
and linked to the previously detected ARGs further highlighting their role in the
persistence and spread of AMR within microbial communities within the WWTP and
its receiving environments, humans and animals.

This study underscores the significance of exploring the spread of MGEs and ARGs
alongside associated bacterial species in non-clinical environments like WWTPs.
Understanding these connections between environmental reservoirs, pollution
sources, and human/animal exposure is crucial. However, the current study is
limited by using public data from various WWTP studies. Although studies were
based on sequencing technology, the type of WWTP, such as urban and municipal,
as well as the sampling locations — upstream, influent, activated sludge, effluent,
and downstream — differences in the use of public data can introduce biological
variation in the types of bacteria and AMR genes detected.

Future research should take into account that upstream and downstream sectors
are essential for the analysis of AMR in the WWTP and can provide information
on HGT from receiving waters to other non-clinical environments. Additionally,
geographical factors such as climate, local microbiome, industrial practices, and
local regulations can influence the growth of microorganisms, types of AMR gene
families detected, and MGEs and should be included in AMR research. Variations in
influent and effluent may arise due to anthropogenic activities such as chemical and
antibiotic usage, animal populations, vegetation, and pollutant discharge. Accounting
for these factors is important in determining the full effect of WWTPs in managing
AMR and environmental pollution [102–104].

3.5. SUPPLEMENTARY MATERIAL
Due to the extensive nature of supplementary materials associated with this chapter,
they are not included in this thesis. Interested readers are encouraged to refer to the
Supplementary material online
(see https://surfdrive.surf.nl/files/index.php/s/Y27zkpPxaS4HMkq)

3.5.1. SUPPLEMENTARY FIGURES

https://surfdrive.surf.nl/files/index.php/s/Y27zkpPxaS4HMkq
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Figure S3: Visualisation of the Spearman’s correlation analysis of the AMR gene
families present between sectors that shared samples of the wastewater
treatment plant (WWTP). Spearmans correlation was done for study 1 to
study 5. The correlation rank values are depicted in text and indicated by
the intensity of grey.
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Soil naturally harbours antibiotic resistant bacteria and is considered to be a reser-
voir for antibiotic resistance. The overuse of antibiotics across human, animal, and
environmental sectors has intensified this issue leading to an increased acquisition
of antibiotic resistant genes by bacteria in soil. Various biogeographical factors, such
as soil pH, temperature, and pollutants, play a role in the spread and emergence of
antibiotic resistance in soil. In this study, we utilised publicly available metagenomic
datasets from four different soil types (rhizosphere, urban, natural, and rural areas)
sampled from nine distinct geographic locations to explore the patterns of antibiotic
resistance in soils from different regions. Bradyrhizobium was predominant in vegeta-
tion soil types regardless of soil pH and temperature. ESKAPE pathogen Pseudomonas
aeruginosa was prevalent in rural soil samples. Antibiotic resistance gene families such
as 16s rRNA with mutations conferring resistance to aminoglycoside antibiotics, OXA
β-lactamase, ANT(3”), and the RND and MFS efflux pump gene were identified in all
soil types, with their abundances influenced by anthropogenic activities, vegetation,
and climate in different geographical locations. Plasmids were more abundant in rural
soils and were linked to aminoglycoside resistance. Integrons and integrative elements
identified were associated with commonly used and naturally occurring antibiotics,
showing similar abundances across different soil types and geographical locations.
Antimicrobial resistance in soil may be driven by anthropogenic activities and biogeo-
graphical factors, increasing the risk of bacteria developing resistance and leading to
higher morbidity and mortality rates in humans and animals.

4.1. INTRODUCTION

Antimicrobial resistance (AMR) has contributed to approximately 4.95 million deaths
worldwide in 2019 [1]. The continuous use of antibiotics in clinical and environmental
sectors such as animals, soil and water has led to the development of resistant
bacteria, which can spread between humans, animals, and the environment [1]. As
a result, antibiotic resistance has been identified as a major driver of mortality and
one of the most critical environmental issues [2].

Soil is a large reservoir of microbial diversity and a majority of antibiotics used
in clinical and non-clinical sectors have been extracted from soil microorganisms
[2]. Interestingly, environmental bacteria in soil possessed antibiotic resistance
genes (ARGs) pre-dating the discovery of antibiotics which ensured their survival in
the natural environment [3, 4]. Despite the natural presence of ARGs in the soil
microbiome, anthropogenic activity has impacted the intrinsic resistome. Fertilisation
of crops, irrigation, excessive use of xenobiotics in crops, antibiotic use in livestock
production and deforestation can alter the microbial community in the soil and
disseminate ARGs throughout the environment [3]. This makes the soil a reservoir
for intrinsic and acquired antibiotic resistance due to the mixture of ARGs from
indigenous microbes and those introduced by human activities [2, 4].

Biogeographical patterns can also influence antibiotic resistant bacteria and ARGs
in the soil [4]. Factors such as pH, temperature, moisture, and nutrients can affect
ARG profiles and microbial composition. Soils with a neutral pH, low temperature,
high moisture content and nutrient-rich will have an increased abundance and
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diversity of bacteria as well as a diverse range of ARGs [5]. These factors promote
the spread of antibiotic resistance by mobile genetic elements (MGEs) which enables
non-pathogenic and pathogenic bacteria to acquire resistance increasing the risk of
bacterial infections in humans and animals [6].

Additionally, the soil microbiome and ARGs can differ across soil types. Natural
and pristine soil is largely unaffected or undisturbed by human activity or external
sources, serving as a reference point for understanding microbial communities and
ARGs with little anthropogenic selection pressure [7]. The rhizosphere soil surrounds
the plant roots and is influenced by root secretions and agricultural practices. Urban
soil encompasses anthropogenic soil near forests, parks, gardens, and residential
areas, while rural soil includes non-urban areas like small villages, towns, and
settlements. Soil with more human activity is expected to contain a mixture of
environmental and pathogenic bacteria; and resistance genes that confer resistance
to clinically relevant antibiotics, heavy metals, biocides and disinfecting agents [8].
It should be noted that similar soil types from different geographical locations will
not necessarily have similar microbial communities or ARGs as agricultural activities,
travel, environmental contamination, antibiotic usage, soil management practices,
population and socioeconomic conditions differ between countries [9]. These factors
have complex and interrelated effects on antibiotic resistance in soil.

Since soil encompasses different environmental conditions with distinct microbial
environments, it is important to understand how these factors interact and contribute
to AMR to develop effective mitigation strategies [5, 9]. In this study, we analysed
metagenomic sequences from four different soil types: natural, urban, rhizosphere,
and rural soil collected from nine different geographical locations i.e., South Africa,
Singapore, China, Israel, Botswana, Chile, Germany, El Salvador, and Antarctica. We
aim to determine the differences in microbial composition between each soil type
sampled from these various geographical locations. Furthermore, we investigate the
differences in antibiotic resistance genes and mobile genetic elements (plasmids,
integrons and integrative elements) identified in each soil type with regards to
geographical location.

4.2. METHODS

4.2.1. DATA SOURCES

Whole metagenomic datasets were obtained from NCBI SRA
(https://www.ncbi.nlm.nih.gov/sra). These datasets represented various soil types:
natural soil (NS), urban soil (US), rhizosphere soil (RHS) and rural soil (RS) from
different geographical locations (South Africa, Singapore, China, Israel, Botswana,
Chile, Germany, El Salvador, and Antarctica) sampled over the last 10 years. Only
metagenomic sequences that were sequenced using Illumina, had a read base
count over 1e+09 and an average read length over 150bp were included. Detailed
information about the metagenomes retrieved from the database is included in
Supplementary Table S1 and presented in summarized form in Table 4.1.
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Table 4.1: Summary of included studies, respective sample source, location, and
sample size. Study identifiers start with the soil abbreviation: natural soil
(NS), urban soil (US), rhizosphere soil (RHS), and rural soil (RS).

Study Sample source Location Sample number Citation

NS1 Deep forest China 3 [10]
NS2 Mountain China 5 [11]
NS3 Desert Israel 12 [12]
NS4 Desert Chile 11 [13]
NS5 Antarctic Antarctica 27 [14]
US1 Forest park, residential

areas,
hospital areas

China 10 [10]

US2 Road verge, park China 10 [11]
US3 Nature reserve Germany 8 [15]
RHS1 Greenhouse Singapore 13 [16]
RHS2 Soybean farm South Africa 12 [17]
RHS3 Peanut and maize farm China 21 [18]
RS1 Rural village El Salvador 25 [19]
RS2 Rural village Botswana 1 [20]

4.2.2. BIOINFORMATIC ANALYSIS

Quality control of reads was conducted using FastQC v.0.11.9 [21] and filtered with
Trimmomatic v.0.39 [22]. Reads were trimmed for quality and adapter contamina-
tion using Trimmomatic with the following parameters specified: ILLUMINACLIP:
adapters.fa:2:30:10 LEADING:3 TRAILING:3 MINLEN:30 SLIDINGWINDOW: 4:20. The
microbiome was analysed using Kraken2 v.2.1.0 [23] with the minikraken2 micro-
bial database (2019, 8GB). Species confirmation and abundance estimation were
performed with Bracken v.2.6.2 [24]. The relative abundances of bacterial genera
were used to determine the microbial populations in each soil type. Statistical
significance of the microbiome between studies in a soil type was assessed using the
non-parametric Wilcoxon rank sum test and Friedman’s ANOVA with SPSS software
(IBM SPSS Statistics). Differences in the microbiome were considered statistically
significant at p ≤ 0.05. The Beta diversity of the microbiome among soil types
was visualized using non-metric multidimensional scaling (NMDS) analysis with
Bray-Curtis dissimilarity in the R package vegan v.2.6-4.

The filtered reads were de novo assembled using metaSPAdes v.3.15.2 [25] on
meta mode with default parameters. The assembled metagenomes were annotated
to determine the antibiotic resistance gene families and drug classes using the
Comprehensive Antimicrobial Resistance Database Resistance gene identifier (CARD
- RGI) v.3.1.2 with default settings including loose matches and the -low_quality -clean
options [26]. The version of the database was consistent throughout the analysis.
Moreover, the studies in each soil type were compared by analysing the relative
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abundance of annotated antibiotic resistance genes. This comparison was based on
normalizing the data using the total number of antibiotic resistance gene families in
each study indicating their respective proportions. De novo metagenomic assembled
contigs were aligned to detect integrons and integrative elements by aligning them
to the INTEGRALL database [27] and the ICEberg database [28]. Alignments were
done using BWA-mem v.0.7.10 with default parameters [29] which generated a SAM
file. To filter out soft and hard clipped reads and undesirable alignments, the
SAM files were processed using the Samclip tool with default parameters to remove
alignments that could generate downstream issues. The resulting SAM file was then
converted to a BAM file using SAMtools version v.1.9 [29]. Contigs that aligned with
databases were considered integrons and integrative conjugative elements. Contigs
were classified as plasmid-originating using Plasclass v.0.1.1 [30], with a minimum
length threshold of ≥ 1000 and a probability threshold of ≥ 0.75 for contigs to be
considered plasmid-originating. To determine if the detected plasmids were linked
to antibiotic resistance gene families, the plasmid-originating contigs were compared
to previously identified contigs carrying antibiotic resistance genes and matched to
corresponding AMR drug classes.

4.3. RESULTS AND DISCUSSION

4.3.1. MICROBIAL COMMUNITIES ARE DEPENDENT ON THEIR HABITAT

To identify the bacterial communities within different types of soil from different
locations (Supplementary Table S1), we performed taxonomic classification. Soil
hosts a diverse range of microbial communities influenced by abiotic and biotic
characteristics, microbial abundances, activity, and community composition. Conse-
quently, there is no “typical” soil microbiome, and bacterial relative abundances vary
by soil type [31].

Bacteria in natural soils are influenced by their habitat and environmental con-
ditions (Supplementary Table S2). In Figure 4.1, Bradyrhizobium dominates the
deep forest areas (NS1 and NS2), whereas bacteria like Rubrobacter, known for
its thermophilic traits, are found in desert-like conditions (NS4), as confirmed by
Connon et al. [32], Pajares and Bohannan [33], and Zheng et al. [10]. The microbial
communities detected were statistically different between each of the natural studies
indicating environmental influence (p ≥ 0.05). Climate, pH, temperature and rainfall
may all influence the abundances and types of bacteria found soil as discussed by
Chase et al. [34].

Streptomyces was prevalent across all urban studies; however, the overall microbial
community differed significantly between these urban studies (p ≤ 0.05) (Figure 4.1
and Supplementary Table S3). As expected, higher abundances of Bradyrhizobium,
Mycobacterium, and Rhodopseudomonas were observed in urban soil obtained from
the nature reserve (US3). These bacteria thrive in areas with more vegetation and
reduced anthropogenic activity, such as nature reserves, compared to residential and
forest park areas [35–37].

Plant growth-promoting bacteria such as Streptomyces, Burkholderia, Pseudomonas,
and Bradyrhizobium were found in less than 12% abundance across different rhizo-
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Figure 4.1: Heatmap showing the relative abundances of bacterial genera over 2% in
each study from each soil type. The y-axis indicates the genera, and the
x-axis represents the soil studies (Table 4.1). Each soil type is divided
by the dashed black line and the abundances of bacterial genera are
indicated by the intensity of grey.

sphere soil studies (Figure 4.1 and Supplementary Table S4). Overall, these microbial
communities were different in each of the rhizosphere soil studies (p ≤ 0.05). These
bacteria also assist in protecting plants against pathogens by producing antibiotics
[38–40]. Bradyrhizobium, which aids in nitrogen fixation and plant growth, is found
at an 8% abundance in RHS1, 2% in RHS2 and 4% in RHS3 [31]. Soil in RHS1 and
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RHS3 consisted of crops supplemented with nitrogen-phosphorus-potassium (NPK)
fertiliser (Supplementary Table S1). Despite this, these studies showed a higher
abundance of Bradyrhizobium compared to RHS2, which was not supplemented.
This contradicts previous studies suggesting that Bradyrhizobium will be present in a
low abundance when nitrogen fertilisers are used [41, 42].

Lastly, in rural soil studies (p ≤ 0.05),Pseudomonas, Escherichia, Streptomyces, and
Klebsiella were prevalent, including the ESKAPE (Enterococcus faecium (E. faecium),
Staphylococcus aureus (S. aureus), Klebsiella pneumonia (K. pneumonia), Acineto-
bacter baumannii (A. baumannii), Pseudomonas aeruginosa (P. aeruginosa) , and
Enterobacter species) pathogens K. pneumonia and P. aeruginosa (Figure 4.1 and Sup-
plementary Tables S5 and S6 respectively). The high prevalence of these pathogens
in rural areas is attributed to anthropogenic factors, such as the presence of domestic
animals, open defecation, and inadequate sanitation [20]. These conditions con-
tribute to antibiotic resistance hotspots in rural areas, as domestic animals spread
faecal matter, and open sewage drains and insufficient sanitation increases the
selection pressure for antibiotic resistance [43].

Overall, these results demonstrate that the bacterial composition and abundance
within each soil type may be influenced by a myriad of factors, including environ-
mental conditions, nutrients, temperature, oxygen availability, and pH types within
the specific geographical location [31, 33, 39]. Understanding the composition of
microbial communities is critical for comprehending soil health and potential risks
associated with antibiotic resistance in various environments.

4.3.2. NATURAL, URBAN AND RHIZOSPHERE SOIL TYPES HAVE SIMILAR

MICROBIAL COMMUNITIES

To assess the differences between microbial communities, present in different types of
soil from different geographical locations (Table 4.1), we analysed the beta-diversity.
Additionally, we aimed to determine if the geographical locations influence the
microbial communities in each soil type. The beta-diversity quantifies the “distance”
between microbial communities using the Bray-Curtis index and can be visualized by
non-metric multidimensional scaling (NMDS). A smaller distance between samples
from different countries and soil types indicates a greater similarity in microbial
composition. Figure 4.2 shows the NMDS plots for each type of soil from their
respective countries.
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Figure 4.2: Non-metric multidimensional scaling (NMDS) visualising the dissimilarity
(Beta-diversity) between microbial communities from different soil types
from different countries (Table 4.1). Each soil type is represented by a
different shape (natural = circle, rhizosphere = triangle, rural = square,
urban = cross) and each country or region is colour-coded (Antarctica =
light blue, Botswana = dark blue, Chile = light green, China = dark green,
El Salvador = pink, Germany = red, Israel = salmon, Singapore = orange,
South Africa = lilac). The samples that have smaller distances between
them are circled in blue.

Figure 4.2 shows that most samples cluster together regardless of the soil type or
geographical location. Natural, rhizosphere, urban, and many rural soil samples are
closely grouped, suggesting similar microbial communities across these soil types.
This similarity may be related to vegetation and varying levels of anthropogenic
activity [10, 33]. However, some rural samples from El Salvador differ which could
be due to human activity or soil around latrine toilets and clothes washing areas.
This can limit plant-promoting bacteria and support enteric pathogens [19, 20].
Samples from specific studies like RS1 (El Salvador), NS2 (China), NS4 (Chile) and
NS5 (Antarctica) are further apart, indicating variations in the microbial composition.
Such differences within the same study may result from spatial variability in the soil
environment, even when sampling sites are only a few centimetres apart [31].
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4.3.3. ANTHROPOGENIC ACTIVITIES, VEGETATION, AND CLIMATE PLAY A

ROLE IN THE SELECTION AND PREVALENCE OF ANTIBIOTIC

RESISTANCE GENES

To understand the connection between AMR gene families and the different types
of soil, we examined the presence and abundance of AMR gene families in the
assembled metagenomes (contigs) from each study within their respective soil type
(Table 4.1). While AMR gene families are naturally present in soil environments,
external factors like livestock and human activities can influence their types and
abundance [44].
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Overall, more than 0.001% of contigs contained AMR gene families in each study.
We identified five AMR gene families that were abundant (Figure 4.3). Two of these are
associated with acquired resistance: 23S rRNA, which confers resistance to macrolides,
and 16S rRNA, which confers resistance to aminoglycosides. Intrinsic resistance gene
families include the major facilitator superfamily (MFS) and resistance-nodulation-
cell division (RND) antibiotic efflux pumps, and the OXA β-lactamase gene family,
which is associated with acquired and intrinsic resistance [45, 46]. These gene
families confer resistance to macrolides, and β-lactams including carbapenems,
cephalosporins, and penams (Supplementary Table S7).

Figure 4.3 shows that the 23S rRNA mutation conferring resistance to macrolide
antibiotics was more prevalent in urban soils as compared to the natural, rhizosphere
and rural soils. Specifically, in US2 from China, 85% of the detected AMR gene
families were the 23S rRNA gene with this mutation, with other urban studies like
US1 had 58% abundance. In contrast, natural soil studies such as NS1 and NS2 had
lower abundances of 33% and 52%, respectively. Urban soil samples were collected
from areas with high human activity (forest parks, residential zones, and road
verges) which have greater antibiotic pollution and selective pressures promoting the
proliferation of antibiotic resistant bacteria, as detailed by Osbiston, Oxbrough, and
Fernández-Martínez [47].

The MFS and RND efflux pump gene families were detected across all types
of soil except for US2 and RS2 (Figure 4.3). Efflux pumps are key for intrinsic
resistance, providing bacteria with a baseline level of resistance by actively expelling
a broad range of antibiotics from their cells [46]. In our study, RS1 exhibited a high
abundance of these efflux pump gene families, with 17% for RND and 13% for MFS
(Figure 4.3 and Supplementary Table S7). The presence of these efflux pump gene
families in rural soils may also be influenced by factors such as animal feedlots,
domestic sewage, and human-excrement-irrigated vegetable fields [48]. Additionally,
vegetation, flora and fauna influences the presence of efflux pump gene families, as
discussed by Martinez et al. [49] and Pasqua et al. [50].

Lastly, we found the OXA β-lactamase gene family present in all rhizosphere and
natural soil studies, except US2 and RS2, with a high abundance in US3 (7%) and
RHS3 (7%) (Figure 4.3 and Supplementary Table S7). The OXA β-lactamase gene
family has been shown to confer both acquired and intrinsic resistance and can be
found in all soil types; from primitive natural soils with little to no anthropogenic
activity to urban environments [6, 51]. Previous research also suggests that the
climate affects the abundance of ARGs, with β-lactam resistance genes being more
common in warmer areas [52]. However, our study found similar AMR gene families
across all soil types, regardless of temperature.

4.3.4. PLASMIDS LINKED TO AMINOGLYCOSIDE RESISTANCE ARE

COMMON IN ALL SOIL TYPES

To investigate the presence of plasmids and their connection to antibiotic drug classes
in different soil types, we analysed the percentage of contigs classified as plasmids
in each study and their association with antibiotic drug classes. Although AMR is a
natural occurrence in soil, human activity has led to increased contamination with
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antibiotics and ARGs in the soil. Soil plasmids can transfer these ARGs from one
bacterial host to another integrating into plant and animal cells and spreading AMR
[53].

Firstly, less than 1% of contigs were classified as plasmids in each study from
every soil type. Further analysis linking detected plasmids to AMR drug classes
revealed that, except RHS2, RHS3, RS2 and US2, all studies had more than 0.01%
of plasmids associated with AMR drug classes. Notably, RS1 had 1.8% of plasmids
linked to AMR. A high percentage of plasmids is common in rural communities due
to unregulated access to antibiotics, limited clean water and human and animal
activities. These conditions increase the risk of exposure to plasmids and ARGs
from effluents, contaminated soils, and waste, enhancing plasmid accumulation and
horizontal gene transfer compared to natural and urban soils [19, 20].

Secondly, we examined the association between plasmids and specific antibiotic
drug classes (Supplementary Table S8). Overall, all studies from different soil types,
except RHS2, RHS3, US2 and RS2, contained plasmids associated with aminogly-
coside, carbapenem; cephalosporin; penam, glycopeptide and peptide drug classes.
Details on the abundances of plasmids linked to AMR drug classes and the individual
AMR gene families can be found in Supplementary Table S8.

Plasmids harbouring genes for the production of naturally occurring antibiotics
have been discovered in both natural and urban soil studies. Among the natural soil
types, NS1 showed a high abundance of plasmids associated with aminoglycosides
(13%) and carbapenem; cephalosporin; penam (16%) drug classes. These high abun-
dances were consistent with other natural studies (Supplementary Table S8). Similar
to NS1, US1 had a high abundance of plasmids associated with aminoglycosides
(13%), carbapenem; cephalosporin; penam (25%) along with fluoroquinolones (13%),
glycopeptide (25%), macrolide (13%) and tetracycline (13%) drug classes.

Additionally, US3 had plasmids linked to similar antibiotic drug classes: amino-
glycosides (16%), carbapenem; cephalosporin; penam (11%), glycopeptide (12%) and
peptides (9%). In our study, the natural and urban studies, sampled from forests and
deserts for natural soils and residential areas and forest parks for urban soils, showed
higher abundances of plasmids associated with naturally occurring antibiotics such
as aminoglycosides, glycopeptides, and β-lactams [53, 54]. These abundances may
also be influenced by heavy metals and other contaminants in the soil types as noted
by Zhao et al. [54].

Amended rhizosphere soil (RHS1) showed a high abundance of plasmids asso-
ciated with AMR drug classes. Specifically, aminoglycoside (17%), carbapenem;
cephalosporin; penam (8%), glycopeptide (10%) and sulphonamide (10%) resistance
plasmids were detected in rhizosphere soils. Although plasmids were detected in
RHS2 and RHS3, none were associated with previously identified ARGs. Amended
soils, such as rhizosphere soils and natural soils are nutrient-rich environments that
can facilitate the spread of AMR through plasmids [55, 56].

Lastly in rural soils, RS2, a single sample study, did not contain any plasmids
associated with AMR. However, RS1 had a high abundance of plasmids linked to
aminoglycoside (24%), carbapenem; cephalosporin; penam (9%) and sulphonamide
(39%) resistance. This is consistent with a study from a rural village in India that
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found resistance to carbapenems, cephalosporins, penams, sulphonamides, tetracy-
clines, and quinolones, with E. coli carrying plasmids for resistance to quinolones,
cephalosporins, and colistin. This study suggested that the local antibiotic use
patterns supports the persistence of plasmids with ARGs [57].

While ARGs naturally occur in soil, their transmission to different environments
through plasmids is concerning, especially in environments with increased anthro-
pogenic activity. This contributes to the spread of AMR to both pathogenic and
non-pathogenic bacteria, posing a significant threat to the natural environment and
human health [53].

4.3.5. AMR GENES ASSOCIATED WITH INTEGRONS THAT ARE HIGHLY

ABUNDANT WERE SELECTED DUE TO THE CONSTANT USE OF

ANTIBIOTICS

To identify the presence of integrons and their association with AMR gene families,
we classified integrons from the metagenomic contigs present in each soil study.
Furthermore, we linked the classified integrons with AMR gene families to determine
the differences between soil studies. Integrons are mobile genetic elements that
capture and express ARGs, particularly among gram-negative pathogenic bacteria.
Integrons are present in all environments and can serve as markers for tracing
sources of pollution [58]. We used the assembled metagenomic contigs to determine
the percentage of classified integrons (Supplementary Table S9). In all soil types
studied, less than 0.001% of contigs were identified as integrons. The integrons that
were found were classified into their respective classes of 1, 2 and 3 (Supplementary
Table S9).

Class 1 integrons made up a higher percentage (≥ 11%) of the integrons we found
between all soil types from all studies. Class 3 integrons constitutes a range of 2% to
5% of integrons found while class 2 integrons had a lower percentage of 1% to 2%.
The remainder of the integrons were unclassified. These high abundances of class 1
and class 3 in all types of soil regardless of country are expected as class 1 and 3
integrons are found in Proteobacteria in soil environments whereas class 2 integrons
are commonly found in marine environments. Overall, integrons are found in diverse
environments which include forest soil, desert soil, Antarctic soil and plant surfaces
[58].

In our study, we identified class 1, 2 and 3 integrons and their association with
AMR genes (Supplementary Tables S10 and S11). We found a high abundance of
class 1 integrons associated with disinfecting agents and sulphonamide resistance in
all types of soil. The high abundance of the qacE gene with class 1 integrons can
be traced back to the use of quaternary ammonium compounds which were first
used as hospital disinfecting agents in 1930 and have become a part of the class 1
integron, known to be highly abundant in soils [48, 58]. Similarly, sulphonamides
were the first true antibiotic to be used in the 1930s and have been selected for and
can be commonly found in class 1 integrons [58].

A high abundance of class 2 integrons was associated with aminoglycoside resis-
tance (aadB) which ranged from 15% in the RS1 to 75% in NS3 and NS4, and 8% in
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RHS3 and US1 (Supplementary Tables S10 and S11). Aminoglycoside antibiotics were
originally isolated from soil bacteria and commonly used in agriculture, increasing
their presence in soil environments, and potentially affecting plant-soil microbial
communities. They also enter soils through human waste, municipal wastewater
systems, and clinical use. These direct and indirect exposures contributes to the
detection of aminoglycoside resistance genes in various soil types, often associated
with class 1 and class 2 integrons [59, 60].

Previous studies have shown that the aadB aminoglycoside resistance gene is
frequently associated with class 1, 2, and 3 integrons and is present in P. aeruginosa,
Salmonella spp., A. baumannii, Klebsiella spp., and Escherichia coli (E. coli) which
are present in our study [61]. Additionally, Jones et al. [62] showed that the aadB
gene, associated with class 1 integrons, had a close association with the blaSHV gene
conferring resistance to penicillin and cephalosporins. This association was not seen
in our study. Lastly, class 3 integrons were predominantly associated with the qacE
gene, which provides resistance to disinfectants. Over 55% of class 3 integrons in all
soil studies were linked to the qacE gene, with 100% in NS4, 97% in RHS2, and 97%
in US3. Similarly to class 1 integrons, the qacE gene is commonly found in class 3
integrons as it is considered to be a conserved segment and had been selected for in
the past [61].

4.3.6. INTEGRATIVE AND MOBILIZABLE ELEMENTS WERE IDENTIFIED IN

EACH TYPE OF SOIL

Finally, we used the assembled metagenomic contigs to determine the percentage
of integrative elements. Integrative elements consist of integrative and conjugative
elements (ICE), integrative and mobilizable elements (IME) and cis-integrative and
mobilizable elements (CIME) that are self-transmittable and can carry and spread
ARGs to other bacterial hosts [63]. We found that all the studies across all soil types
had less than 0.1% of contigs classified as integrative elements. ICE elements were
the most prevalent integrative element compared to IMEs and CIMEs. In the RS2
study, 100% of the integrative elements were CIMEs, while other studies had less
than 20% CIMEs. The abundance of ICEs in all studies across all soil types was over
70%, with no ICE elements found in RS2.

The most prominent ICE families among all studies in all soil types were Tn4371
(≥12%), SXT/R391 (≥5%) and ICEclc (≥8%) (Supplementary Table S12). These ICE
families are commonly found in soil and aid in the degradation of pollutants [64–
66]. Additionally, we identified different SGI1 IME families present in the different
studies within the different types of soil (Supplementary Table S13). SGI1 has been
characterized as a Salmonella genomic island that can spread multi-drug resistance
to human and animal pathogens [67]. Bacteria carrying these integrative elements
have a higher potential for spreading infections thus facilitating the spread of
AMR to other environments [63]. This underscores the importance of continuously
monitoring mobile genetic elements in different soil types.
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4.4. CONCLUSION

We analysed publicly available metagenomic data to investigate the microbial pop-
ulation, antibiotic resistance genes and mobile genetic elements in rhizosphere,
urban, natural, and rural soils sampled from South Africa, Singapore, China, Israel,
Botswana, Chile, Germany, El Salvador, and Antarctica to understand the spread of
antibiotic resistance in different soil environments.

Our study revealed that plant-promoting bacteria such as Bradyrhizobium, domi-
nate soil rich in vegetation and nutrients such as the rhizosphere and natural soil
regardless of geographic location. Urban soils contain a mix of plant-promoting
bacteria and pollutant-degrading bacteria, such as Arthrobacter, while rural village
soils harbour a combination of environmental bacteria and opportunistic pathogens
like E. coli. Bacteria in the soil are dependent on physiological (temperature, mixing
of soil profiles, water change, soil compaction), chemical (heavy metal, soil pH, pol-
yaromatic hydrocarbons) and biological (artificial vegetation, faecal contamination)
factors. As such, more pathogenic bacteria especially those on the ESKAPE pathogen
list are dominant in areas with high human activity. These bacteria can carry
antibiotic resistant genes that may spread to domestic and food animals, vegetation,
water sources and humans leading to untreatable infections in all sectors.

Antibiotic resistant gene families detected in this study i.e., 23S rRNA with mutation
conferring resistance to macrolide antibiotics, major facilitator superfamily (MFS)
antibiotic efflux pump, resistance-nodulation-cell division (RND) antibiotic efflux
pump, OXA β-lactamase, ANT(3”) and 16s rRNA with mutation conferring resistance
to aminoglycoside antibiotics in soil. These genes favour the development of multi-
drug resistance, posing a threat to antibiotic effectiveness. While antibiotic resistant
gene families such as the RND and MFS efflux pump gene families occur naturally in
soil, anthropogenic activity, vegetation, and climate may play a role in the emergence
of AMR and the acquisition of ARGs. Additionally, plasmids associated with AMR
gene families like OXA β-lactamase facilitate the spread of resistance from soil to
various environments like water, humans or animals.

Integrons detected in this study were linked to commonly used antibiotics in
all soil types, suggesting that the overuse of antibiotics contributes to the spread
and emergence of antibiotic resistant bacteria. These bacteria may also possess
adaptive strategies provided by integrative elements, SXT/R391, Tn4371, ICEclc and
IMEs which can potentially carry accessory genes i.e., ARGs. Integrative elements
allow bacteria in the soil to stabilise and adapt to environmental conditions and
human activity as well as favouring gene transfer and the spread of AMR. To fully
understand the emergence and spread of AMR in the environment, factors such as
geographical location, biogeographical patterns, and soil type must be considered. By
analysing MGEs and ARGs in diverse soil types from different countries, we can gain
insights into how AMR spreads and adopt strategies to manage it effectively. Future
research should focus on collecting more rural soil data and considering additional
factors such as antibiotic usage, residues, industrial practices, and local regulations
to address AMR and environmental pollution.
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4.5. SUPPLEMENTARY MATERIAL
Due to the extensive nature of supplementary materials associated with this chapter,
they are not included in this thesis. Interested readers are encouraged to refer to the
Supplementary material online (see https://surfdrive.surf.nl/files/index.
php/s/Y27zkpPxaS4HMkq)
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The use of antibiotics in swine production has raised concerns about its impact on
animal health, microbial ecology, and the emergence of antibiotic resistance. The
gut microbiome, a critical component of animal health, is susceptible to disruptions
caused by antibiotic use. The fecal microbiome can provide a snapshot of changes
in the gut microbiome and provide information on the spread of antibiotic resistance
from pig feces to the environment. We investigated the differences between the fecal
microbiome of pigs raised with (AB+) and without (AB-) antibiotics to assess how
antibiotic exposure influenced the microbial community, antibiotic resistance genes
(ARGs), and mobile genetic elements (MGEs). Our findings revealed that the use
of antibiotics combined with study-specific conditions alters the fecal microbiome.
Antibiotic usage in pigs explains 20% of the variation in the diversity of bacterial
species detected between AB+ and AB- pigs. Similarly, variations in ARGs were
observed in the two groups. The RND efflux pump gene family was abundant in both
groups. The OXA β-lactamase gene and associated plasmids were more prevalent in
the AB- group. We also identified integrons linked to chloramphenicol resistance and
transposon-associated integrative elements that can facilitate the spread of antibiotic
resistance genes within and between bacterial species. These findings highlight that
antibiotics influence both the microbial community and the antibiotic resistance gene
repertoire, regardless of study-specific or environmental conditions. This emphasises
the potential for fecal matter to contribute to the spread of antibiotic resistance in
the environment, underscoring the need for more research to fully understand these
dynamics in agricultural settings.

5.1. INTRODUCTION

Antimicrobial resistance (AMR), resulting from excessive antibiotic use in humans,
animals, and the environment, poses a significant global health risk. By 2030,
antibiotic usage is projected to increase by 67%, with over half attributed to animals
raised for food production [1, 2].

Antibiotics have been integral to the growth and development of food animals
for more than half a century, particularly in swine production. Antibiotics are
routinely used to treat, control and prevent diseases, and to increase productivity.
Sub-therapeutic doses are used to control symptomatic infections between animals
in close contact, to prevent disease at points of high risk, e.g. when the animal is
stressed during extreme weather, post-vaccination or moving [3, 4]. This practice has
turned the food animal industry into a hotspot for antibiotic resistant dissemination
[2].

Among various food animals (cattle, poultry, and pigs), the pig industry is the most
prolific user of antibiotics [5]. In pigs, antibiotics are given to whole groups by mixing
antibiotics into feed or adding antibiotic powder or solution into drinking water [3].
Previous studies have shown that antibiotics, such as beta-lactams, tetracyclines,
sulfonamides, lincosamides, macrolides, and quinolones, are typically used in swine
production [6]. However, the choice of antibiotics is influenced by age-specific
diseases, common pathogens, market availability, and cost [7]. Farm management
practices also play a role in antibiotic use. Larger farms, due to their higher risk of
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pathogen transmission within herds, are more likely to use medicated feed compared
to smaller farms. However, it has been proposed that while costly, good farm bio-
security practices and vaccine administration reduce disease incidence and antibiotic
use [8].

In recent years, the connection between antibiotic use in livestock and the
emergence and spread of antibiotic resistance has been established. This has led to
the European Union banning the “non-therapeutic” use of antimicrobials as growth
promoters since 2006. Restrictions on the use of antibiotics followed in the United
States since 2017 and China since 2020 [9]. Unfortunately, countries with large
livestock production, such as China and Brazil, still remain the largest producer
and consumer of antibiotics with 52% being used in animal production [7, 9]. The
primary concern is that the antibiotics used in livestock sectors are also critically
important for human health, including cephalosporins and fluoroquinolones. This
can lead to bacteria becoming resistant to the last line of defence antibiotics and
causing untreatable infections in humans and animals [10].

The gut microbiome of pigs plays a significant role in nutrition, metabolism and
health. Alteration of the gut microbiome using probiotics or vaccines can prevent
diseases leading to feeding efficiency, resistance to diarrhoea, meat quality, and
immune function [11, 12]. Antibiotic usage influences the gut microbiome of pigs
amongst other factors such as age, host genes, gender and the castration of male
pigs. The gut microbiome harbours a diverse microbial community which supports
the health of the animal, helping to exclude pathogens [9]. A highly diverse gut mi-
crobiome can become less diverse after antibiotic treatment causing lasting changes
in the composition of the microbiome of pigs promoting antibiotic resistant bacteria
and increasing the prevalence of antibiotic resistance genes (ARGs) [9]. Antibiotic
resistant bacteria and ARGs can be excreted with fecal matter as a significant amount
(30-80%) of antibiotics are excreted due to incomplete metabolism. Animal feces are
commonly used as manure in agricultural practices in surrounding farms which can
promote the spread of antibiotic resistance. Additionally, unconsumed feed, contain-
ing these antibiotics, can contaminate soil directly or indirectly affecting aquatic and
farming systems through run-off [1].

Since it has been assumed that the fecal microbiome is a subset of the gut
microbiome in pigs, it can be used to understand the effects of antibiotic usage on the
gut microbiome, monitor the spread of antibiotic resistance to other environments
and mitigate the risks by influencing farm policies [13]. We aim to use publicly
available metagenomic data obtained from the fecal microbiome of pigs raised with
and without antibiotics to identify and characterise the differences in the microbial
community, ARGs and mobile genetic elements. Through this, we aim to establish the
impact of antibiotics on the gut microbiome of pigs to broaden our understanding
of antimicrobial resistance in food animals.
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METHODS AND MATERIALS

5.1.1. DATA SOURCES

103 publicly available metagenomic sequencing sets were obtained from studies
that raised pigs with (AB+) and without antibiotics (AB-) (Table 5.1). Studies
that had pigs raised without antibiotics and those that received antibiotics for
illness only were categorised as "without antibiotics" (n = 56). Pigs raised with
antibiotics were categorised as such (n = 47). Data was obtained from NCBI SRA
(https://www.ncbi.nlm.nih.gov/sra) and the EBI MGNIFY database
(https://www.ebi.ac.uk/metagenomics). A combination of keywords was used on
NCBI SRA, these included "pigs", "sus scrofra", "feces", "metagenomes" and "fecal".
On the EBI MGNIFY database, keywords included: biome = "fecal", text = "fecal",
"metagenome", "fecal animal", "pigs". A summary of the studies used is provided in
Table 5.1. Detailed information about the metagenomes retrieved from the databases
is included in Supplementary Table S1.

Table 5.1: Summary of included studies, sample number for each group of pigs
(AB+/AB-), antibiotic usage (usage), treatment and antibiotic type (type)
used in the study.

Pigs Study Sample no. Usage Treatment Type Citation

AB+ 1 10 Yes Raised Tetracycline [14]
AB- 2 27 No - [15]

AB+
3

11 Yes Raised Antifolates,
tetracycline,
beta-lactams

[16]

AB- 9 Yes Illness Antifolates,
chlorampheni-
col, tetracycline,
beta-lactams

[16]

AB- 4 7 No - [17]

AB+
5

26 Yes Raised Oxytetracycline [18]
AB- 13 No - [18]

5.1.2. BIOINFORMATIC ANALYSIS

To ensure that good quality reads were used throughout the study, quality control
of reads was done using FastQC v.0.11.9 [19], and filtered using Trimmomatic
v.0.39 [20]. Reads were trimmed for quality and adaptor contamination using
Trimmomatic [20] while specifying ILLUMINACLIP: adapters.fa:2:30:10 LEADING:8
TRAILING:8 MINLEN:30 SLIDINGWINDOW: 4:20 parameters. The microbiome of
pigs AB- and AB+ groups were profiled by Kraken2 v.2.1.0 [21] using the minikraken2
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microbial database (2019, 8GB). Thereafter, species confirmation and the estimation
of abundance were done by Bracken v.2.6.2 [22]. The relative abundances of bacterial
genera and species were used to determine the composition of the microbial
population. The average relative abundances of the bacterial species were used to
calculate the alpha and beta-diversity between the groups of pigs raised with and
without antibiotics.

Principal component analysis (PCA) was performed in R v.2.6-4 using the prcomp
function to determine the differences between fecal samples obtained from pigs
raised with and without antibiotics. Scores for each principal component (PC1 and
PC2) of the microbiome were plotted on the x-axis and y-axis. The level of correlation
was observed at the species level.

For the alpha-diversity, the Shannon diversity index was used to determine the
diversity of the microbiome and resistome using the PAST v.4.03 software [23].
The Kolmogorov-Smirnov test was used to assess whether there were significant
differences in the Shannon diversity indices between the AB+ and AB- groups using
the scipy.stats package in Python. A p-value greater than 0.05 (p ≥ 0.05) indicated
significant differences in the microbiome and resistome.

The beta-diversity with the Bray-Curtis dissimilarity was used to assess the differ-
ence between the fecal microbiome and resistome of pigs raised with and without
antibiotics. The beta-diversity was visualised using Non-Metric Multidimensional
Scaling (NMDS) and was conducted using the vegan package in R v.2.6-4. The
goodness of fit for the NMDS ordination was assessed with 999 permutations to
determine the significance of the clustering patterns using the envfit function in the
vegan package in R v.2.6-4. Differences in the beta-diversity between pigs AB+ and
AB- were considered significant at p ≤ 0.05.

The filtered reads were de novo assembled using MegaHit v.1.2.9 [24] with default
parameters. Assembled metagenomes were annotated to determine the antibiotic
resistance gene families and their corresponding drug classes using the Comprehen-
sive Antimicrobial Resistance Database Resistance Gene Identifier (CARD-RGI) v.3.1.2
with default settings including loose matches and the –low_quality –clean options
[25]. The version of the database was kept consistent throughout the analysis. The
relative abundances of the annotated antibiotic resistance genes in each group (AB+
and AB-) were assessed. This data was normalised based on the total number of
antibiotic resistance genes detected in each group, indicating their respective propor-
tions. The covariance between the bacterial species and antibiotic resistance genes
was calculated in Python v.3.7 using numpy v.1.23.4 to determine if antibiotic usage
is responsible for variation.

De novo metagenomic contigs were aligned for the detection of integrons and
integrative elements by alignment to the INTEGRALL database [26] and the ICEberg
database [27]. BWA-mem v.0.7.10 with default parameters was used to perform this
alignment [28], generating a SAM file. To filter soft and hard clipped reads and
undesirable alignments, the SAM files were filtered by the Samclip tool with default
parameters. The output SAM file was converted into a BAM file using SAMtools v.1.9
[29]. Contigs that aligned to the databases were considered integrons and integrative
conjugative elements.
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PlasClass v.0.1.1 [30] was used to classify if plasmid-originating contigs. To
ensure that contigs were truly plasmid-originating, a threshold of length ≥ 1000 and
probability ≥ 0.75 was used. To determine if the detected plasmids were associated
with the found antibiotic resistance genes, the plasmid-originating contigs were
matched to the previously determined contigs carrying antibiotic resistance genes.

5.2. RESULTS AND DISCUSSION
In this study, publicly available metagenomic data representing the fecal microbiome
of pigs raised with (AB+) and without (AB-) antibiotics were analysed to identify and
characterise the microbiome, resistome and mobilome.

5.2.1. THE FECAL MICROBIOME IS INFLUENCED BY STUDY-SPECIFIC

CONDITIONS AND ANTIBIOTIC USAGE

To investigate the effects of antibiotic usage on the taxonomic composition of the
fecal microbiome between pigs raised with (AB+) and without (AB-) antibiotics, we
conducted a PCA analysis using the average relative species abundances. Previous
studies have shown that antibiotic administration in pigs alters the gut microbiome,
consequently affecting the fecal microbiome of these animals [31].

In our study, five metagenomic datasets were used and categorised based on
antibiotic usage (Table 5.1). In Figure 5.1 samples were colour-coded according to
their studies with shapes representing antibiotic usage (Table 5.1). A smaller distance
between samples on the PCA plot indicates a greater similarity between samples.
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Figure 5.1: Visualisation of the PCA analysis using the average relative abundance
of the bacterial species detected in fecal microbiome of pigs raised
with (AB+) and without antibiotics (AB-) with the explained variance in
brackets. Each colour represents a sample in a study (study 1= pink, study
2 = blue, study 3 = green, study 4 = grey, study 5 = orange) and shapes
represent antibiotic usage (antibiotics or AB+ = circle and no antibiotics
or AB- = triangle).

Antibiotic usage affects the fecal microbiome in combination with the study’s
origin. Figure 5.1 shows the grouping of samples according to their respective
studies. This grouping indicates that the microbial populations in each study are
influenced by study-specific conditions. Specifically, samples grouped as AB+ and AB-
obtained from study 3 and study 5 overlap within their respective studies. Study 3
sampled from Canada while Study 5 sampled from Austria. Unfortunately, due to the
lack of metadata we cannot make inferences based on the study-specific conditions;



5

134 5. ANTIBIOTIC RESISTANCE IN THE FECAL MICROBIOME OF PIGS

however, these can include geographical location, pig diet and management practices.
These factors can affect the composition of the fecal microbiome. When samples
are labelled by antibiotic usage, as shown in Figure 5.1, samples group accordingly,
indicating an impact on the composition of antibiotics on the fecal microbiome
combined with study-specific conditions. Overall, pigs raised with and without
antibiotic usage can have zoonotic pathogens such as Clostridioides difficile (C.
difficile) in the feces, as detected in our study (Figure 5.2) [32]. This can potentially
spread to other environments such as soil, water, and other animals [33, 34].
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5.2.2. PROBIOTIC BACTERIA ARE DOMINANT IN THE FECAL MICROBIOME

OF PIGS RAISED WITH AND WITHOUT ANTIBIOTICS

To assess the differences in the microbial composition in the fecal microbiome of pigs
AB+ and AB-, we performed taxonomic classification. Additionally, we investigated the
similarities between the microbial communities to assess if antibiotic usage influences
the bacterial species found and their abundances. Antibiotic administration has
previously been shown to affect the indigenous microbes in animal feces leading to
changes in the microbial community structure and resistance [35].
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Figure 5.2: Heatmap showing the average relative abundance of bacterial species over
1% in the fecal microbiome, comparing pigs raised with (AB+) and without
antibiotics (AB-). Higher abundances are indicated by the intensity of grey
in the heatmap.

Based on the normalised data, a higher number of genera and species were
present in the fecal microbiome of pigs raised without antibiotics (AB-). Specifically,
we identified a total of 998 genera and 2580 species across the AB+ pigs studies
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compared to a total of 1024 genera and 2845 species across the AB- pigs studies. This
increased number of species in the AB- group suggests that the absence of antibiotics
allows for a more complex and varied microbial community (Supplementary Tables
S2-S3). It should be noted that the samples included were obtained from different
studies therefore sample processing and sequencing depth can influence these results.

The higher number of bacterial species in pigs AB- may contribute to a more
resilient gut ecosystem, potentially enhancing overall health and disease resistance
[36]. 14 species that had an abundance of over 1% were in common between the two
groups (Supplementary Table S5). This is supported by the Jaccard similarity of 0.685
indicating that 68% of the total bacteria present were shared between pigs AB+ and
AB-. Additionally, the Shannon_H diversity index was 4.018 for pigs AB+ compared
to 4.007 for pigs AB- suggesting that pigs raised with antibiotics (AB+) have a more
diverse microbiome as compared to pigs AB- (p ≥ 0.05). Details on the abundances
of the bacterial genera, species, unique species and commonly identified species can
be found in Supplementary Tables S2 - S5.

Probiotic bacteria are dominant in the fecal microbiome of pigs AB+ and AB-
(Figure 5.2). We detected a higher average relative abundance of Lactobacillus genera
(Supplementary Table S2), specifically Lactobacillus amylovorus (L. amylovorus) in
the fecal microbiome of pigs AB+ and AB-. The Lactobacilli species is one of the
dominant bacterial groups establishing a stable population in the intestinal tract of
piglets [37]. Lactobacillus is also a probiotic candidate known to have antibacterial
properties. In animal husbandry, L. amylovorus is a feed additive which assists in
the daily weight gain of animals and resistance against enteric pathogens such as
Salmonella enterica (S. enterica) and Escherichia coli (E. coli) [38–40].

Combining probiotic bacteria with antibiotics may suppress opportunistic pathogens
(Figure 5.2). In our study, we observed the Escherichia genera are abundant in the
fecal microbiome of pigs AB- with most of the species attributed to the enteric
opportunistic pathogen, E. coli. Contrastingly, this abundance is low in pigs AB+
indicating that the use of antibiotics in the growth of pigs may suppress the prolifer-
ation of E. coli. Previous studies have shown that while E. coli isolates are found in
the feces of pigs before antibiotic administration, the use of antibiotics can suppress
these opportunistic pathogens leading to changes in the abundances [41, 42].

Furthermore, we identified the unique bacterial species present in pigs AB+ and
AB- (Supplementary Table S4). While we see a mixture of pathogenic bacteria and
those that support gut health, pathogenic bacteria such as Legionella pneumophila
(L. pneumophila), Yersinia enterocolitica (Y. enterocolitica), and Vibrio cholerae (V.
cholerae) were identified in the feces of pigs AB+ and not in AB-. On the other hand,
beneficial gut-supporting bacteria such as Bifidobacterium were identified in pigs
AB- indicating a healthier gut microbiome which can lead to decreased diarrhoea
incidence and the inhibition of pathogens [43].

As stated by Rochegue et al. [44], antibiotics usage may reduce microbial diversity
however, this was not evident in our study even though pigs AB+ and AB- exhibited
differences in the microbial community. The use of antibiotics can influence the
microbial community and potentially promote the selection of antibiotic resistant
bacteria.
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VARIATION IN THE MICROBIAL COMMUNITY OF AB- PIGS

To determine the differences in microbial communities found between the fecal mi-
crobiome of pigs AB+ and AB-, we measured the beta-diversity using the Bray-Curtis
dissimilarity index. This index quantifies the distance between microbial commu-
nities based on species abundances. Visualised with non-metric multidimensional
scaling (NMDS), a smaller distance between samples within a group i.e., AB+ or AB-,
indicates a greater similarity between these microbial communities [45].
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Figure 5.3: Visualisation of the beta-diversity analysis of the microbial community
by Non-metric Multi-dimensional Scaling Ordination (NMDS) using Bray-
Curtis dissimilarities between the fecal microbiome of pigs raised with and
without antibiotics. Samples for each antibiotic usage group are indicated
in different colours (Pigs AB+ = light blue, Pigs AB- = dark blue). Variation
(r 2) and p-value, calculated using the goodness of fit, is indicated in
the top right corner with ∗∗∗ denoting the statistical significance of the
difference between pigs AB+ and AB-.

Figure 5.3 illustrates the Non-Metric Multidimensional Scaling (NMDS) analysis of
the fecal microbiome, highlighting differences in the microbial populations between
pigs raised with antibiotics (AB+) and those without antibiotics (AB-). Figure 5.3
shows the AB+ samples are more tightly grouped with less distance between them,
indicating a high similarity in their microbial communities.

In contrast, the AB- samples are more dispersed as shown by Figure 5.3, reflecting
greater variability in their microbial communities. This implies that the microbiome of
untreated pigs may be more influenced by external factors such as diet, environmental
conditions, and other study-specific variables. The diversity in the AB- group
indicates a more heterogeneous microbial population, potentially contributing to
different health and functional outcomes such as a balanced immune system and
better digestion [46]. Statistical analysis confirms the effect of antibiotics on microbial
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diversity, with antibiotics explaining 17.75% of the variation in microbial communities
(r² = 0.1775, p = 0.001). Previous research has shown that less diversity in the gut
microbiome of pigs is an indication of poor health. As stated previously, external
factors can influence the gut microbiome however, microbial infections and the
constant use of antibiotics lead to pigs being in an unhealthy state [47].

5.2.3. SIMILAR AMR GENE FAMILIES ARE PRESENT IN PIGS RAISED WITH

AND WITHOUT ANTIBIOTICS

To investigate the effects of antibiotic usage on antibiotic resistance genes (ARGs)
in the fecal microbiome of pigs AB+ and AB-, we identified the AMR gene families
as bacteria that are constantly exposed to antibiotics may carry different ARGs [48].
Furthermore, we determined the differences in the AMR gene family composition by
conducting a beta-diversity analysis visualised by NMDS. Similar to our analysis of
the microbial composition, a smaller distance between samples of the AB+ or AB-
groups indicates a greater similarity in AMR gene family composition. Additionally,
we calculated the Shannon_H diversity and Jaccard similarity index to assess the
diversity within a group and if there are similar AMR gene families found between
the pigs AB+ and AB- groups. Details can be found in Supplementary Tables S6 - S8.
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Figure 5.4: Heatmap showing the average relative abundance of AMR gene families
over 1% in the fecal microbiome, comparing pigs raised with (AB+)
and without antibiotics (AB-). Higher abundances are indicated by the
intensity of grey in the heatmap.

Figure 5.4 shows the AMR gene families identified with an average relative abun-
dance of over 1% in the fecal microbiome of pigs AB+ and AB-. The resistance
nodulation cell division superfamily (RND) efflux pump, contributing to multi-
drug resistance by expelling antibiotics from the bacterial cell wall, comprised 11%
abundance of the AMR gene families detected in pigs AB- and 15% in pigs AB+
(Supplementary Table S6) [49]. Previous studies have shown the presence of RND
efflux pump gene families is common in pig raised with and without antibiotics.
Additionally, RND efflux pumps are commonly found in gram-negative bacteria e.g.
E. coli and can export β-lactams out of the cell membrane [16, 50–53]. Interestingly,
in our study, the presence of E .coli combined with the use of β–lactam antibiotics
in feed (AB+) and to treat illness (AB-) may have contributed to the high abundance
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of the RND efflux pump gene family observed.

Additionally, the OXA β-lactamase gene family had similar average relative abun-
dance among the AMR gene families detected in the fecal microbiome of AB- pigs
(3%) as compared to AB+ (3.5%) (Figure 5.4 and Supplementary Table S6). Since
β-lactams are the most sold antibiotics used for food-producing animals i.e., pigs, it
was expected that there would be a higher abundance of the OXA β-lactamase gene
family present in AB+ samples. However, pigs raised without antibiotics or organi-
cally can be more exposed to environmental sources, pathogens, and ARGs [54]. The
abundance of the OXA β-lactamase gene family in pigs AB- could also be attributed
to either the administration of β-lactams to treat illnesses or injuries, horizontal gene
transfer, management practices in farms or environmental differences [55, 56].
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Figure 5.5: Visualisation of the beta-diversity of the AMR gene families in the fecal
microbiome of pigs raised with and without antibiotics by Non-Metric
Multidimensional Scaling (NMDS). Samples are colour-coded based on
antibiotic usage (Pigs AB+ = light blue, Pigs AB- = dark blue). Variation
(r 2) and p-value are indicated in the top right corner with ∗∗∗ denoting
the statistical significance of the difference between pigs AB+ and AB-

Antibiotic usage causes variation in AMR gene families detected. Figure 5.5
illustrates the beta-diversity of AMR gene families present in pigs treated with
antibiotics (AB+) and those not treated with antibiotics (AB-). Samples within the
AB+ group are tightly clustered together whereas samples from the AB- group have
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larger distances between them indicating variation in the resistome between both
groups. This is further supported by the Shannon_H diversity indices of 3.968 for AB+
and 4.052 for AB- (p ≥ 0.05). This variation in AMR gene families can be caused by
antibiotic usage (r² = 0.1768, p = 0.001). Interestingly, variations in AMR gene families
are similar to the variation reported previously with the microbial communities (r² =
0.1775, p = 0.001) however, covariation analysis has shown that minimal co-variation
occurs between the bacteria and the AMR gene families identified suggesting that
antibiotic usage is responsible for differences in AMR gene families and microbiome
composition (Supplementary Table S7).

Additionally, the Jaccard similarity index of 0.744 suggests that only 74% of the
AMR gene families are shared between the AB+ and AB- groups, indicating an overlap
in the AMR gene family composition between both groups. This can be seen in
Figure 5.5, as some samples from the AB+ and AB- are close together while others
are dispersed indicative of variation of AMR gene family composition. 11 AMR gene
families present at over 1% were common between both groups (Supplementary
Table S8). Differences in AMR gene families may be influenced by environmental
factors, housing, or farm management practices, though more research is needed to
fully understand the role of animal husbandry in shaping ARG distributions [56–58].

5.2.4. PLASMIDS LINKED TO COMMONLY USED ANTIBIOTICS

To investigate the presence of plasmids and their connection to antibiotic resistance
in the fecal microbiome of pigs AB+ and AB-, we determined the percentage of
contigs classified as plasmids. Furthermore, we examined their association with AMR
gene families. Plasmids play a significant role in the spread of ARGs and AMR as
bacteria and antibiotic residues present in feces can enhance horizontal gene transfer
[9, 59, 60].
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Figure 5.6: Heatmap showing the average relative abundances of plasmids associated
with AMR gene families over 1% in the fecal microbiome, comparing pigs
raised with (AB+) and without antibiotics (AB-). Higher abundances are
indicated by the intensity of grey in the heatmap.

Over 1% of contigs were classified as plasmids in both groups. Further analysis
showed that the AMR gene families were associated with 0.1% of the classified
plasmids. Plasmids associated with AMR gene families were detected in both pigs
AB+ and AB- (Figure 5.6 and Supplementary Table S9). In Figure 5.6 we observed a
high average relative abundance of plasmids associated with the tetracycline-resistant
ribosomal protection protein conferring resistance to the tetracycline antibiotic and
the OXA β-lactamase gene family conferring multi-drug resistance to carbapenem;
cephalosporin; penam.

Plasmids linked to tetracycline resistance were detected in the fecal microbiome
of pigs AB+ and AB- (11%). Tetracycline has been commonly used in animal feed
and for the treatment of illnesses, including this study (Table 5.1 and Figure 5.6)
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[61]. Previous studies have discussed the continuous usage of tetracycline antibiotics
selecting for plasmids associated with tetracycline resistance [8]. Furthermore,
tetracycline resistance genes have been detected in soil that has been amended with
animal manure indicating the transfer of genes via plasmids from one environment
to another [62–65].

Secondly, plasmids associated with the OXA β-lactamase gene family were present
at an abundance of 6-7% of the AMR-associated plasmids detected in pigs AB+ and
AB- (Figure 5.6 and Supplementary Table S9). The OXA β-lactamase gene family
confers multi-drug resistance to carbapenem; cephalosporin and penams. Similar
to the use of tetracycline, β-lactams were used in both groups as feed additives or
for the treatment of illnesses [18]. Plasmids associated with β-lactams are a public
health concern as these can be transmitted through environmental sources such as
manure, soil, air, wildlife and humans, especially farm workers [66, 67].

The detection of plasmids associated with tetracycline resistance and OXA β-lactams
is not surprising as previous research has indicated that piglets can exhibit a pre-
existing resistance pattern from birth that reflects the environment [68]. This aligns
with the data used in our study, as antibiotics such as tetracycline, oxytetracycline,
and β-lactams were used in pigs raised with antibiotics. The use of antibiotics even
for treatment can enhance the selection for ARGs and the horizontal transfer of these
genes by plasmids. While the use of antibiotics is a common practice for therapeutic
purposes, the low dosages can contribute to the emergence of antibiotic resistant
bacteria thereby spreading to animals and humans [18, 31].

5.2.5. CLASS 1 INTEGRONS LINKED TO CHLORAMPHENICOL RESISTANCE

To investigate the presence of integrons in the fecal microbiome of pigs AB+ and
AB-, we classified contigs as integrons. Integrons are responsible for the spread of
AMR via horizontal gene transfer between pathogenic and non-pathogenic bacteria
found in all environments [69]. In our study, we determined the number of integrons
present in the contigs from pigs AB+ and AB-. We then classified them into classes
1, 2, and 3 to determine their abundances. Furthermore, we linked the detected
integrons to ARGs to assess their role in AMR dissemination (Supplementary Table
S10).

Table 5.2: The average relative abundances of integrons in their respective classes
detected in the fecal microbiome of pigs raised with (AB+) and without
antibiotics (AB-).

Classes of Integrons Pigs AB+ Pigs AB-
Class 1 18% 14%
Class 2 5% 3%
Class 3 1% 1%
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Firstly, less than 0.01% of contigs were classified as integrons. From the detected
integrons we classified them into their respective groups of classes 1, 2 and 3. Table
5.2 shows that class 1 integrons were more abundant as compared to classes 2 and
3. Class 1 and 3 integrons are commonly found in freshwater and soil environments
whereas class 2 integrons are found in marine environments [69]. Additionally,
bacteria bearing class 1 integrons have been reported in environmental reservoirs
such as farms, agricultural land and wastewater systems [70, 71]. It has been stated
that the abundance of class 1 integrons can be identified in millions to billions of
copies in a single gram of feces from agricultural animals [72].

Class 1 integrons associated with the cmxA antibiotic resistance gene was detected
in a higher abundance in pigs AB+ (30%) (Supplementary Table S10). This abundance
was lower in AB- (15%). Chloramphenicol has been used to treat illness in our study,
however, we have no information on the use of chloramphenicol in pigs raised with
antibiotics. Previous research has shown that cmxA gene is linked to chloramphenicol
resistance and has been detected in pig feces and in amended agricultural soils [70,
71, 73, 74]. This indicates that these ARGs can spread from livestock farms and
animal feces to pathogens in soils via horizontal gene transfer i.e. integrons [73, 74].

A similar trend was observed with class 3 integrons as 71% of the class 3 integrons
detected in pigs AB+ were associated with blaOXA-2 gene. This was lower in the pigs
AB- (39%) (Supplementary Table S9). This trend could be indicative of the selective
pressure exerted by antibiotic use, where the presence of antibiotics may encourage
the proliferation of resistant genes like blaOXA-2 within integrons. Class 3 integrons
are known for their role in antibiotic resistance and can capture and express genes
conferring resistance to various antibiotics such as β-lactams [75, 76].

The prevalence of such genes associated with integrons in livestock is a concern
for public health, as it may contribute to the spread of antimicrobial resistance from
animals to humans through the food chain or other means of zoonotic transfer. It’s
important to monitor these trends and implement strategies to mitigate the spread
of resistance genes, ensuring both animal health and public safety [77].

5.2.6. INTEGRATIVE ELEMENTS DETECTED IN SIMILAR ABUNDANCES

To identify the presence of integrative elements in the fecal microbiome of pigs
AB+ and AB-, we determined the proportion (%) of integrative elements present
in the contigs. Integrative elements are comprised of integrative and conjugative
elements (ICEs), integrative and mobilisable elements (IMEs) and cis-integrative and
mobilisable elements (CIMEs).

Integrative elements were detected in less than 0.0001% of contigs in both pigs AB+
and AB-. From those detected, approximately 50% of the integrative elements were
ICEs, similar to a previous study [78]. ICE families were identified in both antibiotic
groups, ie, AB+ and AB- (Supplementary Table S11). Tn916 made up 2-3% of the
detected ICE families and has been classified as a conjugative transposon which can
carry ARGs. Tn916 has also been linked to pathogenic bacteria such as Enterococcus
fecalis (E. fecalis) and Staphylococcus aureus (S. aureus) [79]. This highlights the
potential risk of AMR spreading within and between bacterial populations in livestock
which can have implications for animal health and food safety.
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The high abundance of various transposons among the identified IME families
further emphasises the dynamic nature of genetic elements within these bacterial
communities (Supplementary Table S12). Transposons are mobile genetic elements
that can move within and between genomes, contributing to genetic diversity and
adaptability [80]. Their prevalence in both AB+ and AB- groups suggests a widespread
potential for genetic exchange and the evolution of bacterial populations in response
to environmental pressures, such as the use of antibiotics.

Overall, these findings underscore the importance of monitoring integrative el-
ements and their associated families, such as ICEs and transposons, to better
understand their impact on bacterial communities within livestock and the broader
implications for antibiotic resistance management.

5.3. CONCLUSION

We conducted a comprehensive analysis of the fecal microbiome of pigs raised with
(AB+) and without (AB-) antibiotics to assess how antibiotic exposure influences
the microbial community, antibiotic resistance genes (ARGs), and mobile genetic
elements (MGEs).

Our study demonstrated that antibiotic usage influences the fecal microbiome of
pigs together with the farm and environmental conditions specific to the studies used.
Notably, while both pigs AB+ and AB- exhibited a high average relative abundance of
the probiotic bacteria Lactobacilli, there was a difference in the diversity of bacterial
species between the two groups. The use of antibiotics contributes to the variation
in the fecal microbiome of pigs, however, it may not strongly influence the overall
microbial community structure.

Similarly, a diverse set of antibiotic resistance genes was observed in the AB-
group, underscoring the impact of antibiotic use on the gut microbiome. However,
this impact does not create a huge variation between the resistome of AB+ and AB-
as indicated by the Shannon_diversity index. Unfortunately, this study is limited in
sample size and metadata to confirm the influence of the antibiotics on the microbial
community, resistome and mobilome.

We also identified the widespread presence of the RND efflux pump gene family
in both groups, although the OXA β-lactamase gene was more prevalent in the
AB- group. Additionally, plasmids associated with tetracycline and OXA β-lactamase
resistance were detected. Integrons carrying chloramphenicol resistance genes and
integrative elements linked to transposons were also identified, further illustrating
the complexity of ARG dissemination in these environments.

Understanding the impact of antibiotic usage on the gut microbiome of pigs is
critical for comprehending the spread of ARGs, especially since a significant portion
of ARGs and antibiotic-resistant bacteria are excreted in feces. Although our study
provides valuable insights into how antibiotic use affects the fecal microbiome, it
is limited by the sample size, the absence of metadata and the fact that fecal
samples may not fully represent the entire gut microbiome. Nevertheless, these
findings highlight the potential for fecal matter to influence environmental microbial
communities and contribute to the broader dissemination of antibiotic resistance.
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Future research should focus on the broader sampling of the gut microbiome to
better understand the full impact of antibiotic use in agricultural settings.
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Due to the extensive nature of supplementary materials associated with this chapter,
they are not included in this thesis. Interested readers are encouraged to refer to the
Supplementary material online (see https://surfdrive.surf.nl/files/index.
php/s/Y27zkpPxaS4HMkq)
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[9] M. Zalewska, A. Błażejewska, A. Czapko, and M. Popowska. “Pig manure
treatment strategies for mitigating the spread of antibiotic resistance”. In:
Scientific Reports 13.1 (2023), p. 11999.

[10] S. Matheson, S. Edwards, and I. Kyriazakis. “Farm characteristics affecting an-
tibiotic consumption in pig farms in England”. In: Porcine Health Management
8.1 (2022), p. 7.

[11] J. Hu, J. Chen, L. Ma, Q. Hou, Y. Zhang, X. Kong, X. Huang, Z. Tang, H. Wei,
X. Wang, et al. “Characterizing core microbiota and regulatory functions of
the pig gut microbiome”. In: The ISME Journal 18.1 (2024), wrad037.

[12] K. P. Lemon, G. C. Armitage, D. A. Relman, and M. A. Fischbach. “Microbiota-
targeted therapies: an ecological perspective”. In: Science translational medicine
4.137 (2012), 137rv5–137rv5.



REFERENCES 151

[13] J.-S. Ahn, E. Lkhagva, S. Jung, H.-J. Kim, H.-J. Chung, and S.-T. Hong.
“Fecal microbiome does not represent whole gut microbiome”. In: Cellular
Microbiology 2023.1 (2023), p. 6868417.

[14] P. Munk, V. D. Andersen, L. de Knegt, M. S. Jensen, B. E. Knudsen, O. Lukjan-
cenko, H. Mordhorst, J. Clasen, Y. Agersø, A. Folkesson, et al. “A sampling and
metagenomic sequencing-based methodology for monitoring antimicrobial
resistance in swine herds”. In: Journal of Antimicrobial Chemotherapy 72.2
(2017), pp. 385–392.

[15] D. B. Holman, A. Kommadath, J. P. Tingley, and D. W. Abbott. “Novel insights
into the pig gut microbiome using metagenome-assembled genomes”. In:
Microbiology Spectrum 10.4 (2022), e02380–22.

[16] S. M. Chekabab, J. R. Lawrence, A. C. Alvarado, B. Z. Predicala, and D. R.
Korber. “Piglet gut and in-barn manure from farms on a raised without
antibiotics program display reduced antimicrobial resistance but an increased
prevalence of pathogens”. In: Antibiotics 10.10 (2021), p. 1152.

[17] L. Wei, W. Zhou, and Z. Zhu. “Comparison of changes in gut microbiota
in wild boars and domestic pigs using 16S rRNA gene and metagenomics
sequencing technologies”. In: Animals 12.17 (2022), p. 2270.

[18] M. Ghanbari, V. Klose, F. Crispie, and P. D. Cotter. “The dynamics of the
antibiotic resistome in the feces of freshly weaned pigs following therapeutic
administration of oxytetracycline”. In: Scientific reports 9.1 (2019), p. 4062.

[19] S. Andrews et al. FastQC: a quality control tool for high throughput sequence
data. 2010.

[20] A. M. Bolger, M. Lohse, and B. Usadel. “Trimmomatic: a flexible trimmer for
Illumina sequence data”. In: Bioinformatics 30.15 (2014), pp. 2114–2120.

[21] D. E. Wood, J. Lu, and B. Langmead. “Improved metagenomic analysis with
Kraken 2”. In: Genome biology 20.1 (2019), pp. 1–13.

[22] J. Lu, F. P. Breitwieser, P. Thielen, and S. L. Salzberg. “Bracken: estimating
species abundance in metagenomics data”. In: PeerJ Computer Science 3
(2017), e104.

[23] Ø. Hammer, D. A. Harper, P. D. Ryan, et al. “PAST: Paleontological statis-
tics software package for education and data analysis”. In: Palaeontologia
electronica 4.1 (2001), p. 9.

[24] D. Li, R. Luo, C.-M. Liu, C.-M. Leung, H.-F. Ting, K. Sadakane, H. Yamashita,
and T.-W. Lam. “MEGAHIT v1. 0: a fast and scalable metagenome assembler
driven by advanced methodologies and community practices”. In: Methods
102 (2016), pp. 3–11.

[25] A. G. McArthur, N. Waglechner, F. Nizam, A. Yan, M. A. Azad, A. J. Baylay,
K. Bhullar, M. J. Canova, G. De Pascale, L. Ejim, et al. “The comprehensive
antibiotic resistance database”. In: Antimicrobial agents and chemotherapy
57.7 (2013), pp. 3348–3357.



152

[26] A. Moura, M. Soares, C. Pereira, N. Leitão, I. Henriques, and A. Correia.
“INTEGRALL: a database and search engine for integrons, integrases and gene
cassettes”. In: Bioinformatics 25.8 (2009), pp. 1096–1098.

[27] D. Bi, Z. Xu, E. M. Harrison, C. Tai, Y. Wei, X. He, S. Jia, Z. Deng, K. Rajakumar,
and H.-Y. Ou. “ICEberg: a web-based resource for integrative and conjugative
elements found in Bacteria”. In: Nucleic acids research 40.D1 (2012), pp. D621–
D626.

[28] H. Li. “Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM”. In: arXiv preprint arXiv:1303.3997 (2013).

[29] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, and R. Durbin. “The sequence alignment/map format and SAM-
tools”. In: Bioinformatics 25.16 (2009), pp. 2078–2079.

[30] D. Pellow, I. Mizrahi, and R. Shamir. “PlasClass improves plasmid sequence
classification”. In: PLoS computational biology 16.4 (2020), e1007781.

[31] N. Ricker, J. Trachsel, P. Colgan, J. Jones, J. Choi, J. Lee, J. F. Coetzee, A. Howe,
S. L. Brockmeier, C. L. Loving, et al. “Toward antibiotic stewardship: route of
antibiotic administration impacts the microbiota and resistance gene diversity
in swine feces”. In: Frontiers in veterinary science 7 (2020), p. 255.

[32] M. T. Rahman, M. A. Sobur, M. S. Islam, S. Ievy, M. J. Hossain, M. E.
El Zowalaty, A. T. Rahman, and H. M. Ashour. “Zoonotic diseases: etiology,
impact, and control”. In: Microorganisms 8.9 (2020), p. 1405.

[33] X. Tang, K. Zhang, and K. Xiong. “Fecal microbial changes in response to
finishing pigs directly fed with fermented feed”. In: Frontiers in Veterinary
Science 9 (2022), p. 894909.

[34] A. C. Alvarado, S. M. Chekabab, B. Z. Predicala, and D. R. Korber. “Impact of
raised without antibiotics measures on antimicrobial resistance and prevalence
of pathogens in sow barns”. In: Antibiotics 11.9 (2022), p. 1221.

[35] W. Xiong, Y. Wang, Y. Sun, L. Ma, Q. Zeng, X. Jiang, A. Li, Z. Zeng, and
T. Zhang. “Antibiotic-mediated changes in the fecal microbiome of broiler
chickens define the incidence of antibiotic resistance genes”. In: Microbiome
6 (2018), pp. 1–11.

[36] J. Guitart-Matas, M. Ballester, L. Fraile, L. Darwich, N. Giler-Baquerizo, J.
Tarres, S. López-Soria, Y. Ramayo-Caldas, and L. Migura-Garcia. “Gut micro-
biome and resistome characterization of pigs treated with commonly used
post-weaning diarrhea treatments”. In: Animal Microbiome 6.1 (2024), p. 24.

[37] R. Marti, P. Dabert, C. Ziebal, and A.-M. Pourcher. “Evaluation of Lactobacillus
sobrius/L. amylovorus as a new microbial marker of pig manure”. In: Applied
and Environmental Microbiology 76.5 (2010), pp. 1456–1461.

[38] J. Shen, J. Zhang, Y. Zhao, Z. Lin, L. Ji, and X. Ma. “Tibetan pig-derived
probiotic Lactobacillus amylovorus SLZX20-1 improved intestinal function
via producing enzymes and regulating intestinal microflora”. In: Frontiers in
Nutrition 9 (2022), p. 846991.



REFERENCES 153

[39] B. Petsuriyawong and N. Khunajakr. “Screening of probiotic lactic acid bacteria
from piglet feces”. In: Agriculture and Natural Resources 45.2 (2011), pp. 245–
253.

[40] W. Sirichokchatchawan, P. Pupa, P. Praechansri, N. Am-In, S. Tanasupawat,
P. Sonthayanon, and N. Prapasarakul. “Autochthonous lactic acid bacteria iso-
lated from pig faeces in Thailand show probiotic properties and antibacterial
activity against enteric pathogenic bacteria”. In: Microbial pathogenesis 119
(2018), pp. 208–215.

[41] K. Cameron-Veas, M. Solà-Ginés, M. A. Moreno, L. Fraile, and L. Migura-
Garcia. “Impact of the use of β-lactam antimicrobials on the emergence
of Escherichia coli isolates resistant to cephalosporins under standard pig-
rearing conditions”. In: Applied and Environmental Microbiology 81.5 (2015),
pp. 1782–1787.

[42] T. Unno, J. Kim, R. B. Guevarra, and S. G. Nguyen. “Effects of antibiotic
growth promoter and characterization of ecological succession in swine gut
microbiota”. In: Journal of microbiology and biotechnology 25.4 (2015), pp. 431–
438.

[43] J. Pang, Y. Liu, L. Kang, H. Ye, J. Zang, J. Wang, and D. Han. “Bifidobacterium
animalis promotes the growth of weaning piglets by improving intestinal de-
velopment, enhancing antioxidant capacity, and modulating gut microbiota”.
In: Applied and Environmental Microbiology 88.22 (2022), e01296–22.

[44] T. Rochegüe, M. Haenni, S. Mondot, C. Astruc, G. Cazeau, T. Ferry, J.-Y. Madec,
and A. Lupo. “Impact of antibiotic therapies on resistance genes dynamic and
composition of the animal gut microbiota”. In: Animals 11.11 (2021), p. 3280.

[45] Y. Xia, J. Sun, D.-G. Chen, Y. Xia, J. Sun, and D.-G. Chen. “Community diversity
measures and calculations”. In: Statistical analysis of microbiome data with R
(2018), pp. 167–190.

[46] H. E. Jo, M.-S. Kwon, T. W. Whon, D. W. Kim, M. Yun, J. Lee, M.-Y. Shin, S.-H.
Kim, and H.-J. Choi. “Alteration of gut microbiota after antibiotic exposure in
finishing swine”. In: Frontiers in Microbiology 12 (2021), p. 596002.

[47] S. D. Upadhaya and I. H. Kim. “Maintenance of gut microbiome stability for
optimum intestinal health in pigs–a review”. In: Journal of Animal Science and
Biotechnology 13.1 (2022), p. 140.

[48] S. Tao, H. Chen, N. Li, T. Wang, and W. Liang. “The spread of antibiotic
resistance genes in vivo model”. In: Canadian Journal of Infectious Diseases
and Medical Microbiology 2022.1 (2022), p. 3348695.

[49] A. L. Colclough, I. Alav, E. E. Whittle, H. L. Pugh, E. M. Darby, S. W. Legood,
H. E. McNeil, and J. M. Blair. “RND efflux pumps in Gram-negative bacteria;
regulation, structure and role in antibiotic resistance”. In: Future Microbiology
15.2 (2020), pp. 143–157.



154

[50] S. Begmatov, A. V. Beletsky, E. V. Gruzdev, A. V. Mardanov, L. B. Glukhova,
O. V. Karnachuk, and N. V. Ravin. “Distribution patterns of antibiotic resistance
genes and their bacterial hosts in a manure lagoon of a large-scale swine
finishing facility”. In: Microorganisms 10.11 (2022), p. 2301.

[51] P. Suriyaphol, J. K. H. Chiu, N. Yimpring, P. Tunsagool, W. Mhuantong,
R. Chuanchuen, I. Bessarab, R. B. Williams, R. T.-H. Ong, and G. Suriyaphol.
“Dynamics of the fecal microbiome and antimicrobial resistome in commercial
piglets during the weaning period”. In: Scientific Reports 11.1 (2021), p. 18091.

[52] G. B. Keum, E. S. Kim, J. Cho, M. Song, K. K. Oh, J. H. Cho, S. Kim, H. Kim,
J. Kwak, H. Doo, et al. “Analysis of antibiotic resistance genes in pig feces
during the weaning transition using whole metagenome shotgun sequencing”.
In: Journal of Animal Science and Technology 65.1 (2023), p. 175.

[53] M. D. Routh, Y. Zalucki, C.-C. Su, F. Long, Q. Zhang, W. M. Shafer, and
W. Y. Edward. “Efflux pumps of the resistance-nodulation-division family:
A perspective of their structure, function and regulation in gram-negative
bacteria”. In: Advances in enzymology and related areas of molecular biology
77 (2011), p. 109.

[54] L. Gerzova, V. Babak, K. Sedlar, M. Faldynova, P. Videnska, D. Cejkova, A. N.
Jensen, M. Denis, A. Kerouanton, A. Ricci, et al. “Characterization of antibiotic
resistance gene abundance and microbiota composition in feces of organic
and conventional pigs from four EU countries”. In: PLoS One 10.7 (2015),
e0132892.
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Infectious diseases represent a major global health threat due to the rapid spread of
pathogens, leading to widespread outbreaks. Concurrently, antimicrobial resistance
(AMR) is increasing, making standard treatments less effective and complicating
infection management. Effective surveillance systems are essential to address
these challenges. We conducted a proof-of-concept study to evaluate a portable
in-field microbial lab against a traditional molecular lab for DNA isolation,
sequencing, microbial detection, antibiotic resistance gene identification, and plasmid
classification. Samples from lake water, wastewater treatment plant sludge, and retail
meat were selected to reflect relevant surveillance vectors. This approach provides
valuable data for environmental monitoring, public health, and food safety, aiding
in outbreak preparedness. We compared results using five metrics: DNA yield and
purity, read N50, taxonomic classification, antibiotic resistance gene identification
(ARGs), and plasmid classification. Our study found that metagenomic bacterial
DNA isolation from environmental and food sources is feasible with portable lab
technology, producing ≥800ng of DNA, suitable for Nanopore sequencing. DNA from
retail meat, lake, and sludge samples resulted in similar read numbers and read N50
values. Taxonomic classification was achieved at the genus and species levels. A
Jaccard similarity of over 50% was observed in the top 20 most abundant species
between chicken samples, and lake samples. ESKAPE pathogens were detected in
chicken and lake samples. ARGs and plasmids were also identified in both retail meat
and lake samples.

6.1. INTRODUCTION

Infectious diseases are one of the leading causes of death worldwide. Pathogens
rapidly evolve and spread disease, leading to more virulent forms, including
antimicrobial resistant bacteria [1]. The World Health Organisation (WHO) has
named antimicrobial resistance (AMR) as one of the top ten global health threats
among air pollution, non-communicable diseases, influenza and Ebola [2]. In 2019,
infectious diseases caused an estimated 13.7 million deaths, including 4.95 million
AMR-associated deaths. This number is projected to rise to 10 million deaths
annually by 2050 [3, 4]. Organisations such as the Food and Agriculture Organization
of the United Nations (FAO), the World Organisation for Animal Health (WOAH),
and WHO have been working together to implement global action plans to tackle
the burden caused by AMR [4]. This involves the strengthening of knowledge and
evidence through research and surveillance systems as well as the monitoring of
AMR across clinical and non-clinical sectors in all countries [5, 6].

Over the past decade, infectious diseases and AMR have been studied using
traditional culture-dependent approaches and other molecular diagnostic techniques
such as polymerase chain reaction (PCR), electrophoresis, multi-locus sequence
typing (MLST) and pulsed-field gel electrophoresis (PFGE) [6–8]. These methods,
while effective, provide limited information on only specific pathogens, can fail
to detect pathogens, only detect culturable bacteria, are time-consuming, require
trained personnel and dedicated laboratories and can be expensive [1, 6, 7,
9]. Unfortunately, due to the rapid spread and evolution of pathogens and
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microorganisms, new rapid detection techniques are needed [1, 7].

The COVID-19 pandemic highlighted the need for rapid detection methods as
the surge in testing overwhelmed the local capacities in different countries [10].
Conventional diagnostic workflows for COVID-19 detection, relying on specialised
equipment and supplies, faced shortages, creating an urgent need for cost-effective
solutions [10–13].

In response, platforms utilising Third Generation Sequencing (TGS) were developed
to facilitate real-time surveillance of viral pathogens. Examples of such platforms
employed long-read Oxford Nanopore Technologies (ONT) sequencing, integrated
with Isothermal Rapid Viral Amplification for Near Real-time Analysis (NIRVANA),
CalmBelt and sequence variation analysis to facilitate rapid COVID-19 genome
characterisation for outbreak tracking and diagnostics [12, 14, 15]. Such technologies
offer the added benefit of portability, making them suitable for deployment in
various locations, including wastewater monitoring [12, 16]. Additionally, a study
comparing ONT sequencing with Illumina sequencing for COVID-19 detection found
that ONT was not only faster but also more cost-effective, reducing both sequencing
time and costs. This efficiency was further enhanced by using the rapid sequencing
kit (SQK-RBK), which significantly reduced library preparation time [17].

The utility of ONT sequencing extends beyond COVID-19, proving valuable in
antimicrobial resistance research. For example, a study by Martin et al. [18],
utilised 16S rDNA amplicon sequencing with the ONT MinION and a portable
Bento Bio Pro lab for detecting antibiotic-resistant Campylobacter in chickens in
less than 5 hours. Similarly, Serpa et al. [19] employed ONT sequencing for
detecting bacteria causing lower respiratory infections using CRISPR/cas9 techniques.
ONT metagenomic sequencing has also demonstrated its capability to identify,
characterise, and trace pathogens across diverse environments, including clinical,
agricultural, environmental, and food safety contexts [9, 18–22]. As discussed by
Bloemen et al. [9], ONT sequencing has been successfully applied in remote
locations such as the ice caps in Iceland, sea ice in Allen Bay, Canada, and desert
areas in Spain. These studies, utilising portable laboratory equipment and the ONT
MinION device, have demonstrated that in-field sample processing can be performed
effectively without issues related to sample transportation or preservation, thus
ensuring reliable taxonomic classification.

Despite its advantages, the ONT MinION sequencer, though portable, still requires
pre-sequencing procedures, such as DNA isolation and library preparation, to be
conducted in a traditional laboratory setting. The development of portable devices
like the Bento lab [23] offers a solution by enabling genomics experiments to be
conducted in various locations without the need for the resources typically found in
molecular labs. Such equipment is cost-effective as it consists of a thermocycler,
heating block, gel electrophoresis, transilluminator and centrifuge. It is also available
in a cheaper, entry-level model and the more expensive pro-level model, both of
which can be connected to a battery to conduct in-field genomics experiments
[24–26]. Additionally, the Flongle adaptor can be used with the MinION sequencing
device. While it does enable the use of lower throughput, the Flongle flow cells
may offer a cost-effective approach to long-read sequencing which has been suitable
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for bacterial identification in clinical environments [27]. Such a portable laboratory
device combined with a MinION and Flongle adaptor can be useful for antimicrobial
resistance research, surveillance and in-field microbial detection.

In this proof-of-concept study, we first developed a modified DNA isolation
protocol that can be used with the portable Bento lab (Pro-level) to yield high-quality
DNA. Secondly, we assessed the differences between DNA isolated using a Bento lab
(BL) and a traditional molecular lab (TL). We evaluated differences based on the
following criteria: (i) DNA yield and purity, (ii) total nucleotide volume generated
(Kb) and read N50 (Kb), (iii) similarity in taxonomic composition, (iv) identification
of antibiotic resistance genes (ARG) and (v) classification of plasmids.

6.2. METHODS AND MATERIALS

6.2.1. SAMPLE COLLECTION AND PROCESSING

Three different samples were collected to assess their environmental and food safety
impacts; lake water (n=1), sludge (n=1) and retail meat product (n=1). 2L of
lake water was collected in a sterile bottle from the surface (5cm - 10cm) of a
recreational lake in Delft, The Netherlands (52°01’18.2"N 4°22’59.3"E). Retail poultry
(whole carcass) was purchased from a supermarket in Delft, The Netherlands and
washed with 1L of distilled water. The carcass rinsate from the retail poultry bag was
transferred into a sterile bottle for further processing. Lastly, 1.8mL of sludge was
obtained at a wastewater treatment plant in Amsterdam West, The Netherlands. All
samples were collected and stored on ice until DNA isolation was done on the same
day.

6.2.2. DNA ISOLATION

To assess the differences between the portable pro-level Bento lab (BL) (Bento
Bioworks, UK) and a traditional molecular lab (TL), DNA was isolated from all
samples using both these lab types (n=6) and concentration was assessed using a
Qubit 3 (Thermo Fisher Scientific, Wilmington, DE, USA). DNA was isolated from the
sludge and carcass rinsate samples using the DNeasy Ultraclean Microbial extraction
kit (Qiagen Inc., Valencia, CA) and from the lake water using the DNeasy PowerWater
DNA kit (Qiagen Inc., Valencia, CA). Before isolation, 300mL of lake water was filtered
using a vacuum pump with a 0.2mm cellulose filter (Merck Millipore, Ireland).
DNA isolation was done following the manufacturers’ instructions in the traditional
molecular lab.

With regards to the Bento lab, we chose the pro-level model which has a varying
centrifugation speed (max 13 500 RPM). The centrifuge capacity is also limited to
2ml Eppendorf tubes which can be overcome by increasing centrifugation times
during experiments. Modifications to the DNA isolation protocols were made for the
Bento lab as follows:
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Modifications to the DNeasy PowerWater DNA extraction kit:
Step 8: Transfer the supernatant to a clean 2ml collection tube → transfer to 2ml
Eppendorf tube.
Step 9: 13 000 x g for 1 min → 8000 x g for 3 min.
Step 10: Transfer the supernatant to a 2ml collection tube → transfer to 2ml
Eppendorf tube.
Step 12: 13 000 x g for 1 min → 8000 x g for 3 min.
Step 13: Transfer the supernatant to a 2ml collection tube → transfer to 2ml
Eppendorf tube.
Step 15-20: Load 650µl of supernatant onto an MB spin column → place MB spin
column in a 1.5ml Eppendorf tube with cap cut off (modified collection tube).
Centrifuge at 13 000 x g for 1 min → 8000 x g for 3 min.
Step 22: 13 000 x g for 1 min → 8000 x g for 3 min.

Modifications to the DNeasy Ultraclean Microbial kit:
Step 1: Add 1.8ml of microbial (bacteria, yeast) culture to a 2ml collection tube →
1.8ml carcass rinsate / sludge in a 2ml Eppendorf tube.
Centrifuge at 10 000 x g for 1 min → 8000 x g for 2 min.
Decant the supernatant.
Centrifuge at 10 000 x g for 1 min → 8000 x g for 2 min.
Step 2: Transfer resuspended cells to a PowerBead Tube → PowerBeads from the
PowerBead Tube were added to a 2ml Eppendorf tube.
Step 5: Centrifuge the tubes at a maximum of 10 000 x g for 30 s → 8000 x g for 2
min,
Step 6: Transfer the supernatant to a clean 2 ml Collection Tube → transfer to 2ml
Eppendorf tube.
Step 8: Centrifuge the tubes at 10 000 x g for 1 min → 8000 x g for 3 min.
Step 9: Transfer the entire volume of supernatant to a clean 2 ml Collection Tube →
transfer to 2ml Eppendorf tube.
Step 11: Load 700µl of supernatant onto an MB spin column → place MB spin
column in a 1.5ml Eppendorf tube with cap cut off (modified collection tube) and
load 700µl of supernatant to spin column.
Centrifuge at 10 000 x g for 30s → 8000 x g for 3 min.
Discard the flowthrough and add the remaining supernatant to the MB Spin Column
→ place the MB spin column in a 1.5ml Eppendorf tube with cap cut off (modified
collection tube).
Centrifuge again at 10 000 x g for 30s → 8000 x g for 3 min.
Step 12: Add 300µl of Solution CB and centrifuge at 10 000 x g for 30s → 8000 x g
for 3 min.
Step 13: Discard the flow-through. Centrifuge at 10 000 x g for 1 min → 8000 x g for
3 min.
Step 14: Place the MB Spin Column in a new 2 ml Collection Tube → place MB spin
column in a new 1.5ml Eppendorf tube with cap cut off (modified collection tube).
Step 16: Centrifuge at 10 000 x g for 30s → 8000 x g for 3 min.
Step 17: Discard the MB Spin Column. The DNA is now ready for downstream
applications → Store the flowthrough in a 1.5ml or 2ml Eppendorf tube.
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6.2.3. ONT NANOPORE SEQUENCING

DNA libraries were prepared using only the Bento lab and the Rapid Sequencing Kit
V.14 (SQK RAD114) (Oxford Nanopore Technologies, USA) as per the manufacturer’s
instructions for the Flongle application with Flongle flow cells (R10.4.1. FLO-MIN114).
75ng of DNA isolated using both lab types (n=6) and the Zymobiomics microbial
community standard was used as a control (n=1) (Zymo Research Corporation, Irvine,
CA, USA). Sequencing of all samples was run for 24 hours. The MinKNOW GUI
(ONT, v.19.05.0) was used for setting appropriate sequencing parameters (analysis
protocol, flow cell type, run duration, basecalling and for following the progression
of the sequencing runs in real-time (number of reads, read length distribution and
read quality, and pore activity status).

6.2.4. BIOINFORMATIC ANALYSIS

Raw .Pod5 files were basecalled using Dorado v.0.4.3 with the
(–model dna_r10.4.1_e8.2_400bps_sup@v4.2.0). Basecalled bam files were converted
to FASTQ files using Samtools v.1.9 and further processed using NanoFilt v.3 [28].
Taxonomic classification on the filtered reads representing each sample (n=7) was
done using a modified protocol provided by (Taxonomic-Profiling-Minimap-Megan)
at:
(https://github.com/PacificBiosciences/pb-metagenomics-tools). The NCBI nt
database was downloaded (11-06-2024) and indexed according to Portik et al.
[29].

Minimap2 v.2.26 [30] was used to align the raw reads to the NCBI nt database using
the -ac map-ont –sam-hit-only –secondary=no –split-prefix command to generate a
sam file. Sam files were converted to rma files using MEGAN v.6.25.9 [31] with
the sam2rma function, megan-nucl-Feb2022.db and -lg -ram option to generate rma
files with assigned read counts. The MEGAN6 community edition v.6.19 was used to
visualise the rma files and export the taxonomic classifications with assigned read
counts.

Antibiotic resistance genes were detected using BLAST v.2.11.0 [32] against the
Comprehensive Antibiotic Resistance Database (CARD) v.4.0.2 [33] with an 80%
identity and 60% query coverage to obtain the number of antibiotic resistance
genes identified, the antibiotic resistance gene families and corresponding drug
class. Reads were classified as plasmids by Plasclass v.0.1.1 [34] and were considered
plasmid originating when a probability of over 0.75 was assigned to a read.
Plasmid-assigned reads were cross-referenced with the identified antibiotic resistance
genes to ascertain the presence of antibiotic resistance genes within the plasmids.

6.3. RESULTS

In this proof-of-concept study, we first aimed to determine if a modified DNA
isolation protocol can be used with a portable lab (Bento lab) to yield high-quality
DNA. Secondly, we compared the results generated from using a Bento lab to
a traditional laboratory across various metrics: reads generated, read N50, total

https://github.com/PacificBiosciences/pb-metagenomics-tools
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data produced, microbial classification, detection of antibiotic resistance genes, and
plasmid classification.

6.3.1. DNA ISOLATION IS FEASIBLE WITH MODIFIED PROTOCOL AND

BENTO LAB

To assess the differences between the DNA isolated from different samples obtained
by the Bento lab (BL) and the traditional lab (TL), we measured the DNA yield and
purity. The prolevel Bento lab faces limitations due to its centrifugation speed and
the size of Eppendorf tubes that can be used, which are critical factors in DNA
isolation protocols. To address these constraints, a modified protocol is required
that can still deliver high-quality DNA with good purity. DNA yield and purity are
crucial in sequencing as they can directly impact the quality of the results. A high
DNA yield ensures that there is enough DNA to be sequenced while purity ensures
that no contaminants are affecting the sequencing process [35].

Table 6.1: Table showing the DNA yield (ng) and DNA purity (A260/A280) in the
Chicken, Lake, and Sludge DNA samples isolated using the Bento lab (BL)
and traditional lab (TL).

DNA yield (ng) produced

Sample type Bento lab (BL) Traditional lab (TL)

Chicken 800 1780
Lake 2340 1630
Sludge 11750 7580

Purity of the DNA (A260/A280) samples

Sample type Bento lab (BL) Traditional lab (TL)

Chicken 1.990 1.976
Lake 1.628 1.838
Sludge 1.900 1.897

We isolated metagenomic bacterial DNA with sufficient yield from each sample
using both the modified DNA isolation protocol with the Bento lab and the
unmodified protocol with the traditional lab. We measured the DNA yield and
purity of each DNA sample isolated from the Bento lab (n=3) and the traditional
lab (n=3). Table 6.1 shows the DNA yield (ng) isolated from the lake, sludge and
the retail meat product. The DNA yield was sufficient for downstream sequencing
for all sample types. The purity of the DNA samples varied, with measurements
taken at A260/A280. As indicated in Table 6.1, all samples, excluding Lake_BL, had a
DNA purity ranging from 1.8 - 1.9 which can be considered pure according to past
metagenomic research [35–37]. Interestingly, the DNA isolated from the sludge and
the retail meat product had similar values of 1.9 which could be attributed to the
use of the same DNA isolation kit. However, we expected to see differences between
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the Bento lab samples and the traditional lab samples due to the modifications in
the DNA isolation protocol.

The purity recorded for Lake_BL was 1.6, indicating the presence of phenol,
protein, or other contaminants [38, 39]. This suggests that the modified DNA
isolation protocol (DNeasy PowerWater DNA extraction kit) and the use of the Bento
lab for the lake sample results in lower purity compared to the unmodified protocol
used in the traditional lab. The Bento lab is restricted by centrifugation speed and
the size of Eppendorf tubes that can fit into the centrifuge rotor. The lower purity
suggests that these restrictions may impact the purity of DNA. Nevertheless, it has
been stated that low phenol contamination in DNA samples has minimal effects on
the rapid sequencing kit during the library preparation step and has no impact on
the sequencing process [40, 41].

6.3.2. SEQUENCING SAMPLES ISOLATED USING THE BENTO LAB AND

TRADITIONAL LAB YIELDS SIMILAR RESULTS

To compare the differences between the reads generated, read N50 and total data
produced between metagenomic DNA samples obtained using the Bento lab and
the traditional lab, we sequenced each sample using the MinION with the Flongle
adaptor. The number of reads generated during sequencing can influence taxonomic
classification and the identification of ARGs and plasmids as a higher number of
reads will lead to more accurate classifications [42]. A full summary can be found in
Supplementary Table S1.

Table 6.2: Summary of MinION sequencing results for metagenomic bacterial DNA
isolated from control, lake, sludge, and chicken samples using both the
Bento lab (BL) and traditional lab (TL).

Sample type Reads generated (K) Read N50 (Kb) Total data produced (Mb)

Control 46.57 5.94 2780
Chicken BL 16.950 9.84 265.93
Chicken TL 14.432 7.24 230
Lake BL 21.515 11.8 964.35
Lake TL 20.111 5.63 1330
Sludge BL 5.678 102.42 93.75
Sludge TL 6.823 46.67 188.43

Table 6.2 shows that the reads generated, read N50, and data volume produced
from the same sample types isolated using both lab technologies were within a
similar range. Firstly, the Zymobiomics microbial community was used as a control
to ensure that the rapid sequencing kit and the MinION with the Flongle worked
correctly, as library preparation was done only using the Bento lab. According to
Oxford Nanopore Technologies, the Flongle can produce up to 2.6Gb data [43]. We
produced 46Kb reads and 2.7Gb of data from sequencing the control.

According to Table 6.2, the same sample types, regardless of their DNA isolation
protocol or technology, generated a similar number of reads. While the rapid
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sequencing kit suggests a DNA input of 100ng - 150ng, we used 75ng of DNA during
the library preparation step. This lower amount was chosen to optimise resource
use and minimise costs when working with limited amounts of sample in the field.
Additionally, using 75ng allowed us to test the sensitivity of the sequencing protocol
and assess its performance with reduced input, ensuring that the library preparation
and sequencing could still yield high-quality data. Unfortunately, the amount of
DNA used in library preparation does affects the data that is produced as a lower
amount of DNA will yield low data output and shorter length reads which is evident
in our study. The rapid sequencing kit, while requiring fewer manipulations in the
library preparation steps, does not include a clean-up step. This can impact the
sequencing results, as residual contaminants may remain in the sample [44].

We hypothesised that the varying pore availability and differences in DNA
fragmentation could impact the read count and read N50 values observed during
sequencing. While the Flongle flow cell has a maximum of 126 channels, the
manufacturer guarantees 60 available pores for sequencing [43]. In our study, we had
40 to 70 pores available during the sequencing runs of all samples (Supplementary
Table S1). While the lake and retail meat product samples generated a high number
of reads, the DNA isolated from the sludge samples yielded a low number of
much longer reads (5K reads, read N50 of 46Kb, 90Mb data). Due to the length
of the DNA being sequenced, the pores within the flow cell can become blocked
or lost i.e., inactive and stop operating, resulting in a low read count with a high
read N50 [43]. We propose that a higher number of reads with a lower read N50
can be achieved by increasing the fragmentation time in the rapid sequencing kit
protocol [45]. Currently, the fragmentation step (step 6) in the rapid sequencing kit
states incubation should be done at 30◦C for 1 minute and then 80◦C for 1 minute
however, we propose only increasing the incubation at 80◦C to 2-4 minutes. Further
analysis should be done on the effects of the fragmentation time on the read N50
and the reads generation by sequentially increasing the time at 80◦C and observing
the read N50 and reads generated during sequencing. Similar to our study, Maguire
et al. [42] stated that the rapid sequencing kit, similar to the one used in our study,
results in poor Nanopore sequencing reactions and low output of reads (0.3–1.7M
reads) in agricultural water. However, a low number of reads can be sufficient for
genus and species-level identification.

6.3.3. A HIGH DEGREE OF SIMILARITY IS SEEN IN THE TOP 20 MOST

ABUNDANT SPECIES BETWEEN BENTO LAB SAMPLES AND

TRADITIONAL LAB SAMPLES

To identify the microbial community at genus and species-level between the DNA
isolated from the lake, sludge and retail meat product processed by the Bento
lab and traditional lab, we performed taxonomic classification. Furthermore, we
assessed similarities between the microbial communities found in the Bento lab and
traditional lab samples. Details on the relative abundances of the bacterial genera,
species, common bacterial genera, species, and similarity are in Supplementary
Tables S2 -S5.
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Figure 6.1: The abundances of bacterial species present in the chicken, lake and
sludge samples processed by the Bento lab and the traditional lab. The
x-axis represents the abundance of bacterial species detected from Bento
lab samples and the y-axis represents the abundance of bacterial species
detected from the traditional lab samples. All bacterial species shown in
this figure have abundances of over 3%. Dots in the figure are bacterial
species found within a specific sample type and are colour-coded
accordingly (Chicken = orange, Lake = blue and Sludge = brown.)

Species with a higher number of assigned reads were common between the same
sample types regardless of the lab technologies. Firstly, food spoilage bacteria were
present in both retail meat product (chicken) samples. The Pseudomonas genus
was dominant in both chicken samples each of which was isolated using both lab
technologies (Supplementary Table S2). On a genus level, we identified the same
number of genera in the DNA isolated using both lab types (Figure 6.1). Only 8
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of these genera (≥ 1%) were common between the Chicken_BL and Chicken_TL,
resulting in a Jaccard similarity index of 0.43 (Supplementary Tables S4 & S5),
indicating a moderate similarity in the bacterial communities identified between the
two chicken samples. The Jaccard similarity index increased to 0.54 when focusing
on the top 20 most abundant genera, suggesting a higher degree of similarity in the
most dominant bacteria identified between the two samples (Supplementary Table
S5). Figure 6.1 shows the species-level identification revealing that Pseudomonas
fragi (P. fragi) was the dominant species present in both Chicken_BL and Chicken_TL
(Supplementary Table S3). P. fragi is commonly found on retail meat products and
contributes to the spoilage of meat which can potentially be a health hazard [46,
47]. In total, 237 bacterial species were identified between the chicken samples
however, only 19 species were common (≥ 1%) and had a Jaccard similarity of 0.4449
(Supplementary Tables S4 & S5). This similarity increased to 0.9047 when focusing
on the top 20 abundant species, indicating a high level of consistency in identifying
the most abundant species between the two samples regardless of the adapted DNA
protocol.

Figure 6.1 shows environmental freshwater bacteria were detected in both
lake samples. The top three genera identified between lake samples were the
Flavobacterium, Limnohabitans and Polynucleobacter bacteria (Supplementary Table
S2). While a higher number of genera were detected in Lake_BL (413) compared to
Lake_TL (276), 15 similar bacterial genera (≥ 1%) were detected between the two
lake samples (Supplementary Table S2). A Jaccard similarity of 42% was calculated
indicating that only 42% of the bacterial genera identified are common between
Lake_BL and Lake_TL (Supplementary Table S5). Similar to the chicken samples, the
similarity increased when only focussing on the top 20 abundant genera (66%). On
the species level, we identified a total of 1039 different species with 11 species in
common between the lake samples (≥ 1%) (Supplementary Tables S3 & S4). The
Jaccard similarity index of the top 20 abundant species in Lake_BL and Lake_TL
was 0.666 indicating a moderate level of overlap between the two samples, with
approximately 66.6% of the top 20 abundant species being common to both lake
samples (Supplementary Table S5).

The Jaccard similarity may be influenced by the number of reads assigned to taxa
during the taxonomic classification step. In this study, approximately 8000 reads in
the Lake_BL sample were classified compared to 1900 reads in the Lake_TL sample.
These differences indicate that more bacterial species were detected in the Lake_BL
sample, contributing to a greater number of unique genera and, consequently, a
lower overlap between the two samples (Supplementary Table S1).

Regarding the DNA isolated from sludge, we could only perform taxonomic
classification on the Sludge_TL sample as shown in Figure 6.1 (Supplementary Table
S3). This was due to the insufficient number of reads generated when the Sludge_BL
was sequenced (Table 6.2). We identified a total of 159 genera and 266 species in
Sludge_TL with the predominant species being Nitrospira defluvii (N. defluvii) which
is commonly detected in sludge (Supplementary Tables S2 & S3) [48–50].

Overall, our study demonstrates that while there are differences in the observed
microbial communities between the DNA isolated using the Bento lab and the
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traditional lab, there is a moderate to high level of similarity between the most
abundant species. This suggests that both methods are effective for microbial
community detection, although the use of traditional labs with no modified DNA
isolation protocol may yield more comprehensive results in some cases, such as with
sludge samples. Additionally, the use of the Flongle can enhance the capabilities
of portable labs like the Bento lab for in-field microbial detection. However, the
reduced data volume of the Flongle provides a more limited view of the microbial
community, primarily detecting the most abundant species compared to the MinION
[47, 51]. While this provides valuable insight into the dominant microbial populations
in environmental and food sources, it may not capture the full diversity of less
abundant species present in the microbial community.

6.3.4. ESKAPE PATHOGENS CAN BE DETECTED IN LOW ABUNDANCES

To determine the presence of the ESKAPE (Enterococcus faecium (E. faecium),
Staphylococcus aureus (S. aureus), Klebsiella pneumonia (K. pneumonia), Acinetobacter
baumannii (A. baumannii), Pseudomonas aeruginosa (P. aeruginosa), and Enterobacter
spp.) pathogens in the lake, sludge and retail meat product (chicken) samples
and assess the similarities between samples processed using the Bento lab (BL)
and the traditional lab (TL), we investigated the reads assigned during taxonomic
classification.
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Figure 6.2: The number of reads assigned to ESKAPE pathogens detected in each
DNA sample isolated using the Bento lab and the traditional lab. The
x-axis indicates the different samples and the y-axis indicates the number
of reads assigned to the ESKAPE pathogen. The number of reads and
corresponding abundances in percentages for each ESKAPE pathogen are
indicated in text within each bar. Each ESKAPE pathogen is indicated in
different colours.

Figure 6.2 shows the presence of ESKAPE pathogens in the lake, sludge and chicken
DNA samples. We identified P. aeruginosa and A. baumanni in both the chicken
samples (≤1%) with K. pneumonia and Enterobacter sp. detected in the Chicken_BL
(≤1%) (Supplementary Table S6). Additionally, we detected P. aeruginosa and
Enterobacter in the lake samples (Supplementary Table S6). The presence of ESKAPE
pathogens in the lake and chicken samples may be concerning. However, ESKAPE
pathogens are not generally pathogenic, as they are natural colonisers of humans
and animals [52, 53]. Additionally, these microorganisms can be commonly found in
soil and aquatic environments [54, 55]. Further analysis on confirming pathogenic
strains should be done either via conducting polymerase chain reaction (PCR),
mass spectrometry (MS), Matrix-assisted laser desorption ionization-time-of-flight
mass spectrometry (MALDI-TOF MS) or via the use of computational tools such as
StrainGE [56, 57].

Lastly, due to the lack of data in Sludge_BL, we were unable to detect ESKAPE
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pathogens however, we did detect Enterococcus faecalis (E. faecalis) and P. aeruginosa
in Sludge_TL. It is evident by the read count that there is difficulty in the detection
of pathogens and other bacteria as after the pre-processing steps, the Sludge_BL
sample had only 184 reads compared to the 10K reads of Sludge_TL.

The variation in the reads assigned to the ESKAPE pathogens between samples
processed by the Bento lab and the traditional lab can largely be attributed to
differences in read counts generated during the sequencing run. Higher read counts
typically result in more comprehensive and accurate microbial identification. This
variation highlights the importance of optimising the pre-sequencing and sequencing
protocols to ensure consistent and reliable detection of microbial communities,
particularly for environmental and food safety applications.

6.3.5. FAMILY LEVEL SIMILARITY FOR AMR GENES

To determine the similarities between antibiotic resistance genes (ARGs) in the lake,
sludge and retail meat product (chicken) DNA samples that were isolated using the
Bento lab and traditional lab, we investigated the presence of ARGs. Identifying the
presence of ARGs is crucial for public health as bacteria carrying these genes can
potentially cause infections. Additionally, the identification of ARGs in environmental
and food sources can assist in mitigating the spread of AMR to other environmental
and clinical sectors [6].
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Figure 6.3 shows the identification and number of ARGs with corresponding AMR
gene families present in the different lake, sludge and chicken samples processed by
the Bento lab and traditional lab. The RND efflux pump gene family was commonly
detected. We identified 10 different ARGs in Chicken_BL and 11 different ARGs in
Chicken_TL with only 3 ARGs in common (Supplementary Table S7). However, 90%
of the ARGs detected in both chicken samples were from the RND efflux gene pump
family. On the gene level, 3 MexF genes were detected in Chicken_BL conferring
resistance to cephalosporin, macrolides, aminoglycosides, and fluoroquinolone while
2 YajC and 2 AxyY genes were predominant in the Chicken_TL sample, conferring
resistance to multiple antibiotic drug classes: tetracyclines, disinfecting agents and
antiseptics, rifamycin, glycylcycline, cephalosporin, penam, phenicol, oxazolidinone,
fluoroquinolone, glycopeptide, macrolide and aminoglycosides (Supplementary Table
S7). This is similar to a study conducted by Heir et al. [58] who detected the RND
efflux pump gene family in retail products from Norwegian slaughterhouses. The
RND efflux pump gene family and the ARGs comprising the family are commonly
associated with Escherichia, Salmonella and Pseudomonas, all of which were detected
in our chicken samples [58–61].

More variation in the detected ARGs was observed between the lake samples.
Figure 6.3 shows that 50% of the ARGs identified in the Lake_BL and TL samples
belong to the RND efflux pump gene family. We also detected ARGs conferring to
aminoglycosides, rifamycin in Lake_BL and macrolides in Lake_TL with no common
ARGs detected (Supplementary Table S7). The detected AMR gene families align
with the findings of Filipic et al. [62], who concluded that the RND efflux pump
gene family was prevalent in a recreational lake. The detection of RND efflux
pump gene families in both retail meat products and lake water may be a biosafety
and food-safety hazard as these gene families can confer antibiotic resistance
and multi-drug resistance in bacteria. They can be found in both pathogenic,
non-pathogenic and opportunistic bacteria such as Escherichia coli (E. coli), K.
pneumonia, Enterobacter spp, P. aeruginosa, A. baumanni and emerging pathogens
such as Strenotrophomos maltophila (S. maltophila) [63–65]. The RND efflux pump
is naturally found in the chromosome of bacteria which can spread to humans and
animals potentially spreading antibiotic resistance and outbreaks.

While we see differences in the ARGs detected within similar sample types, there
is a similarity in the AMR gene family level. Differences in the detection of ARGs
can be attributed to the low number of reads or the percentage identity used
during the alignment against the CARD database however, our study used an 80%
identity, which previous studies have shown to be a strict cut-off [66]. Even though
we did detect ARGs, the low number observed is likely due to the limited data
volume generated, influenced by factors such as the DNA isolation process, library
preparation, or the smaller output of the Flongle, which produces only 2.6Gb of data
compared to the MinION’s 48Gb. Unfortunately, the number of reads to identify
and confirm the presence of ARGs has not been defined yet as some studies have
suggested one read is relevant due to the low threshold for long-read sequencing
while others suggest that there should be at least 10 reads [67].
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6.3.6. A HIGHER NUMBER OF PLASMIDS DETECTED IN THE CHICKEN

AND LAKE BENTO LAB SAMPLES

To determine the presence of plasmids between each sample type, we classified reads
as plasmids. Furthermore, we investigated if the plasmids detected were carrying
ARGs. Plasmids are important vehicles for rapid adaptation of bacterial populations
changing to their environmental conditions. Plasmids can carry accessory genes such
as ARGs and transfer these genes to pathogenic and non-pathogenic bacteria. An
understanding of plasmids and the ARGs they carry is imperative in understanding
the spread of antibiotic resistance and the role they play in emerging resistance and
infections [68].

Table 6.3: The number of reads classified as plasmids and the number of reads
associated with ARGs.

Chicken Chicken Lake Lake Sludge Sludge
BL TL BL TL BL TL

Plasmids 544 496 2114 1944 8 324
Plasmids associated - 1 1 - - -
with ARGs AAC(6’)-ib7 aadA6

Table 6.3 shows the number of reads classified as plasmids in the metagenomic
bacterial DNA isolated from the lake, chicken and sludge samples processed using
the Bento lab and the traditional lab. We detected plasmids in all DNA samples
isolated using the Bento lab and the traditional lab (Table 6.3). As expected the
number of reads classified as plasmids within a sample type differed according to
the number of reads within the dataset. A higher number of reads were generated
from the Bento lab DNA samples, therefore a higher number of reads were classified
as plasmid derived. The chicken samples had a difference of 9.16%, while the lake
samples exhibited an 8.20% difference. In both instances, the Bento lab samples
revealed a higher plasmid count. Interestingly, the Sludge_BL sample contained the
lowest number of reads that could still be used to detect plasmids. This is likely
because the reads in the Sludge_BL samples have longer read lengths (N50) which
could make them more suitable for plasmid classification by PlasClass [34].

Secondly, Table 6.3 shows two reads classified as plasmids that are associated with
the previously detected ARGs. Both plasmids were associated with aminoglycoside
resistance genes, AAC(6’)-ib7 and aadA6, and detected in Chicken_TL and Lake_BL
samples, respectively.

The differences in the number of plasmids identified and those associated with
ARGs between the Bento lab and traditional lab samples may be attributed to
differences in read numbers and read lengths. The higher number of reads from
the Bento lab samples may have allowed for the detection of more plasmids,
while the longer read lengths in the traditional lab samples may have facilitated
the classification of plasmids even with fewer reads. This highlights the trade-offs
between read numbers and read lengths in metagenomic analyses. As stated
previously, the Flongle provides limited reads which may restrict the detection of
plasmids especially those less abundant or present in low copy numbers.
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6.4. CONCLUSION

Our proof-of-concept study has shown that the pre-sequencing steps can be achieved
by using a portable pro-level Bento lab. We successfully isolated metagenomic
bacterial DNA from environmental and food sources using a modified DNA isolation
protocol and portable lab. We isolated DNA with sufficient yield needed for
sequencing using both lab technologies and generated reads for each sample type
using the MinION and Flongle.

We identified bacteria down to the species level from the DNA samples that were
isolated using the Bento lab and the traditional lab. DNA isolated from the same
samples showed bacterial similarities of over 40% however this increased between
more abundant genera and species. We also identified ESKAPE pathogens in the
lake, sludge and retail meat product (chicken) samples with an abundance of less
than 1%. Furthermore, we detected ARGs in the lake, sludge and retail meat product
(chicken) samples from both lab types. The RND efflux pump gene family was
common between the same sample types. Lastly, we identified a similar number of
plasmids in all samples with two plasmids associated with aminoglycoside resistance.

Since this study is a proof-of-concept, the study is limited by the number of
samples and the limited amount of reads generated by the Flongle. To overcome
this, future research should benchmark the modified DNA isolation protocol with
the Bento lab and the unmodified DNA isolation protocol with the traditional
molecular lab using a higher number of samples from various sources. This will aid
in investigating how results from DNA concentration, purity, read counts, read N50
and identification differ between the Bento lab and the traditional lab. Furthermore,
optimisation of pre-sequencing steps using portable lab equipment such as the
Bento lab needs to be conducted to improve DNA quality and data generation.

In this study, the Bento lab equipment was used during the library preparation step
with the rapid sequencing kit which required fewer resources and less equipment,
eliminating the need for modifications during the library preparation step. However,
this streamlined process may not apply to other sequencing kits due to the
limitations of the Bento lab setup. Additional experiments using various sequencing
kits and adapting library preparation protocols with diverse samples to gather
more comprehensive data, thereby supporting in-field research efforts is needed.
Additionally, research into in-field microbial detection and AMR should also take
into account and compare the data generated by the Flongle versus the MinION.

We believe that this proof-of-concept study can be the stepping stone into future
research aiming at portability and real-time data generation essential for antibiotic
resistance surveillance in different types of environments.

6.5. SUPPLEMENTARY MATERIAL

Due to the extensive nature of supplementary materials associated with this chapter,
they are not included in this thesis. Interested readers are encouraged to refer to the
Supplementary material online (see https://surfdrive.surf.nl/files/index.
php/s/Y27zkpPxaS4HMkq)

https://surfdrive.surf.nl/files/index.php/s/Y27zkpPxaS4HMkq
https://surfdrive.surf.nl/files/index.php/s/Y27zkpPxaS4HMkq
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7
DISCUSSION

Microbes, among the earliest life forms on Earth, have existed for over 3 billion years,
showcasing remarkable diversity and resilience that enable them to inhabit nearly every
environment, from extreme temperatures and volcanic landscapes to the human body
[1]. These organisms play vital roles in shaping ecosystems and influencing nutrient cy-
cles, climate, and the health of plants, animals, and humans [2]. Despite their ancient
lineage and ubiquity, 99% of bacterial and archaeal species remain unidentified, high-
lighting a significant gap in our understanding of the microbial world [3].

Traditional methods for studying microbes have relied on culture-dependent approaches,
yet less than 2% of environmental microbial species can be cultured in laboratories [4].
This leaves a vast amount of uncultivable "microbial dark matter" unexplored. How-
ever, advancements in DNA sequencing and computational technologies have made it
feasible to study this dark matter [5]. Metagenomics has emerged as a powerful tool for
identifying microbial species in complex ecosystems without the need for cultivation,
especially in less-studied or previously inhospitable environments [5]. A deeper under-
standing of microbial diversity and function has the potential to drive breakthroughs in
fields such as medicine, environmental science, and agriculture. Importantly, this lim-
ited understanding directly impacts global health. In the context of antimicrobial resis-
tance (AMR), human intervention through the overuse of antibiotics has accelerated the
emergence of multidrug-resistant pathogens, contributing to what is now recognised as
a "silent pandemic" [6]. This dissertation has focussed on illuminating the microbial
dark matter in non-clinical environments by studying AMR using metagenomics.

7.1. BREAKTHROUGHS IN AMR REQUIRE COLLABORATION

AND INTEGRATION

While AMR is widely acknowledged as a One Health issue, non-clinical environments
remain under-represented [7]. Additionally, obtaining metagenomic data across diverse
non-clinical sectors within a single study presents considerable challenges, particularly
in a field where most available information comes from clinical and public health datasets.
This imbalance raises critical questions: Why is research in non-clinical sectors limited?
and How can AMR in these sectors be effectively studied using metagenomic data?
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These questions guided the second chapter of this thesis, where the groundwork for
exploring non-clinical sectors through metagenomics and bioinformatics is presented.
This chapter comprehensively reviews antibiotic use across water, aquaculture, soil, plants,
and food-animal sectors, highlighting how metagenomics and bioinformatic tools can
advance research in these areas. This review underscores the contributions of these non-
clinical sectors to AMR and the urgent need to integrate them into future AMR research
alongside clinical sectors. A critical limitation of AMR research is the persistent view
of humans, animals, and the environment as separate entities, even though the One
Health approach emphasises their interconnectedness. While this interdependence is
frequently acknowledged in the literature, it remains neglected in research practices, in-
cluding this thesis. To truly address AMR, research must prioritise collaboration between
clinical and environmental sectors by incorporating data from all sectors.

Another challenge affecting the One Health approach to AMR research is the lack of
both data and metadata in non-clinical sectors and sub-environments. Although a lim-
ited amount of metagenomic data is available, it is often accompanied by insufficient
or incomplete metadata. This further complicates the use of public datasets. Reusing
public data for AMR research can be a powerful way to draw new conclusions and im-
prove monitoring strategies; however, the absence of metagenomic data and metadata
makes it difficult to draw definitive conclusions. Various obstacles can be faced when
working with public data from different studies and countries, such as variability in sam-
ple processing and data quality, lack of standardised data and metadata, restricted ac-
cess to raw or processed files and study/country-specific differences. Obstacles as such
are common due to the various types of infrastructure present in different laboratories
across the globe. Unfortunately, these differences can compromise the reproducibility,
interoperability and cross-study comparisons that are essential in One Health contexts
[8]. Although the FAIR (Findability, Accessibility, Interoperability, and Reusability) data
principles have been proposed as a framework to improve data stewardship and usabil-
ity, implementation is still inconsistent across data repositories and studies. For exam-
ple, missing metadata (e.g., sampling conditions, sequencing platforms, or geographical
context) frequently limits dataset utility in environmental AMR studies [9].

To overcome these limitations and gain a broader perspective on AMR trends across
various non-clinical sectors, publicly available metagenomic datasets can be integrated
and analysed using a standardised bioinformatic pipeline. Although this approach may
appear limited due to data variability, it can enable valuable preliminary insights into
resistance patterns and the distribution of resistant bacteria. These initial findings can
inform hypothesis generation, guide targeted sampling strategies, and help prioritise
surveillance efforts. Moreover, integrating public datasets across studies allows for the
identification of overarching trends in microbial diversity and the prevalence of ARGs
across diverse environments and geographical regions.
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7.2. AMPLIFICATION OF AMR ACROSS ENVIRONMENTAL AND

HUMAN-IMPACTED CONTEXTS
One trend consistently observed was the substantial impact of human actions and envi-
ronmental conditions on AMR patterns. It is often a misconception that humans or the
clinical sector are separate from the environment, yet the findings in this thesis reinforce
that anthropogenic activity exerts a significant influence. Chapter 3, for example, exam-
ines the wastewater treatment plant process, revealing how environmental bacteria and
ARGs prevalent in nature become amplified by human activity. This is highlighted by
the presence of pathogenic bacteria and ARGs conferring resistance to clinically rele-
vant antibiotics in the influent, originating from urban and municipal areas. Contrast-
ingly, environmental bacteria and ARGs are present in upstream freshwater systems that
are less affected by human activity. It can be argued that the WWTP process is efficient
in reducing the microbial load and ARGs present; however, the persistence and spread of
bacteria carrying these ARGs within the WWTP and to receiving environments, humans
and animals is possible.

Furthermore, in Chapter 4, microbial communities in soil are shaped by environmen-
tal and anthropogenic factors, leading to notable shifts in both community structure and
ARG profiles. While core microbiota are shared across soil types, the presence of human
activity correlates with an increased detection of opportunistic pathogens and ARGs as-
sociated with clinically relevant antibiotics. The influence of human activity, geography,
climate, and pollution on the soil resistome shows the need for integrated AMR moni-
toring in environmental settings.

In the food-animal industry, antibiotic use satisfies the farmers, the economy and so-
ciety [10]. However, findings presented in Chapter 5 challenge this perception by re-
vealing the detrimental effects of antibiotic use on animal health. Pigs raised without
antibiotics exhibited microbial communities and genetic profiles that promote natural
resilience and overall health, in contrast to antibiotic-treated pigs. For instance, benefi-
cial gut-associated bacteria were prevalent in antibiotic-free pigs, whereas treated pigs
harboured both probiotic species and opportunistic pathogens. Moreover, the detection
of ARGs in both treated and untreated pigs shows the influence of environmental factors
and site-specific conditions on the resistome. Human intervention, particularly through
antibiotic use, significantly alters microbial communities in the food-animal industry,
with lasting implications for animal health and antimicrobial resistance.

7.3. STANDARDISATION, COST-EFFECTIVENESS AND

EASY-TO-USE TECHNOLOGIES IS THE WAY TO PREPARE

FOR PANDEMICS
Understanding and mitigating AMR is essential to pandemic preparedness, as antimi-
crobial resistant bacterial infections can complicate responses to disease outbreaks and
strain healthcare systems [11]. The COVID-19 pandemic highlighted how global inter-
connectedness accelerates pathogen spread and magnifies health impacts—a reality that
holds equally for AMR. The presence of resistant pathogens could significantly affect
future pandemic and outbreak responses, making it essential to standardise prepared-
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ness methods and outbreak detection. This generates high-quality and comparable data
across different regions [12, 13]. However, limited resources and infrastructure in low-
and middle-income countries present a major barrier. As a result, metagenomic data
from these regions is sparse, and few bioinformatic platforms can compensate for in-
frastructural limitations.

One potential solution to overcoming the challenges of AMR surveillance in resource-
limited settings is the establishment of adaptable, standardised methodologies that can
be implemented across different income levels, regardless of resource availability. The
COVID-19 pandemic accelerated the shift towards in-field detection methods for surveil-
lance, but this approach requires foundational protocols not solely dictated by resource-
rich settings [13]. This insight guided Chapter 6 of this thesis, which focused on porta-
bility and in-field microbial detection for AMR research. This proof-of-concept study
demonstrated that commercially available DNA extraction protocols can be adapted
for use with portable laboratory setups and Oxford Nanopore Sequencing Technologies,
such as the MinION, in field settings. These results showed that field-based setups could
produce DNA of comparable quality to that obtained in traditional lab environments,
offering a promising step toward accessible AMR surveillance methods globally.

However, this approach has limitations, including the high cost of portable lab setups,
MinION devices, flow cells, and the storage of long-read sequencing data. Addition-
ally, the need for bioinformatics platforms can pose challenges, particularly in low- and
middle-income countries. Despite these challenges, the primary focus of this research is
to generate high-quality metagenomic DNA from environmental and food sources in the
field. Overcoming these limitations, particularly in resource-limited settings, remains a
crucial goal. Although these challenges persist, the growing trend in AMR surveillance is
shifting towards in-field microbial detection for outbreak monitoring [13].

One way to make this transition possible in low-resource settings is to develop user-
friendly platforms that can be easily accessed and operated in remote locations. These
platforms would classify microbial taxonomy and identify resistance genes without need-
ing advanced laboratory facilities or extensive bioinformatics expertise. By enabling
in-field AMR surveillance, such platforms could facilitate the rapid collection of criti-
cal data on microbial communities and resistance profiles, even in areas with limited
infrastructure. This capability would empower researchers and healthcare workers in
remote or resource-limited settings to respond more quickly to emerging AMR threats,
contributing to a more comprehensive global understanding of AMR patterns. More-
over, it would enhance collaborative efforts across countries, creating a unified, more
effective approach to tackling AMR on a worldwide scale.

7.4. EFFECTIVE COLLABORATION AND METHODOLOGICAL

INTEGRATION ARE KEY TO GAINING DEEPER INSIGHTS

INTO AMR
While bioinformatic platforms and tools exist for microbial detection and essentially
AMR research, the collaboration between wet lab and computational research is cru-
cial in leveraging the power of -omics data for AMR studies. Metagenomics and other
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high-throughput techniques generate vast datasets that require sophisticated bioinfor-
matics for effective analysis [5]. However, interpreting these results often demands an
in-depth understanding of microbial ecosystems and experimental verification. Addi-
tionally, expanding AMR studies using other -omics approaches such as proteomics,
transcriptomics, and functional metagenomics, can further enrich our understanding
of how resistance mechanisms operate and how AMR spreads within microbial com-
munities [14]. These approaches offer unique insights into AMR that metagenomics
alone may not capture. For example, while metagenomics provides valuable data on
the presence and diversity of AMR genes within an environment, proteomics and tran-
scriptomics help elucidate the expression and regulation of these genes under varying
conditions [15]. Functional metagenomics, in particular, enables researchers to explore
the activity of resistance genes within different microbial ecosystems, revealing not just
their presence but also their roles in conferring resistance under environmental pres-
sures. Integrating these techniques can transform our understanding of AMR by con-
necting genetic information with functional evidence, helping us better predict the be-
haviour of resistant microbes across diverse settings [16].

Ultimately, tackling AMR requires more than technological progress, it necessitates a
paradigm shift towards holistic, One Health frameworks that unify clinical, environmen-
tal, and agricultural sectors. By fostering equitable resource distribution and global col-
laboration, we can develop adaptive and accessible methodologies to safeguard public
health. These efforts will not only deepen our understanding of AMR but also strengthen
our preparedness for future pandemics, ensuring a healthier and more resilient world.
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