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A phylogenetic network is a graph-theoretical tool that is 
used by biologists to represent the evolutionary history of 
a collection of species. One potential way of constructing 
such networks is via a distance-based approach, where one 
is asked to find a phylogenetic network that in some way 
represents a given distance matrix, which gives information 
on the evolutionary distances between present-day taxa. 
Here, we consider the following question. For which k are 
unrooted level-k networks uniquely determined by their 
distance matrices? We consider this question for shortest 
distances as well as for the case that the multisets of all 
distances is given. We prove that level-1 networks and level-2
networks are reconstructible from their shortest distances and 
multisets of distances, respectively. Furthermore we show 
that, in general, networks of level higher than 1 are not 
reconstructible from shortest distances and that networks of 
level higher than 2 are not reconstructible from their multisets 
of distances.
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1. Introduction

Phylogenetic trees are often used to represent the evolutionary history of species, 
or more generally, taxa [11]. Trees can be a powerful tool for elucidating relationships 
between species, especially in case the species in question have evolved only via speci-
ation events. However, other events often also drive evolution, including hybridisation, 
introgression, and lateral gene transfer. When such reticulate events occur, more general 
graphical structures, known as phylogenetic networks [2,17] can be a useful addition to 
trees.

There are two main types of phylogenetic networks: rooted and unrooted networks. A 
rooted network is a directed acyclic graph that represents how extant taxa have evolved 
from a single common ancestor, also known as the root. Internal vertices denote either 
speciation or reticulate events, and edges have directions to indicate the transfer of 
genetic material between the two vertices that are incident to it. Unrooted networks 
have similar properties except they have no direction on the edges. A lack of direction 
could, for example, represent an ambiguity in knowledge of the direction in which genetic 
material is transferred between species. Note that every rooted network has an underlying 
unrooted network, that can be obtained by suppressing the root vertex and ignoring edge 
directions. Conversely, one can try to obtain a rooted network from an unrooted network 
by estimating the location of the root via an outgroup, if it is known which vertices 
represent reticulations [16]. In this paper we will only consider unrooted networks, which 
we shall call networks for short. We present an example of such a network in Fig. 1.

As the shift from phylogenetic trees to networks has become more prevalent in the 
biological literature, finding good ways to construct phylogenetic networks has become 
a core theme in phylogenetics. Such an undertaking has experienced major develop-
ments through various reconstruction approaches (e.g., maximum-likelihood [20]; build-
ing blocks [18,23,19]; distance-based [7,5]; see [17] for an overview). In this paper we 
consider the distance-based approach, in which one is given a distance matrix on the set 
of taxa in question and then aims to build a network representing this matrix. An entry 
in a distance matrix gives the evolutionary distance, a measure of genetic divergence be-
tween distinct taxa. This raises the following question. ‘Is there a network that precisely 
represents the given distance matrix?’

The groundwork for distance-based methods is well-established for phylogenetic 
trees [27,26,11,24]. For networks, the story is more complicated. Since networks can 
contain cycles, there can be more than one path between two taxa, which can lead to 
more than one distance. This results in various types of distances that can be associated 
to a network. Two such types, which we cover in this paper, include the shortest dis-
tances and the multisets of distances. For the shortest distances, we search for a network 
in which the distance of a shortest path between each pair of taxa coincides with the 
matrix; for the multisets of distances, we search for a network in which the multiset of 
distances of all paths between each pair of taxa coincides with the matrix. In Fig. 1, 
we present a network with its multisets of distances. The shortest distance matrix can 
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be worked out from the multisets of distances by taking the smallest element for each 
matrix entry.

Before proceeding any further, we must acquaint ourselves with two similar, yet subtly 
different notions that are vital in understanding distance-based methods for networks. 
One can either construct or reconstruct networks from distance matrices. Constructing 
a network means that we initially start with a distance matrix and come up with a 
network that is consistent in some way with such a matrix. Some classical network 
construction methods from distances include Neighbor-Net [7] and T-Rex [22]. In the 
process, one is sometimes interested in finding a network that optimises some particular 
criterion, such as the hybridisation number [9,10]. Networks obtained via construction 
methods are often non-unique, which is the biggest distinction between construction and 
reconstruction methods.

Reconstructing a network means that we start with a network, find the distance ma-
trix that is associated to it (e.g., shortest distances), and try to reconstruct the original 
network from the distance matrix. The goal then is to decide which networks can be 
uniquely reconstructed from their distances, in other words, to decide upon the recon-
structibility of different classes of networks from their various distance matrices. The main 
results of [8,3,4,6,5,28,15] follow this exact format; they show that some unrooted/rooted 
networks (or a representative of the equivalence class) can be reconstructed from certain 
distance matrices. Roughly speaking, they show that within a particular network class, 
if two networks have the same particular distance matrix then the networks are equiv-
alent. Interestingly, although distance-based reconstruction results have been recently 
developed for rooted networks, similar problems have been less studied for unrooted 
networks.

As a first step in this direction, we focus on reconstructing unweighted unrooted 
networks. Every edge in the network has a weight of 1, which means that distances 
between two taxa correspond to the number of edges contained in paths between two 
taxa. Now, to identify which networks are reconstructible from certain distance matrices, 
we call on the notion of the level of a network. The level of a network is the maximum 
number of edges that need to be deleted from a biconnected component to obtain a 
tree [12]. In this paper we consider the problem of reconstructing level-k networks in 
general, both from their shortest distances and their multisets of distances.

A recent paper has shown that optimal cactus graphs are reconstructible from their 
shortest distances, while in general there could be many cactus graphs that realise the 
same shortest distances [15]. Cactus graphs are connected graphs in which each edge 
belongs to at most one cycle – these graphs are a generalisation of level-1 networks. 
Here, an optimal network refers to one that realises the shortest distance matrix, in 
which the total sum of edge weights is minimal. The difference between this result and 
our result is that we consider unweighted networks, for which we may leave out the 
optimality restriction. The problem of reconstructing cactus graphs has also been of 
interest within the graph theory literature. Some have considered reconstructing them 
from subgraphs [13], and others from shortest path information [21], which are both 



4 L. van Iersel et al. / Advances in Applied Mathematics 120 (2020) 102075
different from the distance data that we consider in this paper. Therefore, our problem 
of reconstructing networks from distances is fundamentally different from both of these 
papers.

The rest of the paper is organised as follows. In the next section we introduce basic 
definitions and notations. In Section 3, we show that in general, level-2 networks are 
not reconstructible from their shortest distances (Lemma 3.1), and that networks of 
level higher than 2 are not reconstructible from their shortest distances nor from their 
multisets of distances (Lemma 3.2). In Section 4, we show that level-1 networks as 
well as level-2 networks on fewer than 4 leaves are reconstructible from their shortest 
distances (Theorem 4.2 and Lemma 4.4). In Section 5, we show that level-2 networks 
are reconstructible from their multisets of distances (Theorem 5.1). We conclude with a 
discussion in Section 6 on open problems and possible future directions in this area.

2. Preliminaries

Definition 2.1. Let X be a non-empty finite set. An (unweighted unrooted binary phylo-
genetic) network N on X is a simple graph (an unweighted, undirected graph with no 
loops or multiple edges) with

1. |X| vertices of degree-1 (the leaves); and
2. all other vertices of degree-3 (the internal vertices).

The leaves are bijectively labelled by the set X. If |X| = 1 then we define the singleton 
graph with one vertex labelled by the element of X as the network on X. A network 
with no cycles is a (phylogenetic) tree.

Deleting an edge uv from a network is the action of removing the edge uv and sup-
pressing any degree-2 vertices in the resulting subgraph. Deleting a vertex from a network 
is the action of removing the vertex, deleting all its incident edges, and suppressing any 
degree-2 vertices in the resulting subgraph. A cut-edge of a network is an edge whose 
deletion disconnects the network. We call a cut-edge trivial if the edge is incident to a 
leaf, and non-trivial otherwise. Note that for a network N on X, deleting a cut-edge 
breaks the network into two components. The leaf-set X can be partitioned into the 
leaves that are contained in one component and the leaves that are contained in the 
other; therefore every cut-edge of a network induces a partition X = Y ∪Z of X (where 
one of Y or Z could possibly be empty). These partitions are not unique in general (i.e., 
two distinct cut-edges can induce the same partition). Upon cutting a non-trivial cut-
edge, if one of the components is a tree, then we say that the subgraph that corresponds 
to this component is a pendant subtree. Given a cut-edge uv we say that a leaf x can 
be reached from u via uv if, upon deleting the edge uv without suppressing degree-2
vertices, x is in the same component as v in the resulting subgraph.
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A biconnected component (blob) of a network is a maximal 2-connected subgraph with 
at least three vertices. We say that a network is a level-k network if at most k edges 
must be deleted from every blob to obtain a tree. We say that a leaf is contained in a 
blob if the neighbour of the leaf is a vertex of the blob. A cut-edge is incident to a blob 
if one of the endpoints of the edge is a vertex of the blob. A blob is pendant if there is 
exactly one non-trivial cut-edge that is incident to the blob. We say that a leaf x can 
be reached from a blob B via a cut-edge uv if u is a vertex of B and x can be reached 
from u via uv.

Let N be a network on X and let x and y be leaves in N . We recall the notation 
used in [5]. The multiset of distances between x and y, denoted d(x, y) (and sometimes 
as dN (x, y) where necessary), is the multiset consisting of lengths of all possible paths 
between x and y in N . Since N is an unweighted network, the length of a path is simply 
the number of edges contained in the path. We let D(N) denote the |X| × |X| matrix 
whose (x, y)-th entry is d(x, y). We further define the shortest distance between x and y, 
denoted dm(x, y), by taking dm(x, y) = min d(x, y). We analogously define Dm(N) to be 
the |X| ×|X| matrix whose (x, y)-th entry is dm(x, y). An example of a network with its 
multisets of distances is illustrated in Fig. 1.

We use the following notation for the multisets. A multiset is a tuple (A, m) where A

is a set and m is a function that specifies the multiplicity of each element in A. For x /∈ A, 
we let m(x) = 0. We will, for the most part, write (A, m) as A = {am(a1)

1 , . . . , am(ak)
k }. 

Let n be an integer. We let A − n denote the multiset obtained by subtracting n from 
each element of A (i.e., A − n = {(ai − n)m(ai) : i ∈ [k]}.) Given two multisets (A, mA)
and (B, mB), the sum A + B is defined as the multiset (A ∪B, mA+B) where mA+B =
mA(x) + mB(x) for x ∈ A ∪B.

A network N realises the multisets of distances D if D(N) = D. Similarly, a network N

realises the shortest distances Dm if Dm(N) = Dm. As we will show in the next section, 
there could be many distinct networks that realise the same distance matrix. Therefore 
we emphasise the following notion.

Definition 2.2. A network N is reconstructible from its multisets of distances (respectively 
the shortest distances) if N is the only network that realises D(N) (respectively Dm(N)).

We now introduce two substructures of networks, the cherry and the chain, which are 
key ingredients in proving the main results of this paper.

Definition 2.3. Two leaves x and y form a cherry if they share a common neighbour.

Observe that x and y form a cherry if and only if d(x, y) = {2}. In addition, x and y

form a cherry if and only if dm(x, y) = 2.

Definition 2.4. A chain of length k ≥ 1 is a k-tuple of leaves (a1, . . . , ak) such 
that dm(ai, ai+1) = 3 for all i ∈ [k − 1] = {1, . . . , k − 1}.
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a {01} {31, 62} {41, 51, 61, 71} {51, 61, 71, 81} {51, 61, 71, 81}
b {01} {41, 51, 61, 71} {51, 61, 71, 81} {51, 61, 71, 81}
c {01} {52, 82} {52, 82}
d {01} {21}
e {01}

Fig. 1. A level-2 network with its multisets of distances. The network contains two chains (a, b) and (c), and 
a cherry {d, e}. All edges incident to leaves are trivial cut-edges, and edge f is the only cut-edge that is 
non-trivial. The dashed path is the side of the blob that contains the leaf c. In the distance matrix, the 
diagonal elements are {0}, and as the matrix is symmetric, many of the elements are omitted. The shortest 
distance matrix can be obtained by taking the smallest element in each multisets to be the element of the 
matrix in the same position.

Call a chain (a1, . . . , ak) maximal if there is no chain (b1, . . . , b�) such that {a1, . . . ,
ak} � {b1, . . . , b�}. We assume all chains to be maximal, unless stated otherwise. Two 
chains (a1, . . . , ak) and (b1, . . . , b�) are adjacent if dm(ai, bj) = 4 for at least one of i ∈
{1, k} and j ∈ {1, �}. Two chains are adjacent twice if dm(a1, b1) = dm(ak, b�) = 4 or 
if dm(a1, b�) = dm(ak, b1) = 4.

Given a chain a = (a1, . . . , ak), let pi denote the neighbour of the leaf ai for i ∈ [k]. 
The edges pipi+1 for i ∈ [k − 1] are called the edges of the chain. We say that the chain 
is incident to cut-edges if the edges of the chain are cut-edges. Observe that one of these 
edges is a cut-edge if and only if they are all cut-edges. We say that the chain is contained 
in a blob B if the edges of the chain are edges in B. Observe that one of these edges is 
an edge of B if and only if they are all edges in B.

Note that a leaf can be in both a cherry and a chain. In a network without cherries, 
it is possible to partition the leaves into chains.

Let B be a level-2 blob of some network N . We may obtain the generator of B by 
deleting all cut-edges that are incident to B and taking the component that is B. The 
edges of the generator of B are called the sides of the generator, or simply the sides of B. 
Let N be a network with no pendant subtrees, let e be a side of B, and let x be a leaf 
in N . If the neighbour of x, say p, subdivides e in N then we say that x is on the side e

or that the side e contains x. We say that a chain a = (a1, . . . , ak) is on the side e or 
that the side e contains the chain a if every leaf ai in the chain is on the side e. If an 
endpoint of a cut-edge uv subdivides e then we say that the side e is incident to uv.

For an overview of the definitions presented in this section, see Fig. 1.

3. Networks that cannot be reconstructed

In this section we give examples of networks that cannot be reconstructed from their 
shortest distances or from their multisets of distances. Fig. 2 shows two distinct level-2
networks with the same shortest distance matrix. Observing that we may replace the 
leaves with the same label by the same pendant subtree to extend this example to a 
level-2 network on at least 4 leaves, we obtain the following lemma.
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Fig. 2. Two level-2 networks with the same shortest distances between any pair of leaves.
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Fig. 3. Two level-3 networks that have the same shortest distances and the same multisets of distances 
between any pair of leaves.

Lemma 3.1. There exist two distinct level-2 networks on n leaves for n ≥ 4 with the same 
shortest distance matrix.

Note that the networks in Fig. 2 have different multisets of distances – we investigate 
this further in Section 5 and show there that level-2 networks are reconstructible from 
their multisets of distances.

Fig. 3 presents two level-3 networks on 2 leaves that have the same multisets of 
distances. Because the shortest distance matrix can be obtained by taking the smallest 
number for each element in the multisets of distances, the two networks also have the 
same shortest distance matrix. Observe that this can be generalized to level-k networks 
for k ≥ 3 by replacing the level-3 blob by an arbitrary level-k blob. In addition, applying 
the same pendant subtree argument as in the level-2 network case gives us the following 
lemma.

Lemma 3.2. There exist two distinct level-k networks for all k ≥ 3 with the same shortest 
distance matrix / multisets of distances.

Therefore, networks of level higher than 1 are not reconstructible from their shortest 
distances in general; networks of level higher than 2 are not reconstructible from their 
multisets of distances in general.

4. Reconstructibility from shortest distances

In this section we show that level-1 networks as well as level-2 networks on fewer 
than 4 leaves are reconstructible from their shortest distances. We first look at level-1
networks. Noting that pendant blobs contain exactly one chain, the following lemma 
shows how we can identify this chain from the shortest distances.
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Lemma 4.1. Let (a1, . . . , ak) be a chain of length k ≥ 2 in a level-1 network. 
Then (a1, . . . , ak) is contained in a pendant blob if and only if dm(a1, x) = dm(ak, x) for 
all x ∈ X − {a1, . . . , ak}.

Proof. Suppose first that a chain (a1, . . . , ak) is contained in a pendant blob B. Let p1
and pk denote the neighbours of a1 and ak respectively, and let q denote the common 
neighbour of p1 and pk. Let x ∈ X−{a1, . . . , ak}. Observe that any shortest path from x

to a leaf contained in B must pass through the vertex q. Therefore we have that

dm(a1, x) = 2 + dm(q, x) = dm(ak, x).

To show the other direction, we prove the contrapositive. Suppose that (a1, . . . , ak) is 
not contained in a pendant blob. Then either the chain is incident to cut-edges, or the 
chain is contained in a non-pendant blob. Let pi denote the neighbours of ai for i ∈ [k], 
and let q denote the neighbour of p1 that is not a1 nor p2. Suppose first that the chain is 
incident to cut-edges. Let x be a leaf in the network that is not on the chain, such that x
is reachable from p1 via p1q. Then every path between x and ak must pass through the 
vertices pi for i ∈ [k], and therefore dm(x, ak) = dm(x, a1) + k − 1. Since k ≥ 2, the 
equality in the statement of the theorem does not hold.

So now consider the case that the chain is contained in a non-pendant blob. Then q

is not a neighbour of pk; the path between q and pk that does not contain the ver-
tices {p1, . . . , pk−1} contains at least three vertices. Now let x be a leaf not on the chain 
that can be reached from q via its incident non-trivial cut-edge. The shortest path from x

to a1 and the shortest path from x to ak both contain the shortest path from x to q. By 
observing that the shortest path from q to a1 is shorter than the shortest path between q

and ak, it follows that dm(x, a1) < dm(x, ak). Therefore the equality in the statement of 
the theorem does not hold. �
Theorem 4.2. Level-1 networks are reconstructible from their shortest distances.

Proof. First we show that we can recognise cherries, reduce them and change the shortest 
distances accordingly. Note that as mentioned above, a pair of leaves forms a cherry 
precisely if their shortest distance is 2. If there exists a cherry {x, y}, we replace it by 
a leaf z and set dm(z, a) := dm(x, a) − 1 for all a ∈ X − {x, y}. All other shortest 
distances between leaf-pairs remain unchanged. After reconstructing the network from 
the modified distance matrix, we replace the leaf z by a cherry on {x, y}. So, without 
loss of generality, we assume from now on that there are no cherries.

We now consider the case that there is exactly one blob. Since there are no cherries, 
all leaves are contained in this blob. We can recognise this by seeing that there is a chain 
(a1, . . . , ak) of length k ≥ 3 that satisfies dm(a1, ak) = 3. This immediately shows how 
to reconstruct level-1 networks that contain exactly one blob. Hence, we assume from 
now on that there are at least two blobs.
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Note that pendant blobs must contain a chain of length at least 2 since networks 
do not contain parallel edges. By Lemma 4.1, we can find chains on pendant blobs. 
We reduce a chain (a1, . . . , ak) contained in a pendant blob by replacing the blob by a 
leaf z and setting dm(x, z) := dm(x, a1) − 2 for all x ∈ X − {a1, . . . , ak}. All shortest 
distances between other leaf-pairs remain unchanged, since their paths do not travel 
through pendant blobs. It is again easy to reconstruct the blob after reconstructing the 
reduced network, since we know that (a1, . . . , ak) must form a chain on the blob, in that 
order.

This finishes the proof of the theorem since any level-1 network has a cherry, a pendant 
blob, or exactly one blob. �

We note that the restriction of Theorem 4.2 to networks without triangles also follows 
from Theorem 5 of [15]. We give the proof above to account for the triangle case and 
to give a more direct graph-theoretical proof that is independent of the results provided 
by Hayamizu et al. Observe that trees (level-0 networks) are also level-1 networks. Thus 
Theorem 4.2 gives the following corollary, which we include here for completeness. This 
is a classical result that was proven in [14].

Corollary 4.3. Trees are reconstructible from their shortest distances.

Next, we show that level-2 networks on fewer than 4 leaves are also reconstructible 
from their shortest distances.

Lemma 4.4. Level-2 networks on X for |X| ≤ 3 are reconstructible from their shortest 
distances.

Proof. There can only be one network on a single taxon, namely the singleton graph. 
Such a graph is trivially reconstructible from its shortest distances. So suppose that |X| =
2, say X = {x, y}, and let N be a network on X. Below, we will prove the claim that N
consists only of level-2 blobs, where each level-2 blob is incident to exactly two cut-edges. 
In particular, N contains at most two pendant blobs, one of which contains the neighbour 
of x and the other the neighbour of y. Since each additional level-2 blob increases the 
shortest distance between x and y by 3, it follows that dm(x, y) = 3k+1 where k denotes 
the number of level-2 blobs in N . From there, it follows that N is reconstructible from 
its shortest distances.

We now prove the claim. Note first that every blob in N must be incident to exactly 
two cut-edges. A blob cannot be incident to only one cut-edge. If the blob is level-1 then 
this would imply that it contains a loop; if the blob is level-2 then this would imply that 
it contains parallel edges. This also implies that every pendant blob must be incident to 
at least one trivial cut-edge. On the other hand if a blob is incident to more than two 
cut-edges, say c cut-edges, then this would imply that the network contains at least c

pendant blobs. Since every pendant blob must be incident to at least one trivial cut-edge, 
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Fig. 4. The four possible degree-3 vertices in the blob-tree of a level-2 network on three leaves {x, y, z}. 
(a) An internal vertex. (b) A level-1 blob. (c) A level-2 blob with all leaves reachable from different sides 
of the blob. (d) A level-2 blob where y and z are reachable from the same side of the blob. The dashed 
lines can be replaced by paths that contain any number of level-2 blobs. This is possible because we take 
the distances modulo 3 and since each additional level-2 blob contributes an extra length-3 to the shortest 
inter-taxa distance.

this implies that the network contains at least c > 2 leaves, which is a contradiction. 
Therefore every blob in N must be incident to exactly two cut-edges. Now observe that 
a level-1 blob that is incident to exactly two cut-edges contains parallel edges. It follows 
that every blob in N must be a level-2 blob that is incident to exactly two cut-edges. 
This proves the claim, from which it follows by the argument presented above that N is 
reconstructible from its shortest distances for |X| = 2.

Suppose now that |X| = 3, and let X = {x, y, z}. Here we consider BT (N), the 
blob-tree of N , which is obtained from N by replacing each blob of N by a single vertex. 
Since |X| = 3, BT (N) contains exactly one vertex of degree-3, three vertices of degree-1
(which are the leaves x, y, and z), and all other vertices are of degree-2. By a similar 
argument as presented in the |X| = 2 case, the degree-2 vertices of BT (N) correspond 
to level-2 blobs. The degree-3 vertex could be an internal vertex of the network, a level-1
blob, or a level-2 blob. In the case that it is a level-2 blob, there are two possibilities. 
Either the three edges are incident to different sides of the blob, or two edges are incident 
to the same side of the blob and the third edge to another side. See Fig. 4 for these four 
possibilities. Observe that these four possibilities all contribute different distance lengths 
to inter-taxa distances. In particular, we have that the degree-3 vertex is a (an)

• internal vertex if and only if

(d(x, y), d(y, z), d(x, z)) = (2(mod3), 2(mod3), 2(mod3));

• level-1 blob if and only if

(d(x, y), d(y, z), d(x, z)) = (0(mod3), 0(mod3), 0(mod3));

• level-2 blob with all edges on different sides if and only if

(d(x, y), d(y, z), d(x, z)) = (1(mod3), 1(mod3), 1(mod3));

• level-2 blob with the two edges that lead to leaves x and y on the same side if and 
only if
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(d(x, y), d(y, z), d(x, z)) = (0(mod3), 1(mod3), 1(mod3)).

Therefore we may identify the blob corresponding to the degree-3 vertex of the blob-tree 
by taking the distances modulo 3.

To finish the proof, take two networks N, N ′ with the same shortest distance ma-
trix. By the previous paragraph, we may assume that N and N ′ have the same blob 
corresponding to the degree-3 vertex of their blob-trees. Assume that N �= N ′. Then 
the two blob-trees BT (N) and BT (N ′) are different. Note that the shortest distances 
are determined by the number of degree-2 vertices between leaves in the blob-tree. 
Since Dm(N) = Dm(N ′), we have that the number of degree-2 vertices between two 
leaves, say x and y, is the same in both BT (N) and BT (N ′). However since BT (N)
differs from BT (N ′), the positioning of the degree-3 vertex must differ. But this would 
imply that upon placing z together with some degree-2 vertices, we can only satisfy 
one of dNm(x, z) = dN

′
m (x, z) or dNm(y, z) = dN

′
m (y, z). This contradicts the assumption 

that Dm(N) = Dm(N ′). Therefore we must have N = N ′, and that level-2 networks 
on X for |X| = 3 are reconstructible from their shortest distances. �
5. Reconstructibility of level-2 networks from their multisets of distances

In the last two sections, we showed that level-1 networks are reconstructible from their 
shortest distances, level-k networks for k ≥ 2 are in general not reconstructible from their 
shortest distances, and level-k networks for k ≥ 3 are in general not reconstructible from 
their multisets of distances. In this section, we investigate the remaining case, and show 
that level-2 networks are reconstructible from their multisets of distances. The main 
theorem is the following.

Theorem 5.1. Level-2 networks are reconstructible from their multisets of distances.

The key ideas in proving the theorem are as follows. We first identify and reduce all 
cherries of the network. To identify cherries we observe that two leaves x and y form a 
cherry if and only if d(x, y) = {2}. To reduce cherries we replace it by a new leaf z and 
adjust the distance matrix accordingly, as done for the level-1 networks in the proof of 
Theorem 4.2. Next, we identify all leaves that are not contained in blobs, delete those 
leaves, and adjust the distance matrix accordingly. We show that each leaf that is deleted 
in this manner can be reattached to the reduced network in a unique fashion. After 
applying these two reductions, two chains are adjacent if and only if they are contained 
in the same blob. Using this observation, we then show that it is possible to identify 
pendant blobs, replace them by a new leaf, and adjust the distance matrix accordingly. 
Continuing in this fashion, we eventually reach the situation when the reduced network 
contains exactly one blob. We show that networks on single blobs are reconstructible 
from their multisets of distances, at which point it follows that simply reversing the 
reduction steps taken yields the original network.
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We start with the two easy cases, when the network contains a cherry or a single blob.

Observation 5.2. Let N be a level-2 network on X and suppose that leaves x and y

form a cherry in N . Upon replacing the cherry by a leaf z, we obtain a network N ′

on X ′ = X ∪ {z} − {x, y} such that the multisets of distances for N ′ contains the 
elements

dN
′
(a, b) =

{
dN (a, b) if a, b ∈ X − {x, y}
dN (a, x) − 1 if a ∈ X − {x, y} and b = z.

One may obtain N from N ′ by replacing the leaf z by a cherry {x, y}.

Lemma 5.3. Level-2 networks containing a single blob are reconstructible from their short-
est distances.

Proof. Let N be a level-2 network containing a single blob. Assume without loss of 
generality that N contains no cherries, as we can recognise them from the shortest 
distances and reduce them by Observation 5.2. If N is a level-1 blob then we may 
reconstruct it from shortest distances by Theorem 4.2. If N is a level-2 blob then the 
blob must contain at least two chains since it has no parallel edges, and at most three 
chains. Noting that chains can be identified from the shortest distances, the placement 
of the chains on the blob sides can be done by matching the end-leaves of chains that 
have shortest distance 4. �
5.1. Leaves not contained in blobs

Lemma 5.4. Let N be a level-2 network on X where |X| ≥ 3. A leaf x is not contained in 
a blob if and only if there exists a unique partition Y ∪Z of X −{x} such that Y, Z �= ∅
and dm(y, z) = dm(x, y) + dm(x, z) − 2 for all y ∈ Y and z ∈ Z.

Proof. Suppose first that a leaf x is not contained in a blob. Let px denote the neighbour 
of x, and let p, q denote the two neighbours of px that is not x. Observe that every leaf 
in X−{x} can be reached from px via one of the cut-edges pxp or pxq. Let Y and Z denote 
the set of all leaves that can be reached from px via the cut-edge pxp and pxq, respectively. 
Note that a shortest path between some y ∈ Y and some z ∈ Z passes through the 
edges pxp and pxq. Then by observing that the shortest path from x to y and the shortest 
path from x to z uses the same edges as the shortest path from y to z, bar the use of 
the edge incident to x twice, we obtain the equation dm(y, z) = dm(x, y) + dm(x, z) − 2
for all y ∈ Y and z ∈ Z.

We now show that such a partition is unique. We claim that all leaves that can be 
reached from px via the edge pxp must be contained in the same set in the partition. 
Let y1 and y2 be an arbitrarily chosen pair of leaves that can be reached from px via the 
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edge pxp, and suppose for a contradiction that they are placed in different sets of the 
partition. Then,

dm(x, y1) + dm(x, y2) − 2 = dm(p, y1) + dm(p, y2) + 2

> dm(p, y1) + dm(p, y2)

≥ dm(y1, y2),

where the final inequality is the triangle inequality. Hence y1 and y2 must be contained in 
the same set of the partition; since y1 and y2 were chosen arbitrarily, all leaves that can 
be reached from px via the edge pxp must be contained in the same set in the partition. 
Similarly, all leaves that can be reached from px via the edge pxq must be contained in 
the same set in the partition. Observe that all leaves in X −{x} can be reached from px
via the edge pxp or via the edge pxq. Since neither sets of the partition can be empty, it 
follows then that the partition must be unique, with Y and Z containing all leaves that 
can be reached from px via pxp and pxq, respectively.

To prove the other direction, we show that if a leaf x is contained in a blob B, then 
there is no such partition that satisfies the given equation. Let px denote the neighbour 
of x. We first show that for leaves y, z ∈ X − {x}, if all shortest paths between y and z

do not contain the vertex px, then the equation is not satisfied by y and z. Let py and pz
denote the vertices on B that are closest to the leaves y and z respectively. Note that it 
is possible to have py = pz – this is the case where all shortest paths between y and z

do not pass through B. Then the following equations hold:

dm(x, y) = 1 + dm(px, py) + dm(py, y)

dm(x, z) = 1 + dm(px, pz) + dm(pz, z).

We now distinguish two cases.

1. If py �= pz, then by the triangle inequality and as all shortest paths between y and z

do not contain the vertex px, we must have that

dm(py, pz) < dm(px, py) + dm(px, pz). (1)

It follows that

dm(y, z) = dm(y, py) + dm(py, pz) + dm(pz, z)

= (dm(x, y) − dm(px, py) − 1) + dm(py, pz)

+ (dm(x, z) − dm(px, pz) − 1)

= dm(x, y) + dm(x, z) − 2 + dm(py, pz)

− (dm(px, py) + dm(px, pz))
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< dm(x, y) + dm(x, z) − 2,

where the final inequality follows from Inequality (1).
2. If py = pz, then let p denote the neighbour of py that is not on the blob B. Then

dm(y, z) ≤ dm(y, py) + dm(z, py) − 2dm(py, p)

= (dm(x, y) − dm(px, py) − 1) + (dm(x, z) − dm(px, py) − 1) − 2

= dm(x, y) + dm(x, z) − 2 − 2dm(px, py) − 2

< dm(x, y) + dm(x, z) − 2,

where the first inequality follows since the shortest path between y and z may not 
pass through p (e.g., if p is a vertex on a blob), and the final inequality follows 
as dm(px, py) ≥ 1 and dm(py, p) = 1.

It remains to show that for any partition Y ∪Z of X − {x} where Y, Z �= ∅, there exists 
a leaf pair y ∈ Y and z ∈ Z such that no shortest path between y and z uses px.

Suppose first that B is a level-1 blob. Since our network contains no parallel edges, B
must be incident to at least two cut-edges in addition to the edge pxx. If two leaves 
that can be reached from B via the same cut-edge are placed in different sets of the 
partition, then we are done as no shortest path between these leaves uses px; therefore 
we may assume that leaves that can be reached from B via the same cut-edge are placed 
in the same set in the partition. Since Y and Z are both non-empty, there must exist 
two cut-edges e1, e2 (excluding pxx) whose endpoints form an edge of B, such that there 
exists a leaf that can be reached from B via e1 and a leaf that can be reached from B

via e2 for which the two leaves lie in different sets of the partition. Every shortest path 
between these two leaves passes through the edge connecting the endpoints of e1 and e2
and therefore does not use px. Therefore we are done.

Now suppose that B is a level-2 blob. For the same reason as in the level-1 case (see 
proof of Theorem 4.2), if there are two leaves that can be reached from B via the same 
cut-edge that are placed in different sets of the partition, then we are done; therefore we 
may assume that leaves that can be reached from B via the same cut-edge are placed in 
the same set in the partition. Since Y and Z are both non-empty, it follows that there 
exist two cut-edges e1, e2 incident to B, such that leaves y, z can be reached from B

via e1, e2, respectively, for which y ∈ Y and z ∈ Z. There must exist a pair of such 
cut-edges such that all shortest paths between their endpoints on B do not contain px, 
since there exist enough cut-edges to ensure there are no parallel edges in B. Given such 
a pair of cut-edges, take one leaf that can be reached from B via the first cut-edge and 
take another leaf that can be reached from B via the other cut-edge. Then no shortest 
path between this pair of leaves uses px, and thus we are done. �

Lemma 5.4 does not hold in general for networks of level higher than 2. An example 
of this for a level-3 network is shown in Fig. 5.
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Fig. 5. A level-3 network on X = {x, y, z} where all of its leaves are contained in a blob. Y = {y} and Z = {z}
is a partition of X−{x} such that Y, Z �= ∅ and dm(y, z) = dm(x, y) +dm(x, z) −2 for all y ∈ Y and z ∈ Z. 
Observe that this holds in general for level-k networks where k ≥ 3 by replacing the level-3 blob by an 
arbitrary level-k blob.

We now show that after identifying a leaf that is not contained in a blob, we can delete 
it from the network and adjust the distance matrix accordingly. We also show that upon 
reconstructing the reduced network from the modified distance matrix, there is a unique 
cut-edge to which we may reattach the deleted leaf. Reattaching a leaf x to a cut-edge 
is the action of subdividing the cut-edge by a vertex px, and adding an edge pxx. In the 
setting of Lemma 5.4, we say that the unique partition Y ∪ Z is induced by the leaf x.

Lemma 5.5. Let N be a level-2 network on X where |X| ≥ 3, and let x be a leaf that is 
not contained in a blob. Let Y ∪ Z denote the unique partition of X ′ = X − {x} that is 
induced by x. Then upon deleting the leaf x, we obtain a network N ′ on X ′ such that the 
multisets of distances for N ′ contains the elements

dN
′
(y, z) =

{
dN (y, z) if y, z ∈ Y or y, z ∈ Z

dN (y, z) − 1 if y ∈ Y, z ∈ Z or z ∈ Y, y ∈ Z.

In addition, there is only one edge location in N ′ where x can be reattached to, to obtain 
a network with the same multisets of distances as N . In particular, this network is 
isomorphic to N .

Proof. Let px be the neighbour of x in N , and let p and q be the other neighbours of px
that are not x. As shown in the proof of Lemma 5.4, the sets Y and Z correspond to the 
leaves that can be reached from px via pxp and via pxq, respectively. Upon deleting x

from N , we note that px becomes a vertex of degree-2 and is therefore suppressed in the 
resulting subgraph. Then all paths in N that used the edge pxp and the edge pxq have 
their length decreased by 1 in N ′; all paths in N that did not use the edges pxp and pxq

are unaffected by this vertex suppression. Observe that any path between a leaf in Y

and a leaf in Z uses the edges pxp, pxq in N . Furthermore, any path between two leaves 
in Y or any path between two leaves in Z did not use the edges pxp, pxq in N . Therefore 
the multisets of distances of N ′ can be obtained from the multisets of distances of N as 
shown in the statement of the lemma.
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We now prove the second statement, namely that N ′ contains only one edge where x

can be reattached to, so as to obtain a network with the same multisets of distances as N . 
By Lemma 5.4, we know that x is not in a blob, and that x induces a partition Y ∪ Z

of X ′. This implies that x must be reattached to N ′ at a cut-edge that induces the 
partition Y ∪ Z. We now show that there is only one such cut-edge in N ′ if we are to 
obtain a network with the same multisets of distances as N upon reattaching x. If there 
are two cut-edges e1, e2 in N ′ that induce the same required partition Y ∪Z, observe that 
any path from e1 to e2 must consist only of level-2 blobs that are incident to exactly two 
cut-edges. Note that level-1 blobs cannot be included here as otherwise we would produce 
parallel edges. Now take any leaf y ∈ X − {x}, and let N1 and N2 denote the networks 
obtained by attaching x to e1 and e2 respectively. Because of the level-2 blobs between e1

and e2, we have that dN1
m (x, y) �= dN2

m (x, y). But we know that there must exist one cut-
edge e in N ′ to which we can attach x to obtain N . We locate this edge e by finding one 
that induces the correct partition and satisfies the equation dNe

m (x, y) = dNm(x, y). This 
proves the claim that x can be added back to N ′ via a unique edge to obtain a network 
with the same multisets of distances as N . Since there is a unique edge where x can be 
attached to in order to obtain a network with the same multisets of distances as N , the 
network obtained this way must be isomorphic to N . �
5.2. Pendant blobs

For the remainder of this section, we will restrict to level-2 networks with at least two 
blobs and in which all leaves are contained in blobs. We can do this by Observation 5.2
and Lemmas 5.3, 5.4, and 5.5.

5.2.1. Pendant level-1 blobs

Lemma 5.6. Let N be a level-2 network on X. A chain (a1, . . . , ak) with k ≥ 2 is contained 
in a pendant level-1 blob if and only if d(a1, ak) = {41, (k + 1)1}.

Proof. Suppose first that a chain (a1, . . . , ak) with k ≥ 2 is contained in a pendant level-1
blob B. As there is only one non-trivial cut-edge incident to B, this chain is the only 
chain that is contained in B. It is then clear that, we must have d(a1, ak) = {41, (k+1)1}.

Now suppose that there exists a chain (a1, . . . , ak) with k ≥ 2 such that d(a1, ak) =
{41, (k + 1)1}. Clearly the distance k + 1 corresponds to the path between a1 and ak
that passes through the neighbours of ai for i ∈ [k]. Therefore we examine the path 
between a1 and ak that does not pass through the neighbours of ai+1 for i ∈ [k − 2]. 
Note first that the chain cannot be contained in a non-pendant level-1 blob, as otherwise 
this path between a1 and ak would pass through at least two vertices that are incident to 
non-trivial cut-edges. In this case, the length of the path between a1 and ak would be at 
least 5, which is a contradiction. The chain also cannot be contained in a level-2 blob, as 
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otherwise the set d(a1, ak) would contain at least 3 elements. Therefore the chain must 
be contained in a pendant level-1 blob. �
Lemma 5.7. Let N be a level-2 network on X in which (a1, . . . , ak) is a chain that is 
contained in a pendant level-1 blob. Let N ′ be the network on X ′ = X∪{z} −{a1, . . . , ak}
obtained from N by replacing the pendant blob by a leaf z. For every x ∈ X ′ − {z}, we 
can uniquely partition the multiset of distances dN (x, a1) into two equal sized sets A

and B such that A − 2 = B− (k+ 1). Then the multisets of distances of N ′ contains the 
elements

dN
′
(x, y) =

{
dN (x, y) if x, y ∈ X ′ − {z}
A− 2 if y = z.

Proof. We first prove the claim that for every x ∈ X ′ − {z}, we can uniquely partition 
the multiset of distances d(x, a1) into two equal sized sets A and B such that A − 2 =
B − (k + 1). As usual, let pi denote the neighbours of ai for i ∈ [k], and let q denote the 
neighbour of p1 that is not a1 nor p2. Note that k ≥ 2 since otherwise there would be 
parallel edges. Let x ∈ X ′. Then any path from x to a1 consists of a path from x to q and a 
path from q to a1. There are two possible paths from q to a1: one is of length 2 and uses the 
edges qp1, p1a1; the other is of length k+1 and uses the edges qpk, pkpk−1, . . . , p2p1, p1a1. 
Therefore every path from x to q yields two paths from x to a1, for which one of the 
paths is longer than the other by a length of k − 1. This implies that the size of the 
multiset d(x, a1) is even, since every path from x to a1 can be matched to another path 
from x to a1 that shares the same part of the path between x and q. Now take the smallest 
element d ∈ d(x, a1). By the argument presented above, there must exist a corresponding 
element d +k− 1 ∈ d(x, a1). We place d in set A and we place d +k− 1 in set B, remove 
both elements from d(x, a1) and recurse. By continuing this for the smallest element 
in d(x, a1) at each step, this partitions the multiset into a bipartition d(x, a1) = A ∪ B

where |A| = |B| = d(x, a1)/2, such that A + (k − 1) = B. It follows from iteratively 
adding the smallest element from d(x, a1) to A, that this bipartition is unique. This 
proves the claim.

To prove the second part of the lemma, first observe that any path between a leaf x ∈
X ′−{z} and z in the network N ′ corresponds to a path between x and q in N . Now the 
multiset of distances between x and q in N can be obtained by finding the multiset of 
distances between x and a1 that used the edges qp1, p1a1, and subtracting 2 from each 
element. This is precisely the set A − 2 that we have found above. For any other leaf y ∈
X ′ − {z}, we have that all paths between x and y are unaffected by the replacement 
of the blob by z, as the blob is pendant in N . Therefore d(x, y) remains unchanged 
for x, y ∈ X ′ − {z}. �

It is again easy to reconstruct the blob after reconstructing the reduced network, since 
we know that (a1, . . . , ak) must form a chain on the blob, in that order.



18 L. van Iersel et al. / Advances in Applied Mathematics 120 (2020) 102075
a

a

a

a
a
a
a
a

a

a

a1
···
ak

f

a

a

a

a
a
a
a
a

a
a
a
a
a

a

a

a

a

a1
···
ak

b1

···
b�

f

Fig. 6. A pendant level-2 blob of the form (k, 0, 0, 0) containing the chain (a1, . . . , ak) (left) and a pendant 
level-2 blob of the form (k, �, 0, 0) containing the chains (a1, . . . , ak) and (b1, . . . , b�). The edges labelled f
denote the non-trivial cut-edges in both networks.

5.2.2. Pendant level-2 blobs
We adopt the following notation for pendant level-2 blobs. Let B be a pendant level-2

blob, and let a, b, c, d denote the four chains contained in B of lengths k, �, m, n ≥ 0 such 
that chains c and d are on the same side of B as the non-trivial cut-edge. Then we say 
that B is of the form (k, �, m, n). For ease of notation, a side without leaves is seen as a 
length-0 chain. See Fig. 6 for pendant level-2 blobs of the forms (k, 0, 0, 0) and (k, �, 0, 0).

Lemma 5.8. A level-2 network N contains a pendant level-2 blob of the form (k, 0, 0, 0)
for k ≥ 2 with the chain (a1, . . . , ak) if and only if d(a1, ak) = {51, 61, (k + 1)1}.

Proof. Suppose first that N contains a pendant level-2 blob B of the form (k, 0, 0, 0). 
Let e denote the non-trivial cut-edge that is incident to B. Then the path from a1 to ak
that uses the side of B without e and without the chain, the side of B with e, and the 
side of B with the chain are of distances 5, 6, and k + 1 respectively.

Suppose now that there exists a chain (a1, . . . , ak) where k ≥ 2 such that d(a1, ak) =
{51, 61, (k+1)1}. First, since |d(a1, ak)| > 2, we note that the chain (a1, . . . , ak) must be 
contained in a level-2 blob. Consider a level-2 blob B that contains the chain (a1, . . . , ak)
on one of its sides, and suppose that there is a single non-trivial cut-edge e on another 
one of its sides. There must be at least one such edge e because otherwise there would 
be parallel edges. Currently we have that d(a1, ak) = {51, 61, (k + 1)1}: adding more 
cut-edges (trivial or non-trivial) to the sides of B would change the set of distances. 
Since B is incident to exactly one non-trivial cut-edge, it is a level-2 pendant blob. �
Lemma 5.9. A level-2 network N contains a pendant level-2 blob of the form (1, 0, 0, 0)
containing the leaf a if and only if dm(a, x) ≥ 6 for all x ∈ X − {a} and for any two 
leaves y, z ∈ X − {a}, dm(a, y) + dm(a, z) − dm(y, z) ≥ 8.

Proof. Suppose first that a pendant level-2 blob B contains only the leaf a. Let uv

denote the non-trivial cut-edge incident to B, where u is the vertex that is on B. Now, 
the shortest distance from a to u is exactly 3. Furthermore, the shortest distance from u

to a leaf x that is not a is at least 3, since such a path must contain the edge uv, an edge of 
another blob, and an edge incident to x. In particular, such a path must contain an edge of 
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another blob since all leaves are assumed to be contained in blobs. Therefore dm(a, x) ≥ 6
for all x ∈ X − {a}. To prove the second statement, let y, z ∈ X − {a}. Then by the 
triangle inequality, we have

dm(a, y) + dm(a, z) − dm(y, z) = dm(v, y) + dm(v, z) − dm(y, z) + 8 ≥ 8.

Now suppose that dm(a, x) ≥ 6 for all x ∈ X − {a} and for any two leaves y, z ∈
X −{a}, we have dm(a, y) + dm(a, z) − dm(y, z) ≥ 8. The first condition implies that (a)
is a maximal chain. Suppose first that a was contained in a level-1 blob B. Note that B

cannot be pendant as otherwise the network would have parallel edges. Let pa denote 
the neighbour of a (a vertex of B), and let py, pz denote the two neighbours of pa on B

that are not a. The vertices py and pz are necessarily incident to non-trivial cut-edges, as 
otherwise a would be contained in a chain, in which case the condition dm(a, x) ≥ 6 would 
be violated for some leaf x in the chain. Now let y and z denote any leaves in X − {a}
that can be reached from B via the cut-edges incident to py and pz respectively. Then we 
have that dm(a, y) + dm(a, z) − dm(y, z) = 2 if a shortest path between py and pz passes 
the vertex pa, and we have dm(a, y) +dm(a, z) −dm(y, z) = 3 otherwise. This contradicts 
our second condition, and therefore we may assume that the leaf a is contained in a 
level-2 blob B. Suppose that B is a non-pendant blob, in other words, that there are 
at least two non-trivial cut-edges incident to B. Take two non-trivial cut-edges that are 
closest to a, and take any two leaves y and z that can be reached from B via these 
cut-edges. The shortest distance from a to the endpoints of these cut-edges on B is at 
most 3. Therefore we have dm(a, y) + dm(a, z) − dm(y, z) ≤ 6, which contradicts our 
second condition. Therefore we may assume that the leaf a is contained in a pendant 
level-2 blob B. But aside from the leaf a and the single non-trivial cut-edge, no other cut-
edges can be incident to B. Indeed, having another leaf that is contained in B violates 
the first condition, and having another non-trivial cut-edge contradicts the fact that B

was pendant. Therefore B is a pendant level-2 blob of the form (1, 0, 0, 0) that contains 
a single leaf a. �
Lemma 5.10. Let N be a level-2 network on X containing a pendant level-2 blob of 
the form (k, 0, 0, 0) for k ≥ 1 with the chain (a1, . . . , ak). Then we can replace the 
pendant blob by a leaf z to obtain a network N ′ on X ′ = X ∪ {z} − {a1, . . . , ak}. For 
every x ∈ X ′−{z}, we can uniquely partition the multiset of distances d(x, a1) into four 
equal sized sets A, B, C, D such that A − 3 = B − 4 = C − (k + 2) = D − (k + 3). Then 
the multisets of distances of N ′ contains the elements

dN
′
(x, y) =

{
dN (x, y) if x, y ∈ X ′ − {z}
A− 3 if y = z.

Proof. We first show that the partition of d(x, a1) exists and that it is unique. Let B

denote the pendant level-2 blob containing (a1, . . . , ak), and let q denote the vertex in B
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that is an endpoint of a non-trivial cut-edge. Let x ∈ X ′ −{z}. Every path from x to a1
consists of a path from x to q and a path from q to a1. There are four possible paths 
from q to a1 of lengths 3, 4, k+2, and k+3. By an analogous argument used in the proof 
of Lemma 5.7, there is a unique partition of d(x, a1) into four equal sized sets A, B, C, D
such that A − 3 = B − 4 = C − (k + 2) = D − (k + 3).

Upon replacing the pendant blob B by a leaf z, we note that the multiset of distances 
between a leaf x ∈ X ′ − {z} and z in N ′ is equivalent to the multiset of distances 
between x and q in N . This multiset of distances is precisely the set A −3. Let y ∈ X ′−{z}
be another leaf that is not x. Then all paths between x and y in N are unaffected after 
replacing B by a leaf z; therefore dN

′(x, y) = dN (x, y). �
Pendant level-2 blobs with at least two chains

Lemma 5.11. A level-2 network N on X contains a pendant level-2 blob of the 
form (k, �, 0, 0) with chains a = (a1, . . . , ak) and b = (b1, . . . , b�) with k, � ≥ 1 if and 
only if a and b are adjacent twice, and for all c ∈ a ∪ b, we have dm(c, x) ≥ 6 for all x ∈
X − (a ∪ b) and dm(c, y) + dm(c, z) − dm(y, z) ≥ 8 for any two leaves y, z ∈ X − (a ∪ b).

Proof. One direction follows an analogous argument used in the proof of Lemma 5.9.
To show the other direction, suppose that a and b are adjacent twice, and for all c ∈ a ∪

b, we have dm(c, x) ≥ 6 for all x ∈ X−(a ∪b) and dm(c, y) +dm(c, z) −dm(y, z) ≥ 8 for any 
two leaves y, z ∈ X−(a ∪b). Since a and b are adjacent twice, either a and b are contained 
in the same level-1 blob such that the cycle of the blob is up1p2 . . . pkvq1q2 . . . q�u where pi
and qj denote the neighbours of ai and bj for i ∈ [k], j ∈ [�], respectively, and u and v

are incident to non-trivial cut-edges, or a and b are contained in the same level-2 blob B

in which a and b are on two different sides of B and there are no other vertices that 
subdivide these two sides of B (see Fig. 7).

In the first case, let B denote the level-1 blob. We take leaves y and z that can be 
reached from B via the two non-trivial cut-edges. Without loss of generality, assume 
that k ≤ �. Then the shortest path from y to z must pass through the neighbours of ai
for all i ∈ [k]. But then for any c ∈ a, we have that

dm(c, y) + dm(c, z) − dm(y, z) = 2,

which contradicts our original assumption.
In the second case, let B denote the level-2 blob and let e denote the side of B that 

does not contain a nor b. Since the network contains at least two blobs, the side e must 
be incident to at least one non-trivial cut-edge. Suppose for a contradiction that there 
are at least two cut-edges incident to the side e. Let p and q denote the vertices on side e

such that if k ≥ 2 then they have shortest distance 3 and 4 from a1, respectively, and 
if k = 1 then they have shortest distance 3 and at most 4 from a1, respectively. Note 
first that the cut-edges incident to p and q must be non-trivial cut-edges – otherwise this 



L. van Iersel et al. / Advances in Applied Mathematics 120 (2020) 102075 21
a a

a a a a a

aaaaa

a a

a a

aa

a1 · · · ak

b1···b�

y z

a

a

a

a

a
a
a
a
a

a
a
a
a
a

a

a

a

a

a

a

a1
···
ak

b1

···
b�

y

z

Fig. 7. The two possibilities for when two chains a = (a1, . . . , ak) and b = (b1, . . . , b�) are adjacent twice and 
they are not contained in a pendant level-2 blob, as in the proof of Lemma 5.11. A level-1 blob (left) and 
a non-pendant level-2 blob (right). The dashed edges in both networks represent paths that are not trivial 
cut-edges from the blob to the leaves y and z. In the non-pendant level-2 blob, there could be additional 
cut-edges on the side not containing the chains a and b.

would contradict our assumption that for any leaf x ∈ X−(a ∪b), we have dm(a1, x) ≥ 6. 
Let y and z denote leaves that can be reached from B via the cut-edges incident to p

and q, respectively. Then

dm(a1, y) + dm(a1, z) − dm(y, z) ≤ 3 + dm(p, y) + 4 + dm(q, z) − dm(y, z)

= 7 − dm(p, q)

≤ 6,

where the final inequality follows as dm(p, q) > 0. This is a contradiction. Therefore there 
is exactly one cut-edge that is incident to the side e, from which it follows that a and b

are the only chains contained in a pendant level-2 blob of the form (k, �, 0, 0). �
Lemma 5.12. Let N be a level-2 network on X that contains a pendant level-2 blob of the 
form (k, �, 0, 0) with chains a = (a1, . . . , ak) and b = (b1, . . . , b�). Then we can replace 
the pendant blob by a leaf z to obtain a network N ′ on X ′ = X ∪ {z} − (a ∪ b). For 
every x ∈ X ′, we can uniquely partition the multiset of distances d(x, a1) into four equal 
sized sets A, B, C, D such that A − 3 = B − (� + 4) = C − (k + 2) = D − (k + � + 3). 
Then the multisets of distances of N ′ contains the elements

dN
′
(x, y) =

{
dN (x, y) if x, y ∈ X ′ − {z}
A− 3 if y = z.

Proof. The proof is analogous to that of Lemma 5.10. �
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Table 1
The number of green edges between two adjacent chains a = (a1, . . . , ak)
and b = (b1, . . . , b�) for different k and � values.

� = 1 � = 2 � > 2
k = 1 mA(5) mA+B(5) − 1 mA+B(5)
k = 2 mA+C(5) − 1 mA+B+C+D(5) − 2 mA+B+C+D(5) − 1
k > 2 mA+C(5) mA+B+C+D(5) − 1 mA+B+C+D(5)

Chain-Adjacency Graphs We have now dealt with pendant level-2 blobs of the 
forms (k, 0, 0, 0) (Lemmas 5.8 and 5.9) and (k, �, 0, 0) (Lemma 5.11). For the remaining 
four cases (ignoring symmetric cases) left to examine, (k, 0, m, 0); (k, 0, m, n); (k, �, m, 0); 
and (k, �, m, n), we employ the following graph.

Definition 5.13. A chain-adjacency graph (CAG) has a vertex for each chain, and between 
two vertices,

• we insert a red edge if the chains are adjacent once and two red edges if the chains 
are adjacent twice; and

• if the two chains are adjacent once, we insert a green edge for each length-5 path 
between endpoints of the chains (one per chain) that does not contain any edges of 
the two chains.

The condition for joining two vertices on the CAG via a green edge can indeed be ver-
ified from the multisets of distances. Let a = (a1, . . . , ak) and b = (b1, . . . , b�) denote two 
chains that are adjacent once, and suppose without loss of generality that dm(a1, b1) = 4. 
To count the number of green edges between a and b, we fall into the 9 cases shown in 
Table 1. This number is obtained by taking the multiplicity of 5’s in the multiset of 
distances between a pair of endpoints, minus the number of length-5 paths that pass 
through edges of the chains. Let (A, mA) = d(a1, b1); (B, mB) = d(a1, b�); (C, mC) =
d(ak, b1); (D, mD) = d(ak, b�).

We only insert green edges between chains that are adjacent, rather than between 
all chains that are distance-5 apart, to ensure that chains contained in different blobs 
are not connected in the CAG. Since we may assume that all leaves are contained in 
blobs, we note that two chains are adjacent and in the same blob if and only if they are 
connected by a red edge in the CAG. Note that there may be multiple edges between 
two vertices in a CAG (see Fig. 8). We now show how we can use the CAG to distinguish 
the configurations of pendant blobs from non-pendant blobs, and how it can be used to 
distinguish the remaining level-2 pendant blob structures.

Observe that every edge in the CAG corresponds to a distinct distance-4 or distance-5
path between a pair of chain endpoints. We say that this path in the network is covered
by the edge of the CAG. In particular, we also say that the edges of the path of the 
network is covered by this edge of the CAG. Note that an edge of a network can be 
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Fig. 8. Each subfigure shows a pendant level-2 blob together with its CAG directly below it. On each blob, f
denotes the non-trivial cut-edge. Each of the leaves a, b, c, d can be replaced by a longer chain whilst keeping 
the same CAG. By Theorem 5.14, we have that the network contains one of the four pendant blobs if and 
only if the CAG (which can be obtained from the multisets of distances) is exactly the one in the same 
subfigure. In the CAG, the dashed lines represent the red edges and the solid lines represent the green 
edges. In (c), the green edge cd in the CAG covers the dotted path between c and d. (For interpretation of 
the colours in the figure, the reader is referred to the web version of this article.)

covered by more than one edge of the CAG. See Fig. 8 (c) for an example of a distance-5
path that is covered by an edge in the CAG.
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Theorem 5.14. (See Fig. 8.) Let N be a level-2 network on X with at least two blobs, 
where no pendant blobs are of the form (k, 0, 0, 0) and (k, �, 0, 0) in which all leaves are 
contained in blobs. For k, �, m, n ≥ 1, N contains a pendant level-2 blob of the form

• (k, 0, m, 0) if and only if there exist vertices a and c which form a blob in the CAG 
with 1 red edge and 2 green edges between them.

• (k, �, m, 0) if and only if there exist vertices a, b, and c which form a blob in the CAG, 
where a and b are connected by 2 red edges and the other two pairs are connected 
by 1 red edge and 1 green edge.

• (k, 0, m, n) if and only if there exist vertices a, c, and d which form a blob in the 
CAG, where every pair of vertices are connected by 1 red edge and 1 green edge.

• (k, �, m, n) if and only if there exist vertices a, b, c, and d which form a blob in the 
CAG, where every pair of vertices are connected by 1 red edge, and a and b are 
connected by an additional red edge.

Proof. All other possible pendant level-2 blobs are of the form (k, 0, 0, 0) or of the 
form (k, �, 0, 0). The CAG of the blob of the form (k, 0, 0, 0) is the singleton graph; 
the CAG of the blob of the form (k, �, 0, 0) is two vertices connected by 2 red edges. The 
CAG for either of these two pendant blobs is not the same as any of the CAG for the 
four pendant blobs that we investigate here. Therefore we may distinguish the CAG of 
the pendant level-2 blobs from one another.

Now we consider non-pendant level-2 blobs. First, if the blob contains no leaves then 
the CAG of such a blob is empty, so we are done. Hence, suppose that some non-pendant 
level-2 blob B contains some leaves. Observe that B can be obtained by introducing non-
trivial cut-edges to one of the six possible level-2 pendant blobs.

Suppose first that B can be obtained by introducing non-trivial cut-edges to a pendant 
blob of the form (k, 0, 0, 0). Then, B contains one or more chains on one side of the blob, 
and the possible CAGs would be a path (or disjoint paths) of red edges that connect 
adjacent chains, or if it contains a green edge, two vertices that are connected by 1 red 
and 1 green edge. However, none of these CAGs correspond to that of the four pendant 
blobs we consider here.

Now suppose that B can be obtained by introducing non-trivial cut-edges to a pendant 
blob of the form (k, �, 0, 0). Then, B contains one or more chains on two sides of the blob, 
and at least one non-trivial cut-edge on the third side. None of the edges in the CAG 
of B will cover an edge of this third side, since all paths between chain endpoints that 
uses this side will be of length at least 6. Therefore the only possible CAGs we can get 
on B is a cycle or a path (or paths) of red edges, or two vertices connected by 1 red 
and 1 green edge.

Suppose now that B can be obtained by introducing non-trivial cut-edges to one of 
the four remaining level-2 pendant blobs. Upon introducing non-trivial cut-edges to the 
pendant blob, either the number of chains on the blob increases or stays the same.
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Suppose first that this number increases. In each of the four pendant blobs, we note 
that every chain is adjacent to every other chain on the blob. It is easy to check that 
adding non-trivial cut-edges to a pendant blob, which results in the increase in the 
number of chains on the blob, will return a blob in which every chain is not adjacent to 
every other chain. In particular, one side of B will contain at least two chains.

• It follows from here that at most three chains are pairwise adjacent in B. Therefore, 
non-pendant level-2 blobs cannot have a CAG that is the same as that of a pendant 
blob of the form (k, �, m, n).

• So suppose there are three pairwise adjacent chains in B. There are two cases. Either 
the three chains are contained in distinct sides of B, or two of the three chains are 
contained in the same side of B. In the former case, we note that there is at least one 
side of B that contains two chains. Then, one of the three pairwise adjacent chains 
contained in this side of B cannot have an edge from it to the two other chains in 
the CAG, except for the red edge that shows their adjacency. In the latter case, 
there are exactly two chains on one side of B and one chain on another side of B
that make up the pairwise adjacent chains. An edge between the chain vertices in 
the CAG excluding the red edge, if it exists, must correspond to some path between 
chain endpoints that uses the edges of the third side of B. But since B is a non-
pendant blob, there must be at least one non-trivial cut-edge on this third side of B. 
Therefore any path between chain endpoints that uses this side must be of length 
at least 6. This implies that within the CAG, the three pairwise adjacent chains are 
connected by a single red edge between all pairs of vertices. Therefore, non-pendant 
level-2 blobs cannot have a CAG that is the same as that of a pendant blob of the 
form (k, �, m, 0) nor (k, 0, m, n).

• Finally suppose that there are two chains that are adjacent in B. For the CAG of B
on these two vertices to be the same as that of (k, 0, m, 0), we would need for the 
two distance-5 paths between chain endpoints to pass through (collectively) all three 
sides of B. However, there are at least two chains contained in one side of B, and 
thus at least one of these two distance-5 paths cannot exist. Therefore, non-pendant 
level-2 blobs cannot have a CAG that is the same as that of a pendant blob of the 
form (k, 0, m, 0).

On the other hand suppose that the number of chains on the blob stays the same 
upon adding non-trivial cut-edges to one of the four level-2 pendant blobs. Note that for 
these four cases, all edges of the pendant level-2 blobs that do not join the neighbours 
of leaves of the same chain are covered by at least one of the edges in its CAG. Upon 
inserting non-trivial cut-edges to obtain B, we see a change in colour of the CAG edge 
that used to cover the bisected edge (from red to green), or a possible deletion of the 
edge (if the edge was green to begin with). This will clearly result in a blob B with a 
CAG that is different to that of the four level-2 pendant blobs we consider here.
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Now we consider the CAG of a level-1 blob. Observe that a CAG of a level-1 blob 
contains a green edge if and only if the level-1 blob contains two chains a = (a1, . . . , ak)
and b = (b1, . . . , b�) such that the cycle of the blob is up1p2 . . . pkvwq1q2 . . . q�u, where pi
and qj denote the neighbour of ai and bj for i ∈ [k], j ∈ [�], respectively, and u, v and w

are incident to non-trivial cut-edges. This does not result in any of the CAGs of the four 
pendant level-2 blobs. Therefore the CAG of a level-1 blob cannot be the same as that 
of a pendant level-2 blob of the forms (k, 0, m, 0); (k, �, m, 0); (k, 0, m, n). Furthermore, 
at most 3 chains can be pairwise adjacent on a level-1 blob. Hence the CAG of a level-1
blob cannot be the same as that of a pendant level-2 blob of the form (k, �, m, n). �

Note that pendant level-2 blobs of the form (k, 0, m, 0) and (m, 0, k, 0) will have the 
same CAG; however, it is straightforward to find the chain that is on the same side of 
the blob as the non-trivial cut-edge. Given the two chains a and c in this case, c is on 
the same side of the blob as the non-trivial cut-edge if and only if |d(x, cm)| < |d(x, ak)|
for all x ∈ X − (a ∪ c). Note also that we may identify the leaf on the chain that is 
closest to the non-trivial cut-edge, by taking the same leaf x and letting cm be the chain 
endpoint satisfying dm(cm, x) < dm(c1, x). A similar argument holds for the pendant 
level-2 blob of the form (k, 0, m, n), in identifying which chain is on the side of the blob 
without the non-trivial cut-edge. We now seek to replace these pendant level-2 blobs by 
a single leaf z and alter the multisets of distances accordingly.

Lemma 5.15. Let k, l, m, n ≥ 1, and let B be a pendant level-2 blob that is of the 
form (k, 0, m, 0); (k, �, m, 0); (k, 0, m, n); or (k, �, m, n). Then we can replace the pen-
dant blob by a leaf z to obtain a network N ′ on X ′ = X ∪ {z} − (a ∪ b ∪ c ∪ d), such that 
the multisets of distances of N ′ contains the elements

dN
′
(x, y) =

{
dN (x, y) if x, y ∈ X ′ − {z}
A− 2 if y = z,

where if B is of the form

• (k, 0, m, 0), then we uniquely partition d(x, cm) into three equal sized sets A, B, C
such that A − 2 = B − (m + 3) = C − (k + m + 3).

• (k, �, m, 0), then we uniquely partition d(x, cm) into three equal sized sets A, B, C
such that A − 2 = B − (� + m + 3) = C − (k + m + 3).

• (k, 0, m, n), then we uniquely partition d(x, cm) into three equal sized sets A, B, C
such that A − 2 = B − (m + n + 3) = C − (k + m + n + 3).

• (k, �, m, n), then we uniquely partition d(x, cm) into three equal sized sets A, B, C
such that A − 2 = B − (� + m + n + 3) = C − (k + m + n + 3).

Proof. The proof is analogous to that of Lemma 5.10. �
We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1. Let N be a level-2 network on X. We show by induction 
on |E(N)|, the number of edges in N , that level-2 networks are reconstructible from 
their multisets of distances.

If N contains a cherry or a leaf that is not contained in a blob, then we can identify 
these structures and reduce them accordingly by Observation 5.2 or Lemma 5.5, respec-
tively. Then upon reconstructing the reduced network by the induction hypothesis, we 
can undo the reduction by either replacing the leaf by a cherry or by reattaching the 
deleted leaf to the rightful cut-edge by Lemma 5.5. If N is a network on a single blob, 
then we may reconstruct it from its shortest distances by Lemma 5.3, and therefore from 
its multisets of distances.

We now assume that N is a level-2 network on at least two blobs such that every 
leaf is contained within blobs and that there are no pendant subtrees. We show that 
we may identify pendant blobs and replace them by a leaf. First note that a chain on a 
pendant level-1 blob can be identified by Lemma 5.6; Lemma 5.7 outlines how we can 
replace the blob by a leaf z and adjust the multisets of distances accordingly. It is easy 
to reconstruct the blob after reconstructing the reduced network, since we know the 
chain that is contained in the blob. For pendant level-2 blobs, recall that they are of the 
form (k, �, m, n) where k, �, m, n ≥ 0. The following list shows how all possible pendant 
level-2 blobs can be identified with one of the lemmas that we have proven before:

• (k, 0, 0, 0) by Lemmas 5.8 and 5.9;
• (k, �, 0, 0) by Lemma 5.11; and
• (k, 0, m, 0); (k, 0, m, n); (k, �, m, 0); and (k, �, m, n) by Theorem 5.14.

Replacing the pendant level-2 blobs by a leaf z and adjusting the multisets of distances 
accordingly for each case has been outlined in Lemmas 5.10, 5.12, and 5.15. It is easy 
to reconstruct the blob after reconstructing the reduced network, since we know which 
chains are on the same side of the blob as the non-trivial cut-edge.

Observe that every level-2 network has a cherry, exactly one blob, a leaf that is not 
contained in a blob, or a pendant blob. We have now shown that it is possible to identify 
these structures, to reduce them, and to add these structures back to the reduced network 
to obtain the original network. All these reductions decrease the number of edges of the 
network. Then by the induction hypothesis, we may reconstruct the reduced network 
from the modified distance matrix – since we can obtain the original network from the 
reduced network for each case, this completes the proof. �
6. Discussion

We have considered the fundamental question of deciding which networks are uniquely 
reconstructible from the pairwise graph-theoretical distances between their leaves. We 
showed that level-1 networks are reconstructible from their shortest distances and that 
level-2 networks are reconstructible from their multisets of distances. We have also shown 



28 L. van Iersel et al. / Advances in Applied Mathematics 120 (2020) 102075
that networks of level higher than 1 and level higher than 2 are not reconstructible from 
their shortest distances and multisets of distances in general, respectively (Lemmas 3.1
and 3.2).

From a practical perspective, having the multisets of distances is not very realistic. For 
example, starting with sequence data, it is not clear how multisets could be produced in 
an accurate and efficient manner. As stated in [4], while it may be possible to obtain ‘...the 
set of different evolutionary path weights between a given pair of taxa, it seems hard to 
imagine how one might manage to measure the number of distinct evolutionary paths 
of a given observed weight.’ Naturally, this points to the idea that perhaps we should 
investigate other types of distance matrices that are more restrictive when compared to 
the multisets of distances, that may be relatively easy to obtain from sequence data. 
Therefore in future research, it would be of interest to consider other distance matrices 
such as tree-average distances [29] and sets of distances [4]. In particular, the two level-2
networks in Fig. 2 have the same shortest distance matrices, but different sets of distances 
(i.e., the underlying sets of their multisets of distances are different). Therefore the 
question of whether a level-2 network is reconstructible from its set of distances remains 
open.

On a similar note, we wonder if there is some characterisation of level-2 networks that 
are reconstructible from their shortest distances. We have already seen instances of this, 
for example when the level-2 network contains at most 3 leaves (Lemma 4.4) and when 
the network contains exactly one blob (Lemma 5.3). We conjecture that if every side 
of all blobs have enough incident edges, then they should provide enough information 
for unique reconstructibility. To motivate this conjecture, note that the networks in 
Fig. 2 contain a level-2 blob of the form (2, 0, 0, 0). If every level-2 blob has at least 
two sides with enough cut-edges incident to them so that when they become pendant 
blobs upon reducing the network they are not of the form (k, 0, 0, 0), then is the network 
reconstructible from its shortest distances? A similar question can be posed for level-k
networks for k ≥ 3. Can we characterise level-k networks that are reconstructible from 
their multisets of distances, or possibly from their shortest distances?

On the algorithmic side, the proofs of Theorems 4.2 and 5.1 outline the steps that can 
be taken to construct networks from distance data. Indeed, in both the level-1 and the 
level-2 cases, we describe how one can identify a cherry or a pendant blob, reduce it to 
a single leaf, and adjust the new distance matrices. Since all networks contain either a 
cherry or a pendant blob, we may recurse on the reduced instances until there is a tree 
or a single blob in the network, at which point we are done. The important question as 
to whether this algorithm can run in polynomial time remains open.

In practice, even if we are able to find efficient algorithms that can uniquely construct 
level-1/level-2 networks from their shortest/multisets of distances, it is important to bear 
in mind that variations in distances arising from real data sets may lead to inconsistencies 
which cannot be handled by such algorithms. One way to deal with such inconsistencies 
would be to consider a slight variant of the problem that we have solved. As in [10], we 
may wish to find an unrooted network in which the distance matrix elements correspond 
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to the length of some, not necessarily the shortest, path between two taxa. Though we 
suspect that the output network will not necessarily be unique, it could nonetheless 
provide a solution that is consistent with the input data and therefore a useful starting 
point for making biological deductions.

Finally, a natural extension would be to see if our results generalize to edge-weighted 
networks. In addition to considering the network topology, weighted networks take into 
account edge weights which can, for example, represent the amount of genetic divergence 
that has occurred along each edge of the network. It has been shown that this additional 
information on the networks can lead to distinguishing two rooted networks on different 
topologies that display the same set of data (e.g., consider the three distinct rooted level-1
networks on three leaves that display the same set of trees) [25]. For level-1 networks 
(or for the more general cactus graphs), it was shown recently that while there may 
exist multiple level-1 networks that realise the same shortest distance matrix, there is a 
unique optimal edge-weighted network whose sum of edge weights is minimal [15]. It was 
also noted that this is not the case for edge weighted, level-2 networks by considering 
an example presented in [1]. It could thus be of interest to ask whether if we consider 
optimality in terms of the multisets of distances instead, then is there a unique optimal 
level-2 network?
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