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A B S T R A C T

Measuring risk is critical for collision avoidance. The paper aims to develop an online risk level classification
algorithm for forward collision avoidance systems. Assuming risk levels are reflected by braking profiles, de-
celeration curves from critical evasive braking events from the Virginia “100-car” database were first extracted.
The curves are then clustered into different risk levels based on spectrum clustering, using curve distance and
curve changing rate as dissimilarity metrics among deceleration curves. Fuzzy logic rules of safety indicators at
critical braking onset for risk classification were then extracted according to the clustered risk levels. The safety
indicators include time to collision, time headway, and final relative distance under emergency braking, which
characterizes three kinds of uncertain critical conditions respectively. Finally, the obtained fuzzy risk level
classification algorithm was tested and compared with other Automatic Emergency Braking (AEB) algorithms
under Euro-NCAP testing scenarios in simulation. Results show the proposed algorithm is promising in balancing
the objectives of avoiding collision and reducing interference with driver’s normal driving compared with other
algorithms.

1. Introduction

Traffic accidents cause approximately 1.25 million deaths per year
worldwide and between 20–50 million non-fatal injuries with many
resulting in disabilities according to the World Health Organization
(WHO) (World Health Organization, 2016). To reduce traffic accidents,
collision avoidance system (CAS) has received much attention and ef-
forts from industry and research community over the past years
(Cabrera et al., 2012; Wang et al., 2013; Brännström et al., 2014). CAS
is one of the active safety technologies that could identify hazardous
driving situations and actively assist drivers in avoiding or mitigating
accidents (like Automatic Emergency Braking, AEB, as well as Auto-
matic Emergency Steering, AES) (Brännström et al., 2014). To de-
termine when the automatic overriding/intervention should be evoked
(only automatic braking is considered in the current study), a robust
real time risk level classification algorithm is needed, which serves as
the core part of a CAS. However, to date risk level classification is still
an open question in the literature due to the uncertainty and complexity
of the interacting driver-vehicle-road-environment system (Halim et al.,
2016; Mullakkal-Babu et al., 2017)

For online CAS implementation, risk associated with a driving si-
tuation (situational urgency/criticality) is generally measured using
safety indicators based on the initial or predicted state of vehicle

interaction (Mullakkal-Babu et al., 2017). These safety indicators can be
typically categorized into three main types: distance-based, time-based
and deceleration-based indicators. Distance-based indicators usually
calculate critical braking distance dbr based on vehicle kinematics and
dynamics, and have been widely used in AEB algorithms (Fujita et al.,
1995; Doi et al., 1994; Seiler et al., 1998). Time-based safety indicators
have also been well researched thanks to their intuitive accordance
with human natural judgment of situational urgency/criticality. Typical
time-based safety indicators include Time To Collision (TTC), Time
HeadWay (THW) or time gap, Time to Brake (TTB), and Time to Last-
Second-Brake (TLSB) (Hayward, 1972; Goodrich et al., 1999; Keller
et al., 2011; Zhang et al., 2006). Deceleration-based indicator typically
measures the required deceleration level areq for the subject vehicle to
successfully avoid a potential forward collision with its leading vehicle
(Hillenbrand et al., 2006; Brannstrom et al., 2008). However, these
safety indicators are usually calculated under different assumptions
(such as constant vehicle speed and/or acceleration/deceleration),
which may lead to poor risk estimation performance under situations
inconsistent with the assumption. For example, TTC does not reflect
well the collision risk when the leading vehicle suddenly brakes
(especially in small relative distance scenario), while the performance
of THW suffers when the relative speed between the two vehicles is
high (with subject vehicle speed being higher). Recently, a field-based
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safety indicator was proposed by regarding driving risk as a spatial field
(Wang et al., 2015a) However, the auxiliary parameters under this
complex safety field assumption (such as driver physiological indices)
can vary due to different road conditions and driving styles, making
such field-based indicators difficult to calibrate and validate (Liu and
Wu, 2009). For all these reasons, no clear/definite quantitative re-
lationship between these safety indicators and risk levels has been es-
tablished so far.

Another stream of literature attempts to measure situational ur-
gency/criticality from driver’s braking profiles. MacCall, et al. develops
a Bayesian framework to evaluate situation criticality by jointly asses-
sing the need for braking and the probability of performing braking by
driver based on real-world driver baking behavior data (MacCall and
Trivedi, 2007). Wang, et al. took average deceleration, maximum de-
celeration, and maximum kinetic energy difference during deceleration
as feature variables and clustered observed deceleration profiles into
different risk levels for risk causation analysis using K-means clustering
technique (Wang et al., 2015b). Kluger et al. extracted feature variables
from Discrete Fourier Transformed (DFT) longitudinal acceleration
time series and used K-means clustering to identify critical events from
naturalistic driving data (NDS) (Kluger et al., 2016). As these decel-
eration measures are actually consistent with the initial state measures
in characterizing the risk of a driving situation (in other words, a more
critical braking deceleration profile (like with higher deceleration level)
generally indicates the initial state of the situation is at higher risk,
assuming drivers have made evasive braking reaction to the situation,
see Fig. 1), indices developed from naturalistic deceleration profiles
have also been used for online driving risk level classification study.

Wada et al. obtained a series of proximity index KdB and relative
distance data at brake initiation (of expert drivers using experimental
car) and established a brake judgement line based on these two in-
dicators using least squares method (Wada et al., 2010). Lee et al. used
cumulative frequency diagram of acceleration/deceleration at a road
section for measuring risk levels of deceleration profiles, and trained a
neural network model using NGSIM trajectory data to predict potential
severe deceleration for collision warning (Lee and Yeo, 2016). Moon
et al. classified offline driving sequence samples into safe (decelera-
tion> -2m/s2), medium risk (-2m/s2≥deceleration>−4m/s2), and
dangerous (deceleration<−4m/s2) levels according to predefined
thresholds and determined TTC and Warning Index thresholds of dif-
ferent hazard levels using confusion matrix method (Moon et al., 2009).
However, the classified risk levels of the deceleration profiles in these
studies were not validated by human inspectors (e.g., validating if a
near-crash indeed happens or not by checking video footages in nat-
uralistic driving study (Kluger et al., 2016)), meaning no true risk labels
were available for the selected deceleration samples. This can question
the validity of the classification results.

As discussed above, the quantification of safety indicator and risk

level relationship still has limitations in the literature, which can be
further explored from real driving sequence data. The main objective of
this paper is to develop an online driving risk level classification al-
gorithm by optimal selection of safety indicators and classification rules
according to naturalistic/offline deceleration profiles. The proposed
online risk classification methodology is driven by data available in real
time, as opposed to offline techniques which could employ the entire
dataset (Shai et al., 1997). The research is conducted in two main steps
as shown in Fig. 2. Firstly, offline deceleration profiles will be clustered
into different risk levels, using braking deceleration profile to measure
the criticality of vehicle interaction development process, as shown in
Fig. 1. Based on the clustering results, effective representation of the
identified risk levels will be explored using a set of online safety in-
dicators (to avoid drawbacks that may exist for one single indicator)
describing the initial state of the situation. In other words, vehicle de-
celeration is treated as an indirect measurement for real time driving
risk in our proposed framework, where offline deceleration clusters
provides basis for online safety indicator-based risk level classification
rules. The performance of the proposed algorithm will be compared
with state-of-the-art algorithms in simulation.

The remainder of the paper is structured as follows. The decelera-
tion profiles for risk level identification are described in Section 2,
followed by the deceleration profiles clustering analysis which is de-
scribed in Section 3. The safety indicator-based risk level classification
rule extraction based on risk clustering result is described in Section 4.
Simulation test results of the proposed risk level classification rules are
presented and discussed in Section 5. The final section, Section 6,
summarizes the findings and concludes the paper.

2. Data assembly

Deceleration profile data from the Virginia Tech “100-car” Natural
Driving Study (NDS) database (Virginia Tech Transportation Institute,
2014) were used for risk level classification. The database hosts driving
sequence time series of 68 crashes and 760 near-crashes (where drivers
took an emergency braking and/or evasive steering behavior). Vehicle
motion parameters (such as speed, acceleration/deceleration, range
from surrounding vehicle and range rate, etc.) values were recorded at
0.1 s interval from 30 s prior to the crash/near-crash till its end. Pre-
crash (or pre-near-crash) “critical events” were manually coded for
each driving sequence record. In the database, “critical events” are
defined as “the state of environment or action that began the crash/
near-crash sequence and made the crash/near-crash possible (which
occurs outside the vehicle and does not include driver distraction, fa-
tigue, or disciplining child while driving)” (Virginia Tech
Transportation Institute, 2014). Such manually labeled critical decel-
eration profiles (and critical events) can establish a basis for more ac-
curate risk level classification and thus were selected for the study.

Fig. 1. Measurements of Situational Urgency/Criticality.

X. Xiong, et al. Accident Analysis and Prevention 129 (2019) 30–43

31



2.1. Preliminary data selection

Based on the “100-car” database, specific deceleration profile sam-
ples were chosen following two main criteria as following:

1) Type of conflict/driver reaction
399 cases of rear-end conflict type were first chosen to extract

sample deceleration profiles, as they fall within the scope of forward
collision avoidance study. Among them, 385 near-crash cases were
selected as they have complete deceleration curves (braking process)
that may be interrupted by crash occurrence otherwise. Since the cur-
rent study only focuses on collision avoidance timing by automatic
braking, 121 cases of near-crashes avoided by steering or braking-and-
steering were not considered. In addition, 86 cases of rear-end near
crashes involving the subject vehicle (SV) changing lane or other ve-
hicle cutting in were dropped from analysis, leading to 178 cases for
analysis. The excluded events may feature different driver risk per-
ception processes and result in different deceleration patterns, which
may affect deceleration profile-based risk level classification results.

2) Data Validity
Cases without valid and complete vehicle speed, acceleration/de-

celeration, or range value (i.e., distance from the subject vehicle to
leading vehicles), like negative or zero values recorded for missing
value cases, were dropped as the analysis method used in this study
requires such valid and complete data. Speed and range data were also
manually checked via a visualized tool “Natware” (developed by
Chalmers University of Technology for “100-car” database analysis)
(Dozza, 2013) to validate driving data of the leading vehicle (i.e.,
principle other vehicle, POV). For example, the range rate between SV
and POV should be negative when the subject driver starts to brake in
reaction to the recorded “critical event”. A total of 127 rear-end near
crashes (from 45 different drivers) were obtained following the two
data selection criteria above.

Note that some braking may have already been applied prior to the
start of the critical event (probably due to other non-critical event
reasons like normal speed adjustment when a SV approaches an inter-
section/toll booth) and such braking onsets are irrelevant to the re-
search topic (see Fig. 3, where the left red dashed line represents the
start of a “critical event”). To maintain consistent analysis of the de-
celeration profiles, a notation of “critical event-reaction braking” was
defined in the next section to identify the start of braking in reaction to
the recorded “critical event”. Situational urgency/criticality (measured
by online safety indicators) at the start of “critical event-reaction
braking” is regarded as the initial state of vehicle interaction.

2.2. Critical braking profile extraction

Specifically, a “critical event-reaction braking” was defined as a
sudden increase in brake pedal pressure resulting in a sharp drop in
deceleration curve (i.e., the “elbow” point of the deceleration curve
after the start of critical event in Fig. 3). To illustrate this concept,
consider a typical car-following scenario (near-crash) as an example:

Phase I – subject driver starts normal braking (within -1˜-2 m/s2

deceleration level) as POV decelerated;
Phase II - subject driver brakes much harder (over -3˜−4m/s2 de-

celeration level) to avoid rear-end striking as POV decelerated at a
faster rate (even to a full stop) than the subject driver’s initial ex-
pectation.

In this case example, the moment when the driver started braking
could be regarded as “normal event-reaction braking”, with the normal
event being POV decelerating at a driver-expected moderate rate; in
contrast, the moment when the driver braked much harder refers to the
start of “critical event-reaction braking”, with the critical event being
POV decelerating at a fast rate. It could be noted that the time interval
between the start of normal event-reaction braking and critical event-
reaction braking could vary (may even overlap) from case to case de-
pending on the driver’s perceived risk level of events (commonly known
as hazard perception) (Crick and McKenna, 1992; Haworth et al., 2005;
Evans and Macdonald, 2002). As such, it could be believed that the start
of “critical event-reaction braking” actually represents the moment
when the driver deems the current deceleration level to be unsafe and
takes evasive reaction.

Accordingly, in developing a collision avoidance algorithm, to avoid
potential driver aversion, the timing of a normal event-reaction braking
is expected to be determined by a driver, that is no warning/overriding
is needed at this stage; whereas a critical event-reaction braking in-
dicates an unsafe situation and an automatic emergency braking is
expected to be implemented by CAS when a critical event-reaction
braking of highest risk level is predicted (under the assumption that
critical event-reaction braking of highest risk level in a near-crash re-
presents the final “successful” last-second braking, which would be
discussed in more details in Section 4 and validated via simulation in
Section 5). Thus it is important to distinguish normal vs. critical event-
reaction braking for collision avoidance algorithm development.

Based on the “critical event-reaction braking” notation above, the
start of critical event-reaction braking were manually identified and
checked via Natware. Deceleration profiles with no clear sign of evasive
reaction to the critical event (i.e., with no clear “elbow” point in the
deceleration curve after critical event started, as shown in Fig. 3) were
excluded from analysis to avoid biasness in determining the starting
point of “critical event-reaction braking” (a total of 30 such cases were
excluded from the 127 rear-end near crashes sample cases obtained
above). Finally, deceleration time series for each chosen sample record
were extracted from the start of “critical event-reaction braking” to the
moment when deceleration value reaching its maximum, yielding a
total of 97 such deceleration time series (from 43 different drivers) as
the final deceleration profile sample space (for situational urgency/
criticality assessment). The statistical measures of the deceleration
profile sample are presented in Fig. 4. It could be seen that the initial
deceleration of some critical event-reaction braking sequences are
below zero, indicating these sample drivers had already started normal
event-reaction braking prior to critical event-reaction braking; also, the
maximum deceleration in the sample could reach -10m/s2 level (close

Fig. 2. Risk level classification methodology proposed in the paper.
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to the limit of vehicle braking capability), indicating some of these
extracted deceleration profiles actually reflect the driving situations of
highest risk level.

It should be noted that at this study stage, the start of critical event-

reaction braking for each sample record was identified manually by
checking visualized deceleration curves based on Natware. As results
show that the extracted deceleration time series features a continuous
decrease in deceleration value with the magnitude over −4m/s2 (see

Fig. 3. Deceleration curves of sample #8571 and #8595 (deceleration started before critical event started) extracted from Natware.
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Fig. 4, generally consistent with the large deceleration threshold de-
fined in literature (Moon et al., 2009), which happens “when the driver
really need to apply severe braking to avoid potential collision”), such
threshold could be considered as a screening criteria in identifying
starting point of “critical event-reaction braking” in a future larger scale
study. Also, at this stage, the identification procedure does not distin-
guish traffic/driver/vehicle characteristics (such as vehicle type, driver
state, and vehicle response during braking, etc.) due to limited sample
space. More exploration could be made in the future to differentiate the
possible effects of these characteristics/variables on critical braking
event identification.

3. Deceleration profile clustering

As discussed in Fig. 2, deceleration profiles extracted in Section 2
were clustered into different risk levels first for later safety indicator-
based risk level classification rule study. Since the traditional clustering
technique of K-means cannot directly average time series when up-
dating cluster centroids in the iterative calculation, feature variables of
the time series (such as mean/maximum statistics) are usually required
for K-means clustering (Liao, 2005). However, such feature extraction
process may lose some effective information within the complete se-
quence of time series, which affects the correctness of the clustering
results. Spectral clustering, as another widely used clustering technique
fits into the scope of the study (clustering of deceleration profile/
curves), and it only requires similarity information between data points
(rather than their centroids) (Luxburg, 2007). Thus spectral clustering
was selected for deceleration time series clustering analysis.

3.1. Spectral clustering methodology

Spectral clustering is an algorithm based on graph theory (Luxburg,
2007) and has been widely used in many fields (Bach and Jordan, 2006;
Chang and Yeung, 2005; Valgren et al., 2007). Spectral clustering treats
all data as points in space, and assumes all of these data points are
connected by edges assigned with weights (i.e., a connected graph). The
edge weight is higher when the similarity between the two points is
larger, and vice versa. The edge weights between all n data points
constitute the adjacency matrix ×Wn n of the graph, with the element in
the i-th row and j-th column recording the weight value between point i
and point j. The purpose of Spectral clustering is to find a partition of the
graph such that the weight sum of edges between different groups is
small while that of edges within a group is high (Luxburg, 2007).

For the deceleration profile clustering problem, as a higher overall
level of deceleration (the deceleration curve being farther away from
the deceleration=0 straight line) and a faster rate of change of de-
celeration curve generally indicate a higher level of risk perceived by
the driver at the start of critical event-reaction braking, dissimilarity of
deceleration curves (i.e., edge weight) can be measured in two respects
including range/distance metric (dtw) and difference in rate of curve
change metric (Δjerk), which are explained below.

1)Range distance metric (dtw)
As the duration of critical event-reaction braking from its start to

reaching its maximum varies from case to case, Dynamic Time Warping
(DTW) algorithm was employed to calculate the range distances of the
extracted deceleration time series. DTW distance of two time series is
calculated by identifying a distance path (repeating/deleting certain
points within the time series, i.e., shortening/extending the sequence of

Fig. 4. Statistics of deceleration profiles extracted from “100-car” near-crashes.
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time series) where the sum of pairwise point distances along the path is
minimized. Take two K-dimensional signal time series X and Y as an
example (whereas the deceleration profile in our case is one-dimen-
sional signal time series, i.e., K= 1):

=
…
…

… … … …
…

x x x
x x x

x x x
X

M
M

K K K M

1,1 1,2 1,
2,1 2,2 2,

,1 ,2 , (1)
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y y y
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That is, the two time series X and Y have M and N sampling points
(sample points) respectively. Define the distance between the m th
sampling point of X (i.e., the m th column of X, m=1,2,…,M) and the n
th sampling point of Y (i.e., the n th column of Y, n=1,2,…,N) as a
Euclidean distance X Yd ( , )mn :

=
=

d x yX Y( , ) ( )mn
k

K

k m k n
1

, ,
2

(3)

The DTW algorithm looks for two path sequences ix and iy (of the
same length) in the distance lattice dmn, m=1,2,…,M, n=1,2,…,N (as
shown in Fig. 5), which minimizes the sum of the distances between the
sampling points along the distance path dist (formed by ix and iy, i.e.,
the gray polyline in Fig. 5 (Matlab 2018R, 2018)).

= d X Yix*, iy* arg min ( , )
m
n

mn
ix,iy ix

iy (4)

The distance path dist is required to start from X Yd ( , )11 and end at
X Yd ( , )MN , which proceeds following the rules below (Fig. 5-b):

① lateral movement: (m, n) → (m+1, n)
② longitudinal movement: (m, n) → (m, n + 1)
③ diagonal movement: (m, n) → (m+1, n + 1)
Finally, the DTW distance between the two time series X and Y is:

=D d X YDTW( ) ( , )
m
n

mn
ix*
iy* (5)

More details of DTW calculation could be found in (Luxburg, 2007).
Such DTW distances do not require feature variables extracted from
time series (like their mean, maximum, and minimum, etc.) and could
retain the complete deceleration level information within the whole
sequence of time series.

2)Difference in rate of change metric (Δjerk)
As discussed above, DTW algorithm evaluates the range/shape si-

milarity of the deceleration curves by stretching or compressing their
segments, but such transformation operation can lose the change rate
information of the deceleration curves. However, such change rate in-
formation could also be an important indicator for risk level

assessment. For example, for two deceleration profiles with maximum
deceleration being the same, one would usually expect the profile de-
celerating at a higher rate is of higher risk level. Thus, the average
deceleration change rate over the extracted deceleration profile, usually
referred to as jerk (the ratio of increase in deceleration magnitude to
time duration, or average ramp-up), was also employed as another
dissimilarity metric in addition to DTW distance.

Based on the range distance metric dtw (in m/s2) and difference in
rate of change metric Δjerk (in m/s3) defined above, adjacency matrix

= = …×W w i j n{ }, , 1, ,n n ij , an n×n matrix recording pairwise simila-
rities between the n data points (one data point refers to one decel-
eration curve/time series), can be defined using Gauss Radial basis
function kernel (a typical similarity representation metric) (Schölkopf
et al., 2004) as below:

= = +x x
n

dtw jerkw exp( gamma || ||) exp 1 ( ) ( )ij i j
m

ij ij
2 2

(6)

where wij measures the similarity between data point xi and xj, gamma
is dimension parameter defined as

n
1
m
, where nm represents the number

of employed dissimilarity metrics and was set to two in our case (in-
cluding dtw and Δjerk). Dissimilarity metrics dtw and Δjerk were nor-
malized to 0–1 range in the study based on minimum-maximum bounds
to eliminate possible dimension/scaling effects on similarity measure-
ment.

3.2. Clustering results

Spectral clustering was performed for the 97 deceleration profiles
extracted in Section 2 using Matlab (Matlab 2018R, 2018). In addition
to Spectral clustering, K-means clustering based on features including
average deceleration, maximum deceleration, and jerk was also per-
formed as baseline for comparison. Considering the limited sample size,
K=2 clusters were selected for risk level identification, with all clus-
tering results presented in Table 1. Results show that Cluster-1 by
Spectral clustering includes all the 21 cases assigned to that by K-means.
By including another 14 cases into Cluster-1, Spectral clustering yields
higher average maximum deceleration and average mean deceleration
but relatively lower mean jerk level. This means compared with K-
means clustering results, cases with decel_max> -8.498, decel_-
mean> -3.822, and -6.597 < jerk_mean< -21.186 are transferred
from Cluster-2 to Cluster-1 by Spectral clustering. As one would expect a
braking process that features higher average and maximum decelera-
tion but with a relatively lower jerk is more dangerous than that which
has lower average and maximum deceleration with a higher jerk, the
Spectral clustering results are more reasonable than K-means. The
Spectral clustering technique can better identify the high magnitude and
fast changing rate pattern in deceleration profiles compared to K-means.

As Cluster-1 generally features higher maximum and mean decel-
eration level as well as faster average deceleration rate compared to
Cluster-2, deceleration profiles in Cluster-1 were categorized into high

Fig. 5. Diagram of DTW distance calculation (Matlab 2018R, 2018).
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risk level (i.e., their corresponding initial states of vehicle interaction at
the start of critical event-reaction braking were also classified to high
risk), while those in Cluster-2 were categorized into sub-high/medium
risk level (as all sample deceleration profiles were extracted from “100-
car” near-crash records, the extracted profiles should not be assigned to
low risk).

4. Risk level rule extraction

In this section, given the identified risk levels of the deceleration
profiles in Section 3, online risk level classification rules are explored
using safety indicators at the onset of critical event-reaction braking.

4.1. Safety indicator selection

As discussed in Section 1, different drawbacks may exist for one
single safety indicator due to their assumption limitations. To overcome
such assumption limitations, the paper considers three typical critical
driving scenarios (based on possible/uncertain combinations of driving
conditions of SV and POV that could lead to critical scenarios) and
selects three safety indicators to characterize each scenario respectively
(summarized in Table 2). Risk level classification rules would then be
explored based on the joint set of these safety indicators in the next
section.

As shown in Table 2, the typical safety indicator that matches with
the assumption of Scenario 1 is TTC, which characterizes the remaining
time for SV and POV to collide if they continue driving at current speed
along current trajectory (with SV at higher speed than POV); similarly,
the typical safety indicator selected for Scenario-2 is THW, which
characterizes the remaining time for the two vehicles to collide if POV
suddenly stops (an extreme condition) while SV continues driving at
current speed along current trajectory; finally, potential indicator of
collision with urgent deceleration (PICUD) (Beinum et al., 2016) was
selected for Scenario-3, which characterizes the final distance between
SV and POV if both of them decelerate under maximum braking force.
Fig. 6 shows the pattern of the three safety indicators over the whole
driving scenario space (each relative distance-relative speed combina-
tion set represents a specific driving scenario), assuming =vn 60 km/h
(16.67m/s), =amin 8m/s2, =th 1 s (Mullakkal-Babu et al., 2017)
(where color changing from blue to red indicates risk level evolving
from lower to higher; iTTC is used instead of TTC here for better vi-
sualization, as the range of TTC could be very large). It can be seen that

TTC (iTTC), THW, and PICUD show different changing patterns in risk
level (featuring radial, strip-shaped, and arc-shaped patterns respec-
tively) when the relative distance between SV and POV increases, in-
dicating the combination of the three safety indicators could capture a
linear-nonlinear integrated relationship between risk level and range/
relative distance criteria.

4.2. Classification rule extraction based on safety indicators

Based on the risk level clustering results in Section 3, statistical
measures of the selected safety indictors at critical event-reaction
braking onsets (by different risk level clusters) are presented in Fig. 7. It
could be seen that at the start of critical event-reaction braking, the
distribution of TTC, THW, and PICUD are centered near 2.0 s (iTTC=
0.5 s), 0.7 s, and −6m respectively, which is generally consistent with
the medium to high risk thresholds defined for these indicators in the
literature (Mullakkal-Babu et al., 2017; Beinum et al., 2016; Li et al.,
2017; Lin et al., 2012), indicating the deceleration profiles extracted in
the paper are effective in characterizing driving situations of higher
risk. Also, it is noted that Cluster-1 generally features smaller TTC, THW
and PICUD than Cluster-2, which validates the conclusion that Cluster-1
represents high risk level while Cluster-2 represents medium risk level
based on deceleration profile characteristics (Section 3.2).

The joint distribution of the safety indicator set {TTC, THW, PICUD}
at critical event-reaction braking onset is shown in Fig. 8 (note that also
for better visualization iTTC is displayed here instead of TTC). It could
be seen that no clear thresholds of TTC, THW, or PICUD could be
identified to distinguish different risk clusters and more sophisticated
classification rules should be explored. As driving risk level (typically
categorized into high, medium and low risk levels) is actually a fuzzy
concept that could be reasoned from safety indicators (Vicente et al.,
2012), fuzzy logic fits into the scope well and was selected in the paper.
Fuzzy logic generally has good classification performance in the pre-
sence of complex/uncertain situations (like the uncertain critical sce-
narios discussed in Section 4.1, i.e., the three critical driving scenarios)
(George and Bo, 1994), and was employed here to extract risk level
classification rules using the safety indicator set {TTC, THW, PICUD}.

As the rule extraction problem could be regarded as a classification
performance optimization problem (which is usually to improve true
positives [higher risk correctly predicted as higher level] while redu-
cing false positives [lower risk wrongly predicted as higher level] for
risk level classification), two confusion matrices were defined for

Table 1
Spectral vs. K-means clustering results of critical braking deceleration profiles.

decel_max (m/s2) decel_mean(m/s2) jerk_mean(m/s3)

Spectral clustering Cluster-1(35 cases) −8.672 −3.925 −17.125
Cluster-2 (62 cases) −6.771 −2.982 −5.594

K-means clustering Cluster-1(21 cases) −8.498 −3.822 −21.186
Cluster-2(76cases) −7.169 −3.185 −6.597

Table 2
Three critical driving scenarios and corresponding safety indicators.

NO Critical Driving Scenario Safety Indicator

1 SV and POV continue driving at current state, with SV at higher speed than POV =TTC sn
vn vn 1

2 POV decelerates while SV continues driving at current state =THW Sn
vn

3 SV also decelerates after POV decelerates
= +S t vPICUD n

vn vn
a h n

2
1

2

2 | min |

Note: vn and vn 1 represent the current driving speed of SV and POV respectively, with vn and vn 1 representing their future speed in the critical scenario; an and
an 1 represent the deceleration of SV and POV in the critical scenario respectively, with an min, and an min1, representing their maximum value under maximum
braking force (assuming = =a a an min n min min, 1, for simplicity); sn represents the current distance between SV and POV; th represents the driver reaction time.
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classification performance evaluation (note that risk level includes
three categories in the paper, which could lead to two combinations of
higher vs. lower risk level notations and result in two matrices) as
shown in Table 3.

As shown in Table 3, for each deceleration profile sample, the ob-
served risk level refers to the assigned risk level cluster based on de-
celeration curves in Section 3; whereas the classified risk level refers to
the output of fuzzy logic by feeding observed {TTC, THW, PICUD} at
critical event-reaction braking onset, where the output was classified
into low, medium, and high risk levels in accordance with the risk level
clustering results. Classified samples were labeled as True Negative
(TN), False Negative (FN), False Positive (FP), and True Positive (TP)
(McNicol, 2004). It should be noted that though no low risk level
samples are actually observed in the extracted deceleration profile
sample space, low risk level was still defined for fuzzy logic rule output
and was utilized for classification performance evaluation. For example,
if any profile sample is classified into low risk level by fuzzy logic, then
its classification output would be labeled as false negative (FN) ac-
cording to the confusion matrices in Table 3, which would directly
influence the results of classification performance evaluation. Specifi-
cally, classification performance index PI was defined using geometric
mean of True Positive Rate (TPR) and Precision Rate (Pr) of the two
matrices (geometric mean is usually employed when multiplication of
ratios, i.e., TPR and Pr, are included in the formula), where both TPR
and Pr were selected to balance the objectives of improving threatening
situation detection and avoiding false alarms.

=PI TPR Pr TPR Pr1 1 2 2 (7)

=
+

TPR TP
FN TPi

i

i i (8)

=
+

Pr TP
FP TPi

i

i i (9)

where TPi, FNi, FPi (i=1,2) represent the number of classified samples
labeled with TPi, FNi, FPi respectively (based on the confusion matrices
defined in Table 3).

A fuzzy logic structure typically incudes input/output membership
functions and fuzzy output rules (with more technical details in (George
and Bo, 1994)). Different fuzzy logic structures for risk level classifi-
cation based on safety indicator set {TTC, THW, PICUD} were ex-
amined and the structure defined in Table 4 to Table 6 shows best
classification performance by trials.

Z-shaped, S-shaped, and Triangular-shaped membership functions
in Table 4–5 were defined following the Matlab built-in formats (Matlab
2018R, 2018). Mean of maximum (MOM) defuzzification method was
employed to generate the final output of the fuzzy logic (a continuous
value within 0–1 interval), with output value in range [0,0.25] classi-
fied as low risk level, (0.25,0.75] classified as medium risk level, and
(0.75, 1] classified as high risk level. Note that gap1, gap2, and gap3
feature the membership segmentations in TTC, THW, and PICUD re-
spectively (see Table 4). Take gap1 as an example, gap1 could be
considered as the time difference between critical (more dangerous)
state and soft (safer) state in TTC dimension. Under such definition,
when TTC is observed to be lower than TTC1, the corresponding input
variable TTC would be labeled as “Critical” at 100% probability; and
when TTC is observed to be larger than TTC+gap1, a “Soft” label
would be assigned at 100% probability; and finally when TTC is ob-
served between the gap, “Critical” and “Soft” label would be assigned
with the probabilities following their respective membership functions
(the total of the two probabilities is 1). Following the same framework,
gap2 and gap3 could be considered as the time and distance difference
between critical and soft state in THW and PICUD dimension respec-
tively.

Fig. 6. Distribution of iTTC (1/s), THW (s) and PICUD (m) in relative distance-relative velocity plane (Mullakkal-Babu et al., 2017).
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As discussed in Eqn. 7, PI is the target value (performance indicator)
that needs to be optimized given the observed samples ({TTC, THW,
PICUD}- risk level cluster observation pairs), while different input
parameter set x= {TTC1, gap1, THW1, gap2, PICUD1, gap3} (Table 4)
could lead to different PI values. Thus the tuning of these parameters is
in fact a parameter optimization problem that could be solved by Par-
ticle Swarm Optimization (PSO) algorithm, which optimizes a problem
by moving a population of candidate solutions (i.e., particles) towards
the best known position in the search-space (with no requirement in
differentiability of the optimization problem) (Kennedy and Eberhart,
2002). However, instead of using PI as the fitness function directly, –
PI4 = TPR1∙Pr1∙ TPR2∙Pr2 (the same denotation with Eqn. 7) is utilized
to speed up calculation considering the complexity in the function form
of PI (specifically, the fourth power could counteract the double rooting
operation within PI that could affect the performance of PSO algorithm;
and adding a negative sign is a routine operation in forming fitness
function as the PSO algorithm always finds minimum). The lower/
upper bounds of the parameter set x (search-space) were defined as lb
= [0.5,1,0.5,1,-35,0] and ub = [2,6,1,3,0,20] according to the dis-
tribution of TTC, THW, and PICUD at the start of critical event-reaction
braking (see Fig. 7), and with the swarm population size set at 60. Fi-
nally, the optimal solution of parameter set x was obtained by PSO
algorithm based on Matlab as shown in Table 7 (with PSO iteration
process shown in Fig. 9), where the optimal value of fitness function is –
PI4 = 0.588, which is equivalent to performance indicator
PI=0.876.

According to the optimal fuzzy parameters obtained above, the
output surfaces of the fuzzy logic with PICUD fixed at a= 14m and
b= 8m (see parameters defined in Table 4) are shown in Fig. 10. It
could be seen that the TTC-THW output surface shows an overall
downward trend when the fixed value of PICUD increases, which is in

line with one would expect (the overall risk level is expected to be
lower as PICUD increases, with TTC and THW remaining the same). The
result also indicates that using only one single safety indicator (i.e.,
with only one critical scenario considered) would be difficult to fully
reflect the linear/non-linear characteristics in risk level over the driving
space. Adopting such fuzzy logic-based rules could be necessary in
improving the accuracy of risk level classification by integrating safety
indicators featuring different uncertain critical driving scenarios.

From the previous analysis, two main assumptions have been made
in establishing the algorithm:

Ass1: A more critical braking deceleration profile indicates the in-
itial state of the driving situation at higher risk level (Section 1);

Ass2: Critical event-reaction braking of highest risk level in a near-
crash represents the final “successful” last-second braking by driver
(Section 2);

Specifically, Ass1 is the theoretical basis for fuzzy logic-based risk
level classification, where deceleration curve (profile) clusters represent
different risk levels at the start of the recorded braking. Ass2 corre-
sponds to the timing of braking control in CAS: in accordance with the
final “successful” last-second braking timing perceived by driver, when
the output of the fuzzy logic at time t (by feeding observed safety in-
dicator set {TTCt, THWt, PICUDt} at time t) is high risk level (corre-
sponding to the moment when the subject driver is expected to take a
critical event-reaction braking of highest risk level), an automatic
emergency braking should be implemented immediately by CAS. In
other words, in the proposed forward collision avoidance algorithm,
braking control would be initiated when the current driving situation
(represented by {TTC, THW, PICUD}) is classified as high risk level by
fuzzy logic. AEB tests would be employed to validate the proposed
fuzzy logic-based braking control algorithm in the next section.

Fig. 7. Statistics of TTC, THW, PICUD at the start of critical event-reaction braking.
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5. Simulation test and results

The AEB test scenarios proposed by European New Car Assessment
Programme (Euro-NCAP) (Euro-NCAP, 2013) were selected to validate
the proposed collision avoidance algorithm. Test scenarios could be
categorized into three main types according to the movement status of
POV, including Car-to-Car Rear Standing (CCRs), Car-to-Car Rear
Moving (CCRm), and Car-to-Car Rear braking (CCRb) as shown in

Fig. 11 (with SV shown in red and POV shown in white).
In order to evaluate the collision avoidance algorithm proposed in

the paper, classic AEB algorithms including Berkley, Mazda, Honda and
SeungwukMoon (Fujita et al., 1995; Doi et al., 1994; Seiler et al., 1998;
Moon and Yi, 2008) were also tested for comparison. All tests were
implemented via the Prescan Simulation Platform (Prescan, 2018), with
vehicle maximum deceleration set at 0.8 g (to account for possible
unfavorable driving situations, where generally a maximum

Fig. 8. Cluster distribution of TTC, THW, PICUD at the start of critical event-reaction braking.

Table 3
Classification rule output confusion matrices.

a) Confusion matrix-1

Observed Risk Level

Low Med+High
Classified Risk Level Low TN1 FN1

Med+High FP1 TP1

b) Confusion matrix -2

Observed Risk Level

Low+Med High
Classified Risk Level Low+Med TN2 FN2

High FP2 TP2
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deceleration of 10m/s2 and 8m/s2 is assumed for dry and wet roads
respectively for AEB systems (Jeppsson et al., 2018)) and road friction
coefficient set at 0.8, and using Prescan built-in 2D simple vehicle dy-
namics model and radar sensor model (“2D simple” refers to “a model
that is capable of simulating a car’s longitudinal, lateral and roll

motion”, but neglects vehicle movement in the vertical direction and
assumes the front/rear two tires have the same angle and speed like a
bicycle, also referred to as bicycle models (Prescan, 2018)). Finally,
simulation results of each algorithm under each test scenario were

obtained and shown in Fig. 12.
In the paper, the performance of the algorithms was evaluated based

on the final distance from the front of SV to the rear end of POV when
SV stops, i.e., the final relative distance dend. The distribution of dend
across different simulation scenarios could indicate the conservative-
ness/aggressiveness of the algorithm, where a larger average dend gen-
erally implies a more conservative system while a smaller average dend
indicates a more aggressive one. Generally, a system being too con-
servative could interrupt driver’s normal driving, while being too ag-
gressive could lead to failures in collision avoidance, and thus a more
balanced (between conservativeness and aggressiveness) system is
preferred. It could be seen from the simulation results that both the
proposed fuzzy logic algorithm and the Mazda algorithm could avoid
collision under all Euro-NCAP test scenarios ( >d 0end ). However, the
final relative distances by the fuzzy logic algorithm are more con-
centrated (dend 2˜12m) compared to Mazda algorithm (dend tends to be
large especially in CCRm scenarios, where dend could be larger than
20m when SV is at speed over 80 km/h), indicating the timing of AEB
by the fuzzy logic algorithm is generally more balanced (not being too
conservative/early which may interrupt the driver's normal driving, nor

Table 4
Input variable membership function.

Input
Variable

Label Membership Function
(Slope changes at a and
b)

Graph of Membership Function

TTC Critical Z-shaped form
=

= +
a

b
TTC1

TTC1 gap1
Soft S-shaped form

=
= +

a
b

TTC1
TTC1 gap1

THW Critical Z-shaped form
=

= +
a

b
THW1

THW1 gap2
Soft S-shaped form

=
= +

a
b

THW1
THW1 gap2

PICUD Critical Z-shaped form
=

= +
a

b
PICUD1

PICUD1 gap3
Soft S-shaped form

=
= +

a
b

PICUD1
PICUD1 gap3

Note: Label “Critical” represents a more dangerous state, while “Soft” re-
presents a safer state; the x-axis of the membership function graphs represent
the input variable TTC, THW, and PICUD respectively.

Table 6
Output variable fuzzy rule.

Fuzzy Input Fuzzy Output

Variable TTC THW PICUD Risk Level
Label Soft Critical Soft Critical Soft Critical
Rule1 1 0 1 0 1 0 LowRL
Rule2 0 1 1 0 1 0 MedRL
Rule3 1 0 0 1 1 0 MedRL
Rule4 1 0 1 0 0 1 MedRL
Rule5 0 1 0 1 1 0 HighRL
Rule6 0 1 1 0 0 1 HighRL
Rule7 1 0 0 1 0 1 HighRL
Rule8 0 1 0 1 0 1 HighRL

Table 5
Output variable membership function.

Output Variable Label Meaning Membership Function
(Slope changes at a and b)

Graph of Membership Function

Risk Level HighRL Driving Situation at high risk level Line form
=
={a

b
0.5
1

MedRL Driving Situation at medium risk level Triangular form
=
={a

b
0
1

LowRL Driving Situation at low risk level Line form
=

={ a
b

0
0.5

Table 7
Optimal fuzzy parameters.

Parameter TTC1 gap1 THW1 gap2 PICUD1 gap3

Optimal Value 0.558 2.471 0.756 2.997 −14.488 6.498

Fig. 9. PSO optimization iterative process output from Matlab.
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being too aggressive/late which may fail in collision avoidance) than
the Mazda algorithm. At the same time, the Berkley, Honda and
SeungwukMoon algorithms could not avoid collisions in several CCRs
and CCRb scenarios (especially those with higher approaching speed of
SV and larger deceleration of POV), and the final relative distances in
several successful trials (i.e., successfully avoiding collision) by these
algorithms could be lower than 2m, indicating these algorithms are
more radical compared to the proposed fuzzy logic algorithm and could
be prone to situations where collisions cannot be avoided. In sum, the
proposed {TTC, THW, PICUD}-based fuzzy logic algorithm shows pro-
mising results in balancing the objectives of avoiding collision and re-
ducing the possibility of interrupting driver’s normal driving compared
with other algorithms. In future research, human-in-the-loop study
could be further implemented to validate/assess the algorithm’s inter-
ference with driver’s normal driving concretely.

It should be noted that the final distance by the proposed fuzzy logic
algorithm increases when the speed of the subject vehicle reaches over
70 km/h in the CCRm scenario, which is not in accordance with one
would expect. This could be due to the limited deceleration observa-
tions with speed≥70 km/h (see the histogram of the speed at critical
event-reaction braking initiation in the sampled deceleration profiles in
Fig. 13). In other words, the proposed algorithm may fit better in sce-
narios with the SV speed below 70 km/h.

For those scenarios with SV’s speed≥70m/h, given the same fuzzy
logic developed based on lower speed samples, to maintain similar
TTC/THW/PICUD level for brake initiation under the same speed of the
leading vehicle (POV), SV with higher speed generally needs to brake at
a larger relative distance. For example, under TTC=Δd/Δv, same TTC
given a higher Δv (higher-speed SV) means a higher Δd (i.e., critical
braking distance) at brake initiation (see the relative distances at the
moment when fuzzy logic output changes to 1 in the history data shown
in Fig. 14–17 below). And such larger critical braking distances could
end in larger final relative distances when the increase in critical
braking distance exceeds the increase in stopping distance of SV (i.e.,

the unexpected increasing trend in dend for ≥70 km/h CCRm scenarios
as discussed above). By including more higher-speed observations in
developing the fuzzy logic, such limitation is expected to be avoided/
improved in the future.

6. Conclusion

This study proposed a forward collision avoidance algorithm where
the critical moment for initiating braking control was identified using
fuzzy logic rules, which were extracted from the clustering results of
driver deceleration profiles (assuming that online driving risk levels
could be identified based on offline deceleration profiles). In the study,
deceleration curves (time series) featuring “critical event-reaction
braking” were extracted from Virginia Tech “100-car” near-crash re-
cords. The concept of critical event-reaction braking was proposed (vs.
normal event-reaction braking) to capture the moment when the driver
deems current driving unsafe and takes evasive actions, and was em-
ployed as a reference to CAS timing consistent with a driver’s “suc-
cessful” decision/manipulation of last-second braking (CAS should
implement AEB at the start of critical event-reaction braking of highest
risk level). Risk levels of critical event-reaction braking were classified
by clustering the resultant deceleration curves using Spectral clustering
technique (based on curve range distance and change rate of curve
characteristics). A fuzzy logic was finally developed to represent the
clustered risk levels (based on offline deceleration profiles) by using a
set of online safety indicators {TTC, THW, and PICUD} (representing
three uncertain critical driving scenarios respectively), which could
serve as an online risk classification algorithm for CAS. Euro-NCAP test
scenarios were simulated for algorithm validation based on Prescan,
and results show that the proposed fuzzy logic-based algorithm gen-
erally outperforms other classical AEB algorithms on timing of inter-
vention (balancing the objectives of avoiding collision and reducing
interference with driver’s normal driving).

The core of contribution of the paper lies in the combination of

Fig. 10. Optimal fuzzy logic output surface.

Fig. 11. Euro-NCAP AEB test scenarios and parameter settings (Euro-NCAP, 2013).
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offline deceleration profile segmentation and online risk level classifi-
cation, that is, to examine braking control algorithm based on clustered
deceleration profiles. Specifically, deceleration profiles have not been
researched from the perspective of curve clustering to the best of the
authors’ knowledge. Few attempts have been made in exploring the
connection between offline deceleration curve and online braking

control, however their deceleration profile segmentation was based on
predefined thresholds and lacked validation. The proposed framework
provides a new perspective on real-time risk level classification and
collision avoidance system development. However, since there is a
limitation in data sample size representing critical event-reaction
braking, more deceleration profiles (by collecting more near-crash

Fig. 12. Relative distances between two vehicles at the end of tests.

Fig. 13. Histogram of sampled speeds at the start of critical event-reaction
braking.

Fig. 14. Simulation history data for CCRm-60 km/h scenario.

Fig. 15. Simulation history data for CCRm-70 km/h scenario.

Fig. 16. Simulation history data for CCRm-75 km/h scenario.

X. Xiong, et al. Accident Analysis and Prevention 129 (2019) 30–43

42



records from other resources) should be explored to improve parameter
tuning of the proposed fuzzy logic in the future (especially obtaining
more higher-speed observations to overcome the current limitation in
the algorithm for higher-speed braking scenarios). Besides, traffic/
driver/vehicle characteristics (such as vehicle type, driver state, and
vehicle response during braking, etc.) need to be investigated in future
research concerning their possible effects on timing of critical braking.
Also, variations of safety indicators representing uncertain critical
driving scenarios could be further considered, and the probability of the
uncertain scenarios could also be explored (by predicting accelerating/
decelerating behaviors of SV and POV in V2V environments) and in-
troduced into the fuzzy logic (by assigning probability-based weights of
fuzzy rules) to improve its risk level classification performance. In ad-
dition, other machine learning classification algorithms (such as
Support Vector Machine) instead of fuzzy logic could be explored to
learn the effective representation of risk levels derived from offline
deceleration profiles in further study.
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